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ABSTRACT

Surface eddy mixing in the global subtropics

Julius J.M. Busecke

The salinity of the ocean is inherently linked to the global hydrological cycle

by net evaporation. The surface salinity, however does not just act like a ’rain

gauge’, ocean dynamics are vital in shaping the sea surface salinity (SSS)

distribution. Here I investigate the effect of unsteady motions on scales of

several hundred km and smaller - mesoscale eddies - on the water masses in

the saltiest regions of the surface oceans. These water masses are eventually

subducted equatorward and contribute to the shallow overturning circulation

by transporting surface signals from the subtropics to the tropics, making

them important components of the variable climate system.

Towed CTD measurements in March/April 2013 (a component of the

NASA SPURS process study) within the North Atlantic SSS maximum (SSS-

max) reveal several relatively fresh and warm anomalies, which deviate strongly

from climatological conditions. These features introduce a large amount of

freshwater into the subtropical region, exceeding the amount introduced by

local rain events. The scales and evolution of the features strongly suggest

a connection to mesoscale dynamics. This is supported by high-resolution

regional model output, which produces an abundance of features that are

similar in scale and structure to those observed, confirming the importance

of eddy mixing for the near surface salinity budget of the North Atlantic



SSS-max.

Observations from the Aquarius satellite and the Argo array in the global

SSS-max revealed marked differences in the mean shape and variability of

the SSS-maxima. These results motivated an investigation of the role of

eddy mixing in setting the regional characteristics of SSS maxima.

Observed surface velocities from altimetry are used to stir salinity fields in

high-resolution idealized model experiments. Using a water mass framework

(salinity coordinates) temporal variability in eddy mixing can be quantified,

using diagnostics for the total diffusive flux into the SSS-maxima (transfor-

mation rate; TFR) as well as the estimated cross-contour diffusivity(effective

diffusivity, Keff). Both diagnostics reveal distinct variability in the different

ocean basins. In the North Atlantic, both TFR and Keff are dominated by

changes in the velocity field while the North Pacific shows high sensitivity of

the temporal variability in eddy mixing with respect to the initial conditions

used, which represent seasonal/interannual change of the SSS-max shape and

position.

This implies that temporal variability of eddy mixing and diffusivities

must be taken into account when constructing salinity budgets in these re-

gions. Furthermore, the translation of results from one SSS-max region to

the other might not be possible, particularly when considering a changing

climate, which might influence the mechanisms responsible for temporal vari-

ability differently.



Lastly evidence is presented for large scale diffusivity variability (partic-

ularly in the Pacific), connected to large scale climate fluctuations (ENSO).

The evidence presented here suggests a significant modulation of surface dif-

fusivities by climate variability, which represents a feedback mechanism not

commonly recognized nor included in modern climate simulations.
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Chapter 1

Introduction

1.1 Motivation - Sea surface salinity and the global

hydrological cycle

Salinity determines, together with pressure and temperature, the density of

seawater, thus making it a crucial variable to observe and understand in the

global oceans. Historically, compared to the temperature, ocean salinity has

remained a vastly undersampled quantity in the global ocean. Figure 1.1)

shows the spatial distribution of historical shipboard salinity measurements.

Autonomous profiling floats from the Argo program (Roemmich et al., 1999)

and recent satellite observations of SSS (Font et al., 2010; Lagerloef et al.,

2008; Entekhabi et al., 2010) have significantly increased the global upper

ocean salinity observations, also reducing the strong northern hemisphere

bias of historical measurements. A comparison of Argo data to historic mea-

surements (roughly corresponding to Figure 1.1) is shown in Figure 1.2.
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Figure 1.1: This map shows the sampling distribution of historical surface salinity measure-
ments from ships, buoys, etc. Red dots indicate areas that have over 30 measurements,
mostly along shipping lanes. Blue dots shows surface areas where only one surface mea-
surement had been taken and white indicates regions with no historical surface salinity
measurements. Credit: World Ocean Atlas. Reproduced from https://aquarius.umaine.

edu/cgi/gal_images.htm?id=9

There are no significant sources of salt in the interior of the ocean, and

the total salt content of the global ocean is approximately conserved. No

salt leaves the ocean surface, hence local salinity can only be changed by

freshwater fluxes at the surface or local convergence of oceanic salinity fluxes.

The full full salinity equation can be written as follows:

∂S

∂t
= −∇(uS + DS) + FS (1.1)

Here S is the local salinity, u the full velocity vector and DS indicates a

diffusive (due to molecular diffusion) salt flux vector. The surface salinity

2



Figure 1.2: Ocean profile data from salinity observing platforms that comprise the World
Ocean Database 2013, updated to 2014. Platform type for (A) per year (1950?2014) and
(B) in 2.5 deg zonal (latitude) bins for the period 1950?2014. The global nature of Argo
program observations is evident in the even distribution of profiles across hemispheres. There
is a clear Northern Hemisphere bias in the historical archive comprised of data derived from
samples collected in Nansen bottles and by CTDs (instruments that measure conductivity,
temperature, and depth). Reproduced from (Durack, 2015)

forcing term FS arises from the physical constraint of a vanishing salt trans-

port through the air-sea interface. In a surface water parcel, the vertical

velocity w at the surface is given by the flux of freshwater

w = E − P (1.2)

where E is the local Evaporation and P local Precipitation. Near coastal

areas (polar regions) river runoff (ice melt) can also be a significant source

of freshwater, but since this thesis focuses on open ocean phenomena these

terms are assumed to be minor for the rest of the manuscript. Using natural

3



boundary conditions Huang (1993) at the surface the following condition has

to be satisfied:

wS − ks
∂S

∂z
= 0 (1.3)

The second term on the left hand side of the equation is a turbulent

salinity flux with the vertical diffusivity ks. Using Equation 1.2 this can be

interpreted as a salinity forcing at the surface FS.

FS = ks
∂S

∂z
= (E − P )S (1.4)

Local maxima in ocean salinity can only be strengthened by FS. Advec-

tion can only redistribute water masses and any diffusive process will act

to attenuate local extrema (for a more formal discussion see Section 3.1.1).

Ultimately even the surface forcing acting upon the ocean surface is an ex-

pression of a redistribution of freshwater, when the atmosphere, cryoshpere

and land are considered as a whole. The global exchange between the various

reservoirs of water is called the global hydrological cycle and it is very clearly

dominated by the ocean. The global ocean contains about 98% of the water

in the cycle and 77% of precipitation and 85% of evaporation globally happen

over the ocean (Durack, 2015).

Changes in the global precipitation patterns or amounts, associated with

climate change (Pachauri et al., 2014), could have profound impacts on agri-

4



culture, public health and natural disasters (e.g. floods and drought). It is

suggested that in order to understand changes in the global hydrological cy-

cle, including the terrestrial part, understanding of the oceanic branch, and

the associated changes, is critical (Schmitt, 2008; Durack, 2015).

Figure 1.3: (a) Annual average sea surface salinity (SSS) climatology from the Monthly
Isopycnal Mixed Layer Ocean Climatology (Schmidtko et al. (2013)) data in color. The
white contours show the mean dynamic topography (Maximenko et al., 2009) with a contour
interval of 10 cm. The arrows represent the Ekman transport in Sverdrups (Sv = 106m3s−1),
computed using ERA-40 wind stress data (Uppala et al., 2005). (b) Years 2012–2013 mean
SSS from Aquarius v3.0 Level 3 bias adjusted data (available via the NASA PO.DAAC
portal) in color and evaporation minus precipitation (E − P ) in m/yr as contours, only
plotting the -1.5 to 1.5 range, every 0.5 m/yr, E > P with solid lines. Evaporation data
from the WHOI OAFlux Project (http://oaflux.whoi.edu) and precipitation from the
GPCP v2.2 combined observations and satellite data (NASA’s GPCP project at http://

precip.gsfc.nasa.gov.) Taken from Gordon et al. (2015).

Direct observational estimates of surface fluxes have sparse coverage and

global datasets of surface fluxes needed for an estimate of the net evaporation

5



show large differences, even in the globally integrated values as Schanze et al.

(2010) describes. To address these discrepancies the idea of salinity as an

’ocean rain gauge’ has been proposed. Schmitt (2008) argues that surface

salinity should be used as a primary indicator or changes in E-P rather than

relying on the difference between two large terms, each of which has large

uncertainties when estimated over the global ocean. He furthermore argues

that the impending potential for improved salinity measurements and the

remaining uncertainties, especially in evaporation estimates, which rely on

sparse observations, would support this idea.

The relationship between SSS maxima (SSS-max) and the freshwater sur-

face fluxes has been pointed out as early as Wüst (1936). And changes of the

surface fluxes as a possible mechanism for changes in the surface/subsurface

salinity as early as Worthington (1976), who proposed changes in the wind

field as explanation for anomalous observations in the near surface salinity.

Indeed the sea surface salinity (SSS) distribution seems to align with the

field of surface fluxes, where areas of large E-P are roughly collocated with

local maxima of SSS and areas of excess precipitation with minima of SSS

(Figure 1.3). Despite the overall agreement of zones of high E-P with high

salinity, upon closer inspection of the fields, specifically in the subtropics,

the peaks of E-P and SSS are not aligned. The SSS-max is generally found

polewards of the E-P maximum, pointed out by many studies as evidence for

the role of ocean dynamics in shaping the SSS fields (Schmitt, 2008; Gordon

6



et al., 2015). The poleward shift is usually argued to be caused by the Ekman

drift prevalent in all subtropical basins (see Figure 1.3a and Sec. 1.3). This

is just one seemingly obvious example of the role ocean circulation plays in

shaping the SSS fields. Only when the ocean would be motionless (leaving

only molecular diffusion as a balancing mechanism for non-zero E-P), one

should expect the SSS-max to align perfectly with the E-P maximum due to

the integrating character of the surface salinity. And only then the SSS can

be used as a straight forward ’rain gauge’. In reality a detailed knowledge

of the ocean dynamics is required if one hopes to recover the net evapo-

ration from the surface SSS at most time scales. Certainly on very short

time scales, characteristic for strong rain events, salinity is tightly associated

with the precipitation (Boutin et al., 2016). Some studies have also linked

multi-decadal changes in SSS trends to an intensification of the water cycle

(Durack and Wijffels, 2010; Durack, 2015) but pointed out inconsistencies

with climate models about the scaling of an intensification of the water cy-

cle with a global temperature increase. It is suggested that the intensity of

the water cycle scales with as the Clausius-Clapeyron (CC) relation, which

describes the saturation vapor pressure as a strongly nonlinear function of

air temperature. (Durack and Wijffels, 2010) noted, that the amplification

diagnosed from observations was stronger than the counterpart from global

climate models. A recent study however finds a rate of water cycle intensifi-

cation, slower than predicted by CC, by investigating the widening of the full

7



depth salinity distribution (Skliris et al., 2016). This result is in agreement

with aforementioned model projections. This emphasizes the importance of

considering 3D salinities, or in other words, the importance of ocean dynamics

for the ocean salinity, particularly near the surface.

1.1.1 NASA SPURS campaign

The SPURS (Salinity Processes in the Upper Ocean Study, http://spurs.

jpl.nasa.gov) was a process-oriented measurement campaign in the sub-

tropical North Atlantic (with a second phase being currently carried out in

the tropical eastern Pacific). Various in situ measurements were augmented

by remote sensing products and regional modeling efforts to investigate pro-

cesses that affect SSS across a large range of time and space scales. SPURS

provided the initial motivation for this thesis and Chapter 2 is mostly based

on measurements taken during a cruise as part of SPURS. Other studies from

the campaign are summarized in (Lindstrom et al., 2015).

1.1.2 Differences among subtropical surface salinity patterns

Note: The following is a summary of a manuscript published in Oceanography (2015), Vol.

28(1), pp. 1–30, http://dx.doi.org/10.5670/oceanog.2015.02 1

1AUTHORS: Arnold L.Gordon a*, Claudia M. Giulivi a, Julius Busecke a, Frederick M. Bingham b

a Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia
University, 61 Route 9W, Palisades, NY 10964, USA
b Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA

* corresponding author: A.G. agordon@ldeo.columbia.edu
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Figure 1.4: Subtropical surface salinity maximum (SSS-max) patterns. (a) Color patterns
show the MIMOC climatological SSS anomalies within the five SSS-max subtropical regions.
The anomalies are relative to a reference SSS indicated in parenthesis for each of the sub-
tropical regions. The thin and thick contours denote the reference salinity (S-ref) and the
–0.2 deviation from it. (b) Magnitude of the MIMOC SSS horizontal gradients (log10). The
contours as shown in (a) are included. (c) Aquarius v3.0 Level 3 bias adjusted SSS anomalies
for 2012-2013 in color. The contours are the same as in (a) but shown for the Aquarius data.
Taken from Gordon et al. (2015).

The subtropical ocean SSS maxima of the North and South Atlantic, the

North and South Pacific, and the southern Indian Oceans constitute inte-

9



grated responses to excess evaporative air-sea freshwater flux and convergence

of freshwater by ocean circulation and mixing processes, and they display sim-

ilarities and differences. The five subtropical regimes all have slightly different

“personalities” that likely are consequences of specific land/ocean regional

geometries that affect SSS, such as E–P, mean circulation, and vertical and

horizontal mixing processes (Vinogradova and Ponte, 2013; Busecke et al.,

2014; Gordon and Giulivi, 2014). Figure 1.4 reveals the relative strength and

shape of the global SSS-maxima by subtracting a constant reference salinity

in each basin.

• North Atlantic: the North Atlantic Ocean is the saltiest of the five sub-

tropical regions. Dry air blowing off the Sahara Desert leads to large

freshwater fluxes out of the surface (Schanze et al., 2010) and thus high

SSS values. The trade winds export the resultant water vapor across

Central America into the tropical Pacific (Zaucker and Broecker, 1992).

An additional factor, though not unrelated to the net water vapor ex-

port, is the Atlantic Meridional Overturning Circulation (AMOC). Rel-

atively salty water from the South Atlantic is injected into the North

Atlantic as a component of the upper limb of the AMOC. The North

Atlantic subtropical eastern boundary current, the Canary Current, is

notably saltier than those of the other basins because the eastern limb

of the North Atlantic subtropical gyre does not advect low-salinity sub-

polar water toward the equator as occurs in the North-South Pacific and

10



South Atlantic. Rather, the subpolar region feeds into the lower limb of

the AMOC.

• South Atlantic: The South Atlantic SSS-max is located at the western

sector of the subtropical belt. This feature is likely a consequence of

the AMOC. Most of the South Equatorial Current feeds into the cross-

equatorial transport via the North Brazil Current, rather than turning

southward into the South Atlantic subtropical western boundary Brazil

current, becoming more concentrated in the regional salty subtropical

water. The Benguela Current, the eastern boundary current of the South

Atlantic subtropics, is fed by Indian Ocean subtropical water, with some

inclusion of South Atlantic Current water (Gordon et al., 1992). A

mixture of lower salinity Indian Ocean water, the Agulhas leakage, and

subpolar water as parts of the South Atlantic Current curl into the

Benguela Current (Beal et al., 2011). The SEC advects this water within

a broad sweep toward the northwest, feeding into the cross-equatorial

flow of the AMOC, “washing away” the SSS-max within the central and

eastern subtropical sectors of the South Atlantic.

• North Pacific: It is the freshest of the five SSS-max. The North Pacific

has negative E-P due to input of water vapor from the Atlantic across

Central America, and Southern Hemisphere water vapor into the ITCZ,

near 10N. Low SSS subpolar water is mainly injected into subtropical
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latitudes in the eastern boundary California Current, as export into the

Arctic via Bering Strait is small < 1Sv (Roach et al., 1995), with the

primary export of low salinity North Pacific water into the Indian Ocean

within the Indonesian Throughflow.

• South Pacific: Bingham et al. (2014), using ship-based, TAO/TRITON

mooring, and Argo data, inspect the seasonality of the North and South

Pacific SSS from 60N to 40S. They find that the within the western tropi-

cal South Pacific near 15S, the maximum SSS occurs in August/September,

whereas more variable timing of the SSS-max occurs in the eastern South

Pacific. This is likely a result of the details of the seasonal variability

of the precipitation. The South Pacific is the only ocean basin with this

kind of variable phase in the relevant latitude band (Bingham et al.,

2012).

• Southern Indian: The SSS-max exhibits a broad zonal band and is

furthest from the equator. Similar to the western South Pacific, the

Australia-Asian monsoon shifts the rainy ITCZ into the Southern Hemi-

sphere during the boreal winter (Wallace and Hobbs, 2006). In addition,

low salinity waters of the high precipitation Indonesian seas are injected

into the eastern Indian Ocean near 12S with the Indonesian Through-

flow (Gordon, 1986); there is also low SSS advected into the region by

the South Java Current, drawing water from the Bay of Bengal. The
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low SSS water spreads westward within the zonal-flowing South Equato-

rial Current, forcing the subtropical SSS-max water to reside well to the

south of the high E-P band that lies slightly north of 20S. The eastern

boundary is relatively salty as low SSS subpolar water is not funneled

northward by Australia, blocked by the southward-flowing Leeuwin Cur-

rent. Additionally, Tasman leakage allows salty subtropical water from

the Great Australian Bight to spread into the Indian Ocean (Sebille

et al., 2014). The western boundary Agulhas Current injects salty water

from the evaporative western Indian Ocean into the southern subtropical

belt.

This thesis will investigate one specific mechanism that can influence the SSS

and potentially contribute to the observed regional differences - mixing by

mesoscale eddies. I will furthermore explore the influence of this process on

water masses that are subducted to the subsurface in the shallow overturning

circulation.

1.2 Eddy Mixing

Fox-Kemper et al. (2013) provides an excellent review of mesoscale eddy

transport in the ocean. I will summarize the most important concepts for

this thesis here. Following their terminology, all fluctuations from the mean

circulation with time scales of weeks and length scales of several hundred

13



kilometers (i.e. mesoscale) will be referred to as “eddies.”

Eddies play a major role in the global ocean circulation (e.g. Marshall

and Speer (2012); Marshall et al. (2017), water mass formation (Groeskamp

et al., 2016) and transports of tracers like heat,salt and anthropogenic car-

bon, in the ocean(Stammer, 1998; McCann et al., 1994; Tréguier et al., 2014;

Gnanadesikan et al., 2015). In this thesis I will focus on the effect of eddies

on tracer transports in the surface ocean

Unsteady motions in the ocean can be examined by decomposing the

Navier-Stokes equation into a mean state and the fluctuations from it v =

v + v′ The primes indicate a deviation from the average (in time, space or

both) represented by the over bar. The averaging procedure has to be a

Reynolds operator, i.e. the following conditions need to be fulfilled for two

random variables Φ and Ψ):

1. (Φ) = (Φ)

2. (Φ)′ = 0

3. (Φ)(Ψ) = (Φ) (Ψ)

This so called Reynolds decomposition introduces ’Reynolds fluxes’ into the

tracer conservation equations, which are covariance terms between the veloc-

ity and tracer fluctuation about the mean, making the system of equations

underdetermined. To solve the system of equations, a closure is necessary,

which is commonly assumed to be in the form of diffusion down the mean
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gradient. This closure is motivated by Lagrangian particle dispersion which

behaves diffusively assuming the decorrelation length of the fluid parcel dis-

placement is small compared to the spatial scale of the tracer gradient.

To evaluate the validity of this assumption a comparison of the mixing

length to the curvature scale of the diagnosed tracer field is described in

Section B.3.

Additionally a diffusive form of closure is desirable for implementation of

parametrizations of eddy effects in numerical models since the expression for

the eddy fluxes is based on the mean state (the ’coarse’ output of a model).

