
 

 

Artificial Metabolons:  

Design of Self-Assembled Bio-Complexes 

Kristen E. Garcia 

 

 

 

Submitted in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

in the Graduate School of Arts and Sciences 

 

COLUMBIA UNIVERSITY 

2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2017 

Kristen E. Garcia 

All Rights Reserved  



Abstract 

Artificial Metabolons: Design of Self-Assembled Bio-Complexes 

Kristen E. Garcia 

Protein-protein interactions are vital to every living organism, and it is thought that most, if not all 

proteins interact in some way with other proteins for purposes including for cellular metabolism, 

signal transduction and DNA replication. These protein complexes can range in stability from 

permanent to transient, and they are driven by interactions at the protein-protein interfaces 

including hydrophobicity, hydrogen bonding, electrostatic interactions, van der Waals interactions 

and covalent disulfide bonding. Many complexes, such as transient complexes of sequential 

enzymes called metabolons, are poorly understood. In recent years, there have been many efforts 

to mimic nature and engineer new protein complexes with defined spatial arrangements with 

increased stability and more efficient transport of the enzymatic reaction intermediates. There is 

much to be understood in these complexes, including the role of substrate channeling. In this 

dissertation, we study a natural metabolon and engineer new protein complexes. 

In our first study, we construct designed protein aggregates of the single enzyme small 

laccase (SLAC). SLAC is a multi-copper oxidase that can be easily genetically modified and is 

used as an oxygen-reduction catalyst on enzymatic bio-cathodes. A new dimeric interface is 

introduced, which, in combination with the threefold symmetry of the naturally trimeric SLAC, 

drives the self assembly of SLAC with two disulfide bonds in an oxidative environment. These 

enzymatically active aggregates form upon the addition of cupric ions to the purified protein, and 

electron microscopy shows the symmetry of the aggregates to be consistent with the design. We 

demonstrate improvements over the non-complexed enzyme including an increased resistance to 



permanent thermal denaturation and a lower reaction overpotential and increased current density 

when employed on an oxygen-reduction bio-cathode with single-walled carbon nanotubes 

incorporated into the enzyme aggregates.  

In our next line of work, we study a natural tricarboxylic acid (TCA) cycle metabolon, 

focusing on two enzymes: mitochondrial malate dehydrogenase (mMDH) and citrate synthase 

(CS). These enzymes have long been proposed to form a spatially organized complex that 

facilitates substrate channeling, a process in which a reaction intermediate is transferred directly 

from one enzyme active site to the next without first diffusing into the bulk through mechanisms 

such as electrostatic interactions. Structural evidence has been difficult to obtain due to the 

transient nature of many of these complexes. In Chapter 3, we examine the in vitro complex 

structure of the recombinant enzymes and find that it is similar to the recently proposed in vivo 

complex structure. Furthermore, there is evidence of a positively charged electrostatic channel 

connecting the enzyme active sites along which the oppositely charged reaction intermediate can 

travel by bounded diffusion. Site-directed mutagenesis along the channel on CS results in inhibited 

substrate channeling.  

Finally, we develop a platform to study substrate channeling in engineered multi-enzyme 

complexes. Efforts to engineer multi-enzyme complexes in recent years have made use of protein 

and nucleic acid-based scaffolds. Many of these complexes exhibit increased coupled enzymatic 

activities, but there is a question of what effects are due to substrate channeling and how to apply 

these strategies to any enzyme pair. In this work, we attach CS and the non-channeling cytosolic 

malate dehydrogenase to DNA and engineered protein cage scaffolds. These assemblies retain 

their enzymatic activities, and these methods can be used to study substrate channeling in many 

enzyme pairs including the naturally channeling and inhibited channeling TCA cycle enzymes. 
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Introduction  
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1.1 Protein Complexes 

Higher order protein complex formation is vital to all living organisms, and it has many functions 

in the cell including altering the specificity or kinetic properties of a protein, catalyzing metabolic 

reactions, signal transduction, chaperone-assisted protein folding and activation and suppression.  

Most proteins have more than one polypeptide chain, and many, if not all, proteins interact with 

other proteins through protein-protein interactions (PPIs) to form larger complexes. This higher 

order protein structure was first identified well before the primary, secondary and tertiary 

structures of proteins were discovered.1,2 Interest in protein-protein complexes has risen 

significantly with the improvement of DNA sequencing technology, and PPIs have been reviewed 

extensively3-7  

PPIs can be divided into several classifications: homo- and hetero-oligomeric, obligate and 

non-obligate, and transient and permanent complexes.6,8,9 Homo-oligomers consist of multiple 

identical subunits, are symmetric in structure and are generally stable, while hetero-oligomers are 

comprised of non-identical subunits with varying levels of stability. Components of an obligate 

complex are not stable on their own in vivo, while components of non-obligate complexes can 

stably exist on their own. Classification of PPIs can further label them as either permanent or 

transient depending on the lifetime, or stability, of the complexes. Many non-obligate PPIs are 

classified as transient, and obligate PPIs are mostly permanent, with permanent and obligate 

classifications often used interchangeably throughout the literature.  

PPIs are driven by the same interactions that are important to protein folding: 

hydrophobicity, hydrogen bonding, electrostatic interactions, van der Waals interactions and 

covalent disulfide bonding.6 Protein-protein interfaces are geometrically and electrostatically 
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complementary across PPI classifications, and different types of interactions have varying levels 

of importance within each PPI classification. Protein-protein interfaces for permanent complexes 

tend to have larger interfacial areas with higher levels of hydrophobicity, and they may also include 

disulfide bonding. Transient complex interfaces tend to be less hydrophobic since the individual 

components are soluble and stable on their own, and salt-bridges and hydrogen bonds are more 

frequent in transient complexes than in permanent ones. Polar residues are common for transient 

complexes, and both permanent and transient complexes include charged residues in their protein-

protein interfaces. 

Equilibrium dissociation constants (KD), defined as the ratio of the rate of complex 

dissociation and complex association (koff/kon), can be used to further differentiate between weak 

and strong transient complexes. Weak transient complexes are formed and broken continuously, 

and have KD values in the millimolar to micromolar range, and strong transient complexes have 

nanomolar KD values. Permanent complexes can have micromolar to femtomolar KD ranges. These 

ranges in affinity and stability allow for PPIs to serve their wide range of functions throughout the 

cell.9 Complexes are not present at all times, and PPIs, particularly in transient complexes, are 

largely dependent on their local environments.3 This can make studying PPIs difficult, and weak 

transient complexes with millimolar KD values are still poorly understood.  

 

1.1.1 Engineering Protein Complexes 

There have been significant efforts to engineer new protein-protein complexes with functions and 

and designs that are not found in nature. Many designs take advantage of the natural symmetry in 
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homo-oligomers.10  The addition of small molecules and metal ions have made some of the designs 

dynamic, similar to what can be found in nature.11,12 Design of these new protein complexes require 

introducing new protein-protein interfaces. Genetic fusions have been used to create assemblies 

with minimal design, however this strategy is limited when controlling for orientation.13,14 The field 

has been greatly aided by computational developments. Components and designs can be chosen 

through docking, and residues at the chosen interfaces can be designed in order to create low-

energy interfaces that drive assembly. These techniques have been used to create assemblies such 

as cages, dimers and three-dimensional crystals.11,15-18 

 

1.1.2 Small Laccase 

Laccases are multi-copper oxidases (MCOs) predominantly found in fungi and plants.19 They have 

an affinity for have a wide range of phenolic compounds. Laccases have been used for oxygen-

reduction cathodes due to their high redox potential, neutral pH range and the ability to participate 

in both mediated electron transfer, in which the electrons are shuttled between the electrode and 

enzyme active site by a chemical mediator, and direct electron transfer, in which the electrons are 

transferred directly to the enzyme active site.19-23 Direct electron transfer heavily relies on the 

orientation of the enzyme. Fungal and plant laccases, however, are difficult to express in bacteria, 

making them less than ideal enzymes for protein engineering. The small bacterial laccase (SLAC) 

from Streptomyces coelicolor, named for its small size compared to fungal laccases due to its lack 

of the second of the three laccase domains, is easily expressed in E. coli and can be quickly 

engineered at a genetic level.24  
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SLAC is homo-oligomeric, with three identical subunits of 343 amino acids. The trimeric 

structure is integral to its activity as the active sites are located between monomers. Each trimer 

contains 12 copper ions, three trinuclear clusters (one type 2 and two type 3) and three of type 1, 

which give the enzyme its blue color. The coordination of the copper ions is heavily conserved 

across MCOs.25 The substrate binding sites are located near the type 1 coppers where the substrate 

is oxidized. In total, four substrates are oxidized, and the four electrons are transferred to the 

trinuclear cluster by the triad His287-Cys288-His289, and an oxygen molecule is reduced to water 

at the trinuclear copper cluster.26 SLAC has been genetically engineered in several ways including 

the site-directed mutagenesis for substrate speceficity,27,28 the incorporation of a non-canonical 

amino acid for site-specific immobilization,29 and the addition of DNA-binding and –helical 

domains for self-assembly through genetic fusions,30,31 and it has been employed as an enzymatic 

catalyst for oxygen-reducing bio-cathodes with both mediated and direct electron transfer.29,31,32 

 

1.2 Substrate Channeling in Multi-Enzyme Complexes 

Enzyme complexes have been of interest for the past few decades, and these transient or permanent 

complexes of sequential enzymes have been styled “metabolons”.33 Multi-enzyme complexes have 

been discovered in primary and secondary pathways, and among the best-characterized 

metabolons are the pyruvate dehydrogenase, tryptophan synthase and glycine decarboxylase 

complexes, enzymes in the tricarboxylic acid (TCA) and Calvin cycles, and various components 

in fatty acid, nucleic acid and protein biosynthesis. A potential advantage of these defined spatial 

arrangements of sequential enzymes is substrate channeling, the process in which the reaction 
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intermediate is transferred directly from one enzyme active site to the next without diffusing in the 

bulk solution. Potential effects of substrate channeling can include the protection of unstable 

intermediates, the reduction of exposure of intermediates to competing pathways, the protection 

of the cell from toxic intermediates and the formation of local substrate concentrations that can 

serve to drive a reaction in a direction that may be otherwise thermodynamically unfavorable.34,35 

Mechanisms for substrate channeling include intramolecular tunnels that sequester 

intermediates such as in tryptophan synthase,36 swinging arms that transfer intermediates between 

active sites such as in the pyruvate dehydrogenase complex,37 and electrostatic channeling, in 

which a charged intermediate can travel by bounded diffusion along a channel of oppositely 

charged residues such as in dihydrofolate reductase-thymidylate synthase (DHFR-TS).38 

Furthermore, while metabolon formation brings active sites into closer proximity, proximity alone 

is often insufficient for substrate channeling to occur without such mechanisms since diffusion is 

typically fast compared to reaction rates.39-41 Leaky channeling, where some intermediate is not 

channeled, does occur. Confirming a substrate channeling hypothesis can be challenging due to 

the transient nature of many of these complexes, and, in the absence of structural evidence, 

multiple indirect kinetic methods to measure substrate channeling should be used.35  

There have been several efforts to engineer new multi-enzyme complexes that mimic what 

is found in nature. Strategies to create these multi-enzyme complexes have ranged from simple 

fusion proteins to more complex protein-based scaffolds and nucleic acid scaffolds. Assemblies 

have been constructed in vivo and in vitro, and many have exhibited increases in coupled reaction 

activity upon assembly.34,35,42 However, there remains some question of whether these complexes 

are truly channeling the reaction intermediates. 
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1.2.1 TCA Cycle Metabolon 

The TCA cycle is the central metabolic pathway of aerobic organisms. Six out of eight 

mitochondrial enzymes in the cycle have been demonstrated to co-localize in the cell,43 and it has 

been proposed that the enzymes form a spatially organized complex that enables substrate 

channeling and potentially drives the reaction in the forward direction. Mitochondrial malate 

dehydrogenase (mMDH) and citrate synthase (CS) in particular have been extensively studied for 

metabolon formation and substrate channeling44-46 along with aconitase (Aco), which has been 

shown to associate with citrate synthase.33  

mMDH is homo-oligomeric with two identical subunits of 314 amino acids.47 It catalyzes 

the reversible oxidation of L-malate to oxaloacetate (OAA) using the NAD/NADH cofactor 

system and follows a sequential ordered mechanism with the cofactor binding to the enzyme first.48 

The reaction in the forward direction of malate to OAA has a highly unfavorable equilibrium 

constant (Keq = (2.86 ± 0.12) × 10-5),49 which, along with the allosteric regulation of mMDH by 

citrate,50 is further evidence that mMDH and CS participate in substrate channeling in order to 

drive the reaction in the forward direction.51,52 An isoform of mMDH, cytosolic malate 

dehydrogenase (cMDH), which follows the same mechanism as mMDH, is often used for 

comparison when studying substrate channeling in TCA cycle enzymes.53,54 The sequence 

homology of porcine mMDH and cMDH is only 19.6%, but the similarities increase when focusing 

on functionally important residues and quaternary structure.55 

CS is the key enzyme of the TCA cycle catalyzing the Claisen condensation of acetyl-

Coenzyme A with OAA to form citrate following an sequential ordered mechanism with OAA 

binding first.56,57 CS is a homo-dimeric with 437 amino acids subunits. It has a high affinity for 
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OAA and undergoes a conformational change from an open form to a closed form upon binding 

to OAA.58 The next enzyme in the cycle, Aco is monomeric with a [4Fe-4S] cluster to catalyze the 

two-step reversible dehydration and hydration of citrate to cis-aconitate to isocitrate,59  and the 

overall reaction follows a three-step process (dehydrate, flip, rehydrate) where the flip is a multi-

step 180° rotation of the intermediate cis-aconitate.60 Each reaction follows Michaelis-Menten 

kinetics. 

Indirect kinetic evidence and simulations have given support to the substrate channeling 

hypothesis by electrostatic channeling for mMDH and CS, but structural evidence of the TCA 

metabolon has been hindered due to the difficulties in isolating and purifying the transient protein 

complex. A new model has recently been proposed by Wu et al. which was determined by in vivo 

cross-linking and mass spectrometry.61 This model is substantially different than what has been 

proposed previously.33 With this new model, there is much that can be learned about the 

mechanism of substrate channeling in the complex.  

  

1.3 Research Objectives 

Enzyme complexes can have many benefits including increased stability and channeling of 

reaction intermediates. The design of novel enzyme complexes that mimic and expand what is 

seen in nature has been of considerable interest. However, much is still unknown and debated in 

the field. In this research, the main goals are to assemble and characterize single and multi-enzyme 

complexes. The specific goals of this thesis are outlined below along with their corresponding 

chapters within the thesis: 
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1. Engineer and characterize a single-enzyme complex with long-range order. In Chapter 

2, we construct functional crystalline-like assemblies with the single enzyme SLAC by 

introducing new inter-protein disulfide bonds at the designed protein-protein interface to 

drive self assembly. This work investigates the kinetic activity of these complexes, and the 

electron transfer for these assemblies with incorporated carbon nanotubes was studied on 

oxygen-reducing bio-cathodes.  

 

2. Characterize the recombinant TCA cycle metabolon for substrate channeling. In 

Chapter 3, we assemble a TCA cycle metabolon with recombinant enzymes and compare 

the metabolon structure to the recently discovered in vivo complex structure. Substrate 

channeling between mMDH and CS is probed by kinetic analysis in combination with site-

directed mutagenesis.  

 

3. Construct a platform to study substrate channeling in engineered multi-enzyme 

complexes. Chapter 4 discusses two strategies used to engineer multi-enzyme complexes 

on DNA and protein cage scaffolds. Complex assembly and enzymatic activities are 

evaluated.  
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Chapter 2 

 

Designed Protein Aggregates Entrapping 

Carbon Nanotubes for Bioelectrochemical 

Oxygen Reduction 
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Note: A version of this chapter entitled “Designed Protein Aggregates Entrapping Carbon 

Nanotubes for Bioelectrochemical Oxygen Reduction” appeared in Biotechnology and 

Engineering volume 113, issue 11, pages 2321-2327.  

 

Project Collaborators: Sofia Babanova, William Scheffler, Mansij Hans, David Baker, Plamen 

Atanassov, and Scott Banta. KEG expressed and purified all proteins, performed all colorimetric 

activity assays and analysis and prepared the manuscript for publication. 

 

2.1 Abstract 

The engineering of robust protein/nanomaterial interfaces is critical in the development of 

bioelectrocatalytic systems. We have used computational protein design to identify two amino acid 

mutations in the small laccase protein (SLAC) from Streptomyces coelicolor to introduce new 

inter-protein disulfide bonds. The new dimeric interface introduced by these disulfide bonds in 

combination with the natural trimeric structure drive the self-assembly of SLAC into functional 

aggregates. The mutations had a minimal effect on kinetic parameters, and the enzymatic 

assemblies exhibited an increased resistance to irreversible thermal denaturation. The SLAC 

assemblies were combined with single-walled carbon nanotubes (SWNTs), and explored for use 

in oxygen reduction electrodes. The incorporation of SWNTs into the SLAC aggregates enabled 

operation an elevated temperature and reduced the reaction overpotential. A current density of 1.1 

mA/cm2 at 0 V vs. Ag/AgCl was achieved in an air-breathing cathode system.	
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2.2 Introduction 

A grand challenge in the development of efficient bioelectrocatalytic systems is the 

optimization of transport and reaction kinetics within robust electrode surface 

modifications. The incorporation of enzymes into these systems presents unique challenges 

including operational stability, poor compatibility with entrapping polymer matrices, and 

optimizing spatial arrangements with mediating or relay systems.62,63 A variety of materials 

engineering approaches have been developed to better enable the incorporation of native 

enzymes into electrode systems,64-66 and a few protein engineering approaches have been 

used to improve the protein/nanomaterial interface.67-69 

 Computational protein design has been successfully used to engineer almost every 

feature of proteins, including binding, stability and catalysis.70-75 A recent trend is the use of 

protein design principles to create non-natural assemblies of protein structures to generate 

long-range order in self-assembling systems.74,75 These unique protein structures show great 

promise for the development and improvement of bio/nano interfacial systems as these 

arrangements can lead to improved stability and optimized spatial orientations. 

 Multi-copper oxidase enzymes directly reduce oxygen and have been extensively 

explored for use in enzymatic bio-cathodes to be used in biological fuel cells (BFCs), bio-

batteries and self-powered bio-sensors.64,76,77 BFCs are devices that utilize biocatalysts for 

energy transformation.78-81 Since the chemical energy stored in ubiquitous fuels available in 

the environment is transformed into electricity in BFCs, the practical application of these 

systems is often associated with energy harvesting. BFCs using enzymes as catalytic units 

are predominantly associated with the design of small devices, generating relatively high 
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power.79 The critical drawback of enzymatic BFCs is their operational lifetime, which can 

be limited by the environmental stability of immobilized enzymes. 

 The fungal laccases have been well-studied for the development of bio-cathodes due 

to their high activity and redox potential, but the engineering of these proteins is more 

challenging as they generally do not express well in prokaryotic hosts.82 Bacterial laccases, 

such as the small laccase (SLAC) from Streptomyces coelicolor can have lower redox 

potentials but are more active at neutral pH and are more amenable to protein engineering 

strategies.83 Previously, the trimeric SLAC enzyme has been combined with single-walled 

carbon nanotubes (SWNTs) and also engineered to form self-assembling protein hydrogels 

with osmium redox centers, demonstrating its utility as a biocathode modification.68,84,85 Here 

we use computational design to identify mutations for the introduction of new inter-protein 

disulfide bonds that would enable the SLAC enzyme to self-assemble into stable, functional 

crystalline-like assemblies.   

 

2.3 Results and Discussion 

2.3.1 SLAC Aggregate Design 

The guiding principle in the assembly design process is to introduce a single new dimeric 

interface between SLAC protein molecules, which, in combination with the threefold 

symmetry of SLAC, will drive self-assembly of a material. Following the geometric 

constraints presented by Padilla et al.,75 the SLAC enzyme can be assembled into a P 41 3 

2 crystal architecture via a dimer interface between two trimers by constraining the angle 
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Figure 2.1: Design of the SLAC-DC-His assembly. (A) Illustration of one-interface design 
principle, wherein a single new interface gives rise to self-assembly. Shown is the stepwise 
application of the dimer interface to terminal SLAC-DC-His trimers, adding new trimers to the 
assembly until a fully connected crystalline architecture is attained. (B) Detail of the designed 
dimer interface between SLAC-DC-His trimers, showing the two disulfide linkages which form 
the interface as green, blue and yellow spheres. The active site copper atoms are also shown as 
gold spheres. (C)TEM image of SLAC-DC-His aggregates. 
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between the respective dimer and trimer symmetry axes to 35.3 degrees. The design 

principle is illustrated in Figure 2.1a. Beginning with two SLAC molecules in a two-fold 

symmetric arrangement, additional copies of SLAC bound with identical binding modes to 

the first pair, gradually build a coherent symmetric assembly. 

 Disulfide bonds were chosen to drive interface formation. This both simplifies the 

interface design problem and yields a very stable connection between subunits in an 

oxidizing environment. The symmetric angular constraint described above, along with the 

requirement that the trimers must be in contact with one another in order to form an 

interface, drastically limits the number of possible interfaces that can form the desired 

structure.71 This limited set of compatible binding modes was searched exhaustively with 

Rosetta for shape complementarity and cross-interface positions capable of accommodating 

a disulfide bond.70 One such disulfide-compatible geometry was found to be very similar to 

a crystal contact in the SLAC crystal structure (PDB id 3CG8), making it likely to be 

physically reasonable, and was selected as the design of choice. The chosen disulfide-

mediated interface is shown in Figure 2.1b. The new mutations (G70C and A189C) were 

made to SLAC-His using site-directed mutagenesis and the resultant protein with a C-

terminal polyhistidine tag was named SLAC-DC-His. 

 

2.3.2 Characterization of SLAC-DC-His 

Kinetic parameters for SLAC-DC-His and SLAC-His were determined in dilute solution 

with the substrate 2,6-dimethoxyphenol (DMP) (Table 2.1 and Figure S2.1). We have 

previously observed that the addition of an N-terminal polypeptide fusion can dramatically 
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decrease the turnover number (kcat) compared to the wild-type while fusions to the C-

terminus had a far less impact.68,85 The double cysteine mutations in SLAC-DC-His did not 

significantly affect the turnover number compared to SLAC-His. However, the Michaelis 

constant KM is larger for SLAC-DC-His, resulting in a decreased catalytic efficiency 

(kcat/KM). 

 

Table 2.1: Kinetic parameters of SLAC-DC-His and SLAC-His for DMP oxidationa  

 

Enzyme KM [mM] kcat [min-1] kcat/KM [mM-1min-1] 

SLAC-DC-His 13 ± 2b 110 ± 10 8.2 ± 1.6b 

SLAC-His 4.7 ± 0.4 120 ± 10 25 ± 2 
a Measurements were performed in triplicate, and represented with their mean and standard 
deviation from the mean. 

b p < 0.01, where statistical significance of SLAC-DC-His parameters compared to the 
control SLAC-His were calculated by unpaired two-sample t-test. 
 

 Purified SLAC-DC-His was studied for aggregate formation. Blue aggregates were 

seen to form in an oxidative environment when CuSO4 was incubated with samples 

containing SLAC-DC-His (Figure S2.2a). TEM images of the aggregates showed 

assemblies with regions of 3-fold symmetry consistent with the computational design 

(Figure 2.1c).  Protein aggregates were not seen to form when SLAC-His was exposed to 

the same conditions. SLAC-DC-His aggregates also formed in the presence of SWNTs after 

the addition of CuSO4 (Figure S2.2b). Aggregates formed with and without SWNTs were 

found to be active with DMP (Figure S2.2d), and SWNTs were not found to significantly 

affect enzyme activity for DMP (Table S2.1). SLAC-DC-His aggregates were dissolved 

upon addition of the reducing agent dithiothreitol (DTT) (Figure S2.2c). Aggregates 
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exhibited a large variation of sizes (Figure S2.5). The aggregates did not appear to dissolve 

after storing them in buffer over a period of months. 

