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ABSTRACT

Toward a Robust and Universal Crowd Labeling
Framework

Faiza Khan Khattak

The advent of fast and economical computers with large electronic storage has led to a large

volume of data, most of which is unlabeled. While computers provide expeditious, accurate and

low-cost computation, they still lag behind in many tasks that require human intelligence such as

labeling medical images, videos or text. Consequently, current research focuses on a combination

of computer accuracy and human intelligence to complete labeling task. In most cases labeling

needs to be done by domain experts, however, because of the variability in expertise, experience,

and intelligence of human beings, experts can be scarce.

As an alternative to using domain experts, help is sought from non-experts, also known as

Crowd, to complete tasks that cannot be readily automated. Since crowd labelers are non-expert,

multiple labels per instance are acquired for quality purposes. The final label is obtained by com-

bining these multiple labels. It is very common that the ground truth, instance difficulty, and the

labeler ability are unknown entities. Therefore, the aggregation task becomes a “chicken and egg”

problem to start with.

Despite the fact that much research using machine learning and statistical techniques has been

conducted in this area (e.g., [Dekel and Shamir, 2009; Hovy et al., 2013a; Liu et al., 2012; Donmez

and Carbonell, 2008]), many questions remain unresolved, these include: (a) What are the best ways

to evaluate labelers? (b) It is common to use expert-labeled instances (ground truth) to evaluate la-

beler ability (e.g., [Le et al., 2010; Khattak and Salleb-Aouissi, 2011; Khattak and Salleb-Aouissi,

2012; Khattak and Salleb-Aouissi, 2013]). The question is, what should be the cardinality of the

set of expert-labeled instances to have an accurate evaluation? (c) Which factors other than labeler

expertise (e.g., difficulty of instance, prevalence of class, bias of a labeler toward a particular class)

can affect the labeling accuracy? (d) Is there any optimal way to combine multiple labels to get the



best labeling accuracy? (e) Should the labels provided by oppositional/malicious labelers be dis-

carded and blocked? Or is there a way to use the “information” provided by oppositional/malicious

labelers? (f) How can labelers and instances be evaluated if the ground truth is not known with

certitude?

In this thesis, we investigate these questions. We present methods that rely on few expert-labeled

instances (usually 0.1% -10% of the dataset) to evaluate various parameters using a frequentist and

a Bayesian approach. The estimated parameters are then used for label aggregation to produce one

final label per instance.

In the first part of this thesis, we propose a method called Expert Label Injected Crowd Esti-

mation (ELICE) and extend it to different versions and variants. ELICE is based on a frequentist

approach for estimating the underlying parameters. The first version of ELICE estimates the pa-

rameters i.e., labeler expertise and data instance difficulty, using the accuracy of crowd labelers

on expert-labeled instances [Khattak and Salleb-Aouissi, 2011; Khattak and Salleb-Aouissi, 2012].

The multiple labels for each instance are combined using weighted majority voting. These weights

are the scores of labeler reliability on any given instance, which are obtained by inputting the pa-

rameters in the logistic function.

In the second version of ELICE [Khattak and Salleb-Aouissi, 2013], we introduce entropy as a

way to estimate the uncertainty of labeling. This provides an advantage of differentiating between

good, random and oppositional/malicious labelers. The aggregation of labels for ELICE version 2

flips the label (for binary classification) provided by the oppositional/malicious labeler thus utilizing

the information that is generally discarded by other labeling methodologies.

Both versions of ELICE have a cluster-based variant in which rather than making a random

choice of instances from the whole dataset, clusters of data are first formed using any clustering

approach e.g., K-means. Then an equal number of instances from each cluster are chosen randomly

to get expert-labels. This is done to ensure equal representation of each class in the test dataset.

Besides taking advantage of expert-labeled instances, the third version of ELICE [Khattak and

Salleb-Aouissi, 2016], incorporates pairwise/circular comparison of labelers to labelers and in-

stances to instances. The idea here is to improve accuracy by using the crowd labels, which unlike

expert-labels, are available for the whole dataset and may provide a more comprehensive view of

the labeler ability and instance difficulty. This is especially helpful for the case when the domain



experts do not agree on one label and ground truth is not known for certain. Therefore, incorporating

more information beyond expert labels can provide better results.

We test the performance of ELICE on simulated labels as well as real labels obtained from

Amazon Mechanical Turk. Results show that ELICE is effective as compared to state-of-the-art

methods. All versions and variants of ELICE are capable of delaying phase transition. The main

contribution of ELICE is that it makes the use of all possible information available from crowd and

experts. Next, we also present a theoretical framework to estimate the number of expert-labeled

instances needed to achieve certain labeling accuracy. Experiments are presented to demonstrate

the utility of the theoretical bound.

In the second part of this thesis, we present Crowd Labeling Using Bayesian Statistics (CLUBS)

[Khattak and Salleb-Aouissi, 2015; Khattak et al., 2016b; Khattak et al., 2016a], a new approach

for crowd labeling to estimate labeler and instance parameters along with label aggregation. Our

approach is inspired by Item Response Theory (IRT). We introduce new parameters and refine the

existing IRT parameters to fit the crowd labeling scenario. The main challenge is that unlike IRT,

in the crowd labeling case, the ground truth is not known and has to be estimated based on the

parameters. To overcome this challenge, we acquire expert-labels for a small fraction of instances

in the dataset. Our model estimates the parameters based on the expert-labeled instances. The

estimated parameters are used for weighted aggregation of crowd labels for the rest of the dataset.

Experiments conducted on synthetic data and real datasets with heterogeneous quality crowd-labels

show that our methods perform better than many state-of-the-art crowd labeling methods.

We also conduct significance tests between our methods and other state-of-the-art methods to

check the significance of the accuracy of these methods. The results show the superiority of our

method in most cases. Moreover, we present experiments to demonstrate the impact of the accuracy

of final aggregated labels when used as training data. The results essentially emphasize the need for

high accuracy of the aggregated labels.

In the last part of the thesis, we present past and contemporary research related to crowd la-

beling. We conclude with future of crowd labeling and further research directions. To summarize,

in this thesis, we have investigated different methods for estimating crowd labeling parameters and

using them for label aggregation. We hope that our contribution will be useful to the crowd labeling

community.
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Chapter 1

Introduction to Crowd Labeling

With the advent of digitization, Big Data became available everywhere, affecting almost every field

in our daily life. While data is abundant, most of it still remains in an unlabeled form and not

readily available for prediction tasks through machine learning algorithms. Although computers

provide expeditious, accurate and low-cost computation, they still lag behind in many tasks that

require human intelligence such as labeling medical images, videos or text to cite a few. In most

cases labeling needs to be done by domain experts; however, because of the variability in expertise,

experience and intelligence of human beings, experts can be scarce. As an alternative to using

domain experts, help is sought from non-experts, also known as Crowd, to complete tasks that can’t

be readily automated.

In a crowd labeling process, multiple labels are acquired for each data instance from the crowd

workers (also called labelers or annotators). Labels can be binary, categorical, ordinal or continu-

ous. Multiple labels are acquired for quality assurance and then aggregated to get one final label.

Different approaches are commonly used in the aggregation process. Crowd labeling is generally

done through an open call and nowadays on website platforms. Examples include labeling an im-

age and choosing the meaning of a word on Amazon Mechanical Turk (AMT). In a typical crowd

labeling scenario, the identity of the labeler and the requester of the task are not known to each

other.

Crowd labeling is a subfield of crowdsourcing but mostly is referred to as crowdsourcing in the

literature. While crowd labeling focuses on labeling task done by the crowd, crowdsourcing is the

process of hiring crowd services for a variety of tasks including designing a logo, writing an essay
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other than usual labeling tasks [Doan et al., 2011].

The idea of crowd labeling is not new. In 1714, the British government offered a prize to invent

a method to measure the longitude [Lynch, 2012]. Relatively recent historical evidence recorded by

Nelson [Nelson, 2008], is from the 1880’s when Harvard Observatory in Cambridge, Massachusetts

took the images of thousands of stars on photographic plates. A team of untrained women, hired

at very low pay, labeled about half a million of such photographic plates. They analyzed these

photographic plates using magnifying glass to catalog the stars [Nelson, 2008].

Due to the availability of crowd services at low rates, crowd labeling has attracted the attention

of many researchers. Therefore, crowd labeling literature has increased at an exponential rate in the

past few years (see Graph 1.1) and cannot be thoroughly summarized in one paper. In this chapter,

we give a very general overview about the crowd labeling motivation, process, techniques, logistics

and future.
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1.1 Motivation of the Crowd

While crowd labeling is popular today, it is interesting to analyze what motivates the crowd to

complete labeling tasks. Crowd motivation can be categorized as follows [Quinn and Bederson,

2011].

(i) Fun or Virtual Money: Many crowd labeling tasks are done just for enjoyment or virtual

rewards e.g., ESP game [von Ahn and Dabbish, 2004] and FoldIt.

(ii) Embedded work: Sometimes the crowd labeling task is embedded in some other tasks, mak-

ing labeling mandatory e.g., the reCAPTCHA project [Ahn et al., 2008].

(iii) Voluntary or Pastime: Sometimes crowd volunteer to work. For instance, Family Search

Indexing aims to create searchable family history digital indexes from scanned images of his-

torical documents. These include birth and death certificates, marriage licenses and property

records.

(iv) Altruism: Another motivation for the crowd is altruism e.g., a search for a missing com-

puter scientist Jim Gray [Hellerstein and Tennenhouse, 2010]. Satellite images of the area of

disappearance were uploaded on AMT for labeling the possible locations to search.

(v) Reputation/Getting Noticed: Sometimes, crowd labeling is done to get recognition or earn

reputation e.g., volunteer translators at childrenlibrary.org. Also many games come into this

category for which getting a high score and publishing it on social media can be fulfilling.

(vi) Payment: A large part of crowd labeling is done for payment, e.g., Amazon Mechanical Turk

(AMT), Crowdtask and Clickworkers.

(vii) Flexible job & Task Autonomy: Crowd labeling provides workers with a flexible work

schedule without any pressure from an employer.

1.2 Crowd Labeling Process

Crowd labeling mainly consists of the following steps (also see Figure 1.3.)
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Figure 1.2: (Top) Sequential workflow (Bottom) Parallel workflow.

1.2.1 Task Design

Task design is one of the crucial parts of crowd labeling process. While designing the task, the

following points should be considered:

(a) Query Formulation: The query should be clearly stated and accompanied with instructions and

examples. External links can be provided for more information especially when the problem is

field-specific and labelers are not expected to know about it in advance. This reduces the chance

of the task to be misunderstood and hence improve the labels accuracy [Kittur et al., 2008].

(b) Task Division It is important to divide crowd tasks into smaller subsets so that a worker can do

it without being overwhelmed and many workers can work on the task in parallel. Task division

is extra work on the requesters’ part, reducing the benefit obtained from utilizing the crowd.

Some researchers have proposed methods for easier task division such as Turkomatic [Kulkarni

et al., 2011] and Turkit [Little et al., 2009; Little et al., 2010b].

(c) Types of workflow There are two main types of workflows for crowd labeling: parallel work-

flow, and iterative workflow [Kulkarni et al., 2011]. In parallel workflow, all the workers do the

tasks independently of each other, and tasks are combined afterwards. While in iterative work-

flow, each worker completes his task, which is then passed on to another worker to improve the
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outcome. This process goes on for a predefined number of iterations. A combination of the two

workflows can also be used.

(d) Task Assignment Most of the crowd labeling tasks are published as an open call. But some-

times qualification tests for labelers are required for a more appropriate task assignment. More-

over, research is also being done to improve the task assignment using optimization methods

[Ho et al., 2013] . This adaptive task assignment can help in improving labeling accuracy and

reducing the labeling cost.

(e) Number of labels needed Research shows that getting more crowd labels increases the cost

but may lead to an improvement in accuracy [Sheng et al., 2008]. Therefore, care must be

taken while deciding the number of requested crowd labels. Deciding on the number of labels

depends on the task budget, task nature, quality of the crowd and the size of the dataset. There

is no well-known general rule for deciding about the number of labels needed.

1.2.1.1 Worker Problems & Solutions

Sometimes crowd workers face labeling-related issues, which should be kept in mind while design-

ing the task [Silberman et al., 2010b; Irani and Silberman, 2013]. Worker problems include:

(a) Low pay and Long pay delays: Payment for most of the tasks ranges from 0.01−1.

(b) Work rejection: Requesters have the right to reject the work if it is below standard but some

requesters may reject the work to avoid payment.

(c) Task time: Sometimes task completion time is too short and workers are not able to complete

the task and do not get paid.

(d) Lack of communication: Uncommunicative requesters who do not resolve the issues discour-

age the workers.

(e) Error in tasks: Sometimes task posted has some errors, e.g., worker is unable to submit the

completed task due to a website issue. As a result the worker does not get paid and has to bear

the cost of the requester’s mistake or technical issues.
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(f) Fraudulent tasks: There is a minor but not negligible risk in tackling crowd labeling task as

some may be fraudulent. These may damage the computer of the worker or cause other kinds

of threats.
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Figure 1.3: Crowd labeling Process

Proposed solutions to the worker problems [Bederson and Quinn, 2011; Donmez and Carbonell,

2008] include defining hourly pay, giving feedback about work quality, improving communication

between requester and worker, providing more details about the task and limiting anonymity. A

more practical solution to worker problems is Turkopticon [Kulkarni et al., 2011], which is used to

get workers’ reviews about requesters. This feedback helps the workers to know about the requesters



1.2. CROWD LABELING PROCESS 7

beforehand and also helps the requesters improve the quality of the task design.

1.2.1.2 Demographics

Crowd demographics should be kept in mind while designing the tasks. The website MTurk Tracker

(http://demographics.mturk-tracker.com/) provides live hourly and daily details of AMT crowd de-

mographics. The information on this website shows that crowd labelers contribute from different

parts of the world with a large percentage of workers from the United States and India. Since

the crowd workers have different cultural and social background, their perception about the same

problem can be quite different.

1.2.2 Choice of a Crowd Labeling Platform

Crowd labeling has led to the development of several websites, which provide many possibilities of

a platform for publishing and accomplishing crowd work to choose from. There are many general-

purpose platforms, such as Amazon Mechanical Turk (AMT) and CrowdFlower [Le et al., 2010].

AMT is a big market place for posting crowd labeling tasks and getting crowd labels. CrowdFlower

is another website for posting tasks, but unlike many other platforms it provides aggregated labels as

the final outcome. Some platforms are special-purpose and do not allow posting tasks by unautho-

rized people. Examples include Galaxy zoo developed by Oxford university researchers for online

classification of astronomical data. FoldIt [Cooper et al., 2010] is another example developed by the

University of Washington researchers. FoldIt is a puzzle video game with the underlying purpose

for folding the protein structure.

1.2.3 Labeler Types

Crowd labelers are non-experts. Hence, it is important to check the quality of the labeling work. In

general, labelers can be categorized as follows [Raykar and Yu, 2012; Khattak and Salleb-Aouissi,

2013].

• Good/Trained: A labeler who is good at the labeling task as well as diligent is considered a

good/trained worker.
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• Untrained/Novice: A labeler who is new and inexperienced or does not have the enough

knowledge to complete the task is considered to be untrained or novice worker.

• Random/Lazy: A random labeler is a careless labeler who chooses the labels randomly or

semi-randomly without paying much attention to his task.

• Oppositional/Malicious/Biased: These are the workers who have a biased opinion maybe

because of a misunderstanding of the task or due to personal preferences. This category also

includes the workers who have an intention to make the labeling noisy.

Each type of labelers provides a certain amount of information about the instances through

their labels. Good/trained workers are most informative while information level obtained from un-

trained/novice labelers is low. Random/lazy workers do not provide any information at all and

are merely wastage of resources. Oppositional/malicious/biased labelers provide labels, which are

not good in their raw form but once adjusted can be as informative as the labels provided by the

good/trained labelers. The reason is that oppositional/malicious/biased labelers work hard to iden-

tify the instance and label it according to their inclination. Therefore, it is important to identify

the oppositional/malicious/biased labelers and correct their labels. Otherwise, they can be as non-

informative as the random/lazy labelers.

1.2.4 Common Techniques for Quality Assurance

Quality assurance for crowd labeling has received a lot of attention from researchers. Many meth-

ods have been developed for improving the accuracy of the final label. Generally, the proposed

approaches use one or more of the following techniques [Quinn and Bederson, 2011].

1.2.4.1 Redundancy

Redundancy refers to acquiring multiple opinions for each instance to label to improve accuracy.

We discuss two methods, which are based on redundancy.

• Majority Voting (MV): Multiple labels are acquired and majority wins. The main drawback

of this method is assigning equal weights to the opinions of labelers regardless of the above-

mentioned categories of workers. Moreover, in the case of even number of labelers with
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evenly split votes, it becomes impossible to decide. Increasing the number of labels improves

the final label quality only when labeler accuracy is above 50% while overall accuracy is

deteriorated if the labelers have accuracy below 50%. For labelers with 50% accuracy, no

improvement is observed and random results are obtained, which can be acquired just by

tossing a coin [Sheng et al., 2008].

• Inter-annotator Agreement (ITA): This method is widely used in Natural Language Pro-

cessing (NLP). Two or more annotators work independently. If agreement [Passonneau et al.,

2012] between any pair of workers is above a certain threshold, then each annotator in that

pair is considered an expert. For the rest of the data, labeling of these annotators is considered

as true labels. The main problem with this method is that only pairwise agreements are con-

sidered while comparing each annotator to the majority of the other labelers can be a better

option. Moreover, there is a high chance of agreement on wrong labels for difficult instances.

1.2.4.2 Ground Truth Seeding

To keep a check on the workers quality, an intuitive and straightforward method is to use the in-

stances for which we have ground truth (true label). But generally, ground truth is not readily

available. In most cases, it can be acquired from domain experts, who are scarce, busy, and expen-

sive. Therefore, true labels are normally obtained only for a small subset of the data. The choice

of the instances for acquiring ground truth is an interesting topic. Some researchers suggest active

learning for making this choice [Yan et al., 2010] and some prefer randomly choosing the instances

either from the whole dataset or its clusters [Khattak and Salleb-Aouissi, 2013]. Since only a small

amount of true labels is available, these should be used intelligently.

CrowdFlower [Le et al., 2010] suggests testing the labelers using ground truth instances before

the actual labeling task and rejecting the labelers who do not pass the test. But this approach has

certain problems:

• Workers can perform well in the test and then can be careless or even oppositional/malicious

while doing the actual task.

• Labelers are discouraged if rejected.

• Labelers can have more than one account and can even collude.
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• Designing testing phase can take time and energy.

A solution to this problem is to embed the ground truth instances in the task itself such that

labelers cannot identify them. In this case, the following challenges emerge.

• Deciding the number of ground truth instances.

• A composition of ground truth instances to make it balanced i.e., same amount of instances

from each class.

• Ground truth instances should not be identifiable.

Some researchers have suggested making up the ground truth instances called Programmatic

Gold [Oleson et al., 2011] . This is done by injecting known type of errors or using previously

collected labels for which the workers have high confidence. This approach cannot be applied to

all types of crowd labeling tasks e.g., ground truth data for cancer diagnosis cannot be created by

injecting errors.

1.2.4.3 Labeler Ability

The ability of the labeler is a measure to identify the skill level and type of labeler. It can also

be used for assigning weight to the labeler opinion in the process of label aggregation. One way

to obtain the ability of a labeler is through ground truth [Khattak and Salleb-Aouissi, 2013]. But

sometimes, obtaining ground truth is not possible either due to the experts’ disagreement or because

alternative options for acquiring ground truth are not feasible or very expensive.

Researchers have tried to mediate this problem by developing Expectation Maximization (EM)

based methods. It is a maximum likelihood method, which iteratively learns the unknown parame-

ters and latent variables. In crowd labeling, EM is used to learn the final label and the ability of the

labeler. In this context, a seminal paper was written by Dawid & Skene [Dawid and Skene, 1979].

EM can also be used when ground truth is available for few instances, which can help in boosting

the accuracy. Other methods include message passing [von Ahn and Dabbish, 2004], variational in-

ference [Liu et al., 2012], support vector machines [Dekel and Shamir, 2009] and proactive learning

[Wallace et al., 2011]. Another approach corrects the labels according to labeler category [Ipeirotis

and Paritosh, 2011].
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1.2.4.4 Instance Difficulty

While labeler ability is of crucial importance in the labeling process, there are other factors, which

cannot be overlooked. These include the difficulty of the instance. Remarkably, this factor has

received less attention in the crowd labeling literature, assuming that all instances in a dataset have

the same difficulty level. This assumption is not always true. The difficulty of the instance may

include the difficulty level of the question itself as well as the level of clarity of the question. Note

that the ability of a labeler is also affected by the instance difficulty. The performance of a good

labeler can decrease if the instances are really challenging or if the problem is not well formulated.

Therefore, while aggregating the labels, instance difficulty should be taken into account [Whitehill

et al., 2009]. The instance difficulty factor can be estimated through ground truth labels [Khattak

and Salleb-Aouissi, 2013], by adding instance difficulty parameters into the EM method [Whitehill

et al., 2009], using the features/attributes of the instances [Karger et al., 2011] or acquiring feedback

from labelers about difficult instances [Welinder et al., 2010a].

1.3 Challenges and Phase Transition

In a crowd labeling scene, an object is usually annotated by more than one labeler. The multi-

ple labels obtained per object are then combined to produce one final label for quality assurance.

Since the ground truth, instance difficulty and the labeler ability are generally unknown entities, the

aggregation task becomes a “chicken and egg” problem to start with. While significant progress

has been made on the process of aggregating crowd labeling results, e.g., [Karger et al., 2014;

Sheng et al., 2008; Whitehill et al., 2009], it is well-known that the precision and accuracy of label-

ing can vary due to differing skill sets. The labelers can be good/experienced, random/careless or

even oppositional.

Oppositional labelers can include both intentionally or unintentionally oppositional. Intention-

ally oppositional labelers are those who identify the correct labels and change them strategically

while unintentionally oppositional labelers demonstrate the same labeling behavior due to some

misunderstanding about the labeling task. Throughout the rest of this paper, we will refer to both

kinds as oppositional labelers.
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Figure 1.4: Phase transition in the performance of majority voting, GLAD [Whitehill et al., 2009],

Dawid and Skene’s method [Dawid and Skene, 1979], Belief Propagation [Liu et al., 2012] and

Karger’s iterative method [Karger et al., 2014] on the University of California Irvine (UCI) Machine

Learning Repository Chess dataset.

