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Abstract

A New Estimating Equation Based Approach for Secondary Trait

Analyses in Genetic Case-control Studies

Xiaoyu Song

Background/Aims: Case-control designs are commonly employed in genetic as-

sociation studies. In addition to the primary trait of interest, data on additional

secondary traits, related to the primary trait, are often collected. Traditional as-

sociation analyses between genetic variants and secondary traits can be biased in

such cases, and several methods have been proposed to address this issue, including

the inverse-probability-of-sampling-weighted (IPW) approach and semi-parametric

maximum likelihood (SPML) approach.

Methods: Here, we propose a set of new estimating equation based approach that

combines observed and counter-factual outcomes to provide unbiased estimation

of genetic associations with secondary traits. We extend the estimating equation

framework to both generalized linear models (GLM) and non-parametric regres-

sions, and compare it with the existing approaches.

Results: We demonstrate analytically and numerically that our proposed approach

provides robust and fairly efficient unbiased estimation in all simulations we con-

sider. Unlike existing methods, it is less sensitive to the sampling scheme and un-

derlying disease model specification. In addition, we illustrate our new approach

using two real data examples. The first one is to analyze the binary secondary trait

diabetes under GLM framework using a stroke case-control study. The second one is



to analyze the continuous secondary trait serum IgE levels under linear and quantile

regression models using an asthma case-control study.

Conclusion: The proposed new estimating equation approach is able to accommo-

date a wide range of regressions, and it outperforms the existing approaches in some

scenarios we consider.

Key words: secondary trait analysis; estimating equations; case-control studies;

GWAS.
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Chapter 1

Introduction

No two humans are genetically identical. This is true even for monozygotic twins who

develop from the same zygote. The differences between individuals come from a variety

of aspects, such as single nucleotide polymorphisms (SNPs), structural variation and epi-

genetics, to name a few. These genetic variations can affect how humans develop diseases

and respond to pathogens, chemicals, drugs, vaccines and other agents. Understanding

the variations in human genetics is important to detect, prevent and treat the diseases that

are caused by genetic abnormalities and mutations. It is also especially critical for the

development of personalized medicine that tailors health care for each individual patient.

One of the most commonly occurred variations throughout a person’s DNA is the SNP

that each person has on average roughly 10 millions SNPs across whole genome. A SNP is

a single nucleotide (A, T, C or G) mutation at a specific locus of the DNA sequence between

paired chromosomes or members of a biological species. Since humans are diploid organ-

isms, the SNPs have two alleles (where the rare allele frequency is >1%) at each genetic

locus, with one allele inherited from each parent. A single SNP may cause a Mendelian

disease that follows a simple pattern of inheritance known as the Mendel’s laws [Mendel,

1865]. Examples include sickle-cell anemia, Tay-Sachs disease, cystic fibrosis and xero-

derma pigmentosa. Most of the Mendelian diseases have been well studied in the litera-

ture and the remaining challenges for current studies are the complex diseases, in which

the SNPs do not usually function individually, but rather work in coordination with other
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CHAPTER 1. INTRODUCTION

SNPs and the environment factors to manifest a disease condition.

An early statistical method to identify disease genes is linkage analysis. Linkage anal-

ysis uses marker data on individuals in families/pedigrees, and studies patterns of co-

inheritance of the markers and the diseases throughout the pedigree. Although linkage

analysis has successfully explained a lot of the Mendelian diseases, such as Huntington’s

disease and cystic fibrosis, it has been less successful for complex traits. One major reason

is that complex diseases often have a large number of SNPs with small or medium effect

sizes, and thus researchers need to collect a large number of families with several affected

generations. If the disease is rare or having late-onset with a high mortality, finding fami-

lies with more than one affected generation will be unpractical. Therefore, linkage studies

are less helpful for complex traits, where multiple genes work together with small effect

size in disease causation.

Unlike linkage studies, Genome-wide association studies (GWAS) allow researchers to

identify the associations between the genetic markers and the complex diseases using unre-

lated individuals. GWAS first proposed by Risch et al. [1996] genotype each subject a dense

set of pre-determined SNPs across the genome, and test for the disease-marker association

at all SNPs. To carry out a GWAS, researchers use two groups of participants: people with

the disease of interest and similar people without the disease. Each person gives a blood

or buccal swab sample of DNA, from which millions of genetic variants are genotyped. If

one type of the variant (one allele) is more or less frequent in people with the disease than

other, then the SNP is said to be "associated" with the disease. The associated SNPs serve as

powerful pointers to the region of the human genome where the disease-causing problem

resides. However, the associated SNPs themselves may not directly cause the disease. They

may just be "tagging along" with the actual causal variants. Researchers often need to take

additional steps to identify the exact genetic change involved in the disease after GWAS.

For example, researchers could sequence DNA base pairs in that particular region of the

genome and conduct additional analysis.

GWAS have successful identified many genetic variations that contribute to a num-

ber of diseases [Visscher et al., 2012], such as type 2 diabetes, Parkinson’s disease, heart

2



CHAPTER 1. INTRODUCTION

disorders, obesity, Crohn’s disease and prostate cancer. For example, in 2005, three inde-

pendent studies [Edwards et al., 2005; Haines et al., 2005; Klein et al., 2005] found that

age-related macular degeneration, a common form of blindness, is associated with vari-

ation in the gene for complement factor H that regulates inflammation. Few previously

thought that inflammation might contribute significantly to this type of blindness.

GWAS often use case-control design, and it offers tremendous savings in time and ex-

pense compared with a prospective design. Even so, case-control design remains costly,

and therefore GWAS often collect rich information on additional traits to further improve

the efficiency. The additional traits are mostly important factors associated with the pri-

mary diseases, including biomarkers, characterizations of the disease and anthropometric

parameters. For example, in a chronic obstructive pulmonary disease study [Regan et al.,

2010], the researchers also collected additional respiratory diseases such as asthma, em-

physema and bronchitis.

In addition to the primary analysis, which focuses the association between the SNPs

and case-control status, researchers are also interested in taking full advantage of the ex-

isting data and analyzing genetic associations with the additional traits. The analysis of

the association between the SNPs and additional traits using existing case-control data is

known as "secondary analysis" in the literature. The secondary analysis enables us to inves-

tigate the association between the common variants and secondary traits. Some of them

help discovering the genetic pathways of the primary diseases, while others extend to dif-

ferent interest areas. For example, in Lettre et al. [2008], researchers analyzed height as

the secondary trait using six GWA case-control studies focusing on diabetes, cardiovascular

diseases and cancers. They identified ten SNPs and two previously reported SNPs strongly

associated with height. These 12 SNPs together accounted for approximately 2% of the

population variation in height, and encompassed both strong biological candidates and

unexpected genes. They also highlighted several pathways (let-7 targets, chromatin re-

modeling proteins and Hedgehog signaling) as important regulators of human stature. No

prior GWAS focusing on height has the power to detect these associations, and it showed

the great value of secondary analysis in genetic studies.
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CHAPTER 1. INTRODUCTION

Although conducting the secondary analysis is appealing, it is not straightforward to

obtain an unbiased estimation of the association. In a simple case-control design, the

cases are oversampled to improve the efficiency, and therefore the selected subjects are

no longer representative of the general population. In particular, the subjects are ascer-

tained by combining two randomly selected groups, the group of individuals with specified

primary disease and the group without. When secondary traits are positively associated

with the case-control status, subjects with the large secondary trait values are also over-

sampled; when negatively associated, subjects with the large secondary trait values are

undersampled. As a result, the SNP-secondary trait association in the cases may differ from

the controls. Ignoring the data structure and analyzing the SNP-secondary trait association

using this case-control sample directly would lead to substantive biases. This statistical

problem is further illustrated in the motivating examples in Section 1.1.

The existing methods can be broadly divided as three groups. First, one can use tra-

ditional methods in terms of direct regressions. The analysis can be done among case

sample only, control sample only, combined case-control sample, or combined case-control

sample adjusting the case-control status as a covariate. None of these traditional meth-

ods could estimate the association in the general population consistently. Second, one can

correct the bias by using weights inverse to the probability of selection. This weighted

approach has been long proposed and widely used in survey methods for its simplicity, but

there are concerns over its efficiency. Third, one can explicitly account for the sampling

scheme by modeling the retrospective likelihood function conditioning on the case-control

status. A number of the articles based on the likelihood idea is available in the literature,

and the semi-parametric maximum likelihood (SPML) approach proposed by Lin and Zeng

[2009] is the most recognized for its large improvement in estimating efficiency. However,

the method heavily relies on certain assumption on disease prevalence and is not robust

against mis-specifications that are common in the GWAS studies. In addition, it introduces

profile likelihood function in its estimation process to get rid of the high-dimensional nui-

sance parameters, which is computational intensive.

While GWAS mainly use parametric regressions at this stage for its simplicity, it is desir-
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CHAPTER 1. INTRODUCTION

able to introduce non-parametric regressions to this field. In particular, we are interested

to apply quantile regression [Koenker and Bassett Jr, 1978] as a way to systematically ex-

amine how the SNPs influence the location, scale, and shape of the entire trait distribution.

Quantile regression allows the association between the risk factors and outcomes differ

in different quantiles of the distribution, and therefore is especially useful when the risk

factors are associated with the variances or the extreme values of the outcome. Quantile

regression as well as other non-parametric regressions does not have parametric likelihood

functions, and therefore could be applied with the likelihood based approaches such as

SPML for the secondary analysis.

1.1 Motivating examples

In this section, we describe two real GWAS that motivate our research. One comes from

the Risk Assessment of Cerebrovascular Events Study and the other is from the New York

University Bellevue Asthma Registry.

1.1.1 Risk Assessment of Cerebrovascular Events (RACE) Study

Our first motivating example is a case-control GWAS, Risk Assessment of Cerebrovascular

Events (RACE) Study [Cornelis et al., 2010], from dbGap as part of the Gene Environment

Association Studies initiative funded by the trans-NIH Genes, Environment, and Health

Initiative. This study included 1,220 cases with young onset stroke (stroke before age 60

years) in Pakistan and 1,273 controls from Pakistan Risk of Myocardial Infarction Study.

For each study subject, the study also collects covariate information, including age, gender,

ethnicity, diabetes, cardiovascular disease, myocardial infarction and tobacco usage. The

study genotyped 657,366 genetic variants in the whole genome, including SNPs rs6712932

and rs1990760 that we are interested to investigate for their associations with diabetes.

Two previous studies have identified that SNPs rs6712932 and rs1990760 are associ-

ated with diabetes in white ethnicity European descents. In details, SNP rs6712932-G is

reported to be a protective factor for type-2 diabetes with odds ratio (OR)=0.66 (CI: 0.54

5



CHAPTER 1. INTRODUCTION

- 0.79) [Salonen et al., 2007] in all white from eastern Finland, Israel, Germany and Eng-

land, and SNP rs1990760-G is reported to be a protective factor for type-1 diabetes with

OR=0.85 (CI: 0.81 - 0.90) [Todd et al., 2007] in self-reported white ethnicity in Great

Britain. It is desirable to verify the association between the pre-reported SNPs and diabetes

in different populations, as it would answer whether the associations are due to hetero-

geneity of the populations or disease mechanisms. We would like to re-investigate the

associations in Pakistan population using the existing stroke case-control data.

Both types of diabetes are known to be risk factors for stroke [Peters et al., 2014;

Sundquist and Li, 2006]. In this dataset, we only have information on whether a sub-

ject has diabetes without further specification on the type of diabetes. Applying simple

logistic regression to the data, we estimate the OR for having young onset stroke asso-

ciated with diabetes is 3.18 (p-value< 0.0001). In addition, both SNPs are associated

with primary disease (young onset stroke) with marginal per-minor-allele OR as 1.14 (p-

value=0.024) and 0.87 (p-value=0.015), respectively. After adjusting for secondary trait

(diabetes), the associations between these SNPs and stroke remain significant (rs6712932:

OR=1.16; p- value=0.017. rs1990760: OR=0.84; p-value=0.003). This is a situation

where the commonly-used estimation methods may provide biased estimation for the as-

sociation between these two SNPs and diabetes. We could observe from Table 1.1 that the

estimates from cases and controls are different. Although we are unable to observe the

true coefficient in the population, we would expect it is closer to the ones among controls

than the ones among cases, since the most of the subjects in the population are healthy

people. Combining the case-control samples and regressing with or without adjusting for

disease status gave us estimates that are close to the cases, so we believe they are likely to

be biased.
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rs6712932 rs1990760

Est β̂1 OR SE p-value Est β̂1 OR SE p-value

Case -0.100 0.90 0.092 0.2800 -0.112 0.89 0.088 0.2024

Control -0.125 0.88 0.132 0.3441 -0.247 0.78 0.118 0.0368

CC -0.060 0.94 0.074 0.4166 -0.126 0.88 0.068 0.0648

Adj CC -0.108 0.90 0.076 0.1530 -0.159 0.85 0.071 0.0246

Table 1.1: The association between SNPs and diabetes in a young onset stroke case-control

sample. "Case" stands for logistic regression among case sample only. "Control" stands for

logistic regression among contol sample only. "CC" stands for unadjusted logistic regression

using both case and control samples. "Adj CC" stands for logistic regression using both case

and control samples adjusting for primary disease status.

7
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1.1.2 New York University Bellevue Asthma Study

Another motivating example is an association study of the Thymic stromal lymphopoi-

etin (TSLP) gene and asthma from the New York University Bellevue Asthma Registry

(NYUBAR) [Liu et al., 2011]. Asthma is a common chronic inflammatory disease of the

airways characterized by variable and recurring symptoms, reversible airflow obstruction

and bronchospasm. Asthma is thought to be caused by a combination of genetic and en-

vironmental factors and is usually diagnosed based on the pattern of symptoms, response

to therapy over time and spirometry. TSLP gene, viewed as a "master switch" of allergic

inflammation at the epithelial cell and dendritic cell interface, is upregulated in asthma.

In their primary analysis, ten tag-SNPs in the TSLP gene were analyzed for association

with asthma using 387 clinically diagnosed asthmatic cases and 212 healthy controls. One

SNP (rs1898671) showed nominally significant association with asthma (OR = 1.50; 95%

CI: 1.09 - 2.05, p = 0.01) after adjusting for age, BMI, income, education and population

stratification.

In this study, we are interested to understand the mechanical pathways of TSLP gene

in affecting the occurrence of asthma. Asthma is almost surely to have allergic basis that it

is very likely to be associated with some type of Immunoglobulin E (IgE) related reaction.

The IgE is a class of antibody that mediates the immune responses in the pathogenesis

of allergic asthma [Burrows et al., 1989]. It binds to allergens and triggers the release

of substances from mast cells that can cause inflammation. In addition to asthma, IgE is

also associated with other allergic diseases, such as allergic rhinitis, peanut allergy, latex

sensitivity, atopic dermatitis, chronic urticaria and allergic bronchopulmonary aspergillosis

[Morjaria and Polosa, 2009]. To further understand the genetic basis of asthma, we would

like to investigate the association between TSLP gene with serum IgE level to uncover

the mediation pathways. It is also helpful to understand the impact of TLSP gene on

other allergic diseases. Figure 1.1 shows the distribution of log serum IgE levels by case-

control status. According to the figure, the log serum IgE levels are approximately normally

distributed among cases and controls, and therefore we can apply least square regression

to analyze the mean genetic association with serum IgE levels. In addition, since high not

8
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the average serum IgE level is an indicator of allergic diseases, we also want to consider

quantile regression for the genetic association with upper quantiles of IgE in the analysis.