 

2.3.3 RDE Experiments 

In order to explore electrochemical function of the SLAC aggregates, rotating disk 

electrode (RDE) measurements were used to study the rate of oxygen reduction, which 

eliminates diffusional limitations and allows the study of oxygen reduction reaction activity 

in kinetically limited conditions. Three main electrochemical parameters were used for 

comparison: generated current density, onset and half-wave potentials.86  The onset 

potential provides information for the thermodynamic aspect of the reaction, and a higher 

onset potential is an indication for decreased overpotential of the reaction or decreased 

activation energy.  The generated current is descriptive for the kinetics of the oxygen 

reduction reaction, and higher current densities are indicative of improved reaction kinetics.  

The half-wave potential gives information for both the thermodynamics and kinetics of the 

process. It is the potential of a voltammetric curve at the point where the difference between 

the faradaic current and the non-faradaic current is equal to one-half of the limiting current.  

 To provide increased surface area and a better contact between the electrode and the 

enzyme aggregates, SWNTs were explored. This technique was applied to study the 

electrochemical activity of SLAC-DC-His aggregates when combined with SWNTs in 

three configurations: i) SLAC-DC-His aggregates were adsorbed on a surface modified 

with SWNTs; ii) pre-formed SLAC-DC-His aggregates were combined with SWNTs; iii) 

SWNTs were incorporated with SLAC-DC-His during aggregation. For each configuration, 
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Figure 2.2: Oxygen-varied RDE measurements by electrode design. (A) SLAC-DC-His 
aggregates adsorbed on SWNTs, B) pre-formed SLAC-DC-His aggregates mixed with SWNT 
inks, and C) SWNTs incorporated into SLAC-DC-His aggregates.  Experiments were performed 
in an oxygen depleted electrolyte (solid lines), oxygen saturated electrolyte (dash dotted lines) and 
an electrolyte exposed to air (dashed lines) (10 mV/s, 1600 rpm). Insets (reproduced for clarity in 
Figure S2.4) show the dependence of the current density at -0.15 V vs. Ag/AgCl on the oxygen 
concentration in the electrolyte with SLAC-DC-His aggregates (triangles), SLAC-His (squares) 
and SWNTs only (diamonds). Three independent identical electrodes for each cathode type were 
prepared and tested for reproducibility. The results are represented with the mean from the three 
measurements and the standard deviation from the mean. 



19 
 

current production from the oxygen reduction reaction was observed, and the current was 

linearly dependent on the oxygen concentration (Figure 2.2). Redox peaks observed with 

oxygen-depleted electrolyte were also observed without the enzyme catalyst and are likely 

due to impurities in the SWNTs (Figure S2.5).  The enzymatic aggregates were stably 

absorbed on the rotating disk electrodes, and we did not visually observe loss of the 

deposited ink even at rotation rates of 1600 rpm. 

 

Figure 2.3: Comparison of RDE measurements. SWNTs only (solid black line), SLAC-His 
mixed with SWNTs (gray line), denatured SLAC-His mixed with SWNTs (gray dashed line), 
SLAC-DC-His aggregates adsorbed on SWNTs (dashed line) pre-formed SLAC-DC-His 
aggregates mixed with SWNT ink (dash dotted line) and SLAC-DC-His with incorporated SWNTs 
before aggregation (dotted line) in electrolyte exposed to ambient air (10 mV/s and 1600 rpm). 

 

 Comparing the electrochemical response of the SLAC-DC-His/SWNT composites, 

a sequential increase in the oxygen reduction reaction current densities can be seen, 
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demonstrating the importance of enzyme-nanomaterial interfacial interactions (Figure 2.3). 

The increase in current density observed when SLAC-DC-His aggregates are combined 

with SWNTs before being deposited onto the electrode is likely due to increased contacts 

between the enzymes and the SWNTs. Contact between the SWNTs and enzyme active 

sites is further increased in the case where SWNTs were introduced into a solution of 

purified SLAC-DC-His before aggregation was initiated. This enabled self-assembly to 

entrap SWNTs within the aggregates. This approach dramatically increased current 

densities during oxygen reduction. The generated current at -0.15 V and 19.8 ± 4.2 mg/mL 

oxygen content was 3.5 times higher than the preformed SLAC-DC-His aggregates mixed 

with SWNTs and 4.2 times higher than the physically adsorbed aggregates.  

 

Table 2.2: Residual specific activities of SLAC-His and SLAC-DC-His for DMP 
oxidationa  

 

Enzyme 25°C 70°C 98°C 

SLAC-DC-His 1.0 ± 0.1 0.50 ± 0.08b 0.43 ± 0.08b 

SLAC-His 1.0 ± 0.1 0.31 ± 0.05b 0.011 ± 0.004b 
aMeasurements were performed at 25°C after 30-minute incubation at elevated 
temperatures. Measurements were performed in triplicate, normalized by the activity at 
25°C and represented with their mean and standard deviation from the mean. 

bp < 0.01, where statistical significance compared to measurements at 25°C calculated by 
unpaired two-sample t-test. 

 

  

 The nonspecific incorporation of the SWNTs into SLAC-DC-His assemblies not 

only leads to enhanced current generation but also a significant positive shift in the onset 
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potential, from 0.075 V vs. Ag/AgCl for SLAC-His to 0.220 V vs. Ag/AgCl for SLAC-

DC-His, and half-wave potential of approximately 100 mV, from - 0.168 V vs. Ag/AgCl 

for SLAC-His to -0.070 V vs. Ag/AgCl for SLAC-DC-His (Figure 2.3). These indicate a 

decrease of the reaction overpotential and improvement in kinetics are most likely due to 

the decreased tunneling distance and the orientation of the enzyme active site.87 Based on 

the Butler-Volmer equation, a decrease in reaction overpotential by 100 mV leads to a 90 

times increase in reaction kinetics and generated current.   

 

2.3.4 Thermal Stability  

SLAC-His and SLAC-DC-His aggregates were incubated at elevated temperatures and 

assayed in solution for DMP oxidation activity at room temperature in order to compare 

the resistance to irreversible thermal denaturation (Table 2.2). After incubation at 70°C, the 

residual activities of both samples decreased, with SLAC-His exhibiting a larger decrease 

in activity. This difference was more pronounced for the samples incubated at 98°C. The 

activity of the SLAC-His samples was reduced by 99% while the SLAC-DC-His samples 

retained 43% of the original activity.  

 Electrochemical activities were also measured at elevated temperatures for RDE 

electrodes (Table 2.3, Figure S2.6). At 50°C, there is no statistically significant difference 

in the retained activities of the SLAC-His/SWNTs and SLAC-DC-His/SWNTs composites. 

At 70°C, the SLAC-DC-His/SWNTs composite demonstrated higher electrochemical 

activity than the SLAC-His/SWNTs composite, retaining 47% activity. These results 

indicate that SLAC-DC-His aggregates are more resistant to thermal denaturation than 
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SLAC-His.  Although it is unlikely that these electrodes would be operated at these higher 

temperatures, the increased resistance to thermal denaturation is likely due to the prevention 

of irreversible unfolding or the facilitated refolding enabled by the engineered disulfide 

bonds, and this would likely lead to increased operational lifetimes at ambient temperatures.    

 

Table 3. Retained electrochemical activitiesa  

 

Enzyme 25°C 50°C 70°C 

SLAC-DC-His 1.0 ± 0.1 0.77 ± 0.10b 0.47 ± 0.03a 

SLAC-His 1.0 ± 0.1 0.81 ± 0.02b 0.05 ± 0.04a 
a Where SWNTs were incorporated in SLAC-DC-His aggregates prior to aggregation. 
Measurements were performed in triplicate, normalized by the activity at 25°C and 
represented with their mean and standard deviation from the mean. 
b p < 0.01, where statistical significance compared to measurements at 25°C calculated by 
unpaired two-sample t-test. b p < 0.05, where statistical significance compared to 
measurements at 25°C calculated by unpaired two-sample t-test. 
 

2.3.5 Gas-Diffusion Cathodes 

Gas diffusion cathodes are advantageous due to the higher oxygen concentration available 

for reduction at the cathode compared to in solution. Therefore, the SLAC-DC-His 

assembly with incorporated SWNTs was integrated into the design of an air-breathing 

cathode and compared to a SLAC-His air- breathing cathode via steady state polarization 

curves (Figure 2.4). The current density at 0.0 V vs. Ag/AgCl recorded with the gas-

diffusion SLAC-DC-His cathode was 1.1 mA/cm2, which was significantly higher than the 

SLAC-His cathode. The SLAC-DC-His gas-diffusion cathode outperformed the SLAC-His 

cathode design throughout the potential region tested.  
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Figure 2.4: Potentiostatic polarization curves. SLAC-DC-His aggregates (circles), SLAC-His 
(triangles) and neat SWNTs (squares) when incorporated into the design of a gas-diffusion cathode 
with 9.2 µg of enzyme deposited on each cathode. Three independent identical electrodes for each 
cathode type were prepared and tested for reproducibility. The results in the figure are represented 
with the mean and the standard deviation from the mean. 

 

This result can be compared to previous reports in the literature.  A laccase-based gas-

diffusion cathode with an identical design to the one used in this study generated 0.70 mA/cm2 

using air as the source of oxygen.88 The interactions between the enzyme and the carbon black 

material relied on physical adsorption of the enzyme and direct electron transfer from the electrode 

to SLAC. To improve the direct electron transfer rate in the current design, we incorporated 

SWNTs along with the protein engineering approach and thus achieved 1.5 times higher current 

densities in comparison to the same miniature GDE exploring laccase as catalyst. Bilirubin oxidase 

(BOx) gas-diffusion cathode where BOx was physically adsorbed on the electrode surface 

demonstrated 0.35-0.50 mA/cm2.89 When an orienting agent (syringaldazine) and a tethering agent 
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(1-pyrenebutanoic acid, succinimidyl ester) were used for more efficient enzyme orientation, 

improved electron transfer and stability, the current densities of a BOx-GDE reached 0.70 

mA/cm2.90 Using more complex tethering agent 4,4′-[(8,16-dihydro-8,16-

dioxodibenzo[a,j]perylene-2,10-diyl)dioxy] dibutyric acid di(N-succinimidyl ester (DDPSE) and 

no orienting agent in the construction of laccase cathode demonstrated ~0.44 mA/cm2.64 

 

2.4 Conclusions 

In conclusion, we have used computational protein design to create a SLAC double mutant 

that can self-assemble into active enzymatic crystalline-like assemblies. The enzyme 

aggregates were easily immobilized by physical adsorption, enabling high enzyme 

loadings. Additionally, the nonspecific incorporation of SWNTs into the aggregates led to 

improved kinetics from increased enzyme-SWNT contacts. The self-assembly increased 

resistance to thermal denaturation.  A current density of 1.1 mA/cm2 at 0 V vs. Ag/AgCl 

was achieved in an air-breathing cathode system. This designed self-assembly approach 

could be employed to create new biomaterials from other enzymes for use in biofuel cells 

as well as many other biocatalysis applications. 
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2.5 Materials and Methods 

2.5.1 Materials 

Oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA). All cloning 

enzymes and E. coli BL21 (DE3) competent cells were from New England Biolabs (Ipswich, MA). 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was from Gold Biotechnology (St. Louis, MO). 

HALT protease inhibitor, Pierce Coomassie (Bradford) Protein Assay Kit, precast NuPAGE SDS-

PAGE gels, NuPAGE SDS MES running buffer and Novex Sharp Pre-stained Protein Standard 

were from Thermo Fisher Scientific (Waltham, MA). HisTrap FF columns and the ÄKTA FPLC 

system were purchased from GE Healthcare (Piscataway, NJ). Uranyl acetate was purchased from 

Polysciences Inc. (Warrington, PA). Carbon black Vulcan X72 was purchased from Cabot 

Corporation (Boston, MA), Carbon coated 400 mush Cu/Rh grids were purchased from Ted Pella 

Inc (Redding, CA). All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO) at 

the highest purity unless otherwise specified.   

 

2.5.2 Construction, Expression and Purification of Enzymes 

The pSLAC-His vector encodes for the SLAC enzyme from Streptomyces coelicolor with a C-

terminal His6-tag.68 The Gly70 and Ala189 amino acids were mutated to cysteine by site-directed 

mutagenesis generating pSLAC-DC-His (Table S2.2). The vector pSLAC-DC-His was 

transformed into E. coli BL21(DE3) cells for SLAC-DC-His protein expression.  

Cells were grown in 2xYT media at 37°C. At OD600 ~1.5, protein expression was induced 

by the addition of 0.4 mM IPTG, and the cells were grown an additional 20 hours at 25°C. Cells 
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were collected by centrifugation and stored at -20°C. Frozen cell pellets corresponding to 1 L of 

culture were thawed on ice for 30 minutes and the suspended in 50 mL of Buffer A (20 mM sodium 

phosphate buffer, 40 mM imidazole, 50 mM NaCl at 7.3 mM) with HALT EDTA-free protease 

inhibitor. Cells were sonicated for 6 minutes using a microtip probe, and lysates were centrifuged 

for 30 minutes at 15,000 x g. Lysates were applied to a HisTrap FF column equilibrated with 

Buffer A, and bound proteins were eluted with a linear gradient of 0 to 100% Buffer B (20 mM 

sodium phosphate buffer, 500 mM Imidazole, 500 mM NaCl at 7.3 mM) using an ÄKTA FPLC 

system. Fractions containing SLAC-His or SLAC-DC-His shown by SDS PAGE with bands at 38 

kDa (Figure S2.7) were pooled, dialyzed four times against 10 mM sodium phosphate buffer at 

pH 7.3 and concentrated by ultrafiltration.  

Purified SLAC-DC-His and SLAC-His solutions were incubated with CuSO4 

corresponding to five times the concentration of the enzyme at 4°C for several hours.  SLAC-DC-

His aggregates were collected by centrifugation (Figure S2.2a). SLAC-His was dialyzed against 

50 mM ammonium bicarbonate buffer and lyophilized for long-term storage. Protein 

concentrations were determined by Bradford assay with bovine serum albumin standards for both 

SLAC-His and SLAC-DC-His and by absorbance at 590 nm with the extinction coefficient 4400 

M-1 cm-1 for SLAC-His after the addition of CuSO4.83 

 

2.5.3 Kinetic Characterization by Colorimetric Assay 

The activity of SLAC-DC-His aggregates for 2,6-Dimethylphenol (DMP) was verified visually 

after the addition of 10 mM DMP, and SLAC-DC-His aggregates formed in the presence of single-

walled carbon nanotubes were also active (Figure S2.2d). 20 µL samples containing 1.8 mg of 
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SLAC-His and pre-formed SLAC-DC-His aggregates were incubated with an equal volume of 

SWNT ink for 1 hour at room temperature. Samples were also prepared in which SLAC-DC-His 

aggregates were formed after incubating SLAC-DC-His with the SWNT ink. Samples were then 

diluted 100x and assayed in 10 mM DMP. Measurements were performed in triplicate on a 

Spectramax M2 plate reader (Molecular Devices, Sunnyvale, CA), and reactions were monitored 

at 468 nm for the formation of the dimeric product 3,3’,5,5’-tetramethoxydiphenylquinone (Figure 

S2.8) with the extinction coefficient 14,800 M-1 cm-1. Activities were normalized by their activity 

without SWNTs (Table S2.1).  

Samples containing 200 nM of SLAC-DC-His aggregates or SLAC-His in 10 mM sodium 

phosphate buffer, pH 7.3, were incubated at 25°C, 70°C, and 98°C for 30 minutes Samples were 

then cooled on ice for 10 minutes. Three samples at each temperature were assayed for residual 

activity in 10 mM DMP as described above. Average residual activities were normalized with 

respect to the residual activities at 25°C.  

Dilute protein solutions were prepared to determine kinetic activities by adding CuSO4 to 

200 nM SLAC-DC-His. Protein solutions were incubated for several hours at 4°C with CuSO4 

corresponding to 5 times the concentration of enzyme. SLAC-DC-His activity was determined 

using concentrations ranging from 0 – 100 mM DMP in air-saturated 10 mM sodium phosphate 

buffer pH 7.3 with a final enzyme concentration of 20 nM. Measurements were performed in 

triplicate, and reactions were monitored at 468 nm. All data were fit to the Michaelis-Menten 

equation using SigmaPlot nonlinear regression software (Figure S2.1).  
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2.5.4 Transmission Electron Microscopy (TEM) 

SLAC-DC-His aggregates with a final concentration of 0.7 mg/mL following a 10x dilution were 

negatively stained with 1% uranyl acetate in water on a carbon coated 400 mesh Cu/Rh grids that 

had been glow discharged for 1 minute before use. Samples were imaged on a Philips CM12 

Tungsten Emission TEM (FEI, Eindhoven, Netherlands) at 120 kV with a Gatan 4 k x 2.67 k 

digital camera (Gatan Inc., Pleasanton, CA).  

 

2.5.5 Aggregate Size Analysis 

Samples of SLAC-DC-His with a concentration of 7 mg/mL were incubated for 20 minutes on ice, 

room temperature, and 50°C. CuSO4 was then added and samples were incubated for 1 hour under 

the same conditions. Samples were diluted 100x then imaged using an Olympus CKX41 

microscope with a Canon EOS 60D camera. At least 6 images per sample were analyzed with 

ImageJ to determine the area of 800 aggregates (Figure S2.3) 

 

2.5.6 Rotating Disk Electrode (RDE) Measurements 

Three different configurations for SLAC-DC-His immobilization and incorporation into the 

SWNTs matrix were utilized: i) SLAC-DC-His aggregates were adsorbed on a surface modified 

with SWNTs; ii) pre-formed SLAC-DC-His aggregates were combined with SWNTs; iii) SWNTs 

were incorporated with SLAC-DC-His during aggregation. For the first configuration, 30 µL of 

the SWNT ink was deposited on the surface of RDE and dried under nitrogen. Then 20 µL (0.9 

mg) of SLAC-DC-His aggregates in 0.1 M phosphate buffer (pH 7.5) was dropped on the SWNTs 
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surface and dried at ambient conditions. For the second configuration, 20 µL of the SWNT ink 

was deposited on the surface of RDE and dried under nitrogen. 1.8 mg of SLAC-DC-His after their 

aggregation were dissolved in 20 µL of 0.1 M phosphate buffer (pH 7.5), mixed with 20 µL of the 

SWNT ink and left at ambient temperature for 1 hour. Then 20 µL of this enzyme-nanotubes 

assembly was dropped on the surface of the already placed SWNTs and dried under ambient 

conditions. For the final configuration in which the SWNTs were incorporated with SLAC-DC-

His prior to their aggregation, 20 µL of the SWNT ink was deposited on the surface of the RDE 

and dried under nitrogen. 1.8 mg of SLAC-DC-His before aggregate formation was initiated in 20 

µL of 0.1 M phosphate buffer (pH 7.5) was mixed with 20 µL of the SWNT ink and left at ambient 

temperature for 1 hour. CuSO4 was added to the mixture and incubated so SLAC-DC-His 

aggregates can form in the presence of the SWNTs. Then 20 µL of this enzyme-nanotubes 

assembly was dropped on the surface of the already placed SWNTs and dried under ambient 

conditions. 

An enzyme-free control electrode was prepared by depositing 20 µL of the SWNT ink on 

the surface of the RDE and then dried under nitrogen. A second control electrode with the control 

enzyme SLAC-His was also prepared. 20 µL of the SWNT ink was deposited on the surface of 

RDE and dried under nitrogen. 1.8 mg of SLAC-His were dissolved in 20 µL of 0.1 M phosphate 

buffer (pH 7.5), mixed with 20 µL of the SWNT ink and left at ambient temperature for 1 hour. 

Then 20 µL of this enzyme-nanotubes assembly was dropped on the surface of the already placed 

SWNTs and dried under ambient conditions. A third control electrode with denatured SLAC-His 

was also prepared. SLAC-His was incubated at 98°C for 1 hour in the presence of 8 M urea, 

dialyzed three times against 0.1 M phosphate buffer (pH 7.5) and checked for loss of activity for 

DMP. 20 µL containing 1.8 mg of denatured SLAC-His was mixed with 20 µL of the SWNT ink 
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and left at ambient temperature for 1 hour. Then 20 µL of this enzyme-nanotubes assembly was 

dropped on the surface of the already placed SWNTs and dried under ambient conditions. Each of 

the studied electrodes had 0.9 mg of enzyme per electrode. 

 All electrochemical measurements were performed in a three-electrode configuration with 

the cathode connected as working electrode, saturated Ag/AgCl and Pt-wire as reference and 

counter electrodes, respectively. 0.1 M phosphate buffer (pH 7.5) was used as electrolyte. For the 

RDE measurements, Pine Research Instrumentation rotator (Grove City, PA) coupled with a 

VersaSTAT 3 potentiostat (Princeton Applied Research, Oak Ridge, TN). Linear sweep 

voltammetry from 0.8 to -0.60 V vs. Ag/AgCl with 10 mV/s and different rotating rates (Figure 

S2.9) was carried out in oxygen depleted, oxygen saturated and an electrolyte with dissolved 

oxygen. Reverse scans were initially performed, but it was found that they did not provide any 

additional information and were excluded from subsequent measurements for simplicity. RDE 

measurements of SWNT-modified electrodes without enzyme were performed as a control (Figure 

S2.5). The oxygen concentration during the RDE measurements was monitored using DO probe. 

Three independent identical electrodes for each cathode type were prepared and tested for 

reproducibility. 

 

2.5.7 Temperature-Controlled RDE Measurements 

The modified RDE electrodes were introduced into electrochemical cell, and the temperature of 

the electrolyte was kept for 30 minutes at 25, 50 and 70°C, respectively, using a water jacket. 

Linear sweep voltammetry from 0.8 to -0.60 V vs. Ag/AgCl with 10 mV/s and 1600 rpm was 

carried out in oxygen saturated electrolyte (Figure S2.8). Current densities at -50 mV with the 
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SWNT control current density subtracted were used as comparison. Three independent identical 

cathodes were tested at each temperature for reproducibility.  

 

2.5.8 Gas-Diffusion Cathodes 

SLAC-DC-His was incorporated in the design of gas-diffusion cathodes. The cathodes were 

composed of plastic case, carbon black Vulcan X72, modified with 35% of polytetrafluoroethylene 

referred in this study as XC35 for the development of the gas-diffusion layer (GDL) and 100 mg 

of XC35 covered by a mixture of 50 mg XC35, 50 mg SWNTs and SLAC-DC-His aggregates 

formed in presence of SWNTs as it was described before, or SLAC-His explored as a catalytic 

layer (CL) (Figure S2.10). The CL was pressed at 500 psi for 5 min and circular discs with 0.15 

cm diameter were cut for the cathode assembly. The final loading of SLAC-DC-His or SLAC-His 

per electrode was 9.2 µg of enzyme. Ni wire going from the catalytic layer through the GDL was 

placed for electrical contact.  This cathode design allows manufacturing of multiple electrodes 

from a single XC35-carbon black-SLAC pressed tablet and thus increases the reproducibility of 

the preparation procedure. Pure oxygen was blown from the outer side of the GDL while 

potentiostatic polarization curves were obtained using a Gamry 600 potentiostat (Warminster, PA). 