One of the main challenges in crowd labeling is that the proportion of low-quality/oppositional

labelers is unknown. High proportion of low quality (random and oppositional) labelers can often

result into a phase transition leading to a steep, non-linear drop in labeling accuracy as noted by

[Karger et al., 2014].

We observed a similar phenomenon in the experiments we conducted on five benchmark datasets

from the University of California Irvine (UCI) Machine Learning Repository [Asuncion and New-

man, 2007]. We used majority voting, GLAD (Generative model of Labels, Abilities, and Diffi-

culties) by [Whitehill et al., 2009], Dawid and Skene’s method [Dawid and Skene, 1979], Karger’s

iterative method [Karger et al., 2014] and Belief Propagation [Liu et al., 2012]. The crowd labels

for all these datasets were simulated. Figure 1 illustrates the phase transition for the UCI Chess

dataset of 3,196 instances. We assume that a good labeler makes less than 35% mistakes, a random
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labeler makes between 35% to 65% mistakes, while a bad labeler makes more than 65% mistakes.

This highlights the larger challenge of producing an objective assessment to measure the quality of

the crowd for a given task.

Other than phase transition, many basic questions remain unresolved that make crowd labeling

a prevailing research topic, e.g., [Dekel and Shamir, 2009; Hovy et al., 2013a; Liu et al., 2012;

Donmez and Carbonell, 2008]. The unresolved questions include:

1. What are the best ways to evaluate labeler ability and instance difficulty?

2. It is common to use expert-labeled instances or ground truth to evaluate labelers and in-

stances [Le et al., 2010; Khattak and Salleb-Aouissi, 2011; Khattak and Salleb-Aouissi, 2012;

Khattak and Salleb-Aouissi, 2013]. The question is, how many expert-labeled instances

should be used in order to obtain an accurate evaluation?

3. How can labelers and instances be evaluated if ground truth is not known with certitude?

4. Is there any optimal way to combine multiple labels to get the best labeling accuracy?

5. Should the labels provided by oppositional labelers be discarded and blocked? Or is there a

way to use the “information” provided by oppositional labelers?

1.4 Summary of Contributions

In this thesis, we have presented two different approaches to improve crowd labeling accuracy (a) A

Frequentist Approach (b) A Bayesian Approach. Both of which are based on parameter estimation.

In the first approach parameters are learned by taking the frequency of correct labels provided for

the expert-labeled instances, therefore this approach is named as frequentist approach. The second

approach involves parameter estimation using a Bayesian method. In both approaches, the following

assumptions are made.

Through out this thesis we assume:

• Classes are predefined and presented to the labelers to choose from.

• Domain experts are available to label a small fraction of dataset, usually 0.1%- 10%.
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• Expert labels are assumed to be ground truth unless otherwise stated.

• We categorize the crowd labelers into three categories; good, random and oppositional. This

is done based on their accuracy level. A good crowd labeler is assumed to make less than

35% mistakes, a random crowd labeler makes 35% to 65% mistakes and an oppositional

crowd labeler makes 65% to 100% mistakes. Categorization is done for better visualization

of results. More details about labeler categorization are available in Table 2.1.

A brief introduction of our frequentist and Bayesian approaches is given below.

1.4.1 Frequentist Approach

We present a framework called Expert Label Injected Crowd Estimation (ELICE). ELICE has three

different versions along with their respective variants. The goal of ELICE is to provide better

accuracy for the labeling/annotation tasks for which predefined options of answers are available.

We have assumed the scenario of labeling to be questions with multiple choices provided to the

labelers.

All versions of ELICE rely on expert labels for a small subset of randomly chosen instances

from the dataset. However, it can be noted that instead of random choice of the instances, experts

can also help in identifying the representative instances of each class. These expert-labeled instances

are used to evaluate labeler ability and data instance difficulty that help to improve the accuracy of

the final labels. For the first two versions of ELICE, we assume that expert-labels are ground truth

labels. In the third version of ELICE however, we assume that expert-labels may not be ground

truth either because the experts do not agree on the same label or because the instances are difficult

and alternative methods to get ground truth are infeasible.

Earliest versions of ELICE were published in the workshop papers [Khattak and Salleb-Aouissi,

2011; Khattak and Salleb-Aouissi, 2012], which are presented as ELICE 1 in this thesis. ELICE

1 estimates the parameters, i.e., labeler expertise and data instance difficulty, using the accuracy of

crowd labelers on expert-labeled instances [Khattak and Salleb-Aouissi, 2011; Khattak and Salleb-

Aouissi, 2012]. The multiple labels for each instance are combined using weighted majority voting.

These weights are the scores of labeler reliability on any given instance, which are obtained by

inputting the parameters in the logit function.
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We also present ELICE 2 [Khattak and Salleb-Aouissi, 2013] with a new and improved aggre-

gation method that genuinely takes advantage of the labels provided by oppositional labelers. In

the second version of ELICE [Khattak and Salleb-Aouissi, 2013], we introduce entropy as a way to

estimate the uncertainty of labeling. This provides an advantage of differentiating between good,

random and oppositional labelers. The aggregation method for ELICE version 2 flips the label (for

binary classification case) provided by the oppositional labeler thus utilizing the information that is

generally discarded by many other labeling methods.

Both versions of ELICE have a cluster-based variant in which rather than making a random

choice of instances from the whole dataset, clusters of data are first formed using any clustering

approach e.g., K-means. Then equal number of instances from each cluster are chosen randomly to

get expert-labels. This is done to ensure equal representation of each class in the test-dataset.

Besides taking advantage of expert-labeled instances, the third version of ELICE, incorporates

pairwise/circular comparison of labelers to labelers and instances to instances. The idea here is

to improve the accuracy by using the crowd-labels, which unlike expert-labels, are available for

the whole dataset and may provide a more comprehensive view of the labeler ability and instance

difficulty. This is especially helpful for the case when the domain experts do not agree on one

label and ground truth is not known for certain. Therefore, incorporating more information beyond

expert-labels can provide better results.

We show empirically that our approaches are robust even in the presence of a large proportion

of low-quality labelers in the crowd. This procedure also helps in stabilizing labeling process and

delaying the phase transition to inaccurate labels. Furthermore, we derive a lower bound of the

number of expert labels needed [Khattak and Salleb-Aouissi, 2013]. This lower bound is a function

of the overall quality of the crowd and difficulty of the dataset. We present experiments showing

the effectiveness of the lower bound to get better accuracy of the final label.

1.4.2 Bayesian Approach

In the second part of this thesis, we explore a Bayesian approach to the labeling. We present Crowd

Labeling Using Bayesian Statistics (CLUBS), a new approach for improved crowd labeling to esti-

mate labeler and instance parameters along with label aggregation. Our approach is inspired by Item

Response Theory (IRT) Lord [1952], which is used to design and analyze test scoring strategies to
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evaluate students. We introduce new parameters and refine the existing IRT model parameters to fit

the crowd labeling scenario. The main challenge is that unlike IRT, in the crowd labeling case, the

ground truth is not known and has to be estimated based on the parameters. To overcome this chal-

lenge, we acquire expert labels (ground truth) for a small fraction of instances in the dataset. Our

model estimates the parameters based on the expert-labeled instances. The estimated parameters

are used to perform weighted aggregation of crowd labels for the rest of the dataset. Experiments

are conducted on synthetic data and two real datasets, which show that overall our method performs

better than state-of-the-art crowd labeling methods.

1.5 Thesis Outline

This thesis is summarized and organized as follows:

• We present the ELICE framework in chapter 2.

• Empirical evaluation of ELICE is reported in Chapter 3.

• In Chapter 4, we present the theoretical framework to derive a lower bound on the number of

expert labels needed for ELICE along with empirical evaluation.

• We present the Bayesian framework CLUBS in Chapter 5.

• Results for experiments using CLUBS are presented in Chapter 6. This chapter also contains

the significance test results to check the significance of the accuracy of different methods.

Moreover, the impact of using noisy final-labels as training data is evaluated.

• Chapter 7 summarizes the past and contemporary work in the crowd labeling area.

• Chapter 8 concludes the thesis by discussing the future directions of crowd labeling.
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Part I

The Frequentist Approach
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Chapter 2

Expert Label Injected Crowd

Estimation (ELICE)

In this chapter, we present our frequentist approach called Expert Label Injected Crowd Estimation

(ELICE). ELICE has three versions with two variants each. All versions of ELICE use expert labels.

For the first two versions of ELICE, we assume that expert labels are equivalent to ground truth but

for the third version, we assume that expert labels may not be gold labels. For all versions of

ELICE labeling classes are pre-defined. We present empirical evaluations on different datasets with

simulated and real labels in the next chapter.

2.1 Notation & Scenario

Throughout the first part of this thesis, the following notation and scenario are used.

Dataset: D,

Cardinality of the dataset D: N ,

Label categories: {−1, 1},

Number of crowd labelers: M ,

Index i: Represents instances i ∈ {1, 2, 3, ..., N},

Index j: Represents labelers j ∈ {1, 2, 3, ...,M},

Crowd label for ith instance by the jth labeler: lij ,

A subset of randomly chosen instances to get expert labels: D′(⊂ D),
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Number of expert-labeled instance: n << N ,

Expert-labels for instance i: Li,

Labeler ability of labeler j: αj ,

Instance difficulty of instance i: βi.

Scenario: Let D be a dataset of N unlabeled instances. We assign M crowd labelers to

label the whole dataset; each instance i will receive a label lij ∈ {±1} from labeler j, where

i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. To evaluate the performance of the labelers, we get “ground

truth” labels Li for a random sample D′(⊂ D) of cardinality n << N (usually 0.1% -10% of the

dataset). Instances of D′ are labeled by one or more experts getting one expert-label each.

2.2 Labeler Categories

Labelers can be of different ability level and need to be categorized accordingly for a better under-

standing of labeling process. Initially, we categorized the labelers into 11 different categories based

on their performance, as given in the first column of Table 2.1. But for convenience and reduced

complexity as well as a better understanding of the labeler performance, we reduced the categories

to only three that is good, random and oppositional, mentioned in the third column of Table 2.1.

Good labelers: It should be noted that the labeler categorized as “good” does not necessarily have

the exceptional performance and can make up to 35% mistakes. The reason this labeler is catego-

rized as “good” is because such labeler will be correct more than 65% of the time and the labels

provided by this labeler can potentially help in the labeling task.

Random labelers: These labelers make 36% to 65% mistakes. Random labelers are labelers who

randomly label without paying any attention to the instances. These labelers are either lazy or want

to get more work done in a short time to be able to earn more money. They provide least or no

information as their labeling is random (or nearly random) and cannot help in the labeling process.

Oppositional labelers: Similarly, oppositional labeler category includes all the labelers with less

than 65% of correct answers, which means these labelers provide wrong labels most of the time. It

is important to note that this category can be subdivided into two kinds of labelers (a) the labelers

being oppositional because they misunderstood the task (b) the labelers being oppositional because
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Category % of mistakes Combined category

Exceptional 0% -5%

Excellent 6% -15%

Good

Competent 16% -25%

Fair 26% -35%

Nearly random 36% -45%

Totally Random 46% -55% Random

Nearly random 56% -65%

Bad 66% -75%

Incompetent 76% - 85%

Oppositional

Malicious 86% - 95%

Totally oppositional 96% - 100%

Table 2.1: Categorization of labelers
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they are really malicious and deliberately provide wrong labels. The outcome of both subcategories

is the same hence they are combined and dealt with in the same manner throughout this thesis. Since

in this thesis, we have focused on binary labeling only, the oppositional labelers will be providing

flipped labels, irrespective of the reason for their oppositional behavior.

It is also worth noting that in all our methods presented in this chapter, the labels provided by

all the labelers categorized as “good” are not treated in the same way in the final aggregation. The

higher the mistakes level of the labeler the lower weight his labels will have. This automatically

adjusts the impact of any labeler in the final aggregation of labels. The same is true for the other

two categories, that is random and oppositional labelers.

2.3 ELICE 1 Framework

In this section, we present the first version of ELICE [Khattak and Salleb-Aouissi, 2011] along with

its variant called ELICE with clustering. The detailed methodology is described below.

2.3.1 ELICE 1

We start by calculating the parameters: labeler ability and instance difficulty based on n expert-

labeled instances. The ability of labeler j, denoted by αj , can have a value between -1 and 1, where

1 is the score of a labeler who labels all instances correctly and -1 is the score of a labeler who labels

everything incorrectly. This is because the expertise of a crowd labeler is penalized by subtracting 1

when he makes a mistake but it is incremented by 1 when he labels correctly. At the end, the sum is

divided by n. Similarly, βi denotes the difficulty level of instance i, which is calculated by adding

1 when a crowd labeler labels that particular instance correctly. The sum is normalized by dividing

by M . It can have a value between 0 and 1, where 0 is for difficult instances and 1 is for the easy

ones. We calculate αj’s and βi’s as follows,

Labeler ability = αj =
1

n

n∑
i=1

[1(Li = lij)− 1(Li 6= lij)] (2.1)

Instance difficulty = βi =
1

M

M∑
j=1

[1(Li = lij)] (2.2)
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where j = 1, . . . ,M and i = 1, . . . , n.

We infer the rest of the (N − n), β’s based on α’s . As the true labels for the rest of instances

are not available, we try to find an approximation which we name as hypothesized label (HL),

HLi = sign(
1

M

M∑
j=1

αj ∗ lij) (2.3)

These hypothesized labels are used to approximate the β’s ,

βi =
1

M

M∑
j=1

[1(HLi = lij)] (2.4)

The logistic function denoted by σ is used to calculate the score associated with the correctness of

a label, based on the level of expertise of the crowd labeler and the difficulty of the instance. This

score gives us the approximation of the true labels (F) using the following formula:

Fi = sign(
1

M

M∑
j=1

σ(αjβi) ∗ lij) (2.5)

Here i denotes the instances for which expert-labels are not available.

2.3.2 ELICE 1 with Clustering

We propose a variation of ELICE called ELICE with clustering. Instead of picking the instances

randomly from the whole dataset D to acquire expert labels, clusters of instances in D are first

formed by applying k-means clustering using the features (if available); then equal numbers of

instances are chosen from each cluster and given to the expert to label. This allows us to have

expert-labeled instances from different groups in the data, particularly when the dataset is highly

skewed. Another possibility is to use any other method of clustering, for instance, K-means++

[Arthur and Vassilvitskii, 2007].

2.3.3 Test case

We use the UCI Chess dataset as a test case to see the effectiveness of our method (see Figure 2.1).

Chess dataset consists of 3196 instances out of which we used 20 as expert-labeled instances for

ELICE 1. It can be seen that ELICE 1 performs better than state-of-the-art methods by delaying
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Figure 2.1: Performance on the UCI Chess dataset. We start with all good labelers and keep on

increasing the percentage of random and oppositional labelers. Number of expert labels used for

ELICE and all its versions is 20.

phase transition. As the percentage of good labelers decreases the performance of state-of-the-art

methods deteriorates while ELICE stays stable. State-of-the-art methods include majority voting,

GLAD [Whitehill et al., 2009], Dawid and Skene’s method [Dawid and Skene, 1979], Belief Prop-

agation [Liu et al., 2012], and Karger’s iterative method [Karger et al., 2014].

2.3.4 Summary

This version of ELICE is simple and easy to implement. It provides better results than state-of-the-

art methods. The key factor in this version of ELICE is that it relies on the judgment of the good

labelers minimizing the effect of the random or oppositional labelers. This can especially be helpful

when at least one good labeler is available. The low computational cost and effectiveness of the

approach as compared to state-of-the-art methods are the main advantages of this methodology.
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2.4 ELICE 2 Framework

In the first version of ELICE, the random and oppositional labelers are treated in the same way i.e.,

their opinion is weighted less than the good labelers. However, it is known from the crowd labeling

literature, e.g., [Raykar and Yu, 2012] that oppositional labelers can be informative in their own

way and once they are identified, their labels can be adjusted to get the underlying possibly correct

labels.

The random labelers, on the other hand, are those who label without paying attention to in-

stances. Therefore, their labels merely add noise to the labeling process. The oppositional labelers

are not random in their labels. They take time to identify the instance, try to infer the correct la-

bel and then flip it intentionally or unintentionally (assuming binary classification). Therefore, if we

know the underlying intentions of a labeler in advance, we can obtain the correct label by decrypting

the provided label.

In the second version of ELICE, we have incorporated the idea of utilizing the labels provided

by the oppositional labelers. Just like the previous version of ELICE, the labeler ability and in-

stance difficulty are evaluated but this time the evaluation involves the concept of entropy. Entropy

measures the uncertainty of the information provided by the labelers (or uncertainty about the in-

formation obtained for the instances). A random labeler will have a high entropy while the good or

oppositional labeler will have a low entropy.

This lets us differentiate between random vs. oppositional or good labelers. Then the oppo-

sitional and good labelers are separated. ELICE 2 assigns low weights to the labels of a random

labeler and high weights to the labels of a good labeler. Oppositional labelers’ annotations are also

highly weighted but after adjusting the labels provided by them. This helps us in using the informa-

tion that is discarded by many other label aggregation methods. Clustering method can also be used

for this version of ELICE.

2.4.1 ELICE 2

In this section, we present methodology for ELICE 2.
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2.4.1.1 Labeler Expertise

We use expert-labeled instances to evaluate the labelers by finding the probability of getting correct

labels. This estimation of labeler’s performance has a factor of uncertainty since it is based on a

sample. Therefore, the entropy function can be a natural way to measure this uncertainty. Entropy

is high when the probability is around 0.5 as we are least certain about such a labeler and it is low

when the probability is close to 0 or 1. The formula for the entropy for a worker j is given by:

Ej = −pjlog(pj)− qjlog(qj) such that, pj =
n+j
n

qj = 1− pj (2.6)

n+j = |correctly labeled instances from D′ by labeler j|

Since we are more interested in the reliability of the assessment, we take (1 − Ej). In order to

differentiate between good and bad labelers, we multiply by (pj−qj). This assigns a negative value

to the bad labeler and positive value to the good one. We define the expertise of the labeler as

αj = (pj − qj)(1− Ej) (2.7)

where αj ∈ [−1, 1]. The multiplication by (pj − qj) also allows for less variability in αj when

the number of correct and incorrect labels is close, assuming that it can be due to the choice of the

instances in D′. This Equation 2.7 is described as the difference of the probability of getting correct

labels and probability of getting incorrect labels by labeler j times the measure of certainty of the

label provided by labeler j.

We can use α to categorize the labelers as follows:

• Random guesser is the labeler with α close to zero. This labeler is either a lazy labeler who

randomly assigns the labels without paying any attention to the instances or an inexperienced

labeler.

• Good labeler is the labeler with α close to 1. He does a good job of labeling.

• Oppositional labeler is the labeler with α close to -1. He guesses the correct label and then

flips it.
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2.4.1.2 Instance Difficulty

Similarly, the difficulty of an instance is defined as:

βi = (p′i − q′i)(1− E′i) + 1 (2.8)

where p′i =
M+

i
M q′i = 1− p′i, p′i is the probability of getting a correct label for instance

i, from the crowd labeler and M+
i is the number of correct labels given to the instance i. Also,

E′i = −p′ilog(p′i)− q′ilog(q′i) (2.9)

represents the entropy for the instance i which measures the uncertainty in our assessment of the

difficulty of the instance. All these values are calculated using the expert labeled instances. We

have added 1 to the formula in (2.8) because we find it more convenient mathematically to make the

value of β positive. Another reason for adding 1 is that we cannot assume the difficulty level to be

negative, just because the labelers did a bad job of labeling. This Equation 2.8 is described as the

difference of the probability of getting correct labels and the probability of getting incorrect labels

for instance i times the measure of certainty of the label provided for instance i plus1.

We have βi ∈ [0, 2] which is used to categorize the instances as follows:

• Easy instance is the one with β close to 2.

• Average difficulty instance is the instance with β around 1.

• Difficult instance is the instance with β close to 0.

To judge the difficulty level of the remaining (N − n) instances, we define hypothesized labels

Wi as:

HLi = sign(

M∑
j=1

αj ∗ lij) (2.10)

The rest of β’s are estimated by:

βi = (p′′i − q′′i )(1− E′′i ) + 1 (2.11)

where p′′i , q
′′
i , E

′′
i are calculated using the hypothesized labels.
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2.4.1.3 Label Aggregation

The parameters α and β are used to aggregate the labels. As a first step for this aggregation, we

calculate the probability of getting a correct label for instance i from the labeler j defined as

P (Li = lij |αj , βi) = σ(cαjβi), (2.12)

where Ti is the true but unknown label for the instance i. In this function, c is a scaling factor with

value 3. The reason for multiplying with this scaling factor is to span the range of the function to

[0,1], otherwise the values only map to a subinterval of [0,1]. The value 3 is chosen due to the fact

that αjβi ∈ [−2, 2] and cαjβi ∈ [−6, 6], the latter choice maps to all values in the interval [0,1].

Since in this version of ELICE, we are able to identify random and oppositional labelers sepa-

rately, we can make use of this information. We have incorporated this aspect of knowledge in the

aggregation formula.

FLi = sign(
M∑
j=1

σ(|cαjβi|) ∗ Lij ∗ sign(αjβi)) (2.13)

This formula flips the label when the product αβ is negative, which means α is negative (as β is

always positive) and the labeler is on the oppositional side. If the product |αβ| has large value,

logistic function will weight the label higher and for small value of |αβ| the weight is small. So

for a given instance, when the labeler is random the weight assigned to the label will be low, when

the labeler is good or oppositional the weight is high. But for the oppositional labeler, label is

automatically flipped because of being multiplied to sign(αβ). This case is specially helpful when

many labelers are oppositional.

2.4.2 ELICE 2 with Clustering

ELICE 2 also has a cluster-based variant. We cluster the data and choose equal number of instances

from each cluster, to get expert-labels. The rest of the method remains the same.

2.4.3 Test case

Figure 2.2 shows the performance of majority voting, GLAD [Whitehill et al., 2009], Dawid and

Skene’s method [Dawid and Skene, 1979], Belief Propagation [Liu et al., 2012], Karger’s iterative
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method [Karger et al., 2014], ELICE 1, ELICE 1 with clustering, ELICE 2 and ELICE 2 with

clustering on the University of California Irvine (UCI) Machine Learning Repository Chess dataset.

We start with all good labelers and keep on increasing the percentage of random and oppositional

labelers. Number of expert labels used for ELICE and all its versions is 20

We can see that ELICE 2 performs not only better than all state-of-the-art methods but also better

than ELICE 1, especially when all or most labelers are oppositional. The reason is that ELICE 2 is

able to utilize the information provided by the oppositional labelers, which is wasted in most cases.
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Figure 2.2: Accuracy of state-of-the-art methods along with ELICE 1 and 2 on UCI chess dataset.