Based on Figure 1.1, asthma is associated with serum IgE levels that cases are more

likely to have high serum IgE levels than healthy controls. This association is clinical and

statistical significant that on average the OR of having asthma with one unit increase in

log serum IgE level is 1.41 (p-value<0.0001). When the secondary trait (serum IgE level)

is associated with primary disease (asthma), the direct analysis using the case-control data

may be biased due to its oversampled cases from the population. Table 1.2 illustrates this

problem by summarizing the association between the ten-tag SNPs in TSLP gene and serum

IgE level separately in cases and controls. For example, we observe the genetic associations

of SNP rs10035870 with log IgE level among cases and controls are very different. Combin-

ing cases and controls with an arbitrary proportion invoke substantive biases. Therefore,

there is a need to utilize novel statistical methods to adjust for the biases, and this novel

method should be able to facilitate quantile regression that does not based on likelihood

functions in the analysis.
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Mean τ= 0.5 τ= 0.75 τ= 0.85

SNPs Sample Est P-val Est P-val Est P-val Est P-val

rs2289276 Case 0.0 0.913 0.0 0.760 0.1 0.472 0.1 0.756

Control 0.0 0.866 0.1 0.505 0.2 0.318 -0.2 0.472

rs1898671 Case -0.2 0.052 -0.2 0.182 -0.2 0.085 -0.2 0.187

Control -0.2 0.219 -0.5 0.065 0.0 0.982 -0.2 0.363

rs11466741 Case -0.1 0.557 0.0 0.764 0.1 0.500 0.0 0.942

Control 0.2 0.212 0.3 0.088 0.4 0.068 0.2 0.322

rs11466743 Case 0.3 0.473 0.0 0.979 0.1 0.841 0.7 0.646

Control -0.5 0.275 0.0 0.904 -0.8 0.064 -1.0 0.003

rs2289277 Case 0.0 0.789 -0.1 0.525 0.1 0.387 0.1 0.507

Control 0.1 0.515 0.1 0.638 0.3 0.105 0.2 0.254

rs2289278 Case 0.3 0.107 0.2 0.490 0.4 0.066 0.2 0.197

Control -0.3 0.294 -0.2 0.470 -0.5 0.275 -0.4 0.444

rs11241090 Case 0.4 0.125 0.4 0.107 0.1 0.779 0.6 0.339

Control 0.3 0.355 0.3 0.416 -0.1 0.842 0.6 0.489

rs10035870 Case -0.1 0.579 0.0 0.987 -0.1 0.657 -0.1 0.668

Control 0.9 0.011 0.9 0.207 0.9 0.000 0.5 0.130

rs11466749 Case 0.2 0.414 -0.1 0.777 0.4 0.223 0.6 0.079

Control 0.0 0.958 -0.1 0.760 0.1 0.827 0.3 0.478

rs11466750 Case 0.2 0.132 0.1 0.541 0.4 0.114 0.6 0.040

Control 0.0 0.818 -0.1 0.695 -0.2 0.625 0.2 0.718

Table 1.2: The association of ten-tag TSLP SNPs and log serum IgE levels in an asthmatic

case-control sample. "Mean" stands for linear regression. "τ" stands for quantile regression

at the τth quantile. "Case" stands for regressions among case sample only. "Control" stands

for regressions among contol sample only.
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Figure 1.1: The log serum IgE levels in Asmthatic cases and controls
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1.2 Our contribution

In summary, the aforementioned situations have two problems. First, although an extensive

literature have been found on the secondary analysis, there is no approach that is robust to

most of the situations in genetic studies and fairly efficient in identifying the SNPs. Second,

when the secondary traits are continuous, the researchers mainly transform the outcome

to approximately normal distribution and use linear regressions. It ignores the potential

non-linear associations and the associations in other quantities than means.

To address the aforementioned questions, we proposed a new estimating equation

based approach for the analysis of secondary traits in the genetic case-control studies.

Our contributions are two-fold. First, the proposed approach balances the robustness and

efficiency for the secondary analysis. In particular, it has very similar point estimates to the

most robust approach in the literature with smaller standard errors. Second, we generalize

the secondary analysis to the quantile regression, which has great potentials to deepen and

expand the existing knowledge on traditional secondary analysis, and therefore discover

additional candidate SNPs for the complex diseases.

1.3 Structure of this dissertation

The rest of the thesis is organized as follows. In Chapter 2, we first review the existing

approaches for the secondary analysis in genetic case-control studies. It includes discussing

the conditions that traditional methods are able to work, and describing two most popular

novel methods. One is widely used for its robustness, and the other is for its efficiency. In

Chapter 3, we proposed a new estimating equation based approach that provides a general

framework for a wide range of regressions in secondary analysis. An estimation algorithm

for the model parameters is described. The bootstrap method for confidence interval and

hypothesis tests is proposed. In Chapter 4, a series of simulation studies is conducted

to evaluate the performance of the proposed estimation equations in generalized linear

models (GLM) and quantile regression in finite sample sizes. Its performance is compared

with proper existing methods. The Type I error and the model robustness under mis-

12
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specification of proposed approach is investigated. In Chapter 5, we applied the proposed

estimating equations with existing approaches to the Risk Assessment of Cerebrovascular

Events Study and the New York University Bellevue Asthma Study mentioned earlier. In

Chapter 6, we summarize the important findings in previous chapters and discuss some

future directions of the study.

13



Chapter 2

Review of secondary analysis in genetic

case-control studies

The secondary analysis of the genetic case-control studies is an important topic which

has received considerable attention in recent years. The existing methods can be broadly

divided as three groups.

First, one can use traditional methods in terms of standard regressions to analyze the

marker-secondary trait associations. The analysis can be done among cases only, controls

only, entire sample ignoring the case-control status, entire sample using case-control status

as a covariate. None of these traditional methods is able to provide unbiased estimation

of marker-secondary trait associations, because cases and controls are selected at different

rates from their respective subpopulations. The case-control sample does not constitute a

random sample of the general population. As a result, the population association between

a SNP and a secondary trait can be distorted in the case-control sample.

Second, one can correct the bias using weighting schemes originally developed from

sampling schemes [Jiang et al., 2006; Monsees et al., 2009; Richardson et al., 2007; Scott

and Wild, 2002]. The inverse-probability-of-sampling-weighted (IPW) regression, also

know as survey-weighted approach, uses weights inversely proportional to the sampling

fractions to the analysis of the secondary traits. This approach provides robust estima-

tion for the marker-secondary trait associations but lacks of the efficiency. Technically, this

14
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approach requires knowledge of the case-control sampling fractions, so it is proposed in

a case-control study nested within a big cohort study. However, in reality, the sampling

scheme is often not clear, and researchers sometimes use the disease prevalence as an

approximation of the sampling scheme.

Third, one can explicitly account for the case-control sampling scheme via maximizing

the retrospective likelihood function conditioning on the sampling scheme [He et al., 2011;

Jiang et al., 2006; Lee et al., 1997; Lin and Zeng, 2009; Scott and Wild, 2001]. The

semi-parametric maximum likelihood (SPML) method proposed by Lin and Zeng [2009]

is the most widely recognized approach using this idea. This method made linear logit

assumption for disease probability relating secondary trait and SNPs, and estimated the

coefficients by maximizing the retrospective likelihood function conditionally on sampling

scheme. This approach largely improves the efficiency of the estimations from IPW, but

when the model assumptions are violated, the resulting estimates could be biased. For this

paper, we mainly review for the SPML approach on behalf of the retrospective likelihood

based methods in the following section.

Other methods based on similar idea of likelihood functions are not as widely applied

in the data analysis as SPML method for different reasons. For example, the bias correction

method [Wang and Shete, 2011, 2012] only deals with binary secondary traits and is

unable to adjust for covarites. The adaptive weighted approach [Li and Gail, 2012] has

difficulties to deal with additive genetic models. Therefore,

In addition to the SPML approach we will review later, there are other approaches

available in the literature based retrospective likelihood functions. They are not as widely

applied in the data analysis as SPML method for different reasons. For example, Li and

Gail [2012] proposed a adaptive weighted approach to weighted sum two estimates to

improve the robustness of the SPML approach. The first estimate is from SPML method,

and the second one follows the same structure of SPML approach but revises P(D|X , Y )

model to add the X − Y interaction. It is designed to put more weight on SPML estimators

when there is no interaction between X and Y in predicting the primary disease to improve

efficiency, and put less weight on it when there is an interaction effect to improve the ro-
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bustness. However, simulations in Wang and Shete [2012] showed that this approach no

longer provides unbiased estimation for X − Y association, it losses most of the efficiency

in the SPML approach, and finally it has difficulties to hand additive genetic models. Wang

and Shete [2011] applied a method of moments approach to produce bias-corrected odds

ratio estimates for binary secondary traits using prevalence estimates for the primary and

secondary traits from the literature. Later, they modified their method to add in an in-

teractive effect of the X − Y on the primary disease risk [Wang and Shete, 2012]. The

original version demonstrated the same efficiency as SPML, and same as SPML, it does

not withstand mis-specified P(D|X , Y ) model assumptions. The modified version improves

the robustness but also losses the efficiency of the original version. To make it worse, this

method requires external information on secondary trait prevalence, it has difficulties to

hand covariates, which largely narrows its applications. He et al. [2011] proposed a Gaus-

sian copula-based approach that models the joint distribution in terms of the marginals for

the primary and secondary phenotypes and uses the multivariate normal distribution to

build in correlation between the phenotypes. Their method can handle multiple correlated

secondary phenotypes, but they did not improve the efficiency of Lin and Zeng [2009]’s

SPML method. Because of these reasons, we do not review theses methods in details in

this paper. In case of interest, one can review their original articles [He et al., 2011; Li and

Gail, 2012; Wang and Shete, 2011, 2012].

For the notation in the literature review, we let X denote the genotype score for an SNP

of interest, Y denote the secondary phenotype, and D={0, 1} denote the primary case-

control status. In a case-control dataset, the data at a single variant consists of n1 cases

{x i, yi, di = 1}, i = 1,2, ..., n1, and n0 controls {x i, yi, di = 0}, i = n1+ 1, n1+ 2, ..., n1+ n0.

We denote n= n1+ n0 as the total sample size.

2.1 Traditional approaches

While the real interest is in P(Y |X ) in the general population, the traditional methods de-

scribed below are attractive because they can be performed using long-established standard
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software, and because they require less model building than more efficient and theoreti-

cally justified approaches. Therefore, it is of interest to determine the situations in which

they might be expected to work adequately.

Four types of traditional methods have been conducted to assess the effects of SNPs

on secondary traits using data from case-control association studies: (1) cases only; (2)

controls only; (3) combined sample of cases and controls; (4) joint analysis of cases and

controls adjusted for the disease status. Methods (1) and (2) are restricted to controls

and cases, respectively. Method (3) ignores the sampling scheme and analyzes cases and

controls together. Method (4) analyzes cases and controls together and includes the disease

status as a covariate in the model.

If the secondary phenotype is not related to the case-control status, or more precisely,

D is independent of Y given X, then all four methods are valid. If the SNP is not associated

with the case-control status, or more precisely, D is independent of X given Y, then all

four methods yield correct estimates from the logistic regression for dichotomous traits

except for the intercept, but the least-squares estimates for quantitative traits produced by

the four methods are biased unless [Nagelkerke et al., 1995]. When the disease is rare,

all standard methods except (1) are approximately valid. However, how rare must it be

for a "rare disease" is unclear to the researchers. It is also clear that method (1) and (2)

are inefficient because they involve discarding the part of the data. Another problematic

situation for method (2) is where an exposure is very rare for controls but rather more

common amongst cases.

In GWAS, most of the secondary traits collected are strongly correlated to the disease

risk to improve efficiency, and therefore any SNPs that are associated with the case-control

status will tend to be detected as being associated with secondary traits by standard meth-

ods even when the latter associations do not exist. It is true that the majority of tested SNPs

in genome are not associated with disease risk, so a standard prospective regression model

provides valid tests of and nearly unbiased estimates of marker-secondary trait associa-

tion. However, when the associations truly exist, all four methods may produce estimates

that are biased toward the null and thus reduce statistical power. These biases have been

17



CHAPTER 2. LITERATURE REVIEW

demonstrated in previous researches in Jiang et al. [2006]; Lin and Zeng [2009]; Monsees

et al. [2009]; Richardson et al. [2007]. We also illustrated this problem in motivating

examples in Section 1.1.1 and 1.1.2.

2.2 Inverse-probability-of-sampling-weighted (IPW) approach

The inverse-probability-of-sampling-weighted (IPW) approach is widely used in the field

of secondary analysis for its simplicity. It takes the contributions to the score equations

for fitting a model to prospective data and weight them inversely to their probabilities of

selection. For this particular problem, we solve

1
∑

i=0

wi

∑

j:D j=i

S(β ; Yj|X j) = 0

where S(β ; Yj|X j) is the score function of Y given X , and wi is a weight inverse to their

probabilities of selection. In a random sample of cases and controls, the wi is 1/P(D = i),

and in more complicated sampling designs or post-stratification, wi is a consistent estimator

thereof. Asymptotic variance estimation from linearization involves a sandwich estimator

of the type common to estimating equation methods. Several packages in SAS and R are

available for the implementation of IPW estimation with appropriate variance correction

via the weight statement in PROC GENMOD and weights option in the geeglm() function.

The IPW approach provides unbiased estimates of genotype-secondary trait association

even when both the genotype and secondary trait are independently associated with pri-

mary disease. It can accommodate various types of phenotypes (e.g., binary, continuous

and ordinal) and different models for SNPs (additive, dominant or recessive). It can easily

accommodate covariates, including population substructure, an important confounding in

genetic studies. However, the IPW approach is sensitive to sampling schemes. The result-

ing estimates may not be efficient, especially under complex sampling schemes where the

sampling variables are unrelated to the disease status.
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2.3 Semi-parametric maximum likelihood (SPML) approach

In the SPML approach by Lin and Zeng [2009], they use a generalized linear model to

formulate the effects of X on Y , and write the conditional density of Y given X as P(Y |X ).

If Y is a quantitative trait, they use the linear regression model, and if Y is a dichotomous

trait, they use the logistic regression model, under which

P(Y = 1|X ) =
exp(β0+ β1X )

1+ exp(β0+ β1X )
.

In addition, they made the assumption that P(D|X , Y ) follows the logistic regression model

as follows

P(D = 1|X , Y ) =
exp(γ0+ γ1X + γ2Y )

1+ exp(γ0+ γ1X + γ2Y )
.

Because the sampling is conditional on the case-control status, the likelihood function takes

the retrospective form that

n
∏

i=1

P(X i, Yi | Di)

=
n
∏

i=1

{
P(Di = 1 | X i, Yi)P(Yi | X i)P(X i)

P(Di = 1)
}Di{

P(Di = 0 | X i, Yi)P(Yi | X i)P(X i)
P(Di = 0)

}1−Di

=
n
∏

i=1

{
P(Yi|X i)p(X i)exp(γ0+ γ1X i + γ2Yi)/(1+ exp(γ0+ γ1X i + γ2Yi))

P(Di = 1)
}Di

× {
P(Yi|X i)p(X i)/(1+ exp(γ0+ γ1X i + γ2Yi))

P(Di = 0)
}1−Di

Writ pi = P(X i), and
∑n

i=1 pi = 1. The pi is a nuisance parameter that they treat

non-parametrically and it has potentially high dimensions. They use the profile likelihood

approach to profile out this parameter to improve the computational efficiency. Let the

disease prevalence to be known as ξ, maximizing the retrospective likelihood function is

equivalent as maximizing the following function

L =
n
∏

i=1

�

P(Yi|X i)pi

exp(Di(γ0+ γ1X i + γ2Yi))
1+ exp(γ0+ γ1X i + γ2Yi)

�
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subject to two constraints that (1)
∑n

i=1 pi = 1 and (2)

ξ=
n
∑

i=1

pi

∫

y

P(y|X i)
exp(γ0+ γ1X i + γ2Yi)

1+ exp(γ0+ γ1X i + γ2Yi)
d y.

By Using Largrange multiplier λ, they see that the estimate for pi satisfies

∂ log L

∂ pi
=

1

pi
−λ1

∫

y

Pθ (y|X i)
exp(γ0+ γ1X i + γ2Yi))

1+ exp(γ0+ γ1X i + γ2Yi)
d y −λ2 = 0.

Multiplying the above equation by pi and summing over i, we see λ1ξ+λ2 = n. Therefore,

the above equation is equivalent to

pi = {λ1

∫

y

Pθ (y|X i)
exp(γ0+ γ1X i + γ2Yi))

(1+ exp(γ0+ γ1X i + γ2Yi))
d y − (n−λ1ξ)}−1,

where λ1 satisfies
∑n

i=1 pi = 1. Thus, the profile log-likelihood function for β , γ0, γ1 and

γ2 is

l = log L =
n
∑

i

{log P(Yi|X i) + Di(γ0+ γ1X i + γ2Yi)− log(1+ exp(γ0+ γ1X i + γ2Yi))

− log(λ1

∫

y

Pθ (y|X i)
exp(γ0+ γ1X i + γ2Yi))

(1+ exp(γ0+ γ1X i + γ2Yi))
d y − (n−λ1ξ))},

where λ1 is determined by the equation

n
∑

i=1

{λ1

∫

y

Pθ (y|X i)
exp(γ0+ γ1X i + γ2Yi))

(1+ exp(γ0+ γ1X i + γ2Yi))
d y − (n−λ1ξ)}−1 = 1.