In the most general form the full eddy flux vector is expressed as the

product of a second order tensor R and the gradient of the mean tracer.

u′C ′ ' −R∇C . (1.5)

However, here R does not have to represent a purely diffusive process,

e.g. a symmetric tensor. Any second order tensor can be split up into a

symmetric diffusivity tensor (K) and an asymmetric advection tensor. A

representation of the full tensor is needed to accurately reproduce the effect

(both diffusive and advective) in a coarse resolution model. However, for

this thesis we will focus on K, e.g. the diffusive part of the eddy flux. A

real and symmetric tensor can be fully described by its (real) eigenvalues and

orthogonal eigenvectors. Furthermore the eigenvectors can be chosen as an

orthonormal basis of the tensor, called the ’principal axes’ of the tensor. The
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real and positive eigenvalues then represent a typical diffusivity in the direc-

tion of the corresponding principal axis (eigenvector). Results from idealized

models (Bachman et al., 2015) and drifter experiments as well as observations

(Rypina et al., 2012; Lumpkin and Johnson, 2013) indicate strong anisotropy

in the diffusion tensor, often aligned with regions of strong flow. The po-

tential mechanisms causing the anisotropy are summarized in (Fox-Kemper

et al., 2013). These regions, e.g the western boundary currents and the ACC,

usually show strong lateral gradients across the flow direction. Only when

the principal axis is aligned with the gradient of the tracer field the diffusivity

can be represented by a scalar. This is also true in anisotropic homogeneous

turbulence, where the diffusivity along all principal axes is equal.

An alternative framework for diagnosing only the part of the eddy diffu-

sivity leading to irreversible mixing is based on the ’roughness’ of the tracer

field. Roughness is enhanced by mesoscale stirring and enhances the small

scale lateral gradient on which ’small-scale’ diffusion acts (and is amplified

by), in turn permanently destroying tracer variance.

This physical concept can be employed using a tracer following coordi-

nate system (e.g. diffusivities are diagnosed along lines of constant tracer

concentration) or, with certain restrictions as a local diffusivity with a grid

box. The former diagnostic is called ’Effective Diffusivity’ (Nakamura, 1996)

and used in Chapter 3. The latter diagnostic is the ’Osborn-Cox diffusivity’

(Osborn and Cox, 1972), which is used in Chapter 4.
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The physical interpretation of the diagnosed mixing processes is very simi-

lar: Only the enhanced small scale diffusivity (due to enhanced lateral tracer

gradient variance) is diagnosed as a diffusivity, reversible processes are ex-

cluded. However, the main difference is that the Osborn-Cox diffusivity is a

diagnostic of local destruction of tracer variance by small scale mixing, not

able to account for advection of tracer variance, but providing a local esti-

mate of diffusion. The effective diffusivity on the other hand, incorporates

non-local effects but provides only an estimate of diffusivity integrated along

a tracer contour. As Abernathey and Marshall (2013) points out, the effec-

tive diffusivity is equivalent to the Osborn-Cox diffusivity integrated along a

tracer contour. Both of these approaches result in a scalar diffusivity relevant

for the tracer fields used for diagnosis. This can be understood as a projection

of the vector consisting of K principal axes onto the tracer contour. Using

multiple tracers (with different large scale geometries), one can presumably

identify the minor axis of the full diffusivity tensor K. The minor axis is of

large importance to tracer transport since transport perpendicular to the the

direction of flow cannot be accomplished by advection, yet it is important for

the transformation of water masses and hence the global circulation. This

suggest the relative importance of mixing processes is higher for cross-frontal

exchange, usually characterized by the minor principal axis of the diffusivity

tensor.

In Chapter 3 the cross frontal diffusivity respective to contours of constant
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salinity is used to compare the influence of eddy mixing to the global SSS-

maxima. This effectively eliminates the effects of advection from the salinity

budget equation, and provides a unique view on mixing effects relevant to

water mass transformation. Several studies have documented the spatial het-

erogeneity of eddy diffusivities from observations(Abernathey and Marshall,

2013; Cole et al., 2015) with significant implications for tracer transport if

implemented in numerical models (Gnanadesikan et al., 2015). This thesis

will focus in particular on the temporal variability in eddy diffusivities. In

Chapter 4 the temporal variability of global eddy diffusivities is investigated.

Chapter 3 will investigate the temporal variability in a water mass framework

with relevance to the water masses subducted in the shallow overturning cir-

culation.

1.3 The shallow overturning circulation and its role for

global climate

The shallow overturning circulation (SOC) is contained in the upper 500 m of

the global ocean basins. The mean circulation is characterized by subduction

of water masses in the center of the subtropical gyres, which is advected

equatorwards. At the equator water is eventually upwelled and returned to

the subtropics at the surface due to poleward Ekman drift. In the zonal

mean the circulation describes a cell, the so called subtropical cell, but when

18



following a water particle, the described path in space can be more complex

(Schott et al., 2004; O’Connor et al., 2005).

The SOC is associated with large mean volume transports and higher

mean tracer gradients than the deeper overturning, resulting in higher heat

transports on average (Boccaletti et al., 2005) and presumably also higher salt

transports. Due to the higher velocities and smaller extent of the circulation,

the residence time is smaller than in the deep overturning cell. These make

the SOC important for decadal climate variability.

By connecting the subtropical surface region to the tropical thermocline,

spice (density compensated temperature and salinity) anomalies can be trans-

ported along isopycnals to the equator where they may feed back to the at-

mosphere (e.g. Yeager and Large (2007)). In this scenario a change of surface

salinity in the subtropics would results in an associated temperature anomaly

on a surface of constant density. This anomaly is subducted below the sur-

face layer and advected equatorwards on the isopycnal. Assuming the tropics

did not experience a change in the surface fields, the spice anomaly would

eventually reach the surface, where the atmosphere would not ’feel’ anything

of the salinity anomaly. However the temperature anomaly associated might

have an impact on the atmospheric circulation, linking changes of the sub-

tropical ocean surface to the tropical atmosphere. This example is clearly a

very idealized scenario and further implications, like a change in diapycnal

diffusivities are briefly indicated in Chapter 2.
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The SSS-max regions are located in the subduction area of the SOC, which

can be seen by the subsurface salinity maximum (S-max) formed. Changes

observed at the surface, like the increase of SSS-max salinity are propagated

below the surface (Durack and Wijffels, 2010). This affirms the importance

of the SOC for the propagation of surface signals to the intermediate and

deep ocean, e.g. ocean heat content (Roemmich et al., 2015) and possibly

anthropogenic carbon (Nakano et al., 2015). Particularly for these active

and passive tracer transports, lateral transport by eddy mixing seems very

important, as seen e.g. in the differences of anthropogenic carbon uptake

when the values used for the isopycnal (lateral at the surface) diffusivity are

varied (Gnanadesikan et al., 2015).

1.4 Thesis aims

Chapter 2 presents the first observational evidence for active eddy mixing in

the SSS-max of the North Atlantic by documenting high resolution transects

through fresh and warm filaments in the center of the North Atlantic SSS-

max. These filaments are confirmed to be caused by mesoscale stirring, as

indicated by their alignment with geostrophic surface velocities and their

water mass characteristics. Filaments of similar structure and intensity are

reproduced frequently in a high resolution regional model. A simple eddy

diffusivity estimate based on observations confirms the importance of eddy

mixing to the surface salinity budget.
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Motivated in part by the results described in Sec. 1.1.2 Chapter 3 presents

a global study comparing the contribution of eddy mixing to the SSS-max of

each basin. SSS fields are stirred with velocities from altimetry observations

in an idealized model setup (the MITgcm is used to solve the advection

diffusion equation for the passive tracer field supplied.

The total diffusive flux and the integrated diffusivity along a contour of

constant salinity is diagnosed. This watermass coordinate system makes re-

sults relevant to the subducted subtropical water masses and the SOC. Be-

sides differences in mean contribution to the surface salinity budget, temporal

variability in both lateral diffusivity and total diffusive flux can be observed.

The robust variability in surface variability, seemingly connected to large

scale climate fluctuations in the South Pacific, suggests this phenomenon is

extending over a larger scale than the SSS-max.

Chapter 4 moves away from the initial motivation of the SSS and the

global hydrological cycle to investigate the global extent and magnitude of a

possible forcing of eddy diffusivities by large scale climate fluctuations. This

is achieved by using a similar model setup as in Chapter 3 but a different

diagnostic to obtain global monthly maps of surface diffusivities. Compos-

ites during times of high ENSO index reveal strong enhancements of surface

diffusivities covering most of the central and eastern parts of the North and

South Pacific basin.
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Chapter 2

Subtropical surface layer salinity

budget and the role of mesoscale

turbulence

Note: This Chapter has been published in JGR: Oceans (2014), Vol. 119(7),

pp. 4124–4140, http://doi.org/10.1002/2013JC009715 1

Abstract

The subtropical North Atlantic exhibits the saltiest surface waters of the open ocean. Eventu-

ally that water is isolated from the surface and exported towards the Equator, as a subsurface

salinity maximum (S-max) forming the lower limb of the subtropical cell. Climatologically

the winter subtropical surface water, coinciding with the deepest mixed layer of ∼ 100m,
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is saltier and colder than the S-max. Towed CTD measurements in March/April 2013 (a

component of the field program SPURS) within the North Atlantic subtropical surface salin-

ity maximum reveal several relatively fresh, warm anomalies, which deviate strongly from

climatological conditions. These features introduce a large amount of freshwater into the

subtropical region, exceeding the amount introduced by local rain events. Observed scales

and evolution of the features strongly suggest a connection to mesoscale dynamics. This

is supported by high-resolution regional model output, which produces an abundance of

features that are similar in scale and structure to those observed. It is hypothesized that

turbulent transport in the surface ocean is a crucial process for setting mixed layer char-

acteristics, which spread into S-max stratum. High variability in the EKE implies a high

potential for interannual variability in the resulting S-max water properties by ocean dy-

namics in addition to the variability caused by air sea fluxes. This has likely consequences to

the meridional transport of heat and freshwater of the subtropical cell in the North Atlantic

and to the larger scale ocean and climate system.

Figure 2.1: a) Sea surface salinity [PSU] from Aquarius L3 (V2) in color and sea surface
temperature [◦C] in contours (in black), averaged for March and April 2013. The black boxes
indicate the domains used in the text. b) Cruise tracks for the two research vessels utilized
in this study. The cruises took place between 2012 and 2013: KNORR (September-October
2012) and SARMIENTO (March-April 2013)
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2.1 Introduction

The response of the global freshwater cycle to a changing climate is certainly one of the

most pressing questions to answer in order to anticipate and adapt to global climate change

(Schmitt, 2008). The ocean is the key element in the global water cycle. It contains about

97% of the Earth’s free water and accounts globally for 86% of the evaporation and 78%

of the precipitation (Schmitt, 1995). Understanding the marine hydrological cycle is thus

crucial to improve the understanding of the global water cycle, including the implications

for the terrestrial water cycle. Sea surface salinity (SSS) is an indicator of the marine

hydrological cycle, but it is not as straightforward as a rain gauge on land, as advection and

mixing (horizontally and vertically) within the ocean can also alter the salinity. To interpret

changes in the freshwater cycle using the SSS, it is necessary to understand the underlying

ocean processes in order to piece together a full picture of the hydrological cycle in the ocean

and its coupling to the atmosphere.

The horizontal SSS maximum (SSS-max) in the subtropical North Atlantic has the high-

est open-ocean values of SSS in the world. The region of the SSS-max (centered near 25N,

38W; Figure 2.1a) is highly evaporative (Schanze et al., 2010), with evaporation exceeding

precipitation (E − P > 0) the entire year. To balance this loss, fresher waters have to be

advected or mixed both horizontally and vertically into the salty surface layer. Salty surface

waters are exported equatorwards below the surface, forming the S-max core near 100-150

m (Worthington, 1976), often referred to as the subtropical underwater (O’Connor et al.,

2005). In the tropics wind induced Ekman divergence causes upwelling of the subsurface wa-

ters, which are subsequently freshened due to excess rainfall. On average Ekman transport

spreads the lower salinity surface water towards the subtropics, closing the shallow over-

turning cell (Schott et al., 2004). This manuscript will use the equivalent but more widely

used term subtropical cell (STC). The STC has been described as a major ocean circulation

feature which is important to the poleward heat transport (Boccaletti et al., 2005), and as

such is important for the global climate.
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The climatological SSS-max is depicted as a region with low lateral gradients of salinity,

by data averaging and smoothing procedures (e.g. (Schmitt, 2008) Figure 2.1 b). Using

underway data from research and commercial vessels (Reverdin et al., 2007), and now the

Aquarius (Bingham et al., 2014) and SMOS (Font et al., 2010) satellites, the SSS field can be

observed at much higher resolution than before, revealing far more variability, with a robust

seasonal cycle and shifts in position of the SSS-max. Net evaporation and surface salinity

are anticorrelated (Gordon and Giulivi, 2014) and the maximum surface salinity is located

north of the E-P maximum (e.g. (Schmitt, 2008)), both strong indications of the significant

influence of oceanic processes in setting the water properties and controlling the variability

of the SSS-max.

The ocean processes responsible for controlling mixed layer properties in the SSS-max and

the export of salty surface waters into the S-max layer are the subject of this study, with

a focus on the influence of turbulent mesoscale structures in the surface layer that stir

freshwater into the region, as observed during the SPURS (Salinity Processes in the Upper

Ocean Regional Study; http://spurs.jpl.nasa.gov) field project.

2.2 Data and methods

Most of the data described herein were collected during one of the field expeditions organized

within the SPURS project. The measurements were carried out between March 22nd and

April 8th on the Spanish research vessel SARMIENTO DE GAMBOA (SPURS-MIDAS

cruise, track shown in Figure 2.1b). Additional data sets used in this study are listed below.

Throughout the text the CRUISE-domain and SPURS-domain (Figure 2.1a) will be used for

spatial reference.
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2.2.1 Underway

The underway thermosalinograph (TSG, model SeaBird SBE 21) was located at 2-3 m depth

near the bow of the ship, measuring temperature and conductivity in 6-second intervals. The

TSG data showed periods of very high variability, which might be caused by several reasons

like the shallow intake entraining bubbles due to ship movement, variable flow rates in the

seawater system or strong diurnal warming and salinification, leading to strong gradients in

the upper meters of the water column, as indicated by other measurements during previous

cruises. All data shown are smoothed with a Gaussian window of 20 min length. The salinity

calibration was performed by adjusting to water samples drawn from the seawater system.

A constant value is fitted to the residuals between the TSG and water samples weighted by

the normalized inverse of the variance that was experienced before the sample was taken.

This method reduces the error due to uncertainty in the transit time from TSG to the

sample station. The estimated constant offset that was determined this way is 0.04 PSU.

The temperature data were adjusted by preselecting samples with wind speed > 8m/s and

during nighttime, which have been seen to exhibit very small vertical gradients in the upper

meters within this region (Fratantoni, personal communication). The temperature was then

adjusted downwards by a constant offset such that 99% of the samples are neutral or stably

stratified (comparing the TSG and SeaSoar). This yields an offset of 0.59 ◦C. Since the

temperature is not determined by a hull sensor, but rather after the water passes through

the intake pump, the bias could be due to the influence of the ship and pump, which might

vary over time and with the flow rate.

2.2.2 Shipboard Acoustic Doppler Current Profiler (SADCP)

The shipboard instantaneous velocities were recorded by a Teledyne RDI 75 Khz Workhorse

Ocean Surveyor. Due to low scatter environments the narrow band mode and a bin size of

16m was chosen (the topmost bin was centered at ∼ 24m). The data presented in this study

was averaged to 2 min intervals.
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2.2.3 SeaSoar

The SeaSoar towed sensor system was equipped with dual pumped temperature/conductivity

sensors. A final calibration is not available as of now. Initial comparison between sensors

yields differences that are at least an order of magnitude lower than the gradients of structures

relevant to this study and should not significantly bias our findings. SeaSoar data were

averaged on 1-dbar bins and over 10-minute intervals, ensuring that the full cycle from

bottom to surface of the SeaSoar is included in every binned profile.

Figure 2.2 shows examples of the along track variability and typical vertical profiles that

were recorded by the SeaSoar. There is large variability in potential temperature, salinity

and density, representing strong active fronts in the mixed layer, as temperature and salinity

are not compensated in density over various regions of the record.

2.2.4 CTD

Additional subsurface data from the KNORR cruise in September/October 2012 are used for

a seasonal comparison (see Discussion). 99 CTD profiles were collected in the measurement

area (cruise track is shown in Figure 2.1b).

2.2.5 MIMOC climatology

The MIMOC climatology is a gridded seasonal climatology derived primarily from Argo data.

It provides monthly profiles on a 0.5x0.5 deg grid (Schmidtko et al., 2013) (V 2.2 on a z-grid

was used in this study). The data set is available under http://www.pmel.noaa.gov/mimoc/.

Mixed layer depth was determined by a density difference to the surface exceeding 0.1 kg/m3.

2.2.6 TRMM

For the analysis of rain event size in the region TRMM (Tropical Rainfall Measuring Mission)

data (product: 3B42, http://mirador.gsfc.nasa.gov), with a spatial resolution of 1/4 degrees
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Figure 2.2: SeaSoar data. Upper panel shows along track variations of salinity/potential
temperature/density (a Gaussian window of 60 min length is used as a low pass filter for
clarity in this figure). Depths are color-coded. Note that large excursions at 100 m depth
are confined to that depth and hence represent depth variations of the permanent pycnocline
rather then surface variability. The lower panel shows typical profiles of salinity/potential
temperature/density with depth (line color corresponds to marker numbers for spatial refer-
ence during the survey (see upper panel and other Figures)).
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and temporal resolution of 3 hours was used. Connected grid cells of > 1mm/h rain rate

within the SPURS area are indexed as individual rain events. The 1 mm threshold is chosen

arbitrary, but results derived in this study do not significantly depend on the choice of

the threshold value. For each event the rain rate is multiplied by the time resolution and

summed over time and space, yielding the total volume of freshwater that enters the ocean.

Additionally, the mean rain rate and duration of each event were calculated.

2.2.7 AVISO

For the assessment of the spatial structure of surface velocities AVISO altimeter data is used.

The product (dt upd global merged msla uv, October 1992-July 2013, http://www.aviso.oceanobs.com)

is treated as geostrophic zonal and meridional velocity anomalies u and v with respect

to a longterm mean. These are decomposed into u = ū + u′ at each grid point using

a 3 month Gaussian window, in order to separate seasonal and longer fluctuations (ū)

from the mesoscale signal (u′) . The Eddy Kinetic Energy (EKE) was calculated as:

(EKE = 1/2((u′)2 + (v′)2)).

2.2.8 ROMS

We set up a regional modeling system, based on the Regional Ocean Modeling System

(ROMS) (Shchepetkin and McWilliams, 2009). ROMS is configured as a nested set of three

spatial domains, centered at 38W and 24.5N. The outside domain has a horizontal resolution

of 9 km for a region of 2500 km by 2800km, the next domain has a resolution of 3 km for

a region of 1100 km by 1000 km, and the last domain has a resolution of 1 km for a region

of 360 km by 300 km. There are 50 vertical levels with a resolution of a few meters near

the surface. The lateral boundary condition is the climatology, consisting of the monthly

means derived from the Hybrid Coordinate Ocean Model (HYCOM) outputs of four years,

from September 2008 through August 2011. The HYCOM model uses a resolution of about

9 km and data assimilation.(http://hycom.org/dataserver/glb-analysis). One-way nesting is
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used for the lateral boundary condition for the two fine grid domains (Blayo and Debreu,

1999). The results presented here are extracted from the domain with a resolution of 3

km. To compute the surface fluxes, the atmospheric fields of 10-m winds, 2-m temperatures,

precipitation rates, humidity, short- and long-wave radiation are used. They are derived

form hourly forecasts from the Global Forecast System (GFS) at the National Center for

Environmental Prediction (NCEP) and used to compute the wind stresses, evaporation,

latent and sensible heat fluxes.