2.4.4 Summary

This version of ELICE provides a better accuracy as compared to the previous version as can be

seen in Figure 2.2. The main reason is that the entropy helps in identifying the good, random and

oppositional labelers. A better aggregation of labels leads to incorporating the information from the
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oppositional labelers, which improves the labeling accuracy.

2.5 ELICE 3 Framework

In the previous versions of ELICE, we have assumed the availability of domain experts who provide

correct labels without making mistakes. Therefore, expert-labeled instances serve as ground truth.

But sometimes, ground truth is not known for certain due to one or more of the following problems

in the crowd labeling scenario:

• Expert-labels can be wrong due to the complexity of the task.

• Experts do not agree on one label and have diverse opinions.

• A ground truth cannot be obtained using methods other than expert-evaluation or has a high

acquisition cost (e.g., a biopsy in the case of a brain tumor.)

In this situation, we propose to add more information other than expert-labeled instances by involv-

ing labeler to labeler and instance to instance comparisons. Since the expert labels are available

for a subset of instances and have a chance of being wrong, incorporating crowd labels, which are

available for the whole dataset can help. This can increase the chance of refining the estimates of

the labeler ability and instance difficulty.

In this version of ELICE, the initial inputs of α and β are taken from ELICE 2 with the only

difference that the expert labels are not necessarily ground truth. Based on this information the

pairwise comparison is performed. While this version of ELICE is computationally more expensive

than ELICE 1 and 2, it can be helpful when ground truth is not known with certainty. To reduce the

computational complexity, we also propose ELICE with circular comparison.

2.5.1 ELICE 3 with Pairwise Comparison

In this variant of ELICE, we use a generalization of the model in [Bradley and Terry, 1952; Huang

et al., 2006]. In this generalized model, pairwise comparison is used to rank teams of players of

a game based on their abilities. The approach uses the previous performance of the players as an

input to the model. We use a similar idea to find the expertise of the labelers and difficulty of the

instances.
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We obtain the average score of the labelers and instances that is calculated using the α’s and

β’s, which we get through the expert evaluation. In our approach we compare labeler to labeler and

instance to instance. There are M
′
=
(
M
2

)
pairwise comparisons for M labelers and N

′
=
(
N
2

)
pairwise for N instances. The level of ability of a labeler j based on a pairwise comparison is

denoted by α′j . Similarly, the difficulty of instance i based on the pairwise comparison is denoted

by β′i.

The procedure for finding α′js is described as follows. We assume that the actual performance

of labeler j, which is represented by a random variableXj , has some unknown distribution. In order

to avoid computational difficulties we assume that the Xj has a doubly exponential extreme value

distribution with a mode equal to α′j .

P (Xj ≤ x) = exp(exp−(x− α′j)) (2.14)

This distribution ensures that the extreme values are taken into consideration, and variance is

directly affected by the values but is not dependent on the mean of the distribution. Hence according

to [Huang et al., 2006]:

P (Cj is more expert than Ck) =
exp(α′j)

(exp(α′j) + exp(α′k))
(2.15)

where Cj is the crowd labeler j and Ck is the crowd labeler k. We use β’s and β’s to calculate

the average score of reliability of the labelers denoted by Pj .

Pj =
1

M

N∑
i=1

σ(cαjβi) (2.16)

The average score is calculated to make sure that, while doing a pairwise comparison of labelers,

their average performance on the whole dataset is taken into consideration. We assume that the

probability of one labeler being better than another labeler is estimated by the ratio of the average

score of the labelers [Huang et al., 2006]. This can be expressed in the form of an equation by using

equation 2.15 and the ratio of Pj and Pj + Pk.

exp(α′j)

(exp(α′j) + exp(α′k))
≈ Pj

Pj + Pk
(2.17)

=⇒ 1

(1 + exp(−(α′j − α′k)))
≈ 1

1 + Pk

Pj
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=⇒ (α′j − α′k) ≈ log(
Pj
Pk

) (2.18)

This can be formulated as the least square model:

=⇒ min
α′

M∑
j=1,k=j+1

[(α′j − α′k)− log(
Pj
Pk

))]2 (2.19)

Which can be written in the matrix form as

min
α′

(Gα′ − d)T (Gα′ − d) (2.20)

G is a matrix of order M ′ x M . The rows represent comparisons and columns represent the

labelers. The matrix is defined as

Glj =


1 j is the first labeler in the lth comparison

−1 j is the second labeler in the lth comparison

0 labeler j is not in the lth comparison

(2.21)

where j = 1, 2, . . . ,M ; l = 1, 2, . . . ,M
′

Also,

d(j,k) = log(
Pj
Pk

) (2.22)

where j = 1, 2, . . . ,M ; k = j + 1, j + 2, j + 3, . . . ,M .

We can derive the following expression:

α′ = (GTG)−1GTd (2.23)

In order to avoid the difficulties when the matrix GTG is not invertible, we add a regularized

term µα′Tα′ where µ is a very small real number which can be learned heuristically.

min
α′

(Gα′ − d)T (Gα′ − d) + µα′Tα′ (2.24)

The resulting expression for α′ we get is,

α′ = (GTG+ µI)−1GTd (2.25)

where I is the identity matrix.
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This procedure can be repeated to find an expression for β′s . First we find the average score of

the difficulty of each instance:

Qi =
1

N

M∑
j=1

σ(cαjβi) (2.26)

Then repeating the above mentioned steps and adding 1s to make β′s positive, we get

β′ = (HTH+ νI)−1HTd′ + 1 (2.27)

where d′(i,p) = log(
Qi

Qp

) and i = 1, 2, . . . , N ; p = i+ 1, i+ 2, . . . , N.

Also,

Hri =


1 i is the first instance in the rth comparison

−1 i is the second instance in the rth comparison

0 instance i is not in the rthcomparison

(2.28)

such that i = 1, 2, . . . , N ; r = 1, 2, 3...N
′
.

After finding the α′js and β′is we use them to infer the labels.

Ai = sign(
M∑
j=1

σ(|cαjβi|) ∗ Lij ∗ sign(αjβi)) (2.29)

As in the previous version of ELICE, we multiply α′jβ
′
i by a scaling factor c to make sure that

the range of the values is mapped to the whole range of the logistic function i.e., [0,1] and not just on

its subinterval. This also serves to make the difference between the expertise of workers on different

instances more pronounced. Since in this case the value of the product |αjβi| << 1, the value of c

has to be large. We used c = 100, chosen heuristically through experiments.

2.5.2 ELICE 3 with Circular Comparison

ELICE with circular comparison is a variant of ELICE with pairwise comparison. Instead of making

comparison of every two labelers, it compares labelers to labelers and instances to instances in a

circular fashion, for example, 1 to 2, 2 to 3, . . ., i to i+ 1, . . ., M − 1 to M , M to 1. Our empirical

results show that this produces results as good as ELICE with pairwise comparison but substantially

reduces the computational cost.
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2.5.3 Test case

Figure 2.3 presents the performance of majority voting, GLAD [Whitehill et al., 2009], Dawid and

Skene’s method [Dawid and Skene, 1979], Belief Propagation [Liu et al., 2012], Karger’s iterative

method [Karger et al., 2014], ELICE 1, ELICE 1 with clustering, ELICE 2, ELICE 2 with cluster-

ing, ELICE 3 and ELICE 3 with clustering on the University of California Irvine (UCI) Machine

Learning Repository Chess dataset. We start with all good labelers and keep on increasing the per-

centage of random and oppositional labelers. Number of expert labels used for ELICE and all its

versions is 20.
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Figure 2.3: Accuracy of state-of-the-art methods along with ELICE 1, 2 and 3 on UCI chess dataset.

2.5.4 Summary

This version of ELICE is based on the idea of incorporating more information by comparison of

labeler to labeler and instance to instance when ground truth is not known with certitude. This

version has a higher computational cost than our previous approaches, especially in the case of
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large dataset but can produce good results by using most of the available information. The test case

results can be seen in Figure 2.3, more detailed experiments are presented in the next section.
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Chapter 3

Empirical Evaluation

We implemented ELICE and its variants in Matlab. We compare our method to Majority voting (dif-

ferent variants), GLAD and GLAD with clamping [Whitehill et al., 2009], Dawid and Skene method

[Dawid and Skene, 1979], EM (Expectation Maximization), Karger’s iterative method [Karger et

al., 2014], Mean Field algorithm and Belief Propagation [Liu et al., 2012]. Please note that Karger’s

iterative method, Mean Field method and Belief Propagation have two versions each due to different

parameter setting.

We also compared our results to a variant of majority voting that is majority voting with gold

(expert labels) testing. In this variant, votes are aggregated after discarding the labels provided

by the labelers who are below the specified performance threshold. The gold testing is done on

randomly picked instances from the dataset, which are labeled by the expert. The number of expert-

labeled instances used were same as the number used for ELICE and its versions.

All of these methods were also implemented in MATLAB and in most cases, the code was

obtained from authors of the methods. We conducted the experiments using simulated and real

crowd labels on the different datasets as follows:

• Five datasets from the University of California Irvine (UCI) Machine Learning Repository

repository [Asuncion and Newman, 2007]: IRIS, Breast Cancer, Tic-Tac-Toe, Chess, Mush-

room (Section 3.1). Crowd labels are simulated for different percentage of random and oppo-

sitional crowd-labelers in the pool of labelers.

• Two real applications Tumor Identification dataset and Race Recognition dataset (Section 3.3
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and 3.2) for which we use Amazon Mechanical Turk to acquire labels from the crowd.

3.1 UCI Machine Learning Repository Datasets

We selected above-mentioned five UCI datasets. Classification tasks for these datasets are as fol-

lows:

• IRIS: Flower type, restricted to 2 classes only.

• Breast cancer: Malignant/Non-malignant tumor.

• Tic-Tac-Toe: x-can-win/x-cannot-win.

• Chess: White-can-win/White-cannot-win.

• Mushroom: Edible/Non-edible.

3.1.1 Experimental Design

In these experiments, we simulate crowd labels for each instance. The labels are generated so that

a good crowd labeler makes less than 35% mistakes, a random crowd labeler makes 35% to 65%

mistakes and an oppositional crowd labeler makes 65% to 100% mistakes. These are created by

inverting x% of the original labels in the dataset, where x is a random number between 0 and 35

for good labeler, 35 to 65 for random labeler and 65 to 100 for oppositional labeler. We simulate

the labels using MATLAB pseudo random number generator to ensure randomness. We randomly

select n number of instances to play the role of the expert-labeled instances. In the cluster-based

methods, built-in MATLAB k-means function is used for clustering the instances.

Simulated data is used to cover all possible labeler types, categorized as good, random and

oppositional. Simulated labels helps us understand the performance of different methods with dif-

ferent combinations of labeler types. We observed similar patterns in the real data that we pub-

lished on Amazon Mechanical Turk as well as in the other labeled data available at the website

http://ir.ischool.utexas.edu/square/data.html. While a large percentage of real labelers was from the

good or random category, there are cases where labelers want to attain a specific purpose and behave

maliciously (discussed in more detail in Section 3.5). Therefore, we assume that our simulated data

represents all real-life cases and gives us a broader picture.
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3.1.2 Results

Table 3.1 shows a comparison of the accuracy of different methods along with ELICE across the

five datasets. We use different percentages of random and oppositional labelers while the rest of the

labelers are good. Table 3.1 has three sections, showing results for 30% or less, 30% − 70% and

70% or more, random or oppositional labelers in the crowd. In the first section, it is evident that

when most of the labelers are good, all the methods even majority voting, perform really well. For

the case when there are 30% − 70% random and oppositional labelers, the performance of all the

methods drops except for ELICE and majority voting with gold testing.

However, it should be noted that majority voting with gold testing is not always reliable. The

reason is that majority voting with gold testing, in many cases, results into “NaN” due to all labelers

being discarded based on gold testing. The reported results in this table were averaged only over

the cases when the experiments produced a number. Although majority voting with gold testing

outperforms other methods in some cases but its performance remains unpredictable due to resulting

in “NaN” many times. On the other hand, ELICE is able to produce highly accurate results without

any factor of uncertainty. In the third section of Table 3.1 where there are more than 70% random

and oppositional labelers, the performance of almost all the methods except ELICE drops to zero.

All versions of ELICE substantially outperform all other methods, especially ELICE 2 which has

the mechanism to flip the labels of oppositional labelers. Even majority voting with gold testing is

unable to beat ELICE.

In Figures 3.1, 3.2, and 3.3, we show the accuracy of the methodologies for the IRIS and UCI

breast cancer dataset for (a) good & oppositional, (b) random & oppositional and (c) good & ran-

dom labelers respectively. All these graphs show the superiority of ELICE on other state-of-the-art

methods. In Figure 3.1, we can see that ELICE 1 has a good performance even in the presence of

all oppositional labelers and phase transition is delayed. ELICE 2 and ELICE 3 are able to perform

exceptionally well due to the ability to flip the labels of the oppositional labelers. In Figure 3.2 we

see that the performance of all the methods is around 50% when all the labelers are random but

as the number of oppositional labelers is increased the performance of ELICE 2 and 3 improves,

the accuracy of ELICE 1 drops slowly, and the accuracy of rest of the methods immediately drops

to zero. In Figure 3.3, we see that all the methods have the similar performance when there is a

combination of good and random labelers.
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Random/Oppositional

Dataset (D) Mushroom Chess Tic-Tac-Toe Breast Cancer IRIS

Total instances (N ) 8124 3196 958 569 100

Labelers +ve/-ve instances 3916/ 4208 1669/1527 626/332 357/212 50/50

Expert labels(n) 20 8 8 8 4

Less than 30%

Maj. Voting 0.9918 0.9822 0.9718 0.9842 0.9925

Maj. Voting (25%1) 0.99952 NaN3 0.99972 0.99692 0.99002

Maj. Voting (35%1) 0.98882 0.98882 0.99952 0.99562 0.99502

Maj. Voting (45%1) 0.99942 1.00002 0.99952 0.99562 1.00002

Maj. Voting (55%1) NaN3 1.00002 0.99822 0.99742 NaN3

GLAD 1.0000 1.0000 1.0000 1.0000 1.0000

GLAD with clamping 1.0000 1.0000 1.0000 1.0000 1.0000

Dawid Skene 1.0000 1.0000 1.0000 1.0000 1.0000

EM 1.0000 1.0000 1.0000 1.0000 1.0000

Belief Propagation 1 ——4 0.9918 1.0000 1.0000 1.0000

Belief Propagation 2 ——4 ——4 1.0000 1.0000 1.0000

Mean Field 1 1.0000 1.0000 1.0000 1.0000 1.0000

Mean Field 2 1.0000 1.0000 1.0000 1.0000 1.0000

Karger 1 1.0000 1.0000 1.0000 1.0000 1.0000

Karger 2 1.0000 1.0000 1.0000 1.0000 1.0000

ELICE 1 0.9988 0.9994 0.9989 0.9993 1.0000

ELICE 1 with clustering 0.9993 0.9994 0.9989 0.9991 1.0000

ELICE 2 0.9997 0.9999 1.0000 0.9989 1.0000

ELICE 2 with clustering 0.9998 1.0000 1.0000 0.9991 1.0000

ELICE 3 Pairwise ——5 0.9768 0.9925 0.9701 0.9959

ELICE 3 Circular 0.9567 0.9800 0.9842 0.9635 0.9891

Table continued on next page

1Using the labels provided by the labelers with performance above the given threshold. Performance was checked

based on expert labeled instances.

2In many cases, majority voting with gold testing resulted into NaN (Not a number) due to all labelers being discarded

in the testing phase. The reported results were averaged, only over the cases when the experiments produced a number,

ignoring the case when the results were NaN.

3 No result was produced as all labelers were discarded when tested, in all the runs of the experiment.

4Code for Belief propagation did not converge.

5Code for ELICE pairwise was parallelized for datasets with more than 3000 instances. For Mushroom dataset due to

high time and space complexity as well as hardware availability constraints, it was not feasible to calculate the results.
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Table 3.1 – continued from previous page

Random/Oppositional

Dataset (D) Mushroom Chess Tic-Tac-Toe Breast Cancer IRIS

Total instances (N ) 8124 3196 958 569 100

Labelers +ve/-ve instances 3916/ 4208 1669/1527 626/332 357/212 50/50

Expert labels(n) 20 8 8 8 4

30% to 70%

Maj. Voting 0.5509 0.6541 0.7116 0.5874 0.6825

Maj. Voting (25%1) 0.97122 0.78582 0.95822 0.92842 0.94672

Maj. Voting (35%1) 0.98052 0.96262 0.97762 0.93282 0.97332

Maj. Voting (45%1) 0.97232 0.92192 0.9945 2 0.98182 0.98002

Maj. Voting (55%1) 0.94802 NaN3 0.99032 0.96052 0.97002

GLAD 0.7494 0.7502 0.7503 0.7504 0.7473

GLAD with clamping 0.7494 0.7501 0.7505 0.7504 0.7473

Dawid Skene 0.5001 0.7498 0.5003 0.7504 0.7475

EM 0.5001 0.7498 0.5003 0.7504 0.7475

Belief Propagation 1 ——4 0.7107 0.5003 0.5004 0.7500

Belief Propagation 2 ——4 ——4 0.5003 0.7504 0.7525

Mean Field 1 0.5002 0.7498 0.5003 0.7504 0.7500

Mean Field 2 0.5001 0.7498 0.5003 0.7504 0.7525

Karger 1 0.5002 0.7498 0.5005 0.6254 0.7525

Karger 2 0.5003 0.7498 0.5005 0.7504 0.7525

ELICE 1 0.9779 0.9981 0.9915 0.9701 0.9837

ELICE 1 with clustering 0.9731 0.9677 0.9839 0.9650 0.9715

ELICE 2 0.9975 0.9964 0.9991 0.9973 0.9932

ELICE 2 with clustering 0.9985 0.9973 0.9987 0.9987 0.9960

ELICE 3 Pairwise ——5 0.9948 0.9991 0.9951 0.9905

ELICE 3 Circular 0.9978 0.9907 0.9991 0.9949 0.9878

Table continued on next page
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Table 3.1 – continued from previous page

Random/Oppositional

Dataset (D) Mushroom Chess Tic-Tac-Toe Breast Cancer IRIS

Total instances (N ) 8124 3196 958 569 100

Labelers +ve/-ve instances 3916/ 4208 1669/1527 626/332 357/212 50/50

Expert labels(n) 20 8 8 8 4

More than 70%

Maj. Voting 0.0842 0.0824 0.0832 0.0773 0.0900

Maj. Voting (25%1) 0.65052 0.58102 0.60022 0.58412 NaN3

Maj. Voting (35%1) 0.85412 0.71132 0.7112 2 0.62572 0.64502

Maj. Voting (45%1) 0.93512 NaN3 0.77972 0.80492 0.72002

Maj. Voting (55% 1) NaN3 0.95812 0.87682 0.67572 0.57002

GLAD 4.1071e-04 0.0031 0.0011 0.0024 0.0145

GLAD with clamping 4.1071e-04 0.0031 0.0014 0.0018 0.0145

Dawid Skene 1.6412e-04 9.3867e-04 0.0045 0.0023 0.0133

EM 1.6412e-04 8.3438e-04 0.0049 0.0023 0.0133

Belief Propagation 1 ——4 0.1315 0.0049 0.0023 0.0133

Belief Propagation 2 ——4 ——4 0.0045 0.0023 0.0133

Mean Field 1 1.6412e-04 8.3438e-04 0.0049 0.0023 0.0133

Mean Field 2 1.6412e-04 9.3867e-04 0.0045 0.0023 0.0133

Karger 1 3.6928e-04 0.0021 0.0042 0.0035 0.0100

Karger 2 3.6928e-04 0.0021 0.0042 0.0035 0.0100

ELICE 1 0.7451 0.6332 0.7441 0.6869 0.7065

ELICE 1 with clustering 0.7228 0.6003 0.7346 0.7020 0.6993

ELICE 2 0.9900 0.9847 0.9934 0.9872 0.9783

ELICE 2 with clustering 0.9942 0.9869 0.9956 0.9881 0.9801

ELICE 3 Pairwise ——5 0.9848 0.9605 0.9629 0.9656

ELICE 3 Circular 0.9680 0.9521 0.9590 0.9635 0.9601

Table 3.1: Accuracy of state-of-the-art methods and ELICE (all versions and variants) for differ-

ent datasets averaged over 50 runs. Good labelers: 0-35% mistakes, Random labelers: 35-65%

mistakes, Oppositional labelers: 65-100% mistakes.
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Figure 3.1: (Top) IRIS dataset. (Bottom) UCI Breast Cancer dataset. Simulated labels represent

good and oppositional labelers.
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UCI Breast Cancer dataset.
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Figure 3.2: (Top) IRIS dataset. (Bottom) UCI Breast Cancer dataset. Simulated labels represent

random and oppositional labelers.
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Figure 3.3: (Top) IRIS dataset. (Bottom) UCI Breast Cancer dataset. Simulated labels represent

good and random labelers.



3.2. RACE RECOGNITION DATASET 44

Efficiency: The experiments also reveal that ELICE is efficient as compared to the other meth-

ods. Figure 3.4 shows the runtime for Mushroom for all the methods as we increase the number of

instances. It should be noted that for big datasets such as Chess (3196 instances), we used MAT-

LAB’s Parallel Computing Toolbox to run ELICE pairwise.
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Figure 3.4: Time vs. Number of instances. Number of expert labels used for ELICE (all versions

and variants) is 20.

Note: Code for Belief Propagation did not converge even after a long time. Code for ELICE pairwise

was parallelized for datasets with more than 3000 instances therefore, we do not report its time as it

is not comparable to the non-parallelized code.
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Figure 3.5: Example images from the Race recognition task posted on Amazon Mechanical Turk (Left to

right): (Top) Black, Caucasian, Asian, Hispanic. (Bottom) Multiracial, Hispanic, Asian, Multiracial.

3.2 Race Recognition Dataset

Another real-life dataset we considered is race recognition dataset6 containing images of people

from different races. We found this dataset to be interesting due to variability in the difficulty of the

task.