Three independent identical electrodes for each cathode type were prepared and tested for 

reproducibility.  
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2.6 Supplemental Information 

3.6.1 Supporting Figures 

 

 

 
Figure S2.1: Dilute solution activity of SLAC-His (black circles) and SLAC-DC-His (white 
circles) with DMP in air-saturated solutions fit to the Michaelis-Menten equation. Measurements 
were performed in triplicate, and results are represented with the mean and the standard deviation 
from the mean.  
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Figure S2.2: A) SLAC-DC-His aggregates, B) aggregates formed in the presence of 1% w/v 
SWNTs and C) aggregates disrupted by the reducing agent DTT at 100x molar excess. D) Active 
SLAC-DC-His aggregates with (bottom) and without (top) SWNTs before (left) and after (right) 
the addition of 10 mM DMP. Brown product formation is visible after DMP is added to the wells.  
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Figure S2.3: Histogram of SLAC-DC-His aggregate areas determined by image analysis with 
ImageJ for aggregates formed on ice (black), room temperature (white) and a water bath at 50°C 
(hatch pattern). One sample was prepared for each temperature and at least 6 images per sample 
were analyzed with ImageJ to determine the area of 800 aggregates. 
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Figure S2.4: Insets reproduced from Figure 2.2 show the dependence of the current density from 
RDE measurements at -0.15 V vs. Ag/AgCl on the oxygen concentration in the electrolyte for 
SLAC-His (squares), SWNTs only (diamonds) and three configurations of SLAC-DC-His 
aggregates (triangles): A) SLAC-DC-His aggregates adsorbed on SWNTs B) pre-formed SLAC-
DC-His aggregates mixed with SWNT ink, and C) SWNTs mixed with SLAC-DC-His before 
aggregation. The results are represented with the mean from the three independent measurements 
and the standard deviation from the mean. 
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Figure S2.5: RDE measurements of SWNT ink in an oxygen-depleted electrolyte (10 mV/s, 1600 
rpm). 

 

 
Figure S2.6: Temperature-controlled RDE measurements (10 mV/s and 1600 rpm) of: SLAC-DC-
His/SWNTs where SWNTs were incorporated onto the SLAC-DC-His aggregates at 20°C and 
measured at 25°C (solid black), 50°C (dash dark blue) and 70°C (dotted light blue), SLAC-
His/SWNTs composite at 25°C (solid dark green), 50°C (dash light green) and 70°C (dotted dark 
yellow) along with a control of SWNTs at 25°C (solid pink). 
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Figure. S2.7: 4-12% Bis-Tris SDS-PAGE of SLAC-His (Lane 2) and SLAC-DC-His (Lane 3) 
after purification. Proteins migrated to their expected molecular weights compared to Novex Sharp 
Protein Standard (Lane 1). 

 

 
Figure S2.8: Scheme for the SLAC-mediated oxidation of DMP to the dimeric colored product 
3,3’,5,5’-tetramethoxydiphenylquinone. 
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Figure S2.9: RDE measurements of A) adsorbed SLAC-DC-His aggregates on SWNTs, B) 
preformed SLAC-DC-His aggregates mixed with SWNT ink and C) SLAC-DC-His with 
incorporated SWNTs before aggregation, in oxygen-saturated electrolyte (10 mV/s, different 
rotating rates). 
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Figure S2.10: Schematic diagram of the gas diffusion electrode configuration and operation. 
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2.6.2 Supporting Tables 
 
Table S2.2: Activity of SLAC-His and SLAC-DC-His for DMP in the presence of SWNTs and 
normalized to their activity without SWNTs.a 

 

 No SWNTs Mixed with 
SWNT ink 

Mixed with SWNT ink 
before aggregation 

SLAC-DC-His 1.0 ± 0.2 0.8 ± 0.1 0.8 ± 0.2 

SLAC-His 1.00 ± 0.01 0.9 ± 0.1 N/A 
a Measurements were performed in triplicate and represented with their mean and standard 
deviation from the mean. 

 

Table S2.1: Oligos used for site-directed mutagenesis. Mutations are in italics. 

 

Mutation Oligo 

G70Cs 5’ - CGG CTT CGA GAA GTG CAA GGC GTC GG - 3’ 

G70Cas 5’ – ACC GAC GCC TTG CAC TTC TCG AAG CC – 3’ 

A189Cs 5’ - CGT GCT GCC GGA CTG CAC GCA CAC G– 3’ 

A189as 5’ - GAT CGT GTG CGT GCA GTC CGG CAG C – 3’ 
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Chapter 3 

 

Direct Evidence for Metabolon Formation 

and Substrate Channeling in Recombinant 

TCA Cycle Enzymes 
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Note: A version of this chapter entitled “Direct evidence for metabolon formation and substrate 

channeling in recombinant TCA cycle enzymes” appeared in ACS Chemical Biology volume 11, 

issue 10, pages 2847-2853.  

 

Project Collaborators: Beyza Bulutoglu, Fei Wu, Shelley D. Minteer and Scott Banta. KEG 

expressed and purified proteins, performed and analyzed all single-enzyme colorimetric activity 

assays, and assisted in analyzing transient time data and writing the manuscript.  

 

3.1 Abstract 

Supramolecular assembly of enzymes into metabolon structures is thought to enable efficient 

transport of reactants between active sites via substrate channeling.   Recombinant versions of 

porcine citrate synthase (CS), mitochondrial malate dehydrogenase (mMDH) and aconitase (Aco) 

were found to adopt a homogeneous native-like metabolon structure in vitro.  Site-directed 

mutagenesis performed on highly conserved arginine residues located in the positively-charged 

channel connecting mMDH and CS active sites led to the identification of CS(R65A) which 

retained high catalytic efficiency. Substrate channeling between the CS mutant and mMDH is 

severely impaired and the overall channeling probability decreased from 0.99 to 0.023.  This work 

provides direct mechanistic evidence for the channeling of reaction intermediates and disruption 

of this interaction would have important implications on the control of flux in central carbon 

metabolism.  
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3.2 Introduction 

Enzymes frequently function in sequential, multi-step cascades and the co-localization of the 

enzymes in self-assembling clusters is often observed.91-93  The term “metabolon” has been used 

to describe these non-covalent dynamic enzyme complexes.94 These arrangements enable 

substrates to be channeled between active sites without escaping into the medium.95 When the 

intermediate transport is not 100% efficient, leaky channeling can occur, but the intermediates are 

sequestered enough to prevent equilibrium with the surroundings.95-97 

Substrate channeling within metabolons results in several metabolic advantages. High local 

substrate concentrations enable better fluxes through a pathway, despite unfavorable equilibrium 

constants. Intermediates can be protected from the bulk phase, hindering competition from 

alternative pathways and protecting the cell from toxicity. These effects on the mass transport 

allow the enzymes to operate at high efficiencies even when the average concentrations of 

intermediates in the bulk phase are low, resulting in the improvement of overall catalytic efficiency 

of the metabolic process.96-100  

 Metabolons exist in many pathways, including glycolysis, fatty acid oxidation, amino acid 

metabolism, lipid biosynthesis and the tricarboxylic acid (TCA) cycle.95,101 Several enzymes of 

the TCA cycle participate in metabolon formation, including citrate synthase (CS), mitochondrial 

malate dehydrogenase (mMDH) and aconitase (Aco).102-105 Since they play a central role in 

cellular energy generation, metabolons of the TCA cycle have been well-studied.44,45,51,52,106-109 

The CS/mMDH interactions are of particular interest since the free oxaloacetate (OAA) 

intermediate concentration in the cell is thought to be too low to sustain the experimentally 

determined cycle rate and the mMDH reaction has an unfavorable equilibrium constant in the 
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forward direction of the cycle.51,52  

 Most metabolon investigations employ indirect techniques to infer channeling.98,104,108  

Fundamental characterizations of substrate channeling have focused on enclosed channels such as 

the tunneling that occurs in tryptophan synthase.36,110,111 However, the bounded diffusion 

mechanism within the metabolon is more relevant to most biological systems.  And, it is becoming 

clear that these “leaky channeling” systems are inspiring new approaches in biocatalysis where 

coupled reaction/transport systems are being engineered with biomimetic substrate channeling 

pathways.97 Recently, the first structural characterization of a native mMDH-CS-Aco TCA cycle 

complex was reported.112  In this work, we created and characterized recombinant versions of the 

TCA cycle enzymes and this enables the use of site-directed mutagenesis to explore structural 

determinants of substrate channeling in vitro.  

 

3.3 Results and Discussion 

The TCA cycle enzymes are a canonical example of the importance of substrate channeling.  

Characterizing the leaky channeling within this system has been difficult due to limited 

experimental tools. The first structural evidence for natural metabolon formation and subsequent 

electrostatic substrate channeling within these enzymes was recently obtained by resolving the 

three-dimensional structure of the mMDH-CS-Aco complex by in vivo chemical cross-linking, 

mass spectrometry and protein docking.112 Here, we characterize a synthetic metabolon formed in 

vitro by three recombinant versions of these enzymes of the cycle, which form a similar 

conformation as the natural complex in vivo. Substrate channeling is further investigated by site-

directed mutagenesis and channeling can be significantly impaired by a single site-directed 
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mutation. 

 The mMDH and CS enzymes are dimers composed of identical subunits, weighing 34 kDa 

and 49 kDa respectively, whereas the next enzyme, Aco (85 kDa), is monomeric.59,113,114 mMDH 

catalyzes the reversible NAD(H)-dependent conversion of L-malate and OAA. CS converts OAA 

and acetyl coenzyme A (acetyl-CoA) to citrate and Coenzyme A (CoA).  Aco catalyzes the 

dehydration-rehydration of citrate to iso-citrate, with cis-aconitate being the intermediate. These 

enzymes have been individually characterized, with porcine heart being the most extensively 

studied variants, which share >95% sequence homology with bovine heart enzymes. Here, three 

different enzyme groups were investigated: native tissue enzymes isolated from the intact bovine 

mitochondria, commercially available porcine wild-type enzymes and recombinantly produced 

porcine enzymes.  For the recombinant enzymes, codon optimized synthetic genes coding for 

porcine heart mMDH, CS and Aco were expressed in E. coli. Enzymes were purified to >90% 

(Figure S3.1) and the protein yields were 5 mg L-1, 75 mg L-1and 50 mg L-1for mMDH, CS and 

Aco, respectively.  

 

3.3.1 In Vitro Metabolon Conformations 

Over the last decade, cross-linking/mass spectrometry analysis has been a common and 

standardized technique for studying protein complexes that can’t be evaluated by X-ray or NMR 

analysis.115,116  In vitro chemical cross-linking of protein-protein interactions between recombinant 

mMDH and CS was performed in the presence of Aco. SDS-PAGE analysis of commercial and 

recombinant enzyme mixtures demonstrated the formation of higher-ordered complexes after 

incubation with disuccinimidyl glutarate (DSG), indicated by a set of intense bands above 100 kDa 
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(Figure S3.2). In-gel tryptic digestion was conducted on the large complex bands, and the extracted 

peptide fragments were analyzed by liquid chromatography-tandem mass spectrometry (LC-

MS/MS).  

In the mitochondrial matrix, compartmentalized TCA cycle enzymes diffuse slowly, and 

their dynamic association is stabilized by the crowded environment. On the contrary, the apparent 

diffusion coefficient of enzymes in dilute solution is approximately two orders of magnitude 

higher, and the random molecular collision occurs much faster101,117-120 than DSG cross-linking 

chemistry, so it is not possible to isolate and purify a stable in vitro complex without cross-linking 

and there are minimal experimental artificats from random molecular collisions without strong 

intermolecular interactions. However, the in vitro system only contains the three enzymes mMDH-

CS-Aco, so the mass spectrometric data analysis and protein docking is easier, because the identity 

of all of the enzymes participating in the complex are known. Matching experimentally detected 

tryptic peptides to protein databases using the Mascot search engine identified the three enzymes 

in both cross-linked and non-cross-linked sample bands (Table S3.1). Cross-linked peptide 

candidates were determined by comparing cross-linked and non-cross-linked mass spectra, and 

matching additional masses after cross-linking to a manually-built theoretical mass database. 

Using the distance restraint (25 Å) on potentially DSG-linked residues (Figure S3.3), a hybrid 

protein docking method was utilized to elucidate the interactions between mMDH and CS in vitro, 

as previously described.27  

 For the complexes of commercial enzymes, a number of structures were found to meet the 

selection criteria and bear at least three identified cross- links (Figure S3.4). These structures 

exhibited distinct conformations, implying that mMDH and CS without any modifications interact 

in a random manner in dilute solution. Compared to the native tissue mitochondrial TCA cycle 
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Figure 3.1:  Structures of the mMDH-CS complex and the simulated electrostatic potential 
on the surface of the complex. (A) Native tissue mitochondrial metabolon. (B) In vitro complex 
formed by commercial enzymes. (C) In vitro complex formed by recombinant enzymes. N- and 
C-termini are represented by red and blue spheres, respectively. FLAG-tag and Polyhistidine-tag 
are represented by red and blue sticks, respectively. mMDH and CS active sites are denoted by 
black arrows. (D) In vitro complex formed by commercial enzymes. (E) In vitro complex formed 
by recombinant enzymes. Surface regions of positive potential and negative potential are colored 
in blue and red, respectively. The electrostatic channeling path for OAA is highlighted by the 
yellow edge. Orange arrows indicate the active sites. The white arrow indicates the location of 
Arg65 and Arg67.  The surface ESP was calculated with water molecules at pH 7.4. 

 

metabolon (Figure 3.1a), one model of the complex of commercial mMDH-CS showed up with 

the most structural similarity. In this structure (Figure 3.1b), three DSG cross-links (matching three 

MS peaks, Table S3.2) were obtained between mMDH Lys 191, Lys 277, Lys 283 and CS Lys 

325. The α-helices of CS at Ala1-His 28 and Ser426-Lys437 are buried in the interface that covers 

the inter-subunit domain of mMDH. Compared to the native tissue mitochondrial metabolon in 

vivo, however, mMDH is flipped around the axis parallel to the binding interface by about 180 

degrees. As a result, the two N-termini of mMDH are in close proximity with CS while the C-

termini are pointing outward. This flipping may be less favorable for channeling of OAA, as the 
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mMDH active site clefts are open to the bulk phase and separated from CS active sites by a longer 

distance (73 Å) than that in the native tissue mitochondrial metabolon (35 Å).112 

In contrast to the random association of commercial enzymes that yielded a number of 

complex conformations, the recombinant enzyme interactions were more restricted and resulted in 

a unique structure bearing seven DSG cross-links (matching four MS peaks, Table S3.3) between 

mMDH Lys81, Lys217, Lys304, Lys305 and CS Lys76, Lys325, Lys432. The α-helices of CS 

near its N- and C-termini again participate in the binding interface with the inter-subunit region of 

mMDH. Although mMDH was rotated around the axis perpendicular to the interface by 

approximately 30 degrees as compared to the metabolon in vivo, the final structure maintains most 

of the natural features (Figure 3.1c). No termini are buried in the interface, possibly due to spatial 

hindrance from additional amino acids not present in commercial or native mitochondrial enzymes 

appended to the termini (FLAG-tag (8 amino acids on N-terminus) and polyhistidine purification 

tag (6 amino acids on C-terminus)), but the relative locations of termini around the interface are 

not significantly altered. The two N-termini of the mMDH dimer point away from CS and the 

mMDH and CS active sites are brought within a closer proximity (40 Å) than what was observed 

in the complexes of commercial mMDH-CS (73 Å). With this shorter pathway, OAA transfer was 

expected to be faster than that in the wild-type complexes. In addition, the interfacial areas in the 

recombinant mMDH-CS complexes are about 12,100 Å2, suggesting that they may be more 

thermodynamically stable than either the native tissue mitochondrial metabolons (10,000 Å2)112 or 

the complexes of commercial mMDH-CS (11,300 Å2).  Of course these measurements are based 

on docking of rigid protein models, and subtle conformational changes in the proteins upon self-

assembly could lead to changes in the interaction areas.  

Formation of commercial and recombinant mMDH-CS-Aco complexes in vitro was also 
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examined by docking Aco onto solved mMDH-CS complexes (Figure S3.5). Three DSG cross-

links (matching three MS peaks) were identified between CS Lys16, Lys76, Lys80 and Aco Lys4, 

Lys117 in the tri-enzyme complex formed by commercial enzymes (Table S3.4). It was found that 

CS Lys76 and Lys80 were located in the mMDH-CS interface, implying that mMDH and Aco 

would not be present on the same subunit of CS. Therefore, each CS dimer can only bind one 

mMDH dimer and one Aco monomer (Figure S3.5a). In the recombinant mMDH-CS-Aco 

complexes, there were four DSG cross-links between CS Lys294, Lys300 and Aco Lys709, 

Lys712, exhibiting no conflict with the identified cross-links between mMDH and CS, although 

only one MS peak was matched (Table S3.5). This result is consistent with that obtained from in 

vivo cross-linking of CS and Aco. Residues within C-terminal region of the recombinant Aco were 

recognized at the CS-Aco interface. A groove formed between mMDH and CS appeared to 

accommodate the C-terminal of Aco (Figure S3.5b). Hence, the resulted tri-enzyme association 

was found to be more compact than that of the metabolon formed by commercial mMDH and CS. 

Similarly to the native tissue mitochondrial metabolon, a recombinant octamer comprised of one 

CS dimer, two mMDH dimers and two Aco monomers could possibly form in vitro.112  

 A model of the three-enzyme system was built on the assumption that inclusion of Aco 

does not alter the complex formation between mMDH and CS. The interaction between Aco and 

CS (or mMDH) is weaker than that between mMDH and CS according to previous observations 

in vivo, even though there is a lower chance that CS (or mMDH) binds Aco prior to mMDH (or 

CS) in dilute solution. Therefore, the contribution of Aco to the structural assignment between 

mMDH and CS was of lesser interest, and the remainder of the experimental efforts were focused 

on the investigation of the channeling of OAA within the mMDH-CS complex which is consistent 

with most of the related research in the literature.44,45 
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3.3.2 Simulated Electrostatic Channeling 

Elcock and McCammon previously demonstrated through Brownian dynamics simulations that 

electrostatic forces at the surface of a yeast mMDH-CS fusion protein greatly improved the OAA 

transfer efficiency.44,54 In their fusion protein, a continuous surface of positive electrostatic 

potential bridged the active sites implying an important role of surface charge in the directed 

transport of OAA. In the natural TCA cycle metabolon, theoretical evidence for electrostatic 

channeling was also found between mMDH and CS active sites using simulation tools.112 To 

further investigate electrostatic channeling in the mMDH-CS complex formed in vitro, the 

electrostatic surface potential (ESP) was examined using the Poisson-Boltzmann equation in the 

presence of water molecules at pH 7.4. As illustrated in Figure 3.1d, a long and broad band of 

positive potential covers the majority of the complex surface of the commercial enzymes on one 

side, connecting the active sites. In the recombinant mMDH-CS complex (Figure 3.1e), the 

positive patch connecting active sites was reduced due to their increased proximity and relative 

orientation. Taken together with previous results from simulation of surface ESP of free enzymes, 

the formation of substrate channeling in such dynamic complexes is a product of electrostatic 

protein-protein interactions and rearrangement of surface charges upon association. Charged 

surface residues, especially positively charged arginines and lysines, likely play an essential role 

in directed transport of negatively charged OAA.  

 To explore this, interfacial residues of the recombinant complex were identified by 

screening surface arginine and lysine residues within a distance of 20 Å from each other. As a 

result, CS Arg65 and Arg67 were estimated to be important for the formation of the positive 

channel. Site-directed mutagenesis was performed at these positions and six different CS mutants 

were explored, where Arg65 and Arg67 were replaced by either alanine or aspartic acid: R65A, 



 51 

R67A, R65A/R67A, R65D, R67D and R65D/R67D. Prior mutational studies of CS have involved 

the active site residues,121-124 aiming for the improvement of enzyme catalysis while the two 

residues mutated in this work (Arg65 and Arg67) are not located near the active site (Figure S3.6, 

Table S3.6).  

 Specific activities of the CS mutants were determined (Table S3.7). Arg67 was found to 

be crucial for the enzymatic activity of the recombinant CS.  Any mutation of this side chain 

decreased or eliminated the enzymatic activity. In addition, CS(R67D) and CS(R65D/R67D) were 

found to be structurally affected by the mutations as shown in (Figure S3.7). CS(R67A), 

CS(R65A/R67A), CS(R65D) exhibited two or three orders of magnitude reductions of specific 

activities in comparison to the recombinant wild-type CS. CS(R67D) and CS(R65D/R67D) 

enzymatic activities could not be determined. CS(R65A) had similar enzymatic activity compared 

to recombinant wild-type CS. However, this mutation resulted in the dissociation of the mMDH-

CS complex as implied by the disappearance of the mMDH-CS complex bands in native PAGE 

gels. (Figure S3.8). Residues 65 and 67 were compared among different species, and Arg67 is 

highly conserved whereas Arg65 is generally well conserved suggesting the importance of positive 

charge at these positions (Table S3.8). 

 

3.3.3 Kinetic Analysis of Recombinant Enzymes 

The steady state kinetics of the recombinant mMDH, recombinant CS and mutant CS enzymes 

were evaluated. Both mMDH and CS follow the ordered bi-bi kinetic mechanism, where mMDH 

binds to its cofactor and CS binds to OAA first.113,114 The full steady state kinetic parameters were 

determined for recombinant mMDH, CS and CS(R65A) (Table 3.1). Recombinant CS had a 
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kcat/KM,acetyl-CoA value of  4.3 µM-1s-1 and kcat/KM,OAA value of and 11 µM-1s-1 whereas CS(R65A) 

had a kcat/KM,acetyl-CoA value of  5.6 µM-1s-1 and a kcat/KM,OAA value of 39 µM-1s-1. These values 

indicate that R65A mutation did not impair the kinetic behavior of the enzyme.  

 

Table 3.1:  Kinetic parameters of recombinant enzymes.a  

 

Enzyme kcat (s-1) Ki, A (µM)b KM, A (µM)b KM, B (µM)c 

mMDH, fwd 31 ± 2 420 ± 80 130 ± 30 830 ± 100 

mMDH, rev 870 ± 140 15 ± 2 87 ± 22 33 ± 7.9 

CS 88 ± 4 4.6 ± 0.8 7.9 ± 1.2 21 ± 3 

CS(R65A) 44 ± 3 1.7 ± 0.1 1.1 ± 0.3 7.8 ± 2.3 
aData is given as mean values ± s.d. from at least three independent measurements. bSubstrate A 
is NAD+ for mMDH, fwd, NADH for mMDH, rev and OAA for both CS and CS(R65A). 
cSubstrate B is L-malate for mMDH, fwd, OAA for mMDH, rev and Acetyl-CoA for both CS and 
CS(R65A).  

 

3.3.4 Channeling in the Presence of a Competing Enzyme and Viscous Solution 

A common method to probe substrate channeling is to introduce an enzyme competing for the 

same intermediate.125 As illustrated in Figure 3.2a, the mMDH-CS complex catalyzes sequential 

conversion of L-malate to citrate via OAA as the intermediate, using NAD+ and acetyl-CoA as 

cofactors. A competitive pathway was introduced with aspartate aminotransferase (AAT), which 

catalyzes the conversion of OAA and L-glutamate to aspartate and α-ketoglutarate. In the presence 

of AAT, the resultant rate of citrate generation measured with crude lysate containing the native 

tissue mitochondrial mMDH-CS complex showed little change (Figure 3.2b). Approximately 88% 

of the recombinant mMDH-CS activity was retained, whereas 72% of the commercial mMDH-CS 
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Figure 3.2:  Demonstration of channeling of OAA within the mMDH-CS complex. (A) 
Schematic of the coupled mMDH-CS catalysis in the presence of competing enzyme AAT. 
White and black arrows represent diffusion and directed channeling, respectively. Crystal 
structure of AAT is obtained from Protein Data Bank (PDB ID: 1AAT). (B) Coupled activity 
retention calculated as the ratio of reaction rate before and after adding AAT measured with 100 
µM mMDH-CS complex or crude mitochondrial lysate (about 5 µM protein in total). (C) 
Coupled activity retention in the presence of glycerol. Error bars represent standard deviation 
calculated from three independent experiments. Statistical significance (p-value) with respect to 
samples without AAT was calculated by a two-sample t-test with Welch correction for unequal 
variances: * = p < 0.05, ** = p < 0.01. 
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activity was retained in the presence of 1 U mL-1 of AAT.  As the AAT concentration was increased 

to 5 U mL-1, 89%, 77% and 68% of the coupled activity remained in the native tissue 

mitochondrial, recombinant, and commercial enzyme complexes, respectively (Figure 3.2b). The 

mutant recombinant complex (mMDH-CS(R65A)) only retained 53% of the coupled activity for 

5 U mL-1 AAT. To minimize potential mMDH-AAT interactions, coupled catalysis was also 

explored with complexes immobilized in modified chitosan polymers. This ensured that AAT in 

bulk solution was physically separated from the complex and its interaction with the metabolon 

could be minimized.  Similar results were obtained compared to the free complexes in solution 

(Figure S3.9).  

