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ABSTRACT 

Probing Transition Metal Dichalcogenides via Strain-Tuned and 

Polarization-Resolved Optical Spectroscopy 

Özgür Burak Aslan 

The strong light-matter interaction in the atomically thin transition metal 

dichalcogenides (TMDCs) has allowed the use of optical spectroscopy to investigate these 

materials in great depth. It has been shown that optoelectronic properties of ultrathin TMDCs 

are remarkably different from their bulk counterparts. Among them, this dissertation focuses 

on ultrathin MoTe2 (molybdenum ditelluride) and ReS2 (rhenium disulfide).  

We first introduce the fundamental properties of the two material systems, MoTe2 and 

ReS2, investigated in this dissertation. Specific experimental methods for optical spectroscopy 

of 2D materials, 2D sample preparation, and related optics calculations are presented.   

Absorption and photoluminescence measurements are applied to demonstrate that 

semiconducting MoTe2, an indirect band gap bulk material, acquires a direct band gap in the 

monolayer limit. Furthermore, strain-tuned optical spectroscopy on MoTe2 shows that tensile 

strain can significantly redshift its optical gap and partially suppress the intervalley exciton-

phonon scattering. This suppression results in a narrowing of the near-band excitonic 

transitions. We also discuss the effect of strain on the transport properties of MoTe2 due to this 

reduction in scattering.  

We investigate monolayer ReS2 as a TMDC system exhibiting strong in-plane anisotropy. 

These properties are explored by polarization-resolved spectroscopy. We show how the 



 
 

accessible optical properties vary with optical polarization. We find that the near-band excitons 

in ultrathin ReS2, absorb and emit light along specific polarizations. We also show that purely 

non-contact, optical techniques can determine the crystallographic orientation of ReS2.  
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 Atomically Thin MoTe2 and ReS2 

 From a Layered Bulk Material to Atomically Thin 

Layers 

There is a crowded family of layered transition-metal dichalcogenides as shown in Figure 

1-1. Ultrathin MoTe2 (Molybdenum ditelluride) and ReS2 (Rhenium disulfide), which are among 

the semiconducting ones, have recently attracted the interest of many researchers. Since this 

dissertation is going to build upon the foundations of the basic optical properties of TDMCs 

such as ultrathin MoTe2, it will be essential to introduce their core properties and explain what 

makes them different from their relatively thicker counterparts.  

Optical, electrical and structural properties of bulk MoTe2 (thicker than ~10 nm) were 

extensively studied in the past.1-12 Ultrathin crystals of graphene and other layered TMDCs 

materials were recently isolated and found to be stable.13 However, the properties of ultrathin 

crystals of MoTe2, having a relatively small band gap of 1 eV in the case of bulk as compared to 

similar TMDCs, remained unknown.14 Its chemical stability under the ambient conditions, 

optical properties such as band gap, Raman spectra and how these would change with 

increasing thickness were not explored. 



2 
 

 
Figure 1-1: Periodic table highlighting the elements which form the TMDCs that predominantly 
crystallize in layered structures. Partial highlights for Co, Rh, Ir, and Ni indicate that only some 
of the dichalcogenides form layered structures.15 

 
Figure 1-2: Crystal structure of MoTe2. Diagrams at the top and bottom left correspond to 
section and c-axis views, respectively. Section view of the crystal structure of a five-layer MoTe2 

(Right). The letters “A b A” indicate the stacking sequence where the lower- and upper-case 
letters represent Mo and Te atoms, respectively. (Mo: cyan, Te: orange spheres). Left and right 
side of the figure have different scales. 

Monolayer (1L) MoTe2 is the building block of the bulk crystals. The representative 

crystal structure of a 1L is shown in Figure 1-2. A 1L is 6.98 Å thick and formed by only three 

atoms (Te-Mo-Te units). Crystals of odd, even layers and bulk MoTe2 belong to the D3h, D3d, D6h 

space groups, respectively. Despite the fact that a 1L is thinner than 1 nm, MoTe2, as well as the 
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other materials of the same family, has been predicted to have strong light-matter interaction 

due to the phenomenon called band nesting.16-17 It has been proposed that the 1L crystals of 

MoTe2 will have a direct gap as opposed to its bulk counterpart which has an indirect gap.18 

That direct gap has been expected to be at 1.1 eV which is very close to silicon’s gap. Moreover, 

further studies predicted that tensile strain, W doping and electrical gating under ambient 

conditions could stabilize MoTe2 in a metallic phase.19-23 Because of the attractive properties 

mentioned above, MoTe2 has attracted much attention, and there have been many studies on 

probing the band structure of 1L as well as the few-layer crystals (bilayer (2L), trilayer (3L) and 

so on) to confirm the predictions and to understand its properties further. 

Figure 1-3a shows calculated band structures of bulk, 2L, and 1L MoTe2. Multiple 

studies, including Chapter 4 of this dissertation, have demonstrated via absorption and 

photoluminescence (PL) spectroscopy that 1L MoTe2 indeed acquires a direct band gap. Figure 

1-3b shows that the PL peaks have a decrease in intensities and broadening in the spectral 

linewidths with increasing thickness from 1L to bulk. Those have been attributed to the 

emergence of an indirect transition at the 2L and have been supported by absorption 

measurements (Figure 1-3c and d, see also Chapters 2.1, 2.2 and 4). 24-27 

 Strain and Tungsten Alloying Effects on MoTe2 

Due to the striking change in the nature of the band by only adding one more layer of 

the same material on top a 1L, researchers became interested in altering the band by other 

means such as in-plane tensile or compressive strain. Figure 1-4 plots the calculated band 

structure of 1L MoTe2 under in-plane biaxial strain.28 A strain of -2% (compressive) is expected 

to redshift the indirect valley (between K and Γ points) more than the direct valley (K-point) 
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with respect to the maximum of the valence band (K-point) such that the 1L attains an indirect 

gap. On the contrary, a strain of +2% (tensile) makes the 1L “more direct” meaning the indirect 

valley goes even higher in energy with respect to the direct valley. Chapter 5 will show the 

optical signatures of such a modification by tensile strain, specifically on the spectral linewidths 

of the optical transitions. Chapter A.5 will present how to realize and quantify the strain. 
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Figure 1-3: (a) Calculated band structure of MoTe2 for bulk, 2L,1L crystals. The solid blue arrows 
indicate the lowest energy transitions. From the calculations, 1L was expected to acquire a 
direct gap at the K point of the Brillouin zone as opposed to bulk which has an indirect gap. (b) 
PL spectra of 1L-5L and bulk, (c) PL and reflection contrast spectra of 1L, (d) comparison of the 
peak positions of reflection contrast in 1L-4L (AX: A exciton) and PL.18 
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Figure 1-4: Calculated band structure of 1L MoTe2 for different lattice strains: -2, 0, and +2% in-
plane biaxial strain with respect to the experimental lattice constant. The red arrows indicate 
the lowest energy transitions. Green and orange dashed lines indicate the minimum point of 
the direct and indirect valleys in the valence band.28 

 
Figure 1-5:  Raman spectra of bulk (a) 2H-MoTe2, 1T′-MoTe2, γ-WTe2 (b) Mo1−xWxTe2 for several 
values of x. Notice the change in the spectrum observed for x ≥ 0.09, indicating a structural 
phase transition as a function of doping. 22  

WTe2 is another layered TMDC which stabilizes in a 1T’ (distorted octahedral) structure 

and is metallic, as opposed to the 2H (trigonal prismatic) and semiconducting phase of MoTe2. 

Recent studies inspired by WTe2 have shown via Raman spectroscopy (as well as by other 

means) that the alloyed compounds of MoWTe2 can also be stabilized in a 1T’ phase with a 

certain proportion of W.22,29 Figure 1-5 contains Raman spectra of alloyed crystals of MoWTe2 
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with varying W/Mo content. The spectra show that the crystal does no longer remain in the 

semiconducting 2H phase if W content is higher than a certain amount. The spectrum abruptly 

changes since a different crystal structure will result in different vibrational modes and thus, 

different frequencies.  

Chapter 5 will present the optical properties of a MoWTe2 alloy with W: Mo ratio of 

about 1:9 which is still in the semiconducting 2H phase. We will compare the optical properties 

of MoTe2 and MoWTe2. Strain-tuned optical measurements will shed more light on their band 

structures.  Along with W alloying, other studies have predicted that the MoTe2’s phase can 

switch with high tensile strain. This dissertation will not cover the effects of such strain levels 

on MoTe2.19 
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 Anisotropy with Three Atoms: Monolayer ReS2 

 
Figure 1-6: Diagram of the crystal structure of 1L ReS2. Top view (top) and the view along the 
blue dashed line (bottom). 

Anisotropic optical properties are present in bulk crystals of sufficiently low symmetry. 

In layered materials, in-plane anisotropy can be significant, as in the case of black 

phosphorus.30-33 The group-VI transition metal dichalcogenides such as MoS2, MoSe2, WS2, 

WSe2, and MoTe2 are also layered materials with distinctive optical properties.15,34 Their 1Ls 

provide, for example, valley selective excitation of band-edge excitons using circularly polarized 

light as a consequence of their broken inversion symmetry.35-38 However, because of the high 

symmetry of the crystal structure, their linear optical properties of absorption and emission are 

isotropic in the plane of the layer. 
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Figure 1-7: The polarization-resolved PL spectra of ReS2 taken at 110 K in the angle range 
between 0° and 180° with respect to b-axis (represented by the blue dashed line in Figure 
1-6).39 

ReS2, a layered group-VII transition metal dichalcogenide, possesses reduced crystal 

symmetry compared to the molybdenum and tungsten dichalcogenides. Figure 1-6 shows a 

diagram of the crystal structure of 1L ReS2 (compare to Figure 1-2). This reduced symmetry 

gives rise to anisotropic in-plane optical properties. ReS2, thus, merits special attention. Figure 

1-7 plots polarization-resolved PL spectra of bulk ReS2 which demonstrates the anisotropy of 

emission by near-band transitions. Intensities of the emission by the two transitions labeled as 

Eex
1, Eex

2 (excitons 1 and 2) seem to strongly depend on collection polarization. While the 

anisotropic optical and electric properties of bulk ReS2 crystals and the basic optical properties 

of ultrathin layers were previously studied,39-45 anisotropic optical effects in ultrathin layers of 

ReS2 were unexplored. Theoretical predictions claimed that 1L ReS2 would still demonstrate 

anisotropic absorption. Figure 1-8 contains calculated absorption spectra of 1L ReS2 for the 
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incident light polarized along different in-plane directions.46 However, it was not experimentally 

verified whether ultrathin layers could still possess strong anisotropy in optical properties such 

as absorption and PL, which was proposed by the calculations. 

 
Figure 1-8: Calculated optical absorption spectra of 1L ReS2 for the incident light polarized along 
different in-plane directions.46 

Chapter 6 will demonstrate that the anisotropy is maintained in the ultrathin layers 

down to 1L. Specifically, Chapter 6.1 will present results on polarization-resolved absorption 

and PL, Chapter 0 on Raman scattering. Moreover, those results will be related to the 

crystallographic orientation of the ultrathin layers. 
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Figure 1-9: (a) Schematic of the band alignment between 1Ls of MoS2 and ReS2. (b) Calculated 
band structure for the MoS2-ReS2 heterostructure (MoS2 and ReS2 states are red and green, 
respectively).47 

Findings of this work has sparked interest in ReS2 research such as studies on 

electroluminescence, third harmonic generation, heterostructures with other TMDCs (see 

Figure 1-9), optical Stark effect (see Figure 1-10), strain engineering.47-50  

Sim et al. have recently made a novel observation in ReS2, which is energy-selective 

optical Stark effect in few-layer ReS2.51 They have measured differential transmission (ΔT/T) 

while varying pump-probe polarization configuration. By separately aligning the probe 

polarization parallel to the maximum absorption angle by the two lowest energy excitons (X1 

and X2), they have performed pump-probe measurements with the pump co- and cross-

polarized with the probe polarization. Interestingly, they have observed that the co-linearly 

polarized pump-probe pulses cause an absorption derivative-like ΔT/T response (middle panel 

of Figure 1-10) only at the spectral region dominated by the exciton along which the absorption 

is maximized (X1 or X2). The amplitude of the Stark signal becomes small when the pump is 

orthogonally polarized to the probe (bottom panel of Figure 1-10). As they have discussed, 

Chapter 6.1 will show that this energy and polarization selectivity can be explained by the 
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anisotropic optical absorption of the excitons. They also note that this rare phenomenon is 

absent in other materials, such as semiconductor quantum wells, carbon nanotubes, and group 

VI TMDs. 