3.2.1 Experimental Design

We took three samples of 100 instances each and posted them as a race recognition task on Ama-

zon Mechanical Turk. The samples were chosen to guarantee different levels of difficulty. The

tasks were to identify: (1) Black versus Caucasian with 50 instances of each class, (2) Hispanic

versus Asian with 50 instances of each class, (3) Multiracial versus other races with 40 instances

of Multiracial and 60 instances of the other races i.e. Asian, Black, Caucasian and Hispanic. Some

6Available on Stimulus Images; Courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition, Carnegie

Mellon University http://tarrlab.cnbc.cmu.edu/face-place.

http://tarrlab.cnbc.cmu.edu/face-place
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snapshots of the experiment as posted on AMT are shown in Figure 3.5.

For each task, we acquired six crowd labels for all 100 instances. The three tasks were chosen

to guarantee easy to moderate difficulty level.

3.2.2 Results

For all variants of ELICE, we used 8 random instances as expert-labeled instances. The results

are shown in Table 2. Black versus Caucasian was the easiest of the tasks. Therefore, most of the

labelers performed really well with only 0% to 25% of mistakes. As all the labelers had a good

performance, the accuracy of all the methods was approximately perfect including the most naive

method majority voting.

Identifying Hispanic versus Asian was relatively more difficult. In this case, some labelers made

less than 15% mistakes and the rest made over 48% mistakes. In this case ELICE 2 performed best

because of its ability to flip the labels.

The most confusing and challenging of all race recognition tasks was identifying multiracial

from the other races. While most of the labelers did equally bad, surprisingly it was not as bad

as we expected as the percentage of mistakes ranged between 30% and 50%. In this case almost

all the labelers were falling in the random labeler category probably due to guessing rather than

intelligently thinking the answer. In this case ELICE 1 was the winner but many other methods had

approximately close results. The reason is that the random labelers do not provide much informa-

tion.

3.3 Tumor Identification Dataset

To test our approach on a real-life dataset, we considered a tumor identification dataset.7 Early

identification of cancer tumor can help in preventing thousands of deaths but identifying cancer is

not an easy task for untrained eyes.

7Available on http://marathon.csee.usf.edu/Mammography/Database.html

http://marathon.csee.usf.edu/Mammography/Database.html
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3.3.1 Experimental Design

We posted 100 mammograms on Amazon Mechanical Turk. The task was to identify Malignant

versus others (Normal, Benign, Benign without call back.) The following instruction for appropriate

identification was provided to the labelers: “A breast tumor is a dense mass and will appear whiter

than any tissue around it. Benign masses usually are round or oval in shape, but a tumor may be

partially round, with a spiked or irregular outline as part of its circumference.”

Figure 3.6: Example images of the Tumor Identification dataset. From left to right: First three are Malignant

and fourth is benign.

3.3.2 Results

The task of tumor identification clearly requires expertise and is very difficult for an untrained

person. On the other hand, an expert person can do really well. In this AMT experiment, we had

two labelers with 6% and 32% mistakes and four labelers with more than 55% mistakes. The results

are shown in Table 3.2 and demonstrate the superiority of ELICE as compared to the other methods

except majority voting with gold testing, which performed best excluding the cases when the result

was “NaN”. The reason was that it was choosing only one labeler with 6% mistakes and relying on

its labels but it was unpredictable.



3.3. TUMOR IDENTIFICATION DATASET 48

Approach Race Recognition Tumor Identification

Black/Caucasian Hispanic/Asian Multiracial/other Malignant/Non-malignant

MajorityVoting 0.9900 0.5200 0.6500 0.5500

Majority Voting (25%1) 0.99002 0.57182 0.65002 0.74182

Majority Voting ( 35%1) 0.99002 0.56002 0.64002 0.86602

Majority Voting (45%1) 0.99002 0.51752 0.55002 0.89672

Majority Voting (55%1) 0.99002 0.51502 NaN3 0.83002

GLAD 1.0000 0.5000 0.6630 0.3043

GLAD with Clamping 1.0000 0.5000 0.6630 0.3152

Dawid Skene 0.9900 0.4500 0.6100 0.7000

EM 0.9900 0.5000 0.6500 0.3700

Belief Propagation 1 0.9900 0.5000 0.6500 0.3600

Belief Propagation 2 0.9900 0.4500 0.5900 0.0600

Mean Field 1 0.9900 0.5000 0.6500 0.3600

Mean Field 2 0.9900 0.4500 0.6000 0.7000

Karger 1 0.9900 0.5000 0.6500 0.3600

Karger 2 0.9900 0.5000 0.6500 0.3600

ELICE 1 0.9906 0.6793 0.6650 0.7100

ELICE 1 with clustering* - - - -

ELICE 2 0.9896 0.7648 0.5746 0.7698

ELICE 2 with clustering* - - - -

ELICE Pairwise 0.9896 0.6729 0.5756 0.7648

ELICE Circular 0.9896 0.6887 0.5657 0.7722

Table 3.2: Accuracy of different methods on Amazon Mechanical Turk datasets. The given results

are the average of 100 runs on 100 instances with 6 labels per instance. Randomly chosen 8 instances

are used as expert labeled instances (the instances with ground truth.)
∗ Since the features for these datasets are not available therefore the results of ELICE with clustering

could not be calculated.
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3.4 Discussion

In the previous section, we showed through a wide range of experiments the superiority of ELICE.

In this section, we will compare different versions of ELICE and discuss their appropriateness based

on different situations. We will also discuss various aspects of our approach.

3.4.1 Comparison of All Versions and Variants of ELICE

� ELICE 1 is simple and easy to implement. As shown in the experimental section, it is not only

efficient, it also provides better results than the slower state-of-the-art methods (Figure 3.4).

The key factor of ELICE 1 good performance is relying on the judgment of the good labelers

while minimizing the effect of the random or oppositional labelers. This can especially be

helpful when at least one good labeler is available. When most of the labelers are average,

it may not provide very high accuracy but can still perform as good as the other prevailing

methods. The low computational cost and effectiveness of the approach as compared to state-

of-the-art methods are the main advantages of this version.

Best use: This method can be used when the labeling task is not very challenging and there

is a high chance to get at least one good labeler.

� As compared to ELICE 1, the second version of ELICE provides even better accuracy because

other than benefiting from good labelers, it takes also advantage of the oppositional labelers.

This is done through a better aggregation of labels that leads to incorporating the information

from the oppositional labelers.

Best use: This version is helpful when there is a high chance of the task being misunderstood

or difficult resulting into unintentional oppositional behavior. It can also take advantage of

intentionally oppositional labeler getting as much information as possible. While it is likely

that not many labelers are intentionally oppositional, whenever there is one, the information

provided is not wasted.

� The third version of ELICE is based on the idea of incorporating most of the available infor-

mation by comparison of labeler to labeler and instance to instance when ground truth is not

known for certain.
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Best use: ELICE 3 pairwise should only be used when expert labels are not gold standard.

It has a higher computational cost as compared to the previous versions of ELICE, espe-

cially for large datasets. ELICE 3 circular has a relatively lower computational cost due to

reduced number of comparisons involved. It can be observed in the experimental results that

sometimes the performance of ELICE 3 circular is slightly lower than ELICE 3 pairwise.

Therefore, we suggest that when the dataset consists of a few hundred instances, it is prefer-

able to use ELICE 3 pairwise as the computational cost is not very high. But when the dataset

consists of thousands of instances, switching to ELICE 3 circular could be a better option

but the reduced computational cost comes with a little loss of information. On the other

hand, different methods can also be used to reduce the computational cost, such as parallel

programming that is used in our experiments presented in the previous section.

� The variants of ELICE with clustering can be used only when the features are available. Al-

though it can increase the computational cost, it improves the results. There can also be the

possibility of asking the experts to choose from the dataset such that instances from all the

classes have equal representation.

Best use: The clustering variant of ELICE can especially be helpful when classes are

highly imbalanced. This is because there is a high chance of missing the instances from

the smaller class while randomly choosing the instances from the whole dataset. To avoid the

non-representation of any class in the expert-labeled instances, clustering can be helpful.

3.4.2 Number of Expert-labels for Large Datasets

In this age of Big data, it is highly desirable to make all the methodologies scalable including

crowdsourcing [Mozafari et al., 2014]. ELICE has the advantage of being easily scalable. Once

we have a few expert-labeled instances, we can use them no matter how big the labeled dataset is.

We have shown empirically that all versions of ELICE always use very few expert-labeled instances

that is 0.1% to 10% of the dataset to get high accuracy. It is evident from the results reported in the

empirical section, as at most 20 expert-labeled instances are used while the size of the datasets varies

from 100 to more than 8000 instances. To further strengthen our claim, we derive a theoretical lower

bound on the number of expert-labeled instances needed to achieve highly accurate final labels in

Chapter 4 and present more experiments to support it.
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3.4.3 Expert-labels and Ground Truth

We assumed that expert-labels are ground truth for ELICE 1 and 2. This can be true for the simple

and easy tasks such as language translation where experts of a language can provide the correct

translation. In such cases, it is sufficient to get one expert-label per instance. It should, however, be

noted that an expert-label may not always be acquired by a human expert. There can be alternate

ways to get expert-labels or ground truth. Ground truth can be acquired by different means such as

testing (e.g., doing a biopsy of a tumor) or investigating (e.g., direct questioning from subjects in

the case of race recognition).

Sometimes, none of the above-mentioned methods give us ground truth. In such cases, we can

still use expert-labels but do not consider them to be ground truth for certain. In some cases, expert-

labels can be labels provided by the experienced, trained and reliable crowd labelers rather than a

domain expert. In this situation, it is better to use all possible information available, as done in

ELICE 3.

3.4.4 Cost-effectiveness of ELICE

Given M crowd-labelers, N total number of instances, and n expert-labeled instances, we can for-

mulate the cost equation of the ELICE as follows:

Cost of ELICE = n.Costexpert +M.N.Costcrowd (3.1)

where,

Costexpert = cost of one expert-label, Costcrowd = cost of one crowd-label,

Costexpert >> Costcrowd

Acquiring expert labels is expensive, however, if used effectively, can be rewarding. ELICE invests

on a few expert-labeled instances but on the other hand, it is cost-effective in many other ways,

listed as follows:

• a better accuracy with minimum infrastructure,

• no need to block the oppositional labelers and hire more labelers,
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• no need to keep track of the history of each labeler,

• lesser time needed to get the results,

• ability to work offline and even for the datasets labeled in the past,

• easily scalable,

• can work with all kinds of labeling platforms,

• handling all kinds of labelers in an integrated manner with minimum wasted information.

3.4.5 Choice of Crowd Labeling Platform

We chose Amazon Mechanical Turk to acquire crowd labels for our experiments. AMT has had

a strong impact on crowdsourcing research (see Figure 1.1). More recent crowdsourcing websites

have learned from and improved AMT procedure [Vakharia and Lease, 2015] but AMT still remains

one of the highly used crowd labeling websites. Many other crowdsourcing platforms use AMT in-

cluding CrowdFlower8 and Smartsheet9. Despite the fact that we used AMT for crowd labeling, our

procedures can handle the labels provided by any other crowdsourcing platforms due to a minimal

need for infrastructure, pre-processing, and blocking workers.

It should be noted that AMT has recently introduced more restrictions for requesters of the

crowd labeling task. These restrictions include requesters must be living in USA and filing taxes.

Although we acquired the crowd labels before these restrictions were applied but the performance

of our methodology is unaffected in spite of the changed scenario.

3.4.6 Why not blocking the oppositional labelers?

ELICE framework is a one-shot method and does not block the labelers. Instead of keeping track

of the labeler’s history, we can simply estimate the ability of the labeler for one labeling task and

improve the accuracy, utilizing the information provided by oppositional labelers. Although we

do not completely disagree with the effectiveness of blocking the labelers, we believe that this

technique may not be always helpful, mainly due to the following reasons:

8http://www.crowdflower.com

9http://www.smartsheet.com
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� A labeler can always do well on the test and poorly afterwards.

� A labeler may have more than one account and have different strategies on each of them.

� It is also possible that one account be used by more than one labeler at different times resulting

into different performance levels.

3.4.7 Do we always have many oppositional labelers?

Information provided by oppositional labelers can especially be helpful when such labelers are

really knowledgeable and good at providing oppositional labels. Therefore, discarding the labels

may result in a loss of information.

We know that oppositional labelers can be of two types, unintentionally oppositional and inten-

tionally oppositional. Unintentionally oppositional labelers maybe fewer than other categories of

labelers but do exist due to the following reasons.

� When the requester has not explained the task well enough and the labeler misunderstands

the task resulting in all wrong (or flipped) labels.

� When the task is well-explained but the labeler is not familiar enough with English language

to understand the task, this also results into wrong (or flipped) labels.

On the other hand, it is worth investigating the number of oppositional labelers that are involved

in real malicious activities and the reason for such egregious behavior. We investigated the case of

oppositional labeling where some labelers are polluting the data intentionally due to maliciousness.

A lot of crowdsourcing literature has discussed it, a brief overview is presented in the next section.

3.5 Oppositional/Malicious Crowdsourcing

Internet is a collective venture of the people, by the people, for the people but sometimes can work

against the people if not well managed. Therefore, it is crucial to prevent and eradicate malicious

crowdsourcing activities such as crowdturfing.

“Crowdturfing” is a term coined by a team of researchers at UC Santa Barbara, led by Ben

Zhao [Wang et al., 2012]. Crowdturfing is a combination of the words “crowdsourcing” and “as-
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troturfing”. Wikipedia10 defines astroturfing as “Astroturfing is the use of fake grassroots efforts

that primarily focus on influencing public opinion and typically are funded by corporations and

governmental entities to form opinions.”

Crowdturfing refers to astroturfing campaigns run by crowd workers that is false crowd-support

such as false labeling, bogus reviews, comments or followers. More specifically [Lee et al., 2013]

define it as “Malicious crowdsourcing, also called crowdturfing, occurs when an attacker pays a

group of Internet users to carry out malicious campaigns.”

With the increase in internet users and use of human intelligence online, crowdturfing or mali-

cious crowdsourcing is getting more attention. There has been a lot of literature on malicious crowd-

sourcing including [Dalvi et al., 2004; Tran et al., 2009; Rubinstein et al., 2009; Wang et al., 2012;

Lee et al., 2013; Wang et al., 2013; Wang et al., 2014; Jagabathula et al., 2014; Lee et al., 2014;

Sedhai and Sun, 2015; Liu et al., 2016; Aggarwal, 2016; Liu et al., 2016; Satya et al., 2016] and

[Choi et al., 2016].

3.5.1 Common Types of Oppositional/Malicious Crowdsourcing

Common types of oppositional/malicious crowdsourcing include ([Lee et al., 2013]) but are not

limited to:

• Political and non-political campaigns on internet.

• Product/services promotions, advertisements and surveys.

• Spam dissemination.

• Fake blogs, social media accounts, and comments.

• Fake social media followers, friends or connections.

• Voluntary wrong labeling.

3.5.2 Oppositional/Malicious Crowdsourcing Structure

Oppositional/malicious crowdsourcing or crowdturfing structure usually consists of customers, agents

and crowdworkers [Wang et al., 2012]. Customers initiate the crowdturfing campaign and hire the

10http://www.wikipedia.com
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agent services to fulfill their purpose. Agent plans and designs the campaign and makes it accessible

to a pool of crowdworkers. The crowdworkers complete the malicious task and the agent submits

it to the customer and receives his payment and pays the crowdworkers. This shows that the fake

or malicious work is being conducted very systematically through the agents who are well-trained

in doing so. It is speculated that the problem of malicious crowdsourcing will increase and become

more organized in future. It is very important to understand, identify and mediate such activities.

3.5.3 Oppositional/Malicious Activities on Social Media

In recent years online social network (OSN) has become a way to gain attention, fame, and good rep-

utation [Aggarwal, 2016]. Malicious crowdworkers can impact the OSN by fake likes on facebook,

fake voluntary followers twitter (also called volowers [Liu et al., 2016]) and false reviews/ratings

on Yelp. This can lead to intentional biases in the online information such as the wrong recommen-

dation by the recommender systems, wrong priority for the online search results, and misdirected

advertising revenue.

3.5.4 Oppositional/Malicious Crowdsourcing Statistics

[Wang et al., 2012] show that crowdturfing is very common. They conducted experiments on dif-

ferent crowdsourcing websites by crawling the data. They found 89% cases of crowdturfing on

Microtasks, 83% on MyEasyTask, 70% on Minute Workers 95% on ShortTask and 12% on Ama-

zon Turk. This shows that the problem of malicious crowdsourcing is not limited to a particular

platform rather it has become a global problem.

3.5.5 Maliciousness in Buying and Selling Crowd Services

Similarly, [Lee et al., 2013] present their findings about crowdturfing by conducting experiments

on Fiverr11 a microtask website. Users can buy and sell services on this website, the services are

called gigs. The authors randomly selected 1550 gigs out of which 121 i.e., 6% were found to

be crowdturfing tasks. Among these crowdturfing gigs, 55.3% were related to online marketing.

Further categorization of the 121 crowdturfing gigs showed that:

11https://www.fiverr.com/
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• 65 targeted social media including facebook and twitter to increase the number of friend/followers

or to the popularity of posts.

• 47 targeted search engines by artificially creating backlinks for their (gig buyers) website.

Top seller of this task earned $3 million, 100% positive ratings, and more than 47000 pos-

itive comments, which shows the high demand of such workers/sellers and lucrativeness of

crowdturfing.

• 9 crowdturfing gigs were to increase the visitors of a particular website creating artificial

popularity. Author also did experiments by creating 5 brand new twitter accounts with no

followers or following. They used the gigs worth to get followers and they were able to get

up to 5500 followers in one hour and increase the klout (website for social media analytics)

score immediately.

3.5.6 Maliciousness in Binary Labeling

In particular, [Tran et al., 2009] talk about the website called Digg12 where crowd labelers label the

written articles as digg (popular) or bury (unpopular). This website is a perfect example of binary

crowd labeling. The authors experimented by accessing the data of this website and found that many

crowd labelers intentionally label the articles of their interest as digg and the rest as bury that results

in the popularity and advertisement of the article on the homepage of digg.com. This also includes

the labels provided by the labelers who register on the same day as the publication of the article

or the labelers who are active only around the time a particular article is submitted. This definitely

proves that such malicious activities are ongoing. One way to stop such activities is to keep a record

of the worker history, warn and then block the labeler. But this requires extra efforts and also it is

always possible to make a new account if blocked.

3.5.7 Malicious Behavior in Online Surveys

[Gadiraju et al., 2015] present the malicious behavior of the crowdworkers in taking online sur-

veys, which is yet another aspect of using crowd for ill purposes. In their paper, authors present

a detailed study of maliciousness in taking online surveys. They developed a survey to test 1000

12https://www.digg.com
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crowdworkers. They classify untrustworthy labelers as: (a) ineligible workers who take the survey

even if they are ineligible or do not meet the conditions to do the task, (b) fast deceivers who give

invalid responses quickly to save time and deceive, (c) rule breakers who do not follow the pro-

vided instructions and rules for doing the task, (d) smart deceivers who follow the instructions but

intentionally give misleading answers, and (e) gold standard preys who follow the rules but may

make mistakes due to inattentiveness. It is interesting to note that the authors have also compared

the time to complete the task for each type of untrustworthy workers. They found that fast deceivers

had lowest response time while gold standard prey had the highest response time.

3.5.8 More Advanced Malicious Crowdworkers

The paper by [Wang et al., 2012] shows the evidence of more systematic malicious crowdsourcing

by intentionally polluting data for training machine learning classifiers. The authors refer to this

technique of malicious crowdsourcing as “poisoning”. They claim that it is done by the website ad-

ministrators (such as ZhuBaJie (ZBJ)13and SanDaHa (SDH)14). The crowdturfing class is poisoned

by adding non-malicious crowd accounts to the malicious crowd accounts. This collection is then

used as ground truth to train the classifiers and leads to wrong results acquired by classifiers. The

second method of poisoning is to inject turfing examples to the non-malicious accounts. Both of

these cases show that crowdturfing can be done in a very careful way outsmart the machine learning

classifiers and to nullify all the measures taken to prevent it.

3.5.9 How Can Our Methodology Help?

From the above-mentioned discussion, it is evident that malicious crowdsourcing is not only very

common but also changing to a very organized and profitable business. Also as the crowdsourcing is

getting popular so is crowdturfing. Online data is not being polluted by the lazy or careless crowd-

workers but mostly by the malicious crowdworkers who intentionally are creating and propagating

false information. If the information by the malicious crowdworkers is harnessed, it would save a

lot of time, energy and cost.

13http://www.zhubajie.com/c-tuiguang/

14http://www.sandaha.com/
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In this thesis, we focus on crowd labeling rather than crowdsourcing. We have presented the

methodologies to identify and utilize labels provided by malicious crowdworkers. We have checked

the robustness of our methodology on simulated and real datasets. Our methods have shown promis-

ing results and we believe that these can be used to get the truth out of the intentional wrong infor-

mation provided online. For example, our methodology can help do more accurate rating of articles

on digg.com by identifying the malicious labelers and using their information by adjusting it ac-

cordingly. Our methodology can also be helpful in accurate rating on social media by identifying

fake likes and followers (volowers), which are also examples of binary labeling.

3.6 Conclusion

In the first part of the thesis, we have proposed a robust crowd labeling framework using both

expert evaluation and pairwise comparison between crowd-labelers. The framework embeds a set

of methodologies to advance the state-of-the-art in crowd labeling methods. Our methodologies are

simple yet powerful and make use of a handful expert-labeled instances to squeeze the best out of

the labeling efforts produced by a crowd of labelers.

We propose a variety of methodologies to choose from according to the crowd characteristics

and labeling needs. We show through several experiments on real and synthetic datasets that unlike

other state-of-the-art methods, our methods are robust even in the presence of a large number of

bad labelers. The most important aspects of our method include overcoming the phase transition

inherent in other approaches as well as utilizing the information provided by the malicious labelers.
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Chapter 4

Lower Bound on the Number of Expert

Labels

4.1 Motivation & Introduction

In ELICE framework, we use expert-labeled instances to learn labeler ability α and instance diffi-

culty β. Therefore, it is important to have enough expert-labeled instances to be able to estimate

these values accurately to make further estimations or decisions based on them. Given that expert-

label acquisition can be expensive, it is desirable to find the lower bound on the number of expert-

labeled instances needed, which can also provide a good estimate of α and β. In this chapter, we

will derive this lower-bound. It should be noted here that the lower bound we derive here is only

for the case when expert-labels are ground truth and does not cover the case when expert-labels can

be wrong. This is to avoid the uncertainty that can be present when the expert-labels are not ground

truth.

