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ABSTRACT

Object Part Localization Using Exemplar-based Models

Jiongxin Liu

Object part localization is a fundamental problem in computer vision, which aims to let machines

understand object in an image as a configuration of parts. As the visual features at parts are usually

weak and misleading, spatial models are needed to constrain the part configuration, ensuring that

the estimated part locations respect both image cue and shape prior. Unlike most of the state-

of-the-art techniques that employ parametric spatial models, we turn to non-parametric exemplars

of part configurations. The benefit is twofold: instead of assuming any parametric yet imprecise

distributions on the spatial relations of parts, exemplars literally encode such relations present in

the training samples; exemplars allow us to prune the search space of part configurations with high

confidence.

This thesis consists of two parts: fine-grained classification and object part localization. We

first verify the efficacy of parts in fine-grained classification, where we build working systems that

automatically identify dog breeds, fish species, and bird species using localized parts on the object.

Then we explore multiple ways to enhance exemplar-based models, such that they can be well

applied to deformable objects such as bird and human body. Specifically, we propose to enforce

pose and subcategory consistency in exemplar matching, thus obtaining more reliable hypotheses

of configuration. We also propose part-pair representation that features novel shape composing with

multiple promising hypotheses. In the end, we adapt exemplars to hierarchical representation, and

design a principled formulation to predict the part configuration based on multi-scale image cues and

multi-level exemplars. These efforts consistently improve the accuracy of object part localization.
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Chapter 1

Introduction

Part is a very important concept in visual recognition. By decomposing an object into parts, we can

easily describe the distinctive visual features of the object: first, the presence or absence of a part

defines a basic-level object category. For instance, Car has Tire, Tree has Trunk, Bird has Wing,

but Human does not have any of these parts; second, within a basic-level category such as Bird,

the visual appearance at the parts capture the subtle information to differentiate its subcategories

(i.e., bird species). For example, the only evident difference between Kentucky Warbler and Canada

Warbler lies in the Throat. Such example is related to a hot topic in computer vision: fine-grained

classification, the goal of which is to distinguish between subcategories which are semantically and

visually similar. Besides object categorization, parts also benefit attribute classification, such as

recognizing the apparel, hair style, hand gesture on a human body. Therefore, the importance of

parts motivates us to tackle the problem of object part localization. In this thesis, we target semantic

parts (e.g., Eye, Belly, Leg, etc.) that are well defined and can be labeled as keypoints.

1.1 Problem Statement

Given an image of object, we are interested in locating the parts on the object, which is essentially

to understand how the object is situated within the image. This is a challenging problem, as (1)

mapping raw image to a structured output is highly non-linear; (2) the part configuration of an

object may vary widely across images due to different locations, scales, orientations (both in-plane

and off-plane), and deformation of the object. In addition, the appearance variations of the object,
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compounded with variable background, adds to the complexity.

The feasibility and importance of part localization can be both demonstrated by fine-grained

categories. On the one hand, subclasses of a basic-level category share the same set of parts and

anatomic structure (for living objects), making it possible to detect the parts across the subcate-

gories. On the other hand, visual appearance at parts provides the key to fine-grained classification

as subcategories usually exhibit different shapes, colors, and textures at parts. However, as the dif-

ference can be very subtle, the classification task is even difficult to humans without proper training.

Therefore, the first question we need to answer is how well machines can perform by using localized

parts.

As proposed by [Hillel and Weinshall, 2006], subordinate class recognition can be solved with

a two-stage algorithm: (1) identify the parts of the basic-level object; (2) differentiate subordi-

nate classes using the features implementing the parts. This idea hasn’t received enough attention

in solving modern fine-grained problems where there are much larger number of subcategories.

Therefore, we are among the first to instantiate the idea as a systematic approach for fine-grained

classification, witch should be generalizable to different categories. In addition, we place emphasis

on well-defined and detectable parts which ensure strict correspondence across different instances,

facilitating both training and testing.

As the classification method is built on top of detected parts, the accuracy of part locations is

critical to the overall performance. Our next focus is then on designing part localization methods

that are capable of finding the parts regardless of the variations of the objects. Generally, object

part localization relies on modeling the appearance and spatial relations of parts. However, previous

appearance and spatial models have difficulty achieving the ideal effect due to the following rea-

sons: (1) the local appearance at parts is inherently ambiguous and misleading, lacking sufficient

cues to be distinct from negative patterns on and off the object. In addition, the same part may

exhibit multi-modal appearance on different instances, thus having large intra-class variations; (2)

poses1 vary a lot across instances, making widely used spatial models such as multivariate Gaus-

sian or tree-structured pair-wise Gaussian distributions not capable of accurately representing the

space of plausible poses. To cope with the first problem, we seek to explore the pool of diverse

appearance models, each of which may be limited, but performs much better than random. For the

1Pose means the configuration of parts, which can be either global (for all the parts) or local (for subset of parts).
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second issue, we turn to non-parametric spatial models (i.e., exemplars-based models [Belhumeur

et al., 2011]), which literally represent the pose space with a discrete set of training exemplars.

However, the applicability of exemplars-based models in other domains than human faces is yet to

be explored. Ideally, exemplars should impose strong constraints on the part configuration while

having flexibility to adapt to a particular testing sample.

In summary, our problem statement goes as follows. Object part localization is a fundamental

and challenging problem in computer vision, which is also critical to high-level vision tasks such

as fine-grained classification. However, the effect of parts has not received enough attention or

study. We decide to build a generalizable working system for fine-grained classification using parts,

from which we can verify if parts help, and evaluate how much performance gain we can achieve

from them. As for object part localization, exemplar-based models have shown promising results

on human faces, but their applicability to other domains (especially for highly deformable objects)

is yet to be explored. We need to come up with methods that enhance the strength and expres-

siveness of exemplars by combining them with rich appearance models as well as flexible object

representations.

1.2 Our Approach

To demonstrate the effect of parts, we build fully automatic systems for fine-grained classification

using part-based method (Chapter 3 and Chapter 4). The pipeline is: (1) detect the parts describable

at point locations; (2) extract local features at or around the detected parts; (3) feed the features

to the classification model. Our method differs from conventional image classification techniques

in that it enforces strict part-level correspondences in the extracted features. In other words, a

particular portion in the feature vector corresponds to a specific part. Extracting local features at

or around parts also allows us to capture the subtle discriminative information that is only present

in a small region on the object. Similar practice has been seen in human face recognition [Arca et

al., 2006; Kumar et al., 2009; Yin et al., 2011], but our work generalizes the part-based method to

a broader domain than the well-studied human face. Specifically, we target fine-grained categories

where detecting object parts with acceptable accuracy is much harder than that for human faces.

Nevertheless, we manage to do so with well-designed method of part localization. After our work,
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several recent methods of fine-grained classification [Berg and Belhumeur, 2013; Gavves et al.,

2013; Xie et al., 2013] also rely on parts.

Localizing the parts of an object with large appearance and pose variations calls for appropri-

ate models. The appearance models are generally classifiers that differentiate the target part from

other parts as well as the background (In the context of part localization, such classifier is called

part detector). One typical implementation of the classifier is a binary Support Vector Machine

(SVM) [Cortes and Vapnik, 1995] with gradient-based features such as SIFT [Lowe, 2004] and

HOG [Dalal and Triggs, 2005]. Our method does not count on a single classification model as none

of existing classifiers is perfect due to the problems discussed in Sec. 1.1. Instead, we aim to build

a rich set of diverse models which collaboratively capture the visual appearance of a part. In Chap-

ter 5, we build both pose and subcategory detectors for each part. The former one scores the local

pose at a part regardless of the identities of the object, while the latter one tries to learn the class-

specific features at the part. We push this idea to an extreme in Chapter 6, where we build detectors

for each pair of parts. For an object with n parts, we have up to n−1 pair detectors corresponding to

each part. In Chapter 7, we build much fewer detectors thanks to the power of Deep Convolutional

Neural Network (DCNN), but we still have two DCNN models that capture part appearance based

on part relations at different scales.

Appearance models are not the only key to solving part localization as there exist strong spa-

tial relations between parts, entailing some spatial models to constraint the part locations. For this

purpose, we employ exemplars for their simplicity and complete representation of pose variations.

Exemplars just literally record the part configurations seen in the training samples, without assuming

any distribution on the part configuration or part relation. Our work then is to exploit them in the pur-

suit of reliable and expressive spatial models. For reliability, the strategy is to combine exemplars

with rich appearance models. In Chapter 5, we follow the paradigm of Consensus-of-Exemplars

(CoE) approach [Belhumeur et al., 2011], but change the evaluation of hypotheses (geometrically

transformed exemplars) such that the highest-scoring ones are more likely to fit the testing sample

in geometry. To do this, we let exemplars dictate not only the relative part locations, but also the

local configurations in the neighborhood of each part (referred to as part pose). In addition, we

force each exemplar to carry a unique yet unknown identity label. During testing, each hypothesis

is scored based on (1) how likely the parts with the corresponding poses are at the hypothesized
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locations (pose consistency); and (2) how likely the parts from a particular class are at those loca-

tions (subcategory consistency). As a result of more specific evaluation, we achieve more reliable

estimation of the query pose.

In Chapter 6, we further exert efforts on reliability and expressiveness of exemplar-based mod-

els. In this work, we propose part-pair representation, where an object is treated as a collection of

part pairs. Therefore, the score of a hypothesis indicates how likely its part pairs are present in the

image. Due to the large number of part pairs, we enjoy reliable estimation of query poses without

considering the subcategory consistency as in Chapter 5. We also observe that in CoE approach,

the plausible configurations are limited by the available exemplars. This is not a problem as long as

the exemplars densely cover the pose space. However, the efficacy of CoE approach degrades given

insufficient training samples and large articulated deformation (e.g., human body). To improve the

expressiveness of exemplars, we take two measures. First, we relax the pose constraints from an ex-

emplar by focusing on a single part, where only the part pairs sharing the target part are considered.

In such case, exemplars that do not strictly fit the testing sample can still be useful if the parts are

within a tolerable error from the actual part locations. Second, we explicitly compose novel config-

urations from hypotheses, achieving potentially better matching between composed shape and the

testing sample. As such, we bypass non-linear consensus which is problematic when the majority

of top-scoring hypotheses are incorrect.

Finally, we propose a discriminatively trained formulation to infer part configurations in Chap-

ter 7. The formulation contains image dependent spatial terms which combine multi-scale DCNN-

based appearance models with hierarchical exemplar-based models. As we employ strong appear-

ance models, we still achieve reliable estimation of part relations being present in the test image, thus

ensuring the reliability of exemplars. The expressiveness of exemplars is boosted through hierarchi-

cal object representation. Specifically, the hierarchy is a tree structure, with each layer containing

parts (tree nodes) at roughly the same level of granularity. Accordingly, we have exemplar-based

models for each tree node, representing the poses of the corresponding part. Therefore, the granu-

larity of spatial relations dictated by the exemplars also varies. Take human body as an example, the

exemplars at a fine scale capture the local configurations of limbs (e.g., Right arm, Left leg), while

the exemplars at a coarse scale capture rough configurations of the body (e.g., a standing person,

an upside down person). In a nutshell, we improve the applicability of exemplar-based models by



CHAPTER 1. INTRODUCTION 6

generating models at different levels of granularity and making an assumption of independence for

models at different levels.

1.3 Thesis Contributions

The main contributions of this thesis are

• Two datasets of fine-grained categories with part labels: Columbia Dog Dataset and Columbia

Fish Dataset (Chapter 3 and Chapter 4)

• Complete working systems that perform fine-grained classification on different categories,

with iPhone App released (Chapter 3 and Chapter 4)

• A method of leveraging exemplars, which are originally identity free, to perform classification

by inferring class-specific parts (Chapter 3)

• A method of enforcing pose and subcategory consistency on exemplar-based models to achieve

reliable part localization (Chapter 5)

• A novel part-pair representation that enables customizable spatial constraints on the parts

(Chapter 6)

• An explicit shape composing method that takes advantage of the part-pair representation, and

eliminate the use of imperfect Consensus operation (Chapter 6)

• A novel discriminatively trained formulation to infer part configurations, featuring hierarchi-

cal object representation (Chapter 7)

• An efficient approximate algorithm that achieves good-enough results in searching for the

optimal part configuration (Chapter 7)

1.4 Organization

Now we describe the outline of the thesis. There two topics about parts: part-based fine-grained

classification and exemplar-based part localization. Before getting to the two topics, Chapter 2

reviews related works about them as well as object detection which shares some techniques with

part localization, especially on the appearance models.
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Our method of fine-grained classification is described in Chapter 3 and Chapter 4. Chapter 3 de-

velops a working system for dog breed classification using part-based approach. Chapter 4 presents

follow-up works that apply a simplified approach (due to upgraded part localizers) to fishes and

birds.

After verifying the benefit of parts, we are then focused on improving the accuracy of part lo-

calization with enhanced exemplar-based models, including Chapter 5, Chapter 6, and Chapter 7.

Chapter 5 addresses part localization specifically for fine-grained categories. It proposes to enhance

the exemplars by enforcing pose and subcategory consistency on the parts. However, it still uses the

original consensus module to predict the final part locations. Chapter 6 goes beyond fine-grained

categories, and introduces part-pair representation to improve the applicability of exemplar-based

models. Chapter 7 employs hierarchical representation which yields expressive multi-level exem-

plars, and learns the formulation to score part configurations in a principled way. In summary, the

three chapters extensively study and improve the application of exemplars in object part localization

using different methodologies.

Finally in Chapter 8, we summarize this thesis and discuss the future works that can extend our

ideas and methods to further advance the techniques of object part localization.
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Chapter 2

Related Work

2.1 Fine-grained Classification

Conventional image classification focuses on recognizing basic-level categories, and generally fa-

vors the paradigm of bag-of-words (or bag-of-features) approach: a set of local features are extracted

at generic locations or interesting points within an image, sampling both object and background;

then the local features are coded and pooled to form a vector to represent the image content; finally,

the vector is fed to a classifier to predict the class label. Such paradigm has demonstrated impres-

sive levels of performance after years of development. Early works studied the features and pooling

methods, including [Wallraven and Caputo, 2003; Csurka et al., 2004; Jurie and Triggs, 2005;

Grauman and Darrell, 2005; Lazebnik et al., 2006]. More recent works achieved further improve-

ment by developing new coding schemes [Wang et al., 2009; Zhou et al., 2010; Su and Jurie, 2011]

and more sophisticated classification models [Gehler and Nowozin, 2009].

Unlike basic-level image classification, fine-grained classification aims at differentiating sub-

classes of the same basic-level categories, such as dog breeds and bird species. As the subcategories

are visually similar, fine-grained classification relies on the features that can capture subtle differ-

ences in the appearance. As a result, it is important to focus on the target object rather than the

background regions (background generally contains more noise than useful contextual information

about the object identity). There have been approaches that try to exclude the background: [Yao

et al., 2011] uses pre-cropped foreground images, and mines discriminative features on the ob-

ject. [Branson et al., 2010] also uses pre-cropped images and build an interactive system for bird
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species classification, where users answer simple questions about the shape, color, and texture of the

parts to assist the classification. [Nilsback and Zisserman, 2008] segments the object first, and uses

a multiple kernel framework [Vedaldi et al., 2009] to combine different features extracted from the

object. [Belhumeur et al., 2008; Kumar et al., 2012] identifies plant species using images of leaves.

They also rely on image segmentation to obtain the region of interest before extracting descriptors.

Face recognition is an extreme case of fine-grained classification, where the most effective meth-

ods use features extracted from local image patches on geometrically aligned faces [Arca et al.,

2006; Kumar et al., 2009; Yin et al., 2011; Berg and Belhumeur, 2012]. Same idea can be ap-

plied to general fine-grained problems where subtle differences in appearance across subcategories

usually lie in the parts, but there are additional challenges. First, localizing the parts is possible

as different subcategories still share common parts. However, due to wide intra-class variations of

parts, it is not easy to locate them even with decent accuracy. Second, even if the part locations are

correct, for most objects other than human faces, geometric alignment such as affine transformation

is not suitable. Fortunately, it turns out to be sufficient that the parts establish strict correspondence

between instances, as classifiers can capture the discriminative features of parts easily.

Vision community has realized the importance of parts in fine-grained classification, and there

are multiple works including ours adopting part-based approach. Especially relevant works are [Far-

rell et al., 2011; Zhang et al., 2012], which use the Poselet framework [Bourdev et al., 2010] to

localize the bird parts (e.g., head and body), and extract feature from those parts. [Parkhi et al.,

2012] employs Deformable Part Models (DPMs) [Felzenszwalb et al., 2010b] to localize the head

of cats and dogs, and use image segmentation to predict the body region. Color and texture features

are extracted from these parts to identify the breeds. As DPMs contain the notion of parts (i.e.,

the templates that covers sub-regions on an object), some methods also extract the descriptors from

DPM parts directly [Zhang et al., 2013; Chai et al., 2013].

In recent years, Deep Convolutional Neural Network (DCNN) has achieved great success on

image classification. It significantly advances the state of the art on large-scale datasets, such as the

1000-category ImageNet [Krizhevsky et al., 2012; Sermanet et al., 2014]. As DCNN has very large

capacity to learn discriminative features, it can directly takes as input the raw image for general

image classification. However, when it comes to fine-grained classification, part-based approach

is still useful to achieve excellent performance, as shown in [Branson et al., 2014; Zhang et al.,
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2014a].

2.2 Object Detection

Object detection usually serves as the preprocessing for object recognition, as object bounding box

naturally denotes the region of interest. However, detecting the object automatically and accurately

is not easy, especially when there are large intra-class appearance variations. The difficulty of this

problem has prompted great progress in the research of visual features and classification models.