They maximize the profile log-likelihood function by the Newton-Raphson algorithm or

optimization algorithms. Likelihood-based statistics (i.e., Wald, score and likelihood-ratio

statistics) can be used to make inference about the parameter of main interest β1.

There are a number of attractive features for the SPML approach. First, when the model

is correctly specified, the SPML approach is by far the most efficient method in estimating

the association between Y and X in the general population. In addition, this approach is

20



CHAPTER 2. LITERATURE REVIEW

applicable to both binary and continuous phenotypes, and handle covariates in a flexible

manner. The major disadvantage is that when the disease model is misspecified, the estima-

tion for the association between Y and X is largely biased. One minor disadvantage is that

it is very computationally intensive, especially when considering the continuous covaraites

Z. The probability distribution of the continuous covariates will enter the likelihood func-

tion as a high-dimenstional nuisance parameter, and the the profile-likelihood approach to

eliminate of such nuisance parameters is difficult. A computer program SPREG is avail-

able online http://dlin.web.unc.edu/software/spreg-2/ to perform logistic and

linear regression analysis of secondary trait data in case-control association studies. In ap-

plication, however, it sometimes fails to generate an estimate due to algorithm problems

in their software (further investigated in Section 5.2).

2.4 Quantile regression

Quantile regression first proposed by Koenker and Bassett Jr [1978] is a type of non-

parametric regressions estimating functional relationship between variables for all portions

of a probability distribution. While least square regression estimates the conditional mean

of the response variable given certain values of the predictor variables, quantile regression

aims at estimating either the conditional median or other quantiles of the response variable.

For any real-valued random variable Y with cumulative distribution function F(y) = P(Y ≤

y), the τth quantile of Y is defined as the inverse function

Qτ(Y ) = F−1(τ) = inf{y : F(y)≥ τ},

where 0 < τ < 1. The median Q1/2(Y ) plays the central role. The loss of quantiles is

defined by the piecewise linear function

ρτ(u) = (τ− I(u< 0))u
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for some τ ∈ (0,1) as illustrated in Figure 2.4. A specific quantile can be found by mini-

mizing the expected loss Eρτ(Y − by).

Figure 2.1: Quantile regression ρ function.

For a random sample {y1, ..., yn} of Y , the problem of finding the τth sample quantile

ατ may be formulated as the solution of this optimization problem

min
α∈R

n
∑

i=1

ρτ(yi −ατ).

Linear quantile regression

Quantiles efficiently describe marginal distribution and minimize asymmetric linear loss.

This leads to the more general methods of estimating models of conditional quantile func-

tions. Least squared regressions offer a template for this development. Knowing that the

sample mean solves the problem

min
µ∈R

n
∑

i=1

(yi −µ)2

suggest that, if we are willing to express the conditional mean of y given x as µ(x) = x Tβ ,

then β may be estimated by solving

min
β∈R p

n
∑

i=1

(yi − x T
i β)

2.

Similarly, since the τ sample quantile, bατ, solves

min
α∈R

n
∑

i=1

ρτ(yi −ατ)

22



CHAPTER 2. LITERATURE REVIEW

we are led to specifying the τth conditional quantile function as Qτ(τ|x) = x Tβτ, and to

consider bβτ solving

min
β∈R p

n
∑

i=1

ρτ(yi − x T
i βτ)

for any quantile τ ∈ (0,1). A specific regression quantile bβτ can be found by minimizing

the expected loss of (Y−X Tβτ)with respect to βτ. We minimize the expected loss function

by taking the first derivative of it, which generates the estimating equation for the quantile

regression. We let Sτ(X, Y,β) = [τ − I{Y ≤ XTβ}]X be the set of quantile regression

estimating functions. The estimated bβτ minimizes the absolute value of the estimating

function that

bβτ = arg min
β

EY [‖Sτ(X, Y,βτ)‖ | X] = 0.

Quantile regression does not have a parametric likelihood function, and its optimization

is achieved through linear programs, as it can be written as linear function subject to linear

constraints. Statistical software packages are available to conduct quantile analysis such as

quantreg in R and proc quantreg in SAS.

Quantile regression results offer a much richer, more focused view of the applications

than could be achieved by looking exclusively at conditional mean models. First of all, it

offers a systematic strategy for examining how covariates influence the location, scale, and

shape of the entire response distribution. In addition, its estimates are more robust against

outliers in the response measurements in comparison with least squared regressions. Quan-

tile regression is widely used in biostatistics field for various reasons. One, the vulnerable

or high risk group to certain disease often consists of subjects with high or low values for

their quantitative traits. For example, people with high body mass index (BMI) are predis-

posed to diabetes, cancers and many other disorders [Hjartåker et al., 2008]. Therefore,

instead of examining risk factors for the mean of BMI, it is practically meaningful to in-

vestigate the risk factors for the upper quantiles of BMI, which are directly associated with

high risk for many disease. Second, many studies also observe that the covariate effect
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varies across quantile levels. For example, Yang et al. [2012] found that an important

genotype FTO is not only associated with the mean of BMI [Frayling et al., 2007] but also

with the variance, suggesting that the FTO genotype influences the entire distribution of

BMI and impacts differently at various quantiles. As a result, examining covariate effect at

certain or multiple quantiles provides a more comprehensive view of association between

genetic markers and traits. For these reasons, quantile-based analyses have great potential

to deepen and expand the existing knowledge from traditional secondary analysis.

2.5 Major deficiencies of existing approaches

Despite all of the efforts in secondary analysis, a number of deficiencies remain. First,

the performance of the existing methods depends heavily on knowing either the correct

sampling scheme or the P(D|X , Y ) in the population. However, most case-control stud-

ies are not nested within a larger cohort with clear selection probabilities, and also the

underlying disease model is often unknown. Therefore, there is a need to propose new

methods that are valid and robust in analyzing secondary phenotypes in case-control as-

sociation studies with limited information on the sampling scheme and underlying disease

model. The proposed methods should be generally applicable to a wide range of genetic

models (dominant, recessive and additive), adjust for covariates easily, handle multiple

types of regressions, relax the common conditions of the disease prevalence models, and

be computationally simple and easy to implement.

In addition, extra challenges arise from secondary analysis in non-paramtetric regres-

sions with no likelihood functions, such as quantile regression. The likelihood functions

based approaches mentioned above focus on covariate effects on the mean of secondary

traits, which is only one measure of the central tendency of the outcome, and often re-

quire parametric distribution assumption on the secondary traits. As we have noticed the

attractive features of quantile regression in genetic studies, there is a great need to propose

new methods that could extend quantile regression techniques to estimate the conditional

quantiles of the secondary traits in genetic case-control studies.
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New estimating equation approach

3.1 Notations and settings

Let X denote a genetic variant of interest, Y denote a secondary phenotype, Z denote the

vector of covariates we want to adjust for, and D={0, 1} denote the primary disease status.

The aim of the secondary trait analysis is to estimate the genetic effect of X onto Y in a

general population. A commonly used model can be written as

g(Y ) = β0+ Xβ1+ ZTβ2, (3.1)

where g(·) is a link function, and β1 is the coefficient of primary interest. Depending on

the choices of the link function g, Model (3.1) covers a wide range of regressions. If g is an

identity link for continuous outcome that g(Y ) = E[Y | X ,Z], then Model (3.1) is a mean

regression; if g is a logit link for binary outcome that g(Y ) =logit P(E[Y ] = 1 | X ,Z), then

Equation (3.1) is a logistic regression; if g is a quantile function for quantitative outcome

at the τth quantile that gτ(Y ) =QY (τ | X ,Z), then Equation (3.1) is in the form of quantile

regression.

In a case-control dataset, the data consists of n1 cases {x i, z i, yi, di = 1}, i = 1, 2, ..., n1,

and n0 controls {x i, z i, yi, di = 0}, i = n1+1, n1+2, ..., n1+n0. We denote n= n1+n0 as the

total sample size. When both the genotype X and the secondary phenotype Y are associated

with the primary disease D, the association between X and Y often differs between the
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cases and controls. Consequently, directly regressing Y against X using a case-control

sample yields biased estimation of β1. In this thesis, we propose a new estimating equation

based approach to estimate the Model (3.1) for secondary traits from case-control samples.

The new approach utilizes the entire case-control sample, and yields consistent estimation

of β1 in the general population.

3.2 New estimating equations for the secondary pheno-

types in genetic case-control studies

Constructing estimating equations is a common estimation method. Here we define β∗ =

(β∗0 ,β∗1 ,β∗2) are the true coefficients in the general population. Then the key of is to find an

estimating function S(X , Y,Z,β) that for any randomly selected subjects from the general

population, the following equations hold at the true β∗,

EY [S(X , Y,Z,β∗) | X ,Z] = 0.

In linear least square regressions, the estimating function for the regression coefficient β1

is

S(X , Y,Z,β1) =
n
∑

i=1

X i(Yi − β0− β1X i − ZT
i β2),

which is the first derivative of least square loss function with respect to β1. In the likeli-

hood based regressions, the estimating function S(X , Y,Z,β) can be constructed as the first

derivative of log-likelihood function, which is also known as Fisher’s score function. Specif-

ically, let L(β ; X , Y,Z) denote the likelihood function, and then S(X , Y,Z,β) = ∂ log L(β ;X ,Y,Z)
∂β

.

For example, in logistic regression, the score function with respect to β1 is

S(X , Y,Z,β1) =
n
∑

i=1

X i(Yi −
exp(β0− β1X i − ZT

i β2)

1+ exp(β0− β1X i − ZT
i β2)

);
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and in Poisson regression,

S(X , Y,Z,β1) =
n
∑

i=1

X i(Yi − exp(β0− β1X i − ZT
i β2)).

In regressions with no parametric likelihood functions, S(X , Y,Z,β) is an estimating

function that minimizes the corresponding loss function. For example, in quantile regres-

sion, we define the loss function by a piecewise linear function at sample τth quantile as

ρτ(u) = (τ− I(u < 0))u. The expected loss function of quantile regression is not differen-

tiable at τ= 0 and 1. However, one can construct piecewise first derivative as follows

Sτ(X , Y,Z,β1,τ) =
n
∑

i=1

X i[τ− I{Yi ≤ β0,τ+ β1,τX i + Z T
i β2,τ}].

We know the equation EY [S(X , Y,Z,β∗) | X ,Z] = 0 holds at true β∗ in the general

population. As we do not have a representative sample of the general population, the

solving the equation directly using case-control sample is biased. we can, however, expand

the equation conditional on the disease status D as follows

EY [S(X , Y,Z,β∗) | X ,Z]

=EY [S(X , Y,Z,β∗) | X ,Z, D = 0]P(D = 0 | X ,Z) + EY [S(X , Y,Z,β∗) | X ,Z, D = 1]P(D = 1 | X ,Z)

=0.

(3.2)

This expansion provides the basis of constructing the proposed estimating equations.

Let’s define ỹ as the counter-factual secondary phenotype under alternative disease

status. Specifically, for each subject in the case group, we define ỹi, i = 1, ..., n1, as his or

her phenotype if he or she is actually a control. And for each subject on the control group,

we define ỹi, i = n1+1, ..., n, as his or her phenotype if he or she is actually a case. If we are

able to observe both yi and ỹi ’s, we can then construct the unbiased estimation equations

following the expanded estimating equation (3.2). The sample estimation equations can
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be written as follows:

Sn(β) =
n
∑

i=1

[S(x i, yi, z i,β)p(di | x i, z i) + S(x i, ỹi, z i,β)p(1− di | x i, z i)] = 0, (3.3)

where p(di|x i,zi) is the probability of being the observed disease status given (x i,zi), and

p(1−di|x i,zi) is the probability of being counter-factual disease status. One can show that

for each summand of Equation (3.3), its conditional expectation given (x i,zi, di) is zero

at the true β∗, and thus constitutes an unbiased estimating equation. Following classical

theories for M- and Z- estimations (Theorems 5.7 and 5.9 in Van der Vaart [2000]), solving

Equation (3.3), Sn(β) = 0, leads to the consistent estimation of β under certain regulation

conditions. The idea of counter-factual outcomes is widely used in causal inference, but

in this application we use counter-factual outcomes to estimate the gene-secondary trait

association rather than making inferences on causality. Although the estimating equations

involve P(D|X ,Z), we are not assuming the disease probability only relates to (X ,Z). In

reality, the disease risk can relate to Y or other auxiliary variables W as well, and p(D|X ,Z)

in Equation (3.3) can be viewed as the marginal probability given (X ,Z), i.e. p(D|X ,Z) =
∫

y,w
p(D|X ,Z, y,w)dF(y,w)(y,w), where F(y,w) is the joint distribution of (y,w).

Solving Equation (3) directly is unfeasible since we are unable to observe the counter-

factual secondary outcomes. To get around this difficulty, we propose two approaches. We

first propose a model-based simulation approach to simulate the pseudo counter-factual

observations, and assemble the estimating equations accordingly. In the second approach,

we replace S(x i, ỹi,zi,β) by its conditional expectation over ỹ . In the next two sections,

we elaborate on the two approaches under the assumption that the probability p(di|x i, z i)

is known. An algorithm to estimate p(di|x i, z i) from the case-control sample is provided in

Section 4.5.
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3.3 Estimation Approach A: generating pseudo counter-

factual observations

Under model (3.1), the linear association between Y and (X ,Z) holds among both cases

and controls. The regression coefficients, however, could vary between them. Hence, we

propose to fit Model (3.1) separately for cases and controls, and use the resulting strati-

fied models to simulate pseudo counter-factual outcomes. We define β∗d as the coefficient

functions given disease status D = d such that

β∗d = arg min
β

EY [‖S(X , Y,Z,β)‖ | X ,Z, D = d]. (3.4)

As β∗d = (β
∗
d0,β∗d1,β∗Td2) is a vector of the true coefficients conditional on disease status d,

we could define the disease status stratified model g1(Y ) = g(Y ;β∗1) = β
∗
10+Xβ∗11+ZTβ∗12

as the conditional function for y given (x ,z) among cases, and g0(Y ) = g(Y ;β∗0) = β
∗
00 +

Xβ∗01+ZTβ∗02 as that among controls. We consider two scenarios to illustrate this idea, one

is Generalized Linear Models (GLM) with parametric likelihood functions, and the other is

quantile regression with no parametric form.

Simulating counter-factual outcomes in GLM

When the regressions are based on likelihood functions, one can generate the counter-

factual outcomes from the stratified estimated model of the alternative disease statue. For

example, in logistic regression, we often assume logit link function. Therefore, for each

case yi, we generate its counter-factual outcome from the estimated control model, i.e. bỹi

is a random draw from a Bernoulli distribution with success probability exp{g0(byi)}/[1+

exp{g0(byi)}]. Likewise, for each control, we generate its counter-factual pseudo outcome

from the estimated case model, where bỹi is a Bernoulli random variable with success prob-

ability exp{g1(byi)}/[1+ exp{g1(byi)}]. Plugging the pseudo counter-factual outcomes into

the estimating equations (3.3), we could solve for β .
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bβ n = argmin
β











n
∑

i=1

[S(x i, yi, z i,β)p(di | x i, z i) + S(x i, bỹi, z i,β)p(1− di | x i, z i)]











(3.5)

The optimization can be viewed as a weighted regression, where one has 2n observa-

tions, and weights are p(di|x i,zi) for the actual outcomes, and p(1−di|x i,zi) for the pseudo

outcomes. Similar ideas can be applied to other link functions, such as mean regression

with identity link and Poisson regression with log link.

Simulating counter-factual outcomes in Quantile Regression

When the regressions do not have full parametric likelihood functions, one need to con-

sider the main model (3.1) nonparametrically or semi-parametrically across the entire dis-

tribution of Y . For example, in quantile regresssion, which does not assume any parametric

distribution in Y , we need expand the main model (3.1) to the entire quantile process in

order to simulate counter-factual phenotypes. This joint modeling approach has been ex-

plored in recent work, including Wei et al. [2006], to approximate the conditional quantile

function without assuming a parametric likelihood. Specifically, we assume that the linear

quantile model holds for an quantile level τ ∈ (0,1). Under this assumption, we define

β∗(τ | d)d=0,1 as the quantile coefficient functions given disease status D=d such that

β∗(τ | d)d=0,1 = argmin
β

EY
�

‖Sτ(X , Y,Z,β)‖ | X ,Z, D = d
�

, (3.6)

for any τ ∈ (0, 1). We let g1,τ(Y ) = β∗0(τ | 1) + Xβ∗1(τ | 1) + ZTβ∗2(τ | 1) define the

conditional quantile function of Y given (X ,Z) among cases, and g0,τ(Y ) = β∗0(τ | 0) +

Xβ∗1(τ | 0) + ZTβ∗2(τ | 0) define that among controls. In what follows, we outline an

estimation algorithm to estimate β∗(τ | d) from the data, and simulate counter-factual

outcomes accordingly. Let 0< τ1 < τ2 < · · ·< τk < 1 be a set of kn evenly spaced quantile

levels.