 
Figure 1-10: Exciton-selective optical Stark effect controlled by light polarization. (a,b) 
Equilibrium absorption spectra with the light polarization angle of 20° (top panel in a) and 90° 
(top panel in b). Black dots (middle panels) and gray dots (bottom panels) are transient ΔT/T 
spectra at t=0 fs with co-polarized and cross-polarized pump-probe configurations, respectively. 
Probe polarization angles are fixed at 20° (a) and 90° (b). Pump photon energy is 1.44 eV. The 
blue- (red-)shaded area represents the spectral region where ΔT/T signal is dominated by the 
shift of the X1 (X2) state. X1 and X2 are near-band-edge excitonic transitions.51 
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 Experimental Methods 

 Reflection Contrast or Absorption Spectroscopy 

Optical absorption (absorption, 𝒜) spectroscopy tells a lot about the optical as well as 

electronic properties of transition metal dichalcogenides (TMDCs). The ideal way of obtaining 

the absorption of a material is to perform optical reflection and transmission measurements to 

make use of the following relation: 

 𝒜(𝜆) = 1 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝜆) − 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝜆)  (1) 

where "(𝜆)” denotes the wavelength dependence. Regarding the ultrathin materials of 

interest, TMDCs, there is an easier way to obtain their absorption spectrum. That is to measure 

their reflection (or reflectance) contrast; meaning how much more (or less) do they reflect as 

compared to a known reflector. 

In reflection contrast measurements, we record the differential reflectance of the 

sample normalized by the reflectance of a semi-infinite and transparent substrate, i.e., 

 
∆𝑅

𝑅
=

𝑅sample+𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 − 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 − 𝑅𝑏𝑔
  (2) 

where 𝑅sample+𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒, 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒, and 𝑅𝑏𝑔 represent, respectively, the reflectance of 

the thin sample on the substrate, of the bare substrate and without any substrate or sample. 

𝑅𝑏𝑔 can be practically measured by focusing the objective significantly above the sample such 

that no light reflected by the sample will be collected (recall that the light incident on the back 

of the objective is a parallel beam). For sufficiently small values of the reflection contrast for a 

sample on a thick transparent substrate we can determine the absorbance 𝒜 of an 
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unsupported ultrathin TMDC crystal from ∆𝑅/𝑅 as  𝒜 =
1

4
(𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

2 − 1)(
∆𝑅

𝑅
), 52-54 where 

𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 denotes the refractive index of the substrate. We can thus probe the absorption 

spectra of sufficiently thin samples through measurements of the reflection contrast. This and a 

more general, and better approximation of the relation between the reflection contrast and 

absorbance will be derived shortly. 

Having the same focus on and off the sample is crucial. Reasons for an unstable focus 

may include airflow in the room, a sample or slide that is not fixed well by a piece of tape, a 

flexible substrate that is strained and is relaxing or stabilizing very slowly. 

 
Figure 2-1: How the reflection contrast measurements work. 

 
∆𝑅

𝑅
(𝜆) =

𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
(𝜆) ≅

4

𝑛(𝜆)2 − 1
𝐴𝑏𝑠(𝜆)  (3) 

We assume μ=1 (magnetic permeability) for all materials and non-absorbing (real 

refractive index) top and bottom media.  

 𝜎𝑠 ≝  
𝜎𝑠ℎ𝑒𝑒𝑡

𝜀0𝑐
 , 𝜎𝑠ℎ𝑒𝑒𝑡 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 × 𝜎𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑠ℎ𝑒𝑒𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)  (4) 
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Figure 2-2: Diagram depicting the electric fields on an interface with/without ultrathin MoTe2 

At normal incidence without the 2D material (thickness of which is much smaller than 

the wavelength of the incident light), the incident, 𝐸𝑖, reflected, 𝐸𝑟, and transmitted, 𝐸𝑡, 

electric fields are related by 

 𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡  with 𝐸𝑟 = 𝑟 × 𝐸𝑖 and 𝑟 =
𝑛𝑎𝑖𝑟 − 𝑛𝑠𝑢𝑏

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏
  (5) 

𝑛𝑎𝑖𝑟 and 𝑛𝑠𝑢𝑏 are the refractive indices of the top and substrate medium, respectively. If 

the field is incident on 2D MoTe2, there will be a surface current, 𝑗𝑠𝑢𝑟𝑓𝑎𝑐𝑒, induced by the 

electric field on the surface and can be calculated by 

 𝑗𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐸𝑡 × 𝜎𝑠 = (𝐸𝑖 + 𝐸𝑟) × 𝜎𝑠  (6) 

Therefore, the continuity equation for the magnetic fields on the surface becomes 

 𝐻𝑖 − 𝐻𝑟 = 𝐻𝑡 + 𝑗𝑠𝑢𝑟𝑓𝑎𝑐𝑒  (7) 

Where 𝐻𝑖 , 𝐻𝑟 , and 𝐻𝑡 are the magnetic fields that are incident, reflected and 

transmitted on the interface, respectively. 

Replacing 𝐻 with 𝐸 ×
𝑛

𝑐
 where 𝑛 is the refractive index of the corresponding medium 

and substituting  𝑗𝑠𝑢𝑟𝑓𝑎𝑐𝑒   into Eq. (7) yields 

 
𝑛𝑎𝑖𝑟𝐸𝑖−𝑛𝑎𝑖𝑟𝐸𝑟 = 𝑛𝑠𝑢𝑏𝐸𝑡 + 𝑗𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑛𝑠𝑢𝑏𝐸𝑖 + 𝑛𝑠𝑢𝑏𝐸𝑟 + 𝐸𝑖 × 𝜎𝑠 + 𝐸𝑟 × 𝜎𝑠 

𝐸𝑖(𝑛𝑎𝑖𝑟 − 𝑛𝑠𝑢𝑏 − 𝜎𝑠) = 𝐸𝑟(𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏 + 𝜎𝑠) 

 (8) 
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 𝑟 =
𝐸𝑟

𝐸𝑖
=

𝑛𝑎𝑖𝑟 − 𝑛𝑠𝑢𝑏 − 𝜎𝑠

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏 + 𝜎𝑠
  and 𝑡 =

𝐸𝑡

𝐸𝑖
=

2𝑛𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏 + 𝜎𝑠
 (9) 

Therefore, the reflection, transmission and absorption coefficients become 

 

 𝑅(𝑛𝑎𝑖𝑟 , 𝜎𝑠 , 𝑛𝑠𝑢𝑏) = |
𝑛𝑎𝑖𝑟 − 𝑛𝑠𝑢𝑏 − 𝜎𝑠

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏 + 𝜎𝑠
|

2

  

𝑇(𝑛𝑎𝑖𝑟 , 𝜎𝑠, 𝑛𝑠𝑢𝑏) =
4𝑛𝑠𝑢𝑏

|𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏 + 𝜎𝑠|2
 

𝐴(𝑛𝑎𝑖𝑟 , 𝜎𝑠, 𝑛𝑠𝑢𝑏) = 1 − 𝑅 − 𝑇 =
4𝑛𝑎𝑖𝑟Re[𝜎𝑠]

|𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏 + 𝜎𝑠|2
 

(10) 

If |𝜎𝑠| ≪ 1, ignoring 2nd order terms in  𝜎𝑠 to approximate the reflection and 

transmission contrasts by  

 

∆𝑅

𝑅
=

𝑅𝑠𝑎𝑚𝑝𝑙𝑒+𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 − 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
=

𝑅(𝑛𝑎𝑖𝑟 , 𝜎𝑠 , 𝑛𝑠𝑢𝑏) − 𝑅(𝑛𝑎𝑖𝑟 , 0, 𝑛𝑠𝑢𝑏)

𝑅(𝑛𝑎𝑖𝑟 , 0, 𝑛𝑠𝑢𝑏)

≅
4𝑛𝑎𝑖𝑟Re[𝜎𝑠]

𝑛𝑠𝑢𝑏
2 − 1

  

∆𝑇

𝑇
≅ −

2Re[𝜎𝑠]

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏
  

(11) 

From Eq. (10) the absorbance of a free-standing 2D sample (air on both sides) is 

 𝐴𝑓𝑟𝑒𝑒−𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 = 𝐴(1, 𝜎𝑠 , 1) =
4Re[𝜎𝑠]

|2 + 𝜎𝑠|2
 ≅  Re[𝜎𝑠] (12) 

Therefore, we obtain the following relations: 

 

∆𝑅

𝑅
(𝑛𝑎𝑖𝑟 , 𝜎𝑠, 𝑛𝑠𝑢𝑏) ≅

4𝑛𝑎𝑖𝑟

𝑛𝑠𝑢𝑏
2 − 1

𝐴𝑓𝑟𝑒𝑒−𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 

∆𝑇

𝑇
(𝑛𝑎𝑖𝑟 , 𝜎𝑠, 𝑛𝑠𝑢𝑏) ≅ −

2

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏
𝐴𝑓𝑟𝑒𝑒−𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 

(13) 

If we further ignore Im[𝜎𝑠] since it only contributes in 2nd and higher order in 𝜎𝑠 since 

𝑛𝑎𝑖𝑟 , 𝑛𝑠𝑢𝑏 are real, we obtain 𝜎𝑠 from Eq. (10) (for 𝑛𝑠𝑢𝑏 + 𝜎𝑠 >  𝑛𝑎𝑖𝑟) 
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 𝜎𝑠 ≅ 𝑛𝑎𝑖𝑟

1 + √𝑅(𝑛𝑎𝑖𝑟 , 𝜎𝑠, 𝑛𝑠𝑢𝑏)

1 − √𝑅(𝑛𝑎𝑖𝑟 , 𝜎𝑠, 𝑛𝑠𝑢𝑏)
− 𝑛𝑠𝑢𝑏 (14) 

Finally, since the reflection contrast is a commonly measured experimental quantity, the 

reflection term can be expressed in the form of the reflection coefficient of two semi-infinite 

media and reflection contrast as 

  𝑅(𝑛𝑎𝑖𝑟 , 𝜎𝑠 , 𝑛𝑠𝑢𝑏) = 𝑅(𝑛𝑎𝑖𝑟 , 0, 𝑛𝑠𝑢𝑏)√1 +
∆𝑅

𝑅
 (15) 

We will see a basic use of the reflection contrast technique in Chapter 3 which presents 

temperature dependent absorption spectroscopy of 1L MoS2. 
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Figure 2-3: Diagram of a typical reflection contrast setup. 

Figure 2-3 shows the diagram of a typical optical setup to perform reflection contrast 

spectroscopy. We focus a broadband light emitter such as a tungsten halogen source onto an 

aperture (diameter might vary from about 25 to 150 µm) to obtain a point light source. 

Converging lenses collimate and refocus the point light source onto a sample, and the reflected 

light can be separately collected with a beam splitter. A monochromator disperses the reflected 

light onto a detector. 
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2.1.1. Polarization-Resolved Reflection Contrast 

Polarization-resolved reflection contrast technique should be used on ultrathin 

materials refractive indices of which are anisotropic with respect to the out-of-plane axis. Their 

effective refractive index will depend on the polarization of the incident light. For a given 

polarization, reflections from the sample and substrate are measured, and the absorption can 

be calculated as discussed in Chapter 2.1. Since the calculations involve a division by the 

substrate reflection, it eliminates any anisotropy in the collection efficiency (assuming that 

neither the sample nor the setup significantly rotates the polarization of the light). In 

polarization-resolved measurements, a strain-free objective should be used to ensure that we 

illuminate the sample with linearly polarized light and detect the reflected light of the same 

polarization.  

 Photoluminescence Spectroscopy 

Photoluminescence (PL) is the emission of light by a material after the absorption of a 

photon (still light). An alternative process would be electroluminescence in which electricity 

(electric field) causes the emission of light. Semiconductors have a gap between the conduction 

and valence bands (CB and VB) and an electron excited to CB from VB by the absorption of light 

will scatter down to the bottom of the CB and will stay there for a while (see Figure 1-3). It is 

energetically favorable to go back down to VB which can be mediated by various processes. 