Since the ground-breaking work of [Viola and Jones, 2001], vision community gradually pushes the

limit, and targets more challenging problems such as highly deformable objects in unconstrained

aspects, compounded with cluttered background.

Classifier and feature are the basis of object detector. A variety of classifiers have been devel-

oped, including neural network [Rowley et al., 1998], boosted classifier [Viola and Jones, 2001],

support vector machine [Cortes and Vapnik, 1995], and random forest [Breiman, 2001; Gall et al.,

2011]. Object detector is generally applied in a sliding-window fashion, evaluating each possible

sub-window in an image. This is a computationally expensive process, as the location, scale and

orientation of the target object are unknown. To speed up object detection, cascaded structure [Vi-

ola and Jones, 2001; Zhang and Viola, 2007; Felzenszwalb et al., 2010a; Cevikalp and Triggs,

2012] and branch-and-bound framework [Lampert et al., 2008; Blaschko and Lampert, 2009] were

designed.

Besides classifiers, there are extensive efforts in designing good features for object detection.

The most popular ones are gradient-based features such as SIFT [Lowe, 2004] and HOG [Dalal and

Triggs, 2005]. As HOG grids can form rectangular windows with various aspect ratios, they are

widely used to detect all kinds of objects, as demonstrated by the Dalal-Triggs pedestrian detec-

tor [Dalal and Triggs, 2005], the well-known DPMs [Felzenszwalb et al., 2010b], the Exemplar-

SVM detector [Malisiewicz et al., 2011], and other modern object detectors [Bourdev et al., 2010;

Zhu et al., 2010]. However, HOG features have limitations. [Ren and Ramanan, 2013] claims that

HOG lacks the ability to represent richer patterns than edge and contour. [Vondrick et al., 2013] also

reveals that in HOG space, instances of different classes may look the same, which is the cause of

false positives in object detection. In addition, HOG features are criticized by its rigidity and lack of
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localization accuracy. To design better features, [Ren and Ramanan, 2013] proposes Histogram of

Sparse Codes (HSC), which is a higher level image representation than HOG. [Dollár et al., 2009;

Dollár et al., 2010] propose integral channel features, which are discriminatively selected to build a

cascade detector [Zhang and Viola, 2007].

Parts also play an important role in object detection, no matter whether they carry semantic

meanings or not. The most successful object detectors include DPMs [Felzenszwalb et al., 2010b]

and Poselets-based detectors [Bourdev and Malik, 2009; Bourdev et al., 2010]. DPMs is built on

the pictorial structure [Felzenszwalb and Huttenlocher, 2005], where part templates are arranged in

a deformable configuration, and a mixture of models are used to capture the pose variations. Such

flexibility in DPMs results in a much better model than rigid full-body detector [Dalal and Triggs,

2005]. [Bourdev and Malik, 2009; Bourdev et al., 2010] introduce a new notion of parts, Poselets,

which are tightly clustered in configuration space of keypoints, as well as appearance space. Poselet

activations serve as context for each other, and false detections of Poselets can be suppressed by

exploiting their mutual consistency.

To further improve the performance of object detection, additional information is incorporated,

including object-level context and image segmentation. A straightforward instantiation of context

is the co-occurrence of objects in multi-class detection tasks [Felzenszwalb et al., 2010b; Sadeghi

and Farhadi, 2011; Desai et al., 2011]. Some works also mine the context information from the

surrounding background regions [Li et al., 2011] or even from the whole image [Blaschko and

Lampert, 2009; Song et al., 2011]. As object usually occupies the foreground in an image, image

segmentation and object detection can be solved jointly, serving as context for each other, as shown

in [Gould et al., 2009; Gao et al., 2011; Fidler et al., 2013].

Recently, DCNN has also demonstrated its capacity in object detection tasks [Szegedy et al.,

2013; Sermanet et al., 2014; Girshick et al., 2014]. [Szegedy et al., 2013] builds the last layer of

DCNN as a regression model, which instead of outputting the probabilities of class labels, directly

predicts the normalized coordinates of the object bounding box. [Sermanet et al., 2014] uses a

sliding-window paradigm to apply DCNN as conventional object detector. As the sliding-window

detection is computationally expensive, speed-up can be achieved by generating region proposals

for the object, and feeding them to DCNN to evaluate [Girshick et al., 2014].
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2.3 Part Localization

Part localization goes beyond object detection, as it requires additional understanding about the pose

of object. As such, the localization results provide detailed information about the object, facilitating

subsequent tasks such as fine-grained classification. Existing works mainly focus on two aspects of

the problem: one is to build strong part detectors, and the other is to design reliable and expressive

spatial models. As most of the techniques in object detector can be directly applied to part detector,

we will mainly discuss the spatial models in this section.

Part localization relies on prior knowledge about the global configuration. In other words, the re-

lations between parts encoded by spatial models should be exploited. Statistical shape models such

as Active Shape Models [Milborrow and Nicolls, 2008] and Active Appearance Models [Cootes et

al., 2001] model the part configurations of an object with multivariate Gaussian distribution. Al-

though the follow-up works improved on fitting the models to the image [Matthews and Baker, 2004;

Saragih et al., 2009], these methods still cannot handle a wide range of pose variations.

As people target more challenging datasets [Ramanan, 2006; Johnson and Everingham, 2010;

Wah et al., 2011], tree-structured model becomes very popular due to its generalization ability and

computational efficiency. It is a graphical model, where nodes denote the parts and edges denote the

part relations. Such model is applied in the same way as DPM, except for that parts are explicitly

defined and annotated during training. Following the work of [Felzenszwalb and Huttenlocher,

2005], different variants have been developed [Everingham et al., 2006; Yang and Ramanan, 2011;

Zhu and Ramanan, 2012; Sapp and Taskar, 2013; Sun and Savarese, 2011; Branson et al., 2011].

All of these methods use a mixture of trees to capture the pose variations. [Sun and Savarese, 2011;

Branson et al., 2011] additionally employ hierarchical representation to enrich the tree-structured

model with parts at different granularity levels. To train the model on large-scale datasets, a fast

structured SVM solver is developed in [Branson et al., 2013]. In spite of these efforts, a fundamental

problem with the tree-structured model still remains: as the model only captures pair-wise spatial

relations between parts, higher-order part interactions are ignored, making the model lack strength

and precision in constraining the whole configuration. Such drawback is not obvious in human pose

estimation, presumably because the part interactions on human body are mainly confined within

limbs. There are efforts to go beyond the tree structure. [Wang et al., 2011] proposes a loopy model

that organizes parts in a hierarchy, while [Ramakrishna et al., 2014; Tompson et al., 2014] use
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complete graph, treating all the other parts as the neighbors of a target part.

Another family of models is Constrained Local Model [Cristinacce and Cootes, 2006; Bel-

humeur et al., 2011; Amberg and Vetter, 2011; Zhou et al., 2013], which employs global shape

model to guide the search of individual parts. [Amberg and Vetter, 2011] uses a generic 3D face

model as the shape prior, limiting its applicability to relatively rigid objects such as human face. [Bel-

humeur et al., 2011] proposes Consensus-of-Exemplars (CoE) approach that uses an ensemble of 2D

exemplars to capture the shape variations. [Zhou et al., 2013] presents exemplar-based graph match-

ing, which replaces the consensus stage of CoE approach with explicit candidate selection. We find

exemplar-based approach is very promising in that labeled exemplars literally capture plausible part

configurations without assuming the distribution of part relations. However, their application in

other domains than human faces is yet to be explored.

A very different thread of research is shape regression which maps image features to shape

increment [Dantone et al., 2012; Cao et al., 2012]. It requires that features should have strong cor-

relation to the shape, and such correlation should be consistent enough across different samples.

Low-level features such as raw pixel values suffice for human faces, presumably due to that local

visual patterns on human faces are relatively similar. However, for objects with more diverse ap-

pearance, it is hard to find appropriate features. Another limitation of shape regression is that it

needs object bounding box as input, which is not practical.

DCNN has also been successfully applied to face part localization [Sun et al., 2013] and human

pose estimation [Toshev and Szegedy, 2014; Chen and Yuille, 2014; Tompson et al., 2014]. [Sun

et al., 2013] proposes a cascade of three-level convolutional networks, where each level consists

of multiple networks targeting different input regions. As for human pose estimation, [Toshev and

Szegedy, 2014] builds DCNN-based part regressors to achieve the effect of holistic pose reasoning,

while [Chen and Yuille, 2014; Tompson et al., 2014] combine DCNN-based part detectors with

graphical models.

Recently, we observed the trend of designing image dependent spatial models. [Pishchulin et

al., 2013a; Pishchulin et al., 2013b] extend pictorial structure by using Poselet dependent unary

and pairwise terms, where Poselets are detected on the fly [Bourdev et al., 2010]. [Chen and Yuille,

2014] incorporates image dependent pairwise relations into the formulation of a graphical model.

Our work in Chapter 7 also instantiates this idea.
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Chapter 3

Dog Breed Classification

In this chapter, we build a working system for fine-grained classification, where the goal is to iden-

tify dog breeds. The main characteristic of such problem is that instances from different classes

share the same part configuration (which makes classification difficult) but have wide variation in

the shape and appearance of parts (which makes part detection difficult). However, we will show

that using a state-of-the-art part localizer, we can detect the parts with high accuracy, and that ex-

tracting features based on the detected parts improves the classification performance.

After collecting and analyzing the dataset, we design a hierarchy of parts (e.g., face, eyes, nose,

ears, etc.) that helps build correspondence between different samples. To localize the face parts,

we first use a sliding window detector to locate dog face. Then we try to localize eyes and nose

within the face region by using Consensus-of-Exemplars approach (CoE) [Belhumeur et al., 2011]

which combines appearance-based detections with a large set of exemplar-based geometric models.

Based on this small set of face parts (eyes and nose), we align the test sample with training exem-

plars from each dog breed, and hypothesize locations of additional breed-specific parts, such as ear

whose position and appearance vary greatly across breeds (detecting such parts is significantly more

expensive and less reliable). Once all the part locations are estimated, we extract image features at

and around the parts for use in classification. An illustration of our system at the testing stage is

shown in Fig. 3.1.
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Figure 3.1: (a) Given an image, our method automatically detects dog face, (b) localizes eyes and

nose, (c) aligns the face and extracts grayscale SIFT features (yellow windows) and a color his-

togram (red window), (d) infers remaining part locations from exemplars (cyan dots) to extract

additional SIFT features (magenta windows), and (e) predicts the breed (green box) along with the

next best guesses from left to right. The numbers correspond to breed names listed in Tab. 3.1.

3.1 Columbia Dog Dataset

To train and evaluate our system, we have created a dog dataset1 of natural images of dogs, down-

loaded from sources such as Flickr, Image-Net, and Google. The dataset contains 133 breeds of

dogs with 8, 351 images. The images were not filtered, except to exclude images in which the dog’s

face was not visible. Sample faces from all the breeds are shown in Fig. 3.2, and the list of breed

names is shown in Tab. 3.1. Not only is there great variation across breeds – making detection a

challenge, but there is also great variation within breeds – making identification a challenge. Please

see the blowup of sample images of Breed 97: Lakeland terrier. Note the variations in the color, ear

position, fur length, pose, lighting and even expression.

Each of the images was submitted to Amazons Mechanical Turk (MTurk) to have the breed label

verified by multiple workers. Afterward, each image was submitted again to MTurk to have parts of

the dog’s face labeled. Eight points were labeled in each image by three separate workers. If there

was gross disagreement amongst the workers in the locations of these points, we resubmitted the

1The dataset is available at http://faceserv.cs.columbia.edu/DogData/
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Figure 3.2: Sample faces from all the breeds. The breeds are numbered according to the alphabetical

order of names.

Figure 3.3: Sample dog images from our dataset, with parts labeled by MTurk workers.

image again for relabeling. The points that were labeled were the eyes, the nose, the tips of both

ears, the top of the head, and the inner bases of the ears. In Fig. 3.3, we show the average location,

over three workers, for these eight points.
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1:Affenpinscher (80) 28:Bluetick coonhound (44) 55:Curly-coated retriever (63) 82:Havanese (76) 109:Norwegian elkhound (56)

2:Afghan hound (73) 29:Border collie (93) 56:Dachshund (82) 83:Ibizan hound (58) 110:Norwegian lundehund (41)

3:Airedale terrier (65) 30:Border terrier (65) 57:Dalmatian (89) 84:Icelandic sheepdog (62) 111:Norwich terrier (55)

4:Akita (79) 31:Borzoi (70) 58:Dandie dinmont terrier (63) 85:Irish red and white setter (46) 112:Nova scotia duck tolling retriever (67)

5:Alaskan malamute (96) 32:Boston terrier (81) 59:Doberman pinscher (59) 86:Irish setter (66) 113:Old english sheepdog (49)

6:American eskimo dog (80) 33:Bouvier des flandres (56) 60:Dogue de bordeaux (75) 87:Irish terrier (82) 114:Otterhound (44)

7:American foxhound (63) 34:Boxer (80) 61:English cocker spaniel (76) 88:Irish water spaniel (64) 115:Papillon (79)

8:American staffordshire terrier (82) 35:Boykin spaniel (66) 62:English setter (66) 89:Irish wolfhound (66) 116:Parson russell terrier (38)

9:American water spaniel (42) 36:Briard (81) 63:English springer spaniel (66) 90:Italian greyhound (73) 117:Pekingese (60)

10:Anatolian shepherd dog (62) 37:Brittany (62) 64:English toy spaniel (49) 91:Japanese chin (71) 118:Pembroke welsh corgi (66)

11:Australian cattle dog (83) 38:Brussels griffon (71) 65:Entlebucher mountain dog (53) 92:Keeshond (55) 119:Petit basset griffon vendeen (39)

12:Australian shepherd (83) 39:Bull terrier (87) 66:Field spaniel (41) 93:Kerry blue terrier (44) 120:Pharaoh hound (49)

13:Australian terrier (58) 40:Bulldog (66) 67:Finnish spitz (42) 94:Komondor (55) 121:Plott (35)

14:Basenji (86) 41:Bullmastiff (86) 68:Flat-coated retriever (79) 95:Kuvasz (61) 122:Pointer (40)

15:Basset hound (92) 42:Cairn terrier (79) 69:French bulldog (64) 96:Labrador retriever (54) 123:Pomeranian (55)

16:Beagle (74) 43:Canaan dog (62) 70:German pinscher (59) 97:Lakeland terrier (62) 124:Poodle (62)

17:Bearded collie (77) 44:Cane corso (80) 71:German shepherd dog (78) 98:Leonberger (57) 125:Portuguese water dog (42)

18:Beauceron (63) 45:Cardigan welsh corgi (66) 72:German shorthaired pointer (60) 99:Lhasa apso (53) 126:Saint bernard (37)

19:Bedlington terrier (60) 46:Cavalier king charles spaniel (84) 73:German wirehaired pointer (52) 100:Lowchen (42) 127:Silky terrier (51)

20:Belgian malinois (78) 47:Chesapeake bay retriever (67) 74:Giant schnauzer (51) 101:Maltese (60) 128:Smooth fox terrier (38)

21:Belgian sheepdog (80) 48:Chihuahua (68) 75:Glen of imaal terrier (55) 102:Manchester terrier (36) 129:Tibetan mastiff (60)

22:Belgian tervuren (59) 49:Chinese crested (63) 76:Golden retriever (80) 103:Mastiff (72) 130:Welsh springer spaniel (55)

23:Bernese mountain dog (81) 50:Chinese shar-pei (62) 77:Gordon setter (54) 104:Miniature schnauzer (53) 131:Wirehaired pointing griffon (37)

24:Bichon frise (77) 51:Chow chow (78) 78:Great dane (50) 105:Neapolitan mastiff (39) 132:Xoloitzcuintli (33)

25:Black and tan coonhound (46) 52:Clumber spaniel (61) 79:Great pyrenees (74) 106:Newfoundland (62) 133:Yorkshire terrier (38)

26:Black russian terrier (51) 53:Cocker spaniel (59) 80:Greater swiss mountain dog (57) 107:Norfolk terrier (58)

27:Bloodhound (80) 54:Collie (71) 81:Greyhound (70) 108:Norwegian buhund (33)

Table 3.1: List of breed names. Each breed name is numbered, with the number of images shown

to the right.

3.2 Localizing Dog Face and Face Parts

Based on the annotations we collect, we divide the eight parts into two groups: generic parts (eyes

and nose) and breed-specific parts (the rest five parts). There are great variations across breeds,

especially on the breed-specific parts, which poses a challenge to the part localizer. Therefore, we

choose to first localize the generic (also much easier) parts with high accuracy at relatively low cost,

and incorporate the localization of breed-specific parts in the classification stage.

We design a three-step method to localize the generic parts: we first detect the dog face, pro-

ducing top-5 candidate face windows; then localize the generic parts within each face window; in

the end, the scores of face and parts are combined to determine the best face candidate as well as its

corresponding part locations.



CHAPTER 3. DOG BREED CLASSIFICATION 18

3.2.1 Face Detection

We create a dog face detector capable of detecting faces of all the dog breeds in our dataset. Al-

though we do not view our dog face detector as a technical contribution, it is a necessary component

of our complete vision system and is described briefly here.

Figure 3.4: Feature windows for dog face detection. Different colors indicate different scales.

The detector is a SVM classifier with grayscale SIFT [Lowe, 2004] descriptors as features.

