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ABSTRACT

Discovering Network Control Vulnerabilities and Policies in Evolving Networks

Jill Jermyn

The range and number of new applications and services are growing at an un-

precedented rate. Computer networks need to be able to provide connectivity for

these services and meet their constantly changing demands. This requires not only

support of new network protocols and security requirements, but often architectural

redesigns for long-term improvements to efficiency, speed, throughput, cost, and se-

curity. Networks are now facing a drastic increase in size and are required to carry a

constantly growing amount of heterogeneous traffic. Unfortunately such dynamism

greatly complicates security of not only the end nodes in the network, but also of

the nodes of the network itself. To make matters worse, just as applications are

being developed at faster and faster rates, attacks are becoming more pervasive and

complex. Networks need to be able to understand the impact of these attacks and

protect against them.

Network control devices, such as routers, firewalls, censorship devices, and base

stations, are elements of the network that make decisions on how traffic is handled.

Although network control devices are expected to act according to specifications,

there can be various reasons why they do not in practice. Protocols could be flawed,

ambiguous or incomplete, developers could introduce unintended bugs, or attackers

may find vulnerabilities in the devices and exploit them. Malfunction could inten-

tionally or unintentionally threaten the confidentiality, integrity, and availability of



end nodes and the data that passes through the network. It can also impact the avail-

ability and performance of the control devices themselves and the security policies of

the network. The fast-paced evolution and scalability of current and future networks

create a dynamic environment for which it is difficult to develop automated tools for

testing new protocols and components. At the same time, they make the function

of such tools vital for discovering implementation flaws and protocol vulnerabilities

as networks become larger and more complex, and as new and potentially unrefined

architectures become adopted. This thesis will present the design, implementation,

and evaluation of a set of tools designed for understanding implementation of net-

work control nodes and how they react to changes in traffic characteristics as networks

evolve. We will first introduce Firecycle, a test bed for analyzing the impact of large-

scale attacks and Machine-to-Machine (M2M) traffic on the Long Term Evolution

(LTE) network. We will then discuss Autosonda, a tool for automatically discovering

rule implementation and finding triggering traffic features in censorship devices.

Contributions

This thesis provides the following contributions:

1. The design, implementation, and evaluation of two tools to discover models of

network control nodes in two scenarios of evolving networks, mobile network

and censored internet

2. First existing test bed for analysis of large-scale attacks and impact of traffic

scalability on LTE mobile networks



3. First existing test bed for LTE networks that can be scaled to arbitrary size

and that deploys traffic models based on real traffic traces taken from a tier-1

operator

4. An analysis of traffic models of various categories of Internet of Things (IoT)

devices

5. First study demonstrating the impact of M2M scalability and signaling overload

on the packet core of LTE mobile networks

6. A specification for modeling of censorship device decision models

7. A means for automating the discovery of features utilized in censorship device

decision models, comparison of these models, and their rule discovery
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Chapter 1

Introduction

The range and number of new applications and services are growing at an unprece-

dented rate. Computer networks need to be able to provide connectivity for these

services and meet their constantly changing demands. This requires not only support

of new network protocols and security requirements, but often architectural redesigns

for long-term improvements to efficiency, speed, throughput, cost, and security. The

internet now has more than 3.6 billion devices, almost twice the number of only five

years ago [2]. However, this growth rate is confined not only to the internet. The

rise of cloud computing has enabled cost-effective increases in the size of data cen-

ter networks. Modern cellular networks are also drastically evolving to cope with

an explosion of mobile devices and high bandwidth mobile services. Along with the

increase in the size of communication networks is an increase in the amount and

heterogeneity of the traffic that these networks carry. Unfortunately such dynamism

greatly complicates security not only of the end nodes in the network, but also of the

nodes of the network itself. To make matters worse, just as applications are being

developed at faster and faster rates, attacks are becoming more pervasive and com-

plex. Malware instances have increased across all platforms, and we are now faced

with protecting systems against Advanced Persistent Threats (APT). Networks need

1



to be able to understand the impact of these attacks and protect against them.

Network control devices, such as routers, firewalls, censorship devices, and base

stations, are elements of the network that make decisions on how traffic is handled.

They act abstractly as finite state machines: they receive input traffic, change state

based on some implemented rule, then take an action according to the new state.

They typically base their decisions on characteristics of the traffic that they receive.

Packet content, header data, protocol, and packet timing are a few examples of char-

acteristics that network control devices use as their decision points. The specification

of rules implemented in the network control devices can come from various sources:

protocol implementation, network administrator, or even a third-party middlebox

vendor. Rules make decisions for how control devices act on specific types of traffic.

They may drop or inject traffic, limit throughput, or send messages to other network

elements according to a specific protocol, among other actions.

Although network control devices are expected to act according to specifications,

there can be various reasons why they do not in practice. Protocols could be flawed,

ambiguous, or incomplete, developers could introduce unintended bugs, or attackers

may find vulnerabilities in the devices and exploit them. Malfunction could inten-

tionally or unintentionally threaten the confidentiality, integrity, and availability of

end nodes and the data that passes through the network. It can also impact the avail-

ability and performance of the control devices themselves and the security policies of

the network. Testing these control devices for vulnerabilities and paths for potential

malfunction is not an easy task. When implementations of control devices are pro-

prietary or access to them is not possible for other reasons, it is necessary to reverse
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engineer parts of the implementation to understand the intended behavior of the de-

vice. Finding vulnerabilities for the purpose of protecting nodes is not the only use

case for tools that discover network control device behavior. The same tools could be

utilized by attackers who wish to find vulnerabilities for the purpose of exploitation

or by non-malicious entities that wish to evade device control in order to protect their

right to privacy or net neutrality. Whether the intended purpose of understanding

the behavior of the control device is for protection or exploitation, behavior of the

device needs to be observed and studied for a range of different inputs. This can be

done by modifying input traffic in various ways and observing output of the control

device.

The fast-paced evolution and scalability of current and future networks makes

creating automated tools for understanding implementation of network control nodes

difficult. As new network architectures become adopted, change to existing networks

is typically incremental and often done by adding new components that now need

to interface with old components. Such a dynamic environment makes it difficult to

develop these automated tools that need to test new protocols and components, but

also makes their function vital for discovering implementation flaws and protocol vul-

nerabilities as networks become larger and more complex, and as new and potentially

unrefined architectures become adopted.

While the overall goal of such tools can be to uncover and analyze vulnerabilities

of network control nodes, the purpose of the tools can be viewed as multi-use. They

can be used for protection of nodes against intentional or unintentional misuse. They

can also be used to maliciously find paths for exploitation of these nodes or non-

3



maliciously for discovering paths of circumvention to evade government-mandated

censorship. In this thesis we examine two network scenarios that benefit from the

use of our approach: cellular network and nation-state censored internet. For the

cellular network we focus on vulnerabilities due to control plane signaling overload,

and in the censored internet case we demonstrate an automated means for finding

paths of censorship circumvention. Although there currently exist tools for testing

specific scenarios and tests covered by our tools, the primary contributions of this

work are the comprehensiveness, scalability, and extensibility of our tools, which are

specifically designed for easing adoption of network evolution. This work presents the

design, implementation, and evaluation of a set of tools designed for understanding

vulnerabilities and implementation of network control nodes when access to them is

only available through network traffic, as well as how these devices react to changes

in traffic characteristics as networks evolve.

Hypothesis

Network traffic can be crafted and used to probe network control devices for which

control source code, binaries, or remote login access is not possible. Automated

tools that create such traffic and probe network control nodes can provide a means

to detect, analyze, and compare vulnerabilities of these nodes and discover how they

react to changing traffic characteristics as network evolve. These vulnerabilities could

maliciously or non-maliciously affect the availability of the nodes or allow bypassing

of their security policies.

4



Contributions

This thesis will provide the following contributions:

1. The design, implementation, and evaluation of two tools to discover models of

network control nodes in two scenarios of evolving networks, mobile network

and censored internet

2. First existing test bed for analysis of large-scale attacks and impact of traffic

scalability on Long Term Evolution (LTE) mobile networks

3. First existing test bed for LTE networks that can be scaled to arbitrary size

and that deploys traffic models based on real traffic traces taken from a tier-1

operator

4. An analysis of traffic models of various categories of Internet of Things (IoT)

devices

5. First study demonstrating the impact of Machine-to-Machine (M2M) scalability

and signaling overload on the packet core of LTE mobile networks

6. A specification for modeling of censorship device decision models

7. A means for automating the discovery of features utilized in censorship device

decision models, comparison of these models, and their rule discovery

In the cellular network context, we present a test bed called Firecycle that is used

for assessing the impact of a large-scale attack or traffic scalability on network control

nodes in a LTE mobile network. Wireless cellular networks based on 3rd Generation

Partnership Project (3GPP) standards have adopted LTE as the underlying technol-

ogy to provide rich services to the rapidly growing number of connected devices. The
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advent of the Internet of Things and the proliferation of Machine-to-Machine (M2M)

systems are transforming cellular systems into diverse and heterogeneous networks,

estimated to be servicing tens of billions of devices in just a few years. Yet, the exact

impact, for example traffic load, CPU and RAM usage, and security on the network

elements of the radio access network and packet core from such an increase in the

number of these connected devices remains unknown. Furthermore, cellular networks

including LTE have been long studied and optimized to support human-generated

traffic, which differs greatly from machine-generated traffic. Previous cellular net-

works are known to be vulnerable to a variety of security threats, yet there has been

little research on understanding if LTE network nodes remain vulnerable to the same

and new threats. We introduce a new modeling test bed, Firecycle, for studying the

impact of both M2M systems and large-scale attacks on the availability of network

control nodes in the Evolved Packet Core (EPC) of LTE mobility networks as well

as future network architectures. Firecycle can be distributed over multiple virtual

machines in the cloud, allowing it to scale to an arbitrarily sized network for testing

of large-scale attacks. It also contains flexible and realistic traffic models that are

based on real traffic traces taken from an existing LTE network in the United States.

Testing the impact of a large-scale attack and the scalability of M2M systems that

cellular networks are required to face have not been previously possible given that

there are no existing research labs or simulation platforms that are scalable, flexi-

ble, or modular enough to perform this type of research. The plans to use LTE for

emergency response systems, public safety, and advanced military tactical networks,

among other important and security critical applications, are examples highlighting

6



the importance and need for our system.

Understanding network control device implementation is not only important for

building more secure and resilient networks, but it is equally important to attackers

for finding vulnerabilities or non-malicious entities for circumvention of implemented

rules. Analysis of nation-state censors and finding of evasion techniques has been a

popular topic of recent research, and understandably so, given its pervasiveness in the

world today. Censors act based on characteristics of the network traffic they exam-

ine. These characteristics can be protocol-dependent, such as packet header fields, or

not, such as a keyword in a packet’s content. Censors use these traffic characteristics

to make decisions on how they handle traffic that they intend to censor, typically

by blocking it, modifying its content, or injecting packets into the network stream.

Several approaches have been taken to circumvent censors. The Tor anonymity net-

work, although originally intended for different purpose, has now been commonly

used as a tool for circumventing censorship. Rather than trying to evade a specific

rule in a censor, Tor uses obfuscation techniques to make traffic appear different

than it actually is. However, censorship implementations are constantly changing in

order to adapt to Tor and other circumvention techniques and refine their blocking

techniques. Thus, there is a great importance still to understand the implementation

of these censorship devices to devise mechanisms for circumvention. Rules can be

reverse engineered by specially crafting traffic and probing the censor to examine its

output. Although there has been some recent existing research on understanding

approaches of specific censors, such as the Great Firewall of China, the great ma-

jority of censorship techniques remain unknown. In addition, the methods to date

7



for discovering censorship techniques are mostly manual, which are time consuming,

not scalable, and are not feasible in the long run, given the dynamic nature of cen-

sor implementations. In this work we present Autosonda, the first automated tool

for discovering censorship techniques and decision models across different layers of

the network stack. Our technique first finds traffic features on which a censor acts

and then uses a fuzzing-based approach to automatically discover the implemented

rules for those features. Autosonda runs a series of tests across different protocols to

discover the model, mechanism, and technique of censors. In this work we demon-

strate the utility and effectiveness of Autosonda with a study on web filters, which is

presented in Chapter 6.
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Chapter 2

Related Work

Attacks against LTE and tools used for assessing impact of

attacks

Security research in mobility networks has been often with a purely theoretical ap-

proach and without tools used to gauge their impact in realistic environments. More-

over, the open source availability of GSM platforms, such as OpenBTS [40], results in

most of the hands-on security work focusing on GSM networks. Presently, the amount

of security research concentrated exclusively on LTE is very small. One exception

is the work presented in [15], analyzing potential signaling attacks against LTE per-

formed by User Equipments (UEs) within the same cell. In this work we present

Firecycle, a test bed for large-scale security research in LTE mobile networks. Fire-

cycle provides the means to analyze these known legacy vulnerabilities in a realistic

environment and determine whether they also affect next-generation LTE networks,

as well as identify potential new vulnerabilities.

In recent years, several researchers have detected potential vulnerabilities and

proposed attacks against mobility networks. The authors of [47] proposed a potential

way to saturate a cellular core network. Based on signaling generated to transition

9



UEs between RRC (Radio Resource Control) states, an attacker could potentially

overload the network by forcing UEs to constantly switch states. The negative impact

of such a signaling spike has already been experienced in the wild due to inadequate

legitimate applications that induce frequent RRC connections from many UEs [22,

28]. A similar attack was discovered in [72], aiming to saturate the network resources

assigned to the paging mechanism. Further signaling-based attacks against a cellular

network were introduced in [39].

A widespread malware infection or a botnet of mobile devices is often considered

as a potential platform to launch such attacks. Along these lines, the authors of

[57] discussed the feasibility of creating and operating a botnet of infected smart-

phones. The impact of such a botnet launching an attack against the Universal

Mobile Telecommunications System (UMTS) Home Location Register (HLR) was

theoretically analyzed in [83].

There are some open access platforms available for security research. For example,

the DETER project [54] provides means for large-scale security studies of IP (Internet

Protocol)- based networks. Similarly, the ORBIT test bed is an impressive vehicle for

testing and experimenting next-generation Wireless Local Area Networks (WLANs)

with up to hundreds of nodes [68]. The authors of [34] introduced another network

modeling platform to study the impact of M2M traffic on the LTE Physical Layer

(PHY). Although Firecycle and the model proposed in [34] both analyze the impact

of M2M on LTE mobility networks, Firecycle is concerned with the LTE network at

large whereas the other focuses exclusively on the wireless interface of an LTE single

cell network. [63] presents an open source LTE simulator called LTE-Sim, although

10



this tool is much simpler and less flexible than Firecycle, as it emphasizes only the

physical layer and lacks the ability to deploy custom traffic models that are important

for analysis of security attacks on the network. These two models can therefore be

seen as complementary to Firecycle.

Scalability of Machine-to-Machine systems

The advent of Machine-to-Machine (M2M) systems and the pervasive presence of

embedded connected devices within the IoT have resulted in a substantial increase of

research work in this area. The authors of [74] introduced the first detailed study of

the traffic characteristics of emergent M2M applications. Among other findings, they

highlighted the potential radio resource and network resource inefficiencies of these

communication systems, but they don’t include simulation studies to demonstrate

specific network impact. The inefficiencies they point out are well understood by

the industry and standardization bodies, which acknowledge the potential threat of

signaling overloads [32]. In an effort to enhance the resource utilization efficiency of

M2M, cellular operators often provide guidelines and best practices [48].

In the context of the potential overload that could be generated by the forecasted

large scale of the IoT, the authors of [34] presented a study on the performance

of LTE under M2M traffic load. Based on a Markov model of the physical layer

(PHY) parameterized by lab measurements, the results indicate that a large number

of devices with small traffic rates could potentially induce the most negative effects.

However, this work focuses exclusively on the Radio Access Network (RAN) and

11



performs experiments with arbitrary traffic, while our work expands this analysis to

the impact of M2M at higher layers with a focus on the Evolved Packet Core (EPC),

using M2M traffic models derived from real traffic traces. The results in [61] also

provide very interesting insights on the potential impact of M2M deployments over

LTE. The results are obtained from OPNET-based simulations but with arbitrary

simple M2M traffic models and the OPNET LTE network models, which are very

powerful in terms of network planning and traffic capacity estimations but do not

model the impact of NAS procedures, signaling load, and other artifacts that are

highly relevant to the scalability of M2M. By means of our custom-built LTE security

research test bed we expand this study to the actual impact on the EPC.