We believe that this scenario is similar to Probably Approximately Correct (PAC) learning where

the learner has to learn the concept with the minimum possible examples with a given accuracy and

confidence. Therefore, we use the PAC learning framework to derive a bound. As a prerequisite to

this, we explain the following terms:
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4.1.1 Quality of the Crowd (c)

Let pj be the probability of getting a correct label from labeler j and f be the probability distribution

of pj . Then we define the quality of the crowd c as

c = E(P ) =
M∑
j=1

pj f(pj) (4.1)

where 0 ≤ c ≤ 1 and large values of c represent better crowd.

4.1.2 Difficulty of the Dataset (1− d)

We define,

d = E(Q) =
N∑
i=1

qi h(qi) (4.2)

where 0 ≤ d ≤ 1, qi is the probability of getting the correct label for instance i and h is the

probability distribution for qi. Higher d represents easier dataset.

4.1.3 Judgment Error (e)

The judgment error is the error made in estimating/judging true labeler ability and true instance

difficulty based on the expert-labeled (ground truth) instances. Instead of per labeler and per in-

stance judgment error, we define the judgment error to be overall judgment error (e) based on crowd

quality and dataset difficulty.

4.2 Judgment Error Relation with Crowd Quality & Dataset Diffi-

culty

In general, c and d are unknown, we make a conjecture about the crowd quality and dataset difficulty

based on the performance of crowd on a given dataset. So the judgment error depends on how much

the conjecture deviates from the true values of c and d.

We can use c to categorize the crowd. When the crowd is below average c < 1/2 (or (c−1/2) <

0). When the crowd is above average c > 1/2 (or (c− 1/2) > 0). When the crowd quality is close

to 0 or 1 it is easy to estimate the ability based on a few instances hence the error in the judgment is

low. But when the crowd quality is around 1/2 the error can be high as analyzing the crowd is hard
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and needs to have more instances to be able to decide. That can be thought that judgment error in

judging the crowd is inversely proportional to the crowd quality.

Similarly the dataset can be categorized as easy and difficult using the same strategy. If (1−d) <

1/2 (or (d− 1/2) > 0), this means a difficult dataset and (1− d) > 1/2 (or (d− 1/2) < 0) shows

an easy dataset. Error in judging the instances will be less when dataset difficulty is close 0 or 1 and

it will be high when the dataset quality is around 1/2.

But since overall outcome of the error in judgment is based on both c and d, we need to look at

them in the combined way. Therefore the judgment error of crowd and dataset is inversely propor-

tional to (c− 1/2)(d− 1/2) i.e.,

e ∝ 1

(c− 1/2)(d− 1/2)

We formalize the relationship between the crowd, the dataset quality, and the judgment error by the

function:

e =
1

1 + (c− 1/2)(d− 1/2)
(4.3)

where using Laplace smoothing, 1 is added to avoid the undefined values.

When the values of c and d are close to 1/2 then (c− 1/2)(d− 1/2) becomes small and hence

e becomes high. When the values of c and d are close to 0 or 1, (c − 1/2)(d − 1/2) is relatively

larger so e is small. When one of the c or d is less than 1/2 and the other is greater than 1/2 then

the value of e is average. The graph of the function (Eq. 4.3) is shown in Figure 4.1.

4.3 Intuitive Explanation

To be able to explain Eq. 4.3 intuitively, we define the following:

4.3.1 Judgment Error Categories

The judgment error is categorized as follows.

� High: When the crowd is good and we conjecture it as a bad crowd (or vice versa), the

judgment error is high. This is also true when a dataset is easy and the conjecture is difficult

(or vice versa).
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� Medium: When the crowd is mediocre and we conjecture it as bad or good (or vice versa)

the judgment error is considered to be medium. Same is true about the dataset.

� Low: The judgment error is deemed low when our judgment about the crowd and/or dataset

is close to the true quality.

Figure 4.1: Graph of the normalized judgment error distribution. Quality of the crowd and difficulty

of the dataset versus judgment error.

4.3.2 Analyzing Judgment Error

The intuitive explanation of the judgment error is summarized in Table 4.1 and described as follows:

a) Good crowd & Difficult dataset: When the crowd is good and the dataset is difficult the per-

formance of the crowd may be average. The conjecture made is that the crowd is bad to average

and/or the dataset is of medium to high difficulty. So the judgment error is high in this case.

b) Bad crowd & Difficult dataset: If the crowd is very bad and instances are very difficult, then the

performance of the crowd will be poor. Hence the conjecture will be bad crowd and/or difficult

dataset. Therefore, the judgment error is low.
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Dataset

Very Difficult Moderate Very Easy

C
ro

w
d

Very Bad

Conjecture about Crowd Bad Bad–Avg. Avg.–Good

Conjecture about Dataset Diff. Diff.–Mod. Diff.– Mod.– Easy

Judgment Error Low Medium High

Average

Conjecture about Crowd Bad–Avg. Bad–Avg.–Good Good– Avg.

Conjecture about Dataset Diff.–Mod. Diff.–Mod.–Easy Mod.–Easy

Judgment Error Medium Medium Medium

Very Good

Conjecture about Crowd Bad– Avg. Good–Avg. Good

Conjecture about Dataset Diff.–Mod Diff.–Mod. Easy–Mod.

Judgment Error High Medium Low

Table 4.1: Judgment error distribution of the conjecture about the crowd and dataset. Crowd is

categorized as very good, average, or very bad. Dataset is categorized as very easy, moderate, or

very difficult. Judgment error can be high, medium, or low.

c) Good crowd & Easy dataset: When the crowd is very good and the instances are very easy our

conjecture is good crowd and/or easy instances. Therefore, the judgment error is low.

d) Bad crowd & Easy instances: When the crowd is bad and dataset is very easy then the judgment

can be biased and the judgment error can be high.

e) Average crowd OR Moderate instances: When the crowd is of average capability then for any

kind of the instances the judgment may not be very far from the true value hence the judgment

error is medium. This also holds for average difficulty dataset and any kind of crowd.
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4.4 Theoretical Bound

For a given confidence (1−δ) and given values of c and d, the lower bound on the number of expert

labels is given by

nLB = [
(b− a)(1 + (c− 1/2)(d− 1/2))

[1− a(1 + (c− 1/2)(d− 1/2))]
log

1

δ
] (4.4)

where a and b are the minimum and maximum of the values of the judgment error e respectively

and [.] is the nearest integer function.

Proof: The proof of this theorem is straightforward. We know that the number of examples

required by a PAC learning model is given by

n ≥ 1

ε
log

1

δ
(4.5)

where ε is the judgment error and δ is the level of confidence. In our case the judgment error is

depending on c and d hence the judgment error e is here

e =
1

1 + (c− 1/2)(d− 1/2)
(4.6)

We normalize this judgment error as follows

ε =
(e− a)
(b− a)

(4.7)

where a = min(e) & b = max(e) for 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1.

Therefore, we get

ε =
1

(b− a)
[

1

1 + (c− 1/2)(d− 1/2)
− a] (4.8)

Plugging in the values into the PAC learning model (Eq. 4.5), we get the expression

n ≥ (b− a)(1 + (c− 1/2)(d− 1/2))

[1− a(1 + (c− 1/2)(d− 1/2))]
log

1

δ

More specifically, we have the lower bound

nLB = [
(b− a)(1 + (c− 1/2)(d− 1/2))

[1− a(1 + (c− 1/2)(d− 1/2))]
log

1

δ
]

where [.] is the nearest integer function.



4.5. EMPIRICAL EVALUATION OF THEORETICAL BOUND 65

4.5 Empirical Evaluation of Theoretical Bound

We conducted experiments to evaluate the effectiveness of our theoretical results.

Experimental design: We simulated data with different levels of crowd quality c and dataset diffi-

culty (1− d). The number of crowd labels was 4-6 per instance while the size of the dataset varied

between 200-500 instances. We checked the effect of the number of expert-labeled instances on the

accuracy of the final label for different levels of confidence (1−δ). Some of the results are reported

in the following graphs (Fig. 4.2 to 4.9). The vertical lines in these graphs show the calculated

lower bound nLB based on the parameters.

The results are shown for ELICE 1 & 2 only. Due to non-availability of the features of these

datasets, the cluster-based versions of ELICE 1 & 2 are not available while the results for ELICE 3

were not reported due to the fact that the lower bound was derived for the case when expert-labeled

instances are ground truth.

Results: The experiments show that nearly maximum possible accuracy is obtained at or around

nLB and in most cases increasing the number of expert-labeled instances beyond nLB is not very

helpful. This is especially evident when the confidence level (1 − δ) = 0.99. The accuracy of

ELICE may vary depending on the quality of the crowd and difficulty of dataset but the theoretical

lower bound nLB gives us optimal way to achieve it,. The theoretical lower bound is usually a small

number as compared to the cardinality of the dataset. Our experiments show that the lower bound

is always less than 10% of the data.

4.6 Conclusion

In this chapter, we have derived the theoretical lower bound on the number of expert-labels needed

to achieve a given accuracy. The idea is based on PAC learning. We have also demonstrated the

utility of the lower bound through empirical evaluation. In the next part of this thesis, we extend our

research to the Bayesian framework for learning the parameters, which lead to label aggregation.
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Figure 4.2: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.7842

and dataset difficulty (1 − d) = 0.1680. The theoretical bound is calculated using Eq. 4.4 is

nLB = 11, 14, 22 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.3: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.6019

and dataset difficulty (1 − d) = 0.4713. The theoretical bound is calculated using Eq. 4.4 is

nLB = 6, 8, 12 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.4: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.1894

and dataset difficulty (1 − d) = 0.8248. The theoretical bound is calculated using Eq. 4.4 is

nLB = 11, 15, 23 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.5: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.3617

and dataset difficulty (1 − d) = 0.4998. The theoretical bound is calculated using Eq. 4.4 is

nLB = 6, 8, 12 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.6: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.2175

and dataset difficulty (1 − d) = 0.6683. The theoretical bound is calculated using Eq. 4.4 is

nLB = 8, 10, 16 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.7: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.7896

and dataset difficulty (1 − d) = 0.4930. The theoretical bound is calculated using Eq. 4.4 is

nLB = 6, 8, 12 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.8: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.2706

and dataset difficulty (1 − d) = 0.6649. The theoretical bound is calculated using Eq. 4.4 is

nLB = 11, 15, 23 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Figure 4.9: Number of instances N = 500, crowd labels m = 6, crowd quality c = 0.1919

and dataset difficulty (1 − d) = 0.4796. The theoretical bound is calculated using Eq. 4.4 is

nLB = 6, 8, 12 for confidence level (1 − δ) = 0.9, 0.95, 0.99 respectively. It is shown by the

vertical lines and is denoted by nLB,(1−δ). The results are averaged over 100 runs.
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Part II

The Bayesian Approach
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Chapter 5

Crowd Labeling Using Bayesian

Statistics (CLUBS)

In the second part of this thesis, we present a Bayesian approach to crowd labeling called Crowd

Labeling Using Bayesian Statistics (CLUBS). Our approach is inspired by Item Response Theory

(IRT) [Lord, 1952], that aims to design and analyze test scoring strategies. An IRT model is used

to model parameters related to student and test questions as well as the probability of correctness of

the answer. This makes IRT a compelling framework for crowd labeling.

We use a similar but more comprehensive approach for crowd labeling by introducing more

parameters. The huge difference in an IRT model and our approach is that in an IRT model, the

correct answers are known while in the CLUBS the answers are to be inferred. An IRT model

is used to model student ability, test-question related parameters and probability of correctness of

the answer to the question. Unlike an IRT model, our model not only learns the labeler and data-

instance related parameters and probability of correctness of a label but also utilizes this information

estimate the final labels.

This is made possible by incorporating expert labels (ground truth) for a small fraction of the

dataset. Similar to our previous framework, expert-labeled instances are used here to help in the

parameter estimation. Empirical evaluations on synthetic and real dataset show that our model

produces more stable results as compared to the other state-of-the-art crowd labeling methods. We

formally define our problem as follows:
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Problem: A dataset D with N instances is labeled by M crowd labelers. Labels are chosen from

predefined P number of classes. For n(<< N) instances, one expert label (ground truth) per

instance can be obtained. The expert labels are used to evaluate the parameters. The goal is to

combine multiple labels to get one final label per instance with a maximum accuracy.

Our contribution in this chapter is summarized below:

• We present a new Bayesian model for crowd labeling that uses expert-labeled instances for a

small fraction of a dataset.

• In our new methodology, we use a combination of parameters, namely per category labeler

ability, instance difficult, prevalence of class, and question clarity.

• Our method is a one shot method and can work without the need of blocking the labelers

and/or checking their previous history.

• We test our approach on synthetic and real datasets. We compare our approach to many other

state-of-the-art methods.

• We present significance tests to evaluate the significance of the accuracy of our methods and

other state-of-the-art methods.

• We present experiments showing the effect of using noisy labels as a training data.

5.1 Bayesian Versus Frequentist

It is well known that the frequentist approach is used when experiments can be easily repeated to

estimate the parameters and their corresponding confidence intervals ([VanderPlas, 2014]). More

specifically, in the frequentist approach, the underlying parameters are fixed while the data is vari-

able and the results are based on the frequency of repeated events. Therefore, the frequentist analysis

is based on the point estimates and maximum likelihood approaches.

In our frequentist approach ELICE, we have relied on few expert-labeled instances to learn the

parameters. Although our approach presented good results, one limitation was that we could not

repeat the experiments to learn the parameters an infinite number of times due to the fact that expert
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labels are expensive and cannot be acquired frequently. This motivated us to explore the Bayesian

approach in which, unlike the frequentist approach, the random sample is fixed.

In the Bayesian approach, parameters are unknown and are described using probabilities. The

Bayesian approach can especially be used when repeating the experiments is not possible. The

Bayesian methodology generally quantifies the properties of unknown model parameters in the light

of observed data. The Bayesian approach considers probabilities to measure degrees of knowledge.

For the Bayesian analysis, generally the posterior is computed, using analytical methods or through

some version of MCMC sampling.

5.1.1 The Bayesian Approach Advantages

The advantages of Bayesian approach are as follows:

• Prior information can be easily incorporated. Posterior of the Bayesian can become prior for

future observations.

• It relies on data without the need of asymptotic approximation like the frequentist approach.

• It has the flexibility of building hierarchical models.

Despite all the advantages, choice of the prior and in some cases high dependence on priors can be

challenging. For large sample sizes, the Bayesian inference may provide results similar to the fre-

quentist methods results. Also, the Bayesian inference may have high computational cost especially

when the number of model parameters is large.

5.2 Our Approach

In an IRT model, the probability of getting a correct answer for a test question is assumed to be

a mathematical function of student ability and question parameters. This model is used in many

exams, including GRE and GMAT. It is considered to be a better approach than its other classical

counterparts e.g., classical test theory ([Novick, 1966; Lord and Novick, 1968]), which consider the

same level of difficulty for all questions on the test.

The IRT approach is used to model student ability, question difficulty, question clarity and

probability of correctness of the answer for the question. The parameters are combined in the
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Figure 5.1: (Top) An example of a typical GRE question (https://www.ets.org). Answer: B. IRT

model is used to evaluate the students on Graduate Record Examination (GRE). (Bottom) An exam-

ple from UCI Sentence Classification Dataset ([Asuncion and Newman, 2007]). Answer: D. This

dataset consists of sentences from research articles to be classified as one of the given categories.

This figure shows the similarity between test taking and crowd labeling scenarios.

following formula, which uses the logistic function to estimate the probability of getting correct

answer given all the parameters:

P [Ai|αj , δi, βi] = [logit−1(δi(αj − βi))] (5.1)

Ai : Correct answer to question i,

αj : ability of student j,

βi : difficulty of question i, δi : clarity of question i.
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5.2.1 Crowd Labeling Using Bayesian Statistics (CLUBS)

We believe that crowd labeling is very similar to test taking [Carpenter, 2008], as can be seen in

Figure 5.1. In both test taking and crowd labeling case, there is a set of predefined possible answers

to choose from while the ability of the person making the choice is unknown.

We introduce new parameters and refine the existing IRT parameters to fit the crowd labeling

scenario. Our new approach is called crowd labeling Using Bayesian Statistics (CLUBS). Despite

the similarity of the test taking and crowd labeling scenarios, crowd labeling is more challenging. In

the test taking scenario, the answers to the test questions are known and the goal is to only estimate

the parameters. In contrast, for crowd labeling we need to estimate the parameters and get the final

label based on the parameter estimates.

To deal with this challenge, we use expert-labeled instance (ground truth) for a small percentage

of dataset instances (usually 0.1% -10%) to learn the parameters. Once the parameters are learned,

they are used for aggregation of multiple crowd-labels for the rest of the dataset with no ground

truth available.

We include the following parameters in our model that consist of modified IRT parameters as

well as new ones.

5.2.1.1 Per-category Ability (π):

Human beings can be biased in their choices due to cultural differences, religious beliefs and per-

sonal preferences. Therefore, judging the labelers just in terms of correct or incorrect labels does

not give us enough insights about the performance of the labeler. It can be more informative to

estimate the labeler ability on a per-category basis leading to better labeling results.

Another reason for considering per-class ability is due to the fact that some labelers can inten-

tionally label all the instances with the same label, in the hope of getting a portion of the labels right.

This can help them avoid the mental effort and yet may result in high overall correctness score of the

labeler. This can especially affect the labeling accuracy when one class is expected to be in majority.

This is the case for imbalanced datasets with a skewed distribution such as malignant versus benign

tumors identification task. We detected similar behavior of the labelers while experimenting on real

datasets, explained in the next section.

We define a per-category ability parameter as πc, the log odds for labeler j to correctly classify
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an instance from class ck.

π(j)ck = log(
Number of correct labels for class ck by labeler j

Number of incorrect labels for class ck by labeler j
)

5.2.1.2 Labeling Question Difficulty (β):

Many test taking ([Lord and Novick, 1968]) and crowd labeling methods ([Dawid and Skene, 1979])

consider the difficulty level of a question or data instance to be the same, which may not be always

true. In any given dataset, instances can be of heterogeneous difficulty level. It is crucial to consider

instance difficulty as it can affect the labeler ability in identifying the correct label. In our proposed

model, we use a parameter β to quantify the level of difficulty of an instance.

5.2.1.3 Prevalence (γ):

Unlike the IRT model, in crowd labeling, we do not have any information about the class propor-

tion of the dataset. Prior information can help in more accurate estimation of the model. This

prior information can be incorporated in the form of prevalence of class. It is well known that the

class proportion can vary for each dataset. Prevalence of the class can affect the results and not

incorporating it can result in a loss of important information ([Byrt et al., 1993]).

To make our model complete and to incorporate all possible information, we introduce a param-

eter to capture prevalence. Prevalence parameter is defined as γck = P (i ∈ ck), the probability that

any instance i belonging to class ck. Prevelence of class has been used by other researchers as well,

for example, it is used in [Dawid and Skene, 1979] for binary classification tasks, although not re-

ferred to there as “prevalence”. Similarly, prevalence is also used in the work based on [Dawid and

Skene, 1979] model, such as [Carpenter, 2008] and [Passonneau and Carpenter, 2014]. It should be

noted that prevalence has a direct effect on the per category ability of the labeler.

5.2.1.4 Clarity of Question (δ):

A clear explanation of the labeling question can improve the accuracy of the final label. In many

cases, a misunderstood or poorly designed labeling task can produce flipped labels resulting into

wasted efforts, work rejection for the labeler, extra cost and low accuracy for the requester of the

task ([Kittur et al., 2008]).
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In our model, the clarity of the labeling question is quantified by the parameter δ. This param-

eter can be assumed to be unique for the whole dataset or can be considered individually for each

instance, depending on the context of the labeling task. It should be noted that we use separate

parameters for instance difficulty and question clarity because the former cannot be changed while

the latter can be improved by providing better instructions.

5.2.2 Parameter Estimation

We use all the above mentioned parameters and formulate our new crowd labeling model is as

follows.

P [ck|lij = ck, γck , βi, δi, π
(j)
ck

] = [logit−1(δi(γck + π(j)c − βi))] (5.2)

where

ck : class/category,

lij : Label provided by labeler j to instance i,

π(j)ck : per-class ability of labeler j,

βi : difficulty of instance i,

δi : clarity of question asked about instance i,

γck : prevalence of class ck.

This model is run on the expert-labeled instances and the parameters are estimated. The graphical

model for parameter estimation is given in Figure 5.2 (top). In this graphical model the shaded

nodes show the observed values. The plate notation represents the variables that are repeated in the

model i.e., instances, labelers and classes denoted by i, j and k respectively.

5.2.3 Label Aggregation

After the parameter estimation, the next step is to get the final label, that is Fi where i is an instance

from the rest of the dataset, for which expert-labels (ground truth) are not available. The final label

Fi is determined by the sign of the weighted sum of the labels, where the weight is the probability
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Figure 5.2: Graphical model of CLUBS. (Top) Parameter estimation (Bottom) Label aggregation.

Shaded nodes represent observed values.
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of correctness of label provided by a labeler. This probability is calculated by inputting estimated

parameters in the model. The aggregation formula is as follows.

Fi = sign[
∑
j

(P [ck|lij = ck, γck , β̂i, δ̂i, π
(j)
ck

] ∗ lij)] (5.3)

where

P [ck|lij = ck, γck , β̂i, δ̂i, π
(j)
ck

] = [logit−1(δ̂i(γck + π(j)ck − β̂i))]

In this aggregation formula, we use the expert-labeled instances based estimates of the prevalence

of the class (γc ) and per-category labeler ability (π(j)ck ), based on the assumption that these values

remain unchanged for the rest of the dataset. But difficulty (βi) and discrimination level (δi) of the

instances without expert-labels are unknown.

To mediate this problem, we assume that both of these unknown parameters (βi and δi ) fol-

low the same statistical distribution as the parameter estimates for the expert-labeled instances. We

calculate the mean and standard deviation of the estimates of these parameters for expert-labeled

instances and generate these parameters for the rest of the dataset, that is

β̂i ∼ normal(mean-of-estimated-beta, sd-of-estimated-beta)

δ̂i ∼ normal(mean-of-estimated-delta, sd-of-estimated-delta)

The graphical model for label aggregation is given in Figure 5.2 (bottom).

In the next chapter we present empirical results of CLUBS on simulated and real labels.
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Chapter 6

Empirical Evaluation

In this chapter, we present experimental results to check the performance and understand the behav-

ior of our method as compared to the other state-of-the-art methods.

Implementation: We implemented our model in Stan ([Team, 2014]), a probabilistic program-

ming language for Bayesian inference. Stan program computes a log posterior density while in-

ference engine performs Hamiltonian Monte Carlo using no-U-turn sampler for sampling from

posterior distributions. Using a Stan program, we can define a statistical model as a conditional

probability function on unknown values including latent variables, unknown parameters, missing

data and future predictions. The model is conditioned on the known values of data.