1. We denote bβ(τk | d), d = 1/0 as the estimated quantile coefficients for β(τk | d) in

Equation (3.6) within cases and controls, respectively.
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2. To approximate the coefficient process β∗(τ | d), we define bβ(τ | d) be a piecewise

linear functions on [0,1] that concatenates the estimates bβ(τk | d) for 0< τ1 < τ2 <

· · ·< τkn
< 1 and is subject to the constraint of bβ ′(0 | d) = bβ ′(1 | d) = 0.

3. For the ith subject, i = 1, . . . , n, we simulate its pseudo outcome eyi by beyi = bβ0(ui |

1−di)+ bβ1(ui | 1−di)X +ZT
bβ2(ui | 1−di), where ui is a random draw from Uniform

(0,1) distribution.

The simulated beyi ’s follows the model-estimated conditional distribution of yi given

(x i,zi) and di. Under certain mild conditions as outlined in Wei et al. [2006], bβ(τ | 1)

and bβ(τ | 0) uniformly converge to the underlying true ones over the interval [1/(kn +

1), kn/(kn+1)] as n1 and n2 go to the infinity. Hence, with a reasonably large sample sizes,

the simulated beyi approximates the counter-factual outcome eyi well.

No matter the regression have likelihood functions or not, we are able to generated

simulated bỹi. With bỹi, we construct the sampling estimating equations as

n
∑

i=1

[S(x i, yi, z i,β)p(di | x i, z i) + S(x i, bỹi, z i,β)p(1− di | x i, z i)] = 0. (3.7)

Simulating pseudo outcomes is subject to sampling uncertainty, and brings extra vari-

ability into parameter estimation. To further stabilize the variance, we suggest to repeat

the above simulation procedures T time, and use their average as final estimation. Let bβ (t)n

as the estimated coefficients from the t-th replicate, we then use the average of bβ (t)n as the

final estimate of the coefficients. i.e.

bβ n = T−1
T
∑

t=1

bβ
(t)

n .

Similar to the multiple imputation technique that is commonly used to handle missing

data, the variance of bβ n is fairly stable with a small number of T between 5 and 10. We

will demonstrate the effect of different T in the section of simulations. In the rest of paper,

we call bβ n the SICO estimate since it uses SImulated Counter-factual Outcomes.
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3.4 Estimation Approach B: estimating S(X , Y,Z,β) by its

conditional expectation

An alternative approach to circumvent the difficulty of unobserved ỹi is to take the condi-

tional expectation of S(x i, ỹi,zi,β) over ỹi. One can easily show that the following esti-

mating equations lead to unbiased estimators as well:

Sn(β) =
n
∑

i=1

[S(x i, yi,zi,β)p(di | x i,zi) + E ỹi
{S(x i, ỹi,zi,β)|x i,zi}p(1− di | x i,zi)] = 0.

(3.8)

When S(x i, ỹi,zi,β) is linear in ỹi

In a special case that the estimating function S(x i, ỹi,zi,β) is linear in ỹi, this approach

is particularly appealing since one can simply replace ỹi by its conditional mean. In this

case, the estimation equations (3.8) are equivalent to

Sn(β) =
n
∑

i=1

[S(x i, yi, z i,β)p(di | x i, z i) + S{x i, E( ỹi|x i,zi),zi,β}p(1− di | x i, z i)] = 0.

(3.9)

The conditional mean E( ỹi|x i, zi) can be easily estimated from stratified least square re-

gression. Specifically, one can regress yi against x i and zi separately among cases and

controls, and estimate E( ỹi|x i,zi) by the predicted value under alternative disease status

model. This way, the estimate can be obtained using one-step optimization, by solving the

following equations

bSn(β) =
n
∑

i=1

�

S(x i, yi,zi,β)p(di|x i,zi) + S{x i, bE( ỹi|x i,zi),zi,β}p(1− di|x i,zi)
�

= 0,

(3.10)

where bE( ỹi|x i,zi) is the predicted outcome given x i and zi under the alternative disease

status. We can define eβ n as resulting estimate from conditional expectation of S(X , eY ,Z,β).

Then
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eβ n = argmin
β











n
∑

i=1

�

S(x i, yi,zi,β)p(di|x i,zi) + S{x i, bE( ỹi|x i,zi),zi,β}p(1− di|x i,zi)
�











.

(3.11)

Similar as in the first approach, this optimization is equivalent to weighted linear re-

gression where the weights are p(di|x i, zi) for the actual outcomes, and are p(1− di|x i, zi)

for the bE( ỹi|x i,zi).

When S(x i, ỹi,zi,β) is not linear in ỹi

When the estimating function S(x i, ỹi,zi,β) is not linear in ỹi, we are unable to pass

the expectation into the estimating function. In a simple scenario where we have sufficient

number of cases and controls given each value of (x i,zi), we could estimate the expectation

terms by

bE ỹi
[S(x i, ỹi,zi,β)|x i,zi] =

∑n1+n2

j=n1+1 I(x j = x i)I(z j = zi)S(x j, y j,z j,β)
∑n1+n2

j=n1+1 I(x j = x i)I(z j = zi)
, i = 1, ..., n1;

bE ỹi
[S(x i, ỹi,zi,β)|x i,zi] =

∑n1

j=1 I(x j = x i)I(z j = zi)S(x j, y j,z j,β)
∑n1

j=1 I(x j = x i)I(z j = zi)
, i = n1+ 1, ..., n

(3.12)

where I(·) is an indicator function. These are essentially the sample means of the

estimating function with the same (x i,zi) but alternative diseases status. Following the

law of large numbers, both estimates converge to the true expectations with
p

n rate. Such

applications can be found in single loci analysis in genetic studies [Kraft, 2007]. In more

general scenarios, especially when Z includes continuous variables, the indicator function

no longer produces valid estimates, since we may have very few observations at a given

value of Z. We propose to replace it by some suitable kernel function Kh(·) with bandwidth

h, and approximate the expectation by
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bE ỹi
[S(x i, ỹi,zi,β)|x i,zi] =

∑n1+n2

j=n1+1 I(x j = x i)Kh(‖z j = zi‖)S(x j, y j,z j,β)
∑n1+n2

j=n1+1 I(x j = x i)Kh(‖z j = zi‖)
, i = 1, ..., n1;

bE ỹi
[S(x i, ỹi,zi,β)|x i,zi] =

∑n1

j=1 I(x j = x i)Kh(‖z j = zi‖)S(x j, y j,z j,β)
∑n1

j=1 I(x j = x i)Kh(‖z j = zi‖)
, i = n1+ 1, ..., n

(3.13)

With the estimated bE ỹi
[S(x i, ỹi,zi,β) | x i,zi] , we can assemble the working estimating

equations

bSn(β) =
n
∑

i=1

[S(x i, yi, z i,β)p(di | x i, z i) + bE ỹi
{S(x i, ỹi, z i,β) | x i,zi}p(1− di | x i, z i)] = 0.

(3.14)

The eβ n is the solution to this equation. It is equivalently as

eβ n = argmin
β











n
∑

i=1

[S(x i, yi, z i,β)p(di | x i, z i) + bE ỹi
{S(x i, ỹi, z i,β) | x i,zi}p(1− di | x i, z i)]











(3.15)

Note that the estimates in (3.12) - (3.13) are linear functions of the original regression

estimating functions. Hence one could reorganize the estimating functions (3.14) as

bSn(β) =
n1
∑

i=1

wiS(x i, yi,zi,β) +
n
∑

j=n1+1

w jS(x j, y j,z j,β)

where

wi = p(di = 1|x i,zi) +
n1+n2
∑

j=n1+1

I(x j − x i)Kh(‖z j − zi‖)p(d j = 1|x j,z j)
∑n1

i=1 I(x j − x i)Kh(z j = zi)

and

w j = p(d j = 0|x j,z j) +
n1
∑

i=1

I(x i − x j)Kh(‖zi − z j‖)p(di = 0|x i,zi)
∑n

j=n1+1 Kh(‖x i − x j‖)
.

Since the weights wi are not functions of β , solving the working estimating equations is

equivalent to a weighted regression and is computationally straightforward.

Finally, to choose an optimal bandwidth or a kernel function in (3.13), we propose to

use K-fold cross-validation. Specifically, we randomly partition the data into K subsets and
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denote eβ (−`)(h) as the estimated coefficients using bandwidth h without the the `th subset

of data, `= 1, . . . , K . The optimal bandwidth is defined as

hopt = argmin
h

K
∑

`=1





∑

i∈C`

wiL{x i, yi,zi, eβ
(−`)(h)}+

∑

j∈Γ`

w jL{x j, y j,z j, eβ
(−`)(h)}



 ,

where C` is the index set for the `-th case subset, Γ` is the index set for the `-th control

subset, andL (x , y,z,β) is the loss function. For example, in least square mean regression,

L (x , y,z,β) = (y − β0 − xβ1 − zTβ2)
2; in quantile regression, Lτ(x , y,z,β) = (y − β0 −

xβ1 − zTβ2){τ− I(y − β0 − xβ1 − zTβ2 < 0)}. Essentially, we choose the bandwidth that

minimizes the weighted cross-validated regression loss functions.

We call eβ n in Approach B as the CE estimates, since the Conditional Expectation is

used to estimate the estimating function. Both SICO and CE estimates are consistent and

asymptotic normal. One can refer Wei et al. [2015] for the large sample properties of

the proposed estimators. When the dimension of (x ,z) increases or when covariate space

is sparse, the kernel smoothing in the approach B could be difficult due to the curse of

dimensionality. Approach A avoids the smoothness, and hence is readily applicable for any

dimension of (x ,z). However, it makes a stronger assumption of the linear model. For

quantile regression, the linear model needs to be hold for the entire quantile process. This

assumption could be relaxed by using more general models such as semiparametric partly

linear models.

3.5 Estimation of p(di|x i,zi)

In the aforementioned two estimation algorithms, we assumed that the conditional dis-

ease probability p(di|x i,zi) is known. In practice, it needs to be estimated. To estimate

p(di|x i,zi), we could use the model in primary analysis or assume a logistic model as fol-

lows:

P(D = 1|X ,Z) = exp(γ0+ Xγ1+ ZTγ2)/{1+ exp(γ0+ Xγ1+ ZTγ2)}. (3.16)
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Note that model (3.16) is a working model to approximate the distribution of disease given

(X ,Z) and may differ from the true disease model because the secondary outcome Y may

also affect disease risk. In our simulation study in later section, we consider three disease

models that are based on Y .

Further note that the intercept γ0 cannot be consistently estimated directly form the

case-control data, and needs to be calibrated to yield valid estimation of p(di|x i,zi) [Pren-

tice and Pyke, 1979]. Assuming that the overall disease prevalence in the general popula-

tion, denoted by P0, is known, we can estimate γ0 by solving the following equation

P0 =

∫

X ,Z

exp(γ0+ Xbγ1+ ZT
bγ2)/{1+ exp(γ0+ Xbγ1+ ZT

bγ2)}dFXZ, (3.17)

where FXZ is the joint distribution of X and Z, and bγ1 and bγ2 are the estimated γ1 and γ2

from logistic regression. When the joint distribution FXZ is difficult to obtain, we propose

to approximate γ0 by solving its sample version

bγ0 = argmin
γ0

 

P0− n−1
n
∑

i=1

exp(γ0+ x ibγ1+ zT
i bγ2)/{1+ exp(γ0+ x ibγ1+ zT

i bγ2)}

!2

(3.18)

Both Equation (3.17) and (3.18) are univariate optimization. Therefore, obtaining bγ0 from

either equation is computationally easy. The estimate of the conditional disease probability

p(di|x i,zi) can be written as bp(di|x i,zi) = exp(bγ0+bγ1X+ZT
bγ2)/{1+exp(bγ0+bγ1X+ZT

bγ2)}.

When the working model or disease prevalence P0 is mis-specified, the resulting bγ0 could

be slightly biased. The simulation studies in Section 4.5 show the results on the estimation

of the coefficients when the prevalence the working model or P0 is mis-specified.

3.6 Bootstrap procedure for the confidence intervals and

hypothesis tests

In Sections 3.3 and 3.4, we outlined two estimation algorithms to estimate the parameters

in Model (3.1). Although both SICO and CE estimates can be viewed as some form of
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weighted regressions, the direct output of Wald test statistics does not apply, because it

does not take into consideration of the uncertainty from the estimated p(d|x ,z), simulated

ỹi and the kernel smoothness. In addition, it is the difficult to estimate asymptotic vari-

ances by any analytically tractable form [Wei et al., 2015]. Therefore, we propose to use

bootstrap method to obtain the bootstrap standard error of our proposed estimates. With

the bootstrap standard error, we are able to construct bootstrap confidence intervals and

apply Wald test statistics to test the null hypothesis, say H0 : β1 = 0, i.e. whether the ge-

netic variant(s) are associated with the secondary phenotype Y in the general population.

The Bootstrap test statistics is written as follows:

(bβ1− β∗1)
2

var(bβ1)
∼ χ2

1 (3.19)

We elaborate the bootstrap procedure as follows:

1. Bootstrap cases and controls separately to assemble a bootstrap case-control sample.

In details, we randomly select n1 cases from case sample and n0 controls from control

sample with replacement.

2. For each bootstrap sample, we re-apply the proposed algorithm to obtain bootstrap

estimates. For SICO estimator, that includes re-generating pseudo-outcomes ỹi and re-

estimating p(d|x i,zi) . For CE estimator, that includes re-estimating E ỹi
[S(x i, ỹi,zi,β)]

and p(d|x i,zi).

3. We repeat steps 1 and 2 B times, then calculate the bootstrap standard error. We

use the bootstrap standard error to construct confidence intervals and bootstrap Chi-square

test statistics for inference.

We evaluated the type I error of this bootstrap procedure using simulations in Section

4.4. The bootstrap based inferences are applied to the real data examples in Sections 5.2

and 5.3.
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Simulation studies

4.1 Finite sample performance with GLM

In this section, we present several numerical studies to investigate the finite sample perfor-

mance of the proposed estimation method under the GLM framework with comparison to

comparable existing methods. We simulate the data mimicking the loci-to-loci comparison

in GWA case-control studies.

Model settings: Same as before, we denote by D = {0, 1} the primary disease status, by

X = {0,1, 2} a single SNP (under additive model) with minor allele frequency (MAF) 0.3,

and by Z a covariate of interest following a standard normal distribution. The correlation

coefficient between X and Z is set to be 0.3. We consider both binary and continuous

secondary phenotypes Y . For binary Y , we assume a linear logistic model. We consider

both binary secondary and continuous phenotypes Y . For binary Y , we consider a the

following logistic model:

P(Y = 1|X , Z) =
exp(−1+ 0.2X + 0.1Z)

1+ exp(−1+ 0.2X + 0.1Z)
(4.1)

For continuous Y with homoscedastic error, we consider a linear model as follows:

Y = 1+ 0.2X + 0.1Z + e (4.2)
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In Equation (4.1), the prevalence of Y is approximately 30%. In Equation (4.2), the

error term follows independent and identically distributed (i.i.d.) normal distribution that

e ∼ N(0, 1). Since the genetic effects are often small in GWAS, we choose β∗1 = 0.2 as the

true coefficient of X in predicting Y .

To model the disease probability P(D|X , Y, Z), we consider three possible settings. Set-

ting 1 (Logistic Setting) assumes the probability of disease follows a linear logistic model

with main effects of X and Y . Similar settings were considered in Lin and Zeng [2009] for

SPML and Wang and Shete [2011] for bias correction approach. Setting 2 (Interaction Set-

ting) extends the Logistic Setting by including the interactive term between X and Y . Sim-

ilar settings were considered in Li and Gail [2012]’s paper for adaptive weighted approach

and Wang and Shete [2012]’s paper for modified bias correction approach. Finally, Setting

3 (Piecewise Setting) assumes that P(D|X , Y, Z) follows piecewise linear model instead of

logistic regression. The detailed mathematical forms of the disease models are given below.

The U1 and U2 are the 0.25th and 0.75th quantiles of the 0.3X + log(2)Y + log(2)Z .