Eight SIFT descriptors are extracted at fixed positions relative to the center point. The positions and

scales are chosen to roughly align with the geometry of a dog’s face (eyes and nose), as shown in

Fig. 3.4. Once extracted, these descriptors are then concatenated into a single 1, 024-dimensional

feature vector for our SVM classifier. We use about 4, 700 positive samples for training.

To generate the negative training samples from a dog image, we randomly scale the image, and

randomly place windows in the image such that they have little overlap with the ground-truth dog

face. We then extract the same eight SIFT descriptors within the non-face windows. As negative

examples are plentiful, we randomly select about 13, 000 ones. With both positive and negative

samples in hand, we train our SVM classifier using an RBF kernel.

As the SVM classifier is trained at a fixed rotation and scale, at detection time we must search not

only over location, but also over rotation and scale. We threshold and merge the repeated detections

with non-maximum suppression, and keep up to five detection windows with the highest scores as

the candidates.

3.2.2 Face Part Localization

Given a candidate face window, we can prune the searching space when localizing the face parts.

As the face detection result tells the rough location, size, and rotation of the face, we can normalize

the face to facilitate the part localization, as shown in Fig. 3.1 (b).
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To localize the parts of the dog face, we build on the Consensus-of-Exemplars approach [Bel-

humeur et al., 2011]. The method can accurately localize the generic parts (eyes and nose); we

handle more challenging face parts during the breed identification process (Sec. 3.3). Follow-

ing [Belhumeur et al., 2011], we combine low-level part detectors with labeled images that model

part locations. We first train a sliding window SVM detector for each face part. If we let I denote a

query image, let p = {p1, p2, . . . , pn} denote the locations of the targets parts in the image, and let

D = {d1, d2, . . . , dn} denote the detector responses for these parts in I , then our goal is to compute

p̂ = arg max
p

P (p|D). (3.1)

In [Belhumeur et al., 2011], probable locations for these parts are dictated by exemplars that have

been manually labeled. These exemplars help create conditional independence between different

parts. Let Xk = {x1k, x2k, . . . , xnk} be the locations of the parts in the kth exemplar image, Eq. 3.1 is

then rewritten as

p̂ = arg max
p

m∑
k=1

∫
t∈T

n∏
i=1

P (∆xik,t)P (pi|di)dt. (3.2)

Here the summation is over all m exemplars, i.e., in our case over all labeled examples of parts of

dogs’ faces. The integral is over similarity transformations t of the exemplars. xik,t denotes the part

i’s location in the kth exemplar, transformed by t, and ∆xik,t = xik,t − pi denotes the difference in

location of the part i in the query image from that of the transformed exemplar. ∆xik,t is modeled

as a Gaussian distribution with zero mean. This amounts to introducing a generative model of part

locations in which a randomly chosen example is transformed and placed in the image with noise

added. After assuming independence of parts in the deviation from the model (multiplication in

Eq. 3.2), we then marginalize the model out (summation and integral in Eq. 3.2).

This optimization is then solved by a RANSAC-like procedure, in which a large number of

exemplars are randomly selected and fit to the modes of the detection response maps. For each

hypothesis in which an exemplar is transformed into the image, the hypothesized part locations

are combined with the detector output; the best fitting matches then pool information, reaching a

consensus about the part locations. The consensus for part i is

p̂i = arg max
pi

∑
k,t∈M

P (∆xik,t)P (pi|di), (3.3)

where we sum over the best fitsM (produced by RANSAC) between the exemplars and detectors.
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3.2.3 Re-scoring Faces Using Localized Parts

As our dog face detector is not perfect, the hit rate is not satisfactory (about 90%) if we simply

choose the detection window with the highest score. If the face detection fails, the subsequent

processes are likely to fail too. Fortunately, we also find that among the five best scoring windows

from a test image, the hit rate can be as high as 98% which is acceptable in our problem. As the face

detection module is unaware of the face parts, we seek to re-score the obtained five face windows

by incorporating the scores of their corresponding part estimations. Formally, let φ(f) denote the

raw detection score of face window f , ψ(pi) denote the raw detection score of location pi for part

i. After converting them to probabilities with Sigmoid function σ(·), the final score of the face is

computed as

φ̂(f) = σ (φ(f))

(∏
i

σ
(
ψ(pi)

)) 1
n

, (3.4)

where n denotes the number of parts. In the end, we conduct the breed classification on the face

window with the highest φ̂(f).

3.3 Dog Breed Classification

Our classification algorithm focuses entirely on the face of dog. This is partly because face is

largely a rigid object, simplifying the problem of comparing images of different dogs. However, we

are also guided by the intuition that dog breeds are largely identifiable from their faces. A dog’s

body shape is not only difficult to identify and often not present in images, but also offers little

additional information except in a more extreme cases (e.g., dachshunds).

3.3.0.1 Formulation

If we denote the breed of a dog by B, our goal is to compute

B̂ = arg max
B

P (B|I). (3.5)

Let the part locations in the query image I be given by p. Then

B̂ = arg max
B

∫
P (B|I,p)P (p|I)dp. (3.6)

Here we integrate over all possible locations of the parts p in the image I .



CHAPTER 3. DOG BREED CLASSIFICATION 21

If the part locations can be accurately localized, then P (p|I) is approximately a delta function

about the true locations of the parts. Then if we write

p̂ = arg max
p

P (p|I), (3.7)

we have

B̂ = arg max
B

P (B|I, p̂)P (p̂|I). (3.8)

Note that P (p̂|I) is independent of B, so that

B̂ = arg max
B

P (B|I, p̂). (3.9)

This means that we can break our problem into two parts. First, we must compute arg maxp P (p|I)

as explained in the previous section. Next, we must compute arg maxB P (B|I, p̂). Note that

P (B|I, p̂) =
P (I|B, p̂)P (B|p̂)

P (I|p̂)
(3.10)

where the denominator P (I|p̂) is a constant that does not affect which breed will maximize the

probability. So

B̂ = arg max
B

P (I|B, p̂)P (B|p̂). (3.11)

However, our knowledge of what constitutes a breed is completely given by our set of labeled

exemplar images. We divide the information in these images into two parts. First, we let pB denote

the known locations of the parts of all exemplars for breed B. Then we let DB denote descriptors

characterizing the appearance of the exemplars for breed B. These descriptors are extracted at

corresponding part locations given by pB . So we can rewrite Eq. 3.11 as

B̂ = arg max
B

P (I|DB,pB, p̂)P (DB,pB|p̂). (3.12)

In approximating this, we assume that the breed appearance descriptorsDB are independent of their

positions, and we have a uniform distribution over breeds. This allows us to rewrite Eq. 3.12 as

B̂ = arg max
B

P (I|DB,pB, p̂)P (pB|p̂). (3.13)

This suggests that we compute P (I|DB,pB, p̂) by measuring how well the appearance of the query

image at and around the part locations given by p̂ agrees with the appearance of our exemplars in

their corresponding locations pB .
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(a) (b) (c) (d)

Figure 3.5: (a) The cluster centers used to create the color histogram. (b) The window used to

extract the color histogram based on detected locations of the eyes and nose (white dots). (c) The

SIFT descriptor windows (yellow) dictated by the eyes and nose. (d) Four different sets of inferred

locations (cyan dots) and the SIFT descriptor windows (magenta) dictated by these.

3.3.1 Training and Testing

To evaluate the first probability in Eq. 3.13, we train one vs. all SVMs for each breed B, and we

use two types of features: grayscale SIFT descriptors and a color histogram. We want to center

the collection of SIFT features at places dictated by the part locations. However, at this point we

are only able to locate the eyes and nose with high accuracy. Since the other parts are more breed-

specific, we infer the locations of the those parts from exemplars of breed B when generating the

negative training samples (to be analogous to the testing scenario). During testing, for each breed

B we choose r exemplars whose eye and nose locations are closest to the query’s after alignment

with a similarity transform. These exemplars are the ones that are most likely in the same pose as

the query image. Consequently, when we use these similarity transformations to infer the locations

of additional face parts, the parts are likely to align with those of the query image of the same breed.

For example, Fig. 3.5 (d) shows the detected locations (white dots) for the eyes and nose, and four

different sets of locations for the remaining parts (cyan dots) inferred from training exemplars of

the same breed.

To extract features, we center three SIFT descriptors at the eyes and nose. We center another

three descriptors at the three midpoints along the lines connecting the eyes and nose. The windows

for the six SIFT descriptors are shown in yellow in Fig. 3.5 (c). We place additional five descriptors

at the bases of the ears and the midpoints of the lines connecting the eyes with the other inferred
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Figure 3.6: The ROC and Precision/Recall (PR) curves for dog face detection. The criterion of a

correct detection is that the intersect over union ratio is above 0.6.

parts. The windows for the additional five SIFT descriptors are shown in magenta in Fig. 3.5 (d).

The color histogram is computed over a rectangular region centered on the dog’s face, shown in red

in Fig. 3.5 (b). The histogram is created using 32 color centers computed from a k-means clustering

across all exemplar images of all dogs, shown in Fig. 3.5 (a). The 32 color features along with the

11 SIFT features are concatenated to produce a 1, 440-dimensional feature vector.

Given a query image, the selected exemplars produces r feature vectors for each breed. We eval-

uate each of these using our one vs. all SVM and allow the best scoring feature vector to represent

the breed. In practice, we choose r = 10.

The second probability in Eq. 3.13 can be computed directly from the distribution of part loca-

tions in our exemplars. Since we are aligning the eyes with a similarity transform, only the relative

location of the nose could carry information about the breed. But we have not found it helpful to

include this.

3.4 Experiments and Results

In this section, we evaluate our system extensively using our Dog dataset. There are 133 breeds of

8, 351 images. We randomly split the images of each breed in a fixed ratio to get 4, 776 training

images and 3, 575 test images. We double the size of the training data by left-right flipping.
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Figure 3.7: Left: An example of part detection. (a) Original image overlaid with heat maps from

part detectors. Red is used for the left eye, green for the right eye, and yellow for the nose; better

scores are shown as brighter. (b) Detected parts using the maximum value of the detection scores.

(c) Detected parts using our full model. Right: Mean localization error divided by the inter-ocular

distance.

3.4.1 Face Detection

We implemented a baseline face detector which is a cascaded AdaBoost detector with Haar-like

features [Viola and Jones, 2001]. We compare the performance of our detector with the Adaboost

detector on our test images in Fig. 3.6. While Adaboost detector has seen much success in detecting

human faces, it is sometimes plagued by unwanted false positives. Perhaps due to the extreme vari-

ability in geometry and appearance of dog faces, this weakness in the cascaded Adaboost detectors

is exacerbated in the dog face domain. Even training on considerably more data (mining hard neg-

atives) and using 20 cascades, we could not create a detector with a desirable ratio of true positives

to false positives.

3.4.2 Part Localization

We evaluate the accuracy of part localization given the ground-truth face windows. We compare

our full model with a simpler method that locates a part at the mode of the SVM-based sliding

window detector for each part. We also compare our results with the agreement of human labelers

by determining the distance between the location indicated by one human labeler and the average of

the other two. We show qualitative results and make a quantitative comparison in Fig. 3.7. Note that

our full model improves over the results of just using a local part detector, and that our localization

error is better than the agreement among human labelers.
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Figure 3.8: Classification examples. Testing samples are in the first column, the closest 10 breeds

based on our method are shown to the right.

3.4.3 Breed Classification

As our goal is to design a working system, we evaluate the whole pipeline where the breed classifi-

cation is the last module. Fig. 3.8 gives qualitative results for some query images. For each query

in the first column, we overlay the image with the detected part locations for the eyes and nose. To

better show the performance, we rank the breeds based on their probability score. Our system works

with high accuracy, failing mostly when the face detection fails (these failures are excluded in these

examples) or when the parts detection fails on samples in which fur completely occludes the eyes.

We evaluate our pipeline quantitatively, and compare with three other methods: a bag-of-words

(BoW) model with spatial tiling [Vidaldi and Zisserman, 2011], a multiple kernel learning (MKL)

approach [Vedaldi et al., 2009] used in bird recognition [Branson et al., 2010], and locally con-

strained linear coding (LLC) [Wang et al., 2009] also applied to a bird dataset [Yao et al., 2011].

We apply each of these methods inside a cropped window found by selecting the face window with
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Figure 3.9: Performance curves for dog breed identification, showing how often the correct breed

appears among the top 1–10 guesses. On the left we show our method compared with three other

methods. On the right we show multiple variants of our method: from bottom to top, the first uses

our feature set sampled on a grid within our detected face window; the second uses part local-

ization, but only extracts features at generic parts, and uses the highest scoring window from the

face detector; the third incorporates the breed-specific parts into the second variant; the fourth is

our full method; the fifth one uses ground-truth locations of generic parts; the last one uses all the

ground-truth parts.

the highest face detector score within the image; if we use the uncropped images, the performance

of all methods is poor – below 20% on the first guess. This gives each method the benefit of face de-

tection and allows us to evaluate the additional gain produced by our system using part detection. In

Fig. 3.9-left we show performance curves for all the methods. Our method significantly outperforms

existing approaches, getting the breed identification correct 67% of the time on the first guess vs.

54% for MKL, 49% for LLC, and 36% for BoW. This comparison demonstrates the effectiveness

of part-based method in fine-grained classification.

In Fig. 3.9-right we show multiple variants of our approach. As a baseline, we use our feature

set, extracted on a grid, rather than at part locations, given the best scoring face window. We can

see that the use of parts results in a substantial improvement in the performance. We also evaluate

the accuracy when we only use the features at generic parts (without part inference). Though it has
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(a) (b) (c) (d)

Figure 3.10: Screenshots of our iPhone App. (a) Home screen. (b) Browse screen with the dog

breeds. (c) Dog camera. (d) Detected dog face and parts, with results.

decent performance, we do get benefit by incorporating the features from breed-specific parts (about

5% boost on the first guess). We can also see that the use of parts to re-score face detection results

in a further improvement in performance, eliminating approximately 20% of the errors for the top

ten guess. To have an idea about how the accuracy of part localization matters, we use the ground-

truth parts rather than detected parts. First, we only use the ground-truth generic parts, following

the same classification procedure as described in Sec. 3.3.1. This gives a large improvement in the

classification accuracy, which suggests that there is room for further improvement by making the

part localization more accurate. Second, we use all the ground-truth parts, eliminating the need of

inferring breed-specific parts from training exemplars. This time, we only get about 3% increase

in the first guess accuracy, with even smaller improvement for the top ten guess. Therefore, our

classification approach with part inference does provide an alternative when detecting certain parts

is difficult but not very crucial.

To facilitate experimentation by ourselves and others with this algorithm, we have created and

released a free iPhone App for dog breed identification (see Fig. 3.10). The App allows a user to

photograph a dog and upload its picture to a server for face detection, part detection, and breed

identification.
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3.5 Discussion

One might expect that fine-grained classification problems would be extremely difficult, that telling

a Beagle from a Basset Hound would be much harder than telling a car from a computer mouse.

Our main contribution is to show that much of this difficulty can be mitigated by the fact that it

is possible to establish accurate correspondence between instances from a large family of related

classes. We extract visual features that can be effectively located using generic and breed-specific

models of part locations. An additional contribution is the creation of a large, publicly available

dataset for dog breed identification, coupled with a practical system that achieves high accuracy in

real-world images.
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Chapter 4

Fish and Bird Species Classification

As part-based approach has shown promising results in dog breed classification, we would like to

apply it to other fine-grained categories such as fishes and birds. In this chapter, we build recognition

systems that are capable of identifying fish species and bird species. This time, we employ an

updated version of part localizer (referred to as CoE-ext), which will be described in Chapter 5.

With the improved part localizer, we seek to detect all the parts explicitly regardless of the different

levels of difficulty. As a result, the classification pipeline is simplified to have three steps: (1)

localize the parts, (2) extract part-based features, (3) predict the class labels. Fig. 4.1 illustrates

the pipeline with a test image of fish. In the following sections, we assume the part locations are

detected, and will describe how we extract the part-based features for classification.

Figure 4.1: Pipeline of our fine-grained classification system: parts (green dots) are first detected

from the test image, then features are extracted at the locations dictated by the parts, finally species

classifiers predict the most likely label.
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Figure 4.2: Top: sample fish images from 29 species. Bottom: the number of images per species.

4.1 Fish Species Classification

4.1.1 Columbia Fish Dataset

As there is no public fish dataset available, we collect our own data to evaluate our system. The fish

dataset consists of 2, 127 images from 29 species. Some sample images and statistics of the dataset

are shown in Fig. 4.2. We randomly partition the dataset with a fixed ratio for each class to generate

1, 335 training images and 792 testing images. We use the training set to build the part detectors

and species classifiers, and apply them to the testing set.

Besides the fish images and species labels, we labeled eight fish parts that are common to all

the species, as shown in Fig. 4.3. Similar to our dog dataset, the images was submitted to MTurk to

have the species labels verified, and part locations annotated.
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Figure 4.3: Examples of eight labeled parts.

Eye Mouth Second Dorsal Fin Caudal Fin Anal Fin First Dorsal Fin Pectoral Fin Ventral Fin

3.72 4.29 6.03 6.01 6.94 4.96 4.23 6.21

Table 4.1: Average localization error for each fish part. Fish length is normalized to 100 pixels.

4.1.2 Fish Features

Given the detected parts, we first normalize the image such that the fish has fixed length (measured

by the distance between Eye and Caudal Fin). Also the fish should be upright and facing right

(left-right flipping may be used). From the normalized image, we extract three types of features:

fine-scale SIFT features which capture the texture of the fish body (i.e., fish scales), coarse-scale

SIFT features which capture the shape and appearance at the parts, and color histograms which

capture the color pattern of the fish body. We concatenate these features to represent a fish image.