2.2.9 Aquarius

Aquarius CAPv2.0 L3 SSS data are used in this study. They are available at (ftp://podaac-

ftp.jpl.nasa.gov/allData/aquarius/).

2.2.10 Budgets and turbulent flux definitions

The aim of this study is to evaluate the influence of mesoscale turbulence to the salinity

budget in the subtropical North Atlantic. The equilibrium mass balance is given by

y

V

∇ · ρ~v dV =
{

Ai

ρ~v · ~n dA =
{

As

F dA (2.1)

Ai denotes the interior surface and As the sea surface area of an arbitrary volume V. The

forcing term F is the massflux at the surface (negative for evaporation), and ~n is the normal

vector to the interior surface. When molecular diffusion and small scale mixing are neglected

the equilibrium salt budget can be written as

y

V

∇ · ρS~v dV =
{

Ai

ρS~v · ~n dA = 0 (2.2)
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For this study changes in density are neglected and ρ is assumed constant. From the mass

balance follows:

F̄ = ~v · ~nρAi
As

(2.3)

Overbars denote time averaged values. Similarly the salt budget can be written as:

V [∇ · S~v] = ~v · ~nSAi (2.4)

For the rest of this study we will assume a simplified box volume: V = Ash where h is the

depth of the box. Then the volume flux of freshwater out of the surface can be related to a

salinity divergence within the volume using a constant reference salinity S0:

FV =
F

ρ
= − h

S0

[∇ · S~v] (2.5)

Note that this is an average flux over a surface area of As = 1m2. A similar formulation can

be used to calculate the absolute volume of freshwater VFW that must be added to a volume

of water with salinity S1 to produce a box volume of depth h, surface area As = 1m2 and

salinity S2:

VFW =
h

S0

(S1 − S2) (2.6)

We now decompose the velocity and salinity into slowly varying mean fluxes (denoted by

overbars) and turbulent (eddy) fluxes (time fluctuations shorter than 3 months, denoted by

prime terms). This yields the following for the salinity flux term in equation 2.5:

~vS = ~̄vS̄ + ~v′S ′. (2.7)

This study will focus on the turbulent salinity flux out of the SSS-max area (the second term

on the rhs). For simplicity the term ”equivalent freshwater flux” will be used throughout the

manuscript, noting that mass cannot be mixed and we are dealing with a turbulent salinity

31



flux which can be expressed as equivalent freshwater flux of opposite sign, using equations

2.5 and 2.7:

FV = − h

S0

[∇ · S ′~v′] = − h

S0

[∇ ·K∇(S̄)] (2.8)

The turbulent salinity flux S ′~v′ is approximated here by the product of a surface eddy

diffusivity K and the gradient of the slowly varying mean surface salinity salinity field. This

simplified formalism enables easy comparison of the relative role of turbulent lateral salinity

fluxes and surface freshwater (mass) forcing in the area.

2.3 Observations

The surveyed region showed large upper ocean variability in time and space and on a variety

of scales (Figure 2.2), in agreement with earlier underway measurements within this region.

The SeaSoar and TSG surveys (Figure 2.3) revealed several distinct features in the surface

layer above the permanent pycnocline. Areas of deep mixed layers (up to 150 m), penetrating

to the pycnocline were generally found to be the saltiest waters in the region with a salinity

of ∼ 37.4PSU and higher. These waters agree well with the climatological surface values in

this region for March and April as well as the average properties in the upper 50 m over the

whole cruise (compare the MIMOC profiles for March/April and the lower black diamond in

Figure 2.5). These waters are subsequently referred to as SSS-max waters. The temperature

and salinity (T/S) measurements show a considerable spread but there are two categories

of water characteristics that deviate significantly from the SSS-max waters. Two principal

types of fresh features, with higher and lower temperature than the SSS-max water, were

found and their importance to the SSS-max region will be investigated below.

2.3.1 Warm/fresh features

The first warm and fresh feature was observed between ∼ 37.75W − 36.5W and 23.75N −

24.5N (Figure 2.3a and b, markers 1 and 2). Initially this feature had a strong surface
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Figure 2.3: SeaSoar and TSG surveys. left column: salinity in PSU. right column: Potential
temperature in ◦C. Top row: March 22nd - March 28th; second row: March 28th - March
31st; third row: March 31st - April 4th; fourth row: April 4th - April 8th. Grey boxes
and numbers are time marker for cross-referencing between figures used throughout the
manuscript. Black diamonds indicate CTD stations. Note the changed lateral scales for
Survey 4.
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signature in temperature/salinity/density with pronounced surface and subsurface fronts to

the east and slightly weaker fronts to the west. Changes in surface properties reach values

on the order of 0.2 PSU and 0.3◦C over distances on the order of 10 km (Figure 2.4 upper

panel). Water properties from near-surface TSG and deeper SeaSoar measurements compare

well within the fresh feature. The fresh water defines a new mixed layer now considerably

shallower (less than 90 m; e.g. Figure 2.4) than the surrounding SSS-max mixed layer.

Below, the stratification between the base of the mixed layer and the permanent pycnocline

is weak, and properties match the surrounding SSS-max waters which are colder and saltier.

The surface fields in survey 2 (Figure 2.3 c and d) show a warm and fresh anomaly with an

increased surface area extending further to the north (see Figure 2.3c black arrows). The

northwestern extent of the fresh water is sampled well by cruise pattern and is found to

the north of the location of the feature in survey 1, suggesting a northward advection of

the fresh water volume (This will be supported by the AVISO/ADCP velocities discussed

below). Surface gradients appear reduced compared to the first survey. The third survey

(Figure 2.3e and f) shows only filamented structures with spatial extent of less than 25 km

(Figure 2.3 markers 6 and 8). This discussion assumes that the fresh/warm anomaly at

the surface is, at least in surveys 1 and 2, one coherent structure. Given the high spatial

and temporal variability along the ship track and missing subsurface data in survey 2 this

assumption cannot be conclusively proven (Figure 2.3c and d). Yet the TSG can be used

with confidence to identify the extent of the anomaly, which along with the upper ocean

velocity field described below, enable us to speculate on the movement of the fresh anomaly

as a coherent feature.

The final survey (Figure 2.3g and h) was carried out to extend the survey southward where

AVISO altimetry data and ROMS model output (not shown), reveal large EKE and surface

salinity gradients, implying the potential for large eddy fluxes, which may be the ocean

process shaping the annual cycle of the SSS-max and ultimately the S-max. Towards the

south in survey 4 (Figure 2.3g and h) there is an anomaly similar to the one discussed
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above, again with a pronounced surface gradient (see markers 9 and 10). This warm, fresh

feature forms a strong lateral front with shallower mixed layers within the fresh area and

the water below matching the adjacent deep SSS-max mixed layer waters (Figure 2.4). The

temperature difference across the front is even slightly higher compared to the feature in

survey 1 (up to 0.5 ◦C and 0.15 PSU over distances of ∼ 10km). This second patch extends

roughly about 100 km in longitude, but an areal estimate is not precise, due to the limited

pattern coverage close to the frontal region. The depth of the fresh mixed layer is slightly

less than seen in first feature. The evolution of this feature could not be observed during

the cruise but its presence suggests that the phenomenon observed in the first survey is a

regular feature of this area.

2.3.2 Cold features

Two cold subsurface anomalies were recorded during the cruise (Figure 2.3a and b marker

3 and Figure 2.3g and h marker 11). These features are fresher then the SSS-max water,

but less so than the aforementioned warm features. They stand out mostly because they

have a lower temperature than all of the surrounding mixed layer/deep mixed layer/surface

waters. These features tend to have a very weak surface signature and generally show a

stronger T/S structure below the surface. The T/S characteristics of these anomalies fit

into the thermocline of this area (Figure 2.3a and b and Figure 2.5c marker 3 and 11), and

they generally extend from the surface to the depth of the permanent pycnocline. Since the

data do not enable us to analyze the evolution of one of those events as with the warm/fresh

features the behavior remains speculative. Compared to the warm fresh features these were

found further to the north in the measurement region in both observed cases. Rapid transects

that include the northern part of the SPURS-domain include multiple fresh features within

the mixed layer that show similar properties during the month of April [Gordon and Giulivi,

this issue], indicating that these features might also be a regular phenomenon towards the

northern boundary of the SSS-max.
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Figure 2.4: Section view of fresh features. The upper two panels are taken from survey 1
(salinity [PSU] on the upper, potential temperature on the mid and zonal velocity in the
lower panel). Black arrow indicates the position of the fresh column mentioned in the text.
The three panels below are the same but for survey 4. Black vertical lines and numbers
denote markers to provide spatial reference (see Figure 2.3 a,b,g and h). Black contours
indicate potential density (interval: 0.03kg/m3). Missing velocity data at the end of survey
4 was caused by an error in the ship motion sensors.
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2.3.3 The fresh Columns

An interesting aspect of the fresh and warm feature in survey 1 is the structure directly

adjacent to the mixed layer front. A fresh vertical column extends downward close to the

strongly tilted isopycnals of the front (north of marker 1 in Figure 3 a and b indicated by a

black arrow in Figure 5a). Close to the surface isopycnals dip downwards, possibly indicating

negative vertical velocities on the heavier side of the front. This agrees qualitatively with the

circulation across a strengthening horizontal mixed layer density front (Klein and Lapeyre,

2009) and the subsequent slumping collapse of the front (e.g. (Fox-Kemper et al., 2008),

Figure 2b). If actually caused by vertical velocities, the downdrafts of fresh and warm water

could act as a mechanism to freshen the underlying waters, which show weak stratification

with depth and match the surrounding SSS-max mixed layers. This would imply that the

fresh features and the associated dynamics at the mixed layer front could be vital in deter-

mining the water characteristics in the region, maybe even in the deeper layers above the

pycnocline. The shipboard measurements only provide a snapshot section of salinity, which

could be the result of vertical velocities induced by a submesoscale ageostrophic circulation,

or just the salinity signature of mesoscale stirring. Nevertheless, without additional data

and analysis any conclusion drawn from this sample is highly speculative.

2.3.4 Upper Ocean velocities

The upper ocean velocities inferred from altimetry measurements agree well with the ship-

board velocity measurements averaged over the upper 100 m of the water column and 1day-

lowpass filtered (Figure 2.6). The northward advection of the fresh and warm feature is

clearly supported by both the AVISO and SADCP velocity measurements. The good agree-

ment between the purely geostrophic AVISO velocities, SADCP velocities and the evolution

of the surface and subsurface salinities in the domain is compelling evidence for the role that

mesoscale dynamics play in the behavior of these features. The Aquarius L3 SSS broadly

depicts larger bodies of fresh water in the north and especially the south of the measurement
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Figure 2.5: a) θ/S relation. Dots are SPURS cruises, dark grey for the SARMIENTO
and light grey for the KNORR. Dashed (solid) lines are from the MIMOC climatology and
represent the region denoted by the dashed (solid) green box in panel b). Black diamonds are
the upper 50 m average for each cruise, upper KNORR, lower SARMIENTO. Black contours
show σ0 values. b) Annual average salinity of the subsurface maximum from MIMOC. Large
black box is the SPURS-domain. Green boxes describe areas for panel a). c) Dots: θ/S
relation from Sarmiento SeaSoar. Survey 1 in red, survey 2 in blue, survey 3 in green and
survey 4 in violet. Thick black lines: numbered marked locations. Thin black contours as in
a). Refer to Figure 2.3 for survey numbers and marked locations. Color-coded dashed lines
are MIMOC θ/S relation from the panel b) white dashed box.
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domain, which could be related to the fresh features during the survey. Aquarius spatial res-

olution and estimated accuracy (Lagerloef, 2013) is barely enough to resolve texture in the

small measurement area, and comparison with the measurements at any given time on the

cruise track is not useful. Nonetheless the bigger picture seems to fit with our hypothesized

mechanism of fresh water intruding into the area from a larger body of fresh water to the

south. The general structure of SSS seems to be aligned with some of the prominent velocity

anomaly structures during the survey, which is an encouraging result for the Aquarius data,

and promotes further use in the future.

2.4 Discussion

2.4.1 Importance for the regional salinity budget

Following equation 2.6 the volume of freshwater needed to dilute SSS-max water of S1 = 37.4

to a typical value for the fresh feature of S2 = 37.2 yields VFW = 27cm = 0.27m3/m2 (with

h = 50m as a typical depth for the fresh feature). Assuming a surface area with extent

of a half circle with 50 km radius for the fresh feature gives a total volume of at least

V(FW,Total) = 109m3 for the anomaly. There are only three possible scenarios for the fate of

this freshwater: Advection, evaporation out of the surface and mixing with the surrounding

waters (both laterally and vertically).

First we will consider the possibility of lateral advection of the patch. The SeaSoar data

suggest a northward advection in the south of the domain during survey 1 and 2, roughly in

accordance to the AVISO velocities. To advect the southwestern edge in survey 2 following

the AVISO fields to a region uncovered by measurements would imply unrealistic veloci-

ties well exceeding the previous movement of the feature as well as AVISO velocities. We

conclude that the fresh structures sampled during survey 1-3 are indeed the same feature,

hence we can speculate on the evolution of the feature. Obvious deformation of the fresh

feature and weakening surface structures (discussed in detail later) further encourage the
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Figure 2.6: Black arrows: SADCP upper ocean velocities (20-100 m depth) measured from
the Sarmiento. The line connecting the bases of the arrows is the cruise track. Velocities
are lowpass filtered and subsampled every 60th point, corresponding to a time resolution of
2 hours. Blue arrows: Geostrophic velocities from AVISO altimetry. SSS from Aquarius is
shown in color. Different panels depict different date ranges as shown in the lower left insets.
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dismissal of the pure advection scenario. Additional comparisons with OSCAR current data

(http://www.oscar.noaa.gov) were performed, which includes the effect of Ekman transport.

Differences were marginal and not qualitatively different, hence we dismiss Ekman transport

as an important factor for the advection of this specific feature.

The second possibility would be evaporation out of the surface. Earlier we estimated an

additional 27 cm of fresh water that would need to evaporate out of every 50 m deep col-

umn with As = 1m2. The NCEP-GFS fields used for the ROMS simulation at the end of

March indicate that evaporation is mostly between 0.5-3 m/yr. To remove the full amount

of freshwater at this rate it would take between 33-197 days, and with the April average net

evaporation of 1.5 m/year (Gordon and Giulivi, 2014) it would take 65 days. These estimates

should be viewed as gross overestimations given that large scale evaporation is not confined

to the fresh surface waters: if strong evaporation is not perfectly aligned with the SSS the

relative salinity gradient between the salty and fresh water masses would be maintained,

with both waters experiencing a corresponding increase in salinity. Since the temperature

of the fresh and warm features is higher, we evaluated the influence of a synthetic imposed

temperature difference on the evaporation, by using bulk formulae following Fairall et al.

(1996).The influence of the SST on the relative evaporation does not exceed 0.4 m/yr, re-

sulting in an even longer time scale than 197 days for a pure evaporation scenario. Since the

observed feature disappeared within about 14 days, we conclude that a substantial amount

of the freshwater is added to the mixed layer budget in this area via mixing processes. A

discussion of how the freshwater is dispersed this rapidly will be included below.

Given that a significant portion of the freshwater has to be added to the mixed layer in

the SSS-max region, we need to evaluate the importance of this added freshwater for the

SPURS-domain. Analyzing rain events, using the TRMM data set, shows that the vol-

ume of freshwater (needed to produce the features) is larger than 98.5% of the accumulated

freshwater volume of any single rain event in this area over the period from 2009 to July

2013. The amount of freshwater carried within this structure might be even bigger due to
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the unknown southern extent of the anomaly. Here we have used accumulated freshwater

volume, as outlined in the data and methods section, to account for a possible deformation

of the rain-diluted water due to ocean dynamics. A more traditional approach, using the

mean rain rate per event multiplied by the duration of each event leads to the same basic

conclusion that less than 0.2% of the rain events add > 26cm freshwater per m2 to the ocean

surface. Along with the previous conclusions about the role of evaporation and advection,

this points to the relative importance of the documented T/S anomalies on the surface layer

salinity budget in the SSS-max region.

Naturally this leads to the question whether the phenomenon of the intruding fresh features

is an exception or if these events happen regularly in the area, matching the idea of lateral

turbulent salinity flux as a significant component of the mixed layer salinity budget in this

region. Multiple data sources confirm the abundance of these fresh features within the area.

VOS and TSG (Gordon and Giulivi, 2014) as well as Aquarius (Bingham et al., 2014) and

ROMS model output show fresh and warm signatures year round, suggesting that these fea-

tures play a significant role in balancing the excess evaporation at the surface by supplying

freshwater to the region.

2.4.2 Origin of the anomalies

This leads us to the next question: Where is the freshwater originating from and what is the

driving mechanism?

A local rain event and the advection of water from a region outside the SSS-max would be

the only plausible scenarios. We showed earlier that the amount of freshwater represented

by the anomaly exceeds most rain events within this area. Additionally the TRMM data

for the time of the cruise does not show any rain activity that could explain the amount of

freshwater contained in the observed fresh features. This further dismisses the process of

local rain as explanation for the observations. Aquarius L2/L3 data at the time of survey

1 suggests an extensive area of fresh water to the south of the ship track (e.g. Figure 2.6).
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Combining this evidence substantiates the idea of the feature originating from a larger body

of water. Climatologic mixed layer waters with characteristics corresponding to the fresh

features are found in the south/southeast of the measurement area, extending from 39W-

31W between 20N-22N in March with slightly greater zonal and northern extent in April.

Matching T/S characteristics are also found further to the west from the CRUISE-domain,

still within the SPURS-domain. The map in Figure 2.8a shows regions in the surface layer

that match the fresh and warm anomalies as well as the climatological S-max properties.

The northward advection of the first fresh/warm feature suggests that it originated from the

south of the measurement area. The fact that survey 4, which was carried out towards the

south of the previous surveys, encountered a similar fresh structure further establishes the

idea of the south/southeast being the source of fresh water features. The relative impor-

tance of the western region as origin of fresh water is hard to evaluate from the spatial and

temporally limited survey that is presented herein, but the velocity patterns discussed above

do not show evidence for freshwater import from the west. A similar analysis of the water

properties yields an origin towards the north of the SSS-max for the cold/fresh anomalies,

observed during the cruise (not shown).

Preliminary analysis of ROMS model output supports the proposed origin and fate of the

fresh feature. The ROMS output presented here is able to reproduce the upper ocean struc-

ture in the SPURS-domain reasonably well. The model shows more fresh surface data points,

but the maximum surface salinity and associated mixed layer depth is similar (exceeding 37.4

PSU and 100 m mixed layer depth). The model shows an abundance of fresh features that

penetrate into the SSS-max water. Figure 2.7 shows an example of a fresh feature that

penetrates from the southern region into the SSS-max waters. The fresh water at the east-

ern border reaches as far north as 24N with a salinity of ∼ 37.2PSU . This is remarkably

similar to the feature seen in survey 1 (Figure 2.3). The fresh feature advances northward,

gets partially separated and increasingly filamented within ∼ 16 days. The SeaSoar data

suggests the removal of the fresh features within ∼ 14 days (beginning of survey 1 to end of
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survey 3), comparable to the feature in the model output. The depth of the simulated feature

rarely exceeds 80 m and is found at approximately 50 m on average, values that compare

well with the two fresh features seen in the SeaSoar survey (Figure 2.4). For the model,

the spatial scale of the surface pattern of salinity varies strongly during the evolution of the

feature. In particular, scales vary from ∼ 100 − 40 km during the first days and decrease

down to ∼ 10 km after 16 days. This suggests an initial advection by mesoscale dynamics.

This suggests that the ROMS model is successfully reproducing the hypothesized dynamics

of the observed fresh features, which supports our previous conclusions. Further analyses of

the SPURS region using ROMS will be explored in a separate manuscript.