State-of-the-art methods: We compared our method to Majority voting (different versions),

GLAD (Generative model of Labels, Abilities, and Difficulties) and GLAD with clamping ([White-

hill et al., 2009]), [Dawid and Skene, 1979] method, Expectation Maximization (EM), iterative

method by [Karger et al., 2014] (KOS), Mean Field algorithm (MF), Belief Propagation (BP) by

[Liu et al., 2012] and ELICE all versions. However, it should be noted that ELICE with clustering

results could not be calculated due to unavailability of the features for clustering. Moreover, the

results for iterative method by [Karger et al., 2014] (KOS), Mean Field algorithm (MF) and Belief

Propagation (BP) by [Liu et al., 2012] are reported for two different parameters setting. All other

methods except ours were implemented in MATLAB and in most cases the code was obtained from

the authors of the methods.
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Datasets: We conducted several experiments on the following datasets:

1. Synthetically generated data.

2. Recognizing Textual Entailment (RTE) dataset.1

3. Temporal dataset.1

The two real datasets have labels available and were used as benchmarks to evaluate state-of-the-art

methods (e.g., [Liu et al., 2012]).

6.1 Synthetic Data

We conducted several experiments on synthetically generated data, using variation in the size of the

dataset, number of expert-labeled instances and number of crowd-labelers. It allowed us to check

the robustness of our method for a variety of data. We are reporting the summary of our findings on

four simulated datasets.

Data Generation: To make the experiments complete, we generated data in two different ways,

which are stated below:

• Dataset A and B are generated with probability obtained by assigning different values to the

parameters in equation 5.2. For the sake of observing labeler ability effect on the accuracy of

the methods, we use a fixed range of values for all the parameters except the labeler log-odds

(πj). We vary labeler log-odds for each dataset that is reported in Table 6.1. We generated the

rest of the parameters as follows: instance difficulty βi ∼ N (0, 2), instance question clarity

δi ∼ N (0, 0.75) (N (. , .) denotes the normal distribution) and prevalence of class γck = 0.5,

where k = 2. Each dataset consists of 5000 instances with four crowd-labels per instance.

We took 20 ground truth instances as expert-labeled instances.

• We generated labels for datasets C and D using different ranges of per class correctness for

each labeler (x%− y%), reported in Table 6.2 and 6.3. Dataset C and D each consist of 5000

1 available at http://ir.ischool.utexas.edu/square/data.html
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Dataset A Dataset B
C

la
ss

1 Per labeler % correctness (0.89, 0.90, 0.89, 0.95) (0.98, 0.98, 0.85, 0.80)

True Log-odds (2.07, 2.18, 2.12, 3.01) (3.89, 3.89,1.74,1.39)

Estimated Log-odds (1.42, 0.84, 1.42, 2.43) (1.11, 0.64, 0.20, 0.20)

C
la

ss
2 % Correctness (0.96, 0.83 0.98, 0.76) (0.97, 0.89, 0.73, 0.74)

True Log-odd (3.18, 1.58, 4.23, 1.17) (3.48, 2.09, 0.99, 1.05)

Estimated Log-odds ( 2.42, 1.00, 2.00, 2.00) (1.19,1.50, 0.86,1.51)

Table 6.1: Synthetic Data generation parameters and estimated parameters for the labelers. For

the sake of presenting the labeler ability impact, the other parameters are kept fixed that instance

difficulty β ∼ N (0, 2), instance question clarity δ ∼ N (0, 0.75) and prevalence of class γ = 0.5.

Labelers

L1 L2 L3 L4

Class1 0%-40% 0%-40% 0%-40% 70%-100%

Class 2 30%-70% 30%-60% 90%-100% 50%-60%

Table 6.2: Labeler correctness rate for Dataset C.

Labelers

L1 L2 L3 L4

Class1 60%-80% 20%-40% 80%-90% 30%-50%

Class 2 50%-70% 30%-50% 90%-100% 50%-60%

Table 6.3: Labeler correctness rate for Dataset D.
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and 3000 instances respectively. Crowd labels were simulated for 4 labelers and ground truth

labels for 20 instances were used as expert-labeled instances.

It should be noted here that we conducted the experiments with 20-50 expert-labeled instances and

4-8 crowd-labels per instance, which produced similar results but here we only report the results

based on 20 expert-labeled instances and 4 crowd-labels.

Results: The accuracy of the final labels for the simulated datasets is given in Table 6.1. The

results were averaged over 20 runs. We can see that majority voting with gold testing has a good

performance but since its results are not stable due to resulting in ‘NaN’ many times, it is not the

best option. On the other hand all of our methods have good performance. CLUBS is a winner on

dataset A and B while ELICE performs better on dataset C and D. It should also be noted that the

performance of our methodologies is stable and does not end up in surprisingly different outcome.

h2 g3 n4 b5

6.2 Recognizing Textual Entailment Dataset

For this dataset the task was described as “whether the second sentence (the Hypothesis) is implied

by the information in first sentence (the Text).” Labels provided were “Yes, No” (converted to “1,

-1” for implementation.)

6.2.1 Experimental Design

We randomly selected 153 labeled instances from Recognizing Textual Entailment (RTE) dataset

along with ground truth. The crowd labeling task was to judge the textual entailment for two sen-

tences Text and Hypothesis. Each of the 153 instances was labeled by the same five labelers. For

2In many cases, majority voting with gold testing resulted into NaN (Not a number) due to all labelers being discarded

in the testing phase. The reported results were averaged, only over the cases when the experiments produced a number,

ignoring the case when the results were NaN.

3In many cases, majority voting with gold testing resulted into NaN (Not a number) due to all labelers being discarded

in the testing phase. The reported results were averaged, only over the cases when the experiments produced a number,

ignoring the case when the results were NaN.

4 No result was produced as all labelers were discarded when tested, in all the runs of the experiment.

5Code for Belief propagation did not converge.
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PPPPPPPPPPPPP
Method

Dataset
Dataset A Dataset B Dataset C Dataset D

Majority Voting 0.82 0.81 0.50 0.61

Majority Voting (25%3 ) 0.902 0.832 0.702 0.772

Majority Voting (35%3) 0.942 0.842 0.822 0.782

Majority Voting (45%3) 0.982 0.902 0.932 0.922

Majority Voting (55%3) 1.002 0.922 NaN4 1.002

GLAD 0.75 0.76 0.18 0.46

GLAD with clamping 0.75 0.76 0.18 0.46

D &S 0.86 0.79 0.22 0.46

EM 0.77 0.76 0.17 0.46

BP (uniform prior) 0.82 0.83 0.58 0.69

BP (Beta(2,1) prior) 0.85 0.87 —5 0.57

MF (uniform prior) 0.77 0.76 0.17 0.46

MF (Beta(2,1) prior) 0.86 0.79 0.22 0.46

KOS 0.75 0.76 0.17 0.38

KOS2 0.75 0.76 0.17 0.46

ELICE 1 0.87 0.87 0.90 0.84

ELICE 1 with clustering? - - - -

ELICE 2 0.88 0.89 0.93 0.84

ELICE 2 with clustering ? - - - -

CLUBS 0.89 0.89 0.59 0.78

Table 6.4: Performance on Synthetic Data. Each dataset consists of 3000-5000 instances labeled

by four labelers. Ground truth for 20 instances was taken as expert-labels. ELICE with clustering

results could not be calculated due to unavailability of the features for clustering. ? Since the

features for these datasets are not available therefore the results of ELICE with clustering could not

be calculated.
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XXXXXXXXXXXXXXX
% Correctness

Labelers
L1 L2 L3 L4 L5

Overall 80.40% 47.72% 52.29% 49.68% 46.41%

Class1 82.90 % 34.22% 21.06% 18.43% 22.37%

Class 2 77.93 % 61.04% 83.12% 80.52% 70.13%

Table 6.5: Labeler performance for RTE Data.

XXXXXXXXXXXXXX% Correctness

Labelers
L1 L2 L3 L4 L5

Overall Good Random Random Random Random

Class1 Good Oppositional Oppositional Oppositional Oppositional

Class 2 Good Random Good Good Good

Table 6.6: Labeler category for RTE Data.

our experiments, we use ground truth for 20 randomly selected instances as expert-labels. We have

reported the overall and per-class error rate of all the labelers in Table 6.5. While Table 6.6 reports

the overall and per-class category of these labelers.

6.2.2 Results

The accuracy of the final label is reported in Table 6.7. The accuracy presented in each column is

based on different combination of the labelers (e.g., column L1-L5 shows the performance of each

method based on the labels provided by labelers 1 to 5). This is done to evaluate the performance of

the approaches for different labeler abilities. We discuss each column of the Table 6.7 as follows:

L1-L5: In the first column of this table, overall performance of the labelers is categorized as one

good and four random labelers. We can see that in this column the performance of most of the

methods MV to KOS2 is around 50%, while ELICE 1, ELICE 2, and CLUBS show a good perfor-

mance. The reason is that one good labeler is helping to improve the overall performance of our

methodologies.

L1-L4: This column consists of the results produced by the labels of one good and three random

labelers. CLUBS has the highest accuracy with ELICE 1 and ELICE 2 having second best accuracy
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PPPPPPPPPPPPP
Method

Labelers
L1-L5 L1-L4 L1-L3 L1-L2 L2-L5 L2-L4 L2-L3

Majority Voting 0.55 0.52 0.61 0.57 0.47 0.50 0.50

Majority Voting (25%3) 0.562 0.592 0.622 0.672 0.492 0.512 0.632

Majority Voting (35%3) 0.562 0.582 0.622 0.752 0.502 0.512 0.642

Majority Voting (45%3) 0.562 0.552 0.712 0.802 0.492 0.512 0.582

Majority Voting (55%3) 0.532 0.582 0.522 NaN4 NaN4 0.462 0.522

GLAD 0.51 0.51 0.63 0.48 0.51 0.53 0.54

GLAD with clamping 0.51 0.51 0.63 0.80 0.51 0.53 0.48

D &S 0.41 0.46 0.47 0.80 0.46 0.47 0.48

EM 0.50 0.49 0.48 0.62 0.50 0.50 0.45

BP (uniform prior) 0.50 0.50 0.52 0.30 0.49 0.50 0.51

BP (Beta(2,1) prior) 0.46 0.34 0.51 0.80 0.46 0.49 0.48

MF (uniform prior) 0.50 0.50 0.48 0.59 0.50 0.50 0.51

MF (Beta(2,1) prior) 0.46 0.50 0.80 0.70 0.46 0.46 0.48

KOS 0.50 0.50 0.48 0.80 0.50 0.51 0.48

KOS2 0.50 0.50 0.38 0.38 0.50 0.51 0.50

ELICE 1 0.62 0.69 0.69 0.79 0.49 0.50 0.50

ELICE 1 with clustering? - - - - - - -

ELICE 2 0.67 0.67 0.71 0.80 0.47 0.48 0.50

ELICE 2 with clustering? - - - - - - -

ELICE 3 (Pairwise) 0.60 0.61 0.62 0.72 0.48 0.48 0.50

ELICE 3 (Circular) 0.57 0.61 0.60 0.52 0.48 0.48 0.50

CLUBS 0.65 0.70 0.73 0.74 0.48 0.51 0.54

Table 6.7: Accuracy of final label for RTE Data.

? Since the features for these datasets are not available therefore the results of ELICE with clustering

could not be calculated.
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XXXXXXXXXXXXXXX
% Correctness

Labelers
L1 L2 L3 L4 L5 L6

Overall 91.02% 52.65% 46.53% 46.53% 53.47% 93.06%

Class 1 90.52% 0% 93.10% 97.41% 83.62 % 93.10%

Class 2 91.47% 100% 4.65% 0.78% 26.36% 93.02%

Table 6.8: Labeler performance for Temp Data.

XXXXXXXXXXXXXX% Correctness

Labelers
L1 L2 L3 L4 L5 L6

Overall Good Random Random Random Random Good

Class 1 Good Oppositional Good Good Good Good

Class 2 Good Good Oppositional Oppositional Oppositional Good

Table 6.9: Labeler category for Temp Data.

level.

L1-L3: In this column, one good labeler and two random labelers are used. It should be noted that

while all the other methods show similar results as the previous two columns but surprisingly BP

with beta prior gives the highest accuracy. On the other hand BP with uniform prior has a below

average performance.

L1-L2: In this case, we have one good and one random labeler. Many methods have a better per-

formance as the percentage of good labelers has increased. Highest accuracy is obtained by Dawid

and Skene method, BP (Beta(2,1) prior), KOS, and ELICE 2.

L2-L5: All four labelers are random so none of the methods performs exceptionally well but GLAD

(both versions) seem to be slightly better.

L2-L4: None of the results is exceptional but GLAD has the best accuracy once again.

L2-L3: Here we have two random labelers who are mostly correct on instances from the class 2.

Here majority voting with gold testing has the highest accuracy while the second best methods are

GLAD and CLUBS.

By looking at the results, we can see that our methods consistently have a good performance
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PPPPPPPPPPP
Method

Labelers
L1-L6 L1-L5 L1-L4 L1-L3 L1-L2 L2-L6 L2-L5 L2-L4 L2-L3

Majority Voting 0.75 0.60 0.64 0.89 0.73 0.60 0.50 0.46 0.46

Majority Voting (25%3) 0.922 0.732 0.712 0.732 0.722 0.962 0.742 0.532 0.532

Majority Voting (35%3) 0.902 0.712 0.722 0.722 0.712 0.972 0.722 0.532 0.532

Majority Voting (45%3) 0.842 0.702 0.662 0.692 0.672 0.912 0.692 0.532 0.532

Majority Voting (55%3) 0.822 0.692 0.632 0.642 0.692 0.942 0.672 0.532 0.534

GLAD 0.47 0.47 0.47 0.91 0.91 0.47 0.47 0.47 0.53

GLAD with clamping 0.47 0.47 0.47 0.91 0.91 0.47 0.47 0.47 0.53

D &S 0.92 0.91 0.88 0.89 0.91 0.86 0.46 0.46 0.46

EM 0.47 0.47 0.47 0.53 0.57 0.47 0.47 0.47 0.47

BP (uniform prior) 0.47 0.47 0.46 0.10 0.30 0.47 0.47 0.46 0.46

BP (Beta(2,1) prior) 0.92 0.91 0.89 0.91 0.91 0.87 0.52 0.46 0.46

MF (uniform prior) 0.47 0.47 0.47 0.53 0.62 0.47 0.47 0.47 0.47

MF (Beta(2,1) prior) 0.92 0.90 0.88 0.89 0.91 0.87 0.52 0.46 0.46

KOS 0.47 0.47 0.47 0.53 0.91 0.47 0.47 0.47 0.47

KOS2 0.47 0.47 0.47 0.53 0.30 0.47 0.47 0.47 0.47

ELICE 1 0.83 0.73 0.76 0.90 0.91 0.79 0.50 0.49 0.51

ELICE 1 with clustering? - - - - - - - - -

ELICE 2 0.78 0.62 0.62 0.60 0.91 0.62 0.50 0.49 0.50

ELICE 2 with clustering? - - - - - - - - -

ELICE 3 (Pairwise) 0.83 0.66 0.64 0.75 0.91 0.63 0.50 0.49 0.50

ELICE 3 (Circular) 0.81 0.65 0.70 0.88 0.47 0.63 0.50 0.49 0.51

CLUBS 0.91 0.88 0.90 0.91 0.91 0.85 0.52 0.46 0.46

Table 6.10: Accuracy of final label for Temp Data.

? Since the features for these datasets are not available therefore the results of ELICE with clustering

could not be calculated.
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and even if they are not the best in some cases they are not unpredictably off. On the other hand, we

have seen that many other methods have a very low performance on some datasets and very high

on others. While the reason for the mysterious behavior of these methods remains unknown but it

makes them unreliable and unpredictable. We believe that our methods can serve the purpose of

accurate crowd labeling in more reliable manner.

6.3 Temporal Dataset

The Temporal (Temp) dataset consists of the labels given to the temporal sequence of the events in

a given text. We describe the experimental design for this dataset in the next section.

6.3.1 Experimental Design

We randomly selected 245 instances labeled by 6 labelers. Number of expert-labeled instance was

20. The error rates of the labelers are given in Table 6.8 while the categories of the labelers are given

in Table 6.9. From the Table 6.8 it is evident that using the per-category ability of the labelers gives

a better insight into labeler performance as the labelers may perform very well on one class and do

poorly for the other e.g., labeler 2 performs 100% on one class while 0% on the other. Similarly la-

beler 3 and 4 have a nearly perfect score on one class and nearly zero performance on the other class.

6.3.2 Results

The accuracy of the final label in Table 6.10 shows the stability of CLUBS. In this set of labelers,

L1 and L6 are good labelers and the rest of labelers are random. It should be noted here that L2,

L3, and L4 are extreme cases of being almost perfect on one class and totally oppositional on the

other class. This created different results as compared to the previous set of labelers where we had

one good and rest random labelers. Analysis of each column of the Table 6.10 is as follows:

L1-L6: In this case, Dawid and Skene method, BP (Beta(2,1) prior) and MF (Beta(2,1) prior)

produced excellent results although CLUBS was also doing nearly as good. On the hand despite the

good performance of versions of ELICE it lagged behind.

L1-L5: Removing one good labeler L6 produced the same pattern of the results but with lower
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accuracy.

L1-L4: This set of labelers consists of one good labeler and three highly skewed random labelers.

CLUBS is the winner in this case but Dawid and Skene method, BP (Beta(2,1) prior) and MF

(Beta(2,1) prior) produced are also producing good results.

L1-L3: In this case CLUBS, GLAD (both versions), and BP (Beta(2,1) prior) have a tie and produce

the best results. While ELICE1 and MF (Beta(2,1) prior) are nearly as good.

L1-L2: One good and one random labeler produce very good results almost for all the methods.

L2-L6: In this case, majority voting with gold testing is the winner but we know that results are not

always reliable. Dawid and Skene method and BP (Beta(2,1) prior) are second, while MF (Beta(2,1)

prior) and CLUBS are runner ups.

L2-L5: All labelers are random labelers in this case. Majority voting with gold testing is producing

best results. It is because labeler L3, L4 and L5 are doing excellent on one class and L2 is perfect

on the other class.

L2-L4: Again majority voting with gold testing is the winner.

L2-L3: Majority voting and GLAD (both versions) are the winner while ELCIE all versions have

nearly same level of accuracy.

From the results reported in this table, we can see that our methods have good, stable and con-

sistent performance. Some methods do perform well in some case but have unpredictable outcomes.

6.4 Technical Details

Our experiments are coded in RStan. Data generation/loading was done in R. Stan code is called

from the R platform. Like most Stan programs our Stan code consists of three main blocks data (im-

ported from R), parameter block consisting of parameter definition and the model block. The model

block consists of the our CLUBS model as well as prior for the parameters. We use hierarchical

priors and assume normal distribution of the priors. Number of iteration and chains are predefined.

We tried different number of iterations and number of chains but we found the most optimal choice

for our experiments was 1000-2000 iterations and 4-8 chains.
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6.5 Discussion

The purpose of devising CLUBS is to explore and understand the Bayesian approach for parameter

estimation using expert-labeled instances. Since we have already ventured the frequentist approach

for parameter estimation, Bayesian is a natural choice to make our research comprehensive. Espe-

cially, due to the dependence of Bayesian approach on data without the need of asymptotic approx-

imation like frequentist approach as well as the flexibility of building hierarchical models makes it

a compelling idea to explore.

We believe that CLUBS has the advantages of estimating the per-category ability, having more

variety of parameters, incorporating prior information, and easy extension to multi-class. Despite

the fact that CLUBS does not always outperform ELICE but we believe that it has the capacity to

enhance. The new parameters that are introduced in this approach can be something worth investi-

gating further and can give us insight into the intricacies of the labeling scenario. In future, these

parameters can be helpful in designing and conducting the labeling task.

6.6 Significance Tests

To check the significance of accuracy of the different methods, we perform the t-test between the

accuracy levels of all different methods. We conduct a one-tailed paired t-test with significance level

α = 0.01 and α = 0.05 on different UCI datasets. As all the results are similar, we only report the

t-test results for the UCI breast cancer dataset with significance level α = 0.01.

We used the MATLAB function ttest2 for the experiments. Results are given in the Tables 6.11,

6.12 and 6.13 for different levels of labeler ability. In these tables, the methods in the leftmost

column are compared to the methods in the top row and the outcomes 0, 1 and NaN are reported.

The null and alternative hypothesis along with the meaning of the outcome is described as follows:

Ho : µA = µB i.e., Accuracy of method A is as good as the accuracy of method B.

H1 : µA < µB i.e., Accuracy of method A is worse than the accuracy of method B.

where method A refers to the methods in the leftmost column and method B refers to the meth-

ods in topmost row.

If outcome is 0 =⇒ fail to reject Ho. If outcome is 1 =⇒ reject Ho.

If outcome is NaN =⇒ the test is inconclusive.
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Abbreviations used in the table are as follows,

MV = Majority voting,

MV1 = Majority voting (25%), MV2 = Majority voting (35%),

MV3 = Majority voting (45%), MV4 = Majority voting (55%),

G = GLAD, GW = GLAD with Clamping,

DS1 = Dawid & Skene 1, DS2 = Dawid & Skene 2,

BP1 = Belief Propagation 1, BP2 = Belief Propagation 2,

MF1 = Mean Field 1, MF2 = Mean Field 2,

KOS1 = Karger’s Iterative methods 1, KOS2 = Karger’s Iterative methods 2,

E1 = ELICE 1, E1-C = ELICE 1 with clustering,

E2 = ELICE 2, E2-C = ELICE 2 with clustering,

E3-P = ELICE 3 Pairwise & E3-C = ELICE 3 Circular.

Table 6.11 shows the significance test results for the crowd labelers who are correct 65% of

time. As we can see that most methods in this case are performing equally good. The reason is that

if the labeler are good all the methods perform well, even most naive ones like majority voting.

In Table 6.12 when the 50% of the crowd is making 35% mistakes and the rest is making 65%

mistakes all versions of ELICE are showing higher significance. In this table, majority voting with

gold testing (MV1, MV2, MV3 and MV4) show higher significance due to reliance in the good

labelers but it should be noted that the results are unpredictable and only the cases are considered

when the results are not NaN. CLUBS on the other hand, is not always the winner.