Fig. 4.4 shows the specific regions from which these features are extracted.

4.1.3 Results

We first measure the localization errors for the fish parts, which are listed in Tab. 4.1. From these

numbers, we can see that parts that are more variable across different subcategories have larger

localization errors. We can also see that the average error is around 5% of the fish length, which

indicates that our part localizer makes reasonable predictions.

Using the part-based features, we build one vs. all species classifiers using SVM with RBF

kernels. We evaluate the classification performance by plotting Cumulative Match Characteristic

(CMC) curves (Fig. 4.5). The rank-1 accuracy of our method is about 72%, which is remarkable for
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Figure 4.4: Illustration of fish features extracted from the normalized images. (a) Two fine-scale

SIFT descriptors (grayscale) are extracted at the halfway points between upper and lower fins. (b)

Five coarse-scale SIFT descriptors (grayscale) extracted at part locations. (c) Two color histograms

extracted from two convex hulls of subsets of parts. (d) 64 RGB color centers learned with k-means.

Figure 4.5: Cumulative Match Characteristic (CMC) curves for fish species classification.

such a challenging problem. Moreover, our method significantly outperforms a well-known image

classification technique: LLC [Wang et al., 2009], demonstrating again the benefit from parts. We
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Figure 4.6: Testing examples of fish species classification. Green words below the images indicate

the correct labels. Success case is denoted with green frame, while failure case is denoted with

red frame. Each image is overlaid with colored dots (i.e., detected parts) and pink box (i.e., object

bounding box).

also show the upper bound of our classification method by using the ground-truth part locations.

We observe a large gap between the accuracy of detected parts and ground-truth parts, presumably

because the visual features are sensitive to the part locations. Some classification examples of our

method are shown in Fig. 4.6.

4.2 Bird Species Classification

4.2.1 CUB-200-2011 Dataset

We also test our method on CUB-200-2011 [Wah et al., 2011] dataset, which contains 11, 788

uncropped images of 200 bird species (about 60 images per species). We use the train/test split

provided in the dataset for the experiments. There are roughly 30 images per species to train. It is a

challenging dataset for both part localization and species classification as there are wide variations

in the pose and appearance, as shown in Fig 4.7.

4.2.2 Bird Features

The part-based features are extracted in a similar way as the fish features. The features include

grayscale SIFT and color histograms: we center 12 SIFT windows at the 15 parts (for symmetrical
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Figure 4.7: Sample images from CUB-200-2011 bird dataset.

parts such as left/right eyes, we randomly choose one if both are visible), and the features for

invisible parts are set zero. Based on the parts on the head and body, we construct two convex hulls

respectively, and extract a color histogram from each region using 64 color bins.

4.2.3 Results

Please refer to Sec. 5.3.3 for the part localization results, where we compare with other methods of

part localization. To demonstrate how the accuracy of part localization affects the classification, we

feed the estimated part locations to our classification model, which is implemented as one vs. all

SVMs with RBF kernels.

In Fig. 4.8, we plot the CMC curves showing the classification accuracy against ranked guesses.

From the comparisons, we can see that the classification performance is consistently improved along

with the increased accuracy of part localization. The upper bound of the classification accuracy is

obtained by using the ground-truth part locations from human labelers.

There are other methods evaluated on this dataset, including Birdlets [Farrell et al., 2011], Tem-

plate Bagging [Yao et al., 2012], and Pose Pooling [Zhang et al., 2012]. We compare our method

with them on the whole dataset as well as on a subset of 14 (Vireos and Woodpeckers) species in
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Figure 4.8: Cumulative Match Characteristic (CMC) curves for bird species classification. In the

legend, we show the corresponding part localization methods as well as their localization accuracy.

PCP means percentage of correct parts, please refer to Sec. 5.3.3 for more details.

Tab. 4.2. Although those methods may be more sophisticated in extracting the features or designing

the classifiers, our method has much better results, which we believe should be attributed to the ac-

curate part localization. Also note that we achieve the state-of-the-art performance on the dataset in

a fully automatic setting (without using ground-truth bounding boxes or ground-truth part locations

from the testing dataset). From the experiment, we do feel accurate part localization goes a long

way towards building a working system for fine-grained classification.

Method 200 species 14 species

Birdlets - 40.25%

Template Bagging - 44.73%

Pose Pooling 28.18% 57.44%

Ours 44.13% 62.42%

Table 4.2: Mean average precision (mAP) on the full 200 categories as well as a subset of 14

categories from different classification methods. Birdlets and Template bagging are not directly

comparable to ours as they use an earlier version of the dataset.
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4.3 Discussion

Although part-based method seems very simple, it is really powerful in fine-grained classification,

where the major burden is rested on the part localization. Part-based methods regain the attentions

of vision community primarily due to the advance in object detection and part localization. We

have used three examples of fine-grained classification to verify that parts benefit classification

tasks that rely on local features with correspondences across instances. We may come up with

more sophisticated feature descriptors or classification models, the effect of parts should still be

discernible, as is shown by recent works that combine Deep Convolutional Neural Networks with

parts for visual classification [Zhang et al., 2014b; Branson et al., 2014; Zhang et al., 2014a].
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Chapter 5

Exemplars with Enforced Part

Consistency

In this chapter, we study the problem of part localization for fine-grained categories, where we

attempt to localize the parts over the full object body. As full body is generally more deformable than

near-frontal face, the part localizer in Sec. 3.2.2 haS difficulty handling the dramatically increased

visual complexities. As a result, we observe a large gap between the localized parts and the ground-

truth parts, which is also reflected in the fine-grained classification. We use bird part localization

as the test case to design our new method. The experiments are conducted on a publicly available

bird dataset [Wah et al., 2011] that poses additional problems in contrast to our dog dataset: there

are much wider variations in the part configuration due to different shapes, articulated deformation

and unconstrained viewpoints; state-of-the-art object detector fails to achieve satisfactory accuracy

in bird detection 1, making the strategy in Sec. 3.2 not applicable here.

To address the above problems, we bypass the object detection stage, and seek to build rich

models for part appearance (i.e., part detectors). We then apply these models under the framework

of Consensus-of-Exemplars (CoE) approach, where we improve the hypothesis evaluation, such that

geometrically correct hypotheses (generated from exemplars) have high scores. As the top-scoring

hypotheses are concentrated in the image space and give a good estimation about the pose of testing

1We tried DPM detector [Felzenszwalb et al., 2010b] on the bird dataset. Using the same criterion, the rank-1 accuracy

is about 75% for birds, as opposed to 90% for dog faces.
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Figure 5.1: Overview of our part localization pipeline. (a) Given a test image, (b) an ensemble

of part detectors are applied to the test image, generating detection response maps. (c) Exemplars

are matched to the detection output, with their scores shown on the left (from top to bottom: pose

consistency score, subcategory consistency score, overall score). The test image is overlaid with

hypotheses at the top. (d) Consensus-of-Exemplars approach is employed to determine the final

part locations.

sample, they are able to reach a more correct consensus in the final prediction.

Specifically, we decompose the visual complexity of parts by clustering their local configura-

tions (referred to as part poses), as well as their subcategory labels. Appearance models are built for

each cluster, yielding pose and subcategory detectors for each part. The clustering results also allow

us to augment the exemplars: exemplars dictate not only the relative part locations, but also the local

pose of the parts. In addition, we let each exemplar carry a unique yet unknown subcategory label.

With these in hand, we enforce pose and subcategory consistency on the exemplars, and evaluate

each generated hypothesis for the test image based on (1) how likely the corresponding part poses

co-occur in the image, (2) how likely the image features implementing the parts belong to the same

class. The overview of our localization method at the testing stage is shown in Fig. 5.1.

5.1 Pose and Subcategory Detectors

As the building block of our method, we build part detectors that score pose-specific and subcategory-

specific features. To do this, we group part samples based on their poses and species labels.
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(a) Pose clusters (b) Subcategory clusters

Figure 5.2: Examples of pose clusters and subcategory clusters of the part Back (marked with a red

dot in each image). In (a), the set of visible neighboring parts are marked with green dots. Note that

the local part configurations within a cluster are very similar.

5.1.1 Pose Detector

We first group part samples with similar poses (defined as local part configuration). To represent

the pose of a part, we turn to the keypoint annotations of its neighboring parts. Let Xk denote the

configuration of the k-th exemplar, which is a vector containing the visibility flags {vik} and image

locations {xik} where i is the part index. Given Xk, we can represent the pose of part i with a local

offset vector 4i
k = [4xi,j1k , vj1k , . . . ,4x

i,jm
k , vjmk ] where j1, . . . , jm are the indices of m (m = 6

in our experiment) predefined neighboring parts shared by all the exemplars. If part j is not visible,

then vjk = 0, and 4xi,jk = (0, 0); otherwise, 4xi,jk is computed as xjk − xik. To deal with size

variations, 4i
k is normalized such that

∑
j ‖4x

i,j
k ‖

2 =
∑

j v
j
k. The local offset vectors across all

the samples form a pose space, whose subdivisions define the pose types of part i. For simplicity,

we use k-means to generate N types for each part. Fig. 5.2 (a) shows several examples of pose

clusters of the part Back.

For each pose cluster of each part, a detector is built by using the samples in that cluster as

positive training data. A much larger set of negative samples are randomly drawn from image

regions with little overlap with the target part. Therefore, by design, the detectors are trained to



CHAPTER 5. EXEMPLARS WITH ENFORCED PART CONSISTENCY 40

score the local poses across different subcategories.

5.1.2 Subcategory Detector

We group the part samples of birds from the same subcategory, assuming they share similar appear-

ance in terms of color and texture. This assumption holds in our problem because the class labels

are fine-grained. The number of clusters is fixed as we have a fixed number (which is 200) of bird

species. Fig. 5.2 (b) shows several examples of subcategory clusters.

Similar to pose detectors, a subcategory detector is built for each cluster of each part. To make

the subcategory detectors learn species-specific features, we do two things during the training: we

first normalize the orientation of parts to reduce the noise in the features. The normalization is done

by aligning each part sample to a reference part sample using Procrustes analysis with “reflection”

enabled. The alignment is based on the local offset vectors defined in Sec. 5.1.1. Second, we run

the pose detectors exhaustively on the training images, and collect false positives (which are off the

correct part locations) as the negative training samples. Therefore, the subcategory detectors are

able to learn subcategory-specific features across different poses.

5.1.3 Implementation Details

We use linear SVMs implemented in LIBSVM [Chang and Lin, 2011] to build pose and subcat-

egory detectors. The features are HOG descriptors extracted using VLFeat toolbox [Vedaldi and

Fulkerson, 2008]. The scale of a part is normalized by normalizing its local offset vector. After that,

HOG descriptors are extracted from a window centered at that part, which contains 5× 5 cells with

bin size 8. During detection, we use a scaling factor of 1.2 to build image pyramid from the test

image, and scan the images at each scale.

Because pose and subcategory detectors play different roles in our method (see Sec. 5.2), there

are some differences in their features. For pose detectors, we extract two additional HOG descriptors

at a coarser scale and a finer scale, which are two levels above and below the normalized scale in

the image pyramid. For subcategory detectors, we extract three additional color histograms using

64 color bins, which are obtained through k-means in the RGB color space of the training images.

These histograms are computed over three regions: an inner circle and two outer rings.
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5.2 The Approach

Following [Belhumeur et al., 2011], we cast the problem of part localization as fitting likely exem-

plars to an image, with the assumption that we can always find a configuration similar to the testing

sample’s from a sufficiently large training set. Recall that Xk is the k-th exemplar, which contains

the visibilities and locations of all the parts. By using a similarity transformation t, we map Xk

to the test image, obtaining an exemplar-based model Xk,t. Our goal is to estimate its conditional

probability P (Xk,t|I), which measures how likely the shape of Xk is present in the image at a

certain location, scale, and orientation.

In [Belhumeur et al., 2011], all the information of the image comes in the form of response

maps D, and P (Xk,t|I) is computed as

P (Xk,t|I) = P (Xk,t|D) =
n∏
i=1

P (xik,t|di), (5.1)

where n denotes the number of parts, xik,t is the image location of part i, and di is the correspond-

ing response map. However, this formulation cannot be directly applied to our problem. First, it

assumes there is a single detection response map for each part, while we have many response maps

per part. These maps are from an ensemble of detectors applied over scales. Second, it does not

address part visibilities, while there are 736 different combinations of visible parts in the dataset

CUB-200-2011 [Wah et al., 2011].

Besides addressing the above issues, our major contribution is enforcing pose and subcategory

consistency on Xk,t to obtain a more accurate estimation of P (Xk,t|I).

5.2.1 Pose Consistency

One component of P (Xk,t|I) is the score of pose consistency. To evaluate the score, we first

generate a collection of response maps for all the parts× all the pose types, denoted as Dp. The key

point is that for each exemplar Xk, we know the visibility of each part; if a part is visible, we also

know its pose type. So when evaluating the likelihood P (Xk,t|Dp), we choose the response maps

corresponding to the pose types of Xk. With these in hand, we compute P (Xk,t|Dp) as

P (Xk,t|Dp) =

 n∏
i,vik=1

P (xik,t|dip[cik, sik,t])

 1∑
i v

i
k

, (5.2)
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where vik denotes the visibility flag of part i, dip[c
i
k, s

i
k,t] denotes the response map for pose type cik

at scale sik,t. s
i
k,t can be determined based on the scaling factor in the transformation t and the scale

level of part i in the original exemplar Xk. To get the probabilities in Eq. 5.2, each response map

is converted to a probability map using the detector calibration method described in [Divvala et al.,

2012]. Because the exemplars usually cannot fit the configuration of a testing sample perfectly, the

probability maps are smoothed before evaluating P (Xk,t|Dp). For efficiency, we use an Max filter

implemented by [Dollár, 2009]. The filter radius is estimated by measuring the distance between

the corresponding parts of two globally similar exemplars after geometric alignment.

Because of the way P (Xk,t|Dp) is computed, it is not plagued by false detections in other

irrelevant response maps. Also, because of the reduced visual complexity in each pose cluster, a

correctly chosen response map can give fairly accurate estimation of the part locations. For these

reasons, the estimation of P (Xk,t|Dp) is more reliable than P (Xk,t|D) in [Belhumeur et al., 2011].

From Eq. 5.2, we can see that given the response maps, the cost of subsequent computations (i.e.,

evaluating a fixed number ofXk,t’s) is independent of the number of pose types, as opposed to [Yang

and Ramanan, 2011; Zhu and Ramanan, 2012]. Therefore, we can increase the number of pose types

without affecting the inference speed much.

5.2.2 Subcategory Consistency

Subcategory Consistency means that the appearance at all the parts should agree with each other on

the class membership. Here, we assume that the image cues are contained in Ds, a collection of

response maps for all the parts × all the subcategories. Given a subcategory label l, we evaluate the

likelihood of the image region at Xk,t containing an object from this subcategory as

P (Xk,t|l,Ds) =

 n∏
i,vik=1

P (xik,t|dis[l, sik,t, θik,t])

 1∑
i v

i
k

, (5.3)

where dis[l, s
i
k,t, θ

i
k,t] denotes the response map for part i of subcategory l, at scale sik,t and orien-

tation θik,t (the subcategory detectors are rotation invariant). θik,t can be computed based on the

rotation angle in the transformation t and the original orientation of Xk’s part i. We use the same

method as pose detector calibration to convert the response maps to probability maps. After com-
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puting P (Xk,t|l,Ds) for all possible l’s, the second component of P (Xk,t|I) is defined as

P (Xk,t|Ds) = max
l
P (Xk,t|l,Ds). (5.4)

5.2.3 Generating Hypotheses

After evaluating Xk,t’s pose and subcategory consistency, we evaluate its overall score as

P (Xk,t|I) = P (Xk,t|Dp)
αP (Xk,t|Ds)

(1−α), (5.5)

where α ∈ [0, 1] controls the weights of P (Xk,t|Dp) and P (Xk,t|Ds). α is determined through

cross-validation, and α = 0.8 works best in our experiment. Our goal here is to generate and select

the highest scoring Xk,t’s.

Because applying the subcategory detectors in a sliding-window fashion is very expensive (they

need to search over scales and orientations), but not necessary (they are built on top of the activations

of pose detectors), we only generate the response maps for pose detectors, and construct a random

transformation t for each Xk as follows:

• Randomly choose two parts and a scaling factor.

• Select the two response maps of the two parts at the corresponding scales.

• Randomly choose a local maxima from each map as mode.

• Compute similarity transformation t that maps the two parts of Xk to the two modes.

• If the scaling factor or rotation angle in t is beyond a predefined range, t is discarded.

By repeating the above procedure multiple times for each exemplar, we generate a large set

of models {Xk,t}, whose conditional probabilities are computed using Eq. 5.5. An illustration is

shown in Fig. 5.3. The top scoring models then constitute the set of likely hypotheses.

Although subcategories detectors are only applied to the generated {Xk,t}, it is still very ex-

pensive to extract the features due to the large number of Xk,t’s (about 380, 000 in our experiment).

Therefore, we approximate the procedure by computing P (Xk,t|Dp) for all the models first (which

is relatively much faster), and then keeping the top ranked models (e.g., 400) which will be re-ranked

after incorporating P (Xk,t|Ds). We observe that the performance is not hurt by this approximation

as P (Xk,t|Dp) already gives a fairly accurate estimation of the correctness of each Xk,t.