Figure 2.7: A snapshot of ROMS salinity field. Shown in color is a sliced 3d salinity field from
a ROMS simulation, showing a feature similar to the one seen in the SeaSoar data (Figure
2.3). Grey line denotes a depth of 80m. The black surface box marks the measurement
domain shown in previous figures.

2.4.3 Mechanism for the salinity flux

The last part of our discussion will evaluate dynamic mechanisms that could be responsible

for the influx of freshwater into the region as well as the observed fast dispersal within

the SSS-max. The observed structures appear tightly associated with mesoscale dynamics.

Scales of fresh and warm features are on the order of the first baroclinic Rossby radius within
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the region (∼ 40− 50 km (Chelton et al., 1998)), or larger (at least in the beginning of their

evolution). Their movement is well explained by the geostrophic velocity anomalies, which

agree well with the instantaneous velocities from the ship. While we are only evaluating

two fresh and warm features here, the evidence for the role of mesoscale dynamics in the

evolution of these features is compelling. When we consider mesoscale turbulence/eddy fluxes

as a mechanism for the export of salinity out of the SSS-max to balance the net evaporation

of the surface it is important to mention that this does not just mean advection of fresher

water into the salty water, but at the same time an export of salty water out of the SSS-max

is needed. Mesoscale turbulence exchanges salinity by stirring (and subsequently mixing)

of waters along a background salinity gradient. To estimate the potential importance of

turbulent salinity flux to the salinity budget in the mixed layer and the role in compensating

the net evaporation we approximate the turbulent fluxes following equation 2.8. We use

the annual mean SSS field from the MIMOC climatology as the estimates of the salinity

fields excluding the eddy effects. To obtain a reasonable estimate of the turbulent flux

it is important that the mean tracer field does not show signatures of the actual eddies,

which would enhance the curvature of the field and artificially inflate the flux estimate. The

MIMOC climatology seems useful in this context since it was specifically derived to minimize

the influence of transient structures like eddies in the climatological Argo fields. Furthermore

visual inspection of the surface fields does not reveal any features of comparable size to the

one investigated in this study. For simplicity we restrict the estimate to a constant eddy

diffusivity K = 1000−3000m
2

s
from by (Abernathey and Marshall, 2013). The part in square

brackets of equation 2.8 thus can be written as: [∇·K∇(S̄)] = [K∇2(S̄)] A typical value for

the research area (derived from MIMOC) is taken as ∇2(S̄) = 2 · 10−12 PSU/m2 combined

with a mean mixed layer depth of h = 50m and a reference salinity of S0 = 37.2PSU .

This would result in a range of equivalent freshwater convergence of about 0.1-0.3 m/yr.

Additionally, locally and seasonally the curvature of the salinity field can be considerably

larger, meaning that this process can locally balance an even higher percentage of the net
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evaporation.

Future work has to be carried out to constrain these estimates and investigate the spatial and

temporal distribution of the salinity divergence by geostrophic turbulence. Nonetheless this

result confirms that turbulent lateral fluxes are important in the annual salinity budget of the

SSS-max, by compensating on average 10-30% of the mean annual net evaporation within

the SPURS-domain, (∼ 1m/yr from (Gordon and Giulivi, 2014)). This result is in broad

agreement with an independent study that investigates the direct turbulent flux estimates

using SODA data and concludes that the turbulent fluxes might compensate more than

50% of the loss of freshwater through the surface (Gordon and Giulivi, 2014). To relate the

turbulent transport to the large-scale ocean and atmosphere context we have to look at the

surface properties of the Subtropical Atlantic region: A key difference between the northern

and southern border of the SPURS-domain is the meridional density gradient. Either side

shows strong gradients in salinity and temperature (Figure 2.1) but to the south both fields

reinforce the density gradient, while in the north the effect on density is opposite. The salinity

gradient supports a salinity flux out of the SSS-max region from both north and south,

causing regular appearance of both cold and warm fresh features as seen during the SPURS

cruise. Both features vary in their vertical structure and density anomaly with respect to

the local climatology. The cold fresh features seem to have little variation with depth until

the permanent mixed layer is reached and show generally a lower density difference to the

surroundings than the warm features. The vertical structure of the latter suggests a higher

baroclinicity due to the surface intensified temperature and salinity anomalies, which might

explain the fast dispersal. The stronger climatological density gradient in the south might be

favorable for the growth of baroclinic instabilities (Charney, 1947), which acting on a strong

meridional salinity gradient cause eddy flux of salinity out of the SSS-max region, despite

the low mean flow. Indeed the southwestern area exhibits stronger EKE than the rest of

the SPURS-domain in the altimetry observations (Figure 2.8b). The EKE in this region

furthermore shows a seasonal cycle with maxima in May-July and minima around January-
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March (Figure 2.8c). This general behavior is also seen in the ROMS model output. The net

evaporation is anti-correlated to the surface salinity within the SPURS-domain (Gordon and

Giulivi, 2014), whereas a 90-degree phase shift would be the expected relationship between

net evaporation and surface salinity for a domain purely dominated by the surface forcing.

This points to the influence of oceanic processes in setting the surface characteristics in this

region. The EKE peaks at about the same time as the surface salinity reaches its lowest

point and the net evaporation is greatest, suggesting that the turbulent flux of freshwater

might balance a major part of the net evaporation together with the mean Ekman flow of

tropical waters towards the subtropics from the north and south and possibly vertical mixing

at the base of the mixed layer. The seasonality in the EKE and turbulent flux on seasonal

to interannual time scales is likely influenced by changes in the wind field. The influence of

the wind field on the interannual salinity of the SSS-max was pointed out as early as 1976

(Worthington, 1976). Idealized model studies show that eddy fluxes become important in

the surface buoyancy transport in a downwelling regime like the subtropical gyres (Cessi,

2007).

It is important to realize that the Ekman flow and the eddy driven flux are coexisting

processes and that the freshwater transport will be achieved as a combination of both. One

notable difference between these two components might be the timescales of variability.

The EKE shows a strong seasonal cycle and high interannual variability in both space and

time, enabling it to play a role in the annual to interannual variability of the SSS-max waters,

previously thought to be dominated by air sea fluxes only. Further work has to be carried out

to investigate what process might link the large-scale wind field to the seasonal to interannual

variability in turbulent fluxes. A likely candidate would be a change in large-scale density

gradients by the Ekman transport/pumping, thus enhancing the available potential energy

for baroclinic instabilities especially in the southern region.

A separate issue that needs discussion is the fast dispersal of the observed fresh and warm

features in the center of the SSS-max domain. As stated earlier, the dominant process for
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Figure 2.8: a) Mixed layer salinity [PSU] in the SPURS-domain from MIMOC climatology
averaged from February to April (months of the deepest mixed layers) in color. Contoured are
different water masses from the T/S diagram in Figure 2.5: white: the approximate range of
the S-max; green and blue: the T/S characteristics of the two fresh/warm features discovered
during the SARMIENTO cruise. b) mean of EKE from 2000-2013 in the SPURS-domain.
Black box indicates CRUISE-domain. c) Time series of EKE in the SPURS-domain.
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the lateral movement of these features seems to be mesoscale dynamics, which set up strong

mixed layer fronts. To add the water into the surrounding mixed layer it ultimately has to

be mixed vertically or laterally. Wind driven mixing and vertical entrainment are a possible

mechanism but would lead to a deepening of the mixed layer. No evidence for a significant

deepening of the fresh mixed layer was recorded during the March 2013 cruise. Limitations

of the SeaSoar coverage hinder a comprehensive comparison of the mixed layer depth during

the evolution of the fresh warm patch. But CTD stations (Figure 2.3d, black diamonds) do

not show any mixed layer deeper than when the feature was first sampled.

The scales of the strong lateral density front and low vertical stratification create an environ-

ment favorable for active submesoscale dynamics. Rossby numbers O(1)-O(10) [defined as

Ro = ζ/f , ζ is the relative vorticity and f the Coriolis parameter] and Richardson numbers

O(1) are found frequently in the upper 50 meters. Given this environment it is likely that

active submesoscale dynamics drive strong mixing at the frontal edge and aid dispersal of the

fresh water feature in a relatively short amount of time. Areas of strong density fronts along

filaments and at the edges of eddies have been shown to contribute significantly to vertical

exchanges in the upper ocean up to 500m ((Klein and Lapeyre, 2009) give an overview of

observational and numerical studies). Mahadevan et al. (2012) and Fox-Kemper and Ferrari

(2008) point out the importance of mixed layer eddies in restratifying the mixed layer. Wind

mixing and restratification could work at the same time, and compete against each other

(Mahadevan et al., 2012). Evidence for these mechanisms might be seen in the spreading

and filamentation of the fresh/warm feature during its evolution, with little increase in depth

during the process, as far as the measurements are able to identify the subsurface structure.

To quantify the role of submesoscale dynamics in the dispersal of fresh water within the SSS-

max domain is outside the scope of this study and should be evaluated in dedicated model

studies since shipboard measurements barely resolve the largest feature (∼ 10 km) in the

submesoscale regime for the given stratification (typical scale is estimated as L = Nd/f fol-

lowing (Thomas et al., 2008), with N being the buoyancy frequency, f the Coriolis parameter
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and d the depth of the mixed layer.) Above we pointed out the vertical freshwater columns

at the leading edge of the fresh warm feature. Qualitatively the structure looks very similar

to the upper ocean structure in other studies that focus on submesoscale frontal dynamics

(Fox-Kemper et al., 2008; Thomas et al., 2010), but at this point we are not able to attribute

this structure explicitly to an ageostrophic circulation. Nonetheless it seems plausible that

submesoscale dynamics are active in this region and accelerate the dispersal as seen in the

survey above. This would add a substantial part of the intruded freshwater to the mixed

layer during the breakup, possibly even freshening deeper regions of low stratification above

the permanent pycnocline but below the fresh feature and the associated fronts.

2.4.4 Implications for the subtropical cell

Salinity distributions in the North Atlantic suggest that the SSS-max water gets exported

towards the southwest (Figure 2.5b) at a depth of about 100-150m, (Worthington, 1976)

Yet in the winter months (Jan/Feb/Mar), when the mixed layer is deepest the SSS-max

water is too salty and cold to be connected to the S-max through isopycnal pathways.

Diapycnal processes are thus needed to link the water properties in T/S space. This is

confirmed in Figure 2.5a, using independent data from the MIMOC climatology. Since the

used data record spans the period 2007-2011 it suggests that a diapycnal link is a general

requirement and not an anomalous feature from the measurement period. The S-max in

this study is not purely defined as south of the SPURS-domain but rather to the southwest,

since the subsurface salinity maximum migrates towards the west with the North Equatorial

Current (compare Figure 2.5b). The two fresh/warm features discussed above are similar as

they provide a strong fresh/warm hence low density anomaly to the surrounding SSS-max

waters. While the features differ slightly in their T/S characteristics, they both approach

the properties of the S-max water and cross isopycnals (marker 1 and 9 in Figure 2.5c).

Since we concluded earlier that a substantial amount of the anomalous water is added to

the mixed layer by mixing processes, and that these fresh/warm events happen regularly,
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they are likely a necessary process that links the SSS-max to the S-max. The cold/fresh

feature does not seem to contribute to setting the water properties towards the S-max, since

they are denser than the SSS-max waters. This emphasizes the importance of mesoscale

turbulence (specifically towards the south of the SSS-max) not only to the SSS-variability

but also potentially to the properties of the subducted water in the lower limb of the STC.

2.5 Conclusions

The observational data and model output presented in this paper suggest that the fresh

and warm features, and their interaction with the SSS-max surface waters, represent the

oceanic processes that ultimately balance a large part of the net evaporation in the sub-

tropical Atlantic. Fresh and cold features seem to be abundant in both the observed data

and the model output. The relative importance of these features to the freshwater input

of the region remains speculative, since existing data do not enable us to estimate volume,

evolution and the time scale of dispersal.

The observed fresh and warm features are not explicable by local rain, hence they must be

advected from a different region. Intruding freshwater is quickly dispersed into the surround-

ing mixed layer and similar features are found frequently in ROMS model output and other

data sets, confirming the importance for the salinity budget in the SSS-max region. Analyz-

ing the scale and structure of the features, combined with the observed advection pattern,

the equivalent freshwater flux is likely achieved by turbulent fluxes rather than mean flow

within the mixed layer. The importance of these mesoscale dynamics to the lateral spreading

of low salinity waters into the region is confirmed by the dominance of lateral scales larger

than the first baroclinic Rossby radius and the good match between observed advection and

geostrophic surface velocities from altimetry data. Fast dispersal is potentially caused by

ageostrophic circulation at strong density fronts resulting from the advection of fresh and

warm water into salty water. This would be consistent with a general picture of upper ocean
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turbulent fluxes, where mesoscale activity dominates lateral turbulent fluxes while vertical

fluxes are dominated by mixed layer eddies and fronts (e.g. (Fox-Kemper and Ferrari, 2008)).

Variable turbulent fluxes can provide a necessary input of freshwater into the SSS-max and

consequently establish the connection between SSS-max and S-max in T/S space. This re-

sults in a high potential for variability in the water masses that replenish the S-max caused

by a combination of variability in air sea fluxes (e.g. (Hurrell, 1995), (Durack and Wijffels,

2010)) as well as mesoscale dynamics even on interannual timescales (while (Curry et al.,

2003) only considers the ocean dynamics to be important on decadal timescales). Indeed

Aquarius L2 data shows that the areas of highest interannual variability within the Aquarius

record in the SPURS-domain are in the south and west of the CRUISE-domain (Bingham

et al., 2014), close to the areas of high EKE and where the surface properties match the

S-max in the climatology. The EKE itself shows very high spatial and temporal variability

over the course of 10 years. It is highly likely that the interplay between these variations

influences the transport of heat and freshwater through the STC, hence this might have a

significant influence on the global ocean circulation and climate. How the mesoscale activity

and turbulent flux of freshwater is controlled by large scale atmospheric variables and linked

to the S-max properties will be subject of future work.
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Chapter 3

Lateral eddy mixing in the subtropical

salinity maxima of the global ocean

Note: This Chapter has been accepted in Journal of Physical Oceanography (2017) 1

Abstract

A suite of observationally driven model experiments is used to investigate the contribution

of near-surface lateral eddy mixing to the subtropical surface salinity maxima in the global

ocean. Surface fields of salinity are treated as a passive tracer and stirred by surface velocities

derived from altimetry, leading to irreversible water mass transformation. In the absence of

surface forcing and vertical processes, the transformation rate can be directly related to the

integrated diffusion across tracer contours, which is determined by the observed velocities.

The destruction rates of the salinity maxima by lateral mixing can be compared to the

production rates by surface forcing, which act to strengthen the maxima. The ratio of
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destruction by eddy mixing in the surface layer versus the surface forcing exhibits regional

differences in the mean - from 10% in the South Pacific up to 25% in the South Indian.

Furthermore, the regional basins show seasonal and interannual variability in eddy mixing.

The dominant mechanism for this temporal variability varies regionally. Most notably, the

North Pacific shows large sensitivity to the background salinity fields and a weak sensitivity

to the velocity fields while the North Atlantic exhibits the opposite behavior. The different

mechanism for temporal variability could have impacts on the manifestation of a changing

hydrological cycle in the SSS field specifically in the North Pacific. We find evidence for

large scale interannual changes of eddy diffusivity and transformation rate in several ocean

basins that could be related to large scale climate forcing.

3.1 Introduction

The terrestrial freshwater cycle and its behavior in a changing climate is a study area of

utmost importance to humanity, specifically from a socio-economic viewpoint (Durack, 2015).

Due to the interconnection of various branches of the water cycle and the vastly larger size of

the ocean reservoir relative to the land surface (Durack, 2015; Schmitt, 2008) understanding

the oceanic branch might be key in improving our understanding of how a changing climate

will influence the terrestrial water cycle.

Studying the freshwater flux over the ocean is very challenging due to complicated and

spatially sparse measurements and the reliance on bulk formulas for various flux products,

resulting in large uncertainties between data sets (Schanze et al., 2010). Due to these diffi-

culties, the idea of using sea surface salinity (SSS) as a proxy of the integrated freshwater

forcing has emerged (Schmitt, 2008; Gordon and Giulivi, 2008). By removing (adding) fresh-

water through evaporation (E) (precipitation (P)) at the surface the SSS is raised (lowered).

The general alignment between the areas of positive net evaporation (evaporation - precipi-

tation) and local salinity maxima in the subtropical gyre of the North Atlantic was pointed
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out as early as (Wüst, 1936). The complication with this approach, often called “salinity as

an ocean rain gauge” (Schmitt, 2008), is the influence of ocean dynamics (Vinogradova and

Ponte, 2013; Ponte and Vinogradova, 2016; Gordon, 2016).

The SSS distribution is influenced by advection and mixing both horizontally and ver-

tically, and all processes need to be quantified in order to relate changes in the SSS field

to changes in the water cycle. To achieve this goal, the SPURS (Salinity Processes in the

Upper Ocean Study) field experiment was carried out in the SSS-maximum (SSS-max) of

the subtropical North Atlantic, with the goal to observe all relevant processes in one of the

global salinity maxima and then apply these findings to the other subtropical regions in

the global ocean. An overview of the program and many relevant publications is given by

Lindstrom et al. (2015).

Besides being relevant for the study of the surface salinity expression of a change in the

global water cycle, the SSS-maxima are source regions for subtropical underwater (STUW,

O’Connor et al. (2005)) that feed into the shallow overturning circulation (e.g. Schott

et al. (2004)). These subducted water mass characteristics are important for the global

climate since they contribute significantly to global tracer transports (e.g. Boccaletti et al.

(2005)). This results from the strong circulation paired with strong near surface gradients,

compared to the deep ocean. Hence changes in mean gradients of temperature and salinity

might modify meridional heat and freshwater transports of the upper ocean. Additionally

the subducted water masses are a potential pathway for subtropical surface anomalies to

the tropical thermocline and subsequently the upwelling regions of the globe. Changes in

surface salinity on isopycnals are by definition associated with temperature (spice) anomalies

which have the potential to alter sea surface temperature once upwelled in the tropics. This

emphasizes the need to study the mechanisms responsible for the variability of the SSS.

Observations during SPURS show strong lateral salinity gradients associated with mesoscale

filaments. These gradients are most intense near the surface and the salinity variability is

strongly reduced along the subduction path of the SSS-max (Busecke et al., 2014). Moti-
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vated by these findings, this study focuses on the process of lateral eddy mixing within the

mixed layer. The importance of eddy mixing to the mean salinity and volume budgets in the

North Atlantic has been covered in various studies (Gordon et al., 2015; Busecke et al., 2014;

Bryan and Bachman, 2014; Schmitt and Blair, 2015; Johnson et al., 2016; Amores et al.,

2016) using different methods and data sources. When the destruction of the saltiest water

masses is compared to the creation by positive net evaporation, the studies infer different

mean values and temporal variability.

We introduce a novel approach to estimate the eddy mixing contribution in all subtropical

basins with a coherent methodology. A suite of observation driven experiments is conducted

where the mechanism of water mass destruction via eddy mixing is isolated. Using a salinity

coordinate system, as in the pioneering study of (Walin, 1977), we investigate all major ocean

basins. Together with the comparison of the mean effect of eddy mixing for the SSS-max, we

examine the variability induced by the observed surface velocity field and test the sensitivity

to seasonal and interannual variations in SSS fields. These sensitivity experiments enable us

to identify the dominant processes for the variability in eddy mixing–the surface velocities

or the SSS fields.

The manuscript is structured as follows: In the remainder of the introduction we address

the discrepancies within the existing estimates with a brief overview of the existing studies

estimating the relevance of eddy mixing to the North Atlantic SSS-max and discuss potential

sources for disagreement. Then we introduce the methodology, model set up and data used

for this study in Section 3.2. We present and discuss the results in Section 3.3 and conclude

in Section 3.4, including possible future work.