One such process is the emission of a photon with the energy that is equal to the difference 

between the initial and final points of the electron in the Brillouin Zone (note that this energy is 

not necessarily the same as that of the absorbed photon). 
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Figure 2-4: Diagram of the band structure of a typical semiconductor near its band gap. Possible 
smallest energy transitions of PL and absorption are indicated by arrows, the tip of which 
pinpoints to the final state of the transition. Absorption and PL measurements can distinguish 
direct and indirect transitions from each other. 

A semiconductor may have a direct or indirect gap. Figure 2-4 shows a diagram of a 

typical band structure near the band gap of a semiconductor. Phonons do not assist direct 

transitions, and absorption and PL by such transitions can be strong. However, indirect 

transitions require phonon assistance and absorption and PL by such transitions become very 

weak. If the energy separation between the bottom of the direct and indirect valleys, ΔE, is 

positive (indirect gap) but not much larger than 𝑘𝑏 × 𝑇 , where 𝑘𝑏 is Boltzmann constant and 𝑇 

is the temperature of the system, hot PL from the direct transition can still be observed. 

Moreover, PL, but not absorption, by the indirect transition can still be detected. Indirect PL is 

still detectable because the electrons excited to the CB will quickly scatter down to the bottom 

indirect valley and will populate there. If ΔE is negative (direct gap), we expect to observe 

absorption and PL only from the direct transition. Therefore, absorption and PL measurements 

are great ways of distinguishing between direct and indirect transitions and telling whether the 

semiconductor has a direct or indirect band gap. 
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2.2.1. Polarization-Resolved Photoluminescence 

If an ultrathin material has low symmetry such that it emits PL with varying intensity 

with respect to the rotations around the out-of-plane axis, the PL should be measured with 

more care to discern the properties of the material more accurately. One way is to rotate the 

material for a fixed collection and illumination geometry and record the PL. Maintaining the 

same collection geometry will make sure that the setup does not alter the emitted PL. The 

illumination may be a non-resonant and linearly polarized laser excitation (i.e. far from the PL 

peak) such that the varying absorption for different material orientations can be normalized 

(see 0Chapter 2.1.1). The excited electrons will scatter down non-resonantly to the minima of 

the CB and PL may occur from multiple initial states there. 

2.2.2. Time-Resolved Photoluminescence 

Time-Resolved PL (TRPL) measurements tell us how long it takes for the material to emit 

photons after they absorb the incident photons. TRPL experiments are very informative about 

the optical transitions as the time required to emit a photon is a characteristic feature of the 

specific transition. That way one can distinguish the type of the transitions even if they are 

close in energy and probe many fundamentals properties of matter. 

 Strain-Optics Experiments 

Magnetic and electric fields are very common to employ for tuning the optoelectronic 

properties of semiconductors. Strain can also tune the band structure of materials, and that 

change can be optically measured. An ultrathin flake on a few hundred microns thick flexible 

substrate can be strained using 2-, 3-, or 4-point bending methods. There will be a tensile strain 
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on one surface and compressive strain on the other. Strain-dependent reflection contrast, PL, 

and other optical measurements can be very informative, and Chapter 5 will illustrate an 

example on the atomically thin MoTe2. 
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 Optical Absorption of 1L MoS2 at 

Elevated Temperatures for Raman 

Thermometry  

This chapter will give an example use of the reflection contrast (or absorption) 

spectroscopy to study 1L MoS2. 

The ability to measure the temperature and study the thermal properties of ultrathin 

microscopic devices, such as TMDCs, is highly desirable to engineer their heat dissipation to the 

environment.55-57 Many optical properties change with temperature; thus, optical spectroscopy 

can help estimate the temperatures of such devices. Raman thermometry is one of the 

methods; it is non-contact and can measure the temperature with a lateral resolution of ~500 

nm (limited by laser spot size). A device/material of interest can be elevated to known 

temperatures, and the frequencies of the Raman-active modes can be noted (Raman 

spectroscopy needs to be performed with low power to avoid heating further).57 These 

frequencies give us a calibration of Raman-active modes and temperature. This calibration can 

then be used to calculate the temperature via Raman spectroscopy during electrical or optical 

heating. Furthermore, if heating with a laser, Raman can be simultaneously performed. Thus, 

temperature and the power absorbed can be extracted to characterize the thermal properties 

of the sample. However, to accurately define the optical input power, we need to know the 

optical absorption by the sample. Since the sample is (optically) heated, we must account for its 
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temperature dependent absorption. To this end, we have measured the temperature-

dependent absorption of CVD-grown 1L MoS2 as reported below.  

 
Figure 3-1: Absorption measurements on 1L MoS2 for Raman thermometry. Before and after 
heating at room temperature (Left) and 150 °C (Right). We have measured the absorption of 

CVD grown 1L MoS2 on quartz substrates at temperatures from 25 °C up to 300 °C and down to 

25 °C in a Linkam stage THMS600. We have studied two specific flakes for all temperatures. We 

have observed that, due to the release of the well-known built-in strain on the as-grown 

samples, the A and B excitons have slightly blue-shifted after the heating-cooling procedure as 

shown in Figure 3-1. We also note that the A and B excitons become slightly narrower after 

cooling. We attribute this narrowing to the removal of surface adsorbates which cause 

inhomogeneity and act as scattering channels for the excitons.58 This hysteresis (blue-shift) has 

not appeared at the temperatures of 150 °C and above suggesting the release of the strain. We 

show measurements performed at 150 °C during the heating and cooling cycles in Figure 3-1.  

We select and plot four strain-free spectra in Figure 3-2. It is clearly seen that the 

absorption changes significantly nearby the A and B excitons. We extract how much the 1L 
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MoS2 absorbs by averaging over the two samples measured at commonly used laser 

wavelengths of 488, 515, 532, 633 nm and fit them to the lines as shown in Figure 3-2. It is 

evident that in green lasers, for instance, the absorption at 250°C is increased by ~30% 

compared with its room temperature value. Overlooking this ~30% increase in the absorbed 

power can result in underestimation of the thermal boundary conductance and thermal 

conductivity of a 2D material in Raman thermometry experiment by a factor of ~2. The values 

of temperature-dependent absorption should be useful for calculating how much laser power 

the 1L MoS2 will absorb for Raman thermometry and for other optoelectronic applications 

where the samples need to perform at elevated temperatures. 

 
Figure 3-2: Temperature dependent absorption on 1L MoS2 from 25 to 300 °C (Left) and 
absorption values and linear fits at commonly used laser wavelengths (Right).  
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Figure 3-3: Peak positions and FWHM of A and B excitons at elevated temperatures. 

We also fit the (strain-free) spectra to Lorentzian line shapes and extract the peak and 

FWHM of the A and B excitons, as shown in Figure 3-3. Note that there is one data point for 

each of the two samples at each temperature. We observe that the FWHM increases with 

temperature for both A and B excitons mainly due to the growing number of phonons which 

increase the exciton-phonon scattering rate. A and B excitons both redshift from about 1.82 

and 1.97 eV to about 1.75 and 1.88 eV, respectively. Such redshifts, as the temperature 

increases, are common in solid state physics and because orbitals that form the bands will 

usually overlap less in an expanded crystal. Another interesting observation is that the B-A 

exciton separation decreases from about 150 to 130 meV. Spin-orbit coupling and any 

difference in their excitonic binding energy will contribute to this separation. We hope that our 

results will shed more light on the 1L MoS2 band structure and future studies can build upon 

the findings here. 
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 Optical Properties and Band Gap of 

Single- and Few-Layer MoTe2 Crystals 

Single- and few-layer crystals of exfoliated MoTe2 have been characterized 

spectroscopically by PL, Raman scattering, and optical absorption measurements. We find that 

MoTe2 in the 1L limit displays strong PL. Based on complementary optical absorption results, 

we conclude that 1L MoTe2 is a direct-gap semiconductor, with an optical band gap of 1.10 eV. 

This new 1L material extends the spectral range of atomically thin direct-gap materials from the 

visible to the near-infrared.    

 Introduction 

Atomically thin two-dimensional crystals have attracted much recent attention due to 

their distinctive properties.13,15,34 1Ls of group-VI transition metal dichalcogenides (TMDCs) are 

of particular interest as a family of ultrathin semiconductors.  Crystals of MoS2, MoSe2, and 

their tungsten analogs have been shown to transform from indirect to direct-gap 

semiconductors in the 1L limit.59-61 These materials have, moreover, shown their suitability for 

access to the valley degree of freedom through excitation by circularly polarized light.62  

The availability of a wide range of band gaps is important both for fundamental research 

and applications. For the TMDC family, the direct gap varies with the choice of chalcogen atom, 

with 1Llayer MoS2 and MoSe2 having, for example, gaps of 1.85eV59-60 and 1.55eV63-64, 

respectively. The optical gap can be tuned continuously between the limits of the 

stoichiometric crystals using alloys with different chalcogen concentrations.65-68 Modification of 



28 
 

the band gap of 1L TMDCs is also possible by applying strain and has yielded shifts around 60 

meV.69-71. The design of heterostructures of different TMDCs allows for further tailoring the 

band structure72-73 and may reveal fundamentally new effects related to interlayer coupling.  

Nevertheless, a material with a band gap close to 1 eV has not yet been identified and would be 

valuable both as a new 2D system and as a building block for more complex structures. 

 Results and Discussion 

Bulk MoTe2 (-MoTe2) is a semiconductor with an indirect band gap of about 1.0 eV.74-75 

It is composed of hexagonal sheets of Mo atoms that are sandwiched between two hexagonal 

planes of Te atoms, with trigonal prismatic coordination  [Figure 4-1(a)]. These Te-Mo-Te units, 

which we refer to as 1Ls, are held together by weak van der Waals forces and are stacked with 

2H symmetry (Figure 4-1a). 1L and few-layers of MoTe2 are promising candidate systems to 

exhibit narrow band gaps. They have a characteristic thickness-dependent Raman spectrum76 

and have been predicted to exhibit a phonon-limited room-temperature mobility greater than 

that of MoS2.77 Transistor devices employing few-layer MoTe2 crystals have recently been 

demonstrated.78-79 In this article, we present experimental results on the optical properties of 

mechanically exfoliated mono- and few-layer MoTe2. Using Raman scattering, atomic force 

microscopy, and optical contrast, we identify crystals of 1-5 monolayer thickness. PL and optical 

absorption measurements are applied to locate the optical gap and to analyze the spectral 

signatures related to the direct or indirect character of the transition.  In the 1L limit, we find 

that the material becomes a direct gap semiconductor, with an optical gap of 1.10 eV. MoTe2 

thus constitutes a new direct-gap 1L material with a significantly lower gap than available 

heretofore. 
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We prepared our ultrathin layers by mechanical exfoliation of synthetic semiconducting 

MoTe2 crystals. The layers were deposited on either bulk z-cut quartz substrates (SiO2) or silicon 

wafers with a 300-nm thick overlayer of thermal oxide (SiO2/Si). We cleaned some of the 

substrates with oxygen plasma before exfoliation.  This cleaning allowed us to exfoliate larger 

samples, as required for the reflection contrast measurements.   

The Raman spectroscopy measurements were performed in a commercial micro-Raman 

setup (Renishaw In-Via) in a back-scattering geometry. A 100x objective (NA = 0.85) was used to 

collect the scattered photons, which were analyzed in a spectrometer equipped with a grating 

of 2400 l/mm. The laser power on the sample was about 5 μW (for 532-nm excitation) and 20 

μW (for 633-nm excitation). The measurements of reflectance contrast were performed on 

MoTe2 flakes exfoliated on the transparent SiO2 substrates. The experimental setup consisted 

of a quartz tungsten halogen source in combination with a microscope using a 50x objective 

(NA = 0.85). A monochromator dispersed the reflected light from the sample onto a liquid 

nitrogen cooled Si or InGaAs CCD array. We extracted the peak positions and linewidths of the 

reflectance contrast measurements by fitting multiple Lorentzian line shapes to the 

experimental data. PL measurements were performed in the same setup with a 100x objective 

(NA = 0.95) to collect the backscattered emission. For excitation, we used a HeNe laser or a 

647-nm solid-state laser.  The excitation power level was kept below 10 µW. Reflected and 

elastically scattered laser radiation was suppressed by a long-pass filter in front of the 

monochromator. All experiments were performed at room temperature.  