Signaling overload and DDoS attacks in cellular networks

Security research throughout industry and academia has intensified over the last

few years. The widespread availability of low-cost, open-source GSM platforms has

resulted in the successful identification of potential vulnerabilities and threats to

legacy mobile networks. The majority of security research has mainly focused on

Second and Third Generation mobile networks (2G and 3G).

The authors of [47] introduced a theoretical signaling overload attack against

cellular networks. As discussed later in this work, a low-volume attack, consisting of

small data packets addressed to a large number of mobile devices, could theoretically

be leveraged to force a large number of RRC state transitions. This could potentially

overload the packet core of a mobile network. The causality behind this type of attack

12



was discussed in [80].

An accurate list of targets to send messages to within the cellular network would

be very difficult to obtain due to the NAT-ing and gateways at the edge of the mobile

network. Nevertheless, a similar attack could potentially be launched from the inside

of the network by means of a mobile botnet. The authors of [57] discussed feasible

techniques and platforms to build and operate such a botnet, including potential

command and control channels. In parallel, the authors of [83] discussed theoretical

attacks launched from a mobile botnet targeting the Home Location Register (HLR),

with similar functionality to the HSS but in the context of 3G networks.

Further signaling-based attacks against 3G networks were introduced in [39]. Sim-

ilarly, the authors of [72] presented a theoretical attack aiming to saturate the re-

sources allocated to the paging channel, potentially preventing the delivery of phone

calls, short messages, and data flows. In [66], further threats were introduced, which

exploit the opportunistic scheduling of 3G networks. Finally, the authors of [82,

81] introduced new potential attacks against legacy 2G networks exploiting the fact

that, in the GSM air interface, text messages share resources with essential signaling

channels.

Although all these attacks target legacy 2G and 3G networks, it should be investi-

gated whether their impact is still applicable to an LTE deployment. On top of that,

some recent research work has investigated new potential attacks against LTE as

well. The authors of [42] presented a simulation study of a potential attack launched

by a botnet of mobile devices. The thesis discusses the potential overloading of the

LTE RAN resources that a botnet could generate. Other LTE security research works
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have recently surveyed other security aspects of LTE [17].

It is important to note that although there are no recorded instances of such

attacks in cellular networks, similar effects due to signaling overloads at a cellular

core network have been observed with a non-malicious origin. An example was caused

by a poorly programmed instant messaging application which induced frequent and

unnecessary RRC state transitions for a large number of UEs. This resulted in an

overload situation for a major operator in the US [22]. Other foreign operators have

been under similar signaling overloads [28]. These are clear motivations to investigate

the effects of signaling-based threats against the cellular core network and, ultimately,

defend against them.

Discovering censorship mechanisms

Discovery of censorship techniques has been the topic of much recent research, yet

there are still many techniques that remain unknown. [84] offers a nice overview

of known censorship mechanisms. Techniques used in Chinese censorship have re-

ceived particular attention, such as how China censors Web accesses [21], Tor [86],

Skype [44], the location of its censoring modules [89], and even how it discovers

and blocks privacy tools [24]. Countries such as Bangladesh, Bahrain, India, Iran,

Malaysia, Russia, Saudi Arabia, South Korea, Thailand, and Turkey have received

some preliminary analysis in [85]. [12] extends the analysis of censorship mechanisms

by focusing on finding motivation, resources, and time elements of censorship. From

an ISP perspective, Clayton studied the British Telecom CleanFeed blocking system

in [20].
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Although there has been significant work on discovering censorship mechanisms,

the bulk of the techniques have been performed manually, which is the primary moti-

vation for our work, and have been targeted to specific types of censors. [41] proposes

an approach for fingerprinting censorship devices and serves as a motivation for our

work. However, the research was limited only to the Great Firewall of China and the

analysis was performed manually. We used the results of this research to validate our

results obtained from Autosonda on the Great Firewall.

Some existing tools similar to Autosonda have been developed for different pur-

poses. ooniprobe [91] is an app that measures internet censorship and performance.

It can be used to discover which websites are blocked by a censor and if there is a

system on the network that can be responsible for censorship or surveillance. The

uses of ooniprobe are different than those of Autosonda, and these tools could be

used together to do a full analysis of where there exists censorship, which sites are

blocked, and how the filtering mechanisms work. Netalyzr [46] runs a series of tests

that probe a network for both measurement and debugging in order to discover a

wide range of properties of users’ internet access. It runs as a Java applet that is

accessed in a web browser and communicates with custom built servers.
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Chapter 3

Firecycle: A Scalable Test Bed for Large-Scale LTE

Security Research

3.1 Introduction

The Long Term Evolution (LTE) is the latest standard for mobile wireless commu-

nications. Such technology is rapidly being deployed by cellular network operators

to provide capacity for advanced multimedia services. Mobility networks have be-

come an essential element of our day-to-day lives, providing popular seamless services

such as electronic email, location-based applications, video streaming, and the like.

Hundreds of millions of people are connected to the Internet via smartphones and

tablets [30]. In addition, communication networks are rapidly evolving, with con-

nectivity reaching beyond user devices. The advent of the Internet of Things (IoT)

and Machine-to-Machine (M2M) systems is pushing the number of network-enabled

entities interacting with each other over mobile networks. The number of connected

devices is expected to be in the range of billions within a few years [56], with the

majority of these devices connecting over next-generation LTE access networks.

Although LTE presents tremendous capacity enhancements, in general, previous

cellular networks are known to be vulnerable to certain security threats [29]. At the
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same time, the recent security attacks against communication networks have dras-

tically changed the security ecosystem. The massive Distributed Denial of Service

(DDoS) attacks against major banking institutions [31], the attack against Spamhaus

that resulted in worldwide Internet sevice deterioration [51], and the surge of mobile

malware [52] are good examples of the importance of securing communication net-

works. Security research has been growing over the last few years, resulting in the

successful identification and mitigation of many threats. However, the great majority

of the work has focused exclusively on Global System for Mobile Communications

(GSM) and UMTS. This is perhaps due to the open source availability of platforms

such as OpenBTS [40]. To this point there has not been much security research

focused on LTE networks.

We developed Firecycle, a test bed for security research in LTE and potential fu-

ture mobility networks. Firecycle is designed to provide the means to implement, test,

and analyze the impact of security attacks against an LTE mobility network. Based

on a modular and flexible architecture, the proposed model allows for rapid proto-

typing, testing, and comparing of new cellular security architectures. As a result due

to its versatility and the abundant statistical information obtained from simulations

run on Firecycle, the test bed is also a valuable resource for designing strong secu-

rity architectures for future next-generation mobility networks. Implemented on the

network simulation software OPNET [59], Firecycle is designed to be scalable. The

network under analysis can be arbitrarily divided into portions that are individually

run on separate virtual machines (VMs) in the cloud. The VMs intercommunicate

over IP, effectively simulating an arbitrarily large network over multiple machines.
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This architecture, based on OPNET’s System-in-the-Loop (SITL) [60], provides a

platform for security research over a full-scale LTE network with millions of simu-

lated mobile terminals.

3.2 LTE security

Wireless cellular networks provide connectivity to billions of users, electronic devices,

and critical applications. Devices connect through a heterogeneous set of access net-

works, which range from the early 2G GSM networks to the more recent 3G UMTS

networks and their Code Division Multiple Access (CDMA)-based counterparts, such

as CDMA2000. These mobility networks have evolved over the recent years, enhanc-

ing capacity and throughput, defining both the Evolved High Speed Packet Access

(HSPA+) and the Evolution Data Optimized (Ev-DO) and its revisions. All modern

mobile networks, however, are converging towards one universal technology that will

run the next-generation networks: LTE and its evolution, LTE-Advanced.

In addition to being the main wireless access network for billions of users, there are

also plans to use LTE in certain critical applications with stringent security require-

ments. For example, LTE is the communication technology for the next-generation

emergency response systems, the Nationwide Interoperable Public Safety Broadband

Network [58]. LTE is also considered as the underlying technology for advanced mili-

tary tactical networks [78]. Concurrent to the security requirements of LTE networks,

the cyber security landscape has substantially evolved over the last few years. In the

age of massive DDoS attacks, mobile malware and fraud, and the advent of the Ad-
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vanced Persistent Threat, the importance of enhancing the security of LTE networks

against security attacks is clear [62].

3.3 Motivation

This section introduces the main features of Firecycle, focusing on its capabilities and

ability to scale up simulations and the model itself over multiple VMs in the cloud.

The motivations behind this test bed are discussed as well.

The recent trend of DDoS attacks against communication networks, which im-

pacted large banking organizations [31] and the overall Domain Name Service (DNS)

[51], illustrate the importance of strengthening the reliability of mobility networks

against security attacks. In order to guarantee full availability of communication

systems against DDoS threats, security research is necessary to come up with both

detection techniques as well as attack mitigation strategies [62].

Although mobile devices engage in IP communications over LTE, the specific char-

acteristics of mobility networks, especially at the Medium Access Control (MAC) and

Radio Resource Control (RRC) layers, make the network behavior and reaction to

security threats very unique. For example, it is well known that the RRC strategies

implemented in mobile networks can be theoretically exploited in a large-scale DDoS

[47]. The abundant signaling traffic generated when a User Equipment (UE) tran-

sitions from a connected state to an idle state and vice versa could saturate certain

nodes or links in the core network. However, there is no simple way to test such an

attack and quantify its impact against a network with millions of users.
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There does not currently exist a security research lab that is sufficiently large to

test an attack involving an extensive number of infected smartphones. Furthermore,

no simulation platform is scalable enough to run a simulation of a full-scale mobile

network with tens of millions of smartphones, tablets, and M2M devices operating

in parallel. Moreover, even in small-scale simulations of an LTE network, traffic is

modeled following simple arbitrary probabilistic models. One such example is the

random waypoint model [16]. Well-known research has proven that such models are

far from accurate as opposed to traffic models derived from real network traffic traces

[37, 23]. The traffic modeled in Firecycle is based on analysis of fully anonymized

real traces from one of the major tier-1 operators in the US.

Figure 3.1: LTE network architecture, consisting of elements in the the Radio Access
Network (RAN) and Evoloved Packet Core (EPC), as well as interfaces between the
elements
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3.4 LTE network architecture

LTE was designed with the goal of providing IP (Internet Protocol) connectivity

between mobile terminals and the Internet. To that end, an LTE network is typically

equipped with a number of nodes that perform specific tasks. Figure 3.1 snapshots

the architecture of an LTE network. LTE networks split their architecture into two

main sections: the Radio Access Network (RAN) and the core network, known as the

Evolved Packet Core (EPC) [73].

The RAN of an LTE network is comprised of the mobile terminals, known as

User Equipment (UE), and eNodeBs, or LTE base stations. The evolution of mo-

bile networks towards LTE has highly isolated and specialized the operations of the

RAN and the EPC. The RAN is able to, independently from the EPC, assign radio

resources to UEs, manage their radio resource utilization, implement access control,

and, leveraging the X2 interface between eNodeBs, manage mobility and handoffs.

The EPC is in charge of establishing and managing the point-to-point connectivity

between UEs and the Internet. It contains a number of nodes; the Serving Gateway

(SGW) and the Packet Data Network Gateway (PGW) are the two routing points for

user traffic connectivity to the Packet Data Network (PDN). In addition, logistics of

the bearer establishment and release, mobility, and other network functions, such as

authentication and access control, are managed by the Mobility Management Entity

(MME). In order to provide security for user traffic, the MME communicates with the

Home Subscriber Server (HSS), which stores the authentication parameters, secret

keys, and user account details of all the UEs.
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A real LTE network deployment also implements other nodes for higher layer

applications, such as the Policy Control and Charging Rules Function (PCRF), and

other elements in charge of IP Multimedia Subsystem-based connectivity. These

other nodes and respective higher layer applications are out of the scope of this

work’s analysis.

3.5 Implementation

Firecycle has been designed, implemented, and coded from scratch using OPNET

Modeler as the underlying platform and simulation engine. All the nodes and elements

of the model are custom-coded and assembled together to run as a network simulation

on OPNET. Finally, an original set of libraries and definition files provide the means

to run the realistic traffic models.

Firecycle is a standards-compliant test bed, closely following the specifications of

the 3GPP LTE standards. Figure 3.2 shows Firecycle’s architecture. The Evolved

Universal Terrestrial Radio Access Network (E-UTRAN) is build as a set of eNodeBs

(LTE base stations) that handle radio communication between UEs and the EPC

(Evolved Packet Core). Our model can deploy any number of eNodeBs and UEs as

well as establish the LTE X2 interface between interconnected eNodeBs.

The EPC model contains the Mobility Management Entity (MME), the Serving

Gateway (SGW), the Home Subscriber Service (HSS), and the Packet Data Network

Gateway (PGW). These are the main nodes required to establish connectivity and

manage traffic flows to and from UEs [73]. The primary functions of the MME

22



Figure 3.2: Firecycle model architecture

are control-plane signaling, SGW selection, authentication, and bearer management.

The SGW routes and forwards traffic in addition to initiating the paging procedure

when traffic arrives for a UE that is in idle state. The PGW handles UE IP address

allocation and packet filtering. Furthermore, the HSS is a database that contains

user identification, subscriber information and authentication information, as well as

Quality of Service (QoS) assignments. Note that we have designed Firecycle to allow

multiple SGWs, MMEs, and PGWs in order to study the impact of distributing traffic

and signaling load across a larger network.

In the current implementation, UEs communicate by means of IP-based services

with one or multiple external IP servers. UEs can send or receive different types of

traffic to or from them. These servers connect to the LTE EPC through an IP cloud,
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which mimics the timing artifacts that packets experience as they travel through a

network. Packet drop rates and reordering of packets could be produced as well.

Firecycle implements several 3GPP standards-based signaling procedures that are

relevant to UE connection and utilization of network resources. In order for a UE

that is currently not attached (off connection state) to transmit and receive IP data

traffic, it must go through the initial attach procedure to reach the RRC connected

state. During this sequence of signaling messages, the UE associates with a particular

eNodeB, and the EPC allocates a collection of bearers that are used for the duration

of the UE’s session [4, 6].

When a UE is inactive for a given period of time, the E-UTRAN and EPC release

its resources, and the device is subsequently brought to the idle state. If traffic arrives

at the SGW for a UE that is in idle state, the SGW sends a data notification message

to the MME in order to initiate the paging procedure, leveraging the knowledge of the

set of base stations with which the UE last associated [8]. Once the UE has received

a page message, it will transition to connected. A UE in connected state possesses

the ability to send and receive messages or data. Since in LTE both messages and

data are IP traffic, we have implemented all traffic as IP packets, although the size

and frequency of these packets are dependent on the traffic type.

Although Firecycle models all the relevant signaling procedures at the E-UTRAN

and EPC, the actual cryptographic operations behind the HSS operation are modeled

only as signaling exchanges. In the current implementation, Firecycle is not able to

study vulnerabilities in the cryptographic operations behind, for example, the EEA2

confidentiality algorithm and the EIA2 integrity algorithm.
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Figure 3.3: SGW state diagram: SGW changes state depending on attributes of the
packet it receives as input

OPNET models communications as a chronological sequence of events. Actions

in each node, for example sending and receiving messages, determine the progression

of states in the system. Each node is depicted as a finite state machine, where the

next state depends on the type of event currently being executed. Figure 3.3 is a

screenshot of the SGW’s state model. While the SGW is waiting for packets to

arrive, it remains in the ready state. If it receives a data packet from an eNodeB, the

SGW will move to a new state that handles processing of eNodeB data packets. The

SGW could also receive signaling messages from the MME and data packets from the

PGW. Depending on where the packets are received from and the type of packets,
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the SGW will move to the appropriate state to process the packets. Once processing

is complete, the MME will return to the ready state.