3.1.1 Budgets and the choice of a control volume

In order to evaluate the importance of any process to a large-scale feature like the SSS-max,

it is useful to investigate the salinity budget over a control volume that encompasses the

feature of interest.
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We start with the local salinity budget in a very general form.

∂S

∂t
= −∇ · (FS) = −∇ · (FS,Diff + FS,Adv) (3.1)

with the boundary condition

FS,Diff = FSurface k̂ at z = 0 (3.2)

k̂ is the unit vector normal to the surface.

Here FS is the sum of all both diffusive (FS,Diff ) and advective (FS,Adv) oceanic salinity

fluxes, and FSurface is the effective salinity flux due to freshwater forcing at the surface:

FSurface = S(E − P ) (3.3)

E is generally larger than P in the subtropical basins (e.g. Schanze et al. (2010)), and

no significant sources and sinks for salinity exist in the interior ocean. The SSS-max is

surrounded by fresher waters in the horizontal and vertical, leaving the surface forcing as

the only process that can lead to an increase in salinity. In order to maintain a steady

state, the diffusive and advective fluxes have to be directed out of the high salinity region,

balancing the surface forcing.

An appropriate volume has to be defined over which to compare surface forcing to salinity

flux divergence. The salinity budget within an arbitrary volume V hence can be written as:

y

V

∂S

∂t
dV =

y

V

−∇ · (FS,Diff + FS,Adv)dV

= −
x

∂V

(FS,Diff + FS,Adv) · n̂∂V +
x

A

FSurface dA

(3.4)

The second equality follows from the divergence theorem. The integrated salinity tendency

can be related to the salinity flux through ∂V , the internal (oceanic) boundary of V and the
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surface flux integrated over the surface area A. The vector n̂ is the unit normal vector of V.

Two general choices of volumes are used in the literature:

1. The Eulerian control box: Most studies use some variation of a box fixed in space.

Either a local grid box (Busecke et al., 2014) or point measurement from a mooring

(Farrar et al., 2015), zonally elongated boxes within the SSS-max (Gordon and Giulivi,

2014) or a larger box around the SSS-max (Qu et al., 2011; Amores et al., 2016).

2. The “water mass” boundary: The studies of Bryan and Bachman (2014); Schmitt and

Blair (2015); Johnson et al. (2016) and this study utilize a control volume (V (S0, t))

bounded by a surface of constant salinity S0. It can be shown that this eliminates

the advection term from the salinity budget, leaving only diffusion (both lateral and

vertical) as a possible compensation for the surface forcing (Walin, 1977; Marshall

et al., 1999). The budget becomes

y

V (S>S0)

∂S

∂t
dV = −

x

∂V (S=S0)

(FS,Diff ) · n̂∂V +
x

A(S>S0)

(FSurface) · n̂dA (3.5)

Note that in this case the surface forcing is also evaluated on the same isohaline control

surface. The salinity budget in V can be related to the time change in volume bounded

by the same isohaline (Transformation Rate; TFR) (see Bryan and Bachman (2014)

for full derivation):

TFR =
∂(V (S0, t))

∂t
=

∂

∂S0

y

V (S>S0)

∂S

∂t
dV (3.6)

In order to compare the results of the Eulerian and water-mass budgets, either the variability

in the position of the control volume has to be negligible or the spatial variability of diffusive

salinity fluxes and surface forcing must be very homogeneous in space. We argue that these

conditions are not met.

The SSS-max exhibits variability from seasonal (Gordon and Giulivi (2014); Gordon et al.
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(2015)) to interannual (Bingham et al., 2014) to decadal (Gordon and Giulivi, 2008; Durack

and Wijffels, 2010) time scales. Furthermore there is evidence for strong spatial variability of

lateral diffusivities and SSS gradients (Abernathey and Marshall, 2013; Gordon et al., 2015),

implying strong spatial variability of the resulting diffusive fluxes. This could explain some

of the spread of results between the studies using fixed control volumes. In the presence of

strong inhomogeneity, even small differences in the position of the control volume will lead

to very different results for each of the terms in the salinity/volume budget. Besides the

choice of the control volume, a second major factor is the actual quantification of each of

the terms in the budget. We focus our study on a particular process–lateral eddy mixing in

the near-surface layer–and proceed by reviewing common methods to quantify this process.

3.1.2 Quantifying eddy mixing

In this section we outline the exact processes we aim to study in detail with respect to the

SSS-max.

Unsteady motions in the ocean play a large role for the general circulation, tracer

transports and thereby global climate. Fox-Kemper et al. (2013) provides a review of

mesoscale eddy transport in the ocean. Following their terminology, all fluctuations from the

mean circulation with time scales of weeks and length scales of several hundred kilometers

(i.e. mesoscale) will be referred to as “eddies.”

Tracer fluxes caused by eddies are commonly expressed as a covariance term u′C ′, where

the primes indicate a deviation from the time mean represented by the over bar, such that

C = C ′ + C.

A common approach is to represent the eddy flux using a diffusive closure involving the

the mean tracer gradient and a tensor R:

u′C ′ ' −R∇C . (3.7)

60



However, here R does not represent a purely diffusive process. The tensor can be split up

into a symmetric diffusion tensor (K) and an asymmetric advection tensor (e.g. Fox-Kemper

et al. (2013) equation 8.25). Observational estimates of the diffusivity tensor are rare and

usually derived from long term averages, and it is difficult to match such data sets to tracer

fields to obtain an estimate of the diffusive eddy flux, let alone resolve the diffusive flux

into the SSS-max in time. For further details and references on this approach the reader is

referred to (Fox-Kemper et al., 2013) and references therein.

In order to circumvent these issues, we choose to simulate the evolution of surface tracer

fields using observed surface velocities and diagnose the diffusive flux within a coordinate

system defined by a water mass (here salinity). As illustrated in Fig. 3.1b and c, in a

tracer coordinate system, advective stirring by eddies stretches and filaments tracer contours,

leading to irreversible mixing (a.k.a. water mass transformation) at small scales and a net

diffusive flux across tracer contours. In this context, and throughout our study, “eddy

mixing” refers to the enhancement of small-scale mixing by mesoscale stirring (Figure 3.1).

To further separate the effects of the large scale tracer gradients and velocity we employ

the concept of “effective diffusivity” (Nakamura, 1996). This diffusivity is appropriate for

our analysis since it does not correspond to an Eulerian diffusivity, but rather represents the

averaged enhancement of small scale diffusivity along a tracer contour. Thus it is directly

relevant to the net diffusive flux across isohalines and into the SSS-max.

3.2 Methods and Data

As stated above, when evaluating a volume bounded by a tracer surface, the flux across this

boundary can only be achieved by diffusion and the flux through the sea surface (Equation 3.5

and 3.6). The sum of these fluxes is directly related to the volume bounded by the isohaline.

Our approach is only focused on the near surface layer for several reasons. Firstly, the

availability of velocity data for over 20 years through altimetry enables us to conduct a
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Figure 3.1: Schematic illustrating the investigated processes. Orange surfaces symbolize lines
of constant surface salinity scaled by the mean Mixed Layer Depth (MLD). The smooth initial
condition in each experiment (a) gets stirred by mesoscale velocities (blue arrows), which
enhances the diffusive flux (black arrows) across the contour (b). The integrated flux across
a closed contour (indicated by wavy gray arrows in c) leads to the destruction of salty water
masses within the contour - the transformation rate (TFR; indicated by dotted arrows in c).
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data driven study on eddy mixing, which is not possible with subsurface data at this point.

Secondly, the strong lateral gradients observed within the mixed layer of the North Atlantic

SSS-max (Busecke et al., 2014) point to the importance of the near-surface lateral eddy

mixing versus the interior. Global inverse mixing estimates (Groeskamp et al., 2017) support

the idea of lateral near surface eddy mixing being much stronger than along isopycnal mixing

in the interior.

We simulate a 2D salinity field advected by observed velocities, without any other forcing.

By eliminating all other processes, the evolution of the water mass volume is governed purely

by lateral mesoscale stirring. If the contour is closed, the lateral diffusive flux, integrated

along a tracer contour is now directly related to the area transformation rate.

TFRA(S0, t) =
∂

∂t

x

(S≥S0)

dA = −
∫
∂A(S=S0)

(FS,Diff ) · n̂∂A (3.8)

In order to compare these values with the climatological surface forcing to determine the

importance to the volume budget, they have to be scaled with a depth. We chose the mean

mixed layer depth within an isohaline MLD(S0) to focus on the variability of lateral mixing

without masking the results with the temporal variability of the mixed layer depth. That

variability is not small and certainly influences any full budget estimate. Large variability

of the mixed layer depth can be seen in the NA (Busecke et al., 2014; Farrar et al., 2015).

Here we want to specifically focus on the variability in lateral stirring processes, hence the

choice of a constant depth.

TFREddy,V (S0, t) = TFREddy,A(S0, t)MLD(S0) (3.9)

This can be seen as a special case of Equation 3.6, where VS0 is the extruded contour of

S(x, y, t) = S0 (see Figure 3.1a). The upper and lower boundary both have the boundary

condition

FS,Diff = 0 at z = 0 and z = MLD(S0) . (3.10)
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In the following, the subscript V is dropped for simplicity, and all TFR values are in units

of volume per time. To avoid confusion when referring to a strong (more negative) TFR,

the sign for the TFR caused by eddy mixing will be reversed in all the plots.

With this setup we purposely neglect all other processes that influence the SSS in the

real ocean like the surface forcing and all vertical processes, e.g. subduction, entrainment

and diapycnal mixing. The robust nature of this diagnostic, which relies just on the area

within a contour and isolation of the mixing effect of the observed velocities enables the

study of temporal variability in eddy mixing. The downside of this approach clearly is the

integral character of the results. It is not possible to diagnose local extrema in fluxes. It is

well suited for the purpose of this study, since the main interest lies in the role of lateral

eddy mixing to the formation and maintenance of the large scale SSS-maxima.

3.2.1 Surface forcing compensation

Transformation rates by eddy mixing are compared to the volume transformation rates by

surface forcing in salinity coordinates (using equations 3.3 and 3.6):

TFREP,V (S0, t) =
∂

∂S0

x

(S≥S0)

S(E − P )dA (3.11)

To analyze the importance of eddy mixing to the budget, we compare the ratio of TFR due

to eddy mixing with the TFR due to surface forcing. We call this ratio the surface forcing

compensation (SFC):

SFC = −TFREddy(S0, t)

TFREP (S0, t)
(3.12)

3.2.2 Effective diffusivities

It is worth dissecting variability of the TFR into contributions from variability in the stirring

(velocity fluctuations) and variability in the background salinity field, which includes changes

in local gradients as well as a changing position of the reference isohaline. To isolate the
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effect of the velocity fluctuations, we calculate the effective diffusivity. This method uses

the same water mass frame of reference as the TFR and is thus directly comparable to the

other results.

The effective diffusivity is a diagnostic developed by (Nakamura, 1996) to measure the

diffusive transport across an instantaneous tracer contour. It represents the net mixing

integrated along the tracer contour (salinity contour in our case). The effective diffusivity

for a tracer q can be written as

Keff (q) = κ
L2
e(q)

L2
min

(3.13)

where κ is the molecular (or grid-scale) diffusivity, Le is the “equivalent length” of an instan-

taneous tracer contour, and Lmin is the minimum possible length that contour can achieve

under a conservative rearrangement of the tracer field (Marshall et al., 2006). Le can be

calculated from the instantaneous tracer field. Stirring by mesoscale turbulence leads to

highly filamented tracer contours and causes Le to be many times greater than Lmin, leading

to enhanced mixing. The ratio L2
e/L

2
min quantifies the relative enhancement of molecular

/ grid-scale diffusivity due to this stirring. Although Keff formally depends on κ, it was

shown by Marshall et al. (2006) that this dependence drops out in the high-Peclet-number

regime because L2
e also depends inversely on κ.

Following Nakamura (1996), the equivalent length of any tracer contour q can be calcu-

lated as:

L2
e(q) =

d
dA

∫
A

|∇q|2dA

( ∂q
∂A

)2
(3.14)

As described therein this value can be evaluated at any tracer time step and is then mapped

back to a ’reference position’, in this case the tracer contour position in the smooth initial

field of each experiment. The minimal length of the contour L2
min is simply the L2

e value

corresponding with the initial condition of each experiment, before stirring has caused any

filamentation of the contour.

Even though this diagnostic has been mostly used in scenarios with a high degree of
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uniformity in the zonal direction like the Southern Ocean (Abernathey et al., 2010) and the

central part of the Pacific (Abernathey and Marshall, 2013), it can be applied to any tracer

field. An example of this application can be found in Lee et al. (2009), who studied the

effective diffusivity of a tracer patch released in the subtropical gyre. In the case of the

SSS-max, the salinity contour values map geographically to the distance from the center of

the maximum.

The effective diffusivity is not defined for a vanishing background gradient. To avoid the

occurrence of weak tracer gradients our initial conditions are reset in regular intervals as

described below.

3.2.3 Data

We use absolute geostrophic velocities from the AVISO DUACS2014 (1993-2014) altime-

try product, produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes

(http://www.aviso.altimetry.fr/duacs/). The data is subset in weekly fields and has a na-

tive spatial resolution of 1/4 degree. We assume that the velocity fluctuation of the largest

most energetic eddies are captured by this data. The long standing AVISO record repre-

sents our current best estimate of the surface eddy field. Since there is no similarly long,

global observational record of higher resolution we are not able to investigate how unresolved

velocity structures influence the results. Such a comparison will be left to future studies.

The geostrophic velocities do not include the Ekman velocities at the surface, but as Rypina

et al. (2012) show, these have little influence on the mixing characteristics at the surface.

Climatological SSS fields as well as mixed layer depth are taken from the MIMOC-Argo

climatology (Schmidtko et al., 2013). The data are given as climatological months with a

spatial resolution of 1/2 degree. Additionally annual SSS fields are used from ECCO-MIT

v4 r2 ocean state estimate (Forget et al., 2015) and the ADPRC gridded Argo product

(http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/).

E data is taken from the OAFlux (Yu et al., 2008) monthly mean product and P from
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the Global Precipitation Climatology Project (GPCP) (Huffman et al., 2010), both of which

have a spatial resolution of 1 degree. The fields are averaged into climatological monthly

means and interpolated on the MIMOC grid for analysis.

3.2.4 Model setup

We conduct a suite of experiments by stirring initial SSS fields with observed velocities.

From these experiments, we diagnose the transformation rate by eddy mixing and surface

forcing as well as the effective diffusivity.

The basis for this study are numerical experiments run in the MITgcm (Marshall et al.,

1997) following the setup of Abernathey and Marshall (2013). The model output is calculated

in 900 second intervals and tracer snapshots are output every 7 days. Initial SSS fields

are passively advected by 7-day snapshots of two-dimensional AVISO absolute geostrophic

velocities after both have been interpolated onto the 1/10 deg. model grid. The velocities

need to be slightly corrected in order to be non-divergent, using the procedure described in

Abernathey and Marshall (2013) Appendix A. The only difference from that study is that

here we used the newer DUACS 2014 product from AVISO. Tracer transport across isolines

can only be achieved via the model’s prescribed grid-scale diffusivity κ (the schematic in

Figure 3.1 illustrates the process). However as discussed in detail in Abernathey and Marshall

(2013) and references therein, the width of tracer filaments (and thereby L2
e) is also dependent

on κ, in such a way that the effective diffusivity is largely independent of this value. This

makes the results robust in the sense that they are not governed by an internal “tuning”

parameter of the model but instead depend almost completely on the velocity input, which

is derived from observations. The small scale diffusivity for these model experiments was

diagnosed as κ = 63m2/s (Table B1, Abernathey and Marshall 2013).

In addition to calculating long-term averages of TFREddy and Keff , we expanded the

method with the explicit goal of resolving temporal fluctuations in eddy mixing. Due to

the lack of a restoring mechanism for the tracer, over long time scales the tracer field will
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increasingly homogenize and large-scale features might be deformed and shifted. In a homog-

enized tracer field no mesoscale velocity can produce a tracer fluctuation and the diagnostics

presented here become meaningless. The advection and deformation of large-scale features

will impact a useful remapping of the results to the initial conditions. This prompts us to

reset the tracer fields in regular intervals, or results could not be interpreted anymore using

the initial position of the SSS-maxima. This methodology is well suited to examine the

SSS-maxima in the subtropical gyres, since mean advection is relatively low and the main

features are not advected out of their original position quickly. Two tracers are simulated in

parallel and reset at different phase and the results are averaged to eliminate any residual

drift in the diagnostics and maintain the background field “quasi- constant”. We obtained

an uncertainty associated with the reset period by comparing certain ranges. All results that

are discussed as significant exceed this uncertainty, and are as such assumed to be robust

features of the input fields derived from observations. For further details see Appendix.

3.2.5 Initial conditions

Each setup as described above will result in time series of TFR and Keff for each basin,

describing the influence of a changing velocity field, which evolves with time but is the same

in each experiment. The results might depend of the initial condition, which determines the

position and hence exposure of the reference isohaline to possibly different features of the

velocity field. To investigate the eddy mixing sensitivity to changes in the initial conditions

we evaluate a suite of experiments with varying tracer initial conditions, all of which are

averaged SSS fields. These are reset in an identical manner as described above , keeping

each of the different initial conditions “quasi-constant”. Nothing but the initial condition is

changed between the various experiments. In the following each experiment is denoted by a

suffix indicating the initial conditions used as outlined in Tab. 3.1.

Comparison between the different initial condition experiments then gives an indication

of the sensitivity of the results to the variable background fields. None of these experiments
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will give a realistic representation of the actual variations in eddy mixing which are likely to

depend on both variable velocities and SSS fields.

Consider a strong stirring anomaly that only occurs during a time X. One of the SSS-max

features could ’move’ into that particular region during time Y. This would result in a strong

variation of the diffusivity and TFR in the experiments with the initial conditions close to

time Y. This however could be irrelevant for the ’actual’ SSS-max when time X is not equal

to time Y, or it could even emphasize the variability when they are equal. To get a crude

estimate of such a combined variability we introduce the “combined” experiments. These

are not separate experiments, but instead combine the results of the existing experiments

according to the matching initial conditions. This still does not provide a fully resolved time

series for each basin, but it provides a guide for interpreting the importance of variability

in diffusivity and transformation rate and exclude completely improbable scenarios that can

arise due to the combination of the full variable velocity record with averaged and non-

evolving initial conditions. Using these estimates we can investigate situations where the

spread between experiments is large and whether any detected variability could be significant

for the real world SSS-max

The procedure is explained in detail in the Appendix and shown schematically in Figure

A2.

To summarize the main diagnostics used in this paper before we discuss the results:

• Effective Diffusivity: The cross isohaline eddy diffusivity, relevant for water mass trans-

formation. A measure of the stirring strength of the velocity field on the boundary of

the volume, not dependent on the background gradient.

• TFR: A measure of the integrated diffusive flux into the volume bounded by an

isohaline. Compared to the effective diffusivity TFR incorporates both the velocity

statistics and the background gradient.

• SFC: The comparison of the lateral diffusive flux into the volume vs. the surface
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Group suffix Individual suffix Initial SSS condition
- mean full time mean (MIMOC)

monthly

jan climatological January (MIMOC)
feb climatological February (MIMOC)
... ...

nov climatological November (MIMOC)
dec climatological December (MIMOC)

annual, ECCO

ECCO 1992 annual mean 1992 (ECCO)
ECCO 1993 annual mean 1993 (ECCO)

... ...
ECCO 2010 annual mean 2013 (ECCO)
ECCO 2011 annual mean 2014 (ECCO)

annual, ARGO

ARGO 2006 annual mean 2006 (APDRC)
ARGO 2007 annual mean 2007 (APDRC)

... ...
ARGO 2013 annual mean 2013 (APDRC)
ARGO 2014 annual mean 2014 (APDRC)

Table 3.1: List of initial conditions and corresponding suffixes used in the text. Data sources
are given in parentheses in the last column. See Section 3.2 for details.

forcing integrated over the corresponding sea surface. This gives an indication of how

important surface eddy mixing is for the volume budget.