Table 6.13 shows similar results as the Table 6.12. More tables with different levels of labeler

ability can be found in the appendix.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - NaN 0 0 0 NaN NaN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV1 NaN - 0 0 0 NaN NaN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV2 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV 3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV 4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G NaN NaN 0 0 0 - NaN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GW NaN NaN 0 0 0 NaN - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DS1 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DS2 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0

BP1 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

BP2 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0

MF1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0

MF2 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0

KOS1 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0

KOS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0

E3-C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 - 0

CLUBS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 -

Table 6.11: Paired t-tests results for the accuracy level of different methods: All labelers are making less than 35% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV1 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV2 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

G 1 1 1 1 1 - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

GW 0 1 1 1 1 0 - 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

DS1 1 1 1 1 1 0 0 - 0 0 0 0 0 0 0 1 1 1 1 1 1 0

DS2 0 1 1 1 1 0 0 0 - 0 0 0 0 0 0 1 1 1 1 1 1 0

BP1 1 1 1 1 1 0 0 0 0 - 0 0 0 0 0 1 1 1 1 1 1 0

BP2 1 1 1 1 1 0 0 0 0 0 - 0 0 0 0 1 1 1 1 1 1 0

MF1 0 1 1 1 1 0 0 0 0 0 0 - 0 0 0 1 1 1 1 1 1 0

MF2 1 1 1 1 1 0 0 0 0 0 0 0 - 0 0 1 1 1 1 1 1 0

KOS1 0 1 1 1 1 0 0 0 0 0 0 0 0 - 0 1 1 1 1 1 1 0

KOS2 0 1 1 1 1 0 0 0 0 0 0 0 0 0 - 1 1 1 1 1 1 0

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 1 1 1 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 1 1 1 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - NaN 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NaN - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

CLUBS 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 -

Table 6.12: Paired t-tests results for the accuracy level of different methods: 50% labelers are making less than 35% mistakes and 50% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

MV1 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

MV2 0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

G 0 1 1 1 1 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

GW 0 1 1 1 1 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS1 0 1 1 1 1 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS2 0 1 1 1 1 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP1 0 1 1 1 1 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP2 0 1 1 1 1 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 1 1 1 1 1 1 1

MF1 0 1 1 1 1 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 1 1 1 1 1 1 1

MF2 0 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 1 1 1 1 1 1 1

KOS1 0 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 1 1 1 1 1 1 1

KOS2 0 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 1 1 1 1 1 1 1

E1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 - 0 1 1 1 1 0

E1-C 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 - 1 1 1 1 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 - 0

CLUBS 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -

Table 6.13: Paired t-tests results for the accuracy level of different methods: All labelers are making more than 65% mistakes.
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Error

Noise level Decision Trees Random Forest KNN SVM

0 0.08 0.04 0.1 0.04

0.1 0.12 0.05 0.18 0.06

0.2 0.18 0.09 0.26 0.07

0.3 0.31 0.19 0.35 0.15

0.4 0.40 0.32 0.42 0.27

0.5 0.49 0.49 0.50 0.50

0.6 0.59 0.68 0.58 0.71

0.7 0.71 0.83 0.68 0.85

0.8 0.79 0.90 0.75 0.90

0.9 0.88 0.94 0.83 0.94

1.0 0.90 0.94 0.88 0.96

Table 6.14: The effect of noisy crowd-labeled data for Breast Cancer dataset. Results using deci-

sion trees, random forest, K-nearest neighbor and support vector machine for different noise levels.

Results were averaged over 100 runs.

6.7 The Effect of Noisy Crowd-labeled Data

It is well known that one of the main purposes of crowd labeling is to train machine learning classi-

fiers. If there is noise in the training data, it can lead to misclassification of the test data. Despite the

fact that many researchers have investigated the methods to produce good results with noisy data,

still no method beats [Frénay and Verleysen, 2014] the availability of the noise-free or at least less

noisy data. In this section, we have conducted a few experiments to see how much noisy data can

effect the some simple classifier.

We conducted experiments on UCI datasets, which had features available, we are reporting the

results only for the UCI breast cancer dataset. This dataset has 569 instances and 30 features. We

used 100 instances for training and the rest were used for testing. We used decision trees, random
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forest and k-nearest neighbors. As expected, the results shown in Table 6.14 demonstrate that the

lower the noise level in the training set, the better the accuracy.

6.8 Conclusion

We developed a new framework for crowd labeling, which incorporates more parameters than most

crowd labeling frameworks. The main idea of our approach is to have a better understanding of the

impact of different factors in the crowd labeling scenario. The summary of our contribution is as

follows:

1. We have provided a better approach to get high-quality results even in the presence of het-

erogenous quality labels. The results show that our model has a better and stable performance

as compared to the other state-of-the-art methods.

2. We have proposed a better way to evaluate the labelers by considering most underlying pa-

rameters (instance difficulty, prevalence, question clarity) that can affect the labeler ability.

3. We introduced fine grained labeler ability, which captures the bias of labeler. It also identifies

the lazy labelers who label the dataset with only one class to avoid mental effort, hoping to

produce good results due to the skewness of the data.

4. The prevalence of the class is introduced to incorporate as much information available about

the dataset.

5. The clarity of the question is introduced to quantify the possibility that labeler mistakes could

be due to vague or incomplete description of the task.

We have presented a new methodology with empirical evaluation showing good results. Next,

we plan to explore theoretical aspects and guarantees of our approach. We also plan to make our

approach more fine-grained by adding more parameters to make the model more comprehensive.

These parameters include the variability in labeler ability ([Csathó et al., 2012], [Boksem et al.,

2005], [Topi et al., 2005]) and pseudo guessing parameter.
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Part III

Related Work & Conclusion



99

Chapter 7

Research On Crowd Labeling

In this chapter, we summarize crowd labeling research. In Section 7.1, we describe the research

on improving crowd labeling design and in Section 7.2 the research for quality assurance. It can

however be noted that the underlying aim of both types of research is to improve the accuracy of

final labels.

7.1 Crowd Labeling Design Related Research

Paper by [Quinn and Bederson, 2011] summarizes human computation. The authors also give an

overview of the closely related fields of human computation including data mining, social com-

puting, crowdsourcing and collective intelligence. They discuss various schemes for classification,

design and quality control of the human computation task. It is a good introductory paper about hu-

man computation but the discussion in this paper gives a high-level picture of human computation

and relevant fields but lacks detail for a more curious reader.

7.1.1 Crowd Labeling Workflow

Work by [Little et al., 2010a] discusses possible workflows for crowd. The authors classify the

crowdsourcing task into two categories: decision task and creation task. The examples of decision

task include labeling of images and annotation of words while the examples of creation task include

writing an essay and designing a logo. The authors suggest that parallel workflow is more suitable

for decision tasks while iterative workflow is more appropriate for the creation task. They also
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mention that a combination of the two workflows can be used for most of the tasks. This paper

presents a comparison of the different workflows for crowdsourcing tasks but lacks the details about

the number of required workers in each kind of workflow.

7.1.2 Effects of Clarity of Instructions

Similarly, [Kittur et al., 2008] show the importance of a clear instructions through a case study

on Amazon Mechanical Turk (AMT). For this purpose, they repeat an experiment on AMT a sec-

ond time with more detailed instructions. Their results show an improved outcome in the second

experiment. They argue that good design and clear instructions can improve the accuracy of the

crowdsourcing tasks. This paper brings up a very good point for the requesters to consider. This

is especially helpful because many crowd workers may not know the language of the instruction

very well. This is the reason why we have introduced a question clarity parameter to quantify the

effect of clear instructions. Although the paper is very interesting but lacks extensive experiments

for covering different types of crowdsourcing as well as concrete guidelines about the instruction

design.

7.1.3 Task Division Strategy

The strategy for task division for crowd work is discussed by [Kulkarni et al., 2011]. They describe

that the requester can post the undivided task on AMT through Turkomatic. The workers are in-

structed to do the task in the given amount of time and price or divide the task into smaller parts.

These subtasks are automatically posted again with similar instructions and this iterative process

goes on until workers complete the task. At the end, workers combine the solutions to make one

final solution. The proposed strategy can alleviate complaints of unfairness by the crowd. It can also

lead to less work for the requester. On the other hand, this strategy gives control to the workers who

can exploit the requester by maliciously dividing the tasks into undesirably small subtasks hence re-

ducing the benefits of using the crowd. Also, it is more difficult to keep a check on the workers and

know their quality. Moreover, it may not always be possible to use this strategy for task division.
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7.1.4 Task Designing Toolkit

In their paper, [Little et al., 2009; Little et al., 2010b] propose a toolkit for deploying crowdsourcing

tasks. This toolkit is an extension of Javascript. It is an appealing idea for the requesters with

programing skills since the task can be controlled easily by changing the script as needed. Also

it provides a mechanism for storing the results that can safeguard from loss of data in the case of

crash. This toolkit provides an easy way to control the crowd labeling task but requesters with no or

little programming skills need to hire a programmer. Moreover, this procedure may not be suitable

for all kind of tasks e.g., designing a logo.

7.1.5 Task Assignment According to Worker Expertise

The authors in [Ho et al., 2013] propose a method for assigning the tasks according to the worker

expertise. They test the workers on a few gold standard instances to calculate the task value (i.e.,

quality) of each worker, for each type of instance separately. Instances from the unlabeled dataset

are assigned to the workers with the highest task value. The method proposes an intelligent way

of improving accuracy by using the suitable of worker for each type of the instance but the method

requires using extra workers for exploration purpose. This results in extra cost, which may reduce

the advantage obtained by the improvement in accuracy.

7.1.6 Solving Worker’s Problems

Work by [Silberman et al., 2010b] presents the problems faced by workers and enlist some open

questions in this regard. Worker problems described include low pay, long pay delays, unaccount-

able and seemingly arbitrary rejections, prohibitive time limits, uncommunicative requesters and

administrators, cost of requesters error borne by the workers and fraudulent tasks. Although this pa-

per presents the problems faced by the workers to improve the crowd work process, no suggestion

about solution is provided.

Works by [Bederson and Quinn, 2011] and [Silberman et al., 2010a] propose some solutions

to worker problems. The solutions include defining hourly pay, disclosing and following payment

terms, valuing workers time, immediate quality feedback, long-term feedback, providing grievance

process, providing task context and limiting anonymity of requesters. They provide a good initiative
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to propose solution to worker problems. While these solutions can help to mediate worker problems,

they need to be enforced by making laws about crowdsourcing e.g., defining worker pay and limiting

anonymity of the requesters.

A more practical solution to worker problems is suggested by [Irani and Silberman, 2013]

named Turkopticon, which is an extension of chrome and firefox used to get workers’ reviews about

requesters. This method helps the workers to know about the requesters beforehand. Moreover, it

can help the requesters to get feedback about themselves and improve accordingly. This solution is

easy to use and helpful for both requesters and workers. But problem can be caused by the workers

giving wrong feedback.

7.1.7 Crowd Labeling Surveys

Work by [Ross et al., 2010] gives an overview of the crowd demographics. The information is

useful and should be kept in mind while designing the tasks. Since the crowd workers come from

different parts of the world with different cultural and social background, their perception about the

same problem can be quite different. Although being an outdated paper it presents a good example

of demographics summary. Such surveys need to be done yearly.

7.1.8 Standardizing Crowd Labeling

The authors in [Ipeirotis and Horton, 2011] suggest to standardize crowd labeling by introducing

design templates, fixed prices for similar tasks, pricing the smaller units, deciding the complex

unit prices accordingly and optimizing the workflow. They also suggest improvement in the role

of platforms to avoid fake or malicious tasks. In general, idea of standardization is good to make

the rules uniform across the platforms and minimize the exploitation of workers. The strategies

proposed by the authors can be applied to certain extent and can improve the overall structure of

crowd labeling.

7.1.9 Crowd Labeling Career Ladder

In their paper [Kittur et al., 2013] propose possible future directions for crowd work design, crowd

computation and crowd workers. While most of the ideas discussed in this paper are not totally

new, one of the novel suggestions is the career ladder. They describe career ladder as different ranks
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assigned to workers according to their experience e.g., entry level worker, trusted worker, hourly

contractor and employees. Other suggestions include task recommender systems and improving

task design through a better communication between the crowd and the requesters. Career ladder

suggested in this paper is a nice way to envision future crowd structure. It can motivate the crowd

to take crowdsourcing more seriously, portraying crowd work as a reasonable and a real job oppor-

tunity. Some of the suggestions are not easy to implement e.g., since the crowd workers are usually

not permanent, the identification of crowd workers based on their credentials and previous work

history, is not easy and requires link across all the platforms. Even in the case of one platform much

effort is required to check and verify the identity of the workers, while preserving their privacy.

7.1.10 Our Task Design

Although the above mentioned suggestions by different researchers provide good solutions for de-

signing a better crowd labeling task, in our frameworks we have approached the problem in a dif-

ferent way, described as follows:

• We have designed the task to be able to get high accuracy with less preprocessing and mini-

mum infrastructure.

• Our strategy is also useful for labels acquired in the past.

• We do acknowledge the importance of clear instructions and that is why we have included

clarity of the question parameter in our latest methodology.

• We do not block oppositional/malicious workers rather use the information provided by them.

7.2 Crowd Labeling Research about Quality Assurance

Many recent works have addressed the topic of learning from crowd along with quality assurance

techniques (e.g., [Raykar et al., 2010; Le et al., 2010]). In this section, we present some research

with respective pros and cons.
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7.2.1 Effects of Acquiring Multiple Labels

In their paper, [Sheng et al., 2008] show different traits of multiple labels and majority voting

through a set of experiments. They show that for a uniform quality labelers with quality p > 0.5

multiple labels improve accuracy, when p < 0.5 accuracy deteriorates, while no improvement is

observed when p = 0.5 or p = 1. Similarly, for the crowd with variable quality it is shown that

increasing the number of labels may not always be helpful and similar results may be obtained by a

single label. They also propose Selective repeated-labeling, which refers to the procedure of getting

more labels for the instances with mixed multi-set of labels. Since the mixed multi-set can be due

to the labeler quality or model, they also introduce a score called Labeler and Model Uncertainty

score. This score is used to decide whether acquiring more labels for the instance is helpful or not.

They present a nice comparison of single labeling, multiple labeling and selective labeling but they

only experiment with a naive majority voting method while more intelligent methods are available

with a better accuracy.

7.2.2 Natural Language Processing (NLP) tasks

The paper by [Passonneau et al., 2012] experiments on Natural Language Processing (NLP) tasks.

They show through experiments that fine grained sense inventory produces better results. Same

labeling accuracy can be achieved by many untrained labelers, few trained workers and one expert

labeler. They also experiment to identify the instances with high agreement, average agreement and

split agreement. They present extensive experiments with different level of labeler expertise but

they focus on few words. In their paper [Snow et al., 2008] experiment on five different NLP tasks

using experts and non-experts. The method used is inter annotator agreement (ITA). They show that

on average four non-experts can do as good as one expert for these tasks. They also introduce a bias

recognition technique, which automatically adjusts the biased labels. They use different variety of

NLP tasks to experiment. They do not compare ITA with other methods.

Work proposed by [Passonneau and Carpenter, 2013] presents a case study to show deficiencies

of inter annotator agreement (ITA). They argue that ITA is based on pairwise comparison while

comparing one annotator to the average of the rest is a better option. Moreover, the difficulty of

the instance may increase the agreement on the wrong label. Also some annotators can be biased,

which can increase the wrong label agreement. Their conclusion is that learning a model can be
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a better option. They also propose a model. A comprehensive overview is presented about inter

annotator agreement shortcomings but no general guidelines are provided about forming a model,

only a specific model is presented.

7.2.3 Classifier Based Methods

Support Vector Machines (SVM) to learn a classifier based on a few labels provided by the crowd

is presented by [Dekel and Shamir, 2009]. In this paper no repeated labeling is used, instead good

labelers are identified and their labels are used to learn the classifier ignoring the labels by the bad

labelers. Multiple labels are not needed. They make the assumption that good labelers are always

available who can provide correct labels irrespective of the variable quality of the instances but this

method may not do well if no good labeler is available.

Another approach aims to identify adversarial labelers (e.g., [Paolacci et al., 2010]). This is

tackled through an a priori identification of those labelers before the labeling task starts. However,

an oppositional/malicious labeler can perform well initially and then adversarially behave during

the labeling process.

7.2.4 EM Based Method

In their paper, [Dawid and Skene, 1979] use Expectation Maximization (EM) for learning the un-

derlying parameters and latent variables of the crowd labeling task. They propose methods that

apply, whether a few ground truth instances are available or not available. The authors introduce for

the first time the use of EM for crowd labeling but they do not consider the difficulty of the instance

and handle all types of labelers in the same way.

A probabilistic model called Generative model of Labels, Abilities, and Difficulties (GLAD) is

proposed by [Whitehill et al., 2009]. In their model, EM is used to obtain maximum likelihood esti-

mates of the unobserved variables, which outperforms majority voting. The authors also propose a

variation of GLAD that clamps some known labels into the EM algorithm. More precisely, clamp-

ing is achieved by choosing the prior probability of the true labels very high for one class and very

low for the other. The idea used for aggregation of labels based on the expertise of the labeler and

difficulty of the instance is valuable. Their method is shown to outperform majority voting (which is

the case for most state-of-art methods) but they do not compare to other methods, except for Dawid



7.2. CROWD LABELING RESEARCH ABOUT QUALITY ASSURANCE 106

& Skene [Dawid and Skene, 1979]. Also, the assumptions they make about accuracy level of good

and bad workers are too general and do not cover the extreme cases where the workers are really

biased or oppositional/malicious.

A probabilistic framework is also proposed by [Yan et al., 2010] as an approach to model an-

notator expertise and build classification models in a multiple label setting. They do not explicitly

model the difficulty of the instance, instead they use variable expertise of the labeler i.e., labeler

expertise varies according to instances. The notion of variable expertise of the labeler is a realistic

approach since labeler’s performance changes according to the instance. M-step of the EM does

not have a closed form so Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) Quasi

Newton method is used. Calculations are complex and the method is difficult to implement.

A generative model is proposed by [Hovy et al., 2013b] that can detect the spammers. The

spamming behavior of the labeler is modeled by a binary variable and EM is used to learn the

underlying parameters. While their method focuses on identifying spammers from non-spammers,

they make a very strong assumption i.e., when a labeler is not spamming, he can produce the correct

label. This is not true in general. Moreover, labelers do not change their strategy for each instance.

Mostly their behavior is consistent at least during one set of task. The methods used in this paper

are EM and Variational Bayes (VB). The model presented in this paper is simple but the authors

make wrong assumption about the labeler’s behavior.

Paper by [Raykar and Yu, 2012] proposes a strategy based on (a) using the good labelers, (b)

identifying the biased and oppositional/malicious labeler and adjusting their labels and (c) pruning

the random labelers. Their algorithm updates the sensitivity and specificity using the MAP estimator

given the hyper parameter. Hyper parameter is also updated iteratively and penalizes the spammers

more than the other labelers. A labeler for which the value of hyper parameter is higher than

a predefined threshold is pruned. They also extend their method to multi-class and categorical

data. The main strength of their paper is that they try to maximize the use of all kinds of workers

and automatically prune the noisy/random workers but the method complexity makes it difficult to

implement.



7.2. CROWD LABELING RESEARCH ABOUT QUALITY ASSURANCE 107

7.2.5 Iterative Methods

An iterative method is proposed by [Karger et al., 2014; Karger et al., 2011], which is similar to

Belief Propagation. Iterative algorithm improves the worker estimates by comparing the workers

contribution to the other workers. This algorithm is simple to implement and requires no prior

knowledge. But this method works well if most of the workers in the crowd are good but in the

presence of more biased or oppositional/malicious workers, the accuracy goes down.

Belief Propagation (BP) and Mean Field method (MF) is used in [Liu et al., 2012] for estimating

the true labels and expertise of the labelers. Posterior distribution is marginalized over the expertise

of the labeler. Priors used are Beta prior, discrete prior, Haldane prior, and deterministic prior. They

show that Karger’s method [Karger et al., 2011], EM and majority voting are special case of their

method i.e., their method is more general. On the other hand method is complex and involves lots

of calculations.

7.2.6 Ground Truth Based Methods

The approach adopted in CrowdFlower [Le et al., 2010] suggests the use of the gold standard to train

and test the workers before the actual labeling task and blocking the workers who do not fulfill a

predefined standard. It is also suggested that gold units be embedded in the labeling task without the

knowledge of workers to keep a check on their performance. This method works well in most cases

if ground truth instances are available. Although this method seems promising, it can discourage

the workers and hinder the new workers from learning through experience. Moreover, the need of

large number of gold units is a big challenges. Similarly, the idea of using ground truth labels has

been used by Crowdflower ([Le et al., 2010]) where crowd ability is tested based on a few ground

truth instances. This proposed approach tests the crowd labelers during the training phase (before

the actual labeling starts) and blocks the labelers who do not pass the training. Subsequent tests are

also used to block bad crowd labelers after giving warnings. This is done by injecting instances for

which ground truth is available during the actual labeling task. This approach can be helpful when

a large number of ground truth instances are available. To handle this problem [Oleson et al., 2011]

propose “Programmatic gold” that generates gold units automatically which may not be possible for

many datasets.

Another method called Programmatic Gold is proposed by [Oleson et al., 2011], which gener-



7.2. CROWD LABELING RESEARCH ABOUT QUALITY ASSURANCE 108

ates gold units. This is done either by creating gold units through injecting known type of errors

into instances or using the data, which has been labeled by the crowd with high confidence. This

approach can be a successful in some areas e.g., event temporal ordering. But it should be noted that

this approach cannot be applied to all types of crowd labeling tasks e.g., data for cancer diagnosis

cannot be created by injecting errors.

Paper by [Wang et al., 2011] claims to identify the types of labelers and adjust their labels

accordingly. They do not rely on the exact labels given by the labelers but convert the hard labels

into soft labels, using the underlying information about the true labels. Moreover, they also propose

an active learning strategy, which compares the utility of testing the worker with gold truth instance

and the utility of assigning him an unlabeled instance. Decision is made based on whichever has

a higher utility. Converting the hard labels to soft labels gives a better insight to labelers strategy

or inclination. In this method prevalence of class and confusion matrices of labelers are learned by

comparing each worker’s labels to the majority voting of the rest of the crowd. When the majority

of labelers is bad, there is a high chance of wrong perception of class prevalences and confusion

matrices. This problem can be alleviated by using a few ground truth instances.

Another paper [Welinder et al., 2010b] devises a method to identify the class of the image, using

multiple labels. They use different attributes of the image to model the difficulty of the instance.