Before discussing the experimental results, we comment briefly on the long-term 

stability of the MoTe2 samples used in this study. For exfoliated 1Ls held under ambient 
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conditions, a decrease in the PL yield was consistently seen within one or two months.  The 

degradation of MoTe2 layers, as judged by the optical contrast and PL yield, was found to 

depend strongly on the treatment of the substrate. For substrates cleaned by the oxygen 

plasma before exfoliation, the lifetime of 1Ls decreased further, even down to the range of a 

day. Therefore, the samples were stored in a vacuum environment, and the data presented in 

this study were obtained from fresh samples. While we cannot exclude the possibility that the 

magnitude of the reflectance contrast spectra was affected by sample aging, the energy and 

line width of the resonances did not change even for heavily degraded 1Ls. Encapsulation with 

h-BN layers improved the stability of the MoTe2 1Ls.   

 
Figure 4-1: (a) Crystal structure of -MoTe2. (b) Optical image of few-layer MoTe2 exfoliated on 
SiO2, showing regions with thicknesses from a 1L to 3L. The image contrast has been enhanced 
to improve the visibility. (c) Representative AFM profile showing the relative heights of a MoTe2 
sample exfoliated on SiO2/Si, with the corresponding trace indicated by the blue line in the 
optical image in the inset.  

We exfoliated micron-sized few-layer flakes of MoTe2 on both SiO2 and SiO2/Si. An 

example of MoTe2 layers on a SiO2 substrate is shown in Figure 4-1(b). We can identify layer 

thicknesses varying from the 1L through 3L in different regions. Measurements with an atomic 

force microscope (AFM) were performed on the samples to determine the layer thickness; a 

representative height profile for a flake on SiO2/Si is presented in Figure 4-1(c).  The measured 
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interlayer separation lies in the range of 0.6 - 0.65 nm, which is consistent, within experimental 

uncertainty, with the bulk layer spacing of 6.982±0.002 Å reported in the literature.1 The 

spacing between the 1L and the substrate determined by AFM (not shown) varies significantly 

in different measurements and presumably reflects changes in the tip-surface interaction 

between the substrate and the sample80 and possibly the presence of adsorbates under the 

sample.81 To identify the samples of 1L thickness, we, therefore, made use of Raman 

spectroscopy. In particular, the inactivity of the Raman B1
2g mode at 289 cm-1 permits 

unambiguous identification of 1Ls, as discussed below.  After calibration, we could also simply 

use the green channel of the optical images, together with Raman measurements, for rapid and 

reliable identification of layer thickness. 

Figure 4-2(a) displays the optical spectra from the visible to the near-infrared for 

samples with thicknesses of one to three layers. The data are presented as reflection contrast 

spectra, i.e., ∆𝑅/𝑅 = (𝑅𝑀𝑜𝑇𝑒+𝑆 − 𝑅𝑆)/𝑅𝑆, where 𝑅𝑀𝑜𝑇𝑒+𝑆 and 𝑅𝑆 denote, respectively, the 

reflectance of MoTe2 on the substrate and of the bare substrate.  All of the presented spectra 

were measured on samples for a thick, transparent SiO2 substrate.  For a sample on such a 

transparent substrate with sufficiently small reflection contrast, the reflection contrast 

spectrum is proportional to the absorption spectrum of the corresponding film.  In particular, 

we can obtain the absorbance 𝒜 of the free-standing layer from the optical contrast as 𝒜 =

1

4
(𝑛𝑆

2 − 1)(
∆𝑅

𝑅
),52-54 where 𝑛𝑆 denotes the refractive index of the substrate.82 

Several peaks are clearly observable in the spectra of Figure 4-2a, which we have 

labeled according to the bulk assignments of Wilson and Yoffe.83 These spectroscopic features 

are associated with transitions in different parts of the Brillouin zone of MoTe2. The A, B and A’, 
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B’ pairs have been identified as excitonic transitions, with the A-B splitting arising from spin-

orbit interactions.83-84 As for other TMDC 1Ls, the A and B peaks are assigned to excitonic peaks 

associated with the lowest direct optical transition at the K point.18,63,85 The splitting between A, 

B and A’, B’ has been related to interlayer interactions.84,86 The additional A’, B’ pair exists in 

other TMDC materials but has recently also been observed in WSe2 at the 1L thickness,61 where 

interlayer interactions are obviously absent. For the bulk MoTe2 crystal, the C and D features 

have been attributed to regions of parallel bands near the  point of the Brillouin zone of bulk 

MoTe2
86 and similar parallel bands in 1Ls of other TMDC materials.17,87 

The infrared part of the 1L spectrum is presented in greater detail in Figure 4-2 (b). In 

this Figure, we also indicate the corresponding absorbance 𝒜 for a free-standing 1L, 

determined according to the relation given above. To analyze our data further, we fit the 

resonances in the absorption spectrum to Lorentzian components. The red line in Figure 4-2(b) 

displays the contributions of the A and B features to the fit. The line shape of the A peak in our 

experimental data reveals the excitonic character of the transitions, being well described by a 

single Lorentzian feature, with no signature of free-carrier contributions to an interband 

transition.  

The energy difference between the A and B features of the other TMDC systems is 

known to arise from the spin-orbit-splitting of the similar bands, mostly governed by the 

valence-band splitting.63,88 Theory predicts the same behavior for MoTe2.89 The center positions 

of the two excitonic transitions are found to be 1.095±0.005 eV and 1.345±0.005 eV. Repeated 

measurements on other 1L MoTe2 flakes on transparent substrates yield very similar positions 

of the A and B peaks, with deviations of only a few meV. The spectral width of the A exciton 
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absorption is about 50 meV (full width at half maximum, FWHM). The B exciton width is several 

times greater, in accordance with the trend for the features in bulk MoTe2 crystals.83 Based on 

the positions of the A and B features, we infer a spin-orbit splitting of 250 meV for 1L MoTe2. 

This splitting is significantly greater than the corresponding value of 150 meV for MoS2.59  

 
Figure 4-2: MoTe2 reflectance contrast spectra  (a) for 1L, 2L and 3L crystals on SiO2 substrates. 
(b) Detail of the spectrum for the 1L in the infrared (black curve). The right vertical scale 
displays the corresponding absorbance 𝒜 for the free-standing 1L. We fit the spectrum with 
multiple Lorentzian peaks (blue curve), with the A and B contributions shown separately (red 
curve). 

Comparison of the 1L spectrum with the 2L and 3L spectra shows that most of the peaks 

shift only slightly in energy, with the overall reflectance contrast increasing approximately 

linearly with thickness. Like other TMDC materials, the A exciton resonance shifts by about 20 

meV to lower energy from 1L to 2L, with even smaller redshifts for further increases in layer 

thickness. The line width of the A exciton also increases with layer thickness.  The A exciton 

width of the 2L is 20 meV larger than that of the 1L. A more noticeable change is seen for the 

A’/ B’ peak area, with the A’ feature shifting strongly towards higher energy with decreasing 

thickness.  
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Figure 4-3: Comparison of PL and Reflection Contrast of MoTe2  (a) Thickness-dependent PL 
spectra on SiO2/Si. The spectra are shifted vertically for clarity. The bulk data were measured 
with higher excitation power but normalized in the figure assuming linear response. (b) 
Comparison of PL and reflectance contrast spectra for a 1L MoTe2 on a SiO2 substrate. (c) 
Photon energy of the peak in the PL spectra in (a) and of the A exciton resonance (AX) extracted 
from reflectance contrast measurements for samples of 1-4 layers. 

To gain insight into the nature of the optical transition of the lowest excitonic state, we 

measured PL spectra for different layer thicknesses of MoTe2 crystals. Figure 4-3(a) shows the 

thickness-dependent PL for a flake exfoliated on a SiO2/Si substrate. The 1L PL spectrum 

exhibits a single emission peak, with a maximum at a photon energy of 1.08 eV and a width of 

55 meV (FWHM). With increasing layer thickness, the maximum of the PL shifts to significantly 

lower energies. For the bulk, we find a maximum in the PL intensity around 0.93 eV. The 1L PL is 

far stronger than that of the bulk. For the sample studied here, the PL is enhanced 

approximately by three orders of magnitude.  

For the 1L, the position of the PL peak lies very close to the A exciton resonance seen in 

the absorption spectrum. Figure 4-3(b) shows a direct comparison of the absorption and 

emission spectra for the same sample on a SiO2 substrate. The energy shift between the two 

peaks is about 10 meV. For different 1Ls on SiO2/Si substrates, the position of the emission 

peak varies on the order of ~10 meV and is mostly lower in energy.  The best samples show 
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both narrow PL spectra and very slight spectral shifts between the absorption and emission 

peaks. 

For thicker layers, the A exciton resonance in the reflectance contrast spectra and the PL 

maxima both shift towards lower energies. However, the rate of the red shift of these two 

features with increasing thickness is quite different. Figure 4-3c compares the positions of 

absorption maxima from Figure 4-2 with those of the emission maxima in Figure 4-3.  Note that 

the measurements were performed on different samples, whence the somewhat larger shift for 

the 1L. The A exciton absorption seen in ∆𝑅/𝑅 measurements displays much smaller shifts and 

remains almost constant for thicker layers, while the PL maximum continues to shift to lower 

energies with increasing thickness. We attribute this shift between features in the absorption 

(∆𝑅/𝑅) and emission (PL) spectra to the emergence of an indirect transition at lower energies, 

as occurs, for example, in MoS2 and WS2.59,61,90 Although we do not expect the lower-lying 

indirect transition to yield measurable absorption, it will still contribute to the emission 

spectrum, as is the case for the other TMDC 1Ls. We do not observe an additional emission 

peak in the PL spectra of thicker layers (2L-5L) near the PL and absorption maximum of the 1L. 

This behavior contrasts to reported spectra in other TMDC materials in which the direct 

transition from the A exciton remains visible in the PL spectra of thicker layers. 59,61,90 However, 

the relative strength of the PL peaks from the A exciton and the indirect transition depends 

strongly on the material and the excitation conditions. The PL from the A exciton in few-layer 

WSe2 is, for example, usually rather weak.61 In MoTe2 the width of the features and the 

relatively small shifts further hinder identification of two emission peaks.  The red shift for the A 

exciton peak in the reflectance contrast spectra in the 2L sample compared to the 1L sample is 
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21 meV. In comparison, the maximum of the PL peak seen in Figure 4-3a shifts by 33 meV. We 

therefore conclude that the 2L PL is governed primarily by the emerging indirect transition.  For 

a sample probed at low temperature (70 K), we do, in fact, observe two distinct emission peaks 

for PL from the 2L crystal as shown in Figure 4-4 

 
Figure 4-4: PL emission from 1L and 2L MoTe2 measured at a temperature of 70 K. The PL 
spectra are each normalized to the maximum value.  The 2L spectrum has been shifted up for 
clarity. 

The low-temperature PL spectra for 1L and 2L MoTe2 are presented in Figure 4-4.  In 

addition to an expected shift of the features to higher energy compared to the room-

temperature spectra, the low-temperature emission spectrum for the 2L shows two distinct 

peaks. The weak, higher-energy peak, which is absent in the room-temperature PL spectra, is 

nearly coincident with PL peak of the 1L.  It is therefore attributed to hot luminescence from 

the direct transition at the K point of the Brillouin zone, as is also seen, for example, in MoS2 

2Ls. The energy difference Δ between the two emission features in the 2L is 34 meV, a value 

that we take as a measure of the energy difference between the direct and indirect transitions 
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in the 2L. At room temperature, the increased line width of the PL hinders the identification of 

a separate hot luminescence feature from the direct transition in the 2L.  

Also, the low-temperature spectra of the 1L exhibit several weaker features in the 

lower-energy tail of PL. Similar features have been seen in the PL of other transition metal 

dichalcogenide 1Ls at low temperature and have been attributed to the trap states associated 

with defects. 

The redshift of the PL maximum of ~100 meV from 1L to 5L is relatively small compared 

to that for MoS2 and WS2 crystals. The observed trend is, however, consistent with theoretical 

predictions of a decreased redshift as the chalcogen is changed from S to Se to Te in Mo- and 

W-based TMDCs.91 The result is also compatible with the fact that the redshift of the indirect 

transition is smaller in WSe2 than in WS2.  