• Setting 1 (Logistic Setting):

P(D = 1|X , Y, Z) =
exp(γ0+ 0.3X + log(2)Y + log(2)Z)

1+ exp(γ0+ 0.3X + log(2)Y + log(2)Z)

• Setting 2 (Interaction Setting):

P(D = 1|X , Y, Z) =
exp(γ0+ 0.3X + log(2)Y + log(2)Z + 0.2X Y )

1+ exp(γ0+ 0.3X + log(2)Y + log(2)Z + 0.2X Y )

• Setting 3 (Piecewise Setting):

P(D = 1|X , Y, Z) =















0.05, 0.3X + log(2)Y + log(2)Z ≤ U1

0.05+ 0.10.3X+log(2)Y+log(2)Z−U1

U2−U1
, U1 < 0.3X + log(2)Y + log(2)Z ≤ U2

0.15, 0.3X + log(2)Y + log(2)Z > U2

The prevalence of the primary disease (P0) is set to be 10%. The intercepts γ0 in these

models are selected to match the overall disease prevalence in the population. For each of
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the model settings above, we first generate a large number of observations (N = 500, 000),

which we treat as a general population. From the initial sample, we first randomly draw

500 cases and 500 controls to mimic a small case-control study, and then increase 2000

cases and 2000 controls for a large case-control study. The selection is under simple sam-

pling scheme, which means the selection probability only depends on the disease status.

For the logstic regression, we evaluate the finite sample performance of the proposed meth-

ods with SICO and CE estimates. For linear regression, because CE estimate is very simple

with only one-step optimization, we only evaluate the finite sample performance of CE

estimates. We compared the resulting estimates with traditional methods, IPW and SPML

approaches. We select IPW and SPML approaches because considering the current avail-

able secondary analysis methods, the IPW method is the most simple and robust method,

and SPML is the most efficient method when its model assumption is satisfied. For SICO

estimate, we vary the T values from 1 to 100 (T is the number of pseudo samples gener-

ated) and compare their estimates. In the CE estimation for logistic regressions, we use

a kernel function Kh((x1, z1)T , (x2, z2)T ) = I(x1 = x2)exp{−(z1 − z2)2/h}, where h is the

bandwidth selected by the 5 fold cross-validation.

Comparison Methods: We estimated the coefficients under the different settings above

using the following methods:

(1) regression using cases only,

(2) regression using controls only,

(3) regression using combined case-control sample without adjustment,

(4) regression using case-control sample adjusting for primary disease status ,

(5) IPW,

(6) SPML,

(7) our proposed SICO estimator (in logistic models),

(8) our proposed CE estimator (in both logistic and linear models).
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Results and discussions: Tables 4.1 to 4.2 summarize the relative bias, standard er-

ror and mean squared error of the estimated coefficients β1 based on 500 Monte-Carlo

replicates from logistic model and linear model, respectively. According to the tables, the

traditional methods, including direct regressions applied to case only, control only, the

combined case-control sample , and combined case-control sample adjusting for primary

disease status, are all biased in all settings we consider. Hence, without appropriate adjust-

ment, traditional methods are easy to provide biased estimation for the X − Y association

in genetic case-control data.

Both SICO and CE estimates produce fairly accurate estimates in all the models. In

SICO, the estimated coefficients are unbiased even with T = 1. The standard errors do

decrease slightly as T increases, but they quickly stabilize after T = 10. Therefore, we

conclude that a relatively small number of imputations is enough to reach the optimal ef-

ficiency of this approach and it is computationally efficient. The CE estimates are obtained

using one-step optimization in linear model, and kernel smoothing techniques in logistic

model. We could observe the SICO estimates perform better than CE estimates in logis-

tic model when CE estimates requires smoothness. Overall, it suggests that the proposed

estimating equation approach works well in performing unbiased secondary analysis in

case-control studies.

The IPW performs well in correcting the bias in all settings we consider. The calculation

of IPW method requires the information on sampling scheme. Under the simple sampling

scheme, where the selection of cases and controls solely depends on the disease status, it is

equivalent to use the disease prevalence as in the proposed methods. Therefore, it’s perfor-

mance is comparable to the proposed estimates. We will consider additional comparison

under complex sampling scheme later in Section 4.3.

The SPML approach provides efficient unbiased estimations when the linear logistic

model assumption is satisfied but introduces biases when violated. In details, Under the

Logistic Setting, the SPML estimate is of most efficiency of all methods we consider. Under

Interaction and Piecewise Settings, when the linear logistic model assumption is violated,

the SPML estimates contain considerable bias.
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In our algorithm, we assume the working model as P(D|X , Z) = exp(γ0+γ1X+γ2Z)/(1+

exp(γ0+γ1X+γ2Z)). It is different from generated data that is based on three P(D|X , Y, Z)

settings. Although under the mis-specified P(D|X , Z), the proposed estimating equation

based approach performances fairly well, which shows the proposed approach is quite ro-

bust to the P(D|X , Z) model mis-specification. In Section 4.5, we will consider additional

scenarios to test the robustness boundary of bP(D|X , Z).

42



CHAPTER 4. SIMULATION STUDIES

Logistic Interaction Piecewise

n Method RB (%) SE MSE ×n RB (%) SE MSE ×n RB (%) SE MSE×n

2000 Case -13.3 0.067 10.2 66.3 0.064 42.4 -36.5 0.072 21.4

Control -10.2 0.085 15.3 -30.1 0.081 20.9 3.5 0.081 13.3

CC 10.4 0.050 5.9 61.4 0.050 34.4 -12.0 0.056 7.5

Adj CC -12.1 0.051 6.2 26.9 0.051 10.6 -18.1 0.056 9.1

IPW 0.3 0.072 10.5 2.0 0.069 9.5 1.1 0.073 10.5

SPML 0.5 0.050 5.0 46.5 0.050 21.7 -15.5 0.056 8.3

SICO (T=1) -0.4 0.082 13.6 -0.8 0.076 11.7 0.9 0.080 12.9

SICO (T=10) -0.5 0.074 10.8 -0.5 0.071 10.0 0.9 0.073 10.8

SICO (T=100) -0.5 0.073 10.6 -0.4 0.070 9.8 0.6 0.073 10.6

CE -6.0 0.076 11.8 -7.8 0.072 10.9 -0.4 0.073 10.6

500 Case -19.6 0.145 11.2 54.5 0.138 15.5 -44.7 0.137 13.3

Control -14.6 0.156 12.5 -27.0 0.168 15.5 6.7 0.152 11.5

CC 4.0 0.107 5.8 55.4 0.103 11.4 -15.7 0.101 5.6

Adj CC -17.9 0.107 6.4 21.3 0.104 6.3 -20.9 0.102 6.0

IPW -4.2 0.134 9.0 2.9 0.141 9.9 2.7 0.134 8.9

SPML -5.3 0.107 5.8 40.7 0.102 8.5 -18.6 0.101 5.8

SICO (T=1) -5.6 0.152 11.5 -0.8 0.163 13.3 1.8 0.152 11.5

SICO (T=10) -4.2 0.139 9.7 2.3 0.143 10.2 2.0 0.134 9.0

SICO (T=100) -4.9 0.137 9.4 0.8 0.144 10.3 2.1 0.135 9.1

CE -10.6 0.138 9.8 -9.7 0.148 11.1 1.5 0.136 9.2

Table 4.1: The relative bias (RB), standard error (SE) and mean squared error (MSE) of

the estimated coefficient β1 in logistic model. The true value β∗1 = 0.2. "Case" stands for

unadjusted logistic regression using case sample only. "Control" stands for unadjusted lo-

gistic regression using control sample only. "CC" stands for unadjusted logistic regression

using both case and control samples. "Adj CC" stands for logistic regression using both case

and control samples adjusting for primary disease status. "IPW" stands for inverse proba-

bility weighted logistic regression. "SPML" stands for semi-parametric maxmium likelihood

based logistic regression. "SICO (T)" stands for proposed SICO estimates with T replicate.

"CE" stands for proposed CE estimates using kernel smoothing techniques.
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Logistic Interaction Piecewise

n Method RB (%) SE MSE ×n RB (%) SE MSE ×n RB (%) SE MSE×n

2000 Case -24.8 0.031 6.8 13.3 0.032 3.6 -27.6 0.032 7.9

Control -10.6 0.037 3.5 -34.7 0.035 11.8 0.5 0.036 2.6

CC 12.8 0.024 2.5 52.7 0.025 23.8 -8.6 0.024 1.7

Adj CC -18.6 0.023 3.7 -8.4 0.024 1.6 -14.2 0.024 2.6

IPW 1.6 0.032 2.1 -0.8 0.031 1.9 -0.5 0.032 2.0

SPML 0.2 0.026 1.3 28.3 0.024 7.7 -12.1 0.024 2.2

CE 0.6 0.033 2.1 0.6 0.033 2.1 -0.7 0.032 2.1

500 Case -23.3 0.065 3.2 0.4 0.062 1.9 -23.4 0.066 3.3

Control -11.4 0.068 2.6 -35.7 0.075 5.3 0.3 0.071 2.5

CC 11.5 0.046 1.3 45.8 0.051 5.5 -5.9 0.050 1.3

Adj CC -18.2 0.046 1.7 -16.1 0.049 1.7 -11.9 0.049 1.5

IPW 0.4 0.060 1.8 -3.1 0.066 2.2 0.0 0.064 2.1

SPML -1.2 0.046 1.0 21.1 0.049 2.1 -9.7 0.050 1.4

CE -0.8 0.060 1.8 -8.0 0.067 2.3 -0.4 0.064 2.1

Table 4.2: The relative bias (RB), standard error (SE) and mean squared error (MSE) of the

estimated coefficient β1 in linear model. The true β∗1 = 0.2. "Case" stands for unadjusted

linear regression using case sample only. "Control" stands for unadjusted linear regression

using control sample only. "CC" stands for unadjusted linear regression using both case

and control samples. "Adj CC" stands for linear regression using both case and control

samples adjusting for primary disease status. "IPW" stands for inverse probability weighted

linear regression. "SPML" stands for semi-parametric maxmium likelihood based linear

regression. "CE" stands for proposed CE estimates using one-step optimization.
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4.2 Finite sample performance with quantile regression

In this section, we present the numerical studies for the finite sample performance of the

proposed estimates under the quantile regression framework. Since quantile regression

does not have a parametric likelihood assumption of the data, the estimating approach is

considerable different from the ones for GLM. The notation is the same as before that we

let D = {0, 1} denote the primary disease status, X = {0, 1,2} denote a single SNP (under

additive model) with minor allele frequency (MAF) 0.3, and Z ∼ N(0,1) denote a covariate

of interest. For the heteroscedastic continuous Y , we consider the following location scale

model:

Y = 1+ 0.12X + 0.1Z + (1+ 0.02X )e (4.3)

For the error term e, we consider both normal and skewed distributions. In details,

e ∼ N(0,1) in Quantile Model (1) and e ∼ χ2
1/
p

2 in Quantile Model (2). We scale ei

in Quantile Model (2) so that it has the same error variance as in Quantile Model (1)

to standardize the signal-to-noise ratio. According to the Equation (4.3), the covariate

effect of X is stronger on the upper quantiles than the lower ones, while the covariate Z

has constant effect at all the quantile levels. Specifically, the true X coefficient is 0.12+

0.02Qei
(τ) at the τth quantile, and the true Z coefficient is 0.1 at all quantiles. The disease

model for P(D|X , Y, Z) considered here is similar to the Logistic Setting that the disease

prevalence follows linear logistic model (shown below). The only difference is that we

adjust γ0 to let the disease prevalence P0 = 5%.

P(D = 1|X , Y, Z) =
exp(γ0+ 0.3X + log(2)Y + log(2)Z)

1+ exp(γ0+ 0.3X + log(2)Y + log(2)Z)

For both Quantile Model (1) and (2), we first simulate 500 cases and 500 controls to

mimic a small case-control study, and then increase 2000 cases and 2000 controls for a

large case-control study. Since the performance at different quantile levels may vary, we

estimate the X − Y associations at five different quantiles τ= (0.1, 0.25, 0.5, 0.75, 0.9) si-

multaneously. The estimates for τ= 0.5 and 0.9 are shown in the tables to demonstrate the
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performance at different quantiles. The selection of the best bandwidth for kernel smooth-

ing in CE estimates is particular tricky in quantile regressions, as a bandwidth might be

optimal for one quantile but not another. Therefore, in addition to 5-fold cross-validation

we used in Section 4.1, we further investigate the effects of bandwidths on estimation by

using the fixed bandwidths. In details, we repeatedly apply the proposed estimation pro-

cedure to a sequence of fixed bandwidths, ranging from 0.02 to 100, and then evaluate

the resulting mean absolute bias with each bandwidth. To see whether the estimates from

smaller sample sizes are more sensitive to bandwidth selection, we repeat this procedure

on a subset of 500 cases and 500 controls.

Table 4.3 and 4.4 summarize the relative bias, standard error and mean squared error of

the estimated quantile coefficients at quantile levels 0.5 and 0.9. Similar as in Section 4.4,

the estimated quantile coefficients from the unadjusted traditional methods are seriously

biased. Both the SICO and CE estimators produce fairly accurate estimates in all the models

and at all the quantile levels with all the relative biases being controlled within 5%. Since

we sample cases and controls solely depends on the disease status, the IPW also performs

well in controlling the bias as expected. The mean squared errors of the SICO estimates

(T ≥ 10) are slightly smaller than IPW ones in all four scenarios. Overall, it suggests that

the proposed estimating equation approach works well in performing unbiased secondary

quantile analysis in case-control studies.
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τ= 0.5 τ= 0.9

n RB (%) SE MSE ×n RB (%) SE MSE ×n

500 Case 12.2 0.087 3.9 4.7 0.116 6.7

Control -7.3 0.089 4.0 -6.1 0.122 7.4

CC 41.0 0.064 3.2 31.0 0.086 4.8

IPW 0.1 0.084 3.5 2.0 0.112 6.3

SICO (T=1) -0.6 0.088 3.9 -0.6 0.116 6.7

SICO (T=10) -1.3 0.082 3.4 -2.9 0.105 5.5

SICO (T=100) 4.1 0.081 3.3 5.4 0.104 5.4

CE 0.3 0.086 3.7 -0.3 0.114 6.5

2000 Case 10.8 0.041 3.8 -0.6 0.055 6.0

Control -13.0 0.044 4.3 -13.2 0.060 8.0

CC 39.4 0.032 6.5 25.2 0.043 6.4

IPW -4.8 0.042 3.6 -2.5 0.056 6.3

SICO (T=1) -4.6 0.047 4.4 -1.9 0.064 8.1

SICO (T=10) -3.5 0.042 3.5 -1.6 0.055 6.0

SICO (T=100) -3.9 0.042 3.5 -2.0 0.055 6.0

CE -4.7 0.042 3.6 -2.0 0.056 6.3

Table 4.3: The relative bias (RB), standard error (SE) and mean squared error (MSE) of

the estimated quantile coefficient in Quantile Model (1). The true β1,τ is 0.12+0.02Qei
(τ).

In Quantile Model (1), ei ∼ N(0,1). "Case" stands for unadjusted quantile regression using

case sample only. "Control" stands for unadjusted quantile regression using control sample

only. "CC" stands for unadjusted quantile regression using both case and control samples.

"IPW" stands for inverse probability weighted logistic regression. "SICO (T)" stands for

proposed SICO estimates with T replicate. "CE" stands for proposed CE estimates using

kernel smoothing techniques.
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τ= 0.5 τ= 0.9

n RB (%) SE MSE ×n RB (%) SE MSE ×n

500 Case -34.7 0.184 17.9 -102.2 0.372 82.1

Control -2.5 0.048 1.2 -19.0 0.197 19.8

CC 36.6 0.072 3.7 57.9 0.291 46.6

IPW 1.3 0.049 1.2 4.3 0.201 20.2

SICO (T=1) 2.2 0.054 1.5 8.0 0.224 25.1

SICO (T=10) 1.5 0.048 1.2 3.5 0.198 19.5

SICO (T=100) 1.6 0.048 1.1 2.8 0.194 18.9

CE 2.6 0.051 1.3 5.0 0.204 20.7

2000 Case -28.8 0.086 17.4 -111.9 0.184 130.0

Control -1.7 0.025 1.3 -22.3 0.102 23.2

CC 39.1 0.035 7.3 50.6 0.141 52.6

IPW 2.0 0.025 1.3 0.2 0.099 19.6

SICO (T=1) 2.7 0.028 1.6 0.0 0.108 23.1

SICO (T=10) 2.0 0.026 1.3 0.2 0.098 19.3

SICO (T=100) 2.1 0.025 1.3 0.5 0.096 18.5

CE 2.2 0.026 1.4 -0.9 0.100 19.8

Table 4.4: The relative bias (RB), standard error (SE) and mean squared error (MSE) of

the estimated quantile coefficient in Quantile Model (2). The true β1,τ is 0.12+0.02Qei
(τ).