As the models usually cannot match the testing sample perfectly, we also need to address the

issue when evaluating P (Xk,t|Ds). Because we extract the features at the part locations dictated
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Figure 5.3: An example of matching an exemplar to the test image. (a) An exemplar Xk and

its annotated parts. (b) The test image I overlaid with detection modes for each part. (c) With

similarity transformation t, exemplar Xk is mapped to the test image as a hypothesis Xk,t which is

assigned a probability score.

by the models, small errors in the part locations may lead to severe underestimation of P (Xk,t|Ds).

Therefore, we adopt a group-based re-ranking strategy. Given the ranked list of 400 models based

on P (Xk,t|Dp), we group them when obtaining the subcategory scores for their parts. More specifi-

cally, for part i, we successively pick a model from the ranked list, find and remove other remaining

models from the list which have similar local offset vectors as the initially picked one. The similar-

ity is quantified by the sum of the squared distances (SSD) between the corresponding parts. These

models form a group where the maximum P (xik,t|dis[l, sik,t, θik,t]) in Eq. 5.3 is shared by models

in the group. Such approximation is not ideal, but it works in the case where underestimation of

P (Xk,t|Ds) has larger negative effect than tolerable errors in the top-ranked part locations. Also

note that the consensus stage in Sec. 5.2.4 can reduce the errors through Gaussian smoothing.

5.2.4 Predicting Part Configuration

After ranking the hypotheses based on P (Xk,t|I), we keep M (M = 40) highest-scoring ones with

indices {km}m=1,...,M . These hypotheses need to reach a consensus on the part locations. We first

predict the visibility flag vi for each part i through voting:

vi =

 1 :
∑

m v
i
km

> τM

0 : Otherwise
, (5.6)
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where threshold τ is determined through cross-validation, such that the False Invisibility Rate de-

fined in Sec. 5.3.1 is comparable with that of human annotators (about 6%). If part i is predicted as

visible, we use a modified version of Eq. 3.3 to estimate its location pi by combining the hypotheses

and the probability maps of the corresponding pose types:

p̂i = arg max
pi

∑
k,t∈M

P (∆xik,t)P (pi|dip[cik, sik,t]), (5.7)

whereM denotes the set of top-M hypotheses.

As can be seen here, the pose detectors play an important role in finding the parts while the

subcategory detectors focus on verifying the hypotheses supported by the pose detectors.

5.3 Experiments and Results

We evaluate our method extensively on CUB-200-2011 [Wah et al., 2011] dataset, which contains

11, 788 uncropped images of 200 bird species (about 60 images per species). We use the train/test

split provided in the dataset for all the experiments. There are roughly 30 images per species to train,

and we do left-right flipping to increase the size of training data. A total of 15 parts were annotated

by pixel location and visibility flag in each image through Amazon Mechanical Turk (MTurk).

5.3.1 Evaluation Metrics

To gain a thorough view of our method, we use four metrics to evaluate the localization performance:

Percentage of Correctly estimated Parts (PCP), Average Error (AE), False Visibility Rate (FVR), and

False Invisibility Rate (FIR). “Correct estimation” means the detected part is within 1.5 standard

deviation of an MTurk user’s click if visible or the part is correctly estimated as invisible. “Average

error” is computed by averaging the distance between predicted part locations and ground truth

(if both are visible), normalized on a per-part basis by the standard deviation and bounded at 5.

“False Visibility Rate” is the percentage of parts that are incorrectly estimated as visible. “False

Invisibility Rate” is the percentage of parts that are incorrectly estimated as invisible. Note that AE

best indicates the localization precision.
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5.3.2 The Number of Pose Types

To determine the number of pose types, we only consider pose consistency in this experiment (i.e.,

set α = 1 in Eq. 5.5). As shown in Tab. 5.1, we change the number of types for each part from 1

to 2, 000. The pose detectors are implemented with linear SVM except for the extreme case where

we only have one type. Due to the large visual complexity in this case, we use non-linear SVM

with RBF kernel to build the detector, which is the same as [Belhumeur et al., 2011]. From the

comparisons, we can see that with roughly the same FIR (which can be adjusted by the parameter

τ in Sec. 5.2.4), the performance measures of PCP, AE and FVR are consistently improved as the

number of types increases up to 500. To explain this, on the one hand, the larger the number of

types, the more the visual complexity can be reduced. On the other hand, finer granularity of pose

types makes the constraints on pose consistency stronger. As the number goes beyond 1, 000, the

result becomes slightly worse, possibly due to that there are much fewer positive training samples.

Given more than 50 pose types, our method already outperforms [Belhumeur et al., 2011]. We

choose 200 types in subsequent experiments as it is a good trade-off between accuracy and speed

(1.5× faster than 500 types and 2.6× faster than 1, 000 types).

To verify that an ensemble of linear detectors alone do not contribute to the performance im-

provement, we relax the pose consistency by collapsing the output of all 200 pose detectors to a

single response map for each part using pixel-wise maximum. Now it is equivalent to the case

where we have only one pose type. However, the accuracy drops a lot, with 47.08% PCP, 2.30 AE,

39.36% FVR, and 7.12% FIR. It implies that enforcing pose consistency is critical in our method.

We also try an alternative method to generate the part types. [Divvala et al., 2012] uses Latent-

SVM learning to optimize the ensemble of detectors, leading to appearance-based clustering. As

the visual appearance is coupled with pose, [Divvala et al., 2012] actually groups samples similar

in pose but with more noise than our pose clustering. From the comparisons in Tab. 5.1, we can see

that clustering by geometry is better at decomposing the visual complexity and is a better fit for our

pose consistency evaluation.

5.3.3 Part Localization

We compare our work with three state-of-the-art techniques: Poselets [Bourdev et al., 2010], De-

formable Part Models (DPM) [Branson et al., 2011], and Consensus of Exemplars [Belhumeur et
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# of Pose Types PCP AE FVR FIR

1 48.70% 2.13 43.90% 6.72%

10 (Pose) 45.79% 2.37 44.21% 4.14%

50 (Pose) 53.07% 2.08 34.02% 4.40%

100 (Pose) 54.66% 2.00 31.21% 4.87%

200 (Pose) 56.88% 1.92 30.16% 4.32%

500 (Pose) 57.03% 1.91 30.21% 4.34%

1,000 (Pose) 56.63% 1.94 31.26% 3.91%

2,000 (Pose) 56.50% 1.97 32.35% 4.08%

10 (App.) 43.30% 2.55 42.10% 4.48%

50 (App.) 48.86% 2.29 32.55% 6.43%

100 (App.) 51.05% 2.20 32.01% 5.97%

200 (App.) 52.10% 2.15 31.30% 5.65%

500 (App.) 52.00% 2.17 31.57% 5.71%

1,000 (App.) 51.32% 2.21 32.27% 5.46%

2,000 (App.) 51.07% 2.26 32.31% 5.58%

Table 5.1: Part localization results using different numbers of pose types. The best performance

is achieved with 500 pose types for each part. Appearance-based clustering can also be used to

generate pose types, which is inferior to ours in terms of the performance. Please refer to Sec. 5.3.1

for the meaning of each metric.

al., 2011]. For Poselets-based part localization, we obtain the Poselet activations from the authors

of [Zhang et al., 2012], and predict the location of each part as the average prediction from its cor-

responding Poselet activations. For DPM, we obtain the localization results from the authors. Note

that [Branson et al., 2011] only detects 13 parts, omitting the two legs. We implemented and mod-

ified original Consensus-of-Exemplars approach to deal with part visibility. Without considering

visibility, we will get almost 100% FVR and zero FIR, making the results not comparable. Also

note that larger FVR generally leads to larger AE.

As shown in Tab. 5.2, our part localization outperforms state-of-the-art techniques on all the
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Method PCP AE FVR FIR

Poselets 27.47% 2.89 47.90% 17.15%

DPM 40.99% 2.65 32.62% 6.18%

CoE 48.70% 2.13 43.90% 6.72%

Ours (CoE-ext) 59.74% 1.80 28.48% 4.52%

Human 84.72% 1.00 20.72% 6.03%

Table 5.2: Part localization results from different methods. Our method significantly outperforms

state-of-the-art techniques on all the four metrics.

metrics. The large error rate of Poselets agrees with the fact that by design, they do not target

localizing the individual parts with high accuracy. Compared with the results in Tab. 5.1, our full

model achieves remarkable improvement on AE by incorporating the subcategory consistency. In

a separate experiment, we set α = 0 in Eq. 5.5, and obtain 58.28% for PCP, 1.86 for AE, 28.88%

for FVR, and 5.32% for FIR. It indicates that pose consistency and subcategory consistency are

complementary to each other. For bird species classification, incorporating subcategory consistency

when detecting the parts also leads to 3% increase in the rank-1 accuracy.

Assuming almost all the parts are visible (by setting τ = 0 in Eq. 5.6), our full model obtains

54.36% for PCP, 1.85 for AE, 60.03% for FVR, and 0.28% for FIR, which are not much worse

except for FVR. Some examples of our bird part localization are shown in Fig. 5.4. Although birds

have very wide variations in appearance and pose, and birds reside in very different environments,

our method is still able to detect most of the parts correctly.

5.3.4 Application: BirdSnap

As our fine-grained system has shown impressive results on bird species classification (Sec. 4.2)

using our bird part localizers, we expect to see further improvement by replacing the classification

module with a more sophisticated part-based method: POOF [Berg and Belhumeur, 2013]. To this

end, we build another application BirdSnap which serves as a field guide for bird species in North

America. Moreover, it has the feature of visual recognition which identifies the bird species in user-
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Figure 5.4: Examples of bird part localization. (a) compares the four methods (from top to bottom:

Poselets, DPM, Consensus of Exemplars, Our method) on three testing samples. (b) gives more

examples of part localization with our method. Red frames denote the failure cases. (c) shows the

color codes for the 15 parts.

uploaded images. Both the iPhone App and website 2 of BirdSnap have been released. Screenshots

of our iOS App are shown In Fig. 5.5.

5.4 Discussion

Compared with frontal or near-frontal dog faces, birds have much larger variations in pose and ap-

pearance. As the original Consensus-of-Exemplars approach does not handle the variations well,

the performance of its part localizer is not satisfactory. Therefore, we approach the problem by

significantly reducing the visual complexities and building an ensemble of part detectors. More

importantly, we take advantage of these detectors to enforce pose and subcategory consistency on

exemplar-based models. As a result, we generate more reliable hypotheses of part configuration,

which better exploits the consensus module. We also show how to efficiently generate the hypothe-

2URL is http://birdsnap.com/
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(a) (b) (c) (d)

Figure 5.5: Screenshots of our iPhone app. (a) Home screen. (b) Browse screen with the bird

species. (c) Bird camera. (e) Classification results.

ses using a heuristic re-ranking strategy. The improved quality in the hypotheses over [Belhumeur

et al., 2011] is the key to the large-margin improvement on the localization accuracy. Experimental

results demonstrate that our method achieves state-of-the-art performance for part localization on

the challenging bird dataset CUB-200-2011.
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Chapter 6

Exemplars under Part-pair

Representation

In previous chapter, we have shown that combining exemplars with rich appearance models im-

proves the quality of top-scoring hypotheses, thus benefiting the Consensus-of-Exemplars approach.

However, it has additional limitations: first, it needs fine-grained class labels to build subcategory

detectors, limiting the generalization ability of the method; second, as an exemplar imposes con-

strains on all the parts, it can only applied to testing samples with very similar configurations. In

other words, we need a sufficiently large set of diverse training exemplars to densely cover the con-

figuration space (which may not be possible even for medium-scale datasets); third, the consensus

stage is likely to fail when top-scoring hypotheses differ a lot in the part locations.

These limitations motivate us to find a better way to represent objects, such that we can obtain

a rich set of appearance models without using fine-grained class labels, and we can compose novel

configurations with existing exemplars, improving the coverage of plausible poses. As for the third

limitation described above, we seek to get rid of consensus by generating per-part hypotheses, each

of which has high localization accuracy for a target part. To this end, we propose a novel part-pair

representation to model the configuration and appearance of an object.

With the part-pair representation, we break an object into part pairs and model the appearance

and geometry of the object based on the part pairs. Specifically, we build detectors for each pair,

thus obtaining a rich set of appearance models; we customize the strength of spatial constraints
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on parts by considering subsets of part pairs. The pipeline of part localization follows a bottom-up

paradigm: (1) we first build context-aware part detectors by combining exemplar-based models with

pair detectors; (2) then we generate part hypotheses from these part detectors; (3) finally, instead of

reaching a consensus from multiple hypotheses, we explicitly compose promising configurations,

where the highest-scoring one is expected to best fit the testing sample. We evaluate our method

extensively on bird part localization and human pose estimation, where we achieve significant im-

provement over previous CoE-based methods.

6.1 Part-pair Representation

Unlike part-based models that treat an object as a collection of parts, part-pair representation breaks

down the object into part pairs, which form a complete graph connecting any two parts. Under such

representation, the modeling of shape and appearance is based on the part pairs.

6.1.1 Shape Modeling

Assuming an objectX has n parts and xi denotes the location of part i, then part-pair representation

treatsX as a set of n(n−1)/2 part pairs {(xi, xj)|i, j ∈ [1, n], i 6= j}. For each pair (i, j) ofX , we

record its center location ci,j , orientation θi,j , and length li,j . As any set of n−1 pairs that cover all

the parts can reconstruct the global part configuration, most pairs seem to be redundant. In practice,

such redundancy allows us to adjust the strength of geometric constraints as needed, which will be

addressed in Sec. 6.2 and Sec. 6.3.

6.1.2 Appearance Modeling

We build pair detectors to model the appearance of each pair. They can be seen as specialized

Poselet detectors [Bourdev et al., 2010], targeting two parts simultaneously. These detectors cover

different portion of an object at different scales, with possibly large overlap. For this reason, we

have a rich representation of the object appearance.

Mixtures of Pair Detectors. To deal with rotation variations of the pairs, we discretize the ro-

tation space in 15 different bins, with each bin corresponding to a span of 24 degrees. We then build
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Figure 6.1: Normalized training samples. The left figure is for the pair (Left Eye, Belly), and the

right figure corresponds to (Left Leg, Back). In each figure, sample frequencies over 15 orientations

are visualized as blue sectors in the pie chart. The red arrow superimposed over the sample image

indicates the target pair orientation.

one detector for each pair in each orientation1. For efficiency, we measure the sample frequencies

in each orientation bin, and ignore the bins with frequencies lower than 1%. By doing so, we have

776 rather than 1, 575 detectors altogether for the bird dataset [Wah et al., 2011] where the number

of parts is 15.

Inspired by POOF [Berg and Belhumeur, 2013], we normalize the samples for each pair detector

by rotating and rescaling them, so that they are aligned at the two corresponding parts. Please see

Fig. 6.1 for some normalized examples. For rotation, the rotation angle is determined based on

the difference between the original pair orientation and the center of the target orientation bin. For

rescaling, we rescale the samples to predefined sizes, with care taken to handle very diverse pairs.

For example, (Eye, Tail) pair is typically ten times larger than (Eye, Forehead) pair in an image,

which entails different reference sizes for rescaling.

To automate the process of selecting the reference sizes, we first estimate the average length l̄ for

each pair from the training data. After that, we know the minimum and maximum average lengths

l̄min and l̄max across all the pairs. Assuming that the normalized length is in the range [l̂min, l̂max],

we use a linear function f(l) to map range [l̄min, l̄max] to [l̂min, l̂max]. Therefore, the reference size

1We use non-linear detector to handle pose & appearance variations of samples in the same orientation bin.
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for pair (i, j) is f(l̄i,j). We empirically set l̂min = 24 and l̂max = 52 to ensure reasonable quality

of training samples.

Training and Testing. After normalization, we use toolbox [Dollár, 2009] to extract the first-

order integral channel features within a bounding box (i.e., feature window) that contains both parts

inside. Note that the feature window is placed at the center of the target pair. We randomly generate

up to 2, 000 rectangles to compute the integral channel features, and follow [Dollár et al., 2012] to

build a soft cascade detector with constant rejection thresholds.

A cascade has T = mT0 weak classifiers, and each weak classifier is a depth-two decision tree.

m = 30 is the number of rounds of bootstrapping. After each round, we mine up to 400 hard

negatives, and increase the number of weak classifiers by T0 = 50 to build an AdaBoost classifier.

Instead of performing a rejection test at every weak classifier, we do it after building additional T0

weak classifiers (to accumulate enough observations). Assuming the score of a sample s up to the

kT0-th weak classifier is Hk(s) =
∑

j≤kT0 αjhj(s) where αj > 0 and hj(s) is the binary output

of the j-th weak classifier, then the threshold can be set as τk = b
∑

j≤kT0 αj (b = 0.45 in our

experiment).

At the testing stage, we build an image pyramid with six scales per octave, and apply the pair

detectors in a sliding-window fashion (with stride 4 pixels). To facilitate the subsequent procedures,

we normalize the scores so that an early rejected sample will not be penalized too much. To do this,

we use Ĥk(s) = Hk(s)∑
j≤kT0

αj
, so the normalized score Ĥk(s) is within the range [0, 1] (early rejected

samples will have scores below 0.45). Note that we do not apply Non-Maximum Suppression to the

detection results; instead, we cache them as response maps for each pair detector at each scale.

6.2 Super Part Detector

Our method of part localization follows a bottom-up paradigm, and a very important step is to

generate reliable estimation for each part. In detection and localization problems, the output from

a single detector is generally very noisy. However, if the outputs from multiple related detectors

are pooled together, the noise can be significantly suppressed. Part-pair representation has such

capability when employing exemplar-based models. The idea is that there are multiple pairs sharing

the same part, and exemplars specify which detectors should be used for the pairs. In previous CoE
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approaches, the basic element of an exemplar is part, and exemplars are used to dictate plausible

global configuration of parts. In this work, however, the basic element of an exemplar is part pair,

and exemplars dictate how the pairs constitute an object.