Each network node in Firecycle is implemented as a computing machine similar

to those in a real production network. For example, the MME is essentially a com-

bination of proprietary software and hardware from a given vendor. As such, each

node has a limited processing speed and memory. Therefore, if a node, for example

the HSS, is overloaded with authentication requests, it may get saturated, blocking

or substantially delaying its processing and response packets. Such limitations are

modeled in Firecycle in order to accurately quantify the impact of DDoS attacks

against a mobility network. Moreover, by appropriately configuring each node, one

can model the specific capacity of nodes from different vendors.

Statistical Analysis

A significant motivation for our model is to assess the impact of a large-scale security

attack against LTE. To serve this purpose, Firecycle captures a variety of statistical

information from each simulation. This data can be classified into various categories.

Signaling statistics collect diverse information on the load, frequency, and time

occurrence of LTE signaling events. Some examples are the communication between

an eNodeB, the MME, and the SGW to establish a bearer and move a UE from idle to

connected mode. For example, we can compute the ratio of signaling to actual data

messages per each communication flow or track when each individual UE switches

between RRC states. Statistics of this category are crucial for gauging the impact of
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an attack and are related to the QoS experienced by the UE. Load, frequency, and

time occurrence statistics are additionally collected for user traffic.

Quantitative statistics track the total number of events associated with a par-

ticular type. The number of RRC state transitions, counting the number of data

packets received at the SGW, and the prevalence of UEs entering idle state are a few

examples. Such statistics can be informative when comparing the impact of multiple

traffic types on particular EPC elements. Node limits statistics deal with capacities

of individual nodes, including CPU and RAM usage, throughput, number of bear-

ers, and number of UEs being handled. Link limits examine link throughput and

utilization.

Scalability

No known LTE network model can be easily scaled to research the impact of a large-

scale security attack involving hundreds of millions of UEs. However, with the number

of connected devices expected to grow substantially within the next decade, it is

crucial that a model be flexible enough to handle an arbitrarily large number of UEs.

OPNET’s System-in-the-Loop (SITL) enables multiple pieces of a model to run

on separate machines and communicate with each other over IP. Nodes within a

single simulation piece correspond with each other via OPNET- based packets, while

nodes across simulation pieces running on different machines communicate via real

IP packets that contain simulation packets as payload. To distribute Firecycle over

multiple VMs, subsets of the model’s nodes can be arbitrarily assigned to distinct
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Figure 3.4: Firecycle scaled to four VMs

simulation portions. Once the pieces are each assigned a unique IP address, they

can interface over an IP connection by means of SITL gateways. Figure 3.4 shows

a screenshot of Firecycle with the EPC running on a VM and three instances of the

E-UTRAN, each running on a separate VM.

When a node in one simulation portion needs to send a message to a node running

in a different portion, the message, in the form of a simulation packet, is copied into

the payload field of a real IP packet that is addressed to the corresponding remote

VM. Since the SITL node operates at the data link layer, the IP packet is further

encapsulated into an Ethernet packet with the destination MAC address set to the

MAC address of the destination machine’s network adapter.
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The task of copying and encapsulating simulation packets into real network pack-

ets is performed in Firecycle’s gateway node. Correspondingly, once an Ethernet

packet arrives at its destination simulation portion, the gateway node extracts the

encapsulated simulation packet and injects it into the OPNET-based local simula-

tion. Thus, the receiving node in the simulation is unaware of the existence of the

SITL interfaces and is able to process each packet as if the entire model were running

on a single machine.

Traffic

We analyzed anonymized IP and SMS communications in a US tier-1 cellular network

to build traffic models of smartphones, tablets, and M2M devices. No personally

identifiable information was gathered or used in conducting this analysis. We collected

anonymized Call Detail Records (CDRs) that log communications handled by cell

towers located in the greater New York City metropolitan area within one day in

August 2013, examining the following fields:

1. timestamp of communication (send/receipt time of SMS or IP session connec-

tion time),

2. fully anonymized transaction identifiers (integers uniquely determining origi-

nating and terminating numbers or addresses for SMS or IP flows),

3. the number of bytes in uplink or downlink IP flows,

4. the first 8 digits of International Mobile Equipment Identity (IMEI).
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The first segment of IMEI, Type Allocation Code (TAC), discloses the manufac-

turer and model of the wireless device and categorizes it as a smartphone, tablet, or

M2M subcategory (medical, detention, smart grid, eBook, etc.). Timestamps were

used to compute lengths of intervals between each pair of consecutive SMSs or IP

data flows. We created custom probability distributions of the traffic parameters for

each category according to traffic size and frequency. Based on the identifier fields,

we calculated the total number of unique devices of a particular type communicating

in a given area. For each device category, we modeled the total number of messages

or traffic flows during the period of analysis as well as estimated distributions of the

uplink and downlink flow sizes in bytes.

3.6 Results and Applications

Firecycle is designed to provide a platform to both analyze the impact of security

attacks against LTE networks and test potential mitigation techniques. For example,

from a security point of view, it is particularly important to understand the impact

of signaling load on the HSS, since any impairment to the HSS could result in failure

of the entire network. A similar approach could be considered for the MME.

Figure 3.5 and Figure 3.6 plot two examples of the signaling link utilization be-

tween two pairs of essential EPC nodes, MME-HSS and MME-SGW, for different

numbers of UEs. During the simulation the UEs complete an attach procedure and

then exchange traffic with a server. Figure 3.5 shows the results with traffic modeled

from one of the M2M subcategories. In Figure 3.6 the UEs and server generate ar-
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Figure 3.5: Normalized MME-HSS link utilization during initial connection and com-
munication for a category of M2M traffic

Figure 3.6: Normalized MME-SGW link utilization for traffic causing frequent RRC
state transitions

bitrary intermittent traffic in order to induce frequent RRC state transitions. Note

that this type of traffic behavior, forcing constant RRC state transitions, has been
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proposed as a potential way to launch a signaling-based attack against the EPC [80].

This is indeed one of the security test cases being studied with Firecycle.

Note that the capacity of the links has been set arbitrarily for this example in

order to highlight the results. In a real network, the bandwidth of these links would

be much higher and thus the utilization lower. Note also that the number of UEs is

scaled exponentially. Our work in later chapters tests Firecycle with an arbitrarily

large number of UEs that increases exponentially over the entire network. The results

in Figure 3.5 and Figure 3.6 are intended to exemplify the type of studies that can

be performed with Firecycle.

In Figure 3.5 one can observe the spike in signaling traffic for the attach procedure

that all UEs perform at the beginning of the simulation. This procedure involves

authentication and attach messages that are exchanged with the HSS. However, once

the UEs have successfully attached with the network, the signaling traffic at the

HSS dissipates. Based on this observation, we used Firecycle to test, for example,

the impact of a malware infection that forces a large percentage of smartphones to

attach at the very same time. The results of this and similar studies are presented in

Chapter 5.

Figure 3.6 illustrates the signaling traffic load between the MME and the SGW

resulting from UE attachment and shifting of RRC states. It can be seen that the

messaging between the MME and the SGW to set up and release bearers as UEs tran-

sition between idle and connected states creates a substantial and sustained amount

of load in the EPC. This insight is being used to investigate the effects of a very large

number of UEs constantly transitioning between RRC states.
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3.7 Limitations and Future Work

Despite the great potential for security research, Firecycle cannot be applied to ev-

ery type of LTE security analysis. The wireless interface at the physical layer of

a LTE mobile network is based on an Orthogonal Frequency-Division Multiple Ac-

cess (OFDMA) method. The characteristics of this wireless access method are not

implemented, modeling instead a simplified wireless link. While capacity, through-

put, and latency are equivalent to a real LTE access network, the results obtained

could substantially differ from a real network in some specific cases. For example,

Firecycle will not accurately model a real network in the case of an unrealistically

large number of active UEs per eNodeB. In this extreme case, the specific details

of a full OFDMA system would not be accurately modeled. Firecycle has not been

designed to test local wireless resource saturation or radio jamming attacks. Instead,

it is designed to investigate the wider scope impact of widespread malware infec-

tions, botnets of mobile terminals, and large-scale signaling attacks against the EPC.

However, a standards-based implementation of the PHY layer is part of our future

work.

In its current form, Firecycle does not implement certain higher layer protocols,

such as IMS (IP Multimedia Subsystem) and SIP (Session Initiation Protocol). How-

ever, the modularity and scalability of the model highly simplifies the implementation

of these and other applications. Firecycle is currently being used to assess the impact

and scalability of the IoT and M2M on LTE networks, with focus to the signaling

and traffic load in the EPC. However, we are also utilizing it to quantify the impact
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of large-scale attacks against LTE. In this context, as part of the future work, Fire-

cycle will leverage the features of SITL to be integrated with the hardware in our

LTE security lab. Firecycle will also be tested with traffic generated by UE+eNodeB

emulators. As part of our ongoing work, Firecycle has been recently enhanced with

new M2M and smartphone statistical traffic models and the implementation of the

signaling procedures related to handover and mobility.

3.8 Conclusion

Cellular networks are facing new use cases and traffic patterns now and in the near

future. In order to understand the impact that these will have on network elements,

tools are needed to analyze the elements, the new patterns, and the interaction of the

two. New architectures are also being proposed for enhancing efficiency and security

for future cellular networks, and such tools are also needed to test and analyze these

new network architectures and components. This chapter introduces Firecycle, a scal-

able test bed for LTE security research. This platform is designed and implemented

to test and realistically quantify the impact of large-scale security attacks against

LTE. Firecycle provides the means for rapid prototyping and testing of new attack

mitigation strategies and alternative cellular network architectures for enhanced secu-

rity. Offering the ability to compare the impact of attacks on multiple architectures,

Firecycle can aid in the design of robust future next-generation mobility networks.

Firecycle realistically models the main nodes of an LTE mobility network. Special

emphasis is given to Layer 2 protocols and signaling traffic. User traffic is accurately
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modeled based on real LTE network traffic traces from one of the main tier-1 operators

in the US. We use Firecycle to particularly test for vulnerabilities in the EPC due to

control plane signaling.

Firecycle is designed to be scaled over the cloud. The network under analysis

can be divided into a number of portions, with each one running on a separate VM

in the cloud. VMs intercommunicate over IP, enabling an arbitrarily large network

that virtually behaves as though it were running over a single machine. Based on

this scalability property, we used this test bed to analyze and quantify large-scale

security attacks against an LTE network originated from a botnet of UEs. We have

also leveraged Firecycle to study the scalability of the IoT and M2M systems over

LTE mobility networks and to prototype security mitigations and attack detection

schemes, which are analyzed and compared against each other to improve the security

of the design. The results of these independent studies are presented in Chapter 4

and Chapter 5.
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Chapter 4

Scalability of the Internet of Things on LTE Mobile

Networks

4.1 Introduction

Communication networks are rapidly evolving with the surge of applications and ser-

vices that require no human intervention, extending connectivity far beyond personal

computers, smartphones, and tablets. The rapid increase in the number of embed-

ded devices connected as part of Machine-to-Machine (M2M) systems is providing

a new dimension to wireless networks. The pervasive presence of this great variety

of network-enabled objects that are able to interact with each other is driving the

advent of the Internet of Things (IoT) [35].

The surge of M2M embedded devices, with billions of them expected to join

communication networks within the next few years [56], will define the foundations

of a smart environment where anything is possible. From Internet-connected fridges

[90] to remote healthcare [49], the IoT is fueling the advent of novel communication

systems and services. Nevertheless, the rapid growth of the IoT, which resulted

in the number of connected devices topping the world’s population in 2013 [55], is

acknowledged as one of the main foreseeable challenges for communication networks
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[19]. There is particular interest in understanding the potential impact this surge of

M2M devices will have on mobile cellular networks.

The LTE [10], defined since Release 8 of the 3GPP standard, is the latest cellular

technology designed to provide advanced communication services to mobile devices.

LTE has been designed for greatly enhanced capacity and spectrum efficiency at the

RAN and with a more flexible IP-only architecture at the EPC. This emerging mobile

technology is expected to play a key role in the emergence of the IoT [48]. In this

context, the traffic characteristics of many M2M communication systems are known

to be substantially different to those from smartphones and tablets [74]. Mobile

networks, which were designed and optimized to transport human-originated traffic,

suffer from network and radio resource utilization inefficiencies when handling M2M

communication [61].

There is concern and increasing interest in the industry to understand and fore-

cast the scalability dynamics of M2M growth on LTE networks, which could be

overwhelmed by the surge in both traffic and signaling load [64]. Given the scale and

expected number of connected devices, the standardization community has identi-

fied potential scenarios that could result in severe signaling overload at the EPC [9],

which may negatively affect the Quality of Service (QoS) of mobile users. Moreover,

there is great interest in the security implications of M2M on cellular networks and

the potential impact of botnets of compromised devices.

We introduce, to the best of our knowledge, the first realistic and detailed study

aiming to provide essential insights on how the surge of M2M systems scales in LTE

networks. The analysis is performed on Firecycle, a custom-built and fully standards-
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compliant LTE simulation test bed described in Chapter 3. Firecycle leverages OP-

NET’s System-in-the-Loop in order to provide a full-scale simulation of an arbitrarily

large network. It implements highly realistic statistical M2M traffic models for six

popular M2M device types, such as telemedicine and smart grid. These traffic models

are derived from fully anonymized LTE IP traces from one of the main tier-1 providers

in the Unites States. In order to investigate the potential impact of the scale of the

IoT against human mobile users, a similar statistical traffic model is derived from

fully anonymized LTE traces from popular smartphones from four of the top-selling

manufacturers.

Based on this simulation study, we observed that the LTE signaling traffic in-

duced by M2M systems increases linearly with the device population as opposed to a

greater increase that could be very challenging for mobile networks. Moreover, in the

case of certain M2M device categories, such as asset tracking, the signaling load am-

plifies substantially faster than with other M2M categories as the number of devices

increases. The results indicate that specific M2M categories could be substantially

challenging as the IoT scales up on LTE networks. These results are very valuable

for industry, academia, and the standardization community as they could be useful

for the initial stages of the design and standardization of 5G wireless communica-

tion systems, which consider the scalability of the IoT as one of the main goals and

challenges [79].
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4.2 M2M systems over LTE cellular networks

LTE mobility networks are designed to provide a capacity and spectrum efficiency

increase to support a large number of connected devices. Although currently a sub-

stantial percentage of current M2M cellular ecosystems is based on legacy second and

third generation (2G and 3G) networks, LTE is acknowledged to be the main plat-

form for the emergence of the IoT [48]. Moreover, legacy GSM networks were already

shut down by AT&T at the end of 2016 [11]. In parallel, the traffic characteristics

of many IoT applications, substantially different than traffic from smartphones and

tablets, are a potential source for network resource utilization inefficiencies [74]. As a

result, there is concern regarding the potential impact of M2M systems on the regular

operation of LTE networks, which may be overwhelmed by the surge in both traffic

and signaling load [64].

Cellular networks are configured to transport user communications originating

at smartphones that have well-understood traffic characteristics [75]. However, the

network utilization dynamics and traffic characteristics of M2M systems are very

complex. M2M traffic differs substantially depending on the type of M2M system.

For example, certain categories of devices have a strong imbalance between uplink

(UL) and downlink (DL) traffic, with a clear dominance of UL traffic as opposed to

smartphone traffic. These diversified traffic characteristics of M2M systems are one

of the main challenges for the scalability of the IoT on LTE mobile networks [64].

The emergence of the IoT also brings signaling implications to the EPC. Based on

stringent admission control mechanisms, the mobility network utilization needs to be
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optimized. Each transaction or traffic flow from/to an M2M device results in signaling

at the EPC to establish the required radio resources [4]. Unnecessary connection

establishments could potentially overburden the core network. This negative impact

of signaling load has already been observed in the wild in certain mobile operators [22],

citeDocomo, [76], [33]. Given the expected surge in the number of M2M connected

devices, the resulting growth in signaling could potentially overload the EPC, which

is acknowledged by the standardization community as a potential threat against LTE

networks [9].

The following section presents a brief overview of the main LTE signaling proce-

dures involved in the operation of the network and management of connectivity from

and to mobile terminals.

4.3 LTE signaling procedures

In order to operate LTE mobile networks, a series of signaling procedures, known as

Non Access Stratum (NAS) functions [73], must be executed. This section briefly

overviews the main signaling procedures.