Further, they add noise to these attributes, which represents the image as seen by each labeler due

to the quality of the image and the expertise of the labeler. After forming the probabilistic model,

alternating optimization is done using gradient ascent method to learn the model. Finally a classifier

is learned for each worker. The idea used for determining the difficulty of the instance using the

attributes is realistic and covers different aspects of the instance instead of just the notion of ‘diffi-

culty’. Moreover the classifier learned for each labeler depends on each of these attributes. Since

different workers tend to focus on different attributes of the instances, the evaluation of workers can

be more accurate. The method could benefit from a few ground truth instances, which are not used

here.

7.2.7 Active Learning Based Methods

A second line of research (e.g., [Donmez et al., 2009]) uses active learning to increase labeling

accuracy by choosing the most informative labels. This is done by constructing a confidence interval
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called “Interval Estimate Threshold” for the reliability of each labeler. Also, [Yan et al., 2011]

develop a probabilistic method based on the idea of active learning, to use the best labels from the

crowd.

Wallace et al. [Wallace et al., 2011] propose a method called MEAL (Multiple Expert Active

Learning). Labelers are grouped together based on some given information, each group has its

rank. The lowest ranked group of labelers label the instances as {1, -1, ‘difficult’} . The instances

labeled as ‘difficult’ are passed on to the next level of workers. The top ranked labelers are not

allowed to label any instance as ‘difficult’. This procedure is repeated until the budget is exhausted.

Labelers can explicitly identify the instances about which they are doubtful, instead of labeling them

randomly. Only the instances which are labeled as ‘difficult’ are labeled by expert and expensive

labelers from a higher ranked group, reducing the cost. Although having information about all the

labelers beforehand to be able to rank them, is unrealistic.

Some researchers [Donmez and Carbonell, 2008] claim to remove the wrong assumptions made

by active learning that is oracles are never wrong, always answer, are free of cost or have uniform

cost and there is only one oracle. They present three different scenarios with two oracles each. These

oracles have different qualities e.g., reliable, reluctant, uniform cost, variable cost etc. For each

scenario an algorithm is proposed to choose the best oracle depending on the cost and probability

of getting the correct answer. The method suggested to calculate the utility of each oracle is helpful

but extra work is required to decide about the oracle.

7.2.8 Classifier Based Methods

A Bayesian framework is proposed by [Raykar et al., 2009] to estimate the ground truth and learn a

classifier. The main novelty of their work is the extension of the approach from binary to categorical

and continuous labels. [Sheng et al., 2008; Sorokin and Forsyth, 2008; Snow et al., 2008] show that

using multiple, noisy labelers is as good as using fewer expert labelers.

More recent works have proposed approval voting and incentivizing the crowd ([Shah et al.,

2015; Shah and Zhou, 2015; Shah et al., 2013]). This approach is good but requires longer time

and infrastructure to get good results. Similarly another recent work [Zhang and Chaudhuri, 2015]

relies on active learning and [Menon et al., 2015] use class-probability estimation to study learning

from corrupted binary labels.
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Another proposed model by [Ipeirotis et al., 2010], and [Ipeirotis and Paritosh, 2011] identifies

biased or adversarial labelers and corrects their assigned labels. This is done by replacing hard

labels by a soft labels. Class priors and the probability of a labeler assigning an instance from a

particular class to some other class is used to calculate the soft labels. [Ipeirotis and Horton, 2011]

suggest to standardize crowd labeling by introducing design templates, fixed prices for similar tasks,

pricing the smaller units, deciding the complex unit prices accordingly and optimizing the workflow.

They also suggest improvement in the role of platforms to avoid fake or oppositional/malicious

tasks. In general, the idea of standardization is good to make the rules uniform across the platforms

and minimize the exploitation of workers but do not help with the increasing variety of crowd

labeling tasks.

7.2.9 Our Approaches

We have presented ELICE and CLUBS. Both methods are based on parameter estimation using a

few expert-labeled instances. ELICE uses frequentist approach while CLUBS uses the Bayesian

approach. The empirical evaluation shows that both of the approaches perform better than many

state-of-the-art methods.
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Chapter 8

Conclusion & Future Directions

In this chapter, we conclude the thesis by summarizing our efforts and presenting future directions.

8.1 Conclusion

In this thesis, we have presented a set of methods for improving crowd labeling. We have focused

on devising methods for estimating parameters and using them in label aggregation. Parameters

estimation is done using expert-labeled instances. We have explored frequentist and Bayesian ap-

proaches for parameter estimation.

Our frequentist approach called ELICE consists of three versions along with their variants. Each

version of ELICE has its own advantages. ELICE 1 is simple to implement, fast to get results and

delays phase transition. It is a very good option when the task is easy and we expect to have lots

of good labelers. ELICE 1 has a clustered-based variant in which before the random selection

of instances for getting expert-labels, clusters are formed and an equal number of instances are

selected randomly from each cluster separately. This is done to possibly get an equal representation

of instances from both classes.

ELICE 2 is a more sophisticated version of ELICE, which is based on entropy. Its ability to

identify the labeler type and deal with it accordingly results into good performance. In the label

aggregation step, for a given instance, low weight is assigned to the label provided by a random

labeler and high weight is assigned to the label provided by a good or oppositional labeler but at the

same time, the label provided by the oppositional labeler is automatically flipped. This technique
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is especially helpful when there are many oppositional labelers in the crowd. In this method, the

information provided by the oppositional labelers is not wasted, rather it is decoded and harnessed

intelligently, resulting in high accuracy of the final labels. It should be noted that when the set

of crowd labelers is good it is easy to get good results but the challenge arises when we have

oppositional labelers. ELICE 2 has this ability to deal with oppositional labelers and works best

as compared to many state-of-the-art methods even when all labelers are oppositional. With the

increasing trend of maliciousness on internet, this is a highly desirable property and makes ELICE

2 unique. ELICE 2 also has a cluster-based variant.

Although ELICE 2 is very effective, it is conditioned on the availability of ground truth, while

it is a known fact that expert-labels may not always be ground truth, either because of the task

being so tricky or because the experts disagree on one label. ELICE 3 with pairwise comparison

mediates this problem by comparing labeler to labeler and instance to instance, other than relying

on expert labels. Therefore, ELICE 3 squeezes all available information from all sources including

experts, crowd, and instances. ELICE 3 with circular comparison is also presented, which is similar

to ELICE 3 with pairwise comparison but with lower computational cost.

Our empirical evaluation has shown that ELICE is a robust framework as compared to the state-

of-the-art. It also has a universal application as it covers different labeling scenarios including

the presence of oppositional/malicious labelers and unavailability of ground truth from an expert.

Other than being effective, it is very efficient and can be used for large dataset. It is also cost

efficient because of minimum preprocessing of data, minimum infrastructure for labeling and no

history tracking or blocking of the labelers.

We also have derived a theoretical lower bound for the number of expert-labels needed to

achieve good accuracy. Our derivation is based on PAC learning framework. We have shown the

utility of our theoretical lower bound through experiments.

After exploring the frequentist approach, we developed a Bayesian approach for parameter es-

timation called CLUBS. Our Bayesian approach is called CLUBS. An important characteristic of

CLUBS is covering more aspects of crowd labeling scenario by introducing new parameters, such

as clarity of the question, prevalence of class and per-category ability of the labeler. CLUBS in

most cases has shown good results compared to state-of-the-art. Although sometimes ELICE out-

performed CLUBS, we believe that the true potential of CLUBS can further be explored.



8.1. CONCLUSION 113

We hope our contribution will prove to be useful to the crowd labeling community. In the

first chapter of this thesis, we had initiated a few unresolved questions. We conclude the thesis by

analyzing how many of these questions have been resolved.

8.1.1 Unresolved Questions Revisited

1. What are the best ways to evaluate labeler ability and instance difficulty?

Discussion: In this thesis, we have used two different approaches to evaluate the labelers and

instances. In the first part of this thesis, we used a frequentist approach to estimate these pa-

rameters. In the second part of the thesis, we explored the Bayesian approach to estimate not

only labeler ability and instance difficulty but we also estimated more advanced parameters.

While it cannot be easily determined what is the best way to evaluate the parameters but the

empirical evaluation shows that our procedures are very helpful in attaining higher accuracy

as compared to the other state-of-the-art methods.

2. Can phase transition be handled in a more effective way?

Discussion: Our experiments show that ELICE successfully has been able to delay phase

transition, something which many state-of-the-art methods were unable to do.

3. It is common to use expert-labeled instances or ground truth to evaluate labelers and in-

stances [Le et al., 2010; Khattak and Salleb-Aouissi, 2011; Khattak and Salleb-Aouissi, 2012;

Khattak and Salleb-Aouissi, 2013]. The question is, how many expert-labeled instances

should be used in order to obtain an accurate evaluation?

Discussion: We have used expert-labeled instances to evaluate the labelers and instances.

Chapter 4 provides the theoretical work regarding the number of expert-labeled instances

needed to attain a certain final-label accuracy.

4. How can labelers and instances be evaluated if ground truth is not known with certitude?

Discussion: To be able to address this problem, we introduced ELICE 3 with pairwise and

circular comparison. In this method not only the expert labeled instances (which are not

necessarily ground truth) are used to evaluate the parameters but also maximum information

is extracted using instance to instance and labeler to labeler comparison.
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5. Is there any optimal way to combine multiple labels to get the best labeling accuracy?

Discussion: In our methodologies, multiple labels are combined using weighted majority vot-

ing while weights are calculated using logistic function of labeler and instance related param-

eters. The purpose of calculating the weights in this way is to combine all the characteristics

of the labeling scenario and give according validity to each crowd label. The experiments pre-

sented in this thesis show that our label aggregation method is able to produce more accurate

results.

6. Should the labels provided by oppositional labelers be discarded and blocked? Or is there a

way to use the “information” provided by oppositional labelers?

Discussion: Despite the fact that blocking the oppositional labelers has been one of the rec-

ommended solutions to avoid polluted results, ELICE has shown to work really well by using

the information provided by the oppositional labelers. This shows that such labels can have

high value if handled intelligently hence diminishing the need for blocking oppositional la-

belers and searching for better labelers.

8.2 Future Directions

We plan to advance our Bayesian approach by making it exhaustive in terms of parameters. Our

future plans for extending CLUBS are described in the Section 8.2. We are currently working to

explore, how the labeler performance can vary due to the amount of time spent on a task causing

fatigue, boredom and disinterest [Csathó et al., 2012]. The goal is to incorporate this idea in the

CLUBS to get better results.

8.2.1 Variability in Labeler Productivity

Most of the crowd labeling literature assumes that labeler performance remains constant (at least)

during one labeling session. But in fact humans unlike computers and other machines have variable

performance even during a short period of time ([Boksem et al., 2005; Topi et al., 2005]). The

variation in performance can be due to fatigue, boredom and/or other external reasons [Albert, 2002;

Jensen et al., 2009].

Common reasons for variability in human performance are as follows [Loukidou, 2008]:



8.3. CROWD LABELING FUTURE: THE BROADER PICTURE 115

• Time of the day: The time of the day can have an important effect on human performance.

Generally, work done at late hours will exhibit low performance, which will soon become

worse.

• Complexity of the work: The complexity of the task can have a direct effect on the per-

formance of the human. More complex task result in early deterioration in the worker’s

performance.

• Lack of challenge: If the task has no challenge for the human then it can cause boredom and

as a result can lower the performance level.

• Stress level: According to the Yerkes-Dodson law [Yerkes and Dodson, 1908] of psychology

the amount of stress also affects the performance level.

• Time-on-Task (ToT): The time spent on the task also causes variability in performance.

Generally, human performance can be divided into three phases [Csathó et al., 2012]: warmup

phase, peak phase, and decline phase.

We are currently working with the data with some ground truth from different temporal frames to

be able to understand and predict the labeler performance pattern.

8.3 Crowd Labeling Future: The Broader Picture

In the past decade crowd labeling research has made significant progress. Following is a glimpse of

a broader picture of crowd labeling future as envisioned by different researchers.

• Standardizing the Crowd Work: To bring uniformity in crowd labeling, tasks can be stan-

dardized [Ipeirotis and Horton, 2011] by introducing design templates, fixed prices for similar

tasks, pricing the smaller units, deciding the complex unit prices accordingly and optimizing

the workflow.

• Improving Role of the Platform: Improvement in the role of the platforms [Ipeirotis and

Horton, 2011] to avoid fake or oppositional/malicious tasks is of crucial importance. Plat-
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forms should be designed in a way to be able to check and verify the identity of the workers,

while preserving their privacy.

• Task recommender system: Task recommender systems should be built to suggest work

according to the work history of the workers [Kittur et al., 2013].

• Worker Career Ladder: Career ladder [Kittur et al., 2013] is a nice way to envision fu-

ture crowd structure. Career ladder consists of ranks assigned to workers according to their

experience e.g., entry-level worker, trusted worker, hourly contractor and employees.

• Collaboration and Monitoring: Collaboration and real time interaction with the requesters

and other workers can help them both feel more active and engaged in the work. In this regard

survey from workers can also be helpful.

• Educating Requesters and Workers: This may include platforms educating requesters

about task design, job assignment, training-assessment cycle for better learning, and online

crowd work tutoring system. Workers can be encouraged by giving rewards for good perfor-

mance.

Further investigation needs to be done to explore more opportunities for reaching out to the

crowd. We conclude this thesis with the following thoughts.

8.4 Final Thoughts

• What else a crowd can do? The crowd may not be kept limited to traditional uses but also

can be utilized for non-traditional and more challenging tasks. Further investigation needs to

be done to explore more opportunities for the crowd usage.

• Will there always be a crowd? It is debatable whether a crowd will be available for crowd

work after 50 years. More people can be attracted to crowd labeling if it is recognized as a

profession with more incentives and opportunities.

• Can crowd be replaced? A last worth-considering question is whether advances in technol-

ogy will ever replace the crowd. For example, computers might be able to interpret images
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better, or may provide more reliable tools for language translation. Hence, it is debatable

whether one will still reach out to the crowd in 50 years from now.
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Appendix

Abbreviations used in the table are as follows,

MV = Majority voting,

MV1 = Majority voting (25%), MV2 = Majority voting (35%),

MV3 = Majority voting (45%), MV4 = Majority voting (55%),

G = GLAD, GW = GLAD with Clamping,

DS1 = Dawid & Skene 1, DS2 = Dawid & Skene 2,

BP1 = Belief Propagation 1, BP2 = Belief Propagation 2,

MF1 = Mean Field 1, MF2 = Mean Field 2,

KOS1 = Karger’s Iterative methods 1, KOS2 = Karger’s Iterative methods 2,

E1 = ELICE 1, E1-C = ELICE 1 with clustering,

E2 = ELICE 2, E2-C = ELICE 2 with clustering,

E3-P = ELICE 3 Pairwise & E3-C = ELICE 3 Circular.

This appendix contains the results for the significance tests.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV1 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV2 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 - NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0

GW 0 0 0 0 0 NaN - NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0

DS1 0DS 0 0 0 0 NaN NaN - NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0

DS2 0 0 0 0 0 NaN NaN NaN - NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0

BP1 0 0 0 0 0 NaN NaN NaN NaN - NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0

BP2 0 0 0 0 0 NaN NaN NaN NaN NaN - NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0

MF1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN - NaN NaN NaN NaN NaN NaN NaN 0 0 0

MF2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN - NaN NaN NaN NaN NaN NaN 0 0 0

KOS1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN - NaN NaN NaN NaN NaN 0 0 0

KOS2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN - NaN NaN NaN NaN 0 0 0

E1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN - NaN NaN NaN 0 0 0

E1-C 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN - NaN NaN 0 0 0

E2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN - NaN 0 0 0

E2-C 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

CLUBS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

Table 1: Paired t-tests results for the accuracy level of different methods: 90% labelers are making less than 35% mistakes and 10% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

MV1 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV2 0 0 - 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN 0 0 0

GW 0 0 0 0 0 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN 0 0 0

DS1 0 0 0 0 0 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN 0 0 0

DS2 0 0 0 0 0 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 0 0 NaN NaN 0 0 0

BP1 0 0 0 0 0 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 0 0 NaN NaN 0 0 0

BP2 0 0 0 0 0 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 0 0 NaN NaN 0 0 0

MF1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 0 0 NaN NaN 0 0 0

MF2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 0 0 NaN NaN 0 0 0

KOS1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 0 0 NaN NaN 0 0 0

KOS2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 0 0 NaN NaN 0 0 0

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0

E2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 - NaN 0 0 0

E2-C 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

CLUBS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

Table 2: Paired t-tests results for the accuracy level of different methods: 80% labelers are making less than 35% mistakes and 20% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

MV1 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV2 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN 0 NaN 0 0

GW 0 0 0 0 0 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN 0 NaN 0 0

DS1 0 0 0 0 0 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 0 0 NaN 0 NaN 0 0

DS2 0 0 0 0 0 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 0 0 NaN 0 NaN 0 0

BP1 0 0 0 0 0 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 0 0 NaN 0 NaN 0 0

BP2 0 0 0 0 0 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 0 0 NaN 0 NaN 0 0

MF1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 0 0 NaN 0 NaN 0 0

MF2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 0 0 NaN 0 NaN 0 0

KOS1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 0 0 NaN 0 NaN 0 0

KOS2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 0 0 NaN 0 NaN 0 0

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0

E2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 - 0 NaN 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN 0 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

CLUBS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

Table 3: Paired t-tests results for the accuracy level of different methods: 70% labelers are making less than 35% mistakes and 30% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

MV1 0 - 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0

MV2 0 0 - 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0

MV3 0 0 0 - 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN NaN NaN 0

GW 0 0 0 0 0 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN NaN NaN 0

DS1 0 0 0 0 0 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN NaN NaN 0

DS2 0 0 0 0 0 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 0 0 NaN NaN NaN NaN 0

BP1 0 0 0 0 0 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 0 0 NaN NaN NaN NaN 0

BP2 0 0 0 0 0 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 0 0 NaN NaN NaN NaN 0

MF1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 0 0 NaN NaN NaN NaN 0

MF2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 0 0 NaN NaN NaN NaN 0

KOS1 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 0 0 NaN NaN NaN NaN 0

KOS2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 0 0 NaN NaN NaN NaN 0

E1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 - 0 1 1 1 1 0

E1-C 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 - 1 1 1 1 0

E2 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 - NaN NaN NaN 0

E2-C 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN - NaN NaN 0

E3-P 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN - NaN 0

E3-C 0 0 0 0 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 0 NaN NaN NaN - 0

CLUBS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

Table 4: Paired t-tests results for the accuracy level of different methods: 60% labelers are making less than 35% mistakes and 40% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV1 0 - 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV2 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 1 1 1 1 1 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

GW 1 1 1 1 1 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS1 1 1 1 1 1 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS2 1 1 1 1 1 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP1 1 1 1 1 1 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP2 1 1 1 1 1 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 1 1 1 1 1 1 1

MF1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 1 1 1 1 1 1 1

MF2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 1 1 1 1 1 1 1

KOS1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 1 1 1 1 1 1 1

KOS2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 1 1 1 1 1 1 1

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 1 1 1 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 1 1 1 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 - 0

CLUBS 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 -

Table 5: Paired t-tests results for the accuracy level of different methods: 40% labelers are making less than 35% mistakes and 60% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

MV1 0 - 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV2 0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

G 1 1 1 1 1 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

GW 1 1 1 1 1 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS1 1 1 1 1 1 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS2 1 1 1 1 1 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP1 1 1 1 1 1 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP2 1 1 1 1 1 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 1 1 1 1 1 1 1

MF1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 1 1 1 1 1 1 1

MF2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 1 1 1 1 1 1 1

KOS1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 1 1 1 1 1 1 1

KOS2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 1 1 1 1 1 1 1

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 1 1 1 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 1 1 1 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 - 0

CLUBS 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 -

Table 6: Paired t-tests results for the accuracy level of different methods: 30% labelers are making less than 35% mistakes and 70% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

MV1 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV2 0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

G 1 1 1 1 1 - NaN NaN NaN NaN NaN NaN NaN 0 0 1 1 1 1 1 1 1

GW 1 1 1 1 1 NaN - NaN NaN NaN NaN NaN NaN 0 0 1 1 1 1 1 1 1

DS1 1 1 1 1 1 NaN NaN - NaN NaN NaN NaN NaN 0 0 1 1 1 1 1 1 1

DS2 1 1 1 1 1 NaN NaN NaN - NaN NaN NaN NaN 0 0 1 1 1 1 1 1 1

BP1 1 1 1 1 1 NaN NaN NaN NaN - NaN NaN NaN 0 0 1 1 1 1 1 1 1

BP2 1 1 1 1 1 NaN NaN NaN NaN NaN - NaN NaN 0 0 1 1 1 1 1 1 1

MF1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN - NaN 0 0 1 1 1 1 1 1 1

MF2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN - 0 0 1 1 1 1 1 1 1

KOS1 1 1 1 1 1 0 0 0 0 0 0 0 0 - 0 1 1 1 1 1 1 1

KOS2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 - 1 1 1 1 1 1 1

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 1 1 1 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 1 1 1 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 - 0

CLUBS 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 -

Table 7: Paired t-tests results for the accuracy level of different methods: 20% labelers are making less than 35% mistakes and 80% are

making more than 65% mistakes.
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MV MV1 MV2 MV3 MV4 G GW DS1 DS2 BP1 BP2 MF1 MF2 KOS1 KOS2 E1 E1-C E2 E2-C E3-P E3-C CLUBS

MV - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

MV1 0 - 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV2 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV3 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

MV4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

G 1 1 1 1 1 - NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

GW 1 1 1 1 1 NaN - NaN NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS1 1 1 1 1 1 NaN NaN - NaN NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

DS2 1 1 1 1 1 NaN NaN NaN - NaN NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP1 1 1 1 1 1 NaN NaN NaN NaN - NaN NaN NaN NaN NaN 1 1 1 1 1 1 1

BP2 1 1 1 1 1 NaN NaN NaN NaN NaN - NaN NaN NaN NaN 1 1 1 1 1 1 1

MF1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN - NaN NaN NaN 1 1 1 1 1 1 1

MF2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN - NaN NaN 1 1 1 1 1 1 1

KOS1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN - NaN 1 1 1 1 1 1 1

KOS2 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN - 1 1 1 1 1 1 1

E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 1 1 1 0

E1-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 1 1 1 0

E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

E2-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

E3-P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 - 0 0

E3-C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 - 0

CLUBS 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 -

Table 8: Paired t-tests results for the accuracy level of different methods: 10% labelers are making less than 35% mistakes and 90% are

making more than 65% mistakes.
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