Glycerol was added into the assay solution in order to explore a more viscous environment, 

and the efficiency of mass transport in different mMDH-CS complexes were compared. As Figure 

3.2c demonstrates, coupled activity of the native tissue mitochondrial mMDH-CS complex in 

crude lysate was not affected by the increased viscosity. For the recombinant complex, catalysis 

was similar in 10% (v/v) glycerol, but decreased by 16% in 20% glycerol. This indicates that 

substrate channeling in the artificial complex functions in a “leaky” fashion. When compared to 

the complex of commercial enzymes and the mutant recombinant complex (mMDH-CS(R65A)), 

which respectively lost 15% and 20% of coupled activity in 10% glycerol and 30% and 35% of 

coupled activity in 20% glycerol, the recombinant complex (mMDH-CS) was less affected by 

increases in viscosity, indicating improved mass transport.  

In a non-channeling system, OAA escaping into the bulk phase would be consumed by 

AAT, thus reducing the production of citrate. The coupled production of citrate by the recombinant 

complex was significantly less affected by the presence of a competing enzyme AAT, thus 

reducing the production of citrate. The coupled production of citrate by the recombinant complex 
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was significantly less affected by the presence of a competing enzyme (AAT) or a viscous reagent 

(glycerol). Taken together with the structural evidence, these results demonstrate that assembly of 

sequential enzymes is important for efficient substrate channeling. In this work, the ESP of 

commercial and recombinant mMDH-CS complexes were calculated, and it was shown that an 

electrostatic channeling path bridging active sites forms at the surface of commercial as well as 

recombinant enzymes. However, the recombinant complex with its active sites closely facing each 

other provides a channeling advantage over the complex of commercial enzymes whose active 

sites are further apart and facing oppositely. Moreover, the R65A mutation prevents association 

and the formation of the electrostatic channel in the metabolon. Mutated recombinant complexes 

retained only 50% of citrate production in the presence of 5 U mL-1 AAT demonstrating that 

intermediate transport in the mMDH-CS(R65A) is more prone to being interrupted by competing 

pathways. 

 

3.3.5 Transient-Time Analysis 

Transient time (τ) is used to describe the lifetime of intermediates in coupled catalysis. For 

enzymes that do not channel intermediates, a longer time is required to reach the steady state flux 

of the reaction intermediate.126 Here, the ordered bi bi enzymatic reactions were treated as pseudo 

first-order by saturating the cofactors in the system. The overall initial reaction rates were limited 

by the OAA transport, which is dependent on the diffusion coefficient (Di) of intermediates and 

the diffusing length (l) between active sites. Assuming that diffusion coefficients of OAA were 

not altered, the transient time is related to the diffusion distance length between the mMDH and 

CS active sites.  
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Figure 3.3:  Characterization of OAA channeling via transient-time analysis. Citrate 
production was measured over time. Predictions of recombinant and mutant complexes were 
determined using rate equations for each enzyme. Transient time for each enzyme sample was 
determined by extrapolating the linear line fitted to the curve to the time axis as indicated by arrows 
(Table 3.2). 

 

The transient times of OAA were measured in the native tissue mitochondrial metabolon 

and metabolons formed by commercial, recombinant and mutant mMDH and CS (Figure 3.3, 

Table 3.2). The simulated electrostatic channeling pathway (40 Å) for OAA was shorter in the 

mMDH-CS complex formed by recombinant enzymes, compared to commercial enzymes (73 Å). 

Consequently, the transient time of OAA in the recombinant complex was measured to be 30 ± 11 

ms, which is comparable to the value of 40 ± 5 ms measured with crude lysate containing the 

native tissue mitochondrial TCA cycle metabolon. In comparison, the transient time of OAA in 

the complex of commercial enzymes was almost one order of magnitude higher, with a value of 

290 ± 40 ms. In the case of the mutant mMDH-CS(R65A) complex, the resultant transient time 
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was increased to 880 ± 60 ms, approaching 1 s.  According to these results, the channeling of OAA 

was fastest in the native tissue mitochondrial complex followed by the recombinant complex, 

complex of commercial enzymes and the mutant mMDH-CS(R65A) complex.  

 Agreeing with previous experiments, transient-time analysis also demonstrated that the 

mMDH-CS complex formed by recombinant enzymes in solution achieved similar channeling 

characteristics as the native tissue mitochondrial metabolon. The transient time of OAA in the 

recombinant mMDH-CS complex was reduced by 90% compared to the complex of commercial 

enzymes, indicating a higher channeling efficiency.  The reduction of transient time in the 

recombinant complex, as compared to complex of commercial enzymes, was larger than the 

expected value of 70%, according to the equation for one-dimensional random walk, l2 = 2Di.127 

This is likely a result of the better orientation of the active sites in the recombinant complex.  In 

the complex of commercial enzymes, the active site clefts in mMDH are facing oppositely to CS 

and are open to the bulk phase, resulting in an increased chance of OAA escape. Although substrate 

channeling in both systems was found to be “leaky”, it is evident that recombinant enzymes exhibit 

higher catalysis coupling efficiency.  

 An analytical approach has been developed, which relates the substrate channeling 

phenomena to the Michaelis-Menten parameters of the enzymes.54,126,128 A channeling probability 

parameter has been defined as pc pr, which can be obtained using the transient time, KM and Vmax 

of the second enzyme in the complex. The equation applicable to it mMDH-CS system is defined 

as the following:54 

    𝜏 = 	 $%,'((,)**	(,-./.0)
23'4,'((

            (3.1) 
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By using the ordered bi bi rate equation and the kinetic parameters of the recombinant mMDH, 

CS and CS(R65A) enzymes, simulated rates of citrate formation by the unassembled enzymes 

were calculated. From these, the predictions of transient times of OAA in recombinant mMDH-

CS and mMDH-CS(R65A) systems were estimated to be 2.5 s and 0.90 s, respectively (Table 3.2). 

These values represent the transient times with no interaction and no channeling, thus the 

probability parameter, pc pr, can be taken to be equal to 0. As shown by Eq. 1, KM,app/Vmax,app  is 

equal to the transient time in the case of no channeling. When this KM,app/Vmax,app  parameter is 

used together with the observed transient times  of the complexes formed by the enzymes (0.03 s 

and 0.88 s for the recombinant and mutant complex respectively), the combined channeling 

parameters are calculated to be 0.99 and 0.023 for the recombinant mMDH-CS and mMDH-

CS(R65A) respectively. 

 This analysis further confirms the channel formation is disrupted in the mutant mMDH-

CS(R65A) complex. The predicted and measured transient times are very similar for mMDH-

CS(R65A) (0.90 s vs 0.88 s), which indicates that the intermediate OAA is channeling poorly after 

the arginine mutation. On the contrary, the measured time lag for the recombinant complex was 

0.03 s, indicating efficient channeling of OAA within the metabolon. The probability parameter, 

pc pr, should approach 1 as intermediates are efficiently channeled54 and this value was found to 

be 0.99 and 0.023 for mMDH-CS and for mMDH-CS(R65A) respectively.  A comparison of the 

kcat/KM,AcCoA values for the recombinant wild type (4.3 µM-1s-1) and mutant CS (5.6 µM-1s-1) as 

well as the kcat/KM,OAA values (11 µM-1s-1 for wild type and 39 M-1s-1 for the mutant CS) indicate 

that these results arise from changes in the transport efficiency of the complexes and are not due 

to major changes in kinetic activities.    
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Table 3.2:  Measured and predicted transient times of OAA.a 

 

Sample τ (ms) 

Native Tissue 40 ± 5 

Commercial 290 ± 40 

Recombinant 30 ± 11 

Mutant 880 ± 60 

Prediction of  Recombinant 2500 

Prediction of Mutant 900 
aTransient times were determined from linear fits from Figure 3.3. Mean and standard deviation 
for experimental values were calculated from three independent experiments.  

  

Metabolic Control Analysis (MCA) provides a framework to understand how metabolic 

fluxes are regulated by enzymatic activities.129,130 The TCA cycle is a highly regulated network in 

central metabolism.  To further investigate the potential implications of the R65A mutation, the 

elasticity coefficients of CS and CS(R65A) with respect to substrate OAA.  These parameters 

indicate how much the reaction rates are affected by changes in OAA concentrations, and were 

estimated to be 0.79 for CS and 0.63 for CS(R65A) (Equation S3.2) based on the steady-state 

substrate concentrations obtained with our model. Thus, the sensitivity of CS to OAA 

concentrations was decreased by the mutation. Taking the connectivity theorem into account, it 

can be concluded that this mutation would lead to an increased flux control coefficient indicating 

a potentially increased role in regulating metabolic control.  The potential impact on the flux 

control may explain why this mutation is rarely observed in nature.   
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3.4 Conclusions 

Complex metabolic pathways, such as the TCA cycle, involve multiple enzymatic steps that 

require efficient mass transfer of intermediates between active sites. The metabolon formation 

within the TCA cycle and the interactions between malate dehydrogenase and citrate synthase in 

particular, have been a major research focus. In this work, we presented the first direct evidence 

for metabolon formation among recombinantly produced mMDH and CS. The structural and 

kinetic analyses demonstrated that the recombinant versions of these enzymes self-assemble in 

vitro, similar to their native counterparts in vivo. Important residues for the enzyme interactions 

were identified and site-directed mutational analysis was performed for the first time to investigate 

the substrate channeling among these enzymes. A single mutation in CS, R65A, along the 

positively charged patch connecting the active sites, disrupted the transport of the negatively-

charged intermediate, decreasing the overall channeling probability from 0.99 to 0.023. These 

results demonstrate the importance of substrate channeling in this critical biological pathway. 
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3.5 Materials and Methods 

3.5.1 Materials 

Synthetic genes coding for the porcine heart enzymes were synthesized by Genscript (Piscataway, 

NJ). All genes have a Flag-tag at the N-terminus and a 6xHis-tag at the C-terminus, for 

identification and purification purposes, respectively. Restriction enzymes for DNA cloning were 

purchased from New England Biolabs (Ipswich, MA). Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and ampicillin sodium salt, were purchased from Gold Biotechnology (St. Louis, MO). 

Amicon centrifugal filters were purchased from Millipore. Disuccinimidyl glutarate (DSG), 

sodium dodecyl sulfate polyacrylamide electrophoresis gels (SDS-PAGE) and running buffers 

were purchased from Invitrogen-Life Technologies (Carlsbad, CA). E. coli BL21 and BL21(DE3) 

cell lines were purchased from Bioline (Taunton, MA). Chaperon plasmid pGro7 was purchased 

from Clontech Laboratories–Takara (Mountain View, CA). Ala-chitosan was prepared as 

previously described.131 Fresh bovine heart was purchased from a local slaughterhouse and used 

immediately. All other reagents and materials were purchased from Sigma-Aldrich (St. Louis, 

MO) unless otherwise stated.  

 

3.5.2 Construction of Recombinant Enzymes 

Cloning of the synthetic genes into expression plasmids 

The genes coding for CS and Aco were cloned into pET-20b(+) backbone using the NdeI and 

HindIII restriction sites. Resulting plasmids were transformed into BL21(DE3) cells. mMDH was 

inserted into pMAL-c4e expression vector via the same restriction sites. The resulting construct 
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and the chaperon plasmid pGro7 were co-transformed into BL21 cells for expression.   

 

Site-directed mutagenesis of recombinant CS 

CS Arg65 and Arg67 were mutated to alanine and aspartic acid to create single and double mutants 

via site-directed mutagenesis: CS(R65A), CS(R67A), CS(R65A/R67A), CS(R65D), CS(R67D), 

CS(R65D/R67D). CS(R65A) was used as the template to mutate the Arg67 to alanine and 

CS(R65D) was used as the template to mutate Arg67 to aspartic acid. Corresponding primer 

sequences used during the PCR reaction are given in Table S3.9. 

 

3.5.3 Expression and Purification of Enzymes 

Expression and purification of the recombinant enzymes 

All constructs were expressed in 1L of sterilized Terrific Broth, inoculated with 10 ml overnight 

culture. For Aco and CS, the media was supplemented with 100 µg/mL ampicillin. M was added 

to mMDH cultures in addition to the ampicillin. The cells were grown to an OD600 of 0.6 while 

shaking at 37°C, and protein expression was induced with 0.5 mM IPTG for mMDH and CS, and 

with 0.6 mM IPTG for Aco. Expression was carried out for 18–20 h at 25°C. Cells were harvested 

by centrifugation at 5000 × g for 10 min and resuspended in 50 mL HisTrap binding buffer (20 

mM Tris, 150 mM NaCl and 20 mM imidazole, pH 7.4) per L of culture supplemented with HALT 

EDTA-free protease inhibitor. Soluble proteins were collected via centrifugation at 15000 × g for 

30 min after the cells were lysed by sonication with an ultrasonication probe in an ice bath for 6 

min (5 s on pulse and 2 s off pulse). Enzymes of interest were purified by immobilized metal 

affinity chromatography using a HisTrap columns (GE Healthcare Life Sciences, Pittsburgh, PA), 
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where bound enzymes were eluted with the elution buffer (20mM Tris, 150mM NaCl, 500mM 

imidazole (pH 7.4). mMDH was buffer exchanged into 20mM Tris-HCl (pH 8.7) and purified via 

anion exchange chromatography where the enzyme was eluted using a linear NaCl gradient from 

0 to 1 M NaCl. All enzymes were further purified with size exclusion chromatography after buffer 

exchanging into 50mM Tris, 150mM NaCl (pH 7.4). Amicon filters (Milipore, Billerica, MA) with 

30kDa (for mMDH and CS) and 50kDa (for Aco) molecular weight cutoff were used in order to 

concentrate the protein solutions as well as to exchange the buffer in between different purification 

steps.  

 

Preparation of crude mitochondrial lysate. 

 Extraction of the bovine heart mitochondria was done according to the procedure described by 

Rogers et al. with some modifications.132 Bovine heart cubes were blended with cold isolation 

buffer (70 mM sucrose, 210 mM mannitol, 5 mM HEPES, 1 mM EGTA and 0.5% (w/v) BSA, pH 

7.2) in a Waring laboratory blender. Meat suspension was centrifuged at 500 × g for 10 min, and 

the supernatant was centrifuged at 26000 × g for 20 min. Pellet was homogenized in the isolation 

buffer and centrifuged twice again at 500 × g for 10 min. Supernatant was filtered through a 

double-layer cheesecloth and centrifuged at 1000 × g for 20 min. The mitochondria pellet was 

washed with lysis buffer (50 mM Tris, 150 mM NaCl, 2 mM EDTA and 1 mM PMSF, pH 7.4) at 

26000 × g for 10 min. Pellet resuspended in the lysis buffer was sonicated with an ultrasonication 

probe in ice bath for 4 min (5 s on pulse and 15 s off pulse). The crude lysate was initially cleared 

at 5000 × g for 30 min. EDTA and PMSF were removed through the pre-packed SephadexTM G-

25M column (GE Healthcare Life Sciences). Protein concentration in the mitochondrial lysate was 

determined to be 1 mg/mL by BCA assay. 
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3.5.4 Structural Analysis 

In vitro chemical cross-linking of mMDH, CS and Aco 

Commercially available enzymes purchased from Sigma-Adrich and recombinant enzymes were 

cleaned up by a pre-packed SephadexTM G-25M column into 10 mM phosphate buffer (pH 7.4) to 

remove ammonium sulfate and other salts containing primary amine. Afterwards, mMDH, CS and 

Aco were mixed equally to a total protein concentration of 20 µM in 10 mM phosphate buffer (pH 

7.4). DSG dissolved in 50 µL of DMF was added to the enzyme mixture to a final concentration 

of 1 mM. The approximate DSG/protein molar ratio was 50:1 to ensure an efficient capture of 

weak protein-protein interactions in dilute solution without dramatic loss of enzyme activity. As 

the non-cross-linked control, 50 µL of DMF containing no DSG was used. Cross-linking was 

carried out at room temperature for 30 min under gentle shaking and quenched by adding 2 M Tris 

buffer (pH 8.3) to a final concentration of 20 mM. 

 

Separation and in-gel digestion of enzyme complexes 

Enzyme mixtures were washed with 50 mM Tris buffer (pH 7.4) in filter-incorporated Amicon 

tubes with a mass cutoff at 10 kDa  at 5000 × g for 15 min to remove phosphates and extra DSG. 

Afterwards, cross-linked and non-cross-linked samples were directly separated by reducing SDS 

PAGE, which was performed on a 4–20% gradient gel according to the protocol provided by the 

manufacturer. Gel bands of interest were excised and de-stained twice in 1 mL of 50% methanol 

with 50 mM ammonium bicarbonate at room temperature, under gentle vortexing for 1 h. The gel 

slices were rehydrated in 1 mL of 50 mM ammonium bicarbonate at room temperature for 30 min, 

and the gel bands/spots of interest were cut into several pieces. These gel pieces were rehydrated 
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in 1 mL of 100% acetonitrile at room temperature under gentle shaking for 30 min. Acetonitrile 

was carefully removed from the gel pieces with a pipette tip prior to trypsin digestion. The gel 

pieces were incubated with 10–20 µL of sequence-grade modified trypsin (20 ng/µL, Promega) in 

50 mM ammonium bicarbonate overnight at 37 °C. Digestion was quenched by adding 20 µL of 

1% formic acid. Then, the solution was allowed to stand, and peptides that dissolved in the 1% 

formic solution were extracted and collected. Further extraction of peptides from the gel material 

was performed twice by adding 50% acetonitrile with 1% formic acid and sonicating at 37 °C for 

20 min. All these solutions were collected and combined. A final complete dehydration of the gel 

pieces was accomplished by adding 20 µL of 100% acetonitrile followed by incubation at 37 °C 

for 20 min. The combined supernatant solutions of extracted peptides were dried in a vacuum 

centrifuge (Speed-Vac). The peptides were reconstituted in 100 µL of 5% acetonitrile with 0.1% 

formic acid for mass spectrometric analysis. 

 

Mass spectrometric instrumentation 

Peptides were analyzed using a nano-liquid chromatography-tandem mass spectrometry (LC-

MS/MS) system comprised of a nano-LC pump (Eksigent, Dublin, CA) and a LTQ-FT mass 

spectrometer Thermo Fisher Scientific (Waltham, MA). The LTQ-FT is a hybrid mass 

spectrometer with a linear ion trap used typically for MS/MS fragmentation (i.e. peptide sequence) 

and a Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometer used for primary 

accurate mass measurement of peptide ions. The LTQ-FT is equipped with a nanospray ion source 

(Thermo Fisher Scientific). Approximately 5 to 20 fM of tryptic-digested or phosphopeptide-

enriched samples were dissolved in 5% acetonitrile with 0.1% formic acid and injected onto a 

homemade C18 nanobore LC column for nano-LC-MS/MS. A linear gradient LC profile was used 
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to separate and elute peptides, consisting of 5 to 70% solvent B in 78 min with a flow rate of 350 

nL/min (solvent A: 5% acetonitrile with 0.1% formic acid; solvent B: 80% acetonitrile with 0.1% 

formic acid). The LTQ-FT mass spectrometer was operated in the data-dependent acquisition 

mode controlled by Xcalibur 1.4 software, in which the “top 10” most intense peaks observed in 

an FT primary scan (i.e. MS survey spectrum) were determined by the computer on-the-fly and 

each peak was subsequently trapped for MS/MS analysis and sequenced through peptide 

fragmentation by collision-induced dissociation. Spectra in the FT-ICR were acquired from m/z 

400 to 1700 at 50000 resolving power with about 3 ppm mass accuracy. The LTQ linear ion trap 

was operated with the following parameters: precursor activation time was 30 ms and activation 

Q was 0.25; collision energy was set at 35%; dynamic exclusion width was set at low mass of 0.1 

Da with one repeat count and duration of 10 s. 

 

Mascot database searches 

LTQ-FT MS raw data files were processed to peak lists with BioworksBrowser 3.2 software 

(Thermo Fisher Scientific). Processing parameters used to generate peak lists were as followed: 

precursor mass was between 401–5500 Da; grouping was enabled to allow five intermediate 

MS/MS scans; precursor mass tolerance was set at 5 ppm; minimum ion count in MS/MS was set 

to 15, and minimum group count was set to 1. Resulting DTA files from each data acquisition were 

merged and searched against the NCBI or custom databases for identified proteins, using MASCOT 

search engine (Matrix Science Ltd; version 2.2.1; in-house licensed). Searches were done with 

tryptic specificity, allowing two missed cleavages or “non-specific cleavage” and a mass error 

tolerance of 5 ppm in MS spectra (i.e. FT-ICR data) and 0.5 Da for MS/MS ions (i.e. LTQ Linear 

ion trap). Identified peptides were generally accepted only when the MASCOT ion score value 
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exceeded 20. 

 

Identification of cross-linked peptides 

Mass spectrometric raw files were analyzed via Thermo Xcalibur software and peptide peaks of 

interest were picked manually. A theoretical mass database of potential inter-protein cross-links 

was built up using a spreadsheet by combining two peptides, which were identified in individual 

(non-cross-linked) enzymes but missed in the cross-linked enzyme complex by MASCOT database 

search. Additional peptide peaks only found in cross-linked spectra were screened against the mass 

database. Cross-link candidates were selected by the following rules: trypsin did not cut at the C-

terminus of modified lysines or lysines with proline on the C-terminus; up to two missed cleavages 

were allowed, but non-specific cuttings were not considered; peptide length was 5–30 amino acids; 

each cross-linked peptide had at least one lysine for cross-linking as well as a lysine or arginine at 

C-terminal; peaks showed up in at least duplicate experiments; mass error = 5 ppm. Flexible 

modifications that might be obtained by oxidation or during SDS-PAGE running were applied to 

specific residues for identification and the respective mass variations were previously 

summarized.112 Identified cross-links were examined by Mascot automated target-decoy search 

against NCBI database to estimate false-discovery rate (FDR) and no protein hits were reported 

above identity threshold (p = 0.05) 

 

Hybrid protein docking 

Global docking and local docking were carried out to solve the structure of the mMDH-CS-Aco 

complex. In global docking, an automated protein docking web server, Cluspro 
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(http://cluspro.bu.edu/), was utilized.133-135 Cross-linked lysines identified by manual search were 

set as attracting residues. All proteins were treated as rigid bodies with their “open” conformations 

obtained from crystal structures, giving top 100 ~ 120 structures of highest score based on surface 

shape complementarity and free energies of desolvation and electrostatic interactions. The crystal 

structure of Aco, mMDH, and CS were obtained from the Protein Data Bank (PDB ID: 1MLD, 

1CTS, and 7ACN). The 24 AA sequences at N-terminus are signal peptides, which are cut off from 

mature enzymes, so they were excluded from simulation. However, for the recombinant proteins, 

the FLAG-tag and His-tag was included in model as well as in the final structures. Prior to local 

docking, all model candidates were screened by Xwalk software suite to filter out false positives 

by distance constraints.136 Maximum Euclidean distance limit was set to 25 Å, resulting from a 

combination of DSG spacer arm length (7.7 Å), lysine side chain length (6 Å × 2) and backbone 

flexibility. In addition to Euclidean distance limit, solvent accessible surface (SAS) distance was 

set to 30 Å to mimic molecular flexibility of DSG. Solvent radius was 1.4 Å by default and set to 

2 Å for SAS distance calculation. Rotamers were removed and only the distance of Cβ-Cβ between 

two lysines was calculated. A pair of lysines on two proteins in global candidates were considered 

as a potential cross-link, if their Xwalk-calculated separation is no more than the limits.137 After 

distance filtering, global candidates bearing at least two potential cross-links were subject to local 

docking by another protein docking web server, Rosetta (90).138-140 Derived from each starting 

global structure, 10 local candidates of lowest interface energy were screened again by Xwalk. 