Initial NAS Attach

When a mobile terminal is switched on, it must execute certain steps so it can

reach the connected state. During this time, a point-to-point IP default bearer is

set up to provide communication between the UE and the PGW. At this point an

IP address is assigned to the UE. The NAS attach procedure contains a number of

steps. Firstly, the UE performs a Cell Search so it can acquire both time and frequency
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Figure 4.1: NAS attach procedure

synchronization [3]. Then, the Random Access procedure assigns radio resources to

the UE so it can set up a RRC connection with the eNodeB. The next step is to

execute the NAS identity/authentication procedure between the UE and the MME,

which in turn leverages the HSS to configure security attributes and encryption.

Then, the point-to-point bearer through the SGW and PGW is set up, and then the

UE’s RRC connection is reconfigured according to the type of QoS requested. The

overall NAS attach process is illustrated in Figure 4.1, giving a clear visual intuition

of the large number of messages exchanged among EPC elements [67]. Note that the

Random Access procedure, the RRC connection, and the NAS authentication involve

a substantial number of messages not shown in the figure for simplicity.
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Figure 4.2: RRC state transition
procedure: connected to idle

Figure 4.3: RRC state transition
procedure: idle to connected

Bearer management functions

Strict radio resource management and reutilization techniques are necessary given

the scarcity of spectrum and radio resources. As defined by standards [4], a UE’s

RRC connection is released whenever it has been observed as idle by the eNodeB for

more than a few seconds (often between 8 and 10 seconds). Along with the connection

release, the radio resources associated with the UE are freed to be reused for any other

UE. This process involves a number of messages among EPC nodes to transition a

UE from connected to idle state and vice versa. These are displayed in Figure 4.2 and

Figure 4.3, respectively. Any mobile device in idle state must be transitioned to a

connected state in order to be able to transmit or receive data. As seen in Figure 4.3,

this involves a similar procedure to the NAS attach.

Paging

Paging is required to address mobile terminated calls to their destination (i.e.

the receiver). Upon an incoming communication addressed to a UE, the location

of the user, in terms of cell, must be determined. In the case this location were
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known a priori, mobile terminals would be required to update their location with

the HSS – a costly operation – each time they moved to a new cell, resulting in an

excessive amount of location update-related signaling. Therefore, the UE’s location is

only known with a much larger granularity, known as the Tracking Area (TA). Upon

receiving incoming traffic for a UE k in idle state, the MME triggers the broadcast

of a paging message over each cell within the TA of k [5]. UE k then replies to the

paging, disclosing its precise location in terms of cell. Then, the appropriate bearer

management functions are executed.

Handoff and mobility functions

All wireless cellular networks provide mobility, requiring specific operations to

sustain connectivity as users move between cells. This is achieved by means of a

handoff procedure [7], which transfers connections from one eNodeB to another as

UEs move. In the specific case of localized mobility among eNodeBs interconnected

through the X2 interface, the handoff signaling exchange is local at the RAN. An

S1-based handoff procedure, however, involves a series of signaling messages over the

EPC.

The LTE mobile network operation involves further signaling procedures not listed

here. The network functionalities described herein involve NAS signaling procedures

that have been acknowledged by the standardization bodies and the industry as one of

the main challenges for M2M scalability and the potential cause of signaling overload

in LTE [9].
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4.4 M2M scalability study

This section presents the main results of the scalability study of the IoT over LTE

networks. The main goal is to provide insights on the potential impact that the surge

of M2M devices could have on both the network and the QoS of smartphone users.

Both the traffic models and the methodology followed to obtain and plot the results

and discussed.

Traffic models

In order to obtain very accurate results of the interaction of M2M systems communi-

cating over an LTE network, the simulated traffic of legitimate devices (both M2M

embedded devices as well as smartphones) is based on highly realistic statistical traf-

fic models. These models are derived from fully anonymized observations of real LTE

traffic traces from one of the main tier-1 operators in the US. Both fully anonymized

Call Detail Records (CDRs) and fully anonymized IP traffic flow metadata from

exclusively LTE IP traffic are processed to derive statistical models of data traffic

over LTE for typical smartphones and M2M devices. The probability distributions

of the model are formulated from observed traffic characteristics such as number of

uplink/downlink packets, time between packets, packet size, time between sessions,

and session size.

In order to generate realistic models from popular smartphones, we process

anonymized data from the latest phone models from four of the main smartphone

manufacturers. We then analyze anonymized data for six typical M2M device types:
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1. Asset tracking,

2. Smart grid,

3. Personal tracking devices,

4. Tele-medicine,

5. GPS navigators,

6. Remote alarming systems.

This allows for very realistic simulation of LTE device communication and inter-

action with a mobility network as compared to other simpler and arbitrary statistical

traffic models used in the literature for similar works. All of our experiments were

performed on Firecycle, described in Chapter 3. Although simulation studies have

limitations, the results obtained with the test bed are as realistic as possible without

performing the experiments on an actual LTE network, which is not possible given

the scale of the problem under analysis.

Methodology of the analysis

It is important to highlight that the goal of the analysis is not to realistically simulate

the absolute impact of M2M on a particular LTE network deployment, but rather to

present valuable insights on the potential impact and scalability of the IoT over LTE.

The goal is to provide an analysis of the potential scalability issues of the IoT, not

to provide realistic results indicating how a large population of M2M devices would

saturate the network, and what would be the specific impact. As a result the analysis

herein presented is governed by a very basic but strict methodology.
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All network and device population scenarios are purely generic and not specific

to any given network architecture. The configuration in terms of computing power,

link capacities, and actual architecture is arbitrary, aiming for generic results. Nev-

ertheless, the security test bed is standards-compliant and accurately simulates the

performance and behavior of a real LTE network. The experiments clearly demon-

strate the potential scalability impact of M2M traffic and, more importantly, the

potential bottlenecks or heat points in the network. However, absolutely no specific

information can be inferred on the actual M2M load one would see in a particular

real LTE commercial implementation.

All the results in Section 4.4 are normalized by the same arbitrary scalar in order

to provide a comparative analysis rather than a quantitative analysis. The simulated

network is generic, with one EPC instance (MME, SGW, PGW, and HSS) processing

IP connectivity between UEs and an external server. The capacity of the server is

assumed to be infinite in order to not interfere with the measurements at the EPC.

The LTE RAN is modeled with the capacity and specifications of a standard 10MHz

LTE deployment [73], and is composed of 10 cells.

Results

A series of simulation experiments are run in which a number of M2M mobile termi-

nals send and receive traffic according to the statistical traffic models, implementing

M2M devices from each M2M category. The number of devices is scaled up, ranging

from 125 to 4000 UEs. A variety of statistical information is recorded and plotted in
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order to analyze how each category of devices scales in terms of both signaling and

data load on the EPC. Further experiments are run to extract insights on how the

scalability of M2M systems could potentially affect the QoS of smartphone users.

Signaling Load

As discussed in Section 4.3, traffic flows between a device and host require the

establishment of resources in the case of a device initially in idle RRC state. Through-

out the duration of a session or flow, the mobile device might stay in connected state

or might switch states back and forth depending on the time in between packets.

The standardization community acknowledges the signaling traffic increase induced

by M2M systems as a potential threat to LTE networks [9]. A massive increase in

the M2M population could potentially impose strain on the EPC by means of this

signaling traffic spike.

The first experiment examines MME-SGW link load and MME CPU utilization

to discern the signaling impact of scaling M2M devices, and the results are plotted in

Figure 4.5 (a) and (b). Intuitively, the M2M categories that have the highest impact

on the MME-SGW link utilization, asset tracking and personal tracking devices, also

place the largest strain on the MME CPU utilization. Focusing on these two device

categories, one can observe that, although they generate roughly the same MME-

SGW signaling load for 125 devices, the load increases much more rapidly for asset

tracking as the number of devices scales. According to Figure 4.5 (a), 2000 asset

tracking devices produce 42.6% higher signaling load than do the same number of

personal tracking devices, for example. A slightly similar pattern is observed for

the MME CPU. Specifically, 125 personal tracking devices produce about the same
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Figure 4.4: M2M scalability signaling impact: (a) normalized MME-SGW load

(b) normalized MME CPU utilization
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MME CPU utilization as 125 asset tracking devices, but 2000 asset tracking devices

incur 32.5% higher load than the same number of personal tracking devices. For 4000

M2M devices, asset tracking are 50.5% higher. It is also interesting to notice the

sharp increase in MME CPU utilization as the number of GPS devices scales above

2000. When increasing the number of devices by a factor of 8 from 250 to 2000, the

MME CPU utilization increases 1.99 times, yet when only doubling them from 2000

to 4000, the load increases by 2.14 times.

Overall, the results indicate a clear signaling load spike as the M2M device pop-

ulation scales up. However, the signaling increase appears to be linear and, with the

exception of GPS devices, constant. This result, although based on simulation, can

be considered as good news since a larger signaling load increase could indicate a

great challenge for mobile networks to cope with the scalability of M2M systems.

In order to quantitatively determine the M2M device category that generates the

largest signaling increase, Table 4.1 lists the MME CPU utilization and MME-SGW

link load gradients. The gradient for each category has been averaged as the number

of devices scales from 125 to 4000. According to the results, asset tracking and

personal tracking devices induce an increase in MME CPU utilization approximately

1.5 to 2.5 times faster than devices belonging to the remaining categories. As for

MME-SGW link, the load from asset tracking grows up to 17.88 times faster than

the others.

These results indicate that asset tracking devices in general could potentially be

one of the most challenging communication systems over LTE mobile networks, es-

pecially if the number of M2M devices corresponding to the asset tracking category
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M2M
category

Avg.
MME
CPU

gradient

Avg.
MME-

SGW load
gradient

Asset
tracking 0.00035 1.66893

Smart grid 0.00015 0.24562
Personal
tracking 0.00024 0.39330

Tele-
medicine 0.00020 0.34757

GPS
navigators 0.00014 0.12717

Remote
alarming 0.00016 0.09333

Table 4.1: Average MME CPU utilization and MME-SGW load gradients

increased substantially up to millions or even billions of new connections. The sig-

naling load stemming from the operation of M2M devices is due, in part, to frequent

RRC state transitions. Many categories of M2M systems are characterized by small

data bursts, both in the uplink and the downlink, at frequent intervals. The amount

of time in between data bursts and communication sessions directly influences the

signaling load at the EPC. For example, if data sessions recur at intervals slightly

longer than the network’s RRC timeout timer, the EPC will bear much more signal-

ing load as the devices constantly transition between idle and connected states for

each traffic burst. This is theoretically known to pose a potential threat against the

network [47].

In order to investigate the scalability of M2M systems over LTE, it is important

to determine how efficiently the network resources are used. To do so, we investigate

the average number of RRC state transitions that are induced by each M2M system
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M2M
category

Connected-to-idle
transitions per

normalized traffic unit
Asset
tracking 0.15593

Smart grid 45.67325
Personal
tracking 5.37232

Tele-
medicine 9.22127

GPS
navigators 23.63992

Remote
alarming 54.96471

Table 4.2: Number of connected-to-idle RRC state transitions per M2M traffic load

to communicate a fixed amount of data. Table 4.2 lists the number of idle transitions

per normalized data load unit (adding uplink and downlink) in a scenario with 1000

devices. The results are computed for each M2M traffic category. Although smart

grid and remote alarming systems devices produce less signaling load at the MME

than asset tracking and personal tracking devices, as seen in Figure 4.5, due to their

small transactions size occurring at infrequent intervals, they utilize the network most

inefficiently out of all the device categories we examined.

Data Load

M2M systems are very diverse in the amount of data they transmit and receive,

and often there is an imbalance in the amount of uplink and downlink traffic [74]. This

is challenging for the designing of mobile network architectures that must tackle the

heterogeneity of the IoT in an efficient manner. As part of this analysis, this chapter

also aims to provide insights not only on the scalability of data traffic produced by

each device category, but also the indirect impact the spike in data traffic could

51



Figure 4.6: Normalized average latency to reach RRC connected state for smart-
phones during traffic of 1000 M2M devices

potentially pose on specific network elements.

Similarly to the analysis of the M2M signaling load scalability, we obtained results

to determine the rate at which data traffic scales up as the M2M population of

each category increases. Figure 4.7 examines the normalized load in the SGW to

PGW link for this situation. Note that this link aggregates all the data, both uplink

and downlink, for all the devices in the simulated network. As with the signaling

scalability plotted in Figure 4.5 (a), asset tracking and personal tracking devices

appear to generate the potentially largest increase in data traffic load. This further

indicates the heterogeneity of the IoT, with certain embedded device categories scaling

both signaling and data load at a much faster rate than others, in which load increases

very slightly.
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Figure 4.7: M2M data traffic load scalability

M2M
category

Avg. UL
traffic

gradient

Avg. DL
traffic

gradient
Asset
tracking 191.187 201.247

Smart grid 1.565 0.646
Personal
tracking 43.973 6.279

Tele-
medicine 11.284 0.590

GPS
navigators 2.287 1.355

Remote
alarming 0.689 0.908

Table 4.3: Average UL and DL data traffic load gradients

Table 4.3 summarizes the results for the increase in uplink and downlink data

traffic load for each M2M category. Similarly to Table 4.1, the gradient of the data

load increase is averaged as the population scales from 125 to 4000 UEs. The results
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indicate that asset tracking devices increase the data traffic load one to two orders of

magnitude faster than the majority of the other categories. Note that the scalability

of data traffic also indicates that asset tracking could potentially be one of the most

challenging M2M systems as it scales over LTE mobile networks. The asset tracking

load increase is somewhat balanced in the uplink and downlink, as opposed to personal

tracking devices, which have a substantial increase particularly in the uplink.

The scalability of the IoT over LTE mobile networks presents further challenges

based on this largely imbalanced ratio between uplink and downlink traffic of certain

embedded devices. Unlike smartphones, with a predominant downlink load, different

types of M2M systems operate with highly uplink or downlink imbalanced data traffic.

Figure 4.8 plots an example of this diversity in the imbalance between uplink and

downlink traffic. In this example, one can observe asset tracking as a system with

somewhat balanced traffic compared to personal tracking devices, which have 16 times

more traffic in the uplink. This imbalance is due to the normal operation of personal

tracking devices, which mostly transmit uplink periodic messages with a location

update. Further details on uplink to downlink ratio of M2M traffic can be found in

[74].

Impact on QoS

EPC nodes that are burdened with a large amount of signaling induced by the

scaling of M2M devices could potentially yield negative consequences for other mobile

users. One of the goals of this chapter is to determine how the QoS of smartphone

users could be affected by an increasing number of M2M devices. Figure 4.6 illus-

trates the average latency experienced during RRC state transitions for a small set
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Figure 4.8: Normalized UL vs. DL SGW-PGW data load for personal and asset
tracking devices

of smartphone users engaged in activity at the same time as 1000 M2M devices. The

same experiment is run for each one of the six M2M categories under analysis. Note

that, due to the implementation of the test bed, all UEs present in a simulation must

do an initial attach before starting to communicate. Therefore, we start gathering

results for smartphone QoS seven minutes into the simulation so that the QoS results

are not unintentionally affected by the signaling load spike at the onset of the sim-

ulation when the 1000 M2M devices attach to the network. Note also that the QoS

metric spikes initially because all the smartphones are attaching at the same time

starting at minute seven.

55



M2M traffic category Normalized average uplink packet latency Average
gradient

500 1000 2000
Asset tracking 0.00141 0.00516 0.00697 0.00020

Smart grid 0.00146 0.00147 0.00157 0.00006
Personal tracking 0.00144 0.00145 0.00158 0.00007

Tele-medicine 0.00155 0.00146 0.00194 0.00015
GPS navigators 0.00484 0.00486 0.00152 0.00002

Remote alarming 0.00150 0.00148 0.00174 0.00011

Table 4.4: Normalized average uplink packet latency experienced by smartphones
with presence of scaling number of M2M devices, ranging from 500 to 2000

Each category of M2M traffic has a different influence on smartphone state tran-

sition latency, with the asset tracking category having the highest impact. Once the

latencies reach a steady state, the asset tracking devices impose a latency that is

more than double the one produced by GPS navigators, the category with the lowest

impact. One hypothesis for the low signaling produced by GPS navigators is their

use of map caching and hence infrequent and sometimes unpredictable location up-

dates. It has been shown in [69] that users are uncertain when location queries are

made, also leading to legal ramifications. Although the RRC state transition latency

increases substantially, the values reached under the load influence of 1000 M2M

devices are still low and would most likely not result in a noticeable degradation of

QoS. However, the QoS of smartphone users may be substantially degraded with a

larger population of M2M embedded devices, especially if the forecasts of billions of

connections are reached.