3.3 Results

The mean salinity differs significantly between the global ocean basins. In order to compare

the saltiest regions, we use the reference salinities Sref from (Gordon et al., 2015). Each

basin is then analyzed in regional boxes to ensure the values represent only the SSS-max

region and not other areas with identical salinities. See Figure 3.2 for the position of the

reference salinities as well as the regional boxes used.

3.3.1 Mean

The results for the mean SSS fields can be seen in Figure 3.3, with each of the diagnostics

plotted against the bounding salinity contour with the regional reference salinity subtracted.

The purpose of showing the full salinity domain is to demonstrate that, within the highest
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Figure 3.2: Mean SSS from MIMOC (upper) and surface diffusivities reproduced from Aber-
nathey et al. 2013 (lower) in color. In the upper plot the black contour represents the Sref
contour for each basin based on Gordon et al. (2015) for the MIMOCmean initial condition.
In the lower box the same salinity is shown for all used initial conditions (see Tab. 3.1 for
reference). Black boxes indicate regional domains used in this study.
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salinities of each basin, the results are relatively constant and not strongly dependent on

the choice of the reference salinity. Hence for all further analysis we show the values on the

basin specific reference isohaline Sref only (indicated by the horizontal line in Figure 3.3).

Note that the lower values represent isohalines further outward from the SSS-max. Thus

they might not be contained within the regional boxes. This will violate the previously

outlined equations, by introducing a non zero lateral boundary flux. As discussed later in

the Appendix, the low lateral gradient in the Southern Indian (SI) presents a problem with

regard to this constraint. Outer salinities in the SI should be regarded as unreliable. We

confirmed that for all experiments the actual reference isohaline is well contained in the

regional domains (see Appendix).

Figure 3.3 shows the TFREddy,mean is highest in the SI and North Pacific (NP) with

mean values of about 3.4/3.5Sv. The other basins show lower TFR with the North Atlantic

(NA) at about 2 Sv, followed by the South Atlantic (SA) with about 1.5 Sv and the South

Pacific (SP) with 1.2 Sv. The difference between the NP/SI and NA/SA/SP might reflect

the larger area within salinity contours due to the weaker lateral salinity gradient and do not

necessarily indicate a higher relative contribution to the budget by eddy mixing. The SFC

(Figure 3.3b) illustrates this by showing what percentage of the TFREP is compensated by

TFREddy,mean. Here the SI still has the highest value (25%) while the NP is found well in

the spread of the other basins. The standout basin in terms of TFR and SFC seems to be

the SP that shows the lowest SFC at < 10% for salinities < Sref throughout most of the

salinity space. The NA which in terms of salinity processes has received the majority of the

attention in the science community during recent years has a SFC of around 20%.

Regional differences also emerge in the diffusivites (Figure 3.3c). The SP again shows the

lowest values compared to the other regions. But the basin ranking in SFC is not mirrored in

all the Keff values. Most notably, the SI has weak diffusivity values while the transformation

rate is highest. Alignment of high local diffusivities with high gradients that dominate the

overall TFR, and in turn the SFC, are necessary to explain this behavior. This illustrates
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that localized structures can be decisive for the total diffusive flux out of the SSS-max. The

effects of these structures for the mean quantities is captured with the methods used here,

but it is not possible to locate these “hot spots” in space with our method.

Any localized covariance between gradient and diffusivity is important for understanding

temporal variability in eddy mixing. Our observation driven model studies are therefore well

posed to investigate temporal variability in eddy mixing by representing the interrelated

variability of the SSS and eddy fields in both time and space.

3.3.2 Comparison to existing studies

To our knowledge the closest studies using a comparable control volume (isohaline coor-

dinates) are Bryan and Bachman (2014) (North Atlantic only) and Johnson et al. (2016)

(global). Both studies use the same methodology and model setup. Another study by

Schmitt and Blair (2015) applies diffusivity estimates to a climatology in a similar frame-

work and finds similar results as Bryan and Bachman (2014). They investigate the full

volume bounded by the isohaline, including the subsurface below the mixed layer. There

are some caveats to the comparison as outlined below, but as we conclude, the most striking

regional characteristics seem robust when compared to our results.

The comparison between the three studies above might be complicated by several issues.

The model studies show large biases in their surface salinity fields, which changes the mean

position of the outcrop area. Hence even when we present our results in the exact reference

salinities of their study, the bounded area can vary significantly. This could not only affect

the water mass transformation by eddy mixing but also the appropriate surface forcing

term. Bryan and Bachman (2014) show a comparison of the forcing term and the water

mass transformation rate due to surface fluxes, where the model term deviates significantly

from estimates using climatological data sets (Figure 3.4).

In order to compare our results with these previous studies, most of which evaluate the

salinity budget, we additionally calculated the SFC for the salinity budget. By integrating
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Figure 3.3: Time averaged diagnostics in salinity space. All computed from ’MIMOCmean’
experiment. a): Transformation Rates (TFR) by Eddy Mixing . b): Surface Forcing Com-
pensation. c): Effective Diffusivities (Keff ). d): Mean Transformation Rates by Surface
Forcing. Colors indicate ocean basin and the y axis is the salinity of the bounding isohaline.
The y-axis represents the difference from the Sref value (Figure 3.2) in each basin, with
positive values representing isohalines toward the center of the SSS-max. When the area
within an isohaline is smaller than 100 grid boxes the line is dashed.
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Figure 3.4: (a) Annual-mean surface forcing term in (Bryan and Bachman (2014) Eq. 6)
evaluated using the MIMOC(solid) and WOA09(dashed) climatologies with the OAFlux
and GPCP surface flux climatology (red) or CORE surface fluxes (blue). (b) Water mass
transformation rate due to surface flux terms in (a) computed from (Bryan and Bachman
(2014) Eq. 8). FIG. Reproduced from Bryan and Bachman (2014) Figure 11
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the right hand side of Equation 3.9 and 3.11 in salinity space and dividing them similar to

Equation 3.12.

Results are shown in Table 3.2 as SFCS. Furthermore we evaluated all results on the

reference salinities from Johnson et al. (2016) (Table 3.2; gray columns). For each basin

except the SI, the difference in the various SFC values is 5% or smaller, a minor difference

considering the spread in regional results from previous studies (e.g. 10-50% SFC in the

NA). We will discuss possible reason for the wide range of results below.

Some similarities emerge: The SP SSS-max has the weakest eddy mixing contribution

both for the mixed layer and the full isohaline volume. Our results using the SFC based on

the volume budget as well as the full depth results from Johnson et al. (2016) suggest that

the largest contribution by eddy mixing is found in the SI. Results for alternative reference

salinities might be biased since the area within the isohaline could be leaving the regional

boundary in our study (see Appendix).

The remaining basins differ in their ranking depending on the metric used. It should

not come as a surprise that not all basins compare well in both studies, as the comparison

is between eddy mixing estimates for the mixed layer only versus the full depth isohaline

volume. Assuming the results are indeed comparable, despite the aforementioned reasons,

one can estimate a crude ratio of SFC between the mixed layer and the interior by comparing

the SFC values to each other (Table 3.2; last row). The ratio varies from 22% up to 37%.

Given the small surface area of the lateral mixed layer boundary compared to the surface

of the subsurface isohaline volume this might indicate a significant depth dependency of

the lateral eddy mixing - strong in the mixed layer and comparably weak in the interior.

Further research has to show to what degree these studies are actually comparable and if

these findings can be confirmed from independent estimates.

Besides the choice of control volume, the actual quantification method for FEddy could

matter for the resulting SFC. Gordon and Giulivi (2014) proposed the idea of eddy fluxes

as a significant contribution to the salinity/freshwater budget in the North Atlantic SSS-max
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region. They estimate the covariance term from SODA reanalysis data by defining the prime

terms as the deviation from the zonal average over a box that is approximately 25 degrees

wide. This is about 50 times the range of the first Rossby Radius in this area (about 50km

(Chelton et al., 1998)), possibly including large scale circulation features in the prime terms.

This potentially biases the contribution of eddy mixing by adding some of the long term

advective variability. That would explain why this study concludes the highest SFC in the

mixed layer of the North Atlantic at around 50%. Our results agree reasonably well with

Busecke et al. (2014), who estimated 10%-30% SFC in the NA mixed layer based on the

distribution of local divergence of eddy diffusion by using a constant scalar eddy diffusivity

and a typical SSS curvature found in a similar box as Gordon and Giulivi (2014). The choice

of a “typical” SSS-curvature might effectively mitigate some of the variability caused by the

moving SSS-max combined with a fixed control volume.

Basin NA SA NP SP SI
Sref 37.2 37.0 37.1 37.0 35.2 35.2 36.3 36.1 35.8 35.6

TFR [Sv] 2.00 (3) 1.40 (2) 1.48 (2) 1.52 (3) 3.46 (5) 3.46 (5) 1.20 (1) 1.02 (1) 3.43 (4) 2.15 (4)
SFC [%] 19 (4) 14 (2) 19 (3) 18 (5) 16 (2) 16 (4) 10 (1) 7 (1) 25 (5) 15 (3)
SFCS[%] 15 (4) 16 (4) 17 (5) 17 (5) 13 (3) 13 (2) 11 (1) 9 (1) 11 (2) 15 (3)

SFCS,FullDepth[%] 55 (3) 46 (2) 60 (4) 41 (1) 70 (5)
Mixed Layer vs Interior 27 (4) 29 (4) 36 (5) 37 (5) 22 (2) 22 (1) 26 (3) 23 (3) 16 (1) 22 (2)

Table 3.2: Mean Results. The columns show the results from the ’MIMOC mean’ experiment.
In each column (basin) the values are calculated according to the reference salinities from
(Gordon et al., 2015) (bold font) and (Johnson et al., 2016) (regular font). The rank for
each basin is given in parentheses after the value. From top to bottom: The Transformation
rate (TFR); The surface forcing compensation from the volume budget (SFC); The surface
forcing compensation from the Salinity budget (SFCS); The SFC estimate from the salinity
budget over the full depth from (Johnson et al., 2016) (SFCS,FullDepth) and a comparison
between (SFCS) and (SFCS,FullDepth) (Mixed Layer vs. interior). Note that for the last row
results are derived for both reference salinities by dividing both values for (SFCS) by the
single results from (Johnson et al., 2016). Please note the bold values in the last row are
comparing values where the reference salinities are not equal. For details see text.

3.3.3 Seasonal variability

We find that temporal variability exists in the TFR as well as Keff on various time scales.

We focus on the seasonal and interannual signal. In agreement with Bryan and Bachman
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(2014) and Johnson et al. (2016), this variability is small compared to the other terms in the

volume budget (not shown), namely surface forcing and vertical diffusion. Since these two

effects are largely compensating, the eddy mixing can still play an important role for the

tendency term in the volume budget of the SSS-maxima. Indeed variations in interannual

TFREddy,mean are of comparable magnitude as the TFR calculated from the actual change

in area from observations (using the same fixed MLD, not shown).

Before we present the results, we begin with a discussion of mechanisms that can cause a

temporal variability in the TFR. We will assume that the diffusive flux across the contour is

expressed as the product of a mean cross-contour diffusivity Keff and the salinity gradient

on the contour ∇lS (by definition perpendicular to the contour). As outlined above Keff

itself is independent of the background gradient, since it only measures the enhancement

of a spatial gradient (which has to be non-zero) by the stirring action of a given velocity

field. The resulting flux will scale with both the cross-contour diffusivity as well as the cross

contour gradient. Since Keff is the result of the velocities acting on the background fields,

and the velocities can vary both in space and time,there are three principal mechanism that

could cause temporal variability in TFR. In each basin there is likely a contribution by each

of these mechanisms but in the following list we lay out how each mechanism would affect

the results in isolation in order to facilitate the identification of the dominant process within

the results that follow:

1. Change of Keff due to temporal variability in the velocity field. Assume the veloc-

ity field would have spatially homogeneous stirring characteristics which vary with

time. All experiment would show coherent variability in both TFR and Keff , since for

each experiment the position of the cross-contour gradient is constrained by the reset

procedure, hence the diffusivity would control the time evolution of the TFR.

2. Change of Keff due to changes in the position of the contour in a field of spatially

variable stirring. Opposite to above now assume a temporally constant stirring ac-

tion of the velocity field which varies in space instead. All experiments would show
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constant TFR and Keff , since for a constrained contour in a single experiment the

stirring action resulting in Keff as well as the cross contour gradient would remain

’quasi-constant’. The position of the reference contour varies between each experi-

ment, potentially exposed to other parts of the velocity field. This would cause a

spread between experiments in both TFR and Keff .

3. Change in salinity gradient∇lS on the contour. As explained above, single experiments

would show no variability in either TFR or Keff , since the gradient is constrained by

the reset. Experiments would show constant TFR and Keff as in 2, however the spread

between experiments only affects TFR. Contrary to 2 the Keff would remain constant

between experiments, since the stirring characteristics and the contour position are

identical and Keff is independent from the background gradient (see Section 3.2).

These idealized mechanisms are assuming that any change in gradient or diffusivity along

the contour is represented well by a mean value. If strong heterogeneity along the contour

occurs the TFR and Keff values shown here within a single experiment could show low tem-

poral coherency, especially when the “along-contour” anomalies of diffusivity and gradient

covary.

The left column in Figure 3.6 shows the seasonal cycle for each experiment, separated

into ocean basins. The seasonal cycle extracted from the experiments with monthly (gray

lines), mean (blue line) initial conditions and the combined (black) experiment are shown.

Regional differences in the seasonal cycle are evident. The combined seasonal cycle in the SI

and SP is very small or not truly an annual harmonic. In the NA, SA and NP the combined

seasonal cycle is of significant size compared to the mean and is shaped close to an annual

harmonic with the highest values during the spring of the respective hemisphere. The SI

and SP show relatively weak seasonal cycles in Keff,mean (red line), that cannot be related

to the TFRmean in a straightforward manner, suggesting increased importance of the local

interplay of diffusivities and gradients or simply a non-significant seasonal signal.

We want to focus on the NP and NA in particular as they seem to display two regionally
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Figure 3.5: Effective diffusivities for Sref . Keff,mean (thick line) and the std of the monthly
(left) and annual (right) experiments (indicated by thin lines) are shown for all basins (color)
for the seasonal (left) and interannual (right) signal, processed identical to the TFR (see
Figure 3.6).

different origins of the combined seasonality related to the idealized scenarios from above. In

the NA every experiment with monthly initial condition is exhibiting a very similar seasonal

cycle in terms of timing and amplitude. When comparing the Keff values for the NA

(Figure 3.5a) the variability is very coherent and larger than the offset between the single

experiments. This suggests a local change in diffusivities (mechanism 1 from above) as the

leading cause of variability in the NA. The time lag of about a month between Keff,mean

and TFRmean in the NA (Figure 3.6a) is an interesting result in itself, which is robust for

all experiments (not shown). We interpret the lag as the time between the fast creation of

lateral tracer gradient variance (stirring, reflected in Keff which is then slowly digested by

small scale diffusion acting on this gradient variance). This yet again illustrates the complex

nature of the eddy mixing and the problems which may arise when eddy mixing is diagnosed

from methods involving matching of vastly different data sets. Due to the less coherent

signals in other basins it is unclear if the length of this lag is the same in every basin.

In the NP the TFR of each experiment seems to be rather constant with a larger offset

in between experiments. The Keff values in Figure 3.5a show a similar offset between
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experiments as the NA, but in the case of the NP it is not small compared to the annual

cycle. Hence it seems likely that a change in diffusivity due to the changing position is

responsible for the variability in TFR. This is plausible if we consider the variable position

of the NP Sref contour and its vicinity to strong gradients in surface diffusivities (Figure 3.2).

We cannot rule out a change in local gradient on the contour as a contribution. It is clear

however that in the NP the initial fields of SSS are more important for the variability in

eddy mixing than the velocity field, contrary to the NA.

The SA exhibits the largest spread in Keff between experiments. We suggest that this

is caused by its unique position in the western boundary current. The SA SSS-max is

exposed to strong advection, possibly moving in and out of areas of spatially heterogeneous

diffusivities. This does not result in a clear seasonal cycle as in the NA and NP and it

is left for further studies to determine whether this large variability remains robust when

other processes (as mentioned in the method section) are invoked. We will now apply the

same analysis to the interannual signals to investigate if we find evidence for local changes

of diffusivites on time scales longer than a year.

3.3.4 Interannual variability

Figure 3.6 (right column) and Figure 3.5 (right) show interannual variability of Keff and

TFR.

Similar to the seasonal plots, the gray lines in Figure 3.6, right column, mark each

experiment with annual averaged initial conditions, while the TFRannual,combined is shown

in black. The combined experiment should be viewed as a check whether various initial

conditions can change or compensate the variability imposed by the velocity field.

The character of the longer-term variations is quite different between basins. The NA

TFR increases till ca. 2006 and then decreases in a similar fashion. This is consistent with

the combined ECCO experiment but the combined ARGO experiment shows an offset which

suggests the TFR to stay high in the later part of the record. The SA shows several shorter
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Figure 3.6: Seasonal cycle (left column) and interannual variability (right column) of Trans-
formation Rate [Sv] on Sref . The sign is reversed, with positive values indicating destruction
of salty water masses. Colors indicate different experiments (see Table 3.1). Left column:
Seasonal cycle. Blue indicates TFRmean black TFRcombined and gray lines are all TFRmonthly

experiments. Right column: interannual record, derived by pre-averaging every 4 months
and smoothing with a 1.5 year Gaussian window. Colors as before with gray indicating all
experiments with annual initial conditions (Table 3.1). Thick black and dashed black lines
indicates TFRcombined derived from experiments with annually averaged initial conditions
from ECCO and ARGO respectively, for more details see text. Keff (red) is displayed in all
plots normalized by the mean and std of TFRmean for comparison.
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fluctuations while the longer term seems to be quite steady.

The NP shows an increase in Keff and TFR around 1998 in several experiments. For

the SSS-max this seems to be rather irrelevant, since the combined experiment does not

capture it. Towards the end of the record the TFR seems to decrease slightly. Similar to the

seasonal cycle, the NP shows the largest spread between experiments compared to all other

basins, again indicating the possible larger sensitivity to changes in SSS fields compared to

the other basins.

The SP shows a strong maximum in TFRannual/Keff,annual in 1998. When the combined

experiment is considered, the amplitude is lessened somewhat but the peak remains the

largest interannual anomaly in all ocean basins.

The SI again shows very little variability, similarly to the seasonal cycle.

The comparison between the combined experiments from ARGO and ECCO suggests

that results in the NA and to a lesser degree in the SP are sensitive to the source of initial

conditions. In the SA,NP and SI the records diverge only slightly. Especially for the earlier

years of the ARGO record the mismatch might be caused by limited float coverage.

It is worth noting that in the SP (and in many experiments for the NP) the variability

in eddy mixing seems to be roughly coincident with the strong El Niño of 1997-1998.

This indicates that large scale environmental processes might be linked to time variable

mixing relevant for the subtropical SSS-maxima. The tight distribution of Keff,annual values

for the NA and SP suggest that these changes are mainly caused by local changes in diffusivity

which appear very coherent in space, affecting most experiments. Even in the NP the high

number of experiments showing a peak around 1998 contribute to this idea. The SSS-max

might not be impacted by the anomalous velocities, due to an anomalous contour position,

but it indicates that diffusivity changes might be happening adjacent to the SSS-max.

These results suggest a link between large scale climate forcing and the eddy mixing in

the NA and SP SSS-max via locally changing diffusivities (mechanism 1 from above).