Final complex structures were chosen based on two criteria: local candidates of lowest interface 

energy were clustered around a single position on the energy landscape and the structure had the 

highest number of potential cross-linkers in agreement with experimental results. Interfacial 

residues in final structures were determined when the measured Euclidean distance was less than 
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20 Å. 

Simulation of electrostatic surface potential 

Prior to simulation, docked structures were modified by PDB2PQR web server (http://nbcr-

222.ucsd.edu/pdb2pqr_2.0.0/) to add missing hydrogens and/or heavy atoms and to estimate their 

titration states.141,142 Protein complexes were protonated with favorable hydrogen bonds. Charges 

and radius were assigned from Amber force field. PROPKA was used to predict pKa shifts in 

complexes at pH 7.4.143 Calculation of surface ESP by Poisson-Boltzmann equation was done by 

APBS web server (http://www.poissonboltzmann.org/docs/apbs-installation/)144,145 with the 

following parameter settings: water molecules were not removed; no additional ions were added 

at zero ionic strength; biomolecular dielectric constant was set at 2; and solvent dielectric constant 

was set at 78.54. 

 

3.5.5 Kinetic Analysis 

Kinetic analysis of the recombinant enzymes 

mMDH and CS activity measurements were carried out as in Shatalin et al. with some 

modifications.45 mMDH was measured for activity with different substrate concentrations for the 

forward and reverse reactions, in 100 mM potassium phosphate buffer (pH 7.4) in a 96-well plate. 

L-malate, NAD+, oxaloacetate (OAA) and NADH concentrations were varied from zero to 3 mM, 

4 mM, 0.1 mM and 0.1 mM, respectively. NADH concentration was measured 

spectrophotomerically at 340 nm after the addition of 1 nM and 0.1 nM mMDH for the forward 

and reverse reactions, respectively. CS activity was determined in 100 mM potassium phosphate 

buffer (pH 7.4) as well, via monitoring the coenzyme A (CoA) production at 412 nm in the 
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presence of 1 mM DTNB (5,5’-dithiobis(2-nitrobenzoate)) with 1 nM of enzyme in a 96-well plate. 

OAA and acetyl coenzyme A (acetyl-CoA) concentrations were varied from zero to 0.5 mM and 

0.2 mM, respectively.  NADH production/consumption was calculated using the extinction 

coefficients 6220 M-1cm-1. Production of citrate can be spectrophotometrically monitored through 

a subsequent reaction of CoA and DTNB, which yields a di-anion (TNB2-) absorbing at 412 nm. 

Citrate production rate was determined from the maximum linear slope of the curve of absorbance 

over time. Extinction coefficient of TNB2- at 412 nm was 14,150 M-1cm-1, and the light path length 

was 0.56 cm. All enzyme concentrations were determined by Bradford Assay (Thermo Scientific) 

following the protocol provided by the manufacturer and a SpectraMax M2 (Molecular Devices, 

Sunnyvale, CA) was used for absorbance readings. Obtained data was fitted into ordered bi-bi 

equation (Equation 3.2) in order to calculate the kinetic parameters of the enzymes: 

 

   𝑣 = 23'4 6 [8]
$:*$;<$; 6 <$* 8 < 6 [8]

   (3.2) 

 

Coupled activity assays of the mMDH-CS complex in solution with AAT or glycerol 

Equal amounts of mMDH and CS were mixed in 10 mM PBS (pH 7.4) to a final total protein 

concentration of 20 µM, and incubated under gentle shaking at room temperature for 30 min. The 

coupled activity of the mMDH-CS complex (100 nM) or the crude lysate (0.5 mg/mL) was assayed 

in a 96-well plate with 1 mM L-malate, 2 mM NAD+, 0.1 mM acetyl coenzyme A, 0.2 mM DTNB 

and10 mM glutamate in 200 µL of 100 mM potassium phosphate buffer (pH 7.4) in the presence 

of 1 or 5 U mL-1 AAT. Control experiments were done without adding AAT. Glycerol was added 

to the enzyme and substrate solutions to 10% and 20% (v/v) prior to mixing. Then the coupled 
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activity of the mMDH-CS complex (100 nM) or the crude lysate (0.5 mg mL-1) was assayed in a 

96-well plate with 1 mM L-malate, 2 mM NAD+, 0.1 mM acetyl-CoA and 0.2 mM DTNB in 200 

µL of 100 mM potassium phosphate buffer (pH 7.4). Control experiments were done without 

adding glycerol. The absorbance increase at 412 nm was monitored by SynergyTM HTX multi-

mode microplate reader (BioTek) over 1 min at 1 s intervals. One unit (U) of enzyme activity was 

defined as 1 µmole of product formed in one minute. 

 

Coupled activity assay of immobilized mMDH-CS complex with AAT 

The mMDH-CS complex solutions (4 µM) and ala-chitosan solution (10 mg mL-1) were mixed at 

a volume ratio of 2:1, and incubated on vortex at room temperature for 15 min. Cross-linked 

samples were prepared by incubating mixtures of mMDH and CS at 20 µM with 0.2 mM DSG 

under gentle shaking at room temperature for 30 min, followed by quenching with 2 M Tris (pH 

8.3). The cross-linking ratio of DSG:protein was lowered to 10:1 to minimize potential 

deactivation of enzymes by excessive cross-linkers. 25 µL of the enzyme/polymer suspension was 

pipetted to the bottom of a polystyrene cuvette (1 cm for light path length) and dried in a vacuum 

at room temperature for 2 h. Coupled activity of immobilized enzyme complex was assayed in 1 

mL of 100 mM potassium phosphate buffer (pH 7.4) containing 1 mM L-malate, 2 mM NAD+, 

0.1 mM acetyl-CoA, 0.2 mM DTNB, 10 mM glutamate and AAT at 0 or 1 U mL-1. The absorbance 

change at 412 nm was monitored by a UV-Vis spectrophotometer (Evolution 260 Bio, Thermo 

Scientific).  
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Transient time measurement by fast kinetic study 

Fast kinetic experiment was carried out in a 96-well plate measured by the plate reader equipped 

with a dual injection module. Before assays, 10 µL of mMDH (20 µM) and 10 µL of CS (20 µM) 

were mixed in 10 mM PBS (pH 7.4) and incubated under gentle shaking at room temperature for 

30 min, followed by dilution to 2 mL in 100 mM potassium phosphate buffer (pH 7.4). The crude 

lysate was directly used without further dilution. Substrate solution was prepared in 2 mL of 

potassium phosphate buffer containing 2 mM L-malate, 4 mM NAD+, 0.2 mM acetyl-CoA and 0.4 

mM DTNB. To setup the assay condition, enzyme and substrate solutions were respectively 

injected by two separate syringes at a flow rate of 250 µL s-1. Total assay volume was 200 µL s-1 

per well. Absorbance at 412 nm was read every 90 ms over 1 min. Transient time of OAA was 

determined by extrapolating the linear line fitted to the absorbance curve within the first recorded 

5 s. 

 

Predicted transient time calculations 

In addition to the experimental fast kinetic study of mMDH-CS complex, transient time analysis 

was performed using the experimentally obtained kinetic parameters of individual recombinant 

mMDH, recombinant CS and mutant CS(R65A). In Matlab, a function “xprime” is defined as the 

change in substrate / product concentrations with respect to time and ode45 function is used to 

solve the differential equations describing these substrate (OAA and acetyl-CoA) consumptions / 

product (citrate and CoA) formations. Obtained data is fitted using Excel and transient time of 

OAA was determined by extrapolating the linear line fitted to the time ver sus product 

concentration plot. The Matlab code is given below: 
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function xprime = concentrations(t,x); 

xprime=[(v0-((V1*x(1)*x(2))/((KiA*KB)+(KA*x(2))+(KB*x(1))+(x(1)*x(2)))));(-

1)*(V1*x(1)*x(2))/((KiA*KB)+(KA*x(2))+(KB*x(1))+(x(1)*x(2)));(V1*x(1)*x(2))/((KiA*KB)+(KA*x(

2))+(KB*x(1))+(x(1)*x(2)));(V1*x(1)*x(2))/((KiA*KB)+(KA*x(2))+(KB*x(1))+(x(1)*x(2)))]; 

where x(1) is OAA and x(2) is acetyl-CoA. 

 

Elasticity coefficient calculations 

In order to calculate the elasticity coefficient of CS with respect to OAA, following equation is 

used (18): 

        𝜀>66?@ = 	 ABCD
A[>66]

[>66]
BCD

                                                      (2) 

 

where v is the reaction rate of CS and [OAA] is the concentration of substrate OAA. After taking 

the derivative of the rate equation with respect to OAA, kinetic parameters and steady state OAA 

concentration belonging to CS and CS(R65A) are fitted to the Eq. 2, in order to obtain the steady 

state elasticity coefficients.129  
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3.6 Supplementary Information 

3.6.1 Supporting Figures 

 
 

 
 

 

 
Figure S3.1:  SDS-PAGE analysis of recombinant enzymes. (1) Protein ladder. (2) mMDH - 34 
kDa. (3) CS - 49 kDa. (4) Aco - 85 kDa. 
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Figure S3.2: SDS-PAGE analysis of DSG-cross-linked and non-cross-linked (control) mMDH-
CS complexes in vitro for commercial and recombinant enzymes. (a) Commercial mMDH subunit. 
(b) Commercial CS subunit. (c) Commercial mMDH-CS complex. (d) Recombinant mMDH 
subunit. (e) Recombinant CS subunit. (f) Recombinant mMDH-CS complex. (g) Commercial Aco. 
(h) Recombinant Aco. Gel bands of interest for subsequent digestion and analysis are indicated by 
solid red squares. 

 

 

  



 76 

 
 
 
 

 

Figure S3.3: Summary of all possibly cross-linked lysine residues (represented by K) (a) in the in 
vitro mMDH-CS complex formed by commercially available enzymes. (b) in the in vitro mMDH-
CS complex formed by recombinant enzymes. (c) in the in vivo mMDH-CS complex formed by 
native tissue mitochondrial enzymes. 
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Figure S3.4: mMDH-CS metabolon structures. All possible complex structures formed by 
commercial mMDH (colored in sky blue and cyan) and CS (colored in gold and yellow) in 
solution. The crystal structure of mMDH and CS were obtained from the Protein Data Bank (PDB 
ID: 1MLD and 1CTS).The structure with the most similarity to the natural metabolon is 
highlighted in the red square. 
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Figure S3.5: mMDH-CS-Aco complex structures. (a) Structures of the complex of commercial 
enzymes and (b) recombinant mMDH-CS-Aco complexes formed in vitro. The crystal structure 
of Aco, mMDH, and CS were obtained from the Protein Data Bank (PDB ID: 1MLD, 1CTS, and 
7ACN). Aco is colored in purple. FLAG-tagged N-terminus and His-tagged C-terminus are 
highlighted in red and blue, respectively. 

 

 

 

Figure S3.6:  Location of mutations in CS. Structure of a porcine CS subunit (PDB ID: 1CTS). 
The residues shown in purple represent the mutation sites found in literature (Table S3.6).121,124 
The residues shown in yellow represent the Arg65 and Arg67 positions  
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Figure S3.7: Protein gel pictures of CS mutants. (a) SDS-PAGE analysis: (1) Protein ladder. (2) 
recombinant CS. (3) CS(R65A). (4) CS(R67A). (5) CS(R65A-R67A). (6) CS(R65D). (7) 
CS(R67D). (8) CS(R65D-R67D).  All mutants have a molecular weight of 49 kDa. (b) Native-
PAGE analysis: (1) recombinant CS. (2) CS(R65A). (3) CS(R67A). (4) CS(R65A-R67A). (5) 
CS(R65D). (6) CS(R67D). (7) CS(R65D-R67D). (c) Blue Native-PAGE analysis: (1) Protein 
ladder. (2) recombinant CS. (3) CS(R65A). (4) CS(R67A). (5) CS(R65A-R67A). (6) CS(R65D). 
(7) CS(R67D). (8) CS(R65D-R67D).   
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Figure S3.8: Blue Native-PAGE analysis. (1) the recombinant mMDH-CS complex, (2) the 
recombinant mMDH-CS(R65D) complex, (3) the recombinant mMDH-CS(R67A) complex, (4) 
the recombinant mMDH-CS(R67D) complex, (5) the recombinant mMDH-CS(R65A) complex, 
(6) the recombinant mMDH-CS(R65A/R67A) complex and (7) protein ladders. All the complexes 
were at 20 µM.  
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Figure S3.9: Coupled activity retention of the commercial and recombinant mMDH-CS 
complexes immobilized in Ala-chitosan in the presence of 1 U/mL AAT. Error bars represent 
standard deviation calculated from three independent experiments. Statistical significance (p-
value) was calculated by a two-sample t-test with Welch correction for unequal variances: * = p < 
0.05, ** = p < 0.01. 

 

 

 

 

  



 82 

3.6.2 Supporting Tables 

Table S3.1: Identified Krebs cycle enzymes in the cross-linked and non-cross-linked (control) 
protein bands based on Mascot search results (mass tolerance: 5 ppm). Same sequences matched 
to database with variable modifications were counted as one unique peptide. 

 

Band name Enzyme 
name Score Queries 

matched 
Unique 
peptides 

Sequence 
coverage 

Non-cross-linked 
commercial 

mMDH 1598 162 32 67% 

CS 893 63 17 25% 

Aco 805 32 20 30% 

 mMDH 782 172 12 44% 
Cross-linked 
commercial CS 557 424 10 22% 

 Aco 97 3 2 3% 

 mMDH 82 42 14 48% 
Non-cross-linked 

recombinant CS 831 96 16 30% 

 Aco 2672 197 56 52% 

 mMDH 507 16 9 35% 
Cross-linked 
recombinant CS 449 35 10 18% 

 Aco 1223 69 26 32% 

 

 



  83 

Table S3.2: List of identified DSG cross-linked peptides from complexes of commercially 
purchased mMDH and CS  

 

mMDH peptide CS peptide m/z M (expt.) M (calc.) 
Mass 
error 
(ppm) 

GIEKNLGIGK(HDSG)I
SPFEEK 

or 
GIEK(HDSG)NLGIGKI

SPFEEK 

KTDPRYTC(PA
M)QR 1136.2471 3405.7230 3405.7239 -0.26 

TIIPLISQCTPKVDFPQ
DQLSTLTGR KTDPRYTCQR 1059.2951 4233.1512 4233.1561 -1.16 
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Table S3.3: List of identified DSG-cross-linked peptides in the recombinant mMDH-CS complex 

 

mMDH peptide CS peptide m/z M(expt.) M(calc.) 
Mass 
error 
(ppm) 

GC(PAM)DVVVIPAGVPRK
PGM(OX)TR KTDPR 917.4877 2749.4412 2749.4366 1.67 

ASIKK(HDSG)GEEFVK 
or 

ASIK(HDSG)KGEEFVK 

SM(OX)STD
GLIKLVDS

K 
985.5126 2953.5159 2953.5208 -2.78 

GC(PAM)DVVVIPAGVPRK
PGMTR 

FRGYSIPEC
(PAM)QKM

LPK 
997.2728 3985.0620 3985.0559 1.08 

IQEAGTEVVKAK(HDSG)A
GAGSATLSMAYAGAR 

or 
IQEAGTEVVK(HDSG)AKA

GAGSATLSMAYAGAR 

GYSIPEC(C
AD)QKM(O

X)LPK 
874.8433 4369.1800 4369.1740 1.73 

IQEAGTEVVK(HDSG)AKA
GAGSATLSM(OX)AYAGAR 

or 
IQEAGTEVVKAK(HDSG)A
GAGSATLSM(OX)AYAGAR 

GYSIPEC(C
AD)QKMLP

K 
874.8433 4369.1800 4369.1740 1.73 
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Table S3.4: List of identified DSG cross-links of recombinant Aco and CS peptides 

 

Aco peptide CS peptide m/z M (expt.) M (calc.) 
Mass 
error 
(ppm) 

RAKDINQEVYNFLA
TAGAK 

GYSIPECQKM(O
X)LPK 929.2218 3712.8580 3712.8592 -0.32 

AKVAMSHFEPHEYI
RYDLLEK DILADLIPKEQAR 1039.0386 4152.1252 4152.1351 -2.38 

AKDINQEVYNFLAT
AGAK 

GYSIPEC(CAD)Q
KM(OX)LPKAK 954.2368 3812.9180 3812.9101 2.07 
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Table S3.5: List of identified DSG cross-links of recombinant Aco and CS peptides 

 

Aco peptide CS peptide m/z M (expt.) M (calc.) Mass error 
(ppm) 

DFAPGKPCIIK 

or 

DFAPGKPCIIK 

EVGKDVSDEKLR 

or 

EVGKDVSDEKLR 

967.1876 2898.5409 2898.5520 -3.83 
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Table S3.6: CS mutations found in literature 

 

Residue Mutations Location 

H235a Q  

N242a E  

H274b G, R OAA / acetyl-CoA binding site 

G275a A, V  

H320a R, N, Q, G OAA binding site 

D327a N  

D375b N, Q, E, G acetyl-CoA binding site 

R401a G, H, K OAA binding site 

aEvans, et al.121 bAlter, et al.124 
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Table S3.7: Kinetic properties of recombinant CS mutantsa 

 

Enzyme 
Enzyme Concentration 

(nM) 
Specific Activity (s-1) 

Relative Specific 
Activity 

Recombinant CS 3 28.5 1.00 

CS(R65A) 3 24.5 0.86 

CS(R67A) 300 0.59 0.02 

CS(R65A/R67A) 3000 0.12 0.004 

CS(R65D) 300 0.24 0.008 

CS(R67D) N/A 

CS(R65D/R67D) N/A 

aThe specific activities were measured in 50 mM Tris-HCl (pH 7.7) with 0.2 mM acetyl-CoA, 0.5 
mM OAA and 1 mM DTNB. 
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Table S3.8: Conservation of Arg65 and Arg67 in CSa 

 

Organism Sequence ID Match (%) Residue at Position 65 / 67 

Capitella teleta ELU15766.1 76 E / R 

Metaseiulus occidentalis XP_003739390.1 73 A / R 

Ixodes scapularis XP_002411280.1 73 A / R 

Sarcoptes scabiei KPM02928.1 73 S / R 

Limulus polyphemus XP_013775370.1 72 E / R 

Nematostella vectensis XP_001641037.1 72 E / R 

Stegodyphus mimosarum KFM64927.1 68 E / R 

Rhizophagus irregularis EXX70579.1 65 E / R 

aThe data includes the mismatches between CS Arg65 and Arg67 among the first 500 hits obtained 
via Basic Local Alignment Search Tool.146 Sequence identity varied between 64 – 100% for the 
search. 
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Table S3.9: Primers used to perform site-directed mutagenesis on CS  

 

Mutation Primer Sequence 

CS(R65A) 
Forward 5’ CGGACGAAGGCATTGCTTTTCGCGGTTATTC 3’ 

Reverse 5’ GAATAACCGCGAAAAGCAATGCCTTCGTCCG 3’ 

CS(R67A) 
Forward 5’ GAAGGCATTCGTTTTGCCGGTTATTCGATCCC 3’ 

Reverse 5’ GGGATCGAATAACCGGCAAAACGAATGCCTTC 3’ 

CS(R65D) 
Forward 5’ CCGGACGAAGGCATTGATTTTCGCGGTTATTCG 3’ 

Reverse 5’ CGAATAACCGCGAAAATCAATGCCTTCGTCCGG 3’ 

CS(R67D) 
Forward 5’ CGAAGGCATTCGTTTTGACGGTTATTCGATCCC 3’ 

Reverse 5’ GGGATCGAATAACCGTCAAAACGAATGCCTTCG 3’ 

CS(R65A/R67A) 
Forward 5’ GAAGGCATTGCTTTTGCCGGTTATTCGATCCC 3’ 

Reverse 5’ GGGATCGAATAACCGGCAAAAGCAATGCCT TC 3’ 

CS(R65D/67D) 
Forward 5’ CGAAGGCATTGATTTTGACGGTTATTCGATCCCG 3’ 

Reverse 5’ CGGGATCGAATAACCGTCAAAATCAATGCCTTCG 3’ 
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Chapter 4 

 

Development of a Platform to Study Substrate 

Channeling in Two-Enzyme Complexes on DNA 

and Protein Cage Scaffolds 
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Note: A version of this chapter is being prepared for publication.  

 

Project Collaborators: Beyza Bulutoglu and Scott Banta. KEG performed the genetic cloning for 

all cMDH variants and Spy-CS-His, designed and performed all experiments, analyzed the data 

and prepared the manuscript.  

 

4.1 Abstract 

There has been recent interest in engineering multi-enzyme complexes with spatially defined 

enzyme assembly in order to promote substrate channeling and enhanced cascade kinetics. 

However, much is still unknown about substrate channeling in these engineered systems. Two 

enzymes that have not been found to naturally channel, cytosolic malate dehydrogenase (cMDH) 

and citrate synthase (CS) were assembled on DNA and protein cage scaffolds. Engineered two-

component icosahedral cages were covalently labeled with cMDH and CS before and after cage 

assembly with the SpyTag/SpyCatcher system. Zinc-finger DNA-binding proteins (ZFPs) and 

chemical cross-linking were investigated as methods of enzyme attachment to the DNA scaffolds. 

The cMDH/ZFP fusion protein was determined to have a dissociation constant of 1.12 ± 0.49 µM 

for its target DNA, and it was assembled on two DNA scaffolds cross-linked to CS. All multi-

enzyme assemblies on the DNA and protein cage scaffolds retained their individual and coupled 

enzymatic activities. These assemblies can be utilized to study substrate channeling in engineered 

multi-enzyme complexes.  
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4.2 Introduction 

Engineering complexes of sequential enzymes with defined spatial arrangements has been an area 

of focus in recent years in order to mimic multi-enzyme complexes called metabolons that 

naturally form in the cell.34,35,147 Many natural metabolons have been studied such as tryptophan 

synthase,36,148 thymidylate synthase-dihydrofolate reductase (TS-DHFR)38 and the pyruvate 

dehydrogenase complex37 in addition to many more in primary and secondary pathways.149-152 The 

formation of these metabolons can have many benefits in the cell including substrate channeling.3 

In substrate channeling, the reaction intermediate of two enzymes is transported directly from one 

enzyme active site to the next enzyme active site without diffusing in the bulk solution. Substrate 

channeling can serve to protect unstable intermediates, reduce exposure of the intermediate to 

competitive enzymes and result in the formation of local substrate concentrations that can drive 

the reaction in a direction that may otherwise be thermodynamically unfavorable. 

Enzyme orientation and active site proximity influence substrate channeling, but proximity 

alone is often not sufficient for substrate channeling to occur.40 Diffusion is often fast compared 

to reaction rates,39 and Brownian dynamics simulations have predicted that at active distances 

greater than 1 nm other mechanisms must play a role.41 There are several mechanisms for substrate 

channeling including channeling through intramolecular tunnels36,111,153 and electrostatic 

channeling,54,154 in which a network of charged surface residues connects the enzyme active sites 

along which the oppositely charged intermediate is transported via bounded diffusion. This can 

result in leaky channeling, in which some of the intermediate is not channeled but is released into 

the bulk. Confirming a substrate channeling hypothesis can be challenging due to the transient 

nature of many of these complexes, and, in the absence of structural evidence, multiple indirect 

kinetic methods to measure substrate channeling should be used.35  
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A natural metabolon that channels by an electrostatic channeling mechanism is comprised 

of several enzymes from the TCA cycle including mitochondrial malate dehydrogenase (mMDH)55 

and citrate synthase (CS).25 mMDH catalyzes the reversible conversion of L-malate and 

oxaloacetate (OAA) utilizing the NAD/NADH cofactor system, and CS catalyzes the condensation 

of OAA and acetyl-Coenzyme A (acetyl-CoA) to citrate and Coenzyme A (CoA) . 33,61,103,104 

Several efforts have been made to study the TCA cycle metabolon structure and its mechanism of 

channeling, and the non-channeling isoform of mMDH, cytosolic malate dehydrogenase (cMDH), 

is often used for comparison.53,54,108 We recently found direct evidence for substrate channeling in 

a metabolon comprised of recombinant mMDH and CS, and determined that channeling of the 

intermediate oxaloacetate (OAA) was inhibited with a single R65A mutation in CS along the 

proposed channel connecting the two enzyme active sites.61,154  

Most efforts to engineer new multi-enzyme complexes have made use of protein and nucleic acid 

scaffolds to create in vivo an in vitro assemblies of sequential enzymes.155-161 Factors such as 

defined spatial arrangements, enzyme distance and stoichiometry have been studied. Protein 

scaffold assemblies have mostly focused on cohesin-dockerin protein-protein interaction 

domains,162-164 and mixed substrate channeling results were found for these complexes depending 

on the enzyme cascades assembled.165 Nucleic acid scaffolds have been popular due to the ability 

to control the spatial arrangements at the nanometer scale by changing the nucleic acid sequence. 