The strength of the PL from 1L MoTe2 depends strongly on the choice of substrate. The 

PL yield is relatively low for tested transparent substrates (crystalline SiO2, as well as crystalline 

Al2O3), but can be as much as two orders of magnitude greater for SiO2/Si wafers. Although 

interference effects are present that enhance the yield for the SiO2/Si substrate,92 this can 

account only for a small part of the observed increase in PL yield. We note that changes of PL 

yield in our samples are typically also accompanied by shifts of about 10 meV in the position of 

the emission maxima. This suggests that the difference in PL yield may be linked to the charge 

transfer effects from the substrate, which can shift the ratio of emission from charged and 

neutral excitons and also alter the total strength of the PL emission.93-94 
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Figure 4-5: Comparison of 1L semiconducting group VI TMDCs. (a) Optical gap and (b) energy 
difference between the A and B excitons. 

We plot the optical gap and the energy difference between the A and B excitons of the 

1Ls of semiconducting MoS2, MoSe2, MoTe2, WS2 and WSe2 in Figure 4-5.14 We note that MoTe2 

has the lowest band gap and changing the chalcogen atom modifies the optical gap more than 

the metal atom. The situation is opposite for the A and B splitting. We hope that this quick 

comparison can inspire band structure engineering of TMDC alloys. 

Finally, we wish to comment briefly on the capability of Raman measurements for 

identifying the thickness of different layers. Figure 4-6 shows Raman spectra for the few-layer 

flake in Figure 4-1c and a bulk MoTe2 sample with excitation at wavelengths of 532 nm and 633 

nm. The characteristic phonon modes of MoTe2,5,9 A1g at 170 cm-1, E1
2g at 234 cm-1 and B1

2g at 

289 cm-1, have recently been observed and characterized for 1L and few-layer samples.76 The 

B1
2g mode, inactive in bulk, is allowed for few-layer MoTe2 due to the breaking of translational 

symmetry.95 Since it is also absent for the 1L, it is observed to have maximum intensity for the 

2L and then to decrease with increasing thickness. 
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Figure 4-6: Raman spectra of 1L – 5L and bulk MoTe2 for the excitation wavelengths of (a) 532 
nm and (b) 633 nm. The spectra are offset for clarity. For simplicity, the Raman modes are 
labeled according to bulk notation. 

The 1L and few-layer Raman responses differ strikingly for excitation at 633 nm 

compared to that for 532-nm excitation. In the former case (Figure 4-6b), the A1g mode is 

unusually strong.  For the 1L the A1g mode has by far the strongest Raman response; for few-

layer samples (except the 2L) this mode is stronger than B1
2g.  For 532-nm excitation, on the 

other hand, the A1g mode is consistently weak. As is common for other few-layer systems, 

analyzing the relative shift and amplitudes of the E1
2g and B1

2g Raman modes aids in the 

identification of sample thickness, but is not always sufficiently precise.  However, for 633-nm 

excitation, the Raman spectra of 1L and 2L samples exhibit such different A1g and B1
2g mode 

intensities compared with thicker layers that they can be readily identified. Since the intensities 

of E1
2g and B1

2g modes scale in a similar way with layer thickness for both excitation 

wavelengths, the peak at 170 cm-1, which we have heretofore attributed to A1g vibration, may, 

in fact, correspond to a different type of Raman response. A candidate for the strong response 

at 170 cm-1 is a resonant two-phonon Raman process involving acoustic phonons.  In other 
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TMDCs,96-98 resonant enhancement of such a second-order Raman process has given rise to a 

peak near the Raman shift of the A1g optical mode. A deeper analysis of this phenomenon 

would require detailed studies of the Raman response as a function of the laser excitation 

wavelength. 

 Conclusion 

In summary, we have successfully exfoliated 1L and few-layer MoTe2 crystals on various 

substrates and have applied absorption and emission (PL) spectroscopy to characterize these 

materials’ optical properties. For the 1L, the optical gap is located at 1.10 eV, and the intense PL 

at the peak of the optical absorption feature provides strong evidence that 1L MoTe2 is a direct 

gap material. The shift of the PL to lower energies with little change in the position of the 

absorption feature indicates that thicker layers are indirect-gap semiconductors, showing a 

behavior analogous to that exhibited by MoS2.  For the 1L, we observe a spin-orbit splitting of 

the A and B excitons of 250 meV. We present Raman scattering data showing that, in contrast 

to the case of excitation with 532-nm radiation, the spectra for 633-nm excitation permit 

unambiguous identification of 1L and 2L MoTe2 crystals. 
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 Probing the Band Structure of 

Monolayer MoTe2 and Mo0.9W0.1Te2 via 

Strain 

We study the optical properties of ultrathin Mo0.9W0.1Te2 via Raman scattering, PL, and 

optical absorption measurements. We observe that the material transitions from indirect to 

direct band gap in the 1L limit at 1.1 eV, very close to its MoTe2 counterpart. We also apply 

tensile strain to 1L MoTe2 and Mo0.9W0.1Te2 to tune their band structures, and we observe that 

their band gaps decrease by about 70 meV at ~2.3% strain. The PL peaks show a decline in the 

spectral widths with increasing strain. We attribute the decline in the spectral widths to weaker 

exciton-phonon intervalley scattering. These observations show that ultrathin MoTe2 and 

Mo0.9W0.1Te2 extend the range of transition metal dichalcogenides further into the near 

infrared and demonstrate their potential for applications in flexible electronics and 

optoelectronics. Moreover, strain proves to be an effective external field to explore the 

fundamental properties of ultrathin transition metal dichalcogenides. 

 Introduction 

Atomically thin layers of transition metal dichalcogenides (TMDCs), such as MoTe2, have 

been extensively studied for fundamental physics and applications.13,15 Tuning their optical 

properties, which can be achieved through doping, alloying, strain, and heating is crucial for 

understanding the light-matter interaction and for various applications in flexible electronics 
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and optoelectronics. Optical properties of atomically thin MoTe2 has recently been 

characterized, 24-26,99-100 and theoretical studies have proposed that the factors above can 

significantly alter its band structure.19-20,101-103 However, to date, few studies have 

experimentally studied the effects of strain or alloying on MoTe2.22,29,104 

Here we study the optical properties of atomically thin crystals of the Mo0.9W0.1Te2 alloy 

via Raman scattering, PL, and absorption measurements, and compare them with those of 

MoTe2. We also measure PL while applying tensile strain to the 1L crystals of both compounds 

to alter their band structures. We observe that the optical band gap (to be called “band gap” 

throughout the chapter) redshifts with increasing strain, as expected. The 1Ls of the two 

materials acquire a band gap of ~1.01-1.02 eV at the highest strain applied. We have thus 

extended the optical range of 1L TMDCs further into near infrared. This finding shows that 

atomically thin TMDCs can potentially be used for applications that require strain-sensitive 

optical absorption in the near infrared. 

 Growth and Raman Spectroscopy of MoWTe2 

We grow Mo1-xWxTe2 and MoTe2 crystals using the chemical vapor transport (CVT) 

method. The W content in the Mo1-xWxTe2 determined from the energy dispersive spectroscopy 

(EDS) spectra is x = 0.1±0.01. Crystal phases of the Mo0..9W0.1Te2 alloys are determined by 

powder X-ray diffraction (XRD) and aberration-corrected high angle annular dark field scanning 

transmission electron microscopy (Cs – corrected HAADF-STEM), as shown in Figure 5-1. The 

HAADF-STEM image in Figure 5-1b demonstrates that the crystal is in the 2H phase.  
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Figure 5-1: (a) Powder XRD pattern (b) HAADF-STEM image of a 2H Mo0.9W0.1Te2 sample 
together with the overlapped structural model; red spheres: Mo/W atoms; green spheres: Te 
atoms. Inset: FFT emphasizing the [001] zone axis. 

 
Figure 5-2: Raman spectra of 1L-4L and bulk Mo0.9W0.1Te2 (modes labeled with bulk notation) 
with excitation wavelengths of (a) 532 nm, (b) 633 nm, and (c) 785 nm. 1L-4L spectra are 
vertically offset for clarity. 

We transfer atomically thin crystals from bulk MoTe2 and Mo0.9W0.1Te2 crystals by 

mechanical exfoliation onto a thick polydimethylsiloxane (PDMS) substrate (base: curing agent 

ratios of 10.5: 1). The PDMS substrate has negligible optical absorption over the spectral range 

of interest.105 The thicknesses of the ultrathin crystals are determined by Raman spectroscopy24 

and optical contrast. For the optical measurements with strain, we transfer 1L crystals to 

polyethylene naphthalate (PEN) flexible plastic substrates due to their high Young’s modulus of 

~5 GPa .106-107 
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The Raman spectroscopy measurements are performed in a commercial micro-Raman 

setup in a backscattering geometry. A 100× objective (NA = 0.9) is used to collect the scattered 

photons, which are analyzed in a spectrometer equipped with a grating of 1800 lines/mm. The 

laser power on the samples is about 200 μW (for 532 nm excitation), 140 μW (for 633 nm 

excitation), and 200 μW (for 785 nm excitation), which is sufficient for obtaining a good signal-

to-noise ratio without damaging the samples. The reflectance contrast setup consists of a 

quartz tungsten halogen source combined with a microscope using 100× objectives (NA = 0.95 

and 0.9). A monochromator disperses the reflected light from the sample onto an electronically 

cooled Si or liquid-nitrogen cooled InGaAs CCD array. The peak positions and spectral widths 

(full width at half maximum; FWHM) of the reflectance contrast measurements are extracted 

by fitting multiple Lorentzian lineshapes to the experimental data. PL measurements are 

performed in the same setup with a 100× objective (NA = 0.95) to collect the backscattered 

emission. For excitation, we use a HeNe or a 671 nm solid-state laser. The excitation power 

level is around 10 μW. Backscattered laser radiation is suppressed by a long-pass filter in front 

of the monochromator. All experiments are performed at room temperature. 

Figure 5-2 shows the Raman spectra of 1L-4L and bulk Mo0.9W0.1Te2 with excitation 

wavelengths of 532 nm, 633 nm, and 785 nm. We note that the relatively low band gap of 

MoTe2 and Mo0.9W0.1Te2 compared to other TMDCs enables the use of higher excitation 

wavelengths for resonant Raman spectroscopy. We observe the following first-order Raman 

modes (due to transitions at the Γ point in the Brillouin zone) : Out-of-plane A1g (A’1 for odd, A1g 

for even layers), in-plane E1
2g (E’ for odd, Eg for even layers), and out-of-plane B1

2g (A’’2 for 1L, 

A’1 for odd, A1g for even layers), which is Raman inactive in 1L and bulk crystals.24,76,95,108-112 For 
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1L Mo0.9W0.1Te2, the A1g mode is at ~171-172 cm-1, and the E1
2g mode is at ~235 cm-1. The 

weaker peaks at ~200 cm-1 and ~345 cm-1 have recently been attributed to second-order 

Raman processes109 and appear to be stronger in Mo0.9W0.1Te2 than in MoTe2.  

The Raman modes of Mo0.9W0.1Te2 match those of MoTe2, with the A1g and E1
2g modes 

slightly blueshifted and the B1
2g mode slightly redshifted from those of MoTe2. As the W 

content increases in alloys of Mo and W dichalcogenides (e.g. Mo1-xWxS2 and Mo1-xWxSe2), a 

redshift in the E1
2g and B1

2g modes and a blueshift in the A1g mode occurs.98,113-116 Using a 

simplified linear triatomic molecule model for 1L and 2L where interlayer interactions of the 

vibrations are insignificant, we expect the increased W content in Mo0.9W0.1Te2, and therefore 

an increase in the effective mass of the transition metal, to result in a redshift of modes as 

compared to MoTe2.117 We observe this redshift in the B1
2g mode. However, the frequency of 

the A1g mode depends more on bond strength than on mass of the transition metal since it 

does not vibrate in this mode.95 Since W-Te bonds are stronger than Mo-Te bonds,118 adding W 

to MoTe2 leads to stiffening of the bonds which accounts for the observed blueshift of the A1g 

mode. As opposed to other TMDC alloys, we observe a blueshift in the E1
2g mode for 1L and 2L 

from MoTe2 to Mo0.9W0.1Te2 and conclude that this blueshift also results from increased bond 

strength, which seems to have a stronger effect on the frequency of the mode than increased 

mass.  