To provide insight on how the QoS of smartphone users is impacted by scaling

M2M devices, Table 4.4 displays the average normalized latency of uplink packets

experienced by 50 smartphones as the number of M2M devices continuously doubles,
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ranging from 500 to 2000. It also shows the average gradient of the latencies over the

scaling range. Due to the high impact that asset tracking devices impose on EPC node

CPU and link throughput as we have seen throughput this chapter, this category also

induces the highest increase in smartphone uplink packet latency of all the categories

we examined. In comparison to the latency caused by GPS navigators, the latency

from asset tracking devices increases 10 times faster. As with RRC state transition

latency, the uplink packet latency values produced from 2000 M2M devices is not

particularly high with this number of devices, however they rise significantly as the

number of M2M devices scales up. A sufficiently high amount of M2M traffic could

therefore potentially cause latencies beyond the tolerance threshold of applications,

particularly those with strict delay requirements.  

4.5 Conclusion

The number of M2M devices using cellular communication services is expected to

surge over the next few years. Such a steep expansion in the IoT presents challenges

for cellular infrastructure that must now cope with an abundance of devices whose

behavior differs substantially from the traditional and well-studied smartphones and

tablets for which the current systems were designed. This chapter presents the first

insights on the scalability of the IoT over LTE mobility networks, with a focus on the

Packet Core, determining the potential impact of the surge in both signaling and data

traffic load as the number of connected devices increases. The chapter also studies

the potential impact that the spike of embedded devices communicating over LTE

networks could have against the QoS of smartphone users.
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This analysis work, which has been performed on a custom-built, standards-

compliant LTE simulation test bed, realistically models six popular categories of

M2M devices with statistical traffic models derived from fully anonymized LTE traf-

fic traces from one of the main tier-1 providers in the US. Based on the results

obtained, it is determined that the signaling and data traffic load appears to scale

up linearly as the number of connected devices increases. This is good news, as it

implies that a signaling storm should not be expected. Nevertheless, certain M2M

device categories, such as asset tracking, exhibit a much faster signaling and data

traffic load increase. This indicates that certain M2M communication systems will

present a larger challenge to LTE mobile networks.
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Chapter 5

Signaling Overload in LTE Networks

5.1 Introduction
Despite the most recent enhanced design for the cellular core network, next-generation

LTE networks still heavily rely on legacy inefficient circuit-switched architectures at

the EPC [43]. This is partially due to the scarcity of radio resources and spectrum,

which force cellular deployments to free and efficiently reuse radio resources that

appear idle for some time. The large amount of network signaling messages required

to establish, release, and manage the point-to-point circuits (known as bearers in

the context of LTE) between the mobile devices and the cellular gateway towards

external Packet Data Networks (PDNs) is very large. This circuit-switched approach

is known for increasing the threat of signaling traffic overloads, and is acknowledged

by the standardization community itself as a risk to the cellular packet core [9].

The majority of recent cellular network security research has focused mainly on

legacy GSM (Global System for Mobile Communications) and UMTS (Universal Mo-

bile Telecommunications System) networks. In this section we extend the analysis of

such threats to LTE and, to the best of our knowledge, we are the first to realistically

implement and analyze the impact of such attacks. The results presented yield very

interesting insights on the potential impact and the scalability of signaling-based at-
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tacks against the EPC, which are shown to spike the signaling load at certain nodes

by over 295 times. We identify as well the main congestion point and vulnerability

that each type of attack under analysis is exploiting and how certain attacks can be

tuned, based on the specific configuration of the target network, to maximize the

impact.

The analysis of signaling overload attacks is important to understand the re-

siliency of the current LTE network. However, this section also suggests a paradigm

shift in mobile network design that is of great value. Efforts should be made to re-

think the architecture of a mobility network, shifting away from legacy and inefficient

circuit-switched architectures [38, 43]. While most of the technological innovations

are being done at the RAN, the inefficient networking architectures used in cellular

core networks are throttling down the performance of mobile communications. After

evaluating the extent to which the core network serves as the bottleneck in the current

architecture, this section discusses the potential benefits of a fully packet-switched

IP-based EPC and presents results that indicate the benefits and performance im-

provements that could be achieved.

The novelty of this work is not in proposing new attacks and solutions, but in the

implementation and analysis of the potential impact of such attacks for the first time.

We carry out a dynamic simulation and analysis based on the signaling interactions

with the network elements. Previous analysis of these attacks has been mostly static,

based on link capacity and signaling bit rates, and mostly focusing on legacy mobile

networks. Moreover, core network architecture redesigns have been proposed and

implemented, but not in the context of mobile network security.
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This chapter presents the following contributions:

1. We implement and test signaling-based security vulnerabilities and attacks

against next-generation LTE networks on a realistic test bed

2. We present a simulation-based analysis of the scalability and potential impact

of signaling-based threats against the LTE EPC, determining the specific nodes

and links in the network that are most severely affected. We also evaluate the

potential impact of each attack on customer Quality of Service (QoS). Realistic

smartphone traffic is modeled from anonymized LTE traffic traces from one of

the main tier-1 operators in the United States in order to determine the impact

of these attacks against legitimate users

3. We evaluate the potential security benefits of a mobile network architecture re-

design, transitioning to a fully packet-switched architecture of the EPC which

maintains QoS for users during an attack while providing strong potential se-

curity and performance enhancements

5.2 Mobile malware and signaling overloads

Arguably, the most efficient way to create a botnet of mobile devices is by means

of a malware or trojan infection. Different malware-related problems with mobile

phone applications, especially on Android platforms, have made it to the headlines

over the last couple of years [14]. Although mobile malware is often motivated by

either dissemination of spam campaigns [71] or fraud [70], such malware infections

could potentially have adverse effects for the cellular network. If aimed to disrupt
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communications, the reported numbers of, for example, Android devices that were

infected in 2013 (with over 30,000 new malware samples just within this year) could

comprise a very large botnet capable of attacking the network [52]. There are several

well-studied avenues to infect mobile devices and spread malware in order to multiply

the botnet, such as “contact” propagation via Bluetooth and transmission over text

messages containing a link to a malicious application [26].

In recent months we have also seen several attacks stemming from the Mirai bot,

which infects IoT devices and uses them for large-scale DDoS attacks. Because it can

infect such a large number of devices, the Mirai botnet has been used in some of the

most disruptive DDoS attacks, which have scaled up to 1 Tbps. Some of the recent

attacks were on computer security journalist Brian Krebs’s site Krebs on Security in

September 2016, an attack on OVH, and the attack in October 2016 on Dyn [45].

Mirai performs a wide-range scan of IP addresses to locate IoT devices operating on

easily guessable login credentials. A brute force approach is used to guess passwords,

typically factory default usernames and passwords.

Once a mobile botnet is assembled, it can be dormant until the attacker triggers

specific actions over a command and control channel. In the context of mobile devices,

there are multiple options to carry such command messages, such as text messages,

phone calls from a specific originating number, or data communications. Moreover,

the malware infection could have a specific date and time to initiate an attack without

requiring direct communication with the attacker.

It is important to note that 3GPP also considers other potential origins for a

signaling overload, such as a node failure [9]. In the event of an EPC node failure, a
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large number of UEs would be disconnected from the network and potentially generate

a surge of signaling messages upon re-attaching to the same or an alternative EPC

node. Considering that a successful attack could result in an EPC node failure, the

impact of such threat could potentially be enhanced when the failed node recovered

and a surge of UEs attempted to reattach or if the victim UEs attempted to attach

and flooded an alternate node.

5.3 Experiments and results

Methodology

The goal of the analysis herein presented is not to realistically simulate the actual im-

pact and effect of signaling overload attacks against a real LTE network deployment,

but rather to give insights on the potential impact, scalability, and optimization

of the threat. The goal of our security research is to enhance the security of LTE

networks, not to provide realistic results indicating how an attack against the EPC

could be launched, what would be the most effective attack, and what would be its

specific impact. Therefore, we have defined a very basic but strict methodology for

our security analysis.

Although the security test bed is standards-compliant and accurately simulates

the performance and behavior of a real LTE network, the scenarios simulated in this

chapter are generic and not specific to any network architecture. The configuration of

the simulated network in terms of processing power, link capacities, and architecture
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is arbitrary in order to provide generic results. Our simulation-based experiments

demonstrate the threat of signaling-based attacks and, more importantly, the poten-

tial optimization and tuning of such attacks to maximize their impact. However, no

specific information can be inferred on how to launch the attack and, more impor-

tantly, what is necessary to carry out a successful attack (i.e. how many bots or

infected devices and how they should be geographically distributed).

As a result, the simulated LTE network under analysis is generic and consists

of one instantiation of the EPC, including the MME, SGW, PGW, and HSS, which

connects over an IP network to an external server. In order to not interfere with the

measurements at the EPC, we assume that the server the mobile terminals connect

to has infinite capacity and is therefore able to serve all the UEs in our network.

Note that this is a realistic assumption considering that millions of mobile terminals

connect constantly to all types of applications being served from the Internet or some

cloud infrastructure. The LTE RAN is modeled with the same capacity as a standard

10MHz LTE deployment [73] and is composed of 10 cells that communicate with the

EPC.

Moreover, all the results presented herein (link utilization, node utilization, mes-

sage loads, CPU loads, etc.) are normalized. The aim is to provide a comparative

analysis rather than a quantitative analysis. Each operator’s network is configured

differently and might be equipped with different vendors and architectures. There-

fore, our concern is not to quantify the exact impact of an attack against a specific

network, but to determine how the impact scales up if, for example, the number of

attackers doubles. Also, we aim to determine what links or nodes are most affected
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given each attack category. This information, while highly valuable for the security

research community, cannot be directly utilized by an attacker. For example, perhaps

one of the attacks analyzed affects the S6a interface, and by doubling the number

of attacking devices, the impact scales by a factor of, say, 10. However, whether 10,

10,000 or 10,000,000 infected devices are necessary is not disclosed.

In summary, the results presented in this chapter give insights on what could

happen and why we should reconsider the current architecture. However, an attacker

cannot learn how to make it happen.

Signaling amplification attack due to frequent RRC state

transitions

In our experimental study we implement a botnet of rogue mobile devices in an LTE

network that are leveraged to launch a signaling-based attack against the LTE EPC

similar to the one proposed in [47]. The attack is originated by a variable number of

mobile devices that induce constant RRC state transitions between idle and connected

states. Our simulated LTE network is configured with an RRC idle timer (T-idle) of

12 seconds. Note that although it is always in the range of 10 seconds, the value of

this timer may be different from operator to operator.

The attack, which can be server-initiated or UE-initiated, consists of repeatedly

sending one data packet either to (server-initiated) or from (UE-initiated) each mem-

ber of the botnet. If a packet is sent by the server and arrives at the core network

for a device that is in idle state, the SGW will initiate a paging procedure to bring
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Figure 5.1: Normalized MME-SGW load averaged over the attack duration for a
server-initiated RRC state transition attack

the UE back to connected state. Similarly, if a UE that is in idle has a data packet

to send, this device must execute a series of signaling messages in order to reconnect

and send the data. In the case of the packets being sent by a UE, its recipient is the

same external server. The data packets are repeatedly sent every T seconds, with T

= T-idle + ∆. We run the experiment with a variable value for ∆, ranging from 0

seconds to 8 seconds, in order to determine the value of ∆ that maximizes the impact

of the attack.

Figure 5.1 plots the normalized load experienced at the S11 interface between

the MME and the SGW averaged over the duration of this attack when it is server-

initiated. The attack is simulated for a variable number of UEs contributing to the

botnet and for a variable time in between periods of data packets. As a reference

point, we simulated a scenario with 2000 UEs running only the smartphone traffic
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model derived from anonymized traces from a real LTE network (indicated by no

attack in Figure 5.1). Based on these results, one can observe the clear increase in

load at the EPC when the network is under attack. As expected, the larger the size

of the botnet (with respect to the size and population of the network under analysis),

the larger the impact of the attack. In the case of 2000 UEs, the attack increases

the signaling load at the EPC by 295 times that produced by the same number of

devices running legitimate smartphone traffic. It is interesting to observe that for the

value of ∆ that maximizes the MME-SGW load, a small botnet of 125 UEs generates

signaling traffic about 19 times higher than a population of legitimate devices 16

times larger than the botnet (baseline with 2000 legitimate UEs). This gives a good

idea of the potential scaling of such an attack and the impact it could have with a

very large botnet.

Moreover, it is important to note that one can observe a clear load spike for a

given value of ∆ and, as a result, the attack period T. The attack period that induces

the greatest number of pages and RRC transitions results in the largest spike in

load at the MME-SGW link, maximizing the attack impact. However, this specific

value is only valid in our arbitrary configuration. We prove that this attack could be

optimized to maximize its impact but we do not provide any information on how to

do so in a real LTE network.

The next step of our analysis is to compare the impact of this signaling-based

attack at the EPC when it originates at an external server or from within the botnet

itself. Figure 5.2 displays the normalized load experienced at the MME-SGW link

averaged over the duration of the attack. The experiment is run for a variable number
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Figure 5.2: Normalized MME-SGW load averaged over the attack duration: server-
initiated vs UE-initiated

of UEs within the botnet and compares the server-initiated and the UE-initiated

attack strategies. The results indicate a higher attack impact when the spike in RRC

transitions is originated due to the botnets receiving traffic from an external server.

Further investigation highlights that this is due to the fact that, for mobile terminated

traffic, the RRC state transition includes extra signaling messages for the paging

procedure. Therefore, when the attack is originated by a server sending messages to

a botnet in a synchronized fashion, the EPC signaling overload is enhanced by a flood

of paging procedures. It is interesting to observe that when the attack is maximized

and tuned to the period that induces the largest number of RRC state transitions,

the load generated by a server-initiated attack is higher than the load generated by

a UE-initiated attack with a botnet twice the size.
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Figure 5.3: Normalized average MME and SGW CPU utilization for a server-initiated
RRC state transition attack and processing legitimate smartphone traffic

As part of our analysis, we aim to determine where the most vulnerable points

lie in the network under these security attacks. Some insights to this question are

presented in Figure 5.3, which plots the normalized average CPU consumption of the

MME and the SGW when both are processing traffic for 1000 legitimate smartphone

devices compared to when these devices belong to a botnet attacking the network

(UE-initiated). One can clearly observe that once the attack reaches a steady stable

state, the CPU load at the MME is 59 times higher than normal and the CPU load at

the SGW is about 7 times higher than usual. Moreover, our results seem to indicate

that the MME is the node that is most severely affected by the attack.

In order to study the impact such an attack would have on the QoS experienced

by mobile users, we simulate a botnet of 2000 UEs forcing RRC state transitions. We

overlap this attack with legitimate communications of smartphone users and observe
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Figure 5.4: Impact of a signaling amplification attack on QoS (RRC state transition
delay)

how the attack influences the delay in RRC state transitions of legitimate users. The

attack starts at time 800 seconds.

Figure 5.4 plots both the CPU load at the MME as well as the delay legitimate

users experience to transition from idle to connected states. One can observe the

CPU load at the MME increases substantially for the duration of the attack, staying

at a value 15 to 20 times higher than the average value observed at the beginning of

the simulation. Note that at the initial stage of the simulation, all the UEs present

in this test are connecting and attaching to the network, hence the increase of CPU

load at the beginning of the simulation. Once the attack starts, one can observe how

the delay to transition between idle and connected states starts to spike. Certain UEs

experience a delay up to 1500 times higher than usual. Note that this will significantly

impact the QoS witnessed by customers because their mobile devices will experience
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a long delay to transition to a connected state. In this situation, the network could

potentially appear unresponsive for the affected legitimate devices.

HSS overloading

The second test scenario considered in our experimental study is the case of a botnet

attempting to saturate the HSS by means of signaling traffic, namely authentication

and attach attempts. Similar threats have been theoretically analyzed in recent years

in, for example, [83] and [9].