6.2.1 Part Response Maps

Given the detection response maps from the pair detectors, our goal is to generate the response maps

for each part. The idea is similar to Hough Voting: a part pair activation votes for the positions of

its related parts. Our method differs in that exemplars specify which orientations, and scales should

be used for the voting. Assuming Xk is an exemplar being scaled to a certain size, we can obtain

the response map for part i based on Xk as follows.

Let Ri,j(x) denote the set of all the response maps for pair (i, j) where x is the pixel location

in the test image, then exemplar Xk specifies a particular response map to use (at certain scale and

orientation), which is denoted as Ri,jk (x). To get the response map for part i from Ri,jk (x), we

simply shift Ri,jk (x) as illustrated in Fig. 6.2 (b):

ri,jk (x) = Ri,jk (x+ o), o = ci,jk − x
i
k, (6.1)

where ri,jk (x) is the resultant map; o is the offset between ci,jk – the center location of pair (i, j), and

xik – the location of part i. In our implementation, we quantize the offset based on the discretization

of pair rotations (please refer to Sec. 6.1.2). During testing, we cache the shifted response maps

using the quantized offsets at each possible scale. Then, given an exemplar Xk, we can directly

retrieve its corresponding map ri,jk (x).

As exemplarXk dictates all the visible pairs (i.e., both parts of the pair should be visible) sharing

part i, the part response map for part i is then estimated as

Rik(x) =
1

N i
k

∑
j

ri,jk (x), (6.2)

where N i
k is the number of visible pairs sharing part i in Xk. Assuming there is a detector that

directly generates such response map, then we name it as Super Part Detector, which is conditioned

on a particular exemplar. Fig. 6.2 (c) shows two part response maps based on two exemplars.
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Beak Left WingBeak & Left Wing

Nape Left WingNape & Left Wing

Exemplar 1

Exemplar 2

(a) Part-pair graph (c) Part response maps (b) Shifted pair response maps  (d) Candidate Detections

Figure 6.2: (a) shows the part-pair representation as a complete graph for an object with 6 parts. To

build the super part detector for a part (solid circle), only the pairs sharing the part are used (solid

lines). (b) illustrates the shifting of pair response maps. (c) shows the response maps for Left Wing

conditioned on two exemplars. (d) shows the candidate detections of Left Wing.

6.2.2 Part Hypotheses

In this section, we will explain how to generate part hypotheses from the part response maps. As

described in Sec. 6.2.1, different exemplars correspond to different super part detectors of part i.

However, only the detectors from exemplars that match the testing sample at part i are needed (By

“match at a part”, we mean that the exemplar has similar configuration of parts in the neighborhood

of the target part). Such detectors generally have high scores when firing at correct locations. There-

fore, finding such detectors is equivalent to finding geometrically correct exemplars being placed at

the correct locations.

A reasonable indicator about the goodness of an exemplar is the peak value of its corresponding

part response map. Therefore, for part i, the score of Xk is computed as

Sik = max
x

Rik(x). (6.3)

To search for good exemplars, a naive way is to go through all the training exemplars, rescale them

to each possible scale, evaluate their scores with Eq. 6.3 and keep the top-scoring ones. This process

can be made faster with a heuristic strategy: we estimate the upper bound of Sik at very low cost,

and obtain an initial set of promising exemplars (e.g., a few thousand). Then we use Eq. 6.3 to

recompute their scores. The upper bound of Sik is computed as 1
N i

k

∑
j maxx r

i,j
k (x), where the
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addends can be reused to evaluate other upper bounds. In our experiment, we take the best 200

exemplars for each part, and extract up to five local maximas from each of their corresponding part

response maps. The locations of the overall top-scoring 200 maximas then form the candidate part

detections, as shown in Fig. 6.2 (d).

We have a by-product from the above procedure. As the candidate part detection indicates the

image location to place exemplar Xk, we can also obtain the locations of other parts in the image.

For instance, given Xk and image location x0 for part i, the location of part j is estimated as

x0 − xik + xjk. Therefore, we treat Xk and x0 together as a part hypothesis. Fig. 6.3 shows several

examples of part hypotheses, including both the target part and the inferred parts.

6.2.3 Analysis

The super part detector demonstrates one way of applying the part-pair representation, where a

subset of up to n − 1 pairs are used to impose the geometric constraint (please see Fig. 6.2 (a)).

As the subset of pairs form a star graph with the target part at the root, we call the target part as

root part, and all the other parts as leaf parts. Because all the leaf parts are involved in building

the super part detector of the root part, we achieve context-aware part detections, where the noise

from the raw pair detectors is largely suppressed. Moreover, the quality of a super part detector is

not sensitive to the displacement of distant leaf parts, as such displacement has limited effect on

the pair feature (and thus the pair detection) due to generally large rescaling factors. Therefore, the

strength of spatial constraints on the whole object is weaker than that in [Belhumeur et al., 2011;

Liu and Belhumeur, 2013]. In other words, exemplars that do not match the testing sample globally

can still be used to localize a particular part. Such property makes the super part detector applicable

in the case of insufficient training exemplars.

6.3 Predict Part Configuration

Recall that in Sec. 6.2.2, we obtain a set of hypotheses for each part. Each hypothesis consists of the

part location, as well as the corresponding exemplar. To predict the global part configuration, we

can apply the Consensus-of-Exemplars (CoE) approach using the part hypotheses. We also design

an alternative approach to explicitly compose the global shape from the hypotheses.
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6.3.1 CoE Approach

The idea is similar to [Liu and Belhumeur, 2013]: assuming we have exemplar Xk centered at

position x0 in the testing image, then we evaluate its overall score as

Sk =
1

Nk

∑
i,j

Ri,jk (ci,jk + x0) + αbin(Vk), (6.4)

whereNk is the number of visible pairs, and ci,jk is the relative location of pair (i, j) w.r.t the location

of Xk. bin(·) is the prior about the number of visible parts (denoted as Vk), and α is the weight

parameter.

To predict the global configuration, we evaluate the overall scores of all the candidate exemplars

(i.e., the exemplars placed at the corresponding candidate part locations). Once we obtain the best

30 exemplars, we follow [Liu and Belhumeur, 2013] to predict the visibilities and locations of all

the parts. In this case, the geometric constraint on the parts is much stronger than that for super part

detectors, as all the pairs are involved in the evaluation, with each additional pair further imposing

the constraints on its two end parts. Therefore, our part-pair representation is also applicable to the

estimation of global configuration.

However, CoE approach is likely to fail if there are not enough training exemplars that are

geometrically similar to the testing sample. In addition, CoE does not exploit the property of part

hypotheses – having relatively more accurate estimation for the root parts than for the leaf parts. In

other words, all the parts from an exemplar had better not be treated equally. Motivated by such

observation, we attempt to explicitly compose the shape that fits the testing sample using multiple

hypotheses of different parts.

6.3.2 Shape Composing

We aim to compose novel shapes (i.e., part configuration) from the part hypotheses. Each visible

part in the composed configuration should come from exactly one part hypothesis. The evaluation

of these configurations is also based on Eq. 6.4, and only the highest scoring one is output as the

prediction. As Eq. 6.4 generally produces high scores for correct and near-correct configurations,

what we need is to compose geometrically correct configurations. To make the composing proce-

dure tractable, we only employ a few part hypotheses (15 in our experiment) for each part. Tab. 6.1
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shows that the top-scoring hypotheses already have very high accuracy, thus making such “list short-

ening” acceptable. Our shape composing follows two rules: (1) only consistent part hypotheses can

be used to compose a shape; (2) shape composing should respect the property of part hypotheses

as mentioned above. Before we describe the composing procedure, we first define consistent part

hypotheses.

Consistent Part Hypotheses. To determine if two part hypotheses are consistent, we introduce

the concept of uncertainty region (UR) for each part in a part hypothesis. Assuming we have a

hypothesis with root part i, then the uncertainty region for part j is a circle with radius equal to

a fraction (20% in our experiment) of the distance between part i and j (please see Fig. 6.3). If

i == j, then the UR has zero radius. Given this definition, we claim that two part hypotheses

rooted at two different parts agree on a part if the two corresponding URs for this part are close

enough. The distance is measured as the distance between the two URs’ centers divided by the

larger radius. We require that two consistent hypotheses should agree on at least N parts, one of

which must be a root part. In this way, the strictness of consistency is parametrized by N . In

Fig. 6.3, we show two composing examples which use three consistent part hypotheses.

Composing Procedure. We design a procedure to progressively group hypotheses that are con-

sistent. Although being heuristic, the method is capable of generating a good number of plausible

shapes at reasonably low cost. (1) We start from a group with a single part hypothesis, then succes-

sively add another part hypothesis (sampled at random) that is consistent with more than a fraction

r of current hypotheses. Note that before adding new part hypothesis, we copy and cache the cur-

rent group. When the process terminates, we generate a large set of groups with different sizes. (2)

Given a group, we retrieve its corresponding part hypotheses, which directly determine the locations

of their corresponding root parts. For each of the other leaf parts, we determine its visibility based

on voting (similar to Eq. 5.6). The location of a visible leaf part is taken from the part hypothesis

with the smallest uncertainty region for the part, thus utilizing the general property of part hypothe-

sis. (3) As the inferred locations of leaf parts are not as precise as root parts, we refine the leaf parts

by replacing them with sufficiently close candidate part locations from other part hypotheses. The

process is visualized in Fig. 6.3.

Analysis. Essentially, shape composing augment the set of available exemplars, towards the

goal of geometrically matching the testing sample. We can adjust the process by tuning the param-
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Figure 6.3: Two examples of shape composing. For both (a) and (b), the left column shows three

part hypotheses, where the exemplars are shown at the top right corners, and the inferred parts are

shown as colored dots. We mark the uncertainty regions of the inferred parts with white circles. The

three images (from top to bottom) on the right column correspond to the candidate part detections,

composed shape before refinement, and composed shape after refinement. The white dashed lines

connect a root part with the associated leaf parts.

eters N and r. For instance, smaller N allows two consistent exemplars to be less similar, while

smaller r allows more exemplars to contribute. In our experiment, we find N = 4, r = 1 gives the

best result for the bird dataset, while N = 3, r = 0.5 works best for the human pose dataset.

6.4 Experiments and Results

We evaluate our part localization method on the bird dataset CUB-200-2011 [Wah et al., 2011] and

the human pose dataset LSP (Leeds Sports Poses) [Johnson and Everingham, 2010]. For all the

experiments, we use the train/test split provided by the dataset. We withhold 15% of the training
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data as the validation set.

To evaluate the localization performance, we mainly use the PCP measure (Percentage of Cor-

rect Parts). For bird part localization, a correct part should be within 1.5 standard deviation of an

MTurk worker’s click from the ground-truth part location. For human pose estimation, although we

localize the body joints, the PCP measure is based on the limb parts. A correct limb part should

have both end joints within half of the part length from the ground-truth end joints.

6.4.1 Super Part Detector vs. Regular Part Detector

To have an idea about the advantage of super part detector over regular part detector, we compare

their performance in localizing a single part. We also compare super part detector with individual

pair detectors, showing the benefit of aggregating multiple relevant pair detectors. We conduct this

experiment on the bird dataset. Note that we do not try to localize all the parts jointly, instead, we

predict the location of each part independently.

For regular part detector, we use the pose detectors built in [Liu and Belhumeur, 2013], where

there are 200 detectors for each part. At the testing stage, the top five activations across all the pose

detectors are output. As for pair detector, the activation of each pair detector casts a vote for its

related parts. As such, for each part, we run all the relevant pair detectors (across the orientation),

and obtain five highest-scoring votes. For super part detector, we use the top five candidate part

detections obtained in Sec. 6.2.2. Note that we do not apply Non-Maximum Suppression, and the

activations correspond to the local maximas in the response maps.

The PCPs for each part as well as the total PCP are listed in Tab. 6.1. We also report the top-5

accuracy, which measures the chance of at least one of the top five predictions being correct. From

the comparison between pair detectors and pose detectors, we can see that their performance is on

par with each other despite the different features and classifiers. However, after building the super

part detector from the pair detectors, we achieve significant improvement on the part localization.

This is reasonable as the super part detectors incorporate context information. What we want to

emphasize is that by imposing geometric constraints at the stage of single part detection, we have

high quality part hypotheses which make it promising to compose novel shapes.
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PCP Ba Bk Be Br Cr Fh Ey Le Wi Na Ta Th Total

Part 23.4 23.8 31.1 28.1 35.0 28.8 11.5 17.3 18.3 29.4 10.0 34.7 23.9

Pair 27.2 28.4 39.7 31.8 21.4 28.4 5.3 14.5 13.2 38.6 17.9 44.7 25.1

SupP 62.2 57.3 66.4 61.4 74.2 65.6 40.1 40.9 53.5 66.9 34.9 71.5 57.1

Part-top5 49.1 47.2 56.2 55.7 62.3 51.1 23.9 37.9 43.9 53.5 26.6 59.1 46.7

Pair-top5 50.1 54.0 66.1 57.0 44.5 49.4 15.2 29.6 31.8 64.7 37.0 68.7 46.1

SupP-top5 76.9 75.8 79.8 77.1 86.3 81.7 66.0 56.1 66.9 81.4 48.3 83.8 72.5

Table 6.1: Comparison of different detectors in localizing individual parts. The super part detectors

produce the most accurate part localization. From left to right, the parts are: Back, Beak, Belly,

Breast, Crown, Forehead, Eye, Leg, Wing, Nape, Tail, and Throat.

PCP Ba Bk Be Br Cr Fh Ey Le Wi Na Ta Th Total

DPM 34.6 26.0 42.0 37.0 47.9 28.7 48.2 - 55.0 41.8 22.4 42.4 40.7

CoE-ext 62.1 49.0 69.0 67.0 72.9 58.5 55.7 40.7 71.6 70.8 40.2 70.8 59.7

Ours-rigid 59.7 59.0 69.5 67.3 77.1 72.2 67.9 39.9 69.7 75.2 34.7 76.7 63.1

Ours-flex 64.5 61.2 71.7 70.5 76.8 72.0 70.0 45.0 74.4 79.3 46.2 80.0 66.7

Table 6.2: Comparison of part localization results on CUB-200-2011. Our method outperforms

state-of-the-art techniques on all the parts.

6.4.2 Bird Part Localization

We conduct experiments to predict the global part configuration, including part visibilities. As

described in Sec. 6.3, we have two approaches. As the CoE-based approach literally matches the

whole exemplar, we call it rigid method (Ours-rigid); the shape composing-based approach is then

called flexible method (Ours-flex). We also compare with DPM implemented by [Branson et al.,

2013] and the extended CoE method (CoE-ext) [Liu and Belhumeur, 2013].

Tab. 6.2 shows the quantitative results. DPM [Branson et al., 2013] has very low accuracy pos-

sibly for two reasons: there is too large intra-class variation to be captured by only a few DPM

components (14 detectors per part); the first-order spatial constraints in DPM are not strong enough

to suppress the detection noise. Although Ours-rigid does not outperform CoE-ext [Liu and Bel-
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Figure 6.4: Detection rates of Back, Beak, and Tail given varying degrees of localization preci-

sion. 1.5 is the threshold for a correct detection. The normalized error is obtained by dividing the

localization error with the standard deviation of an MTurk worker’s click.

humeur, 2013] by a large margin, the improvement is still remarkable and should be attributed to

our part-pair representation. As we do not use subcategory labels and the performance of raw pair

detectors is not better than that of pose detectors, the improvement is due to the aggregation of a

richer set of appearance models which largely suppress the false detections. Ours-flex further im-

proves the overall PCP over Ours-rigid by about 3.6%. It clearly shows the benefit of composing

new shapes, i.e., augmenting the pool of exemplars to fit the testing image.

Fig. 6.4 shows similar comparisons on three representative parts (to generate the curves, we only

consider the testing images with the target part visible, which is a subset of the whole testing set

used for Tab. 6.2). For relatively rigid part like Back, all the three method have similar localization

precision. For rigid part that has high standard of accuracy (e.g., Beak), both Ours-flex and Ours-

rigid beat extended CoE significantly. For more deformable part like Tail, the improvement of

Ours-flex over Ours-rigid is evident. The reason is that the highest-scoring exemplars from rigid

matching tend to fit the majority of parts well, but not the parts with rare or large deformations.

Fig. 6.5 (a) shows some qualitative results for bird part localization. We can see that Ours-rigid

fails to accurately localize the parts with large deformation. Because the rigid matching strongly

restricts the hypothesized configuration to be from the existing exemplars, Ours-rigid generally

respects the spatial prior more than the particular testing image. This is problematic especially

when we do not have exemplars that match the testing sample well. Ours-flex mitigates this issue by

allowing multiple exemplars to complement with each other based on the particular testing sample.

Similar to [Liu and Belhumeur, 2013], we conduct bird species classification using the localized



CHAPTER 6. EXEMPLARS UNDER PART-PAIR REPRESENTATION 64

Back Beak

ThroatTailRight WingRight LegRight EyeNapeLeft Wing

Left LegLeft EyeForeheadCrownBreastBelly

(a) (b)

Figure 6.5: (a) Qualitative results on CUB-200-2011 dataset. The color codes of the bird parts

are at the bottom. (b) Qualitative results on LSP dataset. In both sub-figures, the first two columns

compare Ours-rigid (left) with Ours-flex (right), the other columns show more examples from Ours-

flex. Failures are denoted with red frames.

parts from our full method. On the whole dataset, the mAP (mean average precision) is 48.32%

(4.19% improvement); on the 14-species subset, the mAP is 65.18% (2.76% improvement).