In Quantile Model (2), ei ∼ χ2
1/
p

2. "Case" stands for unadjusted quantile regression using

case sample only. "Control" stands for unadjusted quantile regression using control sample

only. "CC" stands for unadjusted quantile regression using both case and control samples.

"IPW" stands for inverse probability weighted quantile regression. "SICO (T)" stands for

proposed SICO estimates with T replicate. "CE" stands for proposed CE estimates using

kernel smoothing techniques.
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In Figure 4.1, we plot the mean absolute biases of the estimated quantile coefficients

from Quantile Model (1) against the logarithm of their corresponding bandwidths. The

horizontal line is the mean absolute bias of the estimated coefficients with CV selected

bandwidth. Similarly, we plot in Figure 4.2 the mean absolute biases with fixed and CV

selected bandwidth from Quantile Model (2). We found that the biases are well controlled

within 0.02 regardless of the selection of bandwidth. Hence we conclude that the proposed

method is not sensitive to the choice of bandwidth. The estimates are close for a fairly wide

range of bandwidth. The estimates using CV selected optimal bandwidth outperform most

of those with fixed bandwidths, which suggested that the proposed bandwidth selection

works reasonably well. The advantage of CV selected bandwidth is more visible at the

0.5th quantile in Quantile Model (1) when the outcome is normally distributed, and at

0.1th quantile in Quantile Model (2) when the outcome follows χ2 distribution. In other

words, the selection is more helpful for the quantile levels at which the density is higher.
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Figure 4.1: Mean absolute biases of the estimates with different bandwidths from Quantile

Model (1). The horizontal line is the mean absolute bias of the estimated coefficients with

CV selected bandwidth. The dots are the mean absolute biases of the estimated quantile

coefficients with fixed bandwidths.
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Figure 4.2: Mean absolute biases of the estimates with different bandwidths from Quantile

Model (2). The horizontal line is the mean absolute bias of the estimated coefficients with

CV selected bandwidth. The dots are the mean absolute biases of the estimated quantile

coefficients with fixed bandwidths.
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4.3 Further comparison with IPW under complex sampling

schemes

The inverse-probability-weighting (IPW) technique has demonstrated comparable efficiency

in Section 4.1 and slightly worse efficiency in Section 4.2 in comparison with SICO esti-

mates for the secondary analysis of case-control data. The validation of IPW estimates,

however, relies on a correct specification of the selection probabilities, which is often un-

known unless nested within a large cohort study. In Section 4.1 and 4.2, we consider the

simple sampling scheme that the selection probability only depends on the disease status.

We have a representative random disease sample and a representative random control sam-

ple. In such case, the selection probability is homogeneous for all the cases and for all the

controls, and IPW works well. In this section, we consider a complex sampling scheme that

there exists an independent ancillary variable w following N(0, 1), and we oversample the

subjects with w > 0. Specifically, the observations with positive w are 9 times more likely

to be selected into the sample than subjects with w < 0 in both cases and controls. The

second sampling scheme is known as stratified sampling, and is commonly used in survey

designs for various reasons. For example, the National Maternal and Infant Health Survey

oversampled the infants born with low birthweight (≤ 2500 g) and very low birthweight

(≤1500 g) for the great research interests on the long term and short term health outcomes

of these infants. We evaluate the finite sample performance of IPW in comparison with the

proposed SICO and CE estimators under this condition.

Table 4.5 shows the relative bias, standard error, and mean squared error of the esti-

mated coefficient β1 under complex sampling scheme from 500 Monte-Carlo samples. We

observe that when the positive w is over sampled, the IPW estimates suffer from inflated

variance and bias, especially in quantile models. The proposed estimates are unaffected.

As long as Y is a random sample given (D, X , Z), the resulting estimates are less affected

by sampling schemes.
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Logistic Interaction Piecewise

Model Method RB (%) SE MSE ×n RB (%) SE MSE ×n RB (%) SE MSE×n

LogR IPW 4.7 0.119 28.4 4.5 0.114 26.0 -1.5 0.112 25.0

SICO (T=1) 0.8 0.080 12.9 0.1 0.081 13.0 -1.5 0.079 12.4

SICO (T=10) 0.4 0.073 10.7 -1.4 0.072 10.5 -1.9 0.072 10.4

SICO (T=100) 0.8 0.073 10.5 -1.4 0.072 10.4 -1.9 0.072 10.2

CE -3.7 0.074 11.2 -9.5 0.073 11.5 -1.9 0.072 10.3

LR IPW 0.5 0.053 5.7 -0.7 0.048 4.6 0.0 0.052 5.5

CE 1.2 0.033 2.1 0.1 0.031 2.1 -0.7 0.031 1.9

Table 4.5: The relative bias (RB), standard error (SE) and mean squared error (MSE) of

the estimated coefficient β1 for logistic and linear models under complex sampling scheme.

The true value β∗1 = 0.2. "LogR" stands for the logistic regression. "LR" stands for the linear

regression. "IPW" stands for inverse probability weighted quantile regression. "SICO (T)"

stands for proposed SICO estimates with T replicate. "CE" stands for proposed CE estimates

using kernel smoothing techniques for logistic regression and one-step optimization for

linear regression.

τ= 0.5 τ= 0.9

Model Method RB (%) SE MSE ×n RB (%) SE MSE ×n

Quantile Model (1) IPW 8.4 0.070 9.9 2.7 0.094 17.7

SICO (T=10) -0.5 0.041 3.4 0.6 0.054 5.8

Quantile Model (2) IPW -18.6 0.147 44.3 -106.0 0.312 251.0

SICO (T=10) -0.8 0.026 1.3 -1.0 0.102 20.7

Table 4.6: The relative biase (RB), standard error (SE) and mean squared error (MSE)

of the estimated coefficient β1,τ for Quantile Model (1) and (2) under complex sampling

scheme. The true β1 is 0.12+ 0.02Qei
(τ). In Quantile Model (1), ei ∼ N(0, 1). In Quantile

Model (2), ei ∼ χ2
1/
p

2. "IPW" stands for inverse probability weighted quantile regression.

"SICO (T)" stands for proposed SICO estimates with T replicate. "CE" stands for proposed

CE estimates using kernel smoothing techniques.
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4.4 Type I error estimates in comparison with SPML

In Section 4.1, we observe that the SPML approach is more efficient than our proposed

methods in Logistic Setting, but involves biases under Interaction and Piecewise Settings.

In this section, we would like to investigate the type I error of proposed SICO estimates in

comparison with SPML for the primary hypothesis H0 : β1 = 0 under the three settings we

consider. We consider with a binary Y , a single pre-selected SNP with MAF of 10% to 50%.

We simulate 100,000 Monte-Carlo samples with 2,000 cases and 2,000 controls. For the

proposed SICO estimates, we consider a bootstrap procedure proposed in Section 3.6 for

testing. Table 4.7 summarizes the Type I errors of the proposed SICO (T=10) and of the

SPML method under the Logistic, Interaction and Piecewise settings and at the α levels of

0.05, 0.01 and 0.001. According to the table, the SICO has the correct Type I errors in all

the settings we consider, while the SPML method has inflated type I error in the Interaction

and the Piecewise Setting due to the deviation from the linear logistic model assumption.

Logistic Interaction Piecewise

Method MAF 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

SPML 0.1 0.04924 0.01008 0.00119 0.25043 0.10064 0.02311 0.09353 0.02449 0.00351

0.2 0.04969 0.01017 0.00110 0.37414 0.17526 0.04829 0.12961 0.03881 0.00647

0.3 0.04963 0.01038 0.00105 0.42709 0.21057 0.06665 0.15627 0.05126 0.00965

0.4 0.05029 0.01002 0.00126 0.44216 0.22318 0.06905 0.17422 0.05983 0.01117

0.5 0.05087 0.01051 0.00102 0.42486 0.21007 0.06234 0.17610 0.06265 0.01238

SICO 0.1 0.04944 0.01001 0.00095 0.05649 0.01219 0.00113 0.05104 0.01106 0.00119

(T=10) 0.2 0.04945 0.00997 0.00102 0.05585 0.01248 0.00108 0.05187 0.01143 0.00147

0.3 0.04994 0.00973 0.00107 0.05903 0.01286 0.00134 0.05368 0.01123 0.00147

0.4 0.05105 0.00958 0.00098 0.05943 0.01254 0.00132 0.05285 0.01163 0.00164

0.5 0.04897 0.01013 0.00092 0.05912 0.01353 0.00135 0.05193 0.01181 0.00160

Table 4.7: Type I error of SICO estimates in comparison with SPML for a pre-selected SNP.

"SPML" stands for semi-parametric maxmium likelihood based logistic regression. "SICO

(T)" stands for proposed SICO estimates with T replicate.
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4.5 The performance under biased estimated bP(D|X ,Z)

The proposed estimates require a consistently estimation of P(D|X ,Z). In previous sim-

ulation studies, we assumed that the primary disease prevalence P0 is known, and we

estimated P(D|X ,Z) assuming a linear logistic model as follows

P(D = 1|X ,Z) = exp(γ0+ Xγ1+ ZTγ2)/{1+ exp(γ0+ Xγ1+ ZTγ2)}.

In practice, we might encounter two issues. First, the disease prevalence often esti-

mated from cohort studies or literature could be mis-specified. For this problem, we will

demonstrate the performance of proposed estimators when estimated disease prevalence

bP0 largely differs from the true value in both GLM and quantile regressions.

Second, the linear logistic model may not be a good approximation of the associa-

tion between the disease status and the covariates (X ,Z). For example, when the dis-

ease prevalence is low, which is one of the main reasons to employ a case-control de-

sign, P(D|X , Y,Z) = exp(γ0 + Xγ1 + ZTγ2 + Yγ3)/{1 + exp(γ0 + Xγ1 + ZTγ2 + Yγ3)} ≈

exp(γ0+ Xγ1+ZTγ2+ Yγ3). Consequently, the logistic model also holds for P(D = 1|X ,Z)

if Y follows an exponential family distribution. When the disease prevalence is high, how-

ever, this approximation may not work and the estimation using the linear logistic model

may be biased. In the simulation studies in Section 4.1, we have already considered the per-

formance of the proposed estimates under three disease models, Logistic, Interaction and

Piecewise Setting. Here, we further investigate this problem under quantile framework by

demonstrating the performance of SICO and CE estimates when the disease prevalence P0

is high and therefore the logistic model for P(D|X ) is mis-specified.

Table 4.8 and 4.9 show the relative bias, standard error and mean squared error of

the estimated coefficients from 500 Monte-Carlo replicates with various bP0 values used for

estimation. For Table 4.8, we use data from Logistic Model (Model 4.1) and Linear Model

(Model 4.2) in Section 4.1, but re-estimate the parameters based on different estimated

disease prevalence bP0 ranging from P0/2 to 2P0, where P0 =10% is the true prevalence.

For Table 4.9, we use the data from Quantile Model (1) (Model 4.3 with normal error) in
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Logistic Model (SICO (T=10)) Linear Model (CE)

bP0 RB (%) SE MSE ×n RB (%) SE MSE ×n

P0/2 -3.5 0.075 11.3 -6.0 0.032 2.4

P0/1.5 -2.0 0.073 10.7 -4.3 0.032 2.1

P0/1.2 -0.7 0.071 10.2 -2.7 0.031 2.0

P0 -0.5 0.074 10.8 -1.1 0.030 1.9

1.2P0 2.1 0.068 9.3 0.6 0.030 1.8

1.5P0 4.0 0.066 8.7 2.9 0.029 1.7

2P0 6.8 0.062 8.0 6.2 0.028 1.8

Table 4.8: The relative bias (RB), standard error (SE) and mean squared error (MSE) of

the estimated coefficient β1 with misspecifed bP0 under Logistic Model and Linear Model.

P0 = 10% is the true disease prevalence.

Section 4.2, and also re-estimate the parameters based on estimated bP0 ranging from P0/2

to 2P0. We find the estimation bias does increase slowly as the prevalence deviates from

the true one, but the differences are small even when doubling P0.

In Table 4.10, we simulate the data according to Quantile Model (2) (Model 4.3 with

χ2 error) in Section 4.2, but the true disease prevalence P0 increases from 5% to 30%.

In all the cases, the relative biases from the SICO estimates are smaller than 4%, which

indicates its robustness against the deviation from the logistic P(D|X ,Z). The CE estimates

are relatively more sensitive to the bias under Quantile Model (2) with higher disease

prevalence.
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τ= 0.5 τ= 0.9

bP0 Method RB (%) SE MSE ×n RB (%) SE MSE ×n

P0/2 CE -9.1 0.043 4.0 -7.9 0.059 7.2

SICO (T=10) -8.7 0.043 3.9 -7.5 0.058 6.9

P0/1.5 CE -7.8 0.043 3.9 -6.4 0.059 7.0

SICO (T=10) -7.2 0.043 3.8 -5.9 0.057 6.6

P0/1.2 CE -6.3 0.043 3.8 -4.4 0.058 6.7

SICO (T=10) -5.9 0.042 3.7 -4.2 0.056 6.4

P0 CE -4.7 0.042 3.6 -2.0 0.056 6.3

SICO (T=10) -4.5 0.042 3.6 -2.7 0.056 6.2

1.2P0 CE -3.7 0.042 3.5 -1.1 0.055 6.1

SICO (T=10) -2.9 0.042 3.5 -0.9 0.055 6.0

1.5P0 CE -1.1 0.041 3.4 1.2 0.055 6.0

SICO (T=10) -0.4 0.041 3.4 1.7 0.054 5.7

2P0 CE 3.4 0.040 3.3 5.2 0.052 5.5

SICO (T=10) 3.4 0.040 3.3 5.8 0.052 5.4

Table 4.9: The relative bias (RB), standard error (SE) and mean squared error (MSE) of

the estimated quantile coefficients β1,τ with misspecifed bP0 under Quantile Model (1) at

quantile levels 0.5 and 0.9. P0 = 5% is the true disease prevalence.
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τ= 0.5 τ= 0.9

Prev Method RB (%) SE MSE ×n RB (%) SE MSE ×n

0.05 SICO (T=10) 2.0 0.026 1.3 0.2 0.098 19.3

CE 2.2 0.026 1.4 -0.9 0.100 19.8

0.1 SICO (T=10) -0.1 0.024 1.1 -2.3 0.089 15.9

CE 1.5 0.025 1.2 8.8 0.095 18.4

0.2 SICO (T=10) 0.2 0.021 0.9 -3.6 0.081 13.2

CE 2.6 0.022 1.0 8.5 0.089 16.2

0.3 SICO (T=10) 0.2 0.019 0.7 -1.9 0.079 12.4

CE 3.1 0.020 0.9 12.3 0.086 15.4

Table 4.10: The relative bias (RB), standard error (SE) and mean square error of the

estimated coefficients β1,τ under Quantile Model (2) at quantile levels 0.5 and 0.9. "SICO

(T)" stands for proposed SICO estimates with T replicate. "CE" stands for proposed CE

estimates using kernel smoothing techniques.
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Applications

5.1 Overview

In this chapter, we apply the proposed new estimating equation based approach to conduct

the secondary analysis in two different contexts, the Risk Assessment of Cerebrovascular

Event study and the New York University Bellevue Asthma Study. In the first example, we

consider the highly prevalent complex disease diabetes as the binary secondary phenotype

using the young onset stroke case-control data. Diabetes is strongly associated with the

young onset stroke, and for the SNPs that are also associated with stroke, the traditional

methods may be largely bias. We demonstrate the performance of our new estimating

equations based approach in comparison with comparable existing methods in the litera-

ture. In addition, we investigated the algorithm problem of SPML approach we encounter

in this real data example. In the second example, we consider the association of TSLP gene

with a continuous secondary phenotype, serum IgE level, using asthma case-control data.

We first consider the mean level associations, and apply IPW, SPML and the proposed CE

estimate for the secondary analysis under the linear regression framework. Second, we

extend the analysis to quantile regression to obtain a more comprehensive picture of the

genetic association with the secondary outcome. We demonstrate the attractive properties

of secondary quantile regression in comparison of mean regression in different SNPs we

analyzed. These examples clearly present the value of the new estimating equation based
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approach in the secondary trait analysis in genetic case-control studies.