Next, we examine the relative intensities of the Raman modes. For both MoTe2 and 

Mo0.9W0.1Te2, the E1
2g mode is strongest for all thicknesses when measured with the 532 nm 

laser. The A1g mode is strongest for 1L and becomes much weaker with increasing thickness, as 

shown in Figure 5-2a. The 633 nm laser can be used to distinguish between 1L, 2L, and 3L 
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crystals in both Mo0.9W0.1Te2 and MoTe2.24 The A1g mode is strongly enhanced compared to  the 

E1
2g mode for 1L crystals which is attributed to a resonance effect as the energy of the laser is 

close to that of the A’ or B’ excitons (see Figure 5-3b).110 For 2L crystals, the A1g and B1
2g modes 

are comparable in intensity but weaker than the E1
2g mode, and for 3L and 4L crystals, the A1g 

mode splits into 2 peaks (A1g(R1) and A1g(R2)), known as Davydov splitting,110,119 and is stronger 

than the B1
2g mode (see Figure 5-2b). The ratio of the B1

2g to E1
2g mode can also be used to 

identify thickness in few-layer crystals using both 532 and 633 nm lasers.26,76 Using the 785 nm 

laser, we observe that the E1
2g mode is much weaker than the A1g mode for all crystal 

thicknesses. For the thicknesses we have measured, the A1g mode is weakest for 2L and 

strongest for 4L crystals in both Mo0.9W0.1Te2 and MoTe2 (see Figure 5-2c). The reason for this 

non-monotonic change of the intensity of the A1g mode with increasing thickness is unclear and 

can be the focus of a future study. The B2g mode does not appear in the 785 nm Raman spectra 

for any crystal thickness, similar to the case in MoS2 and MoSe2 for laser excitation energies far 

from the C exciton.108,120 Calculations have shown that the A and B excitons have wave 

functions that are mainly confined to the individual layers, and it has been predicted that for 

excitation energies near the A and B excitons the active B2g mode of the few-layered crystals is 

seen as the inactive B2g mode of 1Ls. Therefore the B2g  is not observed in few-layered crystals 

with the excitation energy of 785 nm.108,120 However, the C exciton has been calculated to have 

a wave function that is not confined to the individual layers,16,87 so lasers with excitation 

energies closer to the C exciton yield Raman spectra with stronger B2g modes.  
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 Absorption and PL on Ultrathin MoWTe2 

To understand the band structure of Mo0.9W0.1Te2, we perform PL measurements. 

Figure 5-3a displays the PL spectra of 1L-4L and bulk Mo0.9W0.1Te2. The 1L spectrum exhibits a 

single emission peak, with the maximum located at 1.10 eV and an FWHM of ~50 meV. The 

FWHM of the 2L is about 20 meV larger than that of the 1L. We clearly see that the PL intensity 

decreases and the peak position redshifts with increasing layer thickness. The FWHM of the 

peaks appears to increase significantly from 1L to bulk. For the bulk, we find a maximum in the 

PL intensity at around 0.98 eV. The PL intensity of 1L is about three orders of magnitude larger 

than that of the bulk.  

In a view to comment on the nature of the peaks observed in the PL spectra and 

understand why the changes discussed above occur with increasing material thickness, we 

measure the optical spectra of 1L-3L Mo0.9W0.1Te2, as displayed in Figure 5-3b. The data is 

presented as the reflection contrast, that is ∆𝑅/𝑅 = (𝑅𝑀𝑜𝑊𝑇𝑒+𝑃𝐷𝑀𝑆 − 𝑅𝑃𝐷𝑀𝑆)/𝑅𝑃𝐷𝑀𝑆, where 

𝑅MoWTe+𝑃𝐷𝑀𝑆 and 𝑅𝑃𝐷𝑀𝑆 represent the reflectance of the thin Mo0.9W0.1Te2 sample on the 

PDMS substrate and of the bare PDMS substrate, respectively. For a sample with sufficiently 

small absorbance on a thick transparent substrate, as in our case, we can determine the 

absorbance 𝒜 of the unsupported thin Mo0.9W0.1Te2 from ∆𝑅/𝑅 as  𝒜 =
1

4
(𝑛𝑃𝐷𝑀𝑆

2 − 1)(
∆𝑅

𝑅
),52-

54 where 𝑛𝑃𝐷𝑀𝑆 denotes the refractive index of PDMS.121 We can thus probe the absorption 

spectra of sufficiently thin samples through measurements of their reflection contrast. 

We expect to observe only the direct optical transitions in the reflection contrast 

spectrum since the indirect transitions give rise to a very weak contribution to the absorbance. 
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Several features are seen in the spectra of Figure 5-3b, and we expect them to arise from 

mechanisms similar to MoTe2. Thus, we have labeled them according to the bulk assignments 

of Wilson and Yoffe83 as previously done for the case of MoTe2.24 These spectroscopic features 

are associated with transitions in different parts of the Brillouin zone of Mo0.9W0.1Te2. The A, B 

and A', B' pairs have been identified as excitonic transitions with the A-B splitting arising from 

spin−orbit interactions.84 As for other TMDC 1Ls, the A and B peaks are assigned to excitonic 

peaks associated with the lowest direct optical transition at the K-point.18,63,85 The C and D 

features have been attributed to regions of parallel bands near the Γ point of the Brillouin zone 

of bulk MoTe2
86 and similar parallel bands in 1Ls of other TMDCs.17,87 

 
Figure 5-3: (a) PL spectra of 1L-4L and bulk, (b) ΔR/R spectra for 1L- 3L Mo0.9W0.1Te2 crystals. (c) 
The absorption spectrum for the 1L in the infrared. We fit the spectrum to multiple Lorentzian 
peaks to extract the peak positions of the A and B excitons. (d) Comparison of the A exciton and 
PL peak positions as a function of crystal thickness. 1L-4L spectra are vertically offset for clarity 
in (a). 

We now compare the PL and reflection contrast response of Mo0.9W0.1Te2 for different 

thicknesses. Figure 5-3b shows that the reflection contrast increases and the A exciton redshifts 

with increasing thickness. The PL spectra in Figure 5-3a indicate that the peak position also 

redshifts; however, the rate of the redshift of the PL peak is faster than that of the A exciton, 

and the PL intensity decreases as opposed to that of the A exciton. We report the position of 
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the A exciton and the PL peak position as a function of thickness in Figure 5-3Figure 5-3c. The A 

exciton redshifts by ~33 meV to ~1.067 meV for 2L and continues shifting gradually with 

increasing thickness. However, the PL peaks redshift more than the A exciton peaks such that 

the two are separated by ~5 meV for 1L, but ~45 meV for 4L.  

We attribute this large difference to the emergence of an indirect transition at lower 

energies than the A exciton with increasing thickness as observed in other TMDCs.59,61 We 

expect the indirect band gap to contribute to PL but not to absorption. We thus conclude that 

the 1L Mo0.9W0.1Te2 acquires a direct band gap unlike the few-layer crystals thicker than 2L, in 

accordance with the MoTe2 counterpart. Even though the PL intensity is significantly smaller for 

2L than it is for 1L, we find it hard to label 2L as an indirect gap material since the PL peak and 

the A exciton are separated by only ~10 meV. However, the 20 meV increase in the FWHM of 

the PL and A exciton peaks of 2L as compared to 1L strongly indicates the presence of a 

scattering channel for the A exciton in the 2L. We also would like to mention that there have 

been different opinions on the nature of the 2L MoTe2 band gap, both at room24-25 and low 

temperatures.26  

To compare the features observed in Mo0.9W0.1Te2 to those in MoTe2, we fit the 

reflectance contrast spectrum with Lorentzian lineshapes. The infrared part of the 1L spectrum 

with the resultant fit is given in greater detail in Figure 5-3c. The vertical axis is the absorbance 

of the unsupported film calculated by the formula mentioned above. We find that the A and B 

features are located at about 1.10 and 1.38 eV, respectively. The same features are located at 

about 1.10 and 1.35 eV, respectively, for 1L MoTe2. We note that the direct band gap, or A 

exciton, position in Mo0.9W0.1Te2  is not very different from that of MoTe2, which can be 
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understood by the fact that for a given chalcogen (S, Se), the band gaps of Mo and W 

dichalcogenides are comparable.14 The A-B splitting is found to be ~276 meV which is higher 

than the MoTe2 value of 250 meV.24 We attribute this increase to the presence of W since 

dichalcogenides of W have significantly higher A-B splitting than those of Mo.14,122-123 

 Strain-Tuned PL on 1L Mo0.9W0.1Te2 and MoTe2 

 
Figure 5-4: Strain-dependent PL spectra of 1L (a) Mo0.9W0.1Te2 and (b) MoTe2 with strain . Laser 
excitation of 633 nm laser was used. All spectra are vertically offset for clarity. 

To gain further insight on the band structures of 1L MoTe2 and Mo0.9W0.1Te2, we 

perform strain-dependent PL measurements. We first transfer 1L MoTe2 and Mo0.9W0.1Te2 

crystals to polyethylene naphthalate (PEN) and clamp them to the substrate using metal strips. 

We also spin-coat ~100 nm PMMA onto the samples as an additional clamping film. We apply 

strain to the PEN substrate using a two-point bending apparatus (see Figure A-5). Figure 5-4 
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shows the PL measurements of 1L Mo0.9W0.1Te2 and MoTe2 as a function of strain. As the 

applied strain increases, the PL peak redshifts, corresponding to a decrease in the band gap. For 

Mo0.9W0.1Te2 the PL peak shifts from ~1.09 eV at 0% strain to ~1.02 eV at ~2.35% strain, 

corresponding to an overall peak shift of about -31 meV/% strain. For MoTe2, the PL peak shifts 

from ~1.08 eV at 0% strain to ~1.01 eV at ~2.12% strain, which is an overall peak shift of about 

-33 meV/% strain. The FWHM of the Mo0.9W0.1Te2 and MoTe2 PL peaks decreases from ~63 meV 

and ~59 meV, respectively, at 0% strain to minimum values of ~49 meV and ~42 meV, 

respectively. At higher strain, we observe either a PL peak shift to higher energy or a 

broadening of the peak, which is consistent with slipping of the crystal along the substrate. 

To account for the surprising decrease of the FWHM of the PL spectra with strain for 

both materials, we propose three candidates: 1) the contribution to PL from trions becomes 

suppressed, 2) the flakes conform better to the flexible substrate (after being transferred), 

eliminating inhomogeneities, or 3) exciton-phonon scattering is partially suppressed.  

We first consider the suppression of trionic PL due to strain. Despite their lowered 

energy, trions are not expected to contribute much to absorption at room temperature unless 

the sample is heavily doped.93,124 This is because the density of states is much higher for 

excitons than trions and the formation of a trion requires the additional step of binding one 

quasi-free electron or hole. Thus, the absorption process is mainly governed by excitons. 

However, trions can still contribute to PL since the relatively long exciton lifetime at the 

conduction band minimum will allow the formation of trions, which are more stable even at 

room temperature due to their high binding energy of ~25 meV.99-100 Therefore, if this effect 

caused the reduction in the FWHM, we would not see a parallel narrowing in the absorption 
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spectra with strain. However, our measurements showed a similar decrease in the FWHM of 

the absorption spectra which rules out this candidate (see section 5.5).  

Next, we consider the effect 2): We observe that the FWHM of strained 1Ls can go 

below that of any as-exfoliated ones (Note that Koirala et al. use a different approach to extract 

the FWHM of 1L MoTe2).99 Besides, similar measurements on 1L WSe2 have demonstrated that 

the strain-induced narrowing of the spectral widths is reversible upon the release of strain.125 

Such an observation shows that the inhomogeneities have not been eliminated with strain as 

they are not expected to recover. Hence we can conclude that this candidate cannot explain 

our observations. 

Thirdly, we would like to discuss the effect of strain on the exciton-phonon coupling. As 

we know from the current study and earlier ones, 1Ls of both materials have direct optical 

gaps. However, we know that the 1L has an indirect transition at a slightly higher energy than 

the A exciton from band structure calculations and from extrapolating the energy of the 

indirect gap as compared to that of 2L and thicker crystals.24-27 Moreover, the energy 

separation between the minima of indirect (Λ (or another)) and direct (K) valleys, ΔEΛK, at the 

conduction band will increase with uniaxial as well as biaxial strain in similar material 

systems.28,102-103,126-127 However, scattering from the K to Λ requires the absorption of a 

phonon, which becomes less likely with increasing ΔEΛK. Therefore, we infer from our results 

that a weakening in the exciton-phonon intervalley scattering is mainly responsible for the 

decrease in the spectral linewidths.  