6.4.3 Human Pose Estimation

We apply our method to human pose estimation2 using LSP dataset [Johnson and Everingham,

2010]. Similar to [Pishchulin et al., 2013b], we use observer-centric (OC) annotations. The pair

detectors are trained in the same way as those for bird dataset, and altogether we have 796 pair

detectors. We also implement [Liu and Belhumeur, 2013] with only pose consistency enabled to

make comparison.

2In shape composing, the root-leaf distance is measured in a geodesic way to account for articulated deformation.
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PCP Torso Upper leg Lower leg Upper arm Forearm Head Total

Strong-PS 88.7 78.8 73.4 61.5 44.9 85.6 69.2

Poselet-PS 87.5 75.7 68.0 54.2 33.9 78.1 62.9

CoE-ext 83.4 69.0 61.7 47.5 28.1 79.3 57.5

Ours-rigid 84.2 69.3 61.5 48.7 28.5 79.9 58.0

Ours-flex 87.6 76.4 69.7 55.4 37.6 82.0 64.8

Table 6.3: Comparison of part localization results on LSP dataset. Our flexible method generates

reasonably good results.

The quantitative results are reported in Tab. 6.3. CoE-ext [Liu and Belhumeur, 2013] and Ours-

rigid do not work well on human pose estimation. Compared with the bird dataset, the number of

training samples is much smaller in LSP, and human body generally has larger articulated deforma-

tion. These factors make the Consensus-of-Exemplars approach less effective for human pose esti-

mation. Also note that our rigid method only has marginal improvement over [Liu and Belhumeur,

2013]. One possible reason is that the images in the LSP dataset have already been normalized and

cropped (unlike [Wah et al., 2011]), making the effect of suppressing detection noise not prominent.

Tab. 6.3 also shows that Ours-flex significantly improves over Ours-rigid. Ours-flex also outper-

forms one state-of-the-art technique [Pishchulin et al., 2013a]. Compared with the well-constructed

method which employs appearance and geometric models that are tailored to human body [Pishchulin

et al., 2013b], our method still produces comparable results. The experiment demonstrates that our

part-pair representation can be generalized to the categories with large articulated deformation.

Some qualitative results are shown in Fig. 6.5 (b). Similar to the comparison in Fig. 6.5 (a),

Ours-flex achieves more accurate localization by balancing the shape prior from exemplars and the

detector activations in the test image.

6.5 Discussion

We have proposed a novel part-pair representation that improves exemplar-based part localization.

Exemplars under part-pair representation can impose customizable constraints on the part locations:

if we only use the pairs sharing a single part, we can build high-quality exemplar-dependent part
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detectors which generate reliable and informative part hypotheses; if we allow subsets of pairs from

different exemplars to collaboratively form a part configuration, then we achieve shape composing

for novel configurations that potentially fit the testing sample better. Moreover, such representation

naturally gives us a rich set of appearance models, such that we can score and rank the composed

configurations reliably. We also eliminate the need for Consensus operation which may produce

unreasonable result when hypotheses are noisy. Experimental results demonstrate that our method

produces state-of-the-art results on bird part localization and promising results on human pose esti-

mation.
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Chapter 7

Hierarchical Exemplar-based Models

Exemplar-based models have achieved great success on localizing the parts of semi-rigid objects.

However, their efficacy on highly articulated objects such as human body is yet to be explored.

Inspired by hierarchical object representation and the recent application of Deep Convolutional

Neural Networks (DCNNs) on human pose estimation, we would like to incorporate them into our

exemplar-based approach. Specifically, we propose a discriminatively trained formulation, featuring

multi-level exemplars. The formulation assumes independence between exemplars at different lev-

els for flexibility; it also obtains strong spatial cues by inferring the spatial relations between parts

at the same level. Overall, our method strikes a good balance between expressiveness and strength

of exemplars, thus achieving better performance than previous exemplar-based approaches.

The basis of our method is the hierarchical representation of an object: starting from atomic

parts at the lowest level, we gradually merge them into composite parts at higher levels until we

have only one composite part (i.e., the full object). Therefore, we obtain a tree structure, with

the nodes representing parts at different levels of granularity. The spatial relations between the

parts at each level are first inferred from the image, and then are used to score the exemplar-based

models at an upper level. In this process, the strength of Deep Convolutional Neural Networks

(DCNNs) and exemplars is exploited. Experimental results show that our method is both effective

and generalizable as it achieves state-of-the-art results on two different benchmarks.
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Figure 7.1: Hierarchical object representation. (a) shows the spatial relations between sibling parts.

The black dots denotes the anchor points. (b) shows the tree structure of a hierarchy.

7.1 The Approach

Our method features a hierarchical representation of object. We will first describe the relevant

notations and introduce hierarchical exemplars. Then we will explain our formulation of pose esti-

mation. In the end, a comparison with relevant techniques will be addressed.

7.1.1 Hierarchical Representation

A hierarchical object (exemplar) contains two types of parts: atomic part and composite part. An

atomic part i is at the finest level of granularity, and can be annotated as a keypoint with pixel

location xi (e.g., elbow). A composite part k is the composite of its child parts (e.g., arm = {shoulder,

elbow, wrist}), and is denoted as a tight bounding box bk containing all the child parts inside. As

previous chapters, part configuration X is represented as the locations of atomic parts [x1, . . . , xN ]

where N is the total number of atomic parts.

Now, we define the spatial relation between parts of the same type. For atomic parts i and

j, their offset xj − xi characterizes the relation ri,j (e.g., shoulder is 20 pixels above the elbow).

For composite parts k and h, we first assign anchor points ak and ah to them. Anchor points are

manually determined such that they are relatively rigid w.r.t the articulated deformation. Then we

represent the relation rk,h as [tl(bh) − ak, br(bh) − ak], where tl(·) and br(·) are the top-left and

bottom-right corners of part bounding box (please see Fig. 7.1 (a)). Such definition is consistent in

the sense that an atomic part is a degenerate bounding box.
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Figure 7.2: The instantiations of part hierarchy on human and bird. In each row, the part levels

increase from the left to the right. Each figure shows the parts at the same level with the same color

(except for the atomic parts). Immediate children are also plotted for level 2 and above. The stars

mark the anchor points for the composite parts.

The hierarchical representation follows a tree structure, as shown in Fig. 7.1 (b). The root

denotes the whole object, and each leaf denotes an atomic part. Each internal node k at level l > 1

corresponds to a composite part k(l) – the union of its immediate children denoted as C(k(l)). The

degree of the tree is not bounded, and the structure of the tree depends on the particular object

category. A general rule is: geometrically neighboring parts (at the same level) can form a part at

the upper level if their spatial relations are sufficiently captured by the training data. Fig. 7.2 shows

the instantiation of the hierarchy for two different categories: human and bird. As the bird body

is relatively more rigid than the human body, the degrees of bird’s internal nodes can be larger,

resulting in fewer levels.

The exemplars in previous works [Belhumeur et al., 2011; Liu and Belhumeur, 2013] corre-

spond to a depth-2 hierarchy, where all the atomic parts are the children of the unique composite

part (i.e., root part). As a result, each exemplar models the relations between all the atomic parts,

making the ensemble of training exemplars not capable of capturing unseen poses. Our hierarchi-

cal exemplars, however, adapt to a hierarchy with larger depth which gives us multiple composite

parts. By treating each composite part as a standalone object, we have exemplars that model the

spatial relations of its child parts (which are referred to as the pose of composite part). We use
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M = {M(l)
k }|l>1 to denote the set of exemplar-based models for all the composite parts, where

k is the index, and l denotes the level. By design, the hierarchical exemplars cover a spectrum of

granularity with proper decomposition of the object, which dramatically improves the expressive-

ness of exemplars. Note that the depth had better not go too large, as we still want to make use of

the strength of exemplars in constraining the configurations of more than two parts.

7.1.2 Formulation

We define an energy function to score a configuration X given an image I and the spatial models

M as

S(X|I,M) = U(X|I) +R(X|I,M) + w0, (7.1)

where U(·) is the appearance term, R(·) is the spatial term, and w0 is the bias parameter. Our goal

is to find the best configuration X∗ = arg maxX S(X|I,M).

Appearance Terms: U(X|I) is a weighted combination of the detection scores for each atomic

part:

U(X|I) =

N∑
i=1

wi ϕ
(
i|I
(
xi, s

(1) (X)
))

, (7.2)

where wi is the weight parameter, ϕ(·) scores the presence of a part i at the location xi based on the

local image patch (Eq. 7.9), and s(1)(X) denotes the scaling factor to normalize X’s atomic parts.

As we do not know the scale and location of the target object in the test image (a practical scenario),

sliding-window detection over scales is used.

Spatial Terms: We design multi-level spatial terms to evaluate the part relations. Assuming there

are L levels in the object hierarchy, and there are nl parts at the l-th level, then R(X|I,M) is

defined as

R(X|I,M) =
L∑
l=2

nl∑
k=1

Ψ
(
p
(l)
k |b

(l)
k , I,M

(l)
k

)
, (7.3)

where b(l)k denotes the bounding box of part k(l), p(l)k denotes the pose of k(l), M(l)
k denotes the

corresponding spatial models, and Ψ(·) scores p(l)k based on both appearance and spatial models.

Note that p(l)k is defined as the spatial relations between the child parts of k(l).

We now elaborate the derivation of Ψ(·). Using exemplar-based models, we can assumeM(l)
k

contains T exemplars {Xi}|i=1,...,T , each of which dictates a particular pose pi (e.g., an example of
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raised arm). Here, we drop the subscript k and superscript l for simplicity. With these in hand, we

evaluate Ψ(·) as the combination of two terms:

Ψ
(
p
(l)
k |b

(l)
k , I,M

(l)
k

)
= α

(l)
k φ

(
po|I

(
b
(l)
k , s

(l−1) (X)
))

+ β
(l)
k ψ

(
p
(l)
k , po

)
, (7.4)

where α(l)
k and β(l)k are the weight parameters, po (corresponding to exemplar Xo) is the pose that

best fits p(l)k , φ(·) evaluates the likelihood of pose po being present in the image region at b(l)k

(Eq. 7.10, 7.11), s(l−1) indicates that the relevant image patches also need to be resized as Eq. 7.2,

ψ(·) measures the similarity between p(l)k and po as

ψ(p
(l)
k , po) = −min

t
|| ~X(l)

k − t( ~Xo)||2, (7.5)

where t denotes the operation of similarity transformation (the rotation angle is constrained), ~X(l)
k

denotes the vectorized locations of parts C(k(l)) in X , and ~Xo denotes the vectorized Xo.

As multi-scale image cues and multi-level spatial models are both involved, Ψ(·) covers part

relations at different levels of granularity. For instance, at a fine scale (small l), it evaluates whether

the arm is folded; at a coarse scale (large l), it evaluates whether the person is seated.

7.1.3 Comparisons with Related Methods

We make independence assumption on the spatial models in Eq. 7.3, which can benefit articulated

pose estimation. The reason lies in that it gives us a collection of spatial models that can better

handle rare poses. For instance, our models allow a person to exhibit arbitrarily plausible poses at

either arm as long as the spatial relations between the two arms are plausible. With such assumption,

our formulation still captures the part relations thoroughly and precisely: the relations between

sibling parts are encoded explicitly in Eq. 7.4; the relations between parent and child parts are

implicitly enforced (the same X is referred to across the levels).

Below, we address the differences between our method and relevant techniques, such as image

dependent spatial relations [Chen and Yuille, 2014; Sapp and Taskar, 2013; Pishchulin et al., 2013a]

and hierarchical models [Sun and Savarese, 2011; Wang et al., 2011; Wang and Li, 2013]:

• Unlike [Chen and Yuille, 2014; Sapp and Taskar, 2013], our method infers from the image

not only the spatial relations between atomic parts (e.g., elbow and shoulder), but also the

spatial relations between composite parts (e.g., upper body and lower body).
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• Unlike [Sapp and Taskar, 2013; Pishchulin et al., 2013a], we do not conduct the selection

of spatial models upfront as errors in this step are hard to correct afterwards. Instead, our

selection of spatial models is based on the configuration under evaluation (the second term in

Eq. 7.4), which avoids pruning the state space too aggressively.

• Unlike [Sun and Savarese, 2011; Wang et al., 2011; Wang and Li, 2013], our method di-

rectly optimizes on the atomic part locations, avoiding the interference from localizing the

composite parts. Also, we turn to exemplars to constrain the part relations, rather than using

piece-wisely stitched “spring models”.

7.2 Inference

The optimization of Eq. 7.1 does not conform to general message passing framework due to the

dependency of po on X (Eq. 7.4) and the interactions between variables xi across multiple levels

(Eq. 7.3). Therefore, we propose an algorithm (Algorithm 1) which simplifies the evaluation of

Eq. 7.3 with hypothesized parts. Although being approximate, the algorithm is efficient and yields

good results. In the following sections, we explain two major components of the algorithm.

7.2.1 Hypothesize and Test

The first component is Hypothesize and Test, which leverages a RANSAC-like procedure of exem-

plar matching. For this, we rewrite Eq. 7.3 in a recursive form which scores the sub-tree rooted at

b
(l)
k (l ≥ 2):

f(b
(l)
k ) =

∑
j∈C(k(l))

f(b
(l−1)
j ) + Ψ

(
p
(l)
k |b

(l)
k , I,M

(l)
k

)
. (7.6)

Note that f(b
(1)
k ) = 0 for any k. By comparing Eq. 7.6 with Eq. 7.3, we can see that f(b

(L)
1 ) =

R(X|I,M).

Hypothesize and Test is conducted in a bottom-up manner: (1) Given the hypothesized locations

of all the parts at level l − 1 (each part has multiple hypotheses), transform the exemplars at level l

to the test image with similarity transformation such that each exemplar’s child parts align with two

randomly selected hypotheses of atomic parts (if l = 2), or up to two hypotheses of composite parts

(if l > 2). (2) The geometrically well-aligned exemplars generate hypotheses for the parts at level
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Figure 7.3: Generate hypotheses using exemplars. The first row corresponds to l = 2 and the second

row corresponds to l = 3. (a) Two training exemplars. (b) The test image overlaid with hypotheses

at level l− 1. (c) Part hypotheses at level l which are inherited from the exemplars. (d) Augmented

hypothesis after swapping the hypotheses of child part.

l. Each hypothesis carries from exemplar the object size, the corresponding sub-tree, as well as the

pose po for each node in the sub-tree. (3) Augment the hypotheses of k(l) (if l > 2) by replacing

their sub-trees with geometrically close hypotheses at level l − 1. (4) Evaluate all the hypotheses

at level l using Eq. 7.6 and keep the top-scoring ones. (5) Increment l and go to step (1). Fig. 7.3

shows examples of the first three steps.

7.2.2 Backtrack

The second component of the algorithm is Backtrack. Assuming we have a hypothesis of the root

part b(L)1 , we can trace down its tree constructed in Sec. 7.2.1, which naturally gives us po’s (in

Eq. 7.4) for each composite parts, as well as the hypothesized locations for the atomic parts X̂ =

[x̂1, x̂2, . . . , x̂N ].

The next step is to re-score X̂ by obtaining its refined configuration X̂∗. For this purpose, we

define g(·) to approximate S(·) in Eq. 7.1:

g(X̂|I, b(L)1 ) = U(X̂|I) +

n2∑
k=1

β
(2)
k ψ(p

(2)
k , po) +D, (7.7)
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Algorithm 1: Inference Procedure for Pose Estimation
Input: Multi-level exemplars {M(l)}|l=2,...,L;

Multi-level appearance models {C(l)}|l=1,...,L−1;

Test image I;

Maximum number of hypotheses per part Z;

Output: The optimal configuration X∗;

hypo(1) ← top Z local maximas from C(1)(I), l← 2;

while l ≤ L do
hypo(l) ← randomly alignM(l) with hypo(l−1);

Augment hypo(l) if l > 2;

Evaluate hypo(l) using Eq. 7.6 and C(l−1)(I);

hypo(l) ← top-scoring Z hypo(l);

l← l + 1;
Refine and re-score hypo(L) through backtrack;

X∗ ← highest-scoring X̂∗;

return X∗;

where D = f(b
(L)
1 ) + w0. Such approximation assumes s(X̂), po and b(l)k for l > 2 change little

during the refinement (which mainly changes the atomic part locations). After plugging Eq. 7.2 and

Eq. 7.5 into Eq. 7.7, we can solve each atomic part independently as

x̂∗i = arg max
xi∈R(x̂i)

wi ϕ(i|I(xi, s
(1)(X̂)))− β(2)k ||xi − x̂i||

2. (7.8)

whereR(x̂i) denotes the search region of part i. We define the search region as a circle with radius

equal to 15% of the average side length of b(L)1 . We evaluate Eq. 7.8 for all the pixel locations

inside the circle, which gives us the highest-scoring location. In the end, we obtain the refined

configuration X̂∗ = [x̂∗1, x̂
∗
2, . . . , x̂

∗
N ] with updated score g(X̂∗|I, b(L)1 ).

7.3 Model Learning

In this section, we describe how we learn the appearance models in Eq. 7.1 (i.e., ϕ(·) and φ(·)), as

well as how we learn the weight parameters w (i.e., wi, α
(l)
k , and β(l)k ).
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Figure 7.4: TOP: The architecture of DCNN-based atomic part detector. It consists of five convolu-

tional layers, two max-pooling layers and three fully-connected layers. The output dimension is |S|.