5.2 Application to Risk Assessment of Cerebrovascular Events

(RACE) Study

To illustrate the application of these methods, we select two SNPs, rs6712932 and rs1990760,

from the Risk Assessment of Cerebrovascular Events (RACE) Study to estimate their genetic

association with diabetes. RACE is a GWA study available in the dbGaP database that in-

cludes 1,220 young onset stroke cases and 1,273 controls from the Risk Assessment of

Cerebrovascular Events Study in Pakistan [Cornelis et al., 2010]. The SNPs rs6712932

and rs1990760 have been found genome-wide significant in several previous studies with

diabetes [Salonen et al., 2007; Todd et al., 2007]. SNP rs6712932-G is reported to be a

protective factor for type-2 diabetes with OR=0.66 (CI: 0.54 - 0.79) [Salonen et al., 2007]

and SNP rs1990760-G is reported to be protective from type-1 diabetes with OR=0.85 (CI:

0.81 - 0.90) [Todd et al., 2007]. In this section, we evaluate the association between these

two SNPs and diabetes using this case-control dataset. For notation, we let D = {0,1}

denote the primary case-control status of young onset stroke, Y = {0, 1} denote the binary

secondary phenotype of diabetes, X = {0, 1,2} denote the count of minor alleles for each of

the two SNPs, and Z denote a continuous variable, the propensity score [Guo and Fraser,

2010] developed from a set of covariates including age, gender, smoking status, coronary

artery disease, myocardial infarction and the top 10 principle components from population

stratification using EIGENSTRAT [Price et al., 2006a]. The association between secondary

phenotype diabetes Y and each of the pre-selected SNPs X is modeled by the following

model

P(Y = 1) =
exp(β0+ β1X + β2Z)

1+ exp(β0+ β1X + β2Z)
,

where β1 is the coefficient of interest that relates diabetes to the SNP.

Both types of diabetes are known to be risk factors for stroke [Peters et al., 2014;

Sundquist and Li, 2006]. In this dataset, we only have information on whether a subject
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has diabetes without further specification on the type of diabetes. In the primary analysis

of the risk factors for young onset stroke, we estimate the OR of having diabetes is 3.18

(p-value< 0.0001) for the young onset stroke. In addition, both SNPs are associated with

young onset stroke with marginal per-minor-allele OR as 1.14 (p-value=0.024) and 0.87

(p-value=0.015), respectively. After adjusting for diabetes, the associations between these

SNPs and stroke remain significant (rs6712932: OR=1.16; p-value=0.017. rs1990760:

OR=0.84; p-value=0.003). This is a scenario where the commonly-used tradition methods

may provide biased estimation for the association between these two SNPs and diabetes,

and we should apply appropriate approaches for estimation.

We evaluated the association between diabetes and the SNPs using all the methods we

considered in the simulations, including (1) regression using cases only, (2) regression us-

ing controls only, 3) regression using combined case-control sample, (4) regression using

case-control sample adjusting for case-control studies, (5)IPW, (6) SPML, (7) the proposed

SICO estimates and (8) the proposed CE estimates. The prevalence of stroke in adult Pak-

istan population is needed for the estimating equations and the SPML approach, and we

estimated it to be approximately 3.6% by using our best knowledge from the literature

[Pakistan Stroke Society, 2006]. For IPW approach, there is no clear selection probabil-

ity, so we used the disease prevalence to approximate the ratio of selection probabilities

between cases and controls and used bootstrap method to construct bootstrap standard

errors and p-values for inference. For the proposed SICO and CE methods, bootstrap tests

were used to construct the standard error and calculate the p-value.

Table 5.1 presents the results of the association between the SNPs and diabetes using

the eight different approaches. For SNP rs6712932, all of these methods yielded similar

effect estimates suggesting no significant association between rs6712932 and diabetes. We

observe the directions for the genetic association with stroke and diabetes are opposite,

which might also suggest the marker has little or no true association with diabetes in this

general population. When there is no or little association between the tested marker and

the secondary trait, the biases of the traditional methods are small, which is consistent with

the findings in Monsees et al. [2009]. Among the all the theoretical unbiased methods we
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consider, SPML approach is the most efficient, followed by CE estimate and SICO estimate,

and IPW is the least efficient.

For the SNP rs1990760, there is a significant protecting association among controls.

While in the same direct, the association among cases has different value and is not sig-

nificant. Regression on the case-control sample ignoring the sampling scheme or adjusting

for the primary disease produce point estimates (-0.126 and -0.159) that are closer to

the one among cases (-0.112) than that of controls (-0.247). Since cases constitutes a

small percentage of general population, it suggests the estimates from the two methods

may be biased from the true association in general population. The proposed SICO and

IPW detect similar significant protecting associations between SNP rs1990760 and dia-

betes that are closer to the controls (β̂ = −0.227, p-value=0.0374 for SICO; β̂ = −0.228,

p-value=0.0365 for IPW). We expect their estimates are closer to the true value in the

population. CE estimate is more efficient but potential contains some biases (β̂ = −0.142,

p-value=0.0379 ). This is because the estimation process involves kernel smoothing tech-

niques, and it does not work well when there are few observations in the neighborhood of

(X , Z). In this particular example, the covariate Z has heavy tail among cases.

Interestingly, we observe that the SPML method fails to generate an estimate for SNP

rs1990760 in Table 5.1 due to an algorithm problem in their software. To further inves-

tigate the problem of the SPML approach, we apply the method to the top 1000 SNPs

selected from the association analysis with the primary disease (p-value<1.5E-3). The fail-

ure rate of the SPML approach in generating an estimate is presented in figure 5.1. We can

see that when the SNP is strongly associated with the primary disease, which is also the

case that the traditional methods are likely to bias, the SPML approach is highly likely to

fail. For example, among the top 20 SNPs (p-value<1.5E-10) , the failure rate is as high as

40%. This is because when the continuous covariate enters into the algorithm, it is treated

as a high-dimensional nuisance parameter of the likelihood function that has to be profiled

out at each value. When we conduct the same analysis without adjusting for the covariates,

the SPML approach works well.

In summary of this example, when the tested marker X has little or no association with
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rs6712932 rs1990760

Est β̂1 OR S.E. p-value Est β̂1 OR S.E. p-value

Case-control -0.060 0.94 0.074 0.4166 -0.126 0.88 0.068 0.0648

Case -0.100 0.90 0.092 0.2800 -0.112 0.89 0.088 0.2024

Control -0.125 0.88 0.132 0.3441 -0.247 0.78 0.118 0.0368

Stratified case-control -0.108 0.90 0.076 0.1530 -0.159 0.85 0.071 0.0246

IPW -0.113 0.89 0.134 0.4009 -0.228 0.80 0.109 0.0365

SPML -0.099 0.91 0.075 0.1888 NA NA NA NA

SICO (T=10) -0.098 0.91 0.127 0.4381 -0.227 0.80 0.109 0.0374

CE -0.106 0.90 0.089 0.2336 -0.142 0.86 0.068 0.0379

Table 5.1: The association between two pre-selected SNPs (rs6712932 and rs1990760) and

diabetes in a young onset stroke case-control sample. "Case-control" stands for unadjusted

logistic regression using both case and control samples. "Case" stands for unadjusted lo-

gistic regression using case sample only. "Control" stands for unadjusted logistic regression

using control sample only. "Stratified" stands for logistic regression using both case and

control samples adjusting for primary disease status. "IPW" stands for inverse probabil-

ity weighted logistic regression. "SPML" stands for semi-parametric maxmium likelihood

based logistic regression. "SICO (T)" stands for proposed SICO estimates with T replicate.

"CE" stands for proposed CE estimates using kernel smoothing techniques.

the secondary trait Y , all methods provide valid estimates. When the tested marker X is po-

tentially associated with the secondary trait Y , the traditional methods may contain biases.

Among the theoretical justified unbiased approaches, IPW and SICO estimates provide ro-

bust and similar estimation for the association between the tested marker and secondary

trait. SPML is more efficient, but is subject to biases from violation of model assumptions

and algorithm problems. CE estimate requires kernel smoothing approximations in logistic

regression and might be biased if the sample is unbalanced in cases and controls. In the

next example, we consider CE estimate for linear regression, which does not need the ker-

nel smoothness for its estimation. It provides similar point estimate but is more efficient
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than IPW approach, which indicates its value in analyzing the secondary trait.
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Figure 5.1: The failure rate of SPML method
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5.3 Application to New York University Bellevue Asthma

Study

In this section, we apply the proposed methods to study the association between the Thymic

stromal lymphopoietin (TSLP) gene and serum IgE levels from the New York University

Bellevue Asthma Registry [Liu et al., 2011]. The study consisted of 387 asthmatics and

212 healthy controls, and measured 10 tag SNPs in the TSLP gene. IgE is a class of anti-

body that is elevated in various allergic diseases. Understanding the genetic basis of IgE

paves to way to recognize the mechanism of TSLP in affecting asthma and other allergic

diseases. Therefore, the purpose of the secondary analysis is to identify the TSLP SNPs that

are associated with elevated serum IgE level. Since log serum IgE level is approximately

normally distributed among cases and controls, we first consider least square regression

and compare the results with existing novel methods including IPW and SPML. Second, as

elevated IgE level instead of mean IgE level plays an essential role in allergic diseases, we

are also interested to apply the quantile regression to further investigate the genetic asso-

ciation with upper quaniles of the IgE. We illustrate the two types of regressions separately.

5.3.1 Mean regression

We denote X as the minor allele count for each of the 10 TSLP SNPs, Z as a continuous vari-

able derived as the first principal component score from 213 ancestry informative markers

to adjust for population stratification, and Y as the log serum IgE level. Then the least

square model we consider is as follows

Y = β0+ β1X + β2Z .

Three approaches are used to estimate the coefficient β1: the IPW approach, SPML

approach, and proposed CE approach. We calculate the overall asthma prevalence as 10.1%

based on 6 birth cohort studies, and this information is used to approximate selection

probability in IPW, and estimate P(D|X , Y, Z) in SPML and P(D|X ) in CE. The standard
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errors and p-values in proposed CE estimates were calculated using bootstrap, i.e. we

bootstrap cases and controls separately, and re-apply the entire estimating procedure to

the bootstrap case-control sample.

The resulting estimated coefficients are summarized in Table 5.2. The point estimates

of the CE coefficients are very similar to IPW, while the estimates from SPML are largely dif-

ferent in many SNPs. We know from simulations in Chapter 4 that IPW is robust and SPML

is efficient but potentially biased with mis-specified P(D|X , Y, Z). To understand if SPML is

potentially biased, we further tested the X − Y interactions in P(D|X , Y, Z) to understand

the underlying models, and some of the interactive effects are significant (SNPs rs2289278

and rs10035870). Therefore, we believe that the SPML approach is substantively biased

due to the violation of the model assumptions, and the proposed CE estimates as well as

IPW provides relative unbiased estimations. The Table 5.2 also shows that the proposed

CE estimates are more efficient than IPW approach in analyzing the genetic associations.

In details, IPW only detects one significant SNP rs10035870 at α-level 0.05 , while CE

identifies three (rs11466741, rs11466743 and rs10035870). In summary, the proposed

new estimating equation based approach (CE estimator in particular) combines the advan-

tages of IPW and SPML estimators that its is robust and fairly efficient in estimating the

marker-secondary trait associations. Therefore, it is useful in real data analysis to discover

potential SNPs.

5.3.2 Quantile regression

In this section, we consider the quantile regression for the association between TSLP gene

and the upper quantiles of the log serum IgE level. We are particularly interested in dis-

covering the SNPs that are associated with elevated IgE levels, and quantile regression is

able to present a comprehensive picture on the where the effects of the SNPs exist on the

distribution of serum IgE levels. The quantile model we consider is as follows:

QY (τ) = β0,τ+ β1,τX + β2,τZ ,
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SNP Method Est. S.E. p-value SNP Method Est. S.E. p-value

rs2289276 IPW 0.09 0.14 0.500 rs2289278 IPW -0.29 0.22 0.193

SPML 0.06 0.10 0.569 SPML 0.05 0.16 0.764

CE 0.10 0.08 0.252 CE -0.29 0.16 0.077

rs1898671 IPW -0.12 0.17 0.505 rs11241090 IPW 0.14 0.33 0.658

SPML -0.12 0.10 0.262 SPML 0.20 0.22 0.377

CE -0.11 0.13 0.380 CE 0.14 0.24 0.554

rs11466741 IPW 0.20 0.12 0.112 rs10035870 IPW 0.63 0.28 0.024

SPML 0.03 0.09 0.721 SPML 0.03 0.21 0.904

CE 0.20 0.09 0.032 CE 0.63 0.22 0.004

rs11466743 IPW -0.61 0.34 0.073 rs11466749 IPW 0.07 0.24 0.779

SPML -0.25 0.29 0.382 SPML 0.14 0.15 0.343

CE -0.61 0.29 0.034 CE 0.07 0.16 0.678

rs2289277 IPW 0.13 0.12 0.282 rs11466750 IPW -0.05 0.16 0.748

SPML 0.03 0.09 0.739 SPML 0.08 0.12 0.484

CE 0.13 0.09 0.165 CE -0.05 0.13 0.671

Table 5.2: Estimated mean allelic effects on log serum IgE level in linear regression. "IPW"

stands for inverse probability weighted least squared regression. "SPML" stands for semi-

parametric maximum likelihood least squared regression. "CE" stands for proposed CE

estimates using one-step optimization
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where the X is the minor allele count for each of the 10 TSLP SNPs, Z is a continuous vari-

able derived as the first principal component score from 213 ancestry informative markers

to adjust for population stratification, and Y is the log serum IgE level.

To evaluate effects of the TSLP gene variants on different levels of IgE, we estimated the

model at quantile levels of 0.15, 0.25, 0.5, 0.75 and 0.85, respectively. Three approaches

were used to estimated the quantile coefficients: the IPW approach and the proposed SICO

and CE methods. SPML approach is not considered for quantile regression as it is based

on likelihood function and can not be applied to non-parametric regressions. Similar to

the simulation studies, we use a Gaussian kernel and select the bandwidth using 5-fold

cross-validation for the CE estimates. The resulting estimated quantile coefficients are

summarized in Table 5.3. All the p-values in Table 5.3 were calculated using bootstrap, i.e.

we bootstrap cases and controls separately, and re-apply the entire estimating procedure

to the bootstrap case-control sample. The estimated quantile coefficients from the three

approaches are comparable. However, due to the small sample size in this particular exam-

ple, the bootstrap standard errors of the CE estimates and IPW estimates are much bigger

than the ones from SICO estimates. Consequently, the SICO estimates are more powerful

to detect the quantile associations with small sample sizes.

From the mean coefficients output for CE estimates in Table 5.2, we observed that SNPs

rs11466741, rs11466743 and rs10035870 had significant associations with mean serum

IgE level, with p-values of 0.032, 0.034 and 0.004, respectively. The results from quantile

regressions also indicated significant association with these SNPs, and these associations

remain significant even after a conservative Bonferroni correction for estimating different

quantile levels and the number of SNPs. Moreover, quantile analysis presented a more com-

prehensive picture on the effects of the SNPs and suggested that the SNPs have different

impact on the distribution of serum IgE level. For example, having one or two A allele of

SNP rs11466743 decreases the mean of IgE value by 0.61. Based on the quantile analysis,

however, this SNP has no effect on the lower quantiles (0.15th and 0.25-th quantiles) of

IgE value, but significantly decreases the median and upper (0.75th and 0.85th) quantiles

of IgE by 0.6, 1.2 and 1.1, respectively. In addition, elevated serum IgE level indicates
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hypersentitive allergic effect and thus it is important to know the TSLP effects on the upper

quantile of serum IgE level. Specifically, the propose method showed that SNPs rs2289276,

rs2289278, rs2289277 and rs11466750 have significant association with 75th quantile of

log serum IgE level; however, the mean regression did not indicate significant association,

illustrating the potential for the new approach to discover new associations.

Moreover, to see how genetic variants impact the distribution of serum IgE level, we

estimate the quantile coefficients on a fine grid of quantile levels. In Figures 5.2(a) and

5.2(b), we plot the estimated conditional distribution functions with different genotypes

at SNPs rs10035870 and rs11466743, respectively. Specifically, the solid curve in Figure

5.2(a) is the estimated quantile function for the patients whose genotype at rs10035870 is

AA, and the dashed line is that of those whose genotype is AG/GG at rs10035870. In Figure

5.2(b), the solid curve is the estimated quantile function with genotype GG at rs11466743,

and the dashed line is that of genotype AG/AA.