Glucose oxidase (GOx) and horseradish peroxidase (HRP) have been frequently studied as a two-

enzyme cascade on DNA scaffolds, including studying the cascade activity as a function of 

interenzyme distance166 and the addition of a non-catalytic protein “bridge” between GOx and 

HRP to facilitate substrate channeling of the intermediate.39 Many of these arrangements on 

protein and nucleic acid scaffolds have found improvements in cascade activities, but there 
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remains a discussion of whether these improvements are a due to channeling of the intermediates 

or changes in individual enzyme kinetics and what role the scaffold itself may have.42,147,167,168 

 In this work, we focus on a set of four enzymes that perform the same coupled reaction in 

pairs with different natural channeling capabilities in order to study substrate channeling in 

engineered multi-enzyme complexes (Figure 4.1a): naturally channeling mMDH and CS, non-

channeling cMDH and CS, and mMDH and CS(R65A) in which channeling was inhibited by the 

R65A mutation in CS. While complexes that include each pairing will be studied, cMDH and CS 

were used to develop assembly methods due to their lack of natural substrate channeling and high 

expression rates. Methods for enzyme assembly include DNA and protein cage scaffolds, both of 

which are discussed in the following sections. By using this set of enzymes and scaffolds, we may 

be able to better-understand the benefits of constructing these defined spatial arrangements of 

sequential enzymes and what factors influence substrate channeling. 

 

 
Figure 4.1: Enzymes to study substrate channeling. (A) Structures of enzymes depicting 
whether substrate channeling occurs between pairs. Crystal structures of cMDH, mMDH and CS 
were obtained from the Protein Data Bank (PDB ID: 5MDH, 1MLD and 1CTS). (B) Cartoons of 
enzyme fusion proteins used in the study. Cartoons are not representative of relative sizes.  
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4.3 Protein Cage Scaffold for Multi-Enzyme Complex Assembly 

A computationally designed two-component icosahedral cage was chosen as a scaffold for multi-

enzyme complex assembly (Figure 4.2a).16 This I53-50 cage is named for its icosahedral 

architecture and naturally pentameric and trimeric components. Each cage is comprised of 20 

trimers (A) and 12 pentamers (B) which have been mutated along their threefold and fivefold 

icosahedral axes, respectively, in order to drive self-assembly. Characterization of cages 

assembled from purified proteins by Bale et al. showed that they assembled precisely into the 

designed cage structure.16 Strategies for enzyme attachment to the protein cage scaffold include 

genetic fusions to the cage proteins and post-translational labeling of the cage proteins. Post-

translational labeling with the SpyTag/SpyCatcher system was chosen so that cage proteins could 

easily be labeled by a variety of enzymes before or after cage assembly.169,170 When the SpyTag 

peptide is mixed with the SpyCatcher protein, an irreversible isopeptide bond rapidly forms 

between the reactive aspartic acid residue in the SpyTag peptide and the reactive lysine residue in 

the SpyCatcher protein (Figure 4.3a).  

 The SpyTag peptide was genetically fused to the N-termini of the codon optimized cMDH-

His and CS-His, resulting in the enzymes Spy-cMDH-His and Spy-CS-His (Figure 4.1b), which 

resulted in similar yields as cMDH-His and CS-His when expressed in E. coli. The trimeric cage 

component (A) and the pentameric cage component (B) were expressed with N-terminal genetic 

fusions of the SpyCatcher protein, referred to as Catch-A and Catch-B in the following report. 

When assembled, cages comprised of Catch-A and Catch-B (A/B) are 4.2 MDa in size, and they 

can be labeled with up to 120 units of enzyme per cage. In this way, we can create ordered, highly 

dense enzyme complexes on the protein cage scaffold.  
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Figure 4.2: Cage assembly. (A) Cage component and assembled cage structures.16 A and B 
components self-assemble into the icosahedral cage when mixed. Scale bar only applies to 
assembled cage. (B) SEC chromatogram (bottom) and SDS-PAGE (top) of assembled unlabeled 
cage purification. Chromatograms have been normalized by the maximum absorbance. 
Corresponding fractions between the SEC chromatograms and SDS-PAGE are indicated. 

 

4.3.1 Assembly of Enzyme-Labeled Cage Complexes 

Unlabeled cage scaffold assembly 

Unlabeled icosahedral cages, referred to as A/B, were assembled by mixing Catch-A and Catch-B 

at equimolar concentrations and purified by size exclusion chromatography (SEC) (Figure 4.2b). 

SDS-PAGE of the purification fractions displayed two bands corresponding to the molecular 

weights of Catch-A (37 kDa) and Catch-B (32 kDa), which self-assemble through non-covalent 

interactions. These results are similar to what was previously found for the purification of the 

assembled cage without SpyCatcher fusions, in which cage formation was confirmed by electron 

microscopy (EM) and small-angle x-ray scattering (SAXS) in addition to SEC chromatograms and 
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SDS-PAGE.16 Excess Catch-A was observed in fractions with larger elution volumes during the 

purification of A/B complexes. No excess Catch-B was observed in later elution volumes even 

though a similar amount of excess Catch-B as excess Catch-A would be expected.  When purified 

under the same conditions without Catch-B (Figure S4.1), unlabeled Catch-A purified at larger 

elution volumes than the A/B complexes but smaller than the elution volume of excess Catch-A 

during A/B complex purification. For unlabeled Catch-B without Catch-A (Figure S4.1) however, 

two major SEC peaks were observed, the first of which had a similar elution volume as the A/B 

cage complexes. These results suggest that Catch-B may be forming complexes larger than the 

expected natural pentamer, and, when combined with Catch-A, these Catch-B complexes cannot 

form the designed icosahedral cages and are instead purified along with with the A/B cage 

complexes.  

 

Labeling of individual cage components 

The individual cage components Catch-A and Catch-B were labeled with Spy-cMDH-His and 

Spy-CS-His via the adaptor protein SpyCatcher that is genetically fused to the N-terminus of each 

cage protein. All four combinations were explored: Catch-A and Spy-cMDH-His formed A-Spy-

cMDH, Catch-A and Spy-CS-His formed A-Spy-CS, Catch-B and Spy-cMDH-His formed B-Spy-

cMDH and Catch-B and Spy-CS-His formed B-Spy-CS. Cage proteins and enzymes were 

incubated at equimolar concentrations and conjugation products were purified by SEC (Figure 

4.3b). SDS-PAGE analysis of the combined peak fractions exhibited the expected increases in 

molecular weights for each of the purified conjugation products (Figure 4.3c). Some impurities 

from unconjugated enzyme and cage components were present in every purified conjugation, and 

they may be due to incomplete conjugation of all subunits for the naturally multimeric enzymes 
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and cage components.  

 

Assembly of pre-labeled cage components 

Complexes were also assembled with Catch-A and Catch-B that had been pre-labeled with Spy-

cMDH-His and Spy-CS-His. Combinations of labeled and unlabeled cage components were 

prepared and purified by SEC, including complexes pre-labeled with both enzymes (Figure 4.4) 

and complexes pre-labeled with a single enzyme (Figure S4.2). These include A-Spy-cMDH/B 

and A/B-Spy-cMDH for complexes pre-labeled with Spy-cMDH-His only, A-Spy-CS/B and A/B-

Spy-CS for complexes pre-labeled with Spy-CS-His only and A-Spy-cMDH/B-Spy-CS, A-Spy-

CS/B-Spy-cMDH and A-Spy-cMDH/A-Spy-CS/B-Spy-cMDH/B-Spy-CS for complexes pre-

labeled with both Spy-cMDH-His and Spy-CS-His. In each case, there are major bands 

corresponding to the expected molecular weights of each labeled or unlabeled component at 

similar elution volumes, suggesting that multi-component complexes are being formed. Similar to 

unlabeled Catch-B, B-Spy-cMDH, A-Spy-CS and B-Spy-CS, which were not combined with a 

second cage component, were observed to purify at elution volumes similar to the full complexes 

(Figure S4.3). Complexes may be forming with individual labeled cage components as both 

enzymes are naturally dimeric and the cage components are also naturally multimeric. For these 

reasons, it is unclear what percentages of the labeled components formed multi-component 

complexes or if they assembled with the designed icosahedral cage architecture.  

 

Labeling of pre-assembled cages 

Preformed A/B cages were labeled with Spy-cMDH-His and Spy-CS-His post-assembly. Purified 



  100 

 
Figure 4.3: Labeling of individual cage components with the SpyTag/SpyCatcher system. (A) 
Conjugation reaction were the reactive Asp in the SpyTag peptide reacts with the reactive Lys in 
the SpyCatcher protein to form an isopeptide bond. (B) SEC chromatograms of conjugated Spy-
cMDH-His and Spy-CS-His to Catch-A and Catch-B. Chromatograms were normalized by the 
maximum absorbance. Peak fractions were collected and analyzed on a (C) SDS-PAGE, where 
peaks are labeled to correspond with gel lane labels. SDS-PAGE lanes are (1) Catch-A, (2) Catch-
B, (3) Spy-cMDH-His, (4) A-Spy-cMDH, (5) B-Spy-cMDH, (6) Spy-CS-His, (7) A-Spy-CS and 
(8) B-Spy-CS. 
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Figure 4.4: Pre-labeled dual-enzyme complexes. Purification of cages assembled with pre-
labeled cage components with Spy-cMDH-His and Spy-CS-His. (A) Each component was labeled 
with one enzyme each. (B) Both components were labeled with both enzymes. Labeled cage 
components were incubated for self-assembly before purification. Corresponding fractions 
between the SEC chromatograms (bottom) and SDS-PAGE (top) are indicated, and 
chromatograms have been normalized by the maximum absorbance.  
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Figure 4.5: Cage labeling post-assembly. Purification of cages labeled after the unlabeled cages 
were first purified. Purified complexes were incubated with Spy-cMDH-His and Spy-CS-His, and 
labeled cages were then purified. SEC chromatogram (bottom) and SDS-PAGE (top) for (A) cages 
labeled with a single enzyme (B) cages labeled with a mixture of both enzymes. Chromatograms 
have been normalized by the maximum absorbance. Corresponding fractions between the SEC 
chromatograms and SDS-PAGE are indicated. 
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A/B complexes were incubated with Spy-cMDH-His, Spy-CS-His and an equimolar mixture of 

both Spy-cMDH-His and Spy-CS-His, and conjugation products were purified by SEC (Figure 

4.5). For A/B complexes labeled with Spy-cMDH-His post-assembly, two major bands were 

observed matching the expected molecular weights of A-Spy-cMDH and B-Spy-cMDH, the 

conjugation products of Spy-cMDH-His to Catch-A and Catch-B, respectively. Similar results 

were observed for A/B complexes labeled with Spy-CS-His post-assembly, in which two major 

bands corresponding to A-Spy-CS and B-Spy-CS, the conjugation products of Spy-cMDH-His to 

Catch-A and Catch-B, respectively, are seen. When the A/B complexes were labeled with an equal 

mixture of Spy-cMDH-His and Spy-CS-His, four major bands were seen corresponding to the four 

conjugation products. For each case, the observed bands in each purification appear to be of similar 

sizes, indicating that each expected conjugation reaction is occurring at similar conversion rates. 

Purification of the labeled complexes showed large separations between the labeled complexes 

and the excess enzyme in all cases. For each case, some impurities corresponding to non-

conjugated enzymes and cage proteins were observed. Impurities may be due to the multimeric 

structure of each of the components, where not every subunit is conjugated.  

 

4.3.2 Characterization of Cage Assemblies 

All individual components and multi-component complexes were analyzed on a non-denaturing 

agarose gel to shed light on whether multi-component complexes were formed or if the individual 

components are only being co-purified (Figure 4.6a and Figure S4.4). In the case of the unlabeled 

components, there was an observable difference between the purified unlabeled A/B complexes 

and the unlabeled individual components, Catch-A and Catch-B. The lane for A/B complexes 
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Figure 4.6: Analysis of purified cage complexes. (A) native agarose gels and (B) SDS-PAGE. 
Lane numbers correspond to the same samples: (1) A/B, (2) Catch-A, (3) Catch-B, (4) A-Spy-
cMDH, (5) B-Spy-cMDH, (6) A-Spy-cMDH/B, (7) A/B-Spy-cMDH, (8) A/B + Spy-cMDH-His 
post-assembly, (9) Spy-cMDH-His, (10) A-Spy-CS, (11) B-Spy-CS, (12) A-Spy-CS/B, (13) A/B-
Spy-CS, (14) A/B + Spy-CS-His post-assembly (15) Spy-CS-His, (16) A-Spy-cMDH/B-Spy-CS, 
(17) A-Spy-CS/B-Spy-cMDH, (18) A/B + Spy-cMDH-His and Spy-CS-His post-assembly. Full 
native agarose gels are presented in Figure S4.4. 

 

shows one major band that is discernibly higher than those for Catch-A and Catch-B, further 

indicating that the A/B cage complex was formed. Results for labeled complexes were less clear. 

Lanes for the complexes A/B-Spy-cMDH, A/B labeled with Spy-cMDH-His post-assembly, A-

Spy-CS/B, A/B-Spy-CS, A/B labeled with Spy-CS-His post-assembly, A-Spy-cMDH/B-Spy-CS, 

A-Spy-CS/B-Spy-cMDH, A-Spy-cMDH/A-Spy-CS/B-Spy-cMDH/B-Spy-CS and A/B labeled 



  105 

Table 4.1: Specific activities of all cage assemblies and individual labeled components.a 

 

Sample Name MDH   (U/mg) CS 
(U/mg) 

Coupled Enzyme 
(U/mg) 

A/B 1.0 ± 1.1 0.2 ± 0.1 0.0 ± 0.1 

A-Spy-cMDH 59.6 ± 1.4 – – 

B-Spy-cMDH 66.2 ± 3.2 – – 

A-Spy-cMDH/B 52.4 ± 3.3 – – 

A/B-Spy-cMDH 62.1 ± 1.8 – – 

A/B + Spy-cMDH-His               
post-assembly 71.1 ± 2.4 – – 

Spy-cMDH-His 69.3 ± 3.4 – – 

A-Spy-CS – 38.7 ± 0.2 – 

B-Spy-CS – 47.4 ± 1.2 – 

A-Spy-CS/B – 49.0 ± 0.5 – 

A/B-Spy-CS – 52.5 ± 1.1 – 

A/B + Spy-CS-His post-assembly – 69.9 ± 1.3 – 

Spy-CS-His – 62.1 ± 1.4 – 

A-Spy-cMDH/B-Spy-CS 47.7 ± 1.0 54.9 ± 1.5 5.0 ± 0.1 

A-Spy-CS/B-Spy-cMDH 58.0 ± 2.8 37.5 ± 1.0 5.5 ± 0.1 

A-Spy-cMDH/A-Spy-CS/              
B-Spy-cMDH/B-Spy-CS 45.6 ± 1.4 33.5 ± 1.2 4.5 ± 0.1 

A/B + Spy-cMDH-His and         
Spy-CS-His post-assembly 46.0 ± 3.1 28.4 ± 0.6 6.1 ± 0.2 

a Measurements were performed in triplicate and represented with their mean and standard 
deviation from the mean. 
 

with Spy-cMDH-His and Spy-CS-His post-assembly all smeared over ranges extending from the 

loading wells. The individual component B-Spy-CS also smeared from the loading well, making 

it difficult to differentiate between B-Spy-CS and any multicomponent complex it was included 
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in. However, the B-Spy-CS band extended further down the lane than those for any of the multi-

component complexes it is a part of, indicating that some multi-component complexes may be 

formed. Differences between individual components and multi-component complexes were more 

easily discernable in samples that didn’t include B-Spy-CS, such as A-Spy-cMDH/B, A/B-Spy-

cMDH, A/B labeled with Spy-cMDH-His post-assembly and A-Spy-CS/B-Spy-cMDH. Further 

analysis of multi-component complexes such as electron microscopy will be required to confirm 

complex formation and structure.  

Samples were assayed for individual enzymatic activities of MDH and CS (Table 4.1).  As 

expected, Catch-A, Catch-B and A/B complexes did not exhibit enzymatic activity for either assay. 

All conjugated enzymes retained their enzymatic activities, but at this time it is not known what 

effect conjugation and multi-component assembly have on their enzymatic activities. The coupled 

enzymatic activities were also measured for multi-enzyme complexes. As expected, all of the 

multi-enzyme complexes retained exhibited coupled enzymatic activity. Further kinetic analysis 

is underway, and multiple methods to probe substrate channeling will be performed for each 

complex. 

 

4.4 DNA Scaffold for Multi-Enzyme Complex Assembly 

4.4.1 DNA Attachment with Zinc-Finger Proteins 

Non-covalent binding interactions can be employed  for the site-specific attachment of enzymes to 

a DNA scaffold. Zinc-finger proteins (ZFPs) are a class of DNA binding proteins that have been 

studied extensively, and ZFPs have been engineered to selectively bind to a wide variety of DNA 
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sequences through techniques such as the construction of chimeras of known ZFPs, phage display, 

and the rational design of novel ZFPs.171-174 The three fingered ZPF from the mouse transcription 

factor Zif268 (3ZF)175,176 and the designed ZFP AZP4 both have been reported to have nanomolar 

equilibrium dissociation constants for their ten base pair DNA target sequences (Table S4.1).171 

Both ZFPs have previously been utilized as DNA binding adaptors for the site-specific positioning 

of fluorophores to DNA scaffolds.177 We previously genetically fused 3ZF to small laccase 

(SLAC) from Streptomyces coelicolor, creating the bifunctional enzyme SLAC-3ZF-His, for use 

as an oxygen-reduction catalyst on an enzymatic biocathode.30 The enzyme/ZFP fusion protein 

retained both its enzymatic and binding activities. Here, we further explore ZFPs as a way to site-

specifically attach multiple enzymes to the DNA scaffold to study substrate channeling.  

 

Table 4.2: Specific activities of enzyme/ZFP fusion proteinsa 

 

Enzyme Normalized specific activity 

cMDH-3ZF-His 0.79 ± 0.01 

CS-AZP4-His 0.81 ± 0.03 
a Values were normalized by the specific activity of cMDH-His for cMDH-3ZF-His and CS-His 
for CS-AZP4-His. Measurements were performed in triplicate and represented with their mean 
and standard deviation from the mean. 
 

The two ZFPs, 3ZF and AZP4, were genetically fused to the C-termini of cMDH and CS, 

with cMDH fused to 3ZF and CS fused to AZP4 (Figure 4.1b). Each ZFP was followed by a C-

terminal polyhistidine tag, resulting in the enzyme/ZFP fusion proteins cMDH-3ZF-His and CS-

AZP4-His (Figure S4.5). While the yields for CS-AZP4-His were not low, yields for CS-His (75 

mg L-1), 154 the recombinant enzyme without the ZFP domain, were nearly two-fold higher than 
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those for CS-AZP4-His while yields for cMDH-3ZF-His was similar to cMDH-His (70 mg L-1). 

The catalytic activities were measured for cMDH-3ZF-His and CS-AZP4-His, and both zinc-

finger enzymes exhibited 20% reduced specific activity when compared to cMDH-His and CS-

His (Table 4.2). Full kinetic analysis for the ordered bi-bi mechanisms of the enzymes is underway.  

Binding of cMDH-3ZF-His and CS-AZP4-His to their DNA target sequences was first 

confirmed with gel shift assays (Figure 4.7). With a 0.75 µM total DNA concentration, 3ZF-

DNA/cMDH-3ZF-His complexes appeared at 0.15 µM, the lowest enzyme concentration tested, 

and no free DNA was detected at the highest concentration tested, 18.75 µM. cMDH-3ZF-His was 

also found to bind to the AZP4-DNA and Control-DNA targets with much lower affinities than 

for the 3ZF-DNA target. CS-AZP4-His also bound to its target DNA sequence AZP4-DNA with 

lower affinity than what was observed for cMDH-3ZF-His to 3ZF-DNA. The DNA/CS-AZP4-His 

complex was first detectable at a higher enzyme concentration, 0.75 µM. CS-AZP4-His was not 

seen to bind to the 3ZF-DNA or Control-DNA targets in the measured concentration range. Neither 

cMDH-His or CS-His were shown to bind to any DNA target. Two groups of DNA/enzyme 

complexes can be discerned, particularly for cMDH-3ZF-His. The lower band, likely 

corresponding to one DNA probe bound to one unit of the enzyme dimer, appears at lower enzyme 

concentrations and decreases in size at higher enzyme concentrations. The higher band, likely 

corresponding to two DNA probes with each bound to the two enzyme subunits, emerges at higher 

enzyme concentrations. The dimeric structure of cMDH, mMDH and CS adds complexity to the 

system.55,57 This is especially important when designing DNA scaffolds for enzyme assembly. 

When using multiple binding sites on the DNA scaffold, larger complexes could form through the 

binding of multiple strands of DNA on each dimeric enzyme/ZFP fusion protein. This is not 

specific to the ZFP immobilization strategy, and the formation of these larger complexes must be 
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Figure 4.7: Gel shift assays. (A) cMDH-3ZF-His and (B) CS-AZP4-His. 6% DNA retardation 
gels were run for 85 minutes at 100 V with 0.5x TBE and were stained with SYBR Green.  
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considered when studying substrate channeling in multi-enzyme complexes assembled on a DNA 

scaffold.  

DNA-binding activities of cMDH-3ZF-His and CS-AZP4-His were further assessed using 

a magnetic bead capture assay paired with an enzymatic activity assay with mixed results (Figure 

4.8).30 More cMDH-3ZF-His bound to the Bt-3ZF-DNA target sequence than the Bt-AZP4-DNA 

or Bt-Control-DNA sequences over the concentration range assayed. The dissociation constant, 

KD, for the Bt-3ZF-DNA/cMDH-3ZF-His binding isotherm was determined to be 1.12 ± 0.49 µM 

from a fit of the data. These results are different than reported KD values for 3ZF (Zif268) ranging 

from 0.01 to 6.5 nM171,172 or for a biotin-modified 3ZF protein, which was determined to have a 

dissociation constant of 63 ± 18 nM.177 Previous results for SLAC-3ZF-His are similar to what 

was found for cMDH-3ZF-His.30 These results indicate that the binding affinity of the ZFP is 

reduced when expressed as a fusion protein. The total number of available binding sites, 1400 ± 

400 pmol/mg beads, was calculated from the fit of the data and specific activity of free cMDH-

3ZF-His, which was assumed to remain constant after binding to the DNA. This calculated number 

of binding sites is higher than the binding capacity of the beads listed by the manufacturer, where 

greater than 500 pmol/mg of biotin-labeled oligonucleotides and 1000 pmol/mg of free biotin may 

bind. It is possible that there are fewer binding sites than what was calculated due to an increase 

in enzymatic activity of bound cMDH-3ZF-His, but this is not yet know.  