Here we note an advantage of a strain-dependent study over a temperature-dependent 

one. Strain affects the lattice which thus affects the band structure without significantly 
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affecting the population of phonons. However, at low temperatures, the phonon population is 

greatly suppressed, but the lattice is also affected which makes the interpretation of the 

fundamental properties of the materials difficult. In many cases, it is assumed that the relative 

energies of different valleys are not affected, which is not always accurate as lowering the 

temperature has a similar effect to biaxial compressive strain. Therefore, tuning the bands of 

nearly direct or indirect gap semiconductors via strain will be helpful to gain more insight about 

their bands and can help interpret the temperature-dependent studies on the spectral 

linewidths of TMDCs. 99,125,128-129 

Finally, we would like to consider the implications of weaker exciton-phonon scattering 

for electron transport. There have been calculations on the enhancement of transport 

properties due to the effect above. 102,130 We propose that this effect should be even larger for 

MoTe2 as ΔEΛK is smaller than its sister materials. The same phenomenon was also predicted 

and has been exploited for high mobility silicon transistors.131-132 

 Strain-Tuned Absorption and PL on 1L Mo0.9W0.1Te2 

We perform strain-dependent absorption and PL measurements on 1L Mo0.9W0.1Te2 to 

verify that the decrease in the spectral linewidth with strain is visible in the absorption as well 

as the PL spectra. 

We exfoliate the 1L on a PDMS substrate and transfer it onto a PETG substrate at ~40 

°C, as described earlier.  Next, we perform the aforementioned strain measurements. We have 

also performed measurements immediately before and after the transfer to ensure that the 

FWHM of the optical transitions of interest has not been significantly altered during sample 
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preparation. Our sample preparation includes no chemicals to keep the sample intact. All the 

fabrication and measurements listed above have been completed within 24 hours. 

 
Figure 5-5: Strain-dependent absorption & PL measurements of 1L Mo0.9W0.1Te2 on PDMS (as-
exfoliated, before transferring onto PETG), PETG (after transferred) and with increasing strain.  

 
Figure 5-6: Peak energy & FWHM values of absorption and PL spectra shown in Figure 5-5. 

Figure 5-5 contains the spectra we obtained. We analyze the spectra and extract the 

peak positions and the FWHM in the following way: We fit the absorption spectra in the vicinity 

of the A exciton to two Lorentzians, one for the A exciton and one accounting for the higher 
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energy transitions. For the PL spectra, we look for the energy at which the spectrum is 

maximized and then obtain the FWHM accordingly. The spectra in Figure 5-5 are vertically 

offset. Intensities of the measurements on PDMS were adjusted to match the PETG due to their 

different refractive indices which result in different electric field enhancement on their 

surfaces. 

We present the extracted results in Figure 5-6. We observe that the peak positions in 

both types of spectra shift to lower values with strain. More importantly, the FWHM decreases 

in both spectra from ~47 meV down to about 39-40 meV (absorption) and ~41 meV (PL) at the 

highest strain achieved. As discussed earlier, we infer that the narrowing of the spectral widths 

is not expected to stem from quenching of the trions. 

The strain levels in the measurements shown in Figure 5-5 are estimated after obtaining 

the shift in peak positions and comparing them to typical shifts with the calculated strain of 

several other measurements. The accuracy of the estimates does not alter the claims made in 

this chapter. 
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Figure 5-7: Peak energy & FWHM values of the strain-dependent PL spectra of Figure 5-4. 

Figure 5-7 shows the peak energy and FWHM values of the strain-dependent PL spectra 

illustrated in Figure 5-4 which belong to 1L Mo0.9W0.1Te2 and 1L MoTe2. 

 Conclusion 

In conclusion, we have characterized single crystalline ultra-thin Mo0.9W0.1Te2 with PL, 

absorption and Raman spectroscopy. We have compared its optical properties to those of 

MoTe2 and have observed that 1L Mo0.9W0.1Te2 possesses a direct band gap at 1.10 eV and the 

thicker layers become indirect. The additional W changes the band structure, observed via 

absorption, and can be studied further via Raman spectroscopy using a broader resonant 

excitation energy range.133 We have manipulated the band structure of 1L MoTe2 and 

Mo0.9W0.1Te2 via tensile strain and have thus lowered their band gaps close to 1 eV. We have 

also observed that the relative energy separation between valleys change and exciton-phonon 
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intervalley scattering can be manipulated. The decrease in the exciton-phonon scattering with 

strain reduces the spectral linewidth of the A exciton and could also lead to an improvement in 

transport properties of these materials as well as other TMDCs, encouraging further studies in 

flexible electronics and optoelectronics. 
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 Probing the Anisotropic Light-Matter 

Interaction in Ultrathin ReS2 

Rhenium disulfıde (ReS2) is a semiconducting and layered group-VII transition metal 

dichalcogenide with an optical bandgap ~1.4 eV in bulk crystals synthesized by the vapor 

transport method.45,134 The layered TMDCs, including MoS2, MoSe2, WS2, and WSe2, have 

generated significant interest in the research community as stable direct gap semiconductors in 

the 1L limit with properties tunable by interlayer coupling,59,81,135 as well as potential for 

electronic, piezotronic, and optoelectronic applications.35,70,136-140 Ultrathin ReS2 has only 

recently attracted attention with reports of the PL, Raman scattering response, and 

transconductive properties of ReS2 which have been measured in the few-layer limit.45,141  

While these previous investigations were crucial first steps in the thin-film 

characterization of this material, a critical aspect remains unaddressed: the role of in-plane 

anisotropy in 1L and few-layer crystals. Strong anisotropy of the optical and electrical 

properties of ReS2 has been established for bulk crystals,39,43-44 and is also expected in thin 

layers.46 In fact, a recent report that has demonstrated anisotropy in the electrical properties of 

few-layer samples.44 Additionally, the Raman scattering response, while not yet directly 

characterized, is also expected to be anisotropic based upon studies performed previously on 

structurally similar ReSe2 and thus to provide a simple optical means of establishing the 

crystallographic orientation of 1L and few-layer samples.142  
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 Linearly Polarized Excitons in Single- and Few-Layer 

ReS2 Crystals 

ReS2, transition metal dichalcogenide, has been studied by optical spectroscopy. We 

demonstrate that the reduced crystal symmetry, as compared to the Mo and W 

dichalcogenides, leads to anisotropic optical properties that persist from the bulk down to the 

1L limit. We find that the direct optical gap blueshifts from 1.47 eV in bulk to 1.61 eV in the 1L 

limit. In the ultrathin limit, we observe polarization-dependent absorption and polarized 

emission from the band-edge optical transitions. We thus establish ultrathin ReS2 as a 

birefringent material with strongly polarized direct optical transitions that vary in energy and 

orientation with sample thickness.   

6.1.1. Results and Discussion 

In this chapter, we demonstrate the anisotropic optical properties of 1L and few-layer 

ReS2 crystals through polarization-resolved reflectance and PL spectroscopy. We find that the 

near-band-edge excitons in ultrathin crystals absorb and emit light with preferred linear 

polarizations. We also observe that the transition energies of the excitons can be tuned with 

layer thickness. We thus establish that ultrathin ReS2 has optical transitions with strengths and 

transition energies that depend on the material thickness and polarization of the optical 

radiation. 

Figure 6-1a is a schematic of the crystal structure of 1L ReS2 from the top and the side 

view along the b-axis.143,144 Each layer consists of Re atoms sandwiched between two S sheets, 

with distorted trigonal antiprismatic coordination and strong covalent bonding between the Re 
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and S atoms;45,144-145 bulk ReS2 is composed of stacks of such layers held together by weak van 

der Waals forces. The dashed arrow in Figure 6-1a depicts the location of the inversion center 

present in 1Ls.41 Rhenium atoms (red) form a chain due to the Re-Re bonds, which is parallel to 

the b-axis (blue line), as denoted in the literature.43 Due to that strong metal-metal bond, ReS2 

is expected to break preferentially along the b-axis.146,147 When an ultrathin flake is found to be 

attached to a thick flake, its b-axis can often be identified by its cleavage axis. Figure 6-1b shows 

a few-layer sample connected to a bulk-like region (indicated by the white arrow) with just such 

a sharp cleaved edge. This sample was mechanically exfoliated onto a PDMS substrate. The 

inset in Figure 6-1b presents a profile of the green channel signal (G) of an optical image of the 

sample. Such data provide a simple means for determining the layer thickness,148 since each 

layer increases G by 12-13%.  This result was confirmed with the aid of Raman spectroscopy 

measurements.147 
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Figure 6-1: Crystal structure of 1L ReS2 (a) shown from the top (top) and the side (bottom), as 
viewed along the b-axis (blue line). (b) Optical image of a few-layer ReS2 flake. The inset shows 
the green channel contrast profile along the yellow line. 

We have probed the anisotropic optical response of ReS2 layers using a combination of 

unpolarized and polarization-resolved reflection, reflection contrast, and PL measurements. In 

reflection contrast measurements, we record the differential reflectance of the sample 

normalized by the reflectance of the substrate, i.e., ∆𝑅/𝑅 = (𝑅𝑅𝑒𝑆2+𝑃𝐷𝑀𝑆 − 𝑅𝑃𝐷𝑀𝑆)/𝑅𝑃𝐷𝑀𝑆, 

where 𝑅𝑅𝑒𝑆2+𝑃𝐷𝑀𝑆 and 𝑅𝑃𝐷𝑀𝑆 represent, respectively, the reflectance of the thin ReS2 sample 

on the PDMS substrate and of the bare PDMS substrate. In the polarization-resolved 
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measurements, a strain-free objective was used to ensure that we illuminated the sample with 

linearly polarized light and detected the reflected light of the same polarization. For sufficiently 

small values of the reflection contrast for a sample on a thick transparent substrate, as in our 

case, we can determine the absorbance 𝒜 of the unsupported thin ReS2 from ∆𝑅/𝑅 as  𝒜 =

1

4
(𝑛𝑃𝐷𝑀𝑆

2 − 1)(
∆𝑅

𝑅
),52-54 where 𝑛𝑃𝐷𝑀𝑆 denotes the refractive index of PDMS.105,121 We can thus 

probe the absorption spectra of sufficiently thin samples through measurements of the 

reflection contrast. In this fashion, we study the energies and strengths of the direct optical 

transitions. Indirect transitions are not expected to be observable, since they give rise to a very 

weak contribution to the absorbance.  The lowest-lying transition can generally be identified in 

the PL spectra, even when it is indirect in character. In polarization-resolved PL measurements, 

only emitted photons with polarization parallel or perpendicular to the incident laser were 

collected, and spectra were recorded as the sample was rotated about its surface normal while 

keeping the collection geometry fixed (see section 6.2.3 for details). 
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Figure 6-2: Optical spectra of a bulk and 1L ReS2 crystal (a) Bulk ReS2 crystal: PL (blue) and 
reflectance spectra (red), the latter differentiated with respect to photon energy. The dashed 
blue curve is the contribution to the PL from a transition at 1.40 eV. (b) 1L ReS2 crystal:  PL 
(blue, upper spectrum offset) and reflection contrast spectrum (red). The arrows indicate the 
peak positions of the optical transitions. 

We first give an overview of the optical response of the 1L and bulk material using 

measurements with unpolarized radiation. Figure 6-2 displays the unpolarized PL and 

reflectance spectra for a bulk sample (a) and a 1L (b). In this Figure, the reflectance spectrum of 

the bulk differentiated with respect to photon energy is plotted to emphasize the optical 

transitions.  For the 1L, we show the reflection contrast spectrum, which, as discussed above, is 

proportional to the absorption spectrum of the sample. In these spectra (plotted in red in 

Figure 6-2), we identify three optical transitions. These transitions were previously observed in 

bulk ReS2 and exhibited excitonic line shapes. 146,149 We correspondingly refer to them as 

excitons 1, 2, and 3 and also fit the spectra using Lorentzian contributions.  Because exciton 3 is 

weak, we cannot directly exclude the possibility that this feature arises, for thin layers, from the 

onset of a band-edge free-carrier transition. However, the increasing strength of excitonic 

interactions with decreasing layer thickness renders this possibility unlikely, since oscillator 
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strength would be transferred from free-carrier to excitonic transitions. A more probable 

scenario would be that exciton 3 is an excited (Rydberg) excitonic state of the lower-lying 

excitons. This result would be compatible with the increasing separation in the energy of 

exciton 3 from excitons 1 and 2 with decreasing layer thickness. The thinner samples would 

exhibit increased exciton binding energy and, hence, increased energy separation between the 

transitions.  