The attack is implemented by forcing a large group of UEs, members of a botnet,

to reset at the same time, thus initiating a NAS Attach procedure at the same time.

In a real implementation, the botnet could be instructed to reboot by an external

command and control server or it could have a hard-coded instruction to reboot at

a given time on a given day. Nonetheless, we assume that it would be very difficult

to achieve a totally synchronized reboot of all the bots, both due to variable network

delays and latencies and unsynchronized clocks. Therefore, in the current attack

implementation, all the bots reboot and initiate a NAS attach procedure within a

window of 30 seconds.

Figure 5.5 plots the normalized load at the S6a interface between the MME and

the HSS during such an attack for a variable number of malicious devices, or bots,

within a botnet. The plot also includes, for reference, the average generated load at

this link by 2000 legitimate smartphones operating normally. Intuitively, the larger

the size of the botnet, the higher the overload at the link. One can also observe that,
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Figure 5.5: Normalized MME-HSS load during an HSS overloading attack

on average, the load generated by the botnet with 2000 UEs is 11 times higher than

the case of the same number of devices operating in a legitimate way. The baseline

load for 2000 UEs demonstrates that a botnet of only 250 UEs produces 32% more

load between the MME and HSS on average than does 8 times that number of UEs

exhibiting normal behavior.

Figure 5.5 also confirms that this specific signaling-based attack against the HSS

has a limited duration depending on the time that it takes for all the UEs to attach to

the network. With a sufficiently large botnet, the HSS overload would result in many

attach errors and, therefore, many UEs attempting to attach repeatedly, which would

scale up the attack impact and extend its duration. In order to sustain this attack,

the botnet could keep rebooting the mobile devices or engage in other signaling-based
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Figure 5.6: Normalized MME-HSS load during an HSS overloading attack with UE
attach attempt timeout and retry

floods against the HSS, such as the ones proposed in [83]. Investigating the impact of

such a scenario, we configured our test bed in such a way that attach procedures from

the UEs can timeout or fail based on the overloading of the HSS. In the event of a

failed attach attempt, the UE attempts to attach again. The UE will keep attempting

to attach until it is successful. Figure 5.6 plots the normalized load on the S6 interface

for this scenario in the case of 8000 UEs initiating the attach procedure within a 30

second time window, both in the case of a single attach attempt and with repeated

attach attempts. As observed in the results, the HSS load is 9.47 times higher in the

case of UEs re-attempting the attach in the event of a failure or timeout. Moreover,

in this case the duration of the congestion sustains for 2.3 times longer.

73



Figure 5.7: Normalized HSS, MME, and SGW CPU utilization for an HSS overloading
attack compared to the average HSS CPU load when UEs attach legitimately

As part of our analysis, we also aim to determine the impact of the attack on the

EPC and which nodes are affected the most. Figure 5.7 compares the CPU load at

each one of the EPC nodes during an HSS overloading attack launched by a botnet

of 1000 UEs. These results are compared to the average load of the HSS when the

same number of smartphones are attaching to the network in a legitimate fashion

(indicated by HSS (no attack) in Figure 5.7). As expected, the major impact of this

threat occurs at the HSS, which experiences a CPU stress five to six times larger than

that of the MME and the SGW due to the high cost of generating authentication

vectors and security keys when UEs request to authenticate. When comparing this

attack to a legitimate operation, the results indicate that the average CPU load at

the HSS is about 10 times larger during an attack.
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Note that once the network has been able to process all the attach requests, the

attack impact dissipates and the HSS CPU load goes down to zero. Once the UEs

have been attached, the HSS is not contacted frequently. The CPU load at the MME

and SGW is drastically reduced once the attack is over, but stays at a specific level

as the EPC is managing the UE RRC state transitions to idle.

It is important to note that, comparing Figure 5.7 and Figure 5.3, the impact

on the MME is much higher for a signaling amplification attack as compared to an

HSS overload attack. Specifically, the MME’s CPU load increases 6 times more,

as compared to processing legitimate traffic, when the attack occurs as a result of

frequent RRC state transitions induced by a botnet. In addition, the MME is more

severely impacted during a UE-initiated signaling amplification attack than is the

HSS during an HSS overload attack.

Figure 5.8: Impact of an HSS overloading attack on the QoS (RRC state transition
delay) 75



In order to determine the potential impact of a malicious flood of network attach

procedures, we simulate this attack being launched by 1000 UEs. The attack traffic

is overlapped with the regular operation of legitimate smartphones. Figure 5.8 plots

both the CPU load at the MME and the delay legitimate users experience on their

RRC state transitions. The attack begins at time 800 seconds, when 1000 UEs reboot

within a time window of 30 seconds. One can observe a clear spike in the time it takes

legitimate users to transition from idle to connected state, with this delay increasing

up to 711 times.

5.4 Towards a flat and resilient next-generation

mobility architecture

In the recent years, the major innovation and technology breakthroughs have oc-

curred at the RAN. The transition to an OFDMA-based modulation results in a

substantial increase of the capacity of the wireless channel and, more importantly, it

provides a resilient communication medium against frequency distortion and fading.

This, combined with advanced MIMO (Multiple-Input Multiple-Output) techniques,

is pushing the capacity of the wireless medium to the great throughputs achieved by

LTE-Advanced.

This fast-paced innovation at the air interface and RAN side contrasts with the

inefficient networking architectures used in cellular core networks. Over three decades’

worth of research has resulted in very mature IP-based communication systems with
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great efficiency, performance, and reliability. However, the cellular world still carries

over a legacy circuit-switched architecture.

In a similar fashion to that of the old Public Switched Telephone Network (PSTN),

bearers are constantly being established and released as mobile devices communicate

and transition between RRC states [4]. This operation was perhaps efficient in the

PSTN when the communicating parties make only a few phone calls per day with

average duration of a couple of minutes. However, in the case of cellular networks,

constantly switching, establishing, and releasing bearers for devices that connect and

disconnect constantly, often for small bursts of traffic, is known to be highly ineffi-

cient [65].

LTE standardization aimed for a flat, all-IP architecture, but still relies on a

circuit-switched packet core. Meanwhile, technology and innovation at the RAN is

moving fast. As an example, earlier this year, the first multi-gigabit wireless chipset

was demonstrated [53] and, still in a research stage, a recent world record was set by

pushing 100 gigabits per second wirelessly [88]. When one is able to push multiple

gigabits per second over the air, a point may be reached where the RAN ceases to

be the bottleneck, and this burden shifts to the EPC. In fact, the latency induced

by the circuit-switched nature of the EPC is already considered to be a capacity

bottleneck [43].

It is also important to note that the traffic traversing the future mobile core

network will not only originate at the cellular RAN. Future heterogeneous mobile

networks will require seamless connectivity and mobility among different access net-

work technologies. Therefore, the core will be expected to process high throughput
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either coming from or destined to other wireless networks, potentially increasing the

severity of the EPC bottleneck.

In order to guarantee the performance and security reliability of mobility networks

as we transition into future wireless communication systems, the way the packet core

is architected should be rethought. Such EPC redesign is further motivated as we

move into the connected world, with a drastic increase of connected devices due

to the advent of the Internet of Things (IoT) paradigm and Machine-to-Machine

systems [56].

In the next section we introduce a potential cellular core architecture redesign that

could potentially mitigate and perhaps fully address the threat of signaling overload

in next-generation mobile networks. Note that the novelty in this is not to propose

a new architecture redesign direction, but to analyze a direction for future mobile

network design proposed in the literature (for example in [43]) in the context of

security.

Next-generation mobile architecture

Next-generation LTE mobile networks have been designed to satisfy the demands

of modern broadband services for a growing number of mobile connected devices.

Nevertheless, they lag and carry over the limitations of circuit-switched legacy net-

works. Such outdated approaches for the cellular core are motivated from early

designs of cellular networks, based on circuit-switched protocols for cellular voice.

Cellular data communications were originally designed and built as an overlay to the

circuit-switched cellular network.
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Figure 5.9 describes this legacy circuit-switched architecture as compared to a

possible next-generation architecture for mobility networks. In this hypothetical fu-

ture scenario, a RAN providing high speed and wide-band transmission would be

connected to a fully IP-based packet data network. Data communications to and

from user devices would then be appropriately and effectively routed through the

best and least-cost path to the nearest gateway, for example, to the external destina-

tion of the flow. Note that packet-switched technology for IP-based networks is very

mature already and proven effective to efficiently route data flows and throughputs

much larger than those in mobile networks, even for high QoS-demanding real-time

services.

In this ideal architecture, the RAN would independently manage and execute the

wireless-related PHY layer and MAC operations, much like in today’s LTE networks.

However, instead of depending on complex and inefficient signaling exchanges to

manage bearers, a given eNodeB will maintain a clear mapping of what network

gateways should be reached given an application, source, and destination. With

this approach, very similar to regular mature and well-understood IP communication

networks, the eNodeB will just have to forward the traffic to the appropriate cellular

network edge routing point. Note that this could potentially provide great benefits,

including the avoidance of signaling overloads or congestion at specific network points.

All in all, cellular networks should not be much different than well-understood WiFi

networks, perhaps with a much more complex access point, the eNodeB.

The authors of [43] introduced very interesting directions to achieve such a flexible

architecture. They address and discuss how to fit some complex functionalities, such
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Figure 5.9: LTE circuit-switched legacy architecture vs next-generation full IP archi-
tecture

Total
signaling
messages

Total
signaling
overhead

Signaling
overhead

associated
with RRC
and NAS

procedures
EPC 29,720 41.89% 23.91%
Global
(EPC+RAN) 66,001 61.55% 49.28%

Table 5.1: Total signaling overhead for smartphone traffic compared with overhead
associated with only RRC procedures, authentication, and location updates

as roaming and mobility, into this new cellular network paradigm. On top of that,

the authentication and other HSS-assisted operations could also potentially be dis-

tributed and deployed within the RAN, as depicted in Figure 5.9. In order to provide

full mobility and roaming, though, certain HSS-functions should be kept centralized
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Attack
Type

Normalized
average time

to reach RRC
connected

Normalized
connection

establishment
latency due to
bearer setup,
modification,

and tear down

% of latency
due to bearer

signaling

% of latency
due to bearer
signaling with

multi-Gbps
RAN capacity

HSS
Overloading 0.0075 0.0045 59.86% 94.89%

Signaling
Amplifica-

tion
0.0100 0.0047 46.66% 95.36%

Table 5.2: Impact of bearer signaling on smartphone’s attach and RRC state transi-
tion latency

over the PDN. As a result, it would be essential to protect such resources from po-

tential attacks the same way, for example, important Internet-facing assets from big

corporations and banking institutions are protected.

In order to measure the extent of the EPC’s circuit-switched inefficiencies, we ran

30 minute simulations of 1000 legitimate smartphone devices with traffic modeled

from real smartphones and examined the signaling message overhead as UEs engaged

in various signaling procedures. We calculated total signaling overhead (ratio of sig-

naling messages to signaling plus data packets) and signaling overhead associated only

with bearer setup, modification, and tear down for the EPC as well as globally across

the EPC and the RAN. Table 5.1 is a culmination of the simulation results, which

indicate that the elimination of messages due to manipulation of bearers can reduce

the total EPC signaling overhead by nearly half and globally by 20%. Therefore,

adoption of a purely packet-switched next-generation architecture, such as where the

RAN is connected to a fully IP-based packet data network as described above, would
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burden the EPC with significantly less signaling overhead.

Table 5.2 further evaluates the consequences of such signaling overhead by ex-

amining the amount of latency a UE experiences while transitioning to a connected

state. These are the results of two simulations where a botnet of 1000 UEs performs

an attack while legitimate UEs send and receive normal traffic. In one simulation,

the botnet attempts to attach over a 30 second time window (HSS overloading), and

in the second simulation, the botnet produces a signaling amplification attack as it

receives periodic traffic from a server as described in Section 5.3. In our test bed’s

current setup, approximately half of the average latency experienced by the legitimate

UEs while transitioning to connected state is a result of bearer setup, modification,

and tear down.

To understand how the bottleneck and inefficiency of manipulating bearers is

amplified as technology at the RAN advances, we repeated the simulations after

increasing the RAN capacity and throughput 1000 times to artificially model a multi-

gigabit RAN. For both attack simulations, bearers account for approximately 95%

of the average latency experienced by the legitimate UEs to reach connected. These

results imply that circuit-switching degrades the performance and efficiency in the

EPC, which could be highly improved with the adoption of an architecture redesign.

It also provides a clear indication that, if technology follows the current trends, the

EPC could eventually become the capacity bottleneck of cellular networks if the

inefficient circuit-switched architectures are not replaced.

Finally, we implemented an alternative mobile network architecture, similar to

the one depicted in Figure 5.9, on our LTE security test bed. The eNodeB has been
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modeled to independently route traffic to the external IP network and appropriately

forward data traffic from/to the external server. All the nodes of the EPC have been

eliminated as they are not necessary in this test alternative architecture. Note that

the design of either an HSS-like entity securely distributed over multiple RAN units

or a centralized design of the HSS over the cloud is out of the scope of this work.

Figure 5.10: Attack resilience comparison: Current circuit-switched vs New packet-
switched architecture

This alternative mobile network architecture is run with the periodic traffic used

in Section 5.3 to induce a large number of RRC state transitions and simulate a

signaling amplification attack. The performance of the network under such traffic

load is plot on Figure 5.10, where it is compared to the performance of the current

circuit-switched cellular core architecture. The results are generated for a population

of 1000 and 2000 UEs and, at time 200 seconds, we initiate a signaling amplification

83



attack. From the results, one can observe that the performance, in terms of RRC

state transition delay, improves significantly, with this delay being 76 times lower in

the case of the packet-switched mobile architecture with 1000 UEs and 193 times

lower in the case of 2000 UEs.

The transition towards a new secure and robust mobile architecture would not

be simple, as it would require deep changes in well-established network architecture,

billing systems, and data collection systems. However, such an architecture, drifting

away from legacy and inefficient circuit-switched concepts, would result in exceptional

benefits in terms of network performance, network cost and maintenance, and, as this

chapter highlights, security.

5.5 Conclusion

This chapter presents the first security simulation and analysis of the impact and

scalability of signaling overload attacks against an LTE mobile network, aiming to

saturate its EPC resources. Due to its reliance on a legacy circuit-switched archi-

tecture, the EPC experiences a large signaling overhead that could be maliciously

exploited and put the network at risk. We implement and analyze two types of at-

tacks against the EPC via a custom-built, standards-compliant LTE security research

test bed. Based on the results herein presented, we identify the most severely bur-

dened points in the network and the potential scalability of the attack’s impact when

launched from a botnet of mobile devices. Moreover, based on realistic smartphone

IP data traffic models derived from real anonymized LTE traffic traces from one of
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the main tier-1 operators in the US, we evaluate the attack impact on customer QoS.

Our results indicate that signaling attacks against the EPC can increase the EPC

signaling load by up to 295 times and can be optimized, based on the network’s spe-

cific configuration, to maximize the impact. Based on the security analysis and attack

simulations, this chapter discusses the inherent vulnerabilities exploited by these at-

tacks in modern cellular networks. We argue and advocate for the importance of a

cellular architecture redesign in order to guarantee full mobility availability against

security attacks. The ultimate goal is to diverge from the current inefficient circuit-

switched architecture and move toward a fully packet-switched IP-based packet core.

Based on simulations, we demonstrate the potential security and performance en-

hancement of such a redesigned cellular packet core architecture. We present results

that provide compelling evidence that strong resilience against signaling overload

threats can be achieved through a fully packet-switched core network.
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Chapter 6

Autosonda: Discovering Rules and Triggers of Censorship

Devices

6.1 Introduction

Censorship devices control the type of content that can be accessed, viewed, or pub-

lished over a network. Censorship most typically refers to nation-state internet cen-

sorship, where countries or regions of countries set rules of the censorship devices

to prohibit types of content for citizens within the boundaries of that country’s net-

works. It can also be employed through means such as web proxies, typically by

using commercial filtering software, or even enterprise data leak prevention. Al-

though the extent to which a network is censored differs on a country or enterprise

basis, most censors act based on characteristics of the network traffic they exam-

ine. These characteristics can be protocol-dependent, such as packet header fields,

or protocol-independent, such as simply looking for a keyword in a packet’s content.