The SA and NP show considerable spread between the Keff values. Similar to the
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seasonal interpretation, we conclude that the changing position of the reference isohaline

is the dominant driver for the variability in the NP and SA. Both of these basins show

larger lateral gradients in surface diffusivities (Abernathey and Marshall, 2013), qualitatively

confirming the potential for high variability in diffusivites by changing the position of the

reference isohaline.

The SI shows little spread in Keff and little variability in the single experiments. The

variability in TFR is also low compared to the other basins. This is particularly interesting

since it has arguably the largest contribution of eddy mixing to the budget, while having

both a small mean diffusivity and by far the least variability. Local “hot spots” for the

eddy mixing (locations where diffusivity and gradient line up locally to dominate the overall

TFR) could explain the discrepancy between the high integrated diffusive flux and the low

averaged diffusivity.

The following list summarizes the regional “character” (lending from Gordon et al. (2015))

of each basin with respect to the eddy mixing in the surface layer:

• The SP has by far the lowest SFC of all the basins. This is likely due to its unique sep-

aration from the western boundary current. The Southern Inter-tropical Convergence

Zone shifts the SSS-max far into the eastern part of the basin, prohibiting access to the

energetic western region of the basin. The seasonal cycle is very irregular although the

amplitude is relatively higher than in the SI in agreement with Gordon et al. (2015)

Figure 3. The interannual record shows the strongest signal of all basins with a strong

pulse of elevated TFR and Keff around 1998, which is proposed to be related to larger

scale climate variability modulating local diffusivities with time.

• The SI is the strongest basin in terms of SFC and TFR but interestingly very low

Keff and low temporal variability in eddy mixing, possibly influenced by its unique

poleward position in a predominantly zonal mean flow, stabilizing seasonal gradients

and possibly suppressing the eddy diffusivities in a region relatively high in EKE (e.g.

Klocker and Abernathey (2014)).
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• The SA has a similar SFC to the NP and NA and shows a less coherent seasonal cycle in

TFR that is similar in magnitude and timing (with a 6 month shift accounting for the

hemispheric difference) to the NP and NA. It seems that it represents somewhat of a

mixed case in terms of the responsible mechanism (local diffusivity changes vs. monthly

SSS fields).

• The NA seems to be largely dominated by local changes in diffusivities both for the

seasonal and interannual variability. What exactly renders this mechanism so dominant

in the NA is subject to speculation: It might be related to the high lateral salinity

gradient (inhibiting strong lateral movement of the reference isohaline) or the relatively

low lateral gradient in surface diffusivities which further reduce the influence of a

changing isohaline position to the effective diffusivity.

• The NP variability in eddy mixing is strongly dependent on the SSS fields. Both the

seasonal cycle as well as interannual variability are shown to be strongly influenced

by the position of the reference isohaline, supported by conditions of low lateral SSS

gradient and high surface diffusivity gradient. The interannual record shows some

indications of a long term change which might be caused by local changes in the

diffusivites similar to the SP and NA.

3.4 Conclusions

3.4.1 Relevance for the SSS-maxima in the global ocean

Using diagnostics for eddy diffusivity and integrated diffusive flux in a water mass framework,

we documented marked regional differences in the strength, variability and the responsible

mechanisms for eddy mixing in the SSS-maxima.

The temporal variability of the eddy mixing is a result of regionally differing mechanisms,

dominated by variability in either the velocity field or the surface salinity field: On the one
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hand local changes of the eddy field resulting in local diffusivity changes and on the other

hand changes in the position of the SSS-maximum in a spatially varying field of surface

diffusivities.

The results presented here support the notion of each of the SSS-maxima having his own

unique character in eddy mixing, in agreement with the results from Gordon et al. (2015)

for the mean position and strength of the seasonal cycle.

We argue that temporal variability of eddy mixing and diffusivities has to be taken

into account when constructing salinity budgets in the SSS-max regions. Furthermore the

application of results from one SSS-max region (e.g. the well studied NA) to other basins

might not be possible. Especially when considering a changing climate, which might influence

the mechanisms responsible for temporal variability differently.

3.4.2 Implications for the global water cycle

Regional differences in eddy mixing could have implications for the diagnosis of water cycle

changes using the SSS on long time scales. If the common conception of an intensifying

water cycle in the future — “saltier regions get saltier and fresh regions become fresher”

(Held and Soden, 2006) — holds true, these changes might influence the eddy mixing in

each basin differently. For instance, the NP shows the highest sensitivity to changes in the

surface salinity. Presumably higher eddy mixing would ensue following the intensification

of the lateral salinity gradient by an intensified hydrological cycle, and one could imagine

a negative feedback. Of course this would only be valid if the eddy diffusivities remain

constant, an assumption that cannot be validated for the relevant time scales (more than 50

yrs (Durack and Wijffels, 2010)) at this point. It seems indeed that the observed decadal

pattern intensification in SSS are especially weak/inconsistent in the NP, both for strongly

forced model runs as well as historic observations (Figure 3.7). This would be in line with

the argument presented above. Further research is needed to investigate this mechanism and

its potential importance for the imprint of a changing hydrological cycle on the SSS.
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Figure 3.7: Maps of 50-year salinity trends for the near-surface ocean. (A) The 1950–2000
observational change and (B) the correspond- ing 1950–2000 climatological mean of Durack
and Wijffels (2010; analysis period 1950–2008). (C) Modeled changes for the 1950–2000
period from the CMIP5 historical experiment MMM (analysis period 1950–1999) and (D)
2050–2099 future projected changes for the most strongly forced RCP85 experiment MMM
(analysis period 2050–2099). Black contours bound the climatological mean salinity asso-
ciated with each map, and white contours bound the salinity trend in increments of 0.25
PSS-78.Reproduced from (Durack, 2015), Figure 7 A/D
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3.4.3 Beyond the surface salinity

This study suggests basin scale changes of the local surface diffusivities, potentially affect-

ing areas much broader than the SSS-max. In the case of the South and North Pacific

these changes seem connected to large scale climate fluctuations related to ENSO, possibly

forming an important climate feedback. To our knowledge such a connection has not been

documented using an observationally driven method and could be of relevance to the larger

oceanographic and climate science community. A data set of monthly surface diffusivities

combining methods from Abernathey and Marshall (2013) and this study will be helpful in

identifying locations where eddy diffusivities respond coherently to the large scale environ-

ment. Such a data set is in preparation and will be published in a separate manuscript.

3.5 Acknowledgments

We are grateful for the detailed comments from two anonymous reviewers, which greatly im-

proved the manuscript. We also thank Sjoerd Groeskamp, Sloan Coats, Claudia Giulivi and

Søren Thomsen for comments on the initial draft. Julius Busecke’s research was supported by

NASA award NNX14AP29H. Ryan P. Abernathey acknowledges support from NASA award

NNX14AI46G. Arnold L. Gordon’s research is supported by NASA grant NNX14AI90G to

Columbia University. Lamont-Doherty Earth Observatory contribution number XXXX.

88



Chapter 4

Temporal variability of surface eddy

diffusivities in the global ocean from

altimetry

4.1 Introduction

Mesoscale velocity fluctuations (’eddies’), are a ubiquitous phenomenon in the global ocean

with high importance to the global ocean circulation. Eddy effects are important for the large

scale circulation as shown for example for the meridional overturning circulation (Marshall

and Speer, 2012; Marshall et al., 2017) and global water mass formation (Groeskamp et al.,

2016). One role of eddies in the global ocean circulation is to diffusively mix tracers (heat, salt

and anthropogenic carbon) laterally along isopycnals and horizontally at the ocean surface

(McCann et al., 1994; Stammer, 1998; Tréguier et al., 2014; Gnanadesikan et al., 2015).

Estimates of an eddy diffusivity, which relates the diffusive flux of a tracer to the large scale

tracer gradient (as described in detail in Chapter 1) are a matter of a longstanding debate in

the literature. Due to the small scale and the turbulent nature of eddy flow it is necessary to

obtain long time statistics with high spatial resolution, which to date remain challenging to
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obtain. This problem is particularly important when measurements of collocated variables,

like velocity and tracer measurements, are required to infer eddy statistics. To address this

problem we use an observation-driven surface model experiment combining velocities from

altimetry and several tracer fields to diagnose lateral eddy diffusivites near the sea surface.

The diffusivities exhibit strong temporal variability in most ocean basins, with interannual

variability ranging from 20% to over 300% of the local average in a majority of the global

ocean. Correlation with the ENSO index in large parts of the Pacific basins is observed,

suggesting a modulation of surface eddy diffusivities by large-scale climate fluctuations.

This may constitute a climate feedback mechanism previously unaccounted for in global

climate models. Our study demonstrates how the complex surface velocity field modulates

lateral surface mixing in the world ocean. We anticipate that the monthly data set of surface

diffusivities will be valuable for the testing and development of future parametrization for

eddy effects in coarse resolution models.

4.2 Methods

4.2.1 Model Setup

Our experiments are conducted in an idealized surface setup of the MITgcm (Marshall et al.,

1997). The horizontal resolution is 0.1 degree on a regular lon/lat grid. Surface initial con-

ditions from observations (see main text) are padded with nearest neighbor values, linearly

interpolated onto the model grid and advected with observed absolute geostrophic surface

velocities from AVISO (AVISO DUACS2014; produced by Ssalto/Duacs and distributed by

Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/).

The velocity fields are padded with zero and linearly interpolated onto the model grid.

To extend the velocity record as far as possible, the delayed time product is supplemented

with the near real time product after May 2016, extending the record from January 1993

until January 2017. The major results discussed in the manuscript occur in the time frame
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when the highest quality velocity product was used. Additional to prior studies using this

specific setup (Abernathey and Marshall, 2013; Busecke et al., 2017) we use velocities with

daily resolution as provided by the DUACS14 product. In order to conserve a passive

tracer under two dimensional advection, the velocity fields needs to be divergence free.

Aviso velocities are not strictly divergence free, due to velocity approximations made near

the equator and non-zero velocities perpendicular to the coast. For these experiments the

velocities are ’divergence corrected’ by decomposing the velocity field into the sum of a

non divergent streamfunction and velocity potential (Helmholtz decomposition) (Marshall

et al., 2006; Abernathey and Marshall, 2013). The latter is subtracted from the interpolated

velocity fields. This correction is usually small compared to the raw velocities except near

the equator and the coast. The ratio of the correction term to the velocities is typically

O(0.1) within the basins (Abernathey and Marshall, 2013). Figure 4.1 shows the magnitude

of the velocity speed error and the standard deviation of the uncorrected velocities. The

error due to the divergence correction seems only relevant in the coastal areas and near the

equator.

The model solves the two dimensional advection-diffusion equation

∂q

∂t
+ v · ∇q = κ∇2q (4.1)

for the passive tracer field q with a constant small-scale (grid-scale) diffusivity of κ = 25m2/s.

A numerically diffusive advection scheme is used which causes the effective grid-scale diffusiv-

ity to be higher. Abernathey and Marshall (2013) diagnose a constant ’combined’ diffusivity

using the globally averaged tracer variance budget

∂

∂t

x q2

2
= −κnum

x
|∇q|2 (4.2)

They diagnose κnum = 63m2/s, which will be used as the value for κ throughout the rest of

the manuscript.
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Figure 4.1: Visualization of the velocity speed error introduced by the divergence correction
(see above). Upper) Standard deviation of uncorrected velocities from Aviso (details, see
Methods) in [m/s]. Lower) Root Mean Square Error based on the difference between the
uncorrected and divergence corrected velocities in [m/s]
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4.2.2 Osborn Cox Diffusivity

To infer lateral surface diffusivities from an instantaneous tracer field we use the Osborn

Cox Diffusivity KOC , which represents the local down-gradient eddy flux associated with

irreversible mixing (Osborn and Cox, 1972).

KOC = κ
|∇q′|2

|∇q|2
(4.3)

With q as an arbitrary tracer field and the prime/overbar representing the deviation/average

with respect to the diagnostic averaging time (30 days) and the spatial coarsening interval

of 2deg by 2 deg(coarsened grid cells with any land in it are masked from the final results).

Physically KOC represents the local enhancement of the small scale diffusivity κ. The

ratio |∇q
′|2

|∇q|2 can be interpreted analogous to the ratio of length scales of the ’effective diffu-

sivity’ by (Nakamura, 1996) (described in detail in Chapter 3), with large variance in the

gradient of the lateral tracer anomaly representing a highly filamented tracer field. Mixing

is however, not a purely local process, and contrary to ’effective diffusivity’ the advection of

tracer variance is neglected here. Previous studies have shown that the advection of tracer

variance (as diagnosed from the full tracer variance budget) is of secondary importance when

interpreting large scale features, hence the Osborn-Cox diffusivity represents a reasonable

overall eddy diffusivity (Abernathey and Marshall, 2013). For large local curvature in the

tracer field diffusivity values are masked following the procedure described in Appendix B2.

4.2.3 Resolving temporal variability

A previous study using this methodology has focused on the spatial variability of the long-

term mean (Abernathey and Marshall, 2013). Using a different diagnostic but identical model

setup, Busecke et al. (2017) documented significant temporal variability in eddy diffusivities

in the subtropical basins, where the maximum surface salinity is located. Their methodology

provides integral values for tracer contours and is not able to localize such variability in space.
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In order to resolve spatio-temporal variability in this manuscript we will combine some of the

methods from both studies cited above: For each experiment (defined by the initial tracer

field q0), we compute two passive tracers simultaneously and reset each tracer with equal

and regular time intervals (13 months) but the reset phase of one tracer is shifted by half a

reset interval, similar to (Busecke et al., 2017). After that each of the respective reset points

the initial spin-up phase (3 months) is removed due to the dominating role of the tendency

term in the tracer variance budget (for details see (Abernathey and Marshall, 2013; Busecke

et al., 2017)). For each initial tracer q we average the diagnosed diffusivity from both tracers

and call it KOC,q. The deviation between both tracers in each experiment is generally much

smaller than the average diffusivity (see B.1). Specifically the fluctuations discussed in this

manuscript are much larger than any potential effect of the averaging procedure.

4.3 Results and Discussion

As discussed previously, the spatial distribution of KOC depends on the initial tracer field

q0, indicating the anisotropy in the full diffusivity tensor (Abernathey and Marshall, 2013).

We compute the diffusivities for 4 experiments with different initial conditions q0 :

• KOC,LAT Linear function of the latitude

• KOC,PSI Streamfunction for the mean flow , based on Aviso altimetry fields.

• KOC,SST Mean Climatological Sea Surface Temperature (SST) (Schmidtko et al., 2013)

• KOC,SSS Mean Climatological Sea Surface Salinity (SSS) (Schmidtko et al., 2013)

Results from these experiments mostly differ in the form of offsets between tracers, while

temporal variability is very coherent on interannual and longer time scales (see Figure B.2).

This suggests that the temporal diffusivity changes are dominated by the velocity fields

which are derived from observations. Nonetheless absolute values of diffusivity differ largely.

This is likely a consequence of diagnosing a scalar diffusivity, which is relevant for the tracer
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advected, but does not represent the full diffusivity tensor. As discussed in Chapter 1 tracer

transport across fronts is usually dominated by eddy mixing, since advective transports are

often aligned with frontal features, making the ’cross-frontal’ diffusivity relevant to water

mass transformations. We exploit the different geometry of each tracer field, assuming

that each result represents the projection of the two principal axes of the diffusivity tensor.

Hence we compute a minimum diffusivity Kmin across all experiments, by choosing the KOC

time series of the experiment with the lowest time averaged diffusivity at every grid point.

Kmin is interpreted as the ’cross-frontal’ diffusivity. A corresponding uncertainty estimate is

described in Appendix B1

An earlier study, using the same diagnostic as in this study, has documented large spatial

variability in time averaged surface diffusivities (Abernathey and Marshall, 2013), suggesting

lateral differences extending over several orders of magnitude. The western boundary cur-

rents show diffusivities up to several 103m2/s while diffusivities on the order of 102m2/s are

found in the subtropical gyres. This structure is generally confirmed by other observation

based estimates in the ocean interior (Cole et al., 2015) and correspond well with the results

presented here (Figure 4.2 upper left and center)

Numerical model studies have documented that changing the constant diffusivity in an

eddy parametrization can have strong impacts on the meridional overturning circulation

(Marshall et al., 2017), and that spatially variable diffusivities are required for realistic

water mass formation rates e.g. in the Southern Ocean (Groeskamp et al., 2016) and affect

the distribution of tracers in the ocean, for instance for the uptake of anthropogenic carbon

(Gnanadesikan et al., 2015).

We hypothesize that temporal variability in diffusivity, if sufficiently large, could have

similarly strong implications for the global ocean circulation. Motivated by a study of the

global sea surface salinity maxima, suggesting large scale increase of surface diffusivities in

the subtropical gyre of the South Pacific (Busecke et al., 2017) during the 1997/1998 El

Niño, we investigate temporal variability in surface diffusivities globally with a focus on the
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Figure 4.2: Kmin results. upper left) Mean Kmin. upper center) Interannual range of
Kmin, defined as the difference between 15th and 85th percentile of annual averages. upper
right) Cumulative histogram of ratio of interannual range over average diffusivity. center
and lower) timeseries of diffusivity averaged within boxes indicated in upper left and center
maps. Gray line indicated averaged Kmin, the green line the scaled NINO3.4 index and the
orange line the scaled EKE with the seasonal cycle removed. Red and blue markers indicate
times categorized as ’El Nino’/’La Nina’ used for composites in Figure 4.3
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Pacific subtropical basins.

The annual range of Kmin resembles the spatial structure of the mean (Figure 4.2 up-

per left and center). High variability O(103m2/s) is found in the equatorial regions, the

western boundary current extensions and parts of the Indian Ocean. The subtropical and

subpolar basins show lower variability O(102m2/s). To further evaluate the importance of

the temporal variability, we compare the temporal standard deviation to the mean value

(Figure 4.2 upper right). In over 80% of the global ocean the interannual range is larger

then 50% of the mean diffusivity with many areas reaching much higher values, exceeding

the magnitude of the local mean in areas like the eastern subtropical Pacific, in parts of the

western/central tropical Pacific and parts of the Indian Ocean. This confirms that temporal

variability in surface diffusivities might be of similar impact to the large scale circulation as

spatial variability.

Fig 4.2 shows time series of example regions located in the subtropics of the Pacific.

Interannual variability shows regional differences, but generally contains low frequency com-

ponents and strong peaks. Particularly the Pacific basins show strong correlation between

the surface diffusivity and the NINO3.4 index (Reynolds et al., 2002) (Figure 4.2), confirm-

ing results of a previous study using a different methodology (Busecke et al., 2017). Both

Pacific basins show increases in Kmin within a few months after positive El Niño Southern

Oscillation (ENSO) events. The peaks of Kmin are especially pronounced during the strong

El Niño of 1997/98 and 2015/16. The diffusivities within the large box in the South Pa-

cific show values two times as strong as the approximate baseline in early 1998. The North

Pacific shows a particular strong response in early 2016, with a doubled surface diffusivity

throughout the large scale box. During the negative ENSO phases diffusivities are generally

low in the Pacific boxes, but they do not show as strong of a response as during positive

phases. This behavior is more pronounced in the South Pacific, which has the lowest average

diffusivities.

Figure 4.3 shows the spatial extent of anomalies occurring simultaneously to ENSO
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Figure 4.3: ENSO composites. upper row) Composites for NINO3.4 larger than 1 deg
C. Indicated by red markers in Figure 4.2. lower row) Composites for NINO3.4 smaller
than -1 deg C. Indicated by blue shading in Figure 4.2. left column) Composite of Kmin

anomaly from temporal mean. right column) Composite of Lmix anomaly from temporal
mean. For details see text.

events, by compositing surface diffusivities during high and low NINO3.4 periods. Dur-

ing positive events an increase of several hundred m2/s can be observed throughout the

subtropical basins in the Pacific. Changes in the tropics are even higher. Yet they do not

represent such a strong change compared to the mean, which is very high in the tropics. A

clear pattern emerges over all of the subtropical Pacific with signals during positive ENSO

phases close to 100% of the mean in the central and eastern basin.