BOTTOM: The architecture of DNN-based models for composite parts. It consists of five convolu-

tional layers, three max-pooling layers and three fully-connected layers. The last two layers branch

out, with each branch targeting the possible spatial relations of one composite part to its predefined

reference part.

7.3.1 Relations Between Atomic Parts

We follow the method of [Chen and Yuille, 2014] to infer the spatial relations between atomic

parts. Specifically, we design a DCNN-based multi-class classifier using Caffe [Jia et al., 2014].

The architecture is shown in the first row of Fig. 7.4. Each value in the output corresponds to

p(i,mi,j |I(x, s(1)(X))), which is the likelihood of seeing an atomic part i with a certain spatial

relation (type mi,j) to its predefined neighbor j, at location x. If i = 0, then mi,j ∈ {0}, indicating

the background; if i ∈ {1, . . . , N}, then mi,j ∈ {1, . . . , Ti,j}. By marginalization, we can derive

ϕ(·) and φ(·) as

ϕ(i|I(x, s)) = log(p(i|I(x, s))). (7.9)

φ(mo|I(b
(2)
k , s)) =

∑
i∈C(k(2))

log(p(mi,j |i, I(xi, s))). (7.10)

Note that superscript (1) and X are dropped for clarity, i and j are siblings. To define type mi,j ,

during training, we discretize the orientations of ri,j into Ti,j (e.g., 12) uniform bins, and mi,j
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indicates a particular bin. The Training samples are then labeled as (i,mi,j), and the image patches

are centered at the target parts.

7.3.2 Relations Between Composite Parts

We build another DCNN-based model to infer the spatial relations between composite parts, as

shown in the second row of Fig. 7.4, the architecture differs from that for atomic parts in multiple

aspects. First, as the model targets composite parts which have coarser levels of granularity, the

network has a larger receptive field. Second, as there are relatively fewer composite parts than

atomic parts, we let all the composite parts share the features in the first few layers. Third, as

the composite parts have different granularity with possibly significant overlap with each other, the

DCNN branches out to handle them separately.

Assuming the i-th branch corresponds to part i at level l − 1 (Note that l > 2), then the branch

has |Si|-dim output with each value being p(mi,j |i, I(ai, s
(l−1)(X))) based on the image patch

centered at the anchor point ai. Assuming the parent of part i is part k(l), then φ(·) (if l > 2) is

evaluated as

φ(po|I(b
(l)
k , s)) =

∑
i∈C(k(l))

log(p(mi,j |i, I(ai, s))). (7.11)

Note that superscript (l−1) and X are dropped for clarity. To train this model, we cluster the rela-

tion vector ri,j into Ti,j (e.g., 24) clusters (types) for part i, and the training samples are labeled

accordingly.

7.3.3 Weight Parameters

Eq. 7.1 can be written as a dot product 〈w,Φ(X, I,M)〉. Given a training sample (X, I), we

compute Φ(X, I,M) as its feature. Each training sample also has a binary label, indicating if the

configuration X is correct. Therefore, we build a binary max-margin classifier [Tsochantaridis et

al., 2004] to estimate w, with non-negativity constraints imposed. To avoid over-fitting, the training

is conducted on a held-out validation set that was not used to train the DCNNs.

Before training, we augment the positive samples by randomly perturbing their part locations as

long as they are reasonably close to the ground-truth locations. To generate the negative samples,

we randomly place the configurations of positive samples at the incorrect regions in the training
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images, with Gaussian noise added to the part locations.

7.4 Experiments and Results

We evaluate our method extensively on multiple benchmarks, and conduct diagnostic experiments

to show the effect of different components in our method.

7.4.1 Human Pose Estimation on LSP Dataset

The Leeds Sports Pose (LSP) dataset [Johnson and Everingham, 2010] includes 1, 000 images for

training and 1, 000 images for testing, where each image is annotated with 14 joint locations. We

augment the training data by left-right flipping, and rotation through 360◦. We use observer-centric

(OC) annotations to have fair comparisons with the majority of existing methods. To measure the

performance, we use Percentage of Correct Parts (PCP). In PCP measure, a “part” is defined as a

line segment connecting two neighboring joints. If both of the segment endpoints (joints) lie within

50% of the length of the ground-truth annotated endpoints, then the part is correct.

In this experiment, we build a hierarchy of four levels for human body. The first level contains

the atomic body joints; the second level has five composite parts (Head, Right arm, Left arm, Right

leg, and Left leg); the third level has two composite parts (Head&Arms and Legs); the fourth level

corresponds to the whole body. To gain an understanding of the effect of the two components of

our inference algorithm, we evaluate our full method (which will be referred to as “Ours-full”),

and a variant of our method (which will be referred to as “Ours-partial”, and “Ours-no-HIER”).

Ours-full corresponds to the whole inference algorithm; Ours-partial only conducts the first part

of the inference algorithm, then obtains the best root hypothesis based on Eq. 7.6, and outputs the

locations of its atomic parts; Ours-no-HIER only uses full-body exemplars (after augmentation) as

the spatial models.

The quantitative results of our method as well as its counterparts are listed in Tab. 7.1. Ours-

full generally outperforms the state-of-the-art methods on all the parts. The improvement over

IDPR [Chen and Yuille, 2014] demonstrates the effect of reasoning multi-level spatial reasoning. We

expect to see even larger improvement if we augment the annotations with midway points between

joints as [Chen and Yuille, 2014] does. We also experiment with person-centric (PC) annotations
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Method Torso ULeg LLeg UArm LArm Head Avg

Strong-PS 88.7 78.8 73.4 61.5 44.9 85.6 69.2

PoseMachine 88.1 78.9 73.4 62.3 39.1 80.9 67.6

IDPR 92.7 82.9 77.0 69.2 55.4 87.8 75.0

Ours-partial 89.2 79.5 73.6 65.8 50.3 85.6 71.3

Ours-no-HIER 85.4 75.3 66.7 54.9 37.5 82.5 63.7

Ours-full 93.5 84.4 78.3 71.4 55.2 88.6 76.1

Ours-full (PC) 93.7 82.2 76.0 68.6 53.2 88.3 74.2

Table 7.1: Comparison of pose estimation results (PCP) on LSP dataset. Our method achieves the

best overall performance.

on the same image set, where the accuracy drops slightly. Ours-full achieves improvement over

Ours-partial and Ours-no-HIER by a large margin, which demonstrates the benefits of backtrack

(higher precision) and hierarchical exemplars (more expressive models). Note that Ours-partial

already outperforms Strong-PS [Pishchulin et al., 2013b] and PoseMachine [Ramakrishna et al.,

2014], which should be partly attributed to the use of DCNN models.

Figure 7.5: Qualitative results of human pose estimation on LSP dataset (OC annotations).

Fig. 7.5 shows some testing examples, which are selected with high diversity in the poses. We

can see that our method achieves accurate localization for most of the body joints, even in the case

of large articulated deformation.
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7.4.2 Human Pose Estimation on LSP Extended Dataset

To have fair comparisons with [Toshev and Szegedy, 2014; Tompson et al., 2014], we train and test

our models on LSP extended dataset using PC annotations. Altogether, we have 11, 000 training

images and 1000 testing images. As the quality of the annotations for the additional training images

varies a lot, we manually filter out about 20% of them. We also augment the training data through

flipping and rotation.
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Figure 7.6: Detection rate vs. normalized error curves. LEFT, MIDDLE: arm (elbow and wrist) and

leg (knee and ankle) detection on the LSP dataset. RIGHT: Average part detection on the CUB-200-

2011 bird dataset.

We use Percentage of Detected Joints (PDJ) to evaluate the performance, which provides an

informative view of the localization precision. In this experiment, we evaluate the baseline of our

method (referred to as “Ours-base”) by only using the first term in Eq. 7.1. It is equivalent to

localizing the parts independently. In Fig. 7.6, we plot the detection rate vs. normalized error

curves for different methods. From the curves, we can see that Ours-base already achieves better

accuracy than [Toshev and Szegedy, 2014] except for Knee. It demonstrates that a detector that

scores the part appearance is more effective than a regressor that predicts the part offset. Ours-full

achieves significant improvement over Ours-base by incorporating the multi-level spatial models.

Our method is also comparable to [Tompson et al., 2014] which enjoys the benefit of jointly learning

appearance models and spatial context. [Tompson et al., 2014] has higher accuracy on the lower

arms, while we have better results on the lower legs. Also note that [Tompson et al., 2014] requires

delicate implementation of a sophisticated network architecture, while our method allows the use of

off-the-shelf DCNN models.
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Method Ba Bk Be Br Cr Fh Ey Le Wi Na Ta Th Total

CoE-ext 62.1 49.0 69.0 67.0 72.9 58.5 55.7 40.7 71.6 70.8 40.2 70.8 59.7

Part-pair 64.5 61.2 71.7 70.5 76.8 72.0 70.0 45.0 74.4 79.3 46.2 80.0 66.7

DCNN-CoE 64.7 63.1 74.2 71.6 76.3 72.9 69.1 48.1 72.5 82.0 46.8 81.5 67.5

Ours-partial 65.1 64.2 74.6 72.4 77.1 73.8 70.4 48.6 73.1 82.5 48.3 82.2 68.3

Ours-full 67.3 65.6 75.9 74.4 78.8 75.3 72.7 50.7 75.3 84.7 49.9 84.2 70.2

Table 7.2: Comparison of part localization results on the CUB-200-2011 bird dataset. Our method

outperforms the previous methods by a large margin. From left to right, the parts are: Back, Beak,

Belly, Breast, Crown, Forehead, Eye, Leg, Wing, Nape, Tail, Throat, and Total.

7.4.3 Bird Part Localization

We also evaluate our method on the CUB-200-2011 bird dataset, which contains 5, 994 images

for training and 5, 794 images for testing. Each image is annotated with image locations for 15

parts. We also augment the training data through flipping and rotation. As birds are less articulated

than humans, we design a three-level hierarchy for birds. The first level contains the atomic parts;

the second level has three composite parts (Head, Belly&Legs, and Back&Tail); the third level

corresponds to the whole bird. Although we did not prove that the manually-designed hierarchy is

optimal, we empirically find that it facilitates the prediction of coarse-level part relations.

We use both PCP and PDJ to measure performance. In the bird dataset, a correct part detection

should be within 1.5 standard deviation of an MTurk worker’s click from the ground-truth loca-

tion. For a semi-rigid object such as bird, directly applying exemplar-based models can produce

very good results. Therefore, we replace the part detectors in [Liu and Belhumeur, 2013] with our

DCNN-based detector (which target the atomic parts), obtaining an enhanced CoE method (which

will be referred to as “DCNN-CoE”).

We compare the results of different methods in Tab. 7.2, including CoE-ext [Liu and Belhumeur,

2013] and Part-pair [Liu et al., 2014]. First, DCNN-CoE outperforms CoE-ext significantly, demon-

strating that DCNN is much more powerful than the conventional classification model (e.g., SVM).

DCNN-CoE also outperforms Part-pair with much less overhead, thanks to the efficiency of multi-

class detector. Using our new method, the localization accuracy is further improved. Ours-partial

improves slightly over DCNN-CoE, which is reasonable as Ours-partial is essentially multi-level
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DCNNs plus hierarchical exemplars, and the flexibility of hierarchical exemplars has limited ben-

efit for semi-rigid objects. Also note that Ours-partial uses an incomplete scoring function. By

considering the full scoring function, Ours-full achieves the best results on all the parts. The right-

most plot in Fig. 7.6 shows the detection rate vs. normalized error curves. The localization error

is normalized by the standard deviation of an MTurk worker’s click for the part. From the curves,

we can see that our method outperforms the previous state of the art in both high-precision and

low-precision regions.

Back Beak ThroatTailRight WingRight LegRight EyeNapeLeft WingLeft LegLeft EyeForeheadCrownBreastBelly

Figure 7.7: Qualitative results of part localization on CUB-200-2011 bird dataset. The color codes

are shown at the bottom.

Some qualitative results are shown in Fig. 7.7. From the examples, we can see that our method

is capable of capturing a wide range of poses, shapes and viewpoints. In addition, our method

localizes the bird parts with very high precision.

7.5 Discussion

In this chapter, we propose a novel approach for articulated pose estimation. The approach ex-

ploits the part relations at different levels of granularity through multi-scale DCNN-based models

and hierarchical exemplar-based models. By incorporating DCNN-based appearance models in the

spatial terms, our method couples spatial relations with image cues, thus better capturing the inter-

actions between the parts than otherwise. By introducing hierarchy in the exemplar-based models,

we enjoy much more expressive spatial models even if the training data are limited. In addition,
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we propose an efficient algorithm to infer “good-enough” part configurations from a sophisticated

formulation. These efforts together enable us to achieve state-of-the-art results on different datasets,

which demonstrates the effectiveness and generalization ability of our method.
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Chapter 8

Conclusions

8.1 Thesis Summary

In this thesis, we have shown how to build automatic visual systems that perform fine-grained

classification using part-based method. The core of the system is to extract features with part-

level correspondences across different instances. By conducting extensive experiments on different

categories and comparing with other approaches without using parts, we observe significant gains

in the classification performance. It agrees with our intuition that subtle differences between similar

subcategories generally lie in the local regions at or around parts. If we extract features from these

regions and maintain the part-level correspondence in the feature vectors, we make it easier for

classifiers to learn discriminative features that best differentiate subcategories. In building the fine-

grained visual systems, we have made available two datasets with part labels, facilitating vision

community to further explore part-based visual recognition.

We have also demonstrated the potential of exemplar-based models in localizing object parts. In

applying them to different categories, from relatively rigid face to highly deformable human body,

we gain insight about their pros and cons. These findings motivated us to explore richer appear-

ance models and sophisticated object representations that better capture the interactions between

parts. By combining exemplars with these newly designed components, exemplar-based models are

significantly enhanced and generalized. More importantly, such improvement further advances the

state of the art in object part localization. Therefore, our work makes progress towards the goal of

enabling machines to perceive the presence and configuration of objects.
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8.2 Future Directions

As we mentioned earlier, part localization is to build the non-linear mapping from appearance space

to pose space. Therefore, completely solving this problem requires the understanding of how these

two spaces look like and how they are related to each other. The ideas and methods presented in

this thesis are just initial attempts. There are many things to explore regarding exemplars and part

localization. First, exemplars in our work only encode the geometric information of the object.

It is interesting to see if geometric exemplars have counterparts in appearance space. In other

words, exemplars may carry the relations between part appearance besides spatial relations. For

instance, the pattern at one part should co-exist with certain pattern at another part. Second, we

use non-parametric exemplars to represent the pose manifold as a discrete set. However, we still

lack insight about what the manifold looks like. For instance, we don’t know what is the best way

to measure the distance between two configurations, especially when some parts are not visible

due to self-occlusion. Otherwise, we may be able to build low-dimensional embedding for the

exemplars, facilitating the mapping from image cues to exemplars that are applicable (i.e., ruling

out incorrect exemplars). Third, a follow-up question is whether we can design more informative

part annotations than just keypoint locations. It should be helpful to know the support of part. Last,

current methods including ours estimate the part locations in a feed-forward manner. We feel some

feedback from currently estimated results may help us correct the errors or adjust the inference

incrementally. In the following two sections, we briefly discuss potential directions that differ from

current methodologies for object part localization. No matter what techniques these directions will

lead us to, we expect to have machines perform vision tasks in in a more human-like way.

8.2.1 Sequential Part Localization

Although we try to detect all the parts on an object, they do not necessarily exhibit equal levels of

difficulty. For instance, in bird part localization, head parts are generally easier to detect than legs

and tail; in human pose estimation, head is also easier to detect than other parts. This observation

implies a sequential part localization, where easier (more reliable) parts are detected first, then the

other more difficult parts based on the easy ones. One possible method of estimating the difficulty

is: build regular part detectors, and evaluate them on validation set. The error rates then indicate
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the levels of difficulty. As this is just a statistical estimation, the ranking of difficulty may not hold

for a particular image. Therefore, an adaptive strategy is needed so that the sequence of parts being

detected also respects the image cues. In some sense, the strategy is equivalent to a cascade which

needs to be designed and learned in a principled way. [Alexe et al., 2012; Chen et al., 2014] have

relevant ideas, but they do not particularly study the problem of part localization or the sequence of

detections.

8.2.2 Holistic Pose Estimation

Most of existing methods treat parts on an object as independent entities, and build separate models

for them. As such, they naturally follow a bottom-up paradigm where individual parts are detected,

and then combined to predict the final configuration. Although this idea is straightforward, it may

fall in the trap of noisy part detections from the beginning. As we discussed before, there are

ambiguities in the local part appearance, making it hard to build part detectors that are reliable.

However, if incorrect regions that contain misleading patterns are excluded based on some analysis

of the global or surrounding image content, the imperfect part detectors will have higher chances of

locating the parts correctly.

DeepPose [Toshev and Szegedy, 2014] has attempted to approach the problem by building

DCNN-based part regressors. It takes as input the image of the full body, but its loss function

does not involve the interactions between parts explicitly. Therefore, the individual parts are in-

ferred independently throughout the method. At the least, we would like to have some intermediate

representations of part configuration, such that the mapping from raw image to their activations

and the mapping from the activations to individual part locations leverage enough contextual image

cues. To obtain such representations, we may need to go back to understanding the pose manifold

mentioned above. Poselets [Bourdev et al., 2010] provide one choice of the intermediate represen-

tation, but they are built in a greedy and ad-hoc way without supervision from a global objective. In

addition, getting the part locations from Poselet activations just involves simple voting strategy.

With the development of deep neural networks, we expect to see more works in this direction

that predict objects, parts, and pose based on fully analysed image cues.
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