Censors use these traffic characteristics to make decisions on how they handle the

traffic that they intend to censor, typically by blocking it, modifying its content, or

injecting packets into the network stream.
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Internet censorship is extremely pervasive in the world today. In 2015 more than

70% of countries employed some type of censorship [27]. Although censorship is so

common, many people oppose it. According to an Internet Society survey, 83% of

people worldwide believe that access to the internet is considered a basic human right

[36]. As a result, censorship evasion techniques have become very popular among cit-

izens in censored countries. The Tor anonymity network [77] and encrypted VPN

connections are two examples of tools that have been commonly used for censorship

evasion. In 2014 an estimated 400 million people were using VPNs to circumvent cen-

sorship or increase privacy [50]. Because such tools are widespread, censorship device

rule implementations are frequently updated to adapt to and prevent these anticen-

sorship mechanisms. Once censorship device rules change, anticensorship tools must

be updated to evade the censors using new techniques. This creates very frequent re-

active behavior between censorship rule creators and engineers of the anticensorship

tools.

In order for developers to improve upon their anticensorship tools, they must

understand something about how the censorship device makes decisions and how its

rules are implemented. However, developers cannot directly access the device rule

implementation; from their point of view, the device is just a black box. However,

they can reverse engineer rules by specially crafting traffic and probing the censor to

examine its output. Such approaches have been applied to specific censors, such as

the Great Firewall of China [87], however the large majority of censorship techniques

and how often they change remain unknown. Existing methods to date for discovering

censorship techniques are mostly manual, which are time consuming, not scalable, and
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are not feasible in the long run, given the dynamic nature of censor implementations.

Censor devices could be activated on a range of behavior, but finding the exact

trigger is often too arduous a task to be done manually at scale. Yet, such knowledge

is necessary for properly analyzing censorship devices, comparing their models, and

designing evasion techniques. Although there currently exist tools for discovering

when something is censored, we do not have tools to tell us how the censorship is

done and what are the details and implementation of the rule enforcement.

This analysis can be used both to find evasion techniques and also for strength-

ening systems against evasion. Opinions and ethical considerations on censorship are

out of the scope of this thesis, however there remain valid use cases both for strength-

ening and breaking these network control devices. In order to circumvent a censor,

its behavior needs to be deeply understood, and the same could be said to strengthen

a device’s rule implementation. The analysis in this work assists with both.

In this chapter we present Autosonda, a tool used for automated rule reverse

engineering and fingerprinting of censorship middleboxes. Our solution uncovers the

model and mechanism used by a censor for making decisions on how to handle traffic,

as well as identifies the censor’s approach used to block content that is deemed pro-

hibited. To identify feature triggers, our tool runs a series of protocol-aware probe

tests at each layer and then narrows down its search space to uncover how a par-

ticular censor rule is implemented. Our tests are based on those used in previous

manual analysis of censors to understand their decision making process. The goal

of Autosonda is to capture that knowledge into a tool that performs the analysis

automatically and at scale. It can be used not only to create implementation finger-
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prints of censors, but to also track how the fingerprints change over time and compare

them with fingerprints of other devices. The following sections of this chapter will

discuss the architecture and implementation of our system and provide results from

our experiments on web filters.

6.2 Use Cases

In addition to discovering censorship decision models, Autosonda can be used for a

variety of other purposes. Network management policies are difficult to write be-

cause of so many protocol ambiguities. Software developers, no matter how skilled,

will often create holes in implemented rules and regular expressions, unintentionally

weakening the intended policies. Yet, even if someone writes error-free code, there are

still multiple ways to express a rule and multiple implementations. Because there are

so many ambiguities and cases to cover, manual inspection and testing of the code is

not feasible. Autosonda can be used to test network device policies for this purpose,

to find bugs and paths of rule circumvention. Similarly, because these mistakes are

so common, software updates and patches are very frequently applied. Autosonda

can also be used to discover when and how often these updates are applied.

Enterprises often outsource building of tools for their network management. As

customers, they have control over which rules may be enforced, but not necessarily

the implementation of those rules. In this case, a grey-box scenario, enterprises could

use Autosonda to ensure that implementations are robust. This type of assurance is

crucial, considering that enterprises are often liable for any data entering or exiting
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Figure 6.1: Autosonda architecture

on their networks, so there is little tolerance for rule evasion. Subtle variations in an

implemented rule from sloppy programming can completely change a security policy

and lead to exploitable vulnerabilities.

6.3 Tool design and implementation

Figure 6.1 shows the architecture of Autosonda. It consists of a client device located

within a censored country or behind a filtering agent and a set of custom servers

running on Amazon EC2 [1] outside of the censored region. The client and server

execute a series of tests that craft traffic for the purpose of bidirectional probing

the censorship device to discover various attributes about its decisions for traffic

handling. The client and the server both log events that are stored either locally or
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on a database outside of the censored region. Once the tests are completed, we do

postanalysis of the event logs to determine the results by comparing the actual events

with the expected events.

The goal of Autosonda is to create an implementation fingerprint of a censorship

device. This involves discovery in three different categories: model, mechanism, and

technique. Model refers to discovery of network traffic features that the censorship

device keys in on. Some examples are IP destination address and the Host header field

of an HTTP GET request. Autosonda examines features at each layer of the network

stack to determine which trigger a censor. Because there are an exponential number

of values to test, it is not feasible to discover the entire censor model. However, it is

also not necessary to discover the entire model in order to create an implementation

fingerprint of a censor. For example, a particular rule set might include a rule such

as “block traffic if byte 8 is 0.” It could potentially take an exponential number of

tries to find such a rule, yet knowledge of it doesn’t necessarily impact a significant

amount of client traffic. Instead, we aim to discover a subset of the censor’s model

according to which traffic features have been identified in existing literature as the

most impactful. For each of these features, we take protocol layers and semantics into

account. For example, if we speculate that TCP port is a feature of interest, we could

test the censor by sending packets with different port numbers to see if and how its

behavior changes. Another important aspect of a censor’s model is its maintenance

of state. Autosonda runs a series of tests to determine if the censor maintains state

at all and, if so, at which network layer. For each state that is maintained in a

censor, there is a point at which that state expires. Autosonda runs additional tests
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to determine the timeout period of a state.

For each feature that triggers a censor, there is a certain mechanism that is used

to look for that feature in the network traffic. There could be a particular regular

expression implemented in one of the censor’s rules that tries to match on a field in a

packet header. Autosonda tries to uncover the mechanisms used for various features

in a censor’s model by utilizing a fuzzing-like approach. Fuzzing is a software testing

technique that provides different types of input to a program to test how it responds.

It typically uses unexpected or random data as input, while Autosonda uses a more

protocol-aware approach for crafting its input data. An example of Autosonda’s

fuzzing technique is shown in Figure 6.2. This example assumes that the censor

is keying in on the ‘GET’ keyword; perhaps it wants to censor every HTTP GET

request that it receives. Once Autosonda knows that the ‘GET’ keyword is a feature

of interest, it runs a series of tests to determine the censor’s rule for that keyword. In

the example, we start with a typical ‘GET’ and then try to change the capitalization

to ‘GeT’ and then the spacing between ‘GET’ and the forward slash. Discovering the

censor’s mechanism is particularly important because of protocol ambiguity. There

are often nuances in syntax that are not perfectly specified in protocol specification,

leading to ambiguity. Such ambiguities are difficult for middlebox developers to

handle when accepting and parsing input and often lead to poorly implemented rules.

Finally, technique refers to the action taken by the censor to prohibit censored

content. In the case of the Great Firewall, this could be sending a TCP RST packet to

the client that requests forbidden content. It could also be modification of a packet’s

content or dropping of certain packets once they reach the censor.
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Figure 6.2: Example of a fuzzing approach to determine the rule implemented to
match GET

Assumptions

When creating our set of tests, we made several initial assumptions. The first is

that there exists some form of censorship on the network and that we have a given

string that triggers a censorship event, most typically a censored URL. We get this

information by testing URLs that have a high probability of being censored and only

include networks that show signs of censorship. We further assume root access on the

control servers for our experiments. However, Autosonda can run two sets of tests on

the client: one with root access and one without. Therefore, even if it is not possible

to have root on the client device, there is still a substantial amount of censorship

device discovery that can be done. These tests could be useful, for example, in a

scenario where the client is an unrooted smartphone.

Test Sets

Because we focus on web filtering and internet censorship, Autosonda primarily tests

TCP, UDP, HTTP and DNS protocols. However, functionality can be extended by

simply adding additional tests for other protocols. As mentioned above, Autosonda

starts with a censored URL and discovers the censor’s model by executing a series of

tests to find features that are of interest to the censor. When filtering occurs for a
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particular domain, the censor typically identifies that domain by URL or IP address.

Autosonda first tries to determine which, or both, of these features the censor looks

at. Other types of filtering, such as with data leak protection, as well as types of

censorship could also use keywords in data content as triggers. Although we didn’t

have the opportunity to test Autosonda on these types of filters, its approach could

easily be extended to do so.

6.4 Experiments and Results

Experimental Setup and Censor Modeling

To demonstrate Autosonda’s utility and use it to discover models of web filtering

devices, we performed experiments on 76 censored wifi networks over several months

in 2017 in the New York City metropolitan area. The wifi networks were all open

(not password protected) and located in establishments such as banks, community

institutions, clothing stores, grocery stores, home furnishing stores, restaurants/fast

food chains, and medical clinics, to name a few. For the purpose of our experiments,

we labeled the networks as censored if we were not able to retrieve content from the

number one most popular Adult category site in Alexa’s top 500 sites by category

[13]. The experiments involved connecting a client mobile device to a wifi network

that enforces censorship via web filtering. The client then ran Autosonda to probe

the web filter with traffic and gather data about its filtering mechanism. There were

three test servers, located on EC2 in the United States, that our clients corresponded
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with over the series of tests. The client and server tests were implemented in Java

and Python, and we used Scapy to specially craft network traffic. Autosonda’s tests

are designed to discover the model, mechanism, and technique used by a censor only

by examining network traffic from both the client and server. There was no physical

access or remote direct control of any of these devices or communication with network

system administrators during our experiments. We specifically defined the model,

mechanism, and technique of the web filters as follows.

The model of a web filter is characterized by the feature that triggers the censor-

ship of a URL. For these experiments we focused on two types of triggers: URL and

IP address. We discovered that all of the web filters we tested censored by main-

taining a blacklist of one of these two characteristics. As discussed in Section 6.3,

mechanism refers to implementation details for how the web filter performs its censor-

ship. For our experiments, we considered the following characteristics for identifying

mechanism:

1. How protocol-specific is the implementation of the censor

a) Does it censor only for port 80

b) Does it censor only TCP

c) Does it censor multiple Host headers

d) Is the censor triggered on keywords in the URI

e) Does it censor resent requests and responses

2. How does the censor handle protocol ambiguities

a) How does it respond to HTTP GET and DNS fuzzing
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Device
category

Number of
devices Web filter vendor

DNS filtering 21 OpenDNS, Skydns, Savvis, Amazon,
Fortinet, Conversant, Norton Connectsafe

Host header
filtering 44

SonicWall, AT&T, Juniper, Fortinet, Cisco
Meraki, ZScaler, Global Technology

Associates, BHI, 12 unknown
Host header

lookup 11 OpenDNS, Cisco Scansafe, Squid Proxy,
Wayport, 1 unknown

Table 6.1: Web filter vendors encountered for each category of device

3. Does the censor maintain state and what is the state expiry time

a) TCP, HTTP

4. Where is the censor’s blacklist logically located

a) Outbound HTTP request, inbound DNS response

5. Does the censor reassemble IP fragments and TCP segments

The techniques of web filters are the means by which the filters perform their cen-

soring. The types of techniques that we observed in the experiments were modification

of HTTP responses and modification of DNS responses. In addition to identifying

the model, mechanism, and technique for our 76 censored networks, we also observed

the vendor of each web filter when possible (through identifying features of network

traffic). We also took note of the percentage of censors whose filtering rules we were

able to bypass, which for these experiments was 100%. Overall we found that the

approaches taken by web filters are not robust and are easily breakable with a slight

change in protocol attributes or using a different protocol to transmit data.

Table 6.1 shows the web filter vendors that we encountered for each category of

device (see below). We were most often able to infer the vendors by traffic that we
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received, such as in response messages, but there were several filters that did not

give us clues about vendor information. Those are labeled as unknown. About half

of the web filter vendors we observed in the DNS filtering category were OpenDNS.

Norton ConnectSafe and Amazon were about 15% each. 20% of the devices in the

Host header filtering category were Fortinet and 30% were Cisco Meraki.

Results

Model and Technique: We divided our 76 web filters by the primary traffic chara-

teristic with which they were triggered and their approach to triggering. Autosonda

was able to break down the filters into two main categories and one subcategory: DNS

filtering, Host header filtering, and Host header lookup. 21 of the filters (27.63%)

maintained a DNS blacklist and performed all of their censorship via DNS (DNS

filtering category). Each of these filters monitored DNS responses when clients made

an HTTP request and compared the result against a blacklist of IPs. If the returned

IP matched one in the blacklist, the filter overwrote the DNS response to redirect the

HTTP request to a static block page. The block page is typically maintained by the

vendor of the web filter. This category of filters only censored requests that contained

the URL of a censored webpage. They did not censor requests going to our servers on

EC2, which contained Host header values of censored URLs. 44 of the 76 web filters

(57.89%) censored based on the HTTP Host header of a GET request (Host header

filtering category). These filters checked the GET Host header against a blacklist

of URLs to determine if the response should be blocked. The remaining 11 filters
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(14.47%) could be classified as a subcategory of the DNS blacklist category. They

censored by ignoring the destination URL of an HTTP request and instead doing

a DNS lookup of the Host header value in the HTTP request (Host header lookup

category). Once the filter receives the DNS response, it searches for the returned IP

in a blacklist of IP addresses. If found, it creates a new response from the IP of the

Host header URL, writes content describing that the page is blocked, and sends this

message to the client. Source IP addresses of responses coming from censored URLs

or our EC2 servers were left unmodified by filters in the Host header filtering cate-

gory. However, since requests were redirected to static pages with the DNS filtering

category, responses received by our clients were from the source IP address of the

static pages for this category.

Mechanism: To discover details about the implementation of our web filters, we

ran the tests described above (Section 6.4). Our tests for understanding how protocol-

specific the filter’s implementation were involved crafting HTTP requests with slight

variations in HTTP attributes. Web filters likely assume that all HTTP requests will

be using TCP on port 80. When we sent exactly the same HTTP request using UDP,

all of our filters allowed the request and response without any censorship. Thus,

the filters were only examining TCP communications. Although HTTP requests and

responses are only expected to be on port 80, it is still useful to know that the filters

are only looking at TCP traffic. However, when we sent requests using TCP on port

9900, a port not typically used with HTTP, our results differed quite a bit. Most

filters did not care that the requests were not on port 80; they censored them anyway.

Others, 17 out of the 49 filters that censored requests to our servers, only inspected
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requests going to port 80 and allowed those going to 9900 without censoring them.

None of our filters expected keywords in the URI field of the HTTP GET request and

they all allowed responses from censored URLs if the request included a keyword.

RFC 7230 [25] states that HTTP requests with multiple Host headers should

be rejected with a 400 response. To test if the filters were properly implementing

HTTP, we ran various tests in which the client device sent an HTTP request with

multiple Host headers and changed the ordering of the hosts. These tests yielded very

interesting results. For our 55 filters that examined Host header, 26 only looked at the

first Host header, 27 only looked at the last Host header, and two looked at both. Such

poor implementations can lead to severe security problems, clearly demonstrated in

our experiments with bypassing security policies, and also with HTTP cache poisoning

[18].

We saw a lot of variety among web filter vendors for how they handle TCP seg-

mentation and IP fragmentation reassembly. Of our 44 filters that were not DNS

censored, eleven did not reassemble TCP segments and seven different filters did not

reassemble IP fragments. Five filters had short timeout periods for fragments and

segments, just below two seconds, even though the timeout period of HTTP request

state was more than 8.5 seconds for all of the filters. For practicality purposes, we

did not test state expiry for more than 8.5 seconds.