These findings indicate that changes in the surface velocity field, leading to a basin wide

increase in lateral surface diffusivity, are modulated by large-scale climate fluctuations. To

our knowledge, this has not been shown before, especially not from an estimate based on

observations. Changes of this magnitude and spatial extent could have significant conse-

quences for the distribution of water masses and the ocean circulation near the surface, since
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the amplitude of the anomalies is similar to the range of sensitivity studies that find large

differences in circulation pattern and tracer dispersion (e.g. (Gnanadesikan et al., 2015;

Marshall et al., 2017)).

Two important, and connected, questions arise from these observations: First, which

characteristic of the velocity field is causing observed changes in surface diffusivity? And

secondly which physical process could couple the tropical sea surface temperatures (ENSO)

to such changes? To answer these questions in depth is outside of the scope of this study. We

will however briefly discuss an obvious candidate for the former: It seems that a stronger eddy

kinetic energy (EKE), is not the reason increased diffusivities are observed during positive

ENSO events, at least not in the Pacific. Figure 4.2 shows very little relation between the

time series of EKE and Kmin.

This suggests that more complex interaction between large scale velocity changes and the

eddy field might have a first order influence on the variability of Kmin, while the EKE on its

own still plays a role but it might be of second order. We hypothesize diffusivity suppression

by large scale velocity anomalies to play a leading role in modulating surface velocities

(Ferrari and Nikurashin, 2010; Klocker and Abernathey, 2014). This can be supported by

the spatial pattern of the diagnosed mixing length Lmix (Figure 4.3 left column). For an

arbitrary tracer c Lmix, which indicates the distance over which a water parcel preserves its

characteristics before they mix with the sourroundings is calculated as follows:

Lmix =

√
(c′)2

2

|∇c|
(4.4)

These results suggest a modulation of the mixing length due to the interaction of the eddy

field with the large scale flow. Previous work on surpressed mixing length theory (Ferrari and

Nikurashin, 2010; Klocker and Abernathey, 2014) would suggest that one of the following

parameters changes due to large scale climate fluctuation, which could explain the strong

changes in diagnosed surface diffusivity:

99



• The size of the most energetic eddies

• The large scale variations of the surface velocities

• The depth averaged velocity, which is important for the doppler-shifted phase speed

of the eddies

The influence of the interaction between eddy field and time variable mean flow has to

be explored in a more comprehensive way. A separate manuscript, building on the existing

work on eddy-meanflow interaction is in preparation.

4.4 Conclusions

This study focuses on providing a novel data set of surface diffusivities and present evidence

for the connection between surface diffusivites and large scale climate indicies. This could

present an important climate feedback which is not represented in state-of-the-art climate

models. Our results provide needed observation based estimates of spatio-temporal vari-

ability which should be used to inform and test future parametrization for the effects of

mesoscale eddies in coarse scale climate models.

An additional open question is if this variability extends significantly below the surface

layer. This needs to be investigated in future eddy resolving model studies, since subsurface

observations lack the resolution and record length of subsurface velocities, making a similar

study based on observations difficult.
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Chapter 5

Conclusions

The goal of this thesis was to investigate the impact of eddy mixing on tracer transports

in the near-surface ocean with a focus on the subtropical ocean. Using several diagnostics

to investigate the variability of irreversible mixing induced by the mesoscale velocity field

underline the importance of temporal variability in eddy mixing for the upper ocean.

Chapter 2 provided high resolution surveys of fresh filaments in the central subtropical

Atlantic, confirming the importance of eddy fluxes, previously proposed (Gordon and Giulivi,

2014) for the SSS, from an observational viewpoint. It served as a motivation to investigate

the importance of eddy mixing to the surface salinity budget. Furthermore it pointed out the

watermass characteristics of the surface and subsurface water masses, which will be further

discussed below.

Chapter 3 and 4 suggest that the variability in surface diffusivities is especially relevant

in the subtropics, due to the generally low lateral surface diffusivities in these regions. This

has general implications for studies investigating processes that affect the SSS, particularly

for studies using a mixed layer budget in regions of high SSS (e.g. SPURS). The global

results however also suggest high variability in the fresh tropical regions, where the second

stage of SPURS is currently being carried out.

The work presented in this thesis implies that eddy mixing has a large impact on the
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distribution of tracers like SSS and SST, and hence on the watermasses which are subducted

in the shallow overturning circulation. It is implied that for budget studies of surface salinity,

eddy mixing can not be neglected as a minor term. Furthermore the work presented here

suggests significant temporal variability in the transformation rate by eddy mixing in the

high salinity regions of the global ocean. This has to be taken into account when constructing

surface budgets. Special care has to be applied when interpreting other terms as a residual

from the budget, since temporal variability in eddy mixing is of significant size compared

to the mean budget in most SSS-maxima and could project onto these. This is particularly

true when budgets are constructed from different data sources with large errors. I suspect

that a more careful treatment of eddy mixing in budget analysis can, at least to a degree,

resolve some of the apparent discrepancies between studies in the SPURS region (Lindstrom

et al., 2015). When comparing results between models, in situ measurements and remotely

sensed fields a careful analysis of resolved scales is necessary to achieve comparability between

results. Particularly when dealing with partially or fully ’eddy resolving’ products e.g. the

output of SMOS, Aquarius and SMAP satellites it is important to appropriately separate

the large scale from eddy scales. Firstly eddy diffusivities can not readily be applied to these

fields since they already contain direct signatures of mesoscale features, greatly enhancing

the lateral gradients and subsequently the inferred tracer flux. Secondly when eddy effects

are resolved, covariance fluxes (more precisely the prime terms in Eq. 1.5) have to be defined

on the appropriate scales.

This thesis documents overall strong heterogeneity in eddy mixing characteristics between

different ocean basins. This extends the notion of Gordon et al. (2015), that each SSS-

max has its own ’personality’. It seems likely that the position of each SSS-max and the

general setup of the basins plays a large role in determining the specific mechanism that

are responsible for the mean state and observed variability. This again emphasizes the

potential for each basin to react differently to a changing climate and exhibit different internal

variability characteristics that need to be understood in detail to improve future climate
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projections, especially due to the importance of the SOC to ocean heat and anthropogenic

carbon uptake.

The results in Chapter 4 extend the importance of temporal variability in surface diffu-

sivities globally. The temporal variability is large in most regions of the global ocean, and

I presented evidence that suggests a connection between large scale climate variability and

surface diffusivities. The magnitude of temporal variability and the suspected connection to

large scale climate variability can be of large importance to the climate system. Such a con-

nection could effectively dampen changes in the surface induced by ENSO, by mixing away

any anomalies before they propagate to the interior. These anomalies could include upper

ocean heat and salt content as well as other relevant tracers which change in the subtropics

in conjunction with ENSO. It seems that from a kinematic viewpoint changes of EKE are

not the main driver of variability in diffusivities, which leaves the interaction of the larger

scale velocities with the eddy field to explain the observed enhancements in eddy mixing

during positive ENSO phases. It is imperative to further investigate mechanisms responsible

as well as possible differences in the time scale they react to a large change in the tropical

Pacific. If the time scale is similar to the time scale of occurrences, it is plausible that surface

anomalies might just be dampened. However, if the timing is offset this could result in quite

a different effect for the climate system, which needs to be explored further.

In this context a necessary step would be to develop eddy parametrization which repro-

duce the observed variability in diffusivity, requiring knowledge of the processes modulating

surface diffusivities. The data set provided with Chapter 4 will be useful in

1. Identifying responsible physical processes coupling ENSO, and large scale climate vari-

ability in general, to changes in surface diffusivities

2. Evaluating the interplay between diffusivities and surface tracers varying on an interan-

nual basis, with a focus on the changes during ENSO events. Chapter 3, indicates that

changes in the SSS field partially compensate the change in diffusivities with regard to

the integrated diffusive salt flux out of the SSS-main the South Pacific. However, due
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to the method used the results are limited to the saltiest regions of the subtropics.

3. Testing the ability of future parametrization to reproduce the correct spatio-temporal

structure of the diffusive transfer coefficient at the surface.

5.1 Future Work

My future work will focus on the identification of the responsible mechanisms for the obser-

vations in Chapter 4. I will specifically investigate the mechanism of suppression of eddy

diffusivities by mean flow (Ferrari and Nikurashin, 2010; Klocker and Abernathey, 2014).

This will include studying eddy resolving model output to compare the variability in lateral

surface diffusivity and mechanisms responsible.

Subsequently I plan to focus on a more complete investigation of the influence of mixing

processes on the transports in the SOC. This will involve studying the subsurface. I plan

to explore the vertical structure of variability in lateral diffusivities as well as the associated

diapycnal diffusivities. An additional point of interest about the tracer distribution in the

SOC was briefly discussed in Chapter 2. The subsurface salinity maximum is shifted to

lighter densities along the subduction path, which could be indicative of vertically increasing

diapycnal diffusivities. My future work will investigate if processes like double diffusion

Zhang et al. (1998) or remote tidal mixing (Melet et al., 2016) are essential in reproducing

the observed distribution of the water masses subducted in the SOC. Of special interest

is the role of double diffusion which supposedly affects the Atlantic more than the Pacific,

due to the higher vertical salinity gradient in the thermocline (Schmitt, 1994). Can surface

signatures of a warming climate, particularly an intensified SSS pattern (Durack, 2015)

be dampened by double diffusion when subducted to depth as suggested by (Johnson and

Kearney, 2009).

I suggest the work presented in this thesis and the proposed work will contribute to the

process understanding of lateral eddy mixing in the ocean as well as the representation of
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these processes in future climate models, which in turn could improve the internal and forced

variability characteristics of future climate projections.
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J.-M., Barnier, B., Bourdallé-Badie, R., Talandier, C., 2014. Meridional transport of salt
in the global ocean from an eddy-resolving model. Ocean Science 10 (2), 243–255.

Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D., Fiorino,
M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen,
S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A.
C. M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof,
A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J.,
Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette,
J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A.,
Vasiljevic, D., Viterbo, P., Woollen, J., 2005. The ERA-40 re-analysis. Quarterly Journal
of the Royal Meteorological Society 131 (612), 2961–3012.

Vinogradova, N. T., Ponte, R. M., 6 2013. Clarifying the link between surface salinity and
freshwater fluxes on monthly to interannual time scales. Journal of Geophysical Research:
Oceans 118 (6), 3190–3201.

Walin, G., 4 1977. A theoretical framework for the description of estuaries. Tellus 29 (2),
128–136.

Wallace, J. M., Hobbs, P. V., 2006. Atmospheric science: an introductory survey. Vol. 92.
Academic press.

Worthington, L. V., 1 1976. On the North Atlantic Circulation. The Johns Hopkins Oceano-
graphic Studies 6, 85–91.
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Appendix A

Supplement to Chapter 3

A.1 Reset procedure

Due to the nature of the presented experiments, which do not simulate key processes like sur-
face forcing and all vertical processes a steady state will never be reached in the TFR/Keff .
The mixing will eventually just destroy all local maxima and completely homogenize the
surface fields. In order to maintain a realistic “quasi-constant” background SSS field the
tracer fields have to be reset in regular intervals. Each reset to the smooth initial conditions
causes a distinct spike in both TFR and Keff , which represents the adjustment phase in
which increased variance is created by stirring the smooth initial conditions until the small
scale diffusion limits the variance and the change in TFR and Keff represents the temporal
changes in eddy stirring. The aforementioned adjustment phase is unrealistic and has to be
removed (we cut the first 2 months in our experiments, leaving a gap in the data record. We
compute two different tracer outputs that are reset at shifted intervals and then averaged, to
create a continuous time series of TFR and Keff for each salinity S0. Shifting them exactly
half of the reset period also ensures that any residual drift from the reset would be averaged
out. Several considerations are influencing the choice of reset period:

• The missing data might still slightly bias the results at the time of reset. It is vital
to choose an odd number of months as the interval length, to ensure that the possible
effect of the reset is occurring at different months of the year each time, which should
be averaged out when analyzing the seasonal cycle.

• The mean position and area of the SSS-max features have to remain within a realistic
range, which limits the maximal length of the reset interval to 9-11 months. After that
for instance the NA SSS-max get slowly advected into the equatorial current system
and the velocity fluctuations acting on the reference isohaline are not representative of
the subtropics anymore.

• The reset interval has to be chosen so that the reference salinity does not get eroded
too far, which specifically in the SI is a problem in reset periods over 9 months

• Since the adjustment phase removes 2 months from the record, the reset period is
chosen as long as possibly allowed by the above criteria, to ensure a maximum of data
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points are derived from both tracer records.

We hence decided on a reset period of 9 months, with the second tracer field initiated
again after 4.5 months and then reset in 9 months intervals like the first.

A.2 Error due to reset procedure

To estimate the influence of the chosen reset interval we conducted several quality control
(QC) experiments with varying reset intervals (7/9/11/13 months), all reset to the mean SSS
initial conditions. Results for TFRmean/Keff,mean are calculated identically to the presented
data for mean, seasonal and interannual. We estimate the RMSE as:

RMSE =
√
〈〈x〉(ex) − xt,ex〉(t,ex) (A.1)

Where 〈.〉(ex)is the average over all QC experiments without averaging in time and 〈.〉(t,ex)
is the average over time and experiments. Figure A1 shows the estimated error split into
the various temporal estimates. Results discussed as significant exceed these error estimates
and are assumed not to be strongly dependent on the reset procedure .

A.3 Combined experiment

In order to evaluate the effect of the interplay between temporally evolving velocities and
SSS fields we created several “combined” experiments. As stated above they are not separate
model experiments, but instead combinations of the single experiments, aiming to give the
most realistic representation of the TFR for a climatological season or interannual variability.
We split the existing experiments into chunks and stitch them together in order of their initial
conditions. For the ’annual combined’ from January 2000 until December 2000 the values
are taken from the ’ECCO 2000’ experiment (see Table 3.1) and from January 2001 until
December 2001 the values from the ’ECCO 2001’ experiment (see Table 3.1) are inserted.
This is repeated for all annual experiments. We present two ’annual combined’ records
to cover the whole time frame of the altimetry record. From 1993-2011 we use annually
averaged surface fields from ECCO as intial conditions and from 2006 to 2014 we use Argo
data (details in Tab. 3.1).

The ’monthly combined’ experiment is created by substituting each month in the record
with data from the experiment with corresponding climatological initial conditions (see Fig-
ure A2). Note that these are climatological monthly initial conditions, meaning the initial
conditions are the same for each e.g. January. The velocities however vary interannually as
in all other experiments.

A.4 Boundary violation

The water mass framework is well suited for the study of SSS-maxima due to their appearance
as local maxima in the SSS fields. One however has to define regional domains in order to not
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Figure A.1: Root mean square error due to reset procedure. Values are shown for the
respective basins and the various time frames considered (color see legend). For details see
text.

lump all maxima together globally, making the interpretation of local differences impossible.
Depending on the basin the definition of this local domain can be complicated as one has
to take good care that the isolines of interest neither leave the box at any time nor other
features enter the domain. Our domains are chosen to guarantee both of these aspects for
the reference salinity. Due to the regional setup this can mean that even isolines as little
away as 0.2 PSU violate this criterion. This is especially critical in basins with low lateral
SSS gradients and secondary local maxima in SSS like the SI and NP. In fact in the SI we
were not able to completely keep the reference isohaline in the box without making the box
unreasonably large, reaching into the SA and SP. Hence we decided to allow a possible but
likely small leakage of the reference isohaline on the South coast of Australia. Values at
isohalines larger than the reference salinity are not affected by the boundary violation but
might be biased due to the fact that the highest salinity values will simply disappear over
the reset time, as they diffuse outwards. Thus we urge the reader to interpret the values
only on the reference salinity, for which extensive testing has excluded above issues.
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Figure A.2: Schematic for the construction of the ’combined monthly’ experiment. Each
colored row is an experiment with quasi-constant intial conditions (see Table 3.1 and text
for details). Each box represents a month in the full time record (extended for multiple
years indicated by the dots on the right). The combined experiment is constructed by
concatenating the time series from the respective experiment for each month(dark boxes).
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Appendix B

Supplement to Chapter 4

B.1 Uncertainty of Kmin

The root mean square error between both shifted tracers for each initial condition, defined
as

RMSEtr,q0 =
√
〈(KOC{tr, q0} − 〈KOC〉tr)2〉t,q0 (B.1)

is minor compared to the mean diffusivities. The RMSEtr,q0 is mostly smaller than 2% of
the local mean of KOC . We quantify the uncertainty of Kmin similar to Eq. B.1 as

RMSE =
√
〈(〈KOC,q0〉tr − 〈KOC〉tr,q0)2〉t (B.2)

The estimated uncertainty is smaller then 10% almost everywhere (Fig. B.1). Within the
regions we focus on, the deviation between the single tracers is small compared to the
spread between the initial conditions. The angled brackets represent a geometric mean
over the dimension in subscript (see below for a discussion of the usage of the geometric
mean for diffusivities). Generally the results presented in this dataset show robust temporal
variability. Time series of each initial condition (q0) show very similar temporal evolution,
indicating that the variability is indeed caused by the velocity field characteristics (Fig. B.2).
Furthermore by comparing the Numerator and Denominator ofKOC is becomes evident, that
the Numerator, representing the enhanced ’roughness’ or tracer gradient variance dominates
the diffusivity signal and particularly the large peaks during strong ENSO events (Fig B.3)

B.2 Validity of Osborn-Cox relationship

The validity of a diffusive closure for the Reynolds tracer fluxes relies on the assumption
that the creation of tracer variance is locally balanced by the dissipation of tracer variance.
This is equivalent to the statement that the length scale of particle displacement over which
the properties of such particle are not changed (the mixing length Lmix) is small compared
to the curvature scale Lcurv of the tracer field:
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Figure B.1: Estimated uncertainty for Kmin in m2/s. The uncertainty stems mostly from
the difference between the initial conditions, due to the anisotropy of the diffusivity tensor
(see text for details).

Figure B.2: Temporal evolution of KOC,q (colors) and Kmin(black). Both tracers with differ-
ent reset intervals are shown as solid and dotted line in the same color. Temporal evolution
of the averaged diffusivity derived from various initial condition and the combined estimate
of Kmin. Values are averaged over the North (upper) and South (lower) Pacific boxes shown
in Figure 4.2.
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Figure B.3: Comparison of Numerator and Denominator for KOC,LAT . Upper/Lower panel
shows North/South Pacific values of Numerator(blue) and Denomniator(orange) averaged
over the same box as in Figure 4.2. The scaled KOC,LAT (green) is shown for reference.
Note the different scales for the Numerator and Denominator, underlining the dominance of
the Numerator for the temporal evolution, particularly with respect to the correlation with
ENSO.
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Lcurv =
|∇c|
|∇2c|

(B.3)

Above c is an arbitrary tracer field and primes and overbars indicate fluctuations and mean
of a Reynolds average. Physically Lcurv can be understood as the length scale over which
the local gradient of the field is representative. If lmix >> Lcurv the mixing process becomes
’non-local’ with respect to the averaging scale indicated by the overbars (which can be in
either time, space or both). Hence we define a criterion for the validity of the Osborn-Cox
method as cr:

1 >> cr =
Lmix
Lcurv

=

√
(c′)2

2
|∇2c|

|∇c|2
(B.4)

This is equivalent to what is derived by Olbers et al. (2012) 1 >> cr = D√
φ2

(after the

correction of two type errors). This criterion can be calculated as at every location and time
step. In this study we exclude diffusivity values from the analysis, where 〈cr〉t > 1.
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