CS-AZP4-His was not shown to specifically bind to the Bt-AZP4-DNA target under the 

same conditions as cMDH-3ZF-His over the concentrations tested during the magnetic bead 

capture assay.  (Figure 4.8b). Other binding conditions were explored to improve the binding 

activity and specificity. The addition of bovine serum albumin (BSA) to reduce nonspecific 

binding resulted in a two-fold increase in cMDH-3ZF-His to the Bt-3ZF-DNA target (Table S4.2), 
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Figure 4.8: DNA binding assay with magnetic bead capture. (A) cMDH-3ZF-His in Bead 
Assay Buffer, (B) CS-AZP4-His in Bead Assay buffer and (C) CS-AZP4-His in Bead Assay Buffer 
with 0.5% BSA. The measured enzymatic activities of bound zinc-finger enzymes is on the left 
axis. For (A), the right axis, % enzyme bound to available binding sites was calculated from the 
fit of cMDH-3ZF/3ZF-DNA. Measurements were performed in triplicate and represented with 
their mean and standard deviation from the mean. 
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but the binding specificity did not improve as there were also large increases in the amount of 

enzyme bound to the Bt-Control-DNA and Bt-AZP4-DNA targets. The addition of sheared salmon 

sperm DNA did not improve the binding activity or specificity for cMDH-3ZF-His. The magnetic 

bead capture biding assay was repeated for CS-AZP4-His with the addition of 0.5% BSA (Figure 

4.8c), and no improvement was seen due to the addition of BSA. For both assay conditions, the 

amount of bound CS-AZP4-His was two orders of magnitude lower than for cMDH-3ZF-His, and 

it is likely that the binding affinity is lower than what is appropriate for the assay. These results do 

not agree with previous studies in which the KD for the AZP4 ZFP was determined to be 11 nM 

compared to 4 nM for 3ZF.171,177 It is possible that alternative zinc finger proteins with higher 

binding affinity may have increased binding affinity than AZP4 when fused to CS. This and 

alternate immobilization strategies are being explored.  

 

4.4.2 Enzyme/Oligonucleotide Cross-Linking 

Covalent attachment of enzymes to DNA oligonucleotides is a common strategy used to assemble 

multi-enzyme complexes on a DNA scaffold.39,159,160,178 Modification of lysine and cysteine 

residues are the most common strategies, and they can be conjugated via chemical crosslinking to 

oligomers modified with a variety of functional groups.179  A major disadvantage in these strategies 

is the lack of control over the stoichiometry. Frequently, there are multiple lysine and cysteine 

residues that can be modified, which may be a disadvantage when site-specific attachment is 

required. Several strategies can be employed in order to acquire site-specific oligomer attachment 

each with their own advantages and disadvantages.170,180,181 

There are eight cysteine residues and 25 lysine residues in mMDH, five cysteine residues 
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and 31 lysine residues in cMDH and four cysteine residues and 25 lysine residues in CS and 

CS(R65A), with a large percentage being surface-accessible for modification. An additional two 

lysine residues reside in the FLAG-tag on the N-termini of mMDH-His, cMDH-His, CS-His and 

CS(R65A)-His. Previous work assembling multi-enzyme complexes with a DNA scaffold attached 

the DNA nonspecifically to surface lysine residues, and these resulted in multiple oligonucleotides 

attached to the enzymes.159 This nonspecific attachment results in a lack control over enzyme 

orientation and number of scaffold attachments, and strategies targeting one residue are preferred.  

In order to establish the number of oligonucleotides that may be attached to unmodified 

cMDH-His and CS-His via thiol modification, the enzymes were incubated with 

methoxypolyethlene glycol maleimide (PEG-maleimide). For both cMDH-His and CS-His, shifts 

in the molecular weights of the 39 kDa cMDH-His and 52 kDa CS-His were observed (Figure 

S4.6) corresponding to one attachment to CS-His. The observed increase in molecular weight was 

slightly higher than 5 kDa, the molecular weight of the PEG-maleimide, but shifts of up to 15 kDa 

have been seen when only one cysteine was available for modification.  Under these conditions, it 

is not clear which cysteine residue is being modified or if multiple residues are being modified on 

separate enzyme units. Cys 110 of cMDH and Cys 184 for CS are potential candidates as they are 

surface accessible and do not appear to form disulfide bonds within the enzyme dimers (Figure 

S4.7).  

In order to demonstrate CS-His/oligonucleotide attachment for DNA scaffold-directed 

enzyme assembly, an amino-modified oligonucleotide previously annealed to form the DNA 

assembly scaffolds S1-DNA and S2-DNA was attached to CS-His through thiol modification with 

the bifunctional cross-linker, N-ε-maleimidocaproyl-oxysulfosuccinimide ester (Sulfo-EMCS) 

(Figure 4.9a,b), forming S1-DNA/CS and S2-DNA/CS. The cross-linking efficiencies to CS-His 
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Figure 4.9: Cartoon of designed enzyme/DNA assemblies. (A) S1-DNA/CS-His, (B) S2-
DNA/CS-His, (C) S1-DNA/CS-His/cMDH-3ZF-His and (D) S2-DNA/CS-His/cMDH-3ZF-His. 
Crystal structures of cMDH and CS were obtained from the Protein Data Bank (PDB ID: 5MDH 
and 1CTS). 

 

Table 4.3: Specific activities for assemblies on S1-DNA and S2-DNA.a 

 

Specific activity S1-
DNA/CS 

S1-DNA/CS/  
cMDH-3ZF 

S2-
DNA/CS 

S2-DNA/CS/  
cMDH-3ZF 

MDH         
(U/mg) – 0.60 ± 0.12 – 0.67 ± 0.06 

CS              
(U/mg) 1.33 ± 0.02 1.06 ± 0.01 1.39 ± 0.01 1.41 ± 0.09 

Coupled Enzyme 
(U/g) – 26 ± 5 – 32 ± 5 

a Measurements were performed in triplicate and represented with their mean and standard 
deviation from the mean. 
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were assumed to be low as was the case for the PEG-maleimide attachment to CS-His, and non-

modified CS-His was removed by washing after the biotin-modified scaffolds were immobilized 

through magnetic affinity bead capture. CS-His attachment in S1-DNA/CS and S2-DNA/CS was 

confirmed by measuring the enzymatic activities (Table 4.3). For S1-DNA/CS, 1.33 ± 0.02 U/mg 

beads of CS activity was measured, and 1.39 ± 0.01 U/mg beads of CS activity was measured for 

S2-DNA/CS. Assuming the specific activity did not change upon cross-linking to the DNA, these 

correspond to 117 ± 2 pmol/mg of CS-His immobilized for S1-DNA/CS and 122 ± 1 pmol/mg of 

CS-His immobilized for S2-DNA/CS. These values are lower than the listed binding capacity of 

greater than 500 pmol of biotin-modified oligonucleotides for the streptavidin coated magnetic 

beads. This disagreement may be due to the presence of DNA not cross-linked to CS-His or due 

to a reduction in CS activity upon DNA cross-linking.  

 

4.4.3 Multi-Enzyme Complexes on DNA Scaffolds 

In order to show assembly of cMDH and CS on a DNA scaffold, S1-DNA/CS and S2-DNA/CS 

were incubated with cMDH-3ZF-His to form S1-DNA/CS/cMDH-3ZF and S2-DNA/CS/cMDH-

3ZF (Figure 4.9c,d). Both DNA scaffolds included the 3ZF target sequence on which cMDH-3ZF-

His can site-specifically bind. S1-DNA and S2-DNA only differ by the location of the 3ZF target 

sequence compared to the oligonucleotide cross-linked to CS-His. After washing, 0.58 ± 0.12 

U/mg beads of bound cMDH-3ZF-His remained for S1-DNA/CS/cMDH-3ZF, and 0.67 ± 0.06 

remained bound for S2-DNA/CS/cMDH-3ZF (Table 4.3). Assuming the activity of bound cMDH-

3ZF-His does not differ from free cMDH-3ZF-His, this corresponds to 700 ± 140 and 810 ± 70 

pmol/mg beads for S1-DNA/CS/cMDH-3ZF and S2-DNA/CS/cMDH-3ZF, respectively. These 



  116 

values are within the ranges calculated for the assay conditions and the calculated KD of cMDH-

3ZF-His binding to Bt-3ZF-DNA and are six-fold higher than the calculated amount of CS-His in 

S1-DNA/CS and S2-DNA/CS, assuming that CS enzymatic activity did not change upon cross-

linking. The coupled enzyme activity was also evaluated for both assemblies, with 26 ± 5 U/g of 

beads measured for S1-DNA/CS/cMDH-3ZF and 32 ± 5 U/g of beads measured for S2-

DNA/CS/cMDH-3ZF. A full detailed kinetic analysis of each enzyme in the assemblies and 

several indirect methods to characterize substrate channeling in S1-DNA/CS/cMDH-3ZF, S2-

DNA/CS/cMDH-3ZF and other assemblies on DNA scaffolds is ongoing.  

 

4.5 Future Directions 

Multi-enzyme complexes were assembled on DNA and protein cage scaffolds, with several 

arrangements of cMDH and CS for each scaffold type. For assemblies on DNA scaffolds, there 

are many more arrangements that can be explored with these immobilization strategies. The DNA 

scaffold can be used as a molecular ruler in order to study the effects of distance, and additional 

proteins with a range of surface charges can be included in the assembly to interact with the 

charged intermediate OAA. Multiple methods of enzyme attachment to the DNA scaffold can be 

studied by using ZFPs and covalent oligonucleotide attachment in order to explore the role that 

they may play on channeling, such as interactions with the channeling intermediates. The 

SpyTag/SpyCatcher attachment system can also be applied to the DNA scaffold assemblies in 

order to simplify the system for a large number of enzyme pairs. The SpyCatcher protein could be 

site-specifically attached to the oligonucleotides and then labeled with SpyTag/enzyme fusion 

proteins.  
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An important consideration going forward is the quaternary structure of mMDH, cMDH, 

CS and CS(R65A). For both the DNA and protein cage scaffolds, the dimeric enzymes may form 

larger, more complex structures than what is intended. It is important that conditions are used to 

assemble the preferred complexes. Careful analysis of the protein cage complex will be performed 

to verify that cages are assembling in their designed icosahedral form. The comparison of multi-

component cage complexes that have been labeled with both Spy-cMDH-His and Spy-CS-His 

post-assembly and complexes of pre-labeled cage components will be compared in order to 

optimize assembly strategies for the formation of the designed cage structure.  

 Now that multi-enzyme complexes with cMDH and CS have been assembled, the same 

complexes will be assembled with the other two enzymes, mMDH and CS(R65A). Combinations 

of the four enzymes will be compared for the different arrangements: the naturally channeling 

enzymes mMDH and CS, the naturally non-channeling enzymes cMDH and CS, and mMDH and 

CS(R65A) in which substrate channeling has been inhibited by the R65A mutation. With this set 

of enzymes, structural differences of the two MDH isoforms can also be explored, and the results 

from assembly on these scaffolds can be compared to the naturally channeling mMDH/CS 

complexes.  

 For each of the multi-enzyme complexes assembled, substrate channeling between the 

enzymes will be characterized. Several methods will be employed including the comparison of 

initial coupled enzymatic rates, transient time analysis and the addition of the competitive enzyme 

aspartate aminotransferase.154 Several outcomes are possible including the support or the rejection 

of a substrate channeling hypothesis for each of the arrangements studied. For example, we may 

find increased coupled enzymatic activities compared to the freely diffusing enzymes, but find that 

these improvements are not due to channeling but to changes in the individual enzymatic activities. 
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A careful kinetic analysis of these assemblies may lead to a better understanding of leaky substrate 

channeling in engineered complexes to be better-understood. 

 

4.6 Conclusions 

We have developed a platform to study substrate channeling in engineered multi-enzyme 

complexes. The naturally non-channeling enzymes cMDH and CS were assembled on DNA and 

protein cage scaffolds, which were designed so that cMDH and CS can be exchanged for the other 

two pairs of enzymes in the set, mMDH and CS, which naturally channel, and mMDH and 

CS(R65A), in which channeling was found to be inhibited. Engineered two-component protein 

cage complexes were covalently labeled with cMDH and CS in different arrangements through the 

SpyTag/SpyCatcher labeling system, with proteins labeled before and after cage complex 

assembly. For DNA directed assembly, cMDH-3ZF-His was shown to bind to its target DNA with 

micromolar affinity, and it was attached two DNA scaffolds cross-linked to CS-His. While each 

complex retained their individual and coupled enzymatic activities, substrate channeling has yet 

not been demonstrated in any of the multi-enzyme complexes and is currently being studied 

further. By using this platform to study a set of enzymes that includes channeling and non-

channeling enzymes that catalyze the same reactions and multiple methods to assemble those 

enzymes, we will be able to better-understand substrate channeling in engineered multi-enzyme 

complexes.  
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4.7 Materials and Methods 

4.7.1 Materials 

Synthetic genes for cMDH and AZP4 were synthesized by Genscript (Piscataway, NJ). Restriction 

enzymes for DNA cloning were purchased from New England Biolabs (Ipswich, MA). Isopropyl 

β-D-1-thiogalactopyranoside (IPTG) and ampicillin sodium salt, were purchased from Gold 

Biotechnology (St. Louis, MO). All purification columns were purchased from GE Healthcare Life 

Sciences (Pittsburgh, PA). Amicon centrifugal filters were purchased from Millipore. 

Disuccinimidyl glutarate (DSG), sodium dodecyl sulfate polyacrylamide electrophoresis gels 

(SDS-PAGE), TBE DNA gels and running buffers were purchased from Invitrogen-Life 

Technologies (Carlsbad, CA). E. coli BL21 and BL21(DE3) cell lines were purchased from 

Bioline (Taunton, MA). Chaperon plasmid pGro7 was purchased from Clontech Laboratories–

Takara (Mountain View, CA). All other reagents and materials were purchased from Sigma-

Aldrich (St. Louis, MO) unless otherwise stated.  

 

4.7.2 Construction of Recombinant Enzymes 

Constructs encoding mMDH-His and CS-His were assembled previously.154 Constructs encoding 

the genes for Catch-A and Catch-B were a kind gift from David Baker (University of Washington). 

The gene encoding the codon optimized cMDH with a Flag-tag at the N-terminus was PCR 

amplified using primers P1 and P2 (Table S4.3). The reverse primer introduced a C-terminal 

6xHis-tag. The resulting NdeI/HindIII-digested PCR product was ligated into a NdeI/HindIII-

digested pET-20b(+) backbone. The resulting construct was transformed into BL21(DE3) cells for 
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cMDH-His expression (Figure 4.1b). 

The gene encoding 3ZF was PCR amplified from SLAC-3ZF-His with primers P3 and P4 

(Table S4.3).30 The codon optimized gene for AZP4 was flanked by HindIII restriction sites. A 

construct encoding the gene for mMDH-3ZF-His was first constructed by amplifying mMDH with 

primers P5 and P6, which was digested with NdeI and HindIII and then ligated into pET-20b(+). 

The resulting construct was digested with HindIII, and the HindIII-digested 3ZF gene was inserted 

into this site. In order to construct cMDH-3ZF-His, cMDH was first PCR amplified with P7 and 

P8, and the NdeI/HindIII-digested PCR product was ligated into the pet20-b(+) backbone. The 

resulting construct was digested with HindIII and was ligated 3ZF gene cut from mMDH-3ZF-His 

by with HindIII. CS-AZP4-His was constructed by PCR amplifying CS with P9 and P10, which 

was restriction digested with NdeI and HindIII and ligated into the pET-20b(+) backbone. The 

resulting construct and the codon optimized gene for AZP4 were digested with HindIII and ligated.  

The resulting constructs were transformed into BL21(DE3) cells for cMDH-3ZF-His and CS-

AZP4-His expression (Figure 4.1b). 

To construct Spy-cMDH-His and Spy-CS-His, cMDH-His and CS-His were PCR 

amplified with primers P11 and P12 for cMDH-His, P13 and P14 for CS-His (Table S4.3). The 

forward primers, P11 and P13 included sequences encoding the SpyTag peptide 

(AHIVMVDAYKPTK) followed by a six amino acid linker preceded by a NdeI restriction site. 

Nde/HindIII-digested genes for Spy-cMDH-His and Spy-CS-His were ligated into the pET-20b(+) 

backbone. The resulting constructs were transformed into BL21(DE3) cells for Spy-cMDH-His 

and Spy-CS-His expression (Figure 4.1b). 
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4.7.3 Expression and Purification of Enzymes 

For all cMDH and CS constructs, cells were grown in 1 L of sterilized Terrific Broth, inoculated 

with 10 mL of overnight culture. All cultures were supplemented with 100 µg/mL ampicillin, and 

cultures containing mMDH-His and mMDH-3ZF-His were also supplemented with 35 µg/mL 

chloramphenicol. Cells were grown to an OD600 of 0.6 at 37˚C at which time protein expression 

was induced with 0.5 mM IPTG and continued for 20 hours at 25˚C. Cells were collected by 

centrifugation and stored at -20˚C. Thawed cell pellets corresponding to 1 L of culture was 

resuspended in 50 mL of Enzyme HisTrap Binding buffer (20 mM Tris-HCl, 150 mM NaCl, 20 

mM imidazole, pH 7.4) supplemented HALT EDTA-free protease inhibitor. Cells were lysed by 

sonication for six minutes (5 s on pulse and 2 s off pulse) with a microtip probe in an ice bath, and 

lysates were centrifuged for 30 minutes at 15,000 × g. Clarified lysates were applied to HisTrap 

FF columns, and proteins of interest were eluted with a gradient of the Enzyme HisTrap Elution 

Buffer (20 mM Tris-HCl, 150 mM NaCl, 500 mM imidazole, pH 7.4). Fractions containing the 

enzymes of interest as identified by enzymatic activity and SDS-PAGE were collected and buffer 

exchanged by ultrafiltration into the next required buffer using Amicon filters. All enzyme 

concentrations were measured by Bradford assay.  

 Plasmids encoding the genes for the trimeric (Catch-A) and pentameric (Catch-B) cage 

I53-50 cage components with the SpyCatcher protein on the N terminus and a 6xHis-tag on the C 

terminus of both proteins. Plasmids were transformed into BL21(DE3) cells for protein expression. 

Flasks with 1L LB supplemented with 50 µg/mL kanamycin were induced with 30 mL of overnight 

culture. Cells were grown to an OD600 of 0.6 at 37˚C.  Protein expression was induced with 1 mM 

IPTG and continued for 3 hours at 37˚C for Catch-A and 18˚C for 5 hours for Catch-B. Cells were 

collected by centrifugation and pellets corresponding to 2 L of culture was resuspended in 50 mL 
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of Cage HisTrap Binding Buffer (50 mM Tris-HCl, 0.5 M NaCl, 20 mM imidazole, 0.75% 

CHAPS, 1 mM DTT, pH 8.0) supplemented with HALT EDTA-free protease inhibitor. Once 

resuspended, cells were stored at -20˚C until later use. Cells were lysed by sonication for 6 minutes 

(5 s on and 2 s off) in an ice bath with a microtip probe and centrifuged for 30 minutes at 15,000 

× g. Clarified lysates were applied to HisTrap FF columns, and proteins of interest were eluted 

with the stepwise addition of Cage HisTrap Elution Buffer (50 mM Tris-HCl, 0.5 M NaCl, 0.5 M 

imidazole, 0.75% CHAPS, 1 mM DTT, pH 8.0). Fractions containing the desired proteins were 

combined, concentrated by ultrafiltration and proteins were further purified on the same day on a 

size exclusion column equilibrated with Cage Assay Buffer (50 mM Tris-HCl, 0.5 M NaCl, 1 mM 

DTT, pH 8.0). Fractions containing the proteins of interest identified by SDS-PAGE were 

collected, concentrated by ultrafiltration and stored for later use.  

 

4.7.4 Characterization of Kinetic Activities 

Individual specific activities 

Specific activities of all cMDH variants were measured in Activity Assay Buffer (100 mM 

potassium phosphate buffer, pH 7.4) with 0.1 mM (OAA) and 0.1 mM NADH. NADH 

consumption was monitored spectrophotometrically at 340 nm. Enzyme concentrations were 

typically 0.1-10 nM. One unit of and cMDH activity was defined as the amount of enzyme 

necessary to consume 1 µmol of NADH per minute.  Specific activities of all CS variants were 

measures in assay buffer with 0.1 mM acetyl-coenzyme A, 0.1 mM OAA and 0.2 mM DTNB 

(5,5’-dithiobis(2-nitrobenzoate)). Production of coenzyme A was monitored through the 

subsequent reaction of coenzyme A and DTNB, yielding TNB2-, which absorbs at 412 nm. One 
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unit of CS activity was defined as the amount of enzyme necessary to produce 1 µmol of coenzyme 

A per minute. All spectrophotometric assays were performed on a SpectraMax M2 (Molecular 

Devices, Sunnyvale, CA). All measurements were performed with at least three replicates. 

Extinction coefficients of 14,150 M-1 cm-1 for DTNB and 6220 M-1 cm-1 for NADH were used for 

calculations.  

 

Coupled enzymatic activity 

Coupled enzymatic activity was measured in Activity Assay Buffer with 1 mM L-malate, 2 mM 

NAD+, 0.1 mM acetyl-coenzyme A and 0.2 mM DTNB. The reaction was initiated by the addition 

of 10% of the reaction volume of bead assemblies or controls, and the reaction was monitored by 

measuring the subsequent reaction of a final product coenzyme A and DTNB at 412 nm. One unit 

(U) of enzymatic activity was defined as 1 µmol of coenzyme A produced per minute. 

 

4.7.5 Cage Assembly 

All cages were assembled in Cage Assay Buffer. The A and B components, unlabeled or labeled 

with the enzymes, were combined at equimolar concentrations. When unlabeled cages were 

assembled to be labeled post-assembly were combined at 200 µM each. For all other assemblies, 

components were combined at 20 µM each. Samples were incubated at 4˚C with rotation overnight 

and purified on a Superose 6 10/300 gel filtration column. Fractions were analyzed with SDS-

PAGE, and those containing proteins in the desired assembly state were collected, concentrated 

by ultrafiltration and stored at 4˚C for later analysis.  
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4.7.6 SpyTag/SpyCatcher Conjugation 

Labeling of individual cage components 

For SpyTag/SpyCatcher conjugation, Spy-cMDH-His or Spy-CS-His was combined with Catch-

A or Catch-B at 200 µM each in Cage Assay Buffer. Samples were incubated overnight at 4˚C 

with rotation. Samples were applied to a HiLoad 16/60 Superdex 200 size exclusion column 

equilibrated with Cage Assay Buffer for purification. Fractions were analyzed by SDS-PAGE, and 

those with the purified conjugation product were collected and concentrated by ultrafiltration.  

 

Post-assembly labeling of cages 

Purified assembled cages were incubated with Spy-cMDH-His, Spy-CS-His or an equimolar 

mixture of the two enzymes. Cage complexes with concentrations corresponding to 20 µM of both 

Catch-A and Catch-B were mixed with 200 µM of the total enzyme. Samples were incubated 

overnight at 4˚C with rotation and purified with a Superose 6 10/300 gel filtration column. 

Fractions were analyzed by SDS-PAGE, and fractions containing the desired proteins were 

collected, concentrated by ultrafiltration and stored at 4˚C until for analysis.  

 

4.7.7 Characterization of Cage Assemblies 

Native agarose gel for large complex separation 

All individual proteins and cage assemblies were analyzed on an agarose gel under native 

conditions. The gels were prepared with 1% agarose with TB running buffer (90 mM Tris-Borate, 

pH 8.5) was allowed to set for several hours at 4˚C. Loading buffer (0.12 M Tris base, 20% 
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glycerol) was added to an equal volume of 1 µg/µL protein. For each sample, 10 µg of protein was 

loaded per well. Each gel included Catch-A, Catch-B and A/B complexes for reference. Gels were 

run at 45 V for 5 hours at 4˚C with TB running buffer. Gels were stained for 1 hour with 0.125% 

Coomassie R-250 in 40% methanol and 10% acetic acid. Gels were destained in several washes in 

40% methanol and 10% acetic acid and imaged for analysis.  

 

Kinetic characterization of cage assemblies 

The individual enzyme activities were measured for cMDH and CS activity for all individual cage 

components and complexes as previously described. Coupled activities were measured for all 

multi-enzyme complexes. Unlabeled A/B was also assayed for coupled enzyme activity.   