Both SNPs were found to have significant impact on the distribution of serum IgE level.

Based on Figure 5.2(a), rs10035870 has strong positive effect on the entire distribution

of serum IgE level, and thus subjects with the mutation allele of rs10035870 tend to have

higher serum IgE level in general. In contrast, SNP rs11466743 only has strong impact on

the median and upper quantiles, but makes little difference at the lower quantiles of serum

IgE level. As indicated in Figure 5.2(b), the subjects with genotype AG/AA in rs11466743

are less likely to have a very high serum IgE level compared to those with genotype GG,

however, they also have equal chance to have low IgE serum level. For example, for the

subjects with rs11466743 genotype AG/AA, the probability of hypersensitive allergic ef-

fects (Y > 5) is nearly zero. However, for the subjects with genotype GG, this probability

is approximately 30%. However, the probabilities of log IgE serum level (Y < 3) are 25%

for all the genotypes.

In the original case-control asthma study, we found that the SNP rs1898671 was associ-

ated with the asthma disease risk. When examining the genetic association with the serum

IgE levels, we identified different associated SNPs. Asthma is an allergic immune disorder

that is usually diagnosed based on the pattern of symptoms, response to therapy over time
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Figure 5.2: The estimated distribution functions of log serum IgE level associated with SNP
rs10035870 and rs11466743.

and spirometry. With allergic effects, serum IgE levels may be normal or sub-normal. In

addition, the elevation of serum IgE levels may be caused by different allergic diseases than

asthma. Therefore, it is nature to find out the analysis of the secondary outcome serum IgE

levels discovers different SNPs from the primary analyses.
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τ= 0.15 τ= 0.25 τ= 0.5 τ= 0.75 τ= 0.85

SNP Method Est. P-value Est. P-value Est. P-value Est. P-value Est. P-value

rs2289276 IPW -0.1 5.0E-01 -0.1 6.9E-01 0.4 1.1E-02 0.5 6.1E-02 0.1 6.9E-01

SICO -0.1 6.4E-02 0.0 9.7E-01 0.4 3.8E-07 0.3 8.7E-04 0.0 7.5E-01

CE -0.1 3.4E-01 0.0 9.2E-01 0.4 2.6E-02 0.3 1.1E-01 -0.1 7.4E-01

rs1898671 IPW -0.1 5.4E-01 -0.3 9.5E-02 -0.3 2.1E-01 0.3 3.9E-01 -0.1 7.1E-01

SICO -0.2 9.2E-03 -0.2 3.9E-03 -0.2 8.8E-03 0.2 6.7E-02 0.0 9.8E-01

CE -0.1 5.1E-01 -0.2 2.6E-01 -0.2 4.8E-01 0.2 6.0E-01 0.2 5.9E-01

rs11466741 IPW -0.1 6.5E-01 0.1 5.1E-01 0.5 3.6E-03 0.4 1.5E-02 0.2 3.9E-01

SICO 0.0 4.1E-01 0.1 1.7E-01 0.4 8.4E-08 0.3 3.5E-04 0.1 3.6E-01

CE -0.1 6.8E-01 0.1 4.7E-01 0.4 1.1E-02 0.4 4.3E-03 0.0 9.6E-01

rs11466743 IPW 0.4 6.7E-01 0.0 9.4E-01 -0.5 8.2E-02 -1.1 3.6E-02 -1.1 1.4E-02

SICO 0.4 1.6E-01 0.0 9.7E-01 -0.6 1.2E-03 -1.2 1.2E-11 -1.1 5.4E-08

CE 0.4 6.6E-01 -0.1 8.9E-01 -0.6 7.4E-02 -1.2 3.5E-03 -1.2 5.0E-04

rs2289277 IPW -0.1 5.5E-01 -0.1 7.1E-01 0.3 2.2E-01 0.3 1.3E-01 0.2 4.6E-01

SICO -0.1 7.1E-02 0.0 5.5E-01 0.3 1.7E-04 0.3 5.7E-03 0.1 3.7E-01

CE -0.1 6.5E-01 0.0 9.2E-01 0.3 2.0E-01 0.3 5.2E-02 0.0 9.1E-01

rs2289278 IPW -0.1 7.1E-01 -0.3 2.7E-01 -0.1 7.6E-01 -0.5 2.3E-01 -0.5 3.1E-01

SICO -0.1 1.6E-01 -0.3 2.1E-03 -0.1 2.2E-01 -0.5 3.4E-04 -0.3 7.1E-02

CE -0.1 6.6E-01 -0.3 2.5E-01 -0.2 5.1E-01 -0.5 1.6E-01 0.0 9.7E-01

rs11241090 IPW 0.4 4.7E-01 0.4 3.4E-01 -0.3 5.9E-01 -0.1 9.4E-01 0.4 6.1E-01

SICO 0.4 3.2E-02 0.3 2.3E-02 -0.3 1.6E-01 0.0 9.3E-01 0.3 2.8E-01

CE 0.4 3.4E-01 0.4 3.6E-01 -0.3 5.4E-01 -0.2 7.6E-01 0.5 4.8E-01

rs10035870 IPW 0.7 1.1E-01 0.5 2.3E-01 0.8 2.6E-01 0.8 2.0E-02 0.4 3.1E-01

SICO 0.8 1.1E-09 0.6 9.0E-07 0.9 5.4E-07 0.8 3.1E-04 0.4 3.7E-02

CE 0.7 4.2E-02 0.5 1.1E-01 0.7 2.9E-01 0.7 6.8E-03 0.3 4.5E-01

rs11466749 IPW -0.2 3.8E-01 -0.2 5.3E-01 0.1 8.8E-01 0.2 6.9E-01 0.3 5.6E-01

SICO -0.2 2.2E-02 -0.2 6.8E-02 0.0 7.1E-01 0.1 2.7E-01 0.3 7.9E-03

CE -0.2 3.3E-01 -0.2 4.2E-01 0.0 9.2E-01 0.1 8.3E-01 0.4 2.6E-01

rs11466750 IPW -0.1 5.0E-01 -0.1 6.6E-01 -0.3 8.2E-02 -0.2 5.1E-01 -0.1 8.7E-01

SICO -0.2 3.3E-02 -0.1 5.5E-02 -0.3 2.1E-04 -0.3 4.2E-03 0.1 4.2E-01

CE -0.1 5.0E-01 0.0 8.4E-01 -0.3 1.1E-01 -0.3 3.4E-01 0.2 5.9E-01

Table 5.3: The estimated allelic effects on log serum IgE level in quantile regression at

quantile levels of 0.15, 0.25, 0.5, 0.75, and 0.85. "IPW" stands for inverse probability

weighted quantile regression. "SICO" stands for proposed SICO estimates with 10 replicate.

"CE" stands for proposed CE estimates using kernel smoothing techniques.
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Chapter 6

Conclusions and future work

In this paper, we propose a general framework to estimate the genetic association with

secondary phenotype in case-control studies. In this chapter, we discuss and summarize

the advantages as well as some limitations of the proposed approach. In the first section,

some important conclusions are listed. We then point out a few possible future directions

on this topic in the second section.

6.1 Conclusions

We propose a new estimating equation based approach to estimate the association be-

tween genetic variants and secondary phenotype in the case-control designs. It combines

observed and counter-factual outcomes to constitute unbiased estimating equations. Com-

pared with the existing unbiased approaches, including the IPW and SPML, it has the

following attractive features.

First, it can accommodate various types of phenotypes (e.g., binary, continuous and or-

dinal), SNPs models (additive, dominant or recessive), and regressions (e.g., least square

regression, GLM, quantile regression). Likelihood function based approaches, such as

SPML approach, lack of the flexibility and diversity.

Second, it can easily accommodate covariates, including population substructure, an

important confounding in genetic studies. When we encounter a large number of covari-

ates, it is easy to conduct variable selection using cross-validation or introduce penalty

73



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

functions, like Lasso, Elastic Net, and SCAD.

Third, it relaxes the common conditions on the disease prevalence models. Except for

the IPW approach, most secondary trait analyses using the entire case-control sample as-

sume logistic models of P(D|X , Y,Z). Our proposed estimating equations approach is more

general, and only assumes that the disease probability follows a logistic model with just

(X ,Z); it is not affected by the underlying distribution of Y . In section 4.1, while most ex-

isting methods are biased when P(D|X , Y, Z) doesn’t follow the logistic model in the Piece-

wise Setting, our proposed estimating equations are robust to the model mis-specification.

Certainly, there is a price to be paid for the flexibility of the model assumptions. When

the underlying P(D|X , Y,Z) satisfies the model assumptions in the SPML approach, the

SPML method shows greater efficiency than our proposed approach. As expected, there

is a trade-off between the robustness and efficiency of the models, and depending on the

underlying true model a different method may be optimal.

Fourth, the proposed approach is not sensitive to sampling schemes. Although the IPW

approach is a simple and flexible method that works for any models, it requires knowing the

additional information on sampling probabilities. As shown in the simulations in Section

4.3, the resulting estimates may not be efficient under some types of sampling schemes.

For example, under the complex sampling schemes, where the some sampling variables are

unrelated to the disease status, the IPW estimates are very inefficient.

Fifth, it requires little external information to be known. In secondary trait analyses,

it is hard to obtain unbiased estimation without any external information. The proposed

method only requires the disease prevalence P0 to be specified. In contrast, the IPW ap-

proach needs the selection probabilities, which is often hard to obtain when the case-

control sample is not nested within a larger cohort study. The bias correction approach by

[Wang and Shete, 2011] also needs the prevalence of the secondary phenotype in addition

to P0. In principle, the SPML approach might be able to estimate β1 without external in-

formation on disease prevalence, but the resulting inference is unstable Li and Gail [2012]

and their publicly available software at http://www.bios.unc.edu/ lin/softward/SPREG/

requires knowing P0. Thus, no unbiased approaches are able to perform without external
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information of P0 or selection probability. When mis-specified, theses methods are subject

to biases. However, simulations showed the new estimating equations are fairly robust to

such mis-specification.

Finally, it is computationally simple and straightforward. The estimation can be achieved

by weighted regressions. Hence the computation does not require special software.

In summary, the construction of the estimating equations is straightforward and compu-

tationally efficient by simulating pseudo observations and evaluating the expected counter-

factual estimating function. It provides robust and fairly efficient unbiased estimation for

the variant-secondary phenotype association. It has appropriate type I error rate and is

robust to disease prevalence mis-specification. It can be extended to multiple study de-

signs and can be applied to multiple regressions, including regressions with no parametric

likelihood function, such as quantile regression.

6.2 Future extension

We would like to extend the proposed methods to accommodate a wide range of case-

control studies that are biased in secondary analysis. For example, we consider to joint

analyze multiple case-control studies at the same time to improve power. We also consider

the nested/matched case-control design that aims at improving the efficiency of traditional

case-control design. Finally, we consider expanding the secondary analysis from GWAS to

sequencing studies that focus on the rare variants. In this section, we will explain the issues

we might encounter in these directions, and our preliminary ideas of secondary analysis

for the further study.

6.2.1 Secondary analysis in multiple genetic case-control studies

One direction to expand the new estimating equations is to joint analyze of the same

secondary trait from multiple case-control studies. As most of the case-control studies are

powered for the primary analysis, we might have difficulties to detect the important SNPs

for the secondary traits using one case-control sample. Meanwhile, a lot of secondary
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traits, such as height, weight, blood pressure and common diseases, are widely asked in

the case-control studies. It is natural for the researchers to consider using the data from

multiple case-control studies to investigate the associations between the genetic markers

and the same secondary trait of interest. In the example from the introduction [Lettre

et al., 2008], researchers analyzed the secondary trait height using six GWAS focusing on

diabetes, cardiovascular diseases and cancers.

When we consider joint analysis of multiple case-control studies, there are a number

of issues we need to be aware of. First, different GWAS might use different genotyping

platforms, and their SNPs may not overlap each other. Therefore, imputation of the ’hidden’

variants is needed to combine the studies. Imputation is the process of predicting a set of

genotypes that are not directly assayed in a sample of individuals. Imputation methods can

infer the alleles of ’hidden’ variants and use those inferences to test the hidden variants for

association. As imputed SNPs can lead to false positives if they are poorly performed,

or even well performed, the major discovery based on imputed SNPs should be verified,

probably by conducting new studies.

Second, by combining the multiple case-control studies, researchers might accidentally

mix the subjects from different subgroups. If genotype frequencies differ between these

subgroups and sampling favors certain subgroups over others, the sample estimate may be

biased. Even there is no bias, variance of the estimate can be affected, and can affect the

validity of the association test results. Therefore, the adjustment for population stratifica-

tion is particularly important in this scenario when we combine multiple samples to correct

the bias and variance. There are a number of approaches to adjust for population stratifica-

tion, including genomic control [Devlin and Roeder, 1999], STRUCTURE [Pritchard et al.,

2000], Eigenstrat [Price et al., 2006b] and EMMAX [Kang et al., 2010], and among them

Eigenstrat is the most popular approach nowadays in the literature.

After dealing with these issues, one could expand the estimating equations to incorpo-

rate multiple diseases, and conduct the secondary analysis in multiple genetic case-control

studies. For the case-control studies when no overlap in participants, we could simply write

the new estimating equations conditional on the primary disease status separately for each
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study, and take the summation their equations. Therefore, for SICO approach, one can

simulate the pseudo observations ỹi and estimate bP(di|x i,zi) for each sample and conduct

the weighted regressions on the combined multiple original samples and counter-factual

pseudo samples. For CE approach, one can calculate the conditional expectation of the

S(x i, ỹi,zi,β) over ỹi and estimate bP(di|x i,zi) separately for each sample, and conduct

weighted regressions using combined multiple samples by taking the weights from each

individual studies. For multiple case-control studies have overlapped observations, and the

details of the joint analysis, we refer to future research to handle them.

6.2.2 Secondary analysis in nested/matched case-control designs

Another direction of extending the estimating equations is to adapt more complex de-

signs. A lot of GWAS use nested/matched case-control designs to improve the efficiency. A

nested/matched case-control study is a special type of a case-control study in which only

a subset of controls from the cohort are compared to the cases. Unlike in traditional case-

cohort study that cases are compared to a random subset of controls, in a nested/matched

case-control study, some number of controls are selected for each case from that case’s

matched risk set. By matching on factors such as age and selecting controls from relevant

risk sets, the nested case control model is generally more efficient than a case-cohort design

with the same number of selected controls.

To conduct the secondary analysis for a nested case-control sample, one must take into

account the way in which controls are sampled from the cohort. It is common that re-

searchers treat the cases and selected controls as the original cohort and performing a

logistic regression. This can result in biased estimates as the controls are not a representa-

tive sample of the general population. We could possibly expand our proposed approach to

account for the missing covariates among those who are not selected into the study from

the population. This would improve the estimation of bP(di|x i,zi), and results in an unbi-

ased estimates for the general population. Further research needs to be carried out in this

direction for the nested/matched case-control studies.
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6.2.3 Secondary analysis in sequencing studies

The availability of high-throughput sequencing enables rapid sequencing of large stretches

of DNA base pairs spanning entire genomes, and produces new statistical questions to

analyze the association between the secondary trait and rare variants. While the proposed

approaches provide a general framework for case-control studies that are not limited to

GWAS, they could not be simply applied sequencing studies. One major reason is that the

rare variants have very low frequency (MAF< 1%), so there are few occurrences of the

variants in dataset of reasonable sample size. Second, the rare variants are numerous that

over 95% of variants in a region have MAF< 1%, and this increased penalty for multiple

testing. Finally, the effect sizes of the rare variants are not expected to be very large with

expected odds ratio roughly between 4 − 5. As a result, standard association tests and

regressions used in GWAS have very low power to detect the rare variants.

Therefore, when conducing the secondary analysis for sequencing studies, we need first

consider the grouping strategies to handle the rare variants and then apply the proposed

approaches to the treated genetic information for estimation. For example, we could in-

corporate region-based analysis, such as burden tests and sequence kernel association test

[Wu et al., 2011], to aggregate the rare variants within a region, and then apply our esti-

mating equations to the aggregated data to detect the effects in regions. We refer to future

research for handling the sequencing data.

In summary, while proposed for GWA case-control studies, the new estimating equation

based approach can be extended in a number of directions to accommodate the secondary

analysis for many types of genetic studies. Further study is needed to realize these ideas.
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