Since filters in the DNS filtering category censor right at DNS lookups, the mech-

anism tests for HTTP are not relevant to devices in this category. However, we did

perform some additional tests for these devices to understand more about how the

filters are implemented. The first test was a DNS fuzzing approach where we made
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Tables 6.2-13: Fuzzed HTTP GET request tests and number of web filters that
were bypassed out of the 44 that examined HTTP request strings (the first %s is
replaced by a censored URL; the second, when present, is replaced with a test id)

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\n Host: xxxxxxxxxxxx%sxxxxxxxxxxxxxxxxx\r\nX-id:%s\r\n\r\n 34
GET / HTTP/1.1\r\nHost:xxxxxxxxxx%sxxxxxxxxxxxxxxxxxxx\r\nX-id:%s\r\n\r\n 33
GET / HTTP/1.1\r\nHost:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\r\nX-id:%s\r\n\r\n 35

Table 6.2: long hostname tests

HTTP GET request
Number of
web filters
bypassed

GeT / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 16
/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 28
/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 29

get / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 20
XXX / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 24
GE / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 24

Table 6.3: GET word tests

DNS lookups for a censored URL and changed capitalization and domain extensions

of the URL. Although capitalization didn’t influence any of the filters, changing of

domain extension, for example from .com to .org, did manage to return the correct IP

address of a URL that should have been filtered for three of the filters. As with any

of these filtering approaches, the success of the approach relies on the robustness of

the blacklist, which is difficult and time-consuming to maintain. Another important

attribute that we wanted to discover with the DNS filtering category is how it handles

custom DNS responses messages. For these tests we created our own DNS server and

forwarded requests for censored URLs to the server from our clients. Fourteen of the

web filters modified our DNS responses, while six did not.

The last group of Autosonda’s tests take a fuzzing approach to HTTP GET re-

quests in order to test to strength of filters’ regular expression matching. Using

Scapy, we created request messages with slight modifications to see how the web fil-
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HTTP GET request
Number of
web filters
bypassed

GET / HTTP/\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / http/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 18
GET / HTTP/1.\r\nHost: %s\r\nX-id:%s\r\n\r\n 20
GET / HTT/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22

GET / /1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / /1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22

GET / HTTP/ \r\nHost: %s\r\nX-id:%s\r\n\r\n 19
GET / /\r\nHost: %s\r\nX-id:%s\r\n\r\n 20

GET / HtTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 6
GET / /11.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21

GET / XXXX/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22
GET / HTTP9\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / HTTP\r\nHost: %s\r\nX-id:%s\r\n\r\n 20

GET / \r\nHost: %s\r\nX-id:%s\r\n\r\n 20
GET / HTTP/9\r\nHost: %s\r\nX-id:%s\r\n\r\n 20

Table 6.4: HTTP word tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\n%s\r\nX-id:%s\r\n\r\n 38
GET / HTTP/1.1\r\nHost%s\r\nX-id:%s\r\n\r\n 36

GET / HTTP/1.1\r\n Host: %s\r\nX-id:%s\r\n\r\n 23
GET / HTTP/1.1\r\nXXX: %s\r\nX-id:%s\r\n\r\n 29
GET / HTTP/1.1\r\nH: %s\r\nX-id:%s\r\n\r\n 38

GET / HTTP/1.1\r\nHostwww.%s\r\nX-id:%s\r\n\r\n 37
GET / HTTP/1.1\r\nHoSt: %s\r\nX-id:%s\r\n\r\n 20

GET / HTTP/1.1\r\n %s\r\nX-id:%s\r\n\r\n 38
GET / HTTP/1.1\r\nXXXX: %s\r\nX-id:%s\r\n\r\n 36

GET / HTTP/1.1\r\n: %s\r\nX-id:%s\r\n\r\n 37
GET / HTTP/1.1\r\nHost www.%s\r\nX-id:%s\r\n\r\n 37

GET / HTTP/1.1\r\nHost %s\r\nX-id:%s\r\n\r\n 37

Table 6.5: Host word tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTPx/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / HTTP /1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / HTTP/ 1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 28
GET / HTTP/1.1x\r\nHost: %s\r\nX-id:%s\r\n\r\n 18
GET / HTTP/x1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 19
GET / HTTP/1.1 \r\nHost: %s\r\nX-id:%s\r\n\r\n 16

Table 6.6: spacing after HTTP tests

ters responded. Table 6.2 - 6.12 show a list of the 76 tests that we performed in this

group, along with the number of filters that were bypassed with each request. With

just simple modifications, many of the web filters allowed censored content to bypass

their policies. Among all the filters we see a great deal of variation in behavior. These
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HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\nAccept: text/html, */*;q=0.8\r\n\r\n 0
GET / HTTP/1.1\r\nHost: %s\r\nX-

id:%s\r\nAccept:text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n\r\n 0

GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\nAccept: text/html\r\n\r\n 0
GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\nAccept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n\r\n 0

GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\nAccept:text/html\r\n\r\n 0
GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\nAccept:text/html,*/*;q=0.8\r\n\r\n 0

Table 6.7: Accept tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\rHost: %s\r\nX-id:%s\r\n\r\n 21
GET / HTTP/1.1\nHost: %s\r\nX-id:%s\r\n\r\n 2
GET / HTTP/1.1 Host: %s\r\nX-id:%s\r\n\r\n 36
GET / HTTP/1.1Host: %s\r\nX-id:%s\r\n\r\n 34

Table 6.8: \r\n tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost: [host without extension]\r\n\r\n 23
GET / HTTP/1.1\r\nHost: %s#\r\nX-id:%s\r\n\r\n 20
GET / HTTP/1.1\r\nHost:%s\r\nX-id:%s\r\n\r\n 4

GET / HTTP/1.1\r\nHost:www.%s\r\nX-id:%s\r\n\r\n 6
GET / HTTP/1.1\r\nHost:x%s\r\nX-id:%s\r\n\r\n 20

GET / HTTP/1.1\r\nHost: www.%s\r\nX-id:%s\r\n\r\n 1
GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 1

GET / HTTP/1.1\r\nHost: www.%s\r\nX-id:%s\r\n\r\n 0
GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 0

Table 6.9: hostname tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost:.com\r\nX-id:%s\r\n\r\n 36
GET / HTTP/1.1\r\nHost: \r\nX-id:%s\r\n\r\n 29

GET / HTTP/1.1\r\nHost:a.com\r\nX-id:%s\r\n\r\n 35
GET / HTTP/1.1\r\nHost:\r\nX-id:%s\r\n\r\n 30

Table 6.10: after Host tests

results really demonstrate the utility of Autosonda, that it is able to discern slight

variations and find trends in censor behavior by trying many tests that modify subtle

details of traffic. These results give us many clues about how filters implement their

regular expressions. Note that actual retrieval of prohibited content depends on the

implementation of the server. A server can intentionally be liberal in the formatting
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HTTP GET request
Number of
web filters
bypassed

GET/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 26
GET z HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 24
GET ? HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 26
GET /HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 12
GETHTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 28
GET/HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 27
GET**HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 25
GET /xHTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 13
GET HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22
GETx/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 29

Table 6.11: Request-URI tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost:[host+host]\r\n\r\n 20
GET / HTTP/1.1\r\nHost: [host+host]\r\n\r\n 22

Table 6.12: Host substring tests

of HTTP requests that it accepts or it can also unintentionally contain bugs in its

rules for parsing requests. Regardless, our goals were to test the implementation

of the filter rather than the server, so our control servers returned an HTTP 200

response and content for any request it received.

The categories that allowed the most bypasses were long hostname tests, Host

word tests, \r\n tests, and after Host tests. The results for long hostname tests

give us intuition that most filters do not search entire hostnames for censored URL

substrings, however the Host substring tests yield mostly censored results. A likely

explanation is that filters are looking at the first or last part of the hostname to search

for a censored URL. When the URL occurs in the middle of a long string, such as in

the long hostname tests, the filters usually do not find it.

Most filters hardcode the Host word in their regular expressions, according to the

results in Table 6.5. It also seems that their regular expressions are rather particular,
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since we see a majority of filters bypassed with strings that change the spacing and

characters in and around the Host word. However, changes in capitalization seem to

be caught by most of the filters, which we can see when we tried “HoSt”. Filters’

regular expressions just before Host are also particular. We can see in Table 6.8 that

nearly all of the filters were bypassed by removing the \r\n and spacing before Host.

Filters are likely using these tokens as delimiters to split sections of the GET request.

Unsurprisingly, filters were easily bypassed in our after Host tests, Table 6.10. In

these request strings we placed the censored URL in the X-id field and then modified

tokens just after Host. Clearly most of the filters look only at the Host field for a

censored URL and ignore everything afterward. Thus, with special implementation

of a server, a client could craft a request by putting a censored URL after the Host

field and bypass the policies of the filter.

Web filter vendors: A very interesting result that we noticed is the diversity

of behavior among web filters of the same vendor. For example, we observed 13

Cisco Meraki web filters and found that only two of them considered both Host fields

when multiple Hosts were used in a request, whereas the other 11 filters only looked

at the last Host. Similarly, two different Meraki filters used a timeout period of

less than two seconds for IP fragments, where the other 11 filters had a timeout of

over 8.5 seconds. A logical explanation for this behavior diversity is that some of

the filters were running more updated software. For differences that are not due to

poorly implemented software, customer preferences could also be a factor in behavior

diversity. Not only did we see subtle variations in implementation among the same

vendors, but we also noticed completely different approaches taken to filtering by the
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same vendors. Fortinet filters, for example, accounted for eight of our Host header

filtering category devices. These devices solely considered an HTTP request Host

header when making filtering decisions. Yet, we found two filters also by Fortinet

that performed only DNS filtering and completely ignored the HTTP Host field.

Bypassing filtering mechanisms: Through our experiments we were able to

bypass 100% of the web filters we tested. Although all of the approaches that we

took for bypassing were protocol-related, it is also worth mentioning that since all

of the web filters we studied were blacklist-based and did not do content filtering,

data could easily be transferred through any URL/IP not on the blacklist. Although

Autosonda’s tests did not account for content filtering, its fuzzing approach could

easily be extended to handle devices that implement this type of censorship.

Since all of the filters in our DNS filtering category worked by modifying DNS

responses, they were easily bypassed by sending HTTP GET requests directly to an

IP address rather than performing a DNS lookup of a URL. Similarly, HTTP requests

that we made to our servers on EC2 with a censored Host header also successfully

returned responses without modification for the DNS filtering category. As mentioned

above, sending HTTP requests over UDP bypassed filters 100% of the time, as did

adding keywords to URI field of requests and using multiple host headers. Our HTTP

request fuzzing approach also bypassed filters very well for the Host header filtering

category. For 76 different tests, we saw that individual filters failed to censor up to 65

of those tests for SonicWall, 60 tests for Cisco Meraki, 52 for ZScaler, 52 for Juniper,

38 for AT&T, and up to 51 for unknown vendors.

The web filters on which we ran our experiments were likely programmed to block
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access to specific categories of websites, which is why they keep a blacklist of URLs

or IP addresses to block. A blacklist approach is difficult to maintain, since websites

are constantly changing and content can be moved around to different sites, easily

allowing one to bypass the filter. To even attempt to keep blacklists up-to-date,

they need to be frequently pushed updates. During our experiments we ran some

additional tests to see how robust the blacklists were for our test filters. To do this,

we downloaded the Alexa top 100 Adult category sites on the web and tried to connect

to them through each filter that blocked the number one most popular site. Not one

of the filters we tested blocked access to all 100 of the sites. We even saw some filters

with as low as 31 blocked sites. Also interesting to see was that different filters of the

same vendor blocked different subsets of sites.

Establishment type categorization: We didn’t find any correlation between

type of establishment and its censorship mechanisms. However, we were surprised

to see that there was also very little correlation between type of establishment and

whether its networks were filtered at all. Many community centers, such as libraries,

where we expected to find censorship, did not employ web filters at all. We also

noticed that although retail chains typically use the same type of filtering mechanisms

among all their branches, it is not always consistent. We observed several institutions

that filtered in one branch but not another, as well as completely different filtering

vendors between branches. Finally, although we ran our experiments over a short

period of time, we noticed a change at one national chain from an uncensored to a

censored network in three different locations.
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6.5 Conclusion

Discovering decision models of censorship devices and network management devices is

useful to find evasion techniques and strengthen implementations. However, it is dif-

ficult to perform this type of analysis in depth and at scale. We introduce Autosonda,

a tool used for automated rule reverse engineering and fingerprinting of censorship

middleboxes. Autosonda is used to uncover the model, mechanism, and technique

used by a censor when access to the device is only available through network traffic

probing. Through a series of tests across multiple protocols, Autosonda characterizes

devices according to their decision models, techniques for enforcing censorship, and

discovers clues about the regular expressions used by these devices for rule enforce-

ment. The value and effectiveness of our tool is demonstrated by using it in a study

of 76 web filters, where we discover a variety of implementation and decision-making

techniques. Autosonda enabled us to find methods for bypassing 100% of the fil-

ters we studied as well as categorize common implementation flaws and rule sets for

popular device vendors.
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Chapter 7

Conclusion

Networks are constantly facing changing requirements due to continuous surges in

the number of connected devices. As technology continues to flourish, new types

of devices will continue to enter the market, increasing the demand for high speed

and secure network communication. Along with a rise in the number of connected

devices is also an increase in the instances and sophistication of attacks. The scale and

heterogeneity of devices and networks makes it very difficult to provide proper security

to defend against these threats, both for the end nodes as well as the elements of the

network itself. Network control devices enforce policies and security mechanisms on

networks, and they now need to protect against increasingly sophisticated attacks

and understand the impact of threats. However, automated tools are necessary to

detect, analyze, and compare vulnerabilities of network control devices, especially as

networks become more dynamic and evolve to adapt to future use cases. This thesis

presents the design, implementation, evaluation, and discussion of two tools that can

be used for automatically discovering subsets of policies and vulnerabilities of network

control nodes. These tools treat the nodes as black boxes by crafting network traffic

input and observing the nodes’ output. We use them to discover how the nodes react

to changes in traffic characteristics as networks evolve.
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For LTE cellular networks, we built a scalable test bed that is the first of its

kind for analyzing the impact of traffic scalability and large-scale attacks on the

Packet Core. Cellular networks are facing drastic change with the introduction of

the Internet of Things, expecting to bring billions of connected devices in the near

future. However, LTE is known to be vulnerable to attacks, and it has been theo-

rized that the traffic nature of IoT devices will be troublesome for cellular networks,

particularly at the volume expected of these devices. This thesis provides the first

study demonstrating the impact of large-scale attacks on availability and scalability

of Machine-to-Machine traffic. Studies have not previously been possible due to the

scale and flexibility required for such an analysis. Our test bed, Firecycle, contains

traffic models taken from real traces of smartphone and IoT devices and can be scaled

up to an arbitrarily-sized network. The results of our analysis highlight the points

in the network most severely impacted by IoT scalability and signaling overload due

to a botnet of devices. They also provide insight on the QoS impact for smartphone

users that could occur with a spike in the number of embedded devices communi-

cating over LTE networks. The analysis discussed in this thesis is very beneficial for

understanding particular vulnerabilities of control plane signaling and can aid in the

design of future cellular network architectures.

Understanding vulnerabilities of network control devices is useful not only to

enhance their security, but it also can assist in finding paths for circumvention of

these devices and understanding how evasion is possible. However, tools are needed

to deeply understand decision making behavior and implementation details when

direct access is not possible and the device acts as a black box. The final chapter
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of this thesis presents Autosonda, a tool to discover and study decision models of

censorship devices. Through network traffic alone, Autosonda fingerprints censorship

devices by discovering their models and mechanisms for how they enforce rule sets.

The strength of Autosonda is demonstrated in a study that we present of 76 web

filters currently in use in the New York City metropolitan area. In our study we

encounter a great variety of behavior and implementation techniques for blocking

prohibited web content. Not only does Autosonda help us to find implementation

flaws and rule sets, it also allows us to find circumvention paths for 100% of our test

subjects. Being able to perform this type of detailed analysis automatically and at

scale is a large contribution for understanding censorship and how network control

device behavior can be classified.
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