 

4.7.8 Gel Shift Assays 

Protein binding to DNA was analyzed using a fluorescence-based gel shift assay. 3ZF-DNA and 

AZP4-DNA include target sequences for 3ZF and AZP4, respectively, and Control-DNA includes 

a control sequence. Target Target DNA was prepared by combining equimolar amounts of forward 

and reverse oligos (O1 and O3 for 3ZF-DNA, O4 and O6 for AZP4-DNA and O7 and O8 for 

Control DNA, Table S4.4) in Annealing Buffer (10 mM Tris-HCl, 50 mM NaCl, 1 mM EDTA, 

pH 8.0). Oligos were incubated in a heat block at 95˚C for ten minutes and allowed to cool in the 

heat block for two hours at room temperature. DNA annealing was confirmed by running annealed 

DNA samples and individual oligos on a 20% polyacrylamide TBE gel. 3ZF-DNA, AZP4-DNA 

and Control-DNA at 0.75 µM final concentration were incubated with cMDH-3ZF-His and CS-

AZP4-His at several concentrations ranging from 0 to 18.75 µM in Binding Assay Buffer (50 mM 
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Tris-HCl, 0.5 M NaCl, 0.05% IGEPAL, 1 mM DTT, 0.1 mM ZnSO4, pH 8.0) for two hours at 4˚C. 

Target DNA was also incubated with cMDH-His and CS-His as a control. Samples were mixed 

with 5x Loading Buffer (Binding Assay Buffer with 50% glycerol), and loaded onto a 6% DNA 

retardation gel prepared with 0.5x TBE. Gels were run with 0.5x TBE running buffer at 4˚C for 85 

minutes at 100 V. Gels were stained with SYBR Green (Thermo Fisher Scientific) nucleic acid 

stain according to the manufacturer’s instructions and imaged on a UV light box.  

 

4.7.9 DNA Binding with Magnetic Bead Capture 

Protein binding to DNA targets were characterized with a bead capture assay using streptavidin 

coated magnetic beads (New England Biolabs). Bt-3ZF-DNA, Bt-AZP4-DNA Bt-Control-DNA 

includes a control sequence consist of the same sequences as 3ZF-DNA, AZP4-DNA and Control-

DNA with the addition of biotin to the 5’ end of the forward primer (O2 for Bt-3ZF-DNA, O5 for 

Bt-AZP4-DNA and O8 for Bt-Contol-DNA. Annealed DNA was prepared as described previously. 

0.8 mg of magnetic beads were washed three times and incubated in 1 mL of Blocking Buffer (50 

mM Tris-HCl, 150 mM NaCl, 0.5% BSA) for 1 hour at 4˚C with rotation. Beads were resuspended 

in 0.8 mL of Binding Assay Buffer with 0.75 µM of Bt-3ZF-DNA, Bt-AZP4-DNA or Bt-Control-

DNA and incubated overnight at 4˚C with rotation. Beads were washed six times with Binding 

Assay Buffer and resuspended in Binding Assay Buffer. Beads were aliquoted, and enzyme was 

added to the samples at various concentrations in 200 µL total volume. For cMDH-3ZF-His, 0.01 

mg of beads per 200 µM sample. When buffer conditions were compared in cMDH-3ZF-His, 0.1 

mg of cMDH-3ZF-His was used in each 200 µL with 10 µM of enzyme. Buffer additions compared 

included 0.5% BSA, 100 µg/mL sheared salmon sperm DNA (Invitrogen) and both BSA and 
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sheared salmon sperm DNA. For CS-AZP4-His, 0.1 mg of beads was used per 200 µL sample. 

CS-AZP4-His was assayed in Binding Assay buffer with no additions and Binding Assay Buffer 

with 0.5% BSA.  

 

4.7.10 Enzyme/Oligonucleotide Attachment 

PEG- maleimide attachment 

In order to evaluate the number of cysteine residues available for modification, cMDH-His and 

CS-His were first attached to PEG-maleimide. 10 µM cMDH-His was incubated with 0.1, 10 and 

100 µM PEG-maleimide overnight at 4˚C. 100 µM CS-His was incubated with 1 mM PEG-

maleimide and incubated overnight at 4˚C. Samples were analyzed by SDS-PAGE (Figure S4.6).  

 

Oligonucleotide attachment to CS 

Scaffold DNA was first assembled. Oligos were combined in Annealing Buffer with ratios of 

O10:O11:O12 of 2:2:1 for S1-DNA and O10:O11:O13 of 2:2:1 for S2-DNA (Table S4.4). Oligos 

O10 (3ZF binding site) and O11 (amimo-modified oligonucleotide for CS attachment) were 

supplied in excess, and O12 and O13 included biotin on their 5’ ends. Samples were annealed at 

70˚C for 10 minutes on a heat block and allowed to cool with the heat block to room temperature. 

Samples were incubated at 4˚C before use. Before enzyme attachment, 100 µL of S1-DNA and 

S2-DNA (75 µM final concentration of O11 and O12) were buffer exchanged six times into 

Activity Assay Buffer. Volumes were brought to 0.9 mL, and 100 µL of freshly made 10 mM 

Sulfo-EMCS was added to each sample. Samples were incubated for 2 hours at 4˚C with rotation, 

then buffer exchanged four times into Activity Assay Buffer to remove excess cross-linker. 
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Volumes were brought to 1 mL with a final concentration of 75 µM CS-His. Samples were 

incubated for 2 hours at 4˚C with rotation then buffer exchanged six times into Activity Assay 

Buffer to remove non-cross-linked DNA. Volumes were brought to 500 µL. DNA-attached CS-

His samples, now referred to as S1-DNA/CS and S2-DNA/CS, were immobilized on streptavidin 

coated magnetic beads. 400 µL of S1-DNA/CS and S2-DNA/CS were mixed with 400 µL of beads 

in Binding Assay Buffer. Beads were previously washed three times and blocked for 1 hour at 4˚C 

with rotation in Blocking Buffer. 0.8 mg of beads total were added to each sample, and they were 

incubated overnight at 4˚C with rotation. Beads were washed six times with Binding Assay Buffer. 

For kinetic analysis, bead-immobilized S1-DNA/CS and S2-DNA/CS were resuspended in 

Activity Assay Buffer.  

 

4.7.11 DNA/Multi-Enzyme Complex Assembly and Characterization 

Complex Assembly 

S1/CS and S2/CS were aliquoted into samples containing 0.1 mg of beads. Samples were incubated 

with 25 µM cMDH-3ZF-His in Binding Assay Buffer with 200 µL total volume. Samples were 

incubated for five hours at 4˚C with rotation. Beads were washed three times with Binding Assay 

Buffer and resuspended in Activity Assay Buffer. 

 

Kinetic Characterization of Assemblies 

The individual enzyme activities were measured for individual and coupled enzyme activities in 

S1-DNA/CS, S2-DNA/CS, S1-DNA/CS/cMDH-3ZF and S2-DNA/CS/cMDH-3ZF assemblies as 

previously described. Typically, 1 µg of beads were assayed.  



  129 

4.8 Supplemental Information 

4.8.1 Supporting Figures 

 

 

 
Figure S4.1: Unlabeled cage purification. SEC chromatogram (bottom) and SDS-PAGE (top) for 
individual components. Chromatograms have been normalized by the maximum absorbance. 
Corresponding fractions between the SEC chromatograms and SDS-PAGE are indicated. 
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Figure S4.2: Single-enzyme complexes. Purification of cages assembled with one cage component 
labeled with (A) Spy-cMDH-His and (B) Spy-CS-His. Labeled and unlabeled cage components 
were incubated for self-assembly before purification. Corresponding fractions between the SEC 
chromatograms (bottom) and SDS-PAGE (top) are indicated, and chromatograms have been 
normalized by the maximum absorbance. 
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Figure S4.3: Individual labeled cage components purification. Cage components were labeled 
with (A) Spy-cMDH-His and (B) Spy-CS-His and purified without incubation with a second 
component. Corresponding fractions between the SEC chromatograms (bottom) and SDS-PAGE 
(top) are indicated, and chromatograms have been normalized by the maximum absorbance. 
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Figure S4.4: Full native agarose gels from Figure 4.10a. The first three lanes include the same 
samples for each gel: (1) A/B, (2) Catch-A, (3) Catch-B, (4) A-Spy-cMDH, (5) B-Spy-cMDH, 
(6) A-Spy-cMDH/B, (7) A/B-Spy-cMDH, (8) A/B + Spy-cMDH-His post-assembly, (9) Spy-
cMDH-His, (10) A-Spy-CS, (11) B-Spy-CS, (12) A-Spy-CS/B, (13) A/B-Spy-CS, (14) A/B + 
Spy-CS-His post-assembly (15) Spy-CS-His, (16) A-Spy-cMDH/B-Spy-CS, (17) A-Spy-CS/B-
Spy-cMDH, (18) A/B + Spy-cMDH-His and Spy-CS-His post-assembly. All repeated lanes are 
labeled in grey.  

 

 
Figure S4.5: SDS-PAGE of (1) cMDH-His, (2) cMDH-3ZF-His and (3) CS-AZP4-His. 
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Figure S4.6 SDS-PAGE of PEG-maleimide attachment to (A) cMDH-His and (B) CS-His. For 
both (A) and (B): (1) enzyme only and (2) enzyme incubated with 10x molar concentration of 
PEG-maleimide. Lower arrows show enzyme monomers, and upper arrows show one PEG-
maleimide attachment. 
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Figure S4.7 Cysteine residues in (A-B) cMDH (PDB ID: 5MDH) and (C-D) CS (PDB ID: 1CTS) 
dimers for two views. The five cysteine residues of cMDH are highlighted in cyan, and the four 
cysteine residues of CS are highlighted in magenta. Black arrows indicate Cys110 of cMDH and 
Cys184 of CS. 
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4.8.2 Supporting Tables 

Table S4.1: Protein sequences for 3ZF and AZP4 and DNA target sequence.a 

 

Zinc-finger 
protein 

Zif1 
-1  2  3  6 

Zif2 
-1  2  3  6 

Zif3 
-1  2  3  6 Target DNA sequence KD 

(nM) 

ZIF268 (3ZF) R D E R R D H T R D E R 5’-GCG TGG GCG T-3’ 4 

AZP4 Q N D R R D S R E D N T 5’-TAC GTG GCA T-3’ 11 
a All table contents are taken from Sera et al.171 

 
Table S4.2: Bead assay buffer comparison for cMDH-3ZF-His.a 

 

Target DNA No additions BSA Salmon sperm 
DNA 

BSA + Salmon 
sperm DNA 

3ZF-DNA 1.0 ± 0.2 1.9 ± 0.2 1.0 ± 0.3 2.0 ± 0.3 

AZP4-DNA 1.0 ± 1.0 1.3 ± 1.3 1.2 ± 0.8 2.3 ± 2.4 

Control-DNA 1.0  ± 0.3 1.9 ± 1.4 1.5 ± 0.5 1.1 ± 1.0 

None 1.0 ± 0.5 1.6 ± 1.3 0.6 ± 0.4 1.3 ± 1.0 
a Binding assay with magnetic bead capture for cMDH-3ZF-His in Bead Assay Buffer with 
additions of 0.5% BSA and 100 µg/mL sheared salmon sperm DNA. Specific activities of the 
bound enzyme after washing was measures and normalized by the specific activities of samples 
with no buffer additions. Measurements were performed in triplicate and represented with their 
mean and standard deviation from the mean. 
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Table S4.3: DNA oligos used for PCR.a 

 

Oligo name Sequence 

P1 5’- GAG CAC CAT ATG GAC TAC AAG GAC GAT GAT GAT AAG GG 
-3’ 

P2 5’- GAG CAC AAG CTT TTA GTG ATG GTG ATG ATG ATG CGC 
GCT GCT CAG GAA CTC GAA CGC -3’ 

P3 5’- ATT ATA AAG CTT GAT GAC GAT GAC AAA GGC GGT TCA GGC 
GGT GG -3’ 

P4 5’- TTA AAT AAG CTT TCA GTG GTG GTG GTG GTG GTG -3’ 

P7 5’- ATT ATA CAT ATG GAC TAT AAA GAC GAT GAC GAT AAA GGC 
ATG AAG GTC – 3’ 

P8 5’- TTA AAT AAG CTT GCC TTT CAT GTT CTT GAC AAA TTC TTC 
GCC C -3’ 

P9 5’- GAG CAC CAT ATG AGC GAA CCG ATC CGT GTG C -3’ 

P10 5’- GAG CAC CAT ATG AGC GAA CCG ATC CGT GTG C -3’ 

P11 5’- ATT ATA CAT ATG GAC TAT AAA GAC GAT GAC GAT AAA GGC 
ATG AGC AG -3’ 

P12 5’- TTA AAT AAG CTT TTT GCT ATC GAC CAG TTT AAT CAG ACC 
G TCC -3’ 

P13 
5’- GAG CAC CAT ATG GGA GCC CAC ATC GTG ATG GTG GAC 

GCC TAC AAG CCG ACG AAG GGT AGT GGT GAA AGT GGT ATG 
AGC GAA CCG ATC CGT GTG C -3’ 

P14 5’- GAG CAC AAG CTT TTA GTG ATG GTG ATG ATG GTG ACC 
CGC -3’ 

P15 
5’- GAG CAC CAT ATG GGA GCC CAC ATC GTG ATG GTG GAC 

GCC TAC AAG CCG ACG AAG GGT AGT GGT GAA AGT GGT ATG 
AGC AGC ACG AAC CTG AAA GAC ATC C -3’ 

P16 5’- GAG CAG AAG CTT TTA GTG ATG GTG ATG ATG ATG GCC TTT 
GC -3’ 

a Restriction sites are indicated by italics. 
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Table S4.4: Oligos for binding assays 
 

Oligo name Sequence 

O1 5’- TATGGATCCTACCATGGAGCGTGGGCGTAAGCTTAT -3’ 

O2 Biotin- 5'- TAT GGA TCC TAC CAT GGA GCG TGG GCG TAA GCT 
TAT -3’ 

O3 5’- ATA AGC TTA CGC CCA CGC TCC ATG GTA GGA TCC ATA -3’ 

O4 5’- TAT GGA TCC TAC CAT GGA TAC GTG GCA TAA GCT TAT -3’ 

O5 Biotin- 5’- TAT GGA TCC TAC CAT GGA TAC GTG GCA TAA GCT 
TAT -3’ 

O6 5’- ATA AGC TTA TGC CAC GTA TCC ATG GTA GGA TCC ATA -3’ 

O7 5’- TAT GGA TCC TAC CAT GGA CCT ATG TGC TAA GCT TAT -3’ 

O8 Biotin- 5’- TAT GGA TCC TAC CAT GGA CCT ATG TGC TAA GCT 
TAT -3’ 

O9 5’- ATA AGC TTA GCA CAT AGG TCC ATG GTA GGA TCC ATA -3’ 

O10 5’- TTA CGC CCA CGC TCC -3’ 

O11 Amino- 5’- CCC CCC AAA AAT GGA TGG ATG GA -3’ 

O12 Biotin- 5’- TGC TTG GGA GCG TGG GCG TAA CAC TCA CTC ATC 
TCC ATC CAT CCA CTT GCT -3’ 

O13 Biotin- 5’- TGC TTG TCC ATC CAT CCA CAC TCA CTC ATC GGA 
GCG TGG GCG TAA CTT GCT -3’ 
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Chapter 5 

 

Summary and Future Directions 
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5.1 Summary 

In this work, we described our efforts to engineer and characterize single and multi-enzyme 

complexes. Chapter 1 provided an overview of natural and engineered enzyme complexes and 

introduced the enzymes studied in the following chapters. We began by discussing the the 

importance of protein complexes for all living organisms and the types of protein-protein 

interactions (PPIs) that are observed. Many proteins are oligomeric, and most proteins interact in 

some way with other proteins. These PPIs can be divided into the classifications of permanent, 

weak transient and strong transient based on their stabilities and affinities. Weak transient 

complexes, such as multi-enzyme complexes referred to as metabolons, are difficult to study since 

their complex formation is highly dependent on their environment. The direct transfer of reaction 

intermediates in these complexes of sequential enzymes has been of great interest. This substrate 

channeling, in which the substrate is channeled by mechanisms such as intramolecular tunnels and 

electrostatic interactions without first diffusing in the bulk solution, can result in benefits such as 

the protection of intermediates and the creation of local substrate concentrations. Efforts have been 

made to engineer new protein complexes mimic nature. Much is still unknown about substrate 

channeling in natural and engineered systems.  

We also provided an overview of the single and multi-enzyme systems discussed in the 

following chapters, small laccase (SLAC) and the TCA cycle enzymes mitochondrial malate 

dehydrogenase (mMDH), citrate synthase (CS) and aconitase (Aco). SLAC is a naturally trimeric 

multicopper oxidase enzyme that has been studied as an oxygen-reduction catalyst on enzymatic 

bio-cathodes with mediated and direct electron transfer Unlike many other laccases, SLAC is 

easily expressed in E. coli, and it has been genetically engineered previously by Wheeldon, 

Gallaway and Szilvay.30-32 Six out the eight TCA cycle enzymes are thought to for a spatially 
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defined complex that facilitates the transport of reaction intermediates and drives the reaction in 

the forward direction. This TCA cycle metabolon has been proposed for decades, but confirmation 

with structural evidence has only been recently proposed by collaborators Wu and Minteer.61 

In Chapter 2, we described our efforts engineering SLAC to self-assemble into functional, 

crystalline-like assemblies. A new dimeric interface was introduced between SLAC trimers in a 

symmetric design chosen due to its similarity to the crystal architecture of SLAC. Two cysteine 

residues (G70C and A189C) were introduced at the new interface to drive self-assembly with 

disulfide bonding. Upon the addition of cupric ions, the purified enzyme, SLAC-DC-His, formed 

blue, enzymatically active aggregates that were shown to disappear with the addition of a reducing 

agent. These aggregates showed increased resistance to permanent thermal denaturation, and 

electron microscopy of the aggregates showed architectures consistent with the computational 

design. Spectroscopic kinetic characterization in dilute solution showed a similar turnover number, 

kcat as the non-mutated enzyme SLAC-His. However, the Michaelis constant, KM increased, 

leading to a three-fold reduction in catalytic efficiency, kcat/KM. The aggregates were studied 

electrochemically combined with single-walled carbon nanotubes (SWNTs) on a rotating disk 

electrode with three arrangements: aggregates adsorbed on SWNT-modified electrodes, SWNTs 

mixed with pre-formed aggregates and aggregates formed in the presence of SWNTs. Increases in 

oxygen-reduction current were observed with increased incorporation of SWNTs, likely due to 

increased contact with the enzyme active sites, and a decrease in overpotential for aggregates 

formed in the presence of SWNTs indicated better enzyme orientation. The SLAC-DC-His 

aggregates were also found to outperform SLAC-His on an air-breathing gas-diffusion cathode for 

the entire potential range tested. 

In Chapter 3, we characterized a recombinant TCA cycle metabolon, comparing it to the 
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natural metabolon isolated from intact mitochondria. The structure of in the recombinant 

metabolon was found to be similar to the structure of the in vivo metabolon, with a 30-degree 

rotation in mMDH around the axis perpendicular to the protein-protein interface. Electrostatic 

surface potentials showed a positive “channel” connecting mMDH and CS active sites along which 

the negatively charged reaction intermediate is proposed to channel by a bounded diffusion 

mechanism. Mutations from arginine to alanine and aspartic acid residues were made along this 

patch in CS. Most mutations were detrimental to the enzymatic activity, but one mutant, 

CS(R65A), was found to have similar kinetic parameters as recombinant CS for a sequential 

ordered mechanism. Further kinetic analyses for substrate channeling showed that the recombinant 

complex performed similarly to the natural metabolon. The mutant complex, however, exhibited 

increased transient times and decreased coupled enzymatic activities in the presence of a 

competing enzyme that could consume non-channeled intermediate in the bulk solution, indicating 

that channeling was inhibited by the R65A mutation in CS.  

Chapter 4 discussed our efforts to develop a platform to study substrate channeling in 

engineered two-component multi-enzyme complexes. In order to develop the platform, CS and the 

naturally non-channeling isoform of mMDH, cytosolic were first studied for assembly, looking to 

extend it to study the naturally channeling pair, mMDH and CS, as well as mMDH and CS(R65A), 

in which channeling was found to be inhibited. In Chapter 4.3, we assembled multi-enzyme 

complexes on an engineered two-component icosahedral cage with a SpyTag/Spy-Catcher 

attachment strategy, in which the SpyTag peptide formed a stable isopeptide bond with the 

SpyCatcher protein upon simple mixing. The cage components are naturally trimeric and 

pentameric, and there are 120 enzyme-attachment sites on each assembled cage through genetic 

fusions to the SpyCatcher protein. Pre-assembled cage complexes and individual cage 
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components, which were later assembled into complexes, were labeled with the SpyTag/enzyme 

fusion proteins. Complex formation was observed, but it is not yet known if the components 

corresctly assembled into the designed cage due to the multimeric structure of each of the enzymes 

and cage components. Chapter 4.4 described two methods of enzyme attachment to the DNA 

scaffolds through zinc-finger DNA-binding proteins (ZFPs) and chemical crosslinking. To 

assemble the multi-enzyme complexes on DNA scaffolds, CS was attached to the DNA via 

cysteine residue cross-linking, and cMDH was attached with a genetic fusion to a zinc-finger 

DNA-binding protein that was determined to have a KD of 1.12 ± 0.49 µM for its target DNA. All 

assemblies on the DNA and protein cage scaffolds retained their individual and coupled activities, 

but substrate channeling has yet to be observed in the complexes. Strategies to improve assembly 

on the DNA scaffolds and characterizing the complexes for substrate channeling were discussed.  

 

5.2 Future Directions 

While much has been accomplished in this work, there are areas that can be further explored and 

improved upon. In Chapter 2, we engineered crystalline-like assemblies with a single enzyme, 

SLAC, by introducing a new protein-protein interface. These SLAC-DC-His aggregates showed 

increased current densities compared to SLAC-His, and further characterization of the lifetimes of 

these cathodes would be beneficial. In addition, this work could potentially be expanded to 

assemblies of multiple enzymes for a compatible pair of sequential enzymes.  

 In Chapter 3, we characterized a recombinant TCA metabolon for complex formation and 

substrate channeling, and inhibited channeling with an R65A mutation in CS. This work was 

expanded in Chapter 4, in which we developed a platform to study substrate channeling in two-
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enzyme assemblies on protein cage and DNA scaffolds. By using these scaffolds, we can study the 

coupled reactions of the three enzyme pairs: naturally channeling mMDH and CS, non-channeling 

cMDH and CS and channeling-inhibited mMDH and CS(R65A). In addition to the two DNA 

assemblies that were discussed, a variety of assemblies could be studied including those with 

different spacing between enzyme anchor points and additional charged proteins or peptides to 

interact with the reaction intermediate. A detailed kinetic analysis of each enzyme should be 

performed so that changes in the coupled enzyme kinetics can be accurately compared. In this way 

we may be able to learn more about the substrate channeling mechanism in these enzymes.  

 There are several ways that the assemblies in Chapter 4 can be improved and expanded. A 

better method of attachment to the DNA scaffold may be through the stable SpyTag/SpyCatcher 

system used to attach cMDH and CS to the protein cage scaffold. The SpyCatcher protein could 

be site-specifically attached to the oligonucleotides, and, after conjugation to the SpyTag/enzyme 

fusion proteins, the enzymes could be assembled on the DNA scaffolds. A library could be built 

with a variety of DNA assembly architectures and other two-component protein assemblies such 

as other designed protein cages and protein layers.  Additionally, a second enzyme-attachment 

strategy such as the HaloTag can be used in combination with the SpyTag/SpyCatcher system. By 

using two stable attachment strategies, the two component scaffolds could be pre-assembled and 

then site-specifically labeled with enzyme pairs. In this way, we could easily use genetic fusions 

of enzymes to these labeling tags to study a large number of enzyme pairs on a variety of 

architectures. 
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