In the bulk crystal, these transitions appear at photon energies of 1.47, 1.51 and 1.58 

eV, respectively, as identified in the reflectance derivative spectrum by points of inflection. 

These inferred transition energies agree well with an earlier report150 of values of 1.48 and 1.52 

eV for excitons 1 and 2. In the 1L sample, the features in the reflectance contrast spectra shift 

to energies of 1.61, 1.68, and 1.88 eV (polarization-resolved measurements discussed below 

will further clarify these assignments).  Figure 6-2 also presents PL data for the bulk sample and 

the 1L. For the bulk crystal, the PL spectrum exhibits an additional lower-energy peak at 1.40 eV 

that is not observed in reflectivity spectrum. We highlight this transition, plotted as a dashed 

blue line, by subtracting the contributions of the optical transitions seen in the reflectivity 

spectra.  

In agreement with the previous studies42,151 and contrast to a recent report,45 these 

data thus suggest that bulk ReS2 possesses an indirect optical gap at 1.40 eV, lying slightly 

below the direct optical gap at 1.47 eV identified in the reflectance spectrum.  The energy for 

the indirect-gap transition in this study agrees well with earlier literature values of 1.37±0.02 

eV42 and 1.40 eV151 for the indirect optical transition. In the 1L, we also observe a similar 

feature in the PL spectrum (blue arrow in Figure 6-2b) at a lower energy than the direct 
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transitions identified in the reflection contrast spectrum. We have not, however, seen this 

feature consistently in other 1L samples, e.g., in the second PL spectrum in Figure 6-2b, or 

spectra for few-layer samples. We are consequently currently unable to identify definitively 

whether this weak feature arises from an indirect transition or defect states.  

Figure 6-2 also shows higher-energy (hot) PL for both bulk and 1L ReS2 samples. Similar 

behavior (not shown) is observed in the few-layer samples. Interestingly, PL from exciton 2 (red 

arrow) is stronger than the PL from lower-energy exciton 1 (black arrow) for all sample 

thicknesses. This indicates that the emission time from exciton 1 is very short and comparable 

to the relaxation time of the higher-lying exciton. This behavior, we note, differs from the more 

typical case seen in the Mo and, W dichalcogenide 1Ls where emission from the lower-energy 

peak is much stronger than from the higher-energy peak.59,61,152 For the case of ReS2, the short 

emission time for exciton 1 presumably reflects the presence either of a still lower-lying indirect 

transition or rapid non-radiative relaxation associated with defects. The relative weakness of 

emission from exciton 1 is also expected based on the lower oscillator strength compared with 

exciton 2 revealed in the reflection contrast spectrum. Unlike the situation for the Mo and W 

dichalcogenides,45 we do not observe increased PL efficiency for 1L samples. There is thus no 

signature of a transition from an indirect-gap bulk material to a direct-gap semiconductor at 1L 

thickness. Unfortunately, we do not see a well-defined emission peak below the direct 

transition identified in the absorption spectra of the 1L and few-layer samples, which would 

allow us to determine the indirect gap energy. This situation would be expected if the 

difference between the direct and the indirect transition energies did not greatly exceed the 

thermal energy, in which case the modestly higher equilibrium population associated with the 
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indirect transition would not compensate for its lower radiative rate. The role of defects in 

reducing exciton lifetimes may further impede identification of emission from the indirect gap. 

 
Figure 6-3: ReS2 reflection contrast spectra for (a) 1L, 2L, 3L ReS2 crystals based on 
measurements with unpolarized light.  The arrows indicate the peak positions of the optical 
transitions. (b) Energies of different excitonic transitions extracted from reflection contrast 
measurements. The energies shift significantly with thickness up to approximately 5L.  

To determine the positions of the optical transitions in few-layer ReS2 crystals, we 

extend these measurements to thicker samples. Figure 6-3 presents unpolarized reflection 

contrast spectra for 1L, 2L, and 3L crystals, with transition energies of the excitons 1, 2, and 3 

indicated by arrows. Figure 6-3b displays the transition energies for 1L-7L samples and the bulk 

crystal. To extract the peak positions for 1L-5L samples, we fit each spectrum by one Lorentzian 

line per peak in the region of interest and one additional Lorentzian feature to represent the 

contributions of the higher-energy transitions. Because of distortions arising from substrate 

interference effects, the 6L and 7L samples were analyzed using the energy derivative of the 

reflection contrast spectra. The data show blueshifts of these three transitions of 140, 160, 300 

meV for excitons 1, 2, and 3, respectively, from the bulk to the 1L limit. 
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The blue shifts in the ReS2 transition energies with decreasing layer thickness are much 

greater than those observed for the direct transitions (A exciton) in MoS2 ,14 MoSe2 ,14 MoTe2 ,24 

WS2 ,153 and WSe2 ,14 which are, respectively, approximately 30, 15, 20, 50, 60 meV; the blue 

shifts are, however, smaller than those seen for the indirect transitions in the same material 

systems. Two factors might influence the larger shift observed in ReS2 compared with the direct 

transitions in the group-VI transition metal dichalcogenides. The first is stronger electronic 

coupling in the former than is found at the K-point of the Brillouin zone of the latter, where the 

direct optical transitions occur. This is consistent with the recent DFT calculations indicating 

that the direct gap of ReS2 occurs at the Г-point of the Brillouin zone.45-46  A second possible 

factor would be the influence of a smaller exciton binding energy in ReS2.  The reduced 

screening of the electron-hole interaction and concomitant increase in binding energy for 

thinner layers would thus provide less compensation for the expected increase in transition 

energy from quantum confinement in ReS2 than for the reference case of the group-VI 

transition metal dichalcogenides.153 
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Figure 6-4: Anisotropic optical response of 1L ReS2. (a) Polarization-resolved reflection contrast 
spectra, measured at 10° intervals from 0° to 180° and offset for clarity. The arrows indicate 
the peak positions of the optical transitions. (b) Integrated areas (arbitrary units) of the 
Lorentzian fits of excitons 1 and 2. The solid lines are fits to the data as discussed in the 
chapter. The data are presented in a polar plot over a 360° range for clarity. 

 We now examine the role of anisotropy in the optical response of the ReS2 layers by 

measurement of polarization-resolved spectra. Figure 6-4 and Figure 6-7 present such spectra 

for 1L and 3L samples, respectively. In Figure 6-4a, we see the dependence of the reflection 

contrast spectra on polarization (or, equivalently, sample) rotation. The data can be described 

in terms of a variation of the spectral weights of the near-gap excitons with the angle, without 

any change in their position or width.  

Figure 6-4b quantifies this effect by the spectral weight of the first two excitons as a 

function of light polarization. Both transitions show a double-lobed structure. However, the two 

excitons do not exhibit the same polarization. The exciton orientation is determined by fitting 

the weight of the relevant exciton in the polarized reflection contrast data to the form 𝐼0 +

𝐼1𝑐𝑜𝑠2(𝜃 − 𝜃𝑚𝑎𝑥), where 𝐼0, 𝐼1 are constants, 𝜃 is the angle of measurement relative to angle 
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at which b-axis is parallel to the incident electric field, and 𝜃𝑚𝑎𝑥  is the angle at which the weight 

is maximized. In the 1L, the absorption from excitons 1 and 2 exhibits a maximum for light 

polarized, respectively, at ~15° and ~50° from the orientation of the cleaved edge. These 

measurements have been repeated on other mono- and few-layer ReS2 crystals. For the few-

layer samples similar results have been obtained, but with the polarization of excitons 1 and 2 

shifted compared to the 1L. Figure 6-5 displays the angle between the b-axis and the electric-

field polarization that maximizes the strength of transitions for exciton 1 and 2 as a function of 

the thickness of the ReS2 crystal.  The bulk data are taken from the literature.39 For the bulk 

crystal at a temperature of 110 K, a previous study39 has shown that excitons 1 and 2 are 

polarized, respectively, at ~17° and ~86° from the b-axis. 

 
Figure 6-5: Angle between the b-axis and excitons 1 and 2 in 1L-3L and bulk ReS2 (the angle at 
which the electric field polarization that maximizes the intensities).  

The observed polarization dependence of the optical spectra provides a purely non-

contact method of determining the crystallographic orientation of the sample. This is of 

considerable importance given the strong anisotropy in the transport properties of the 

material, with the b-axis exhibiting the highest dc conductivity both in bulk44 and in 1L 
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samples.147 We note that the optical anisotropy near the excitonic resonances implies that the 

absorption of these layers varies strongly as a function of the light polarization. This provides a 

possible means for near-field control of radiation.   

 
Figure 6-6: Absorption by unsupported 1L ReS2 of linearly polarized light at photon energies of 
1.61 and 1.68 eV as a function of sample orientation with respect to the b-axis. The absorption 
varies from about 0.6% to 3.2%. 

Figure 6-6 plots the absorption by 1L ReS2 of photon energies of 1.61 and 1.68 eV as a 

function of sample orientation with respect to the b-axis. To see how strongly the absorption 

can be modulated, we chose the photon energies near excitons 1 and 2. To calculate the 

absorption, we corrected for the effect of the real part of the dielectric function in producing a 

weak reflection contrast signal. We accordingly subtracted ∆𝑅/𝑅(1.40 𝑒𝑉) from ∆𝑅/

𝑅(1.61 𝑒𝑉) since we expect that there is negligible absorption at 1.40 eV.  We then applied the 

formula mentioned above to determine the absorption of the corresponding free-standing 1L 

ReS2. We find that the absorption of 1L ReS2 at 1.61 eV shows significant contrast with 

orientation, varying from about 0.6% to 3.2%. This effect could potentially be employed for 

control of light fields on the nanoscale. 
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Figure 6-7: Anisotropic optical response of 3L ReS2. (a) Polarization-resolved reflection contrast 
spectra measured at 15° intervals from 5° to 170°. (b) Corresponding PL spectra, normalized 
and, smoothed. The PL is normalized by the maximum intensity in all of the spectra and is 
smoothed by averaging the data spectrally over a window of ~10 meV. The peaks of the 
absorption and emission spectra are indicated by black, red, and green arrows. All spectra are 
offset for clarity. 

The general behavior of a sample of 3L thickness is similar to that seen for the 1L. Figure 

6-7a shows reflection contrast spectra of 3L samples, which are quite analogous to the spectra 

for the 1L case in Figure 6-4a.  For the 3L sample, we have also measured polarization-resolved 

PL spectra (Figure 6-7b). The emission spectra further confirm the strongly anisotropic 

character of the excitonic transitions. A Stokes shift of ~15 meV between the absorption and 

emission peak energies is inferred from fitting the spectra. The existence of two distinct 

absorption and emission features with different strengths depending on sample orientation and 

polarization gives rise to variable optical properties. This might explain the different 
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interpretation of interlayer interactions extracted from the PL peak positions for few-layer and 

bulk ReS2 in the recent work by Tongay et al. 45 

6.1.2. Conclusion 

In conclusion, we have characterized the optical properties and anisotropy of 1L, few-

layer, and bulk ReS2 crystals. Through PL and reflectance spectroscopy, we confirm the earlier 

studies on the indirect nature of the bulk material. The direct excitonic transitions are found to 

shift significantly with decreasing thickness from the bulk to the 1L, unlike those of Mo and W 

dichalcogenides. Furthermore, the excitons exhibit linearly polarized absorption and emission 

features, which can be correlated to the sample’s crystallographic orientation. From the 

perspective of optical materials, the robust and highly anisotropic response of ReS2 could be 

used for the control of optical fields on the nanoscale.  ReS2 thus provides a new building block 

for the family of atomically thin 2D semiconductors, stable down to 1L thickness, with strongly 

anisotropic optical properties. 
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 In-Plane Anisotropy in Mono- and Few-Layer ReS2 

Probed by Raman Spectroscopy and Scanning 

Transmission Electron Microscopy 

We demonstrate the strong anisotropy in the Raman scattering response by ultrathin 

ReS2 for linearly polarized excitation. Polarized Raman scattering is shown to permit a 

determination of the crystallographic orientation of ReS2 through comparison with direct 

structural analysis by scanning transmission electron microscopy (STEM). Analysis of the 

frequency difference of appropriate Raman modes is also shown to provide a means of 

precisely determining layer thickness up to four layers.   

6.2.1. Results and Discussion 

We present a detailed investigation of the Raman scattering in 1L to few-layer ReS2. Our 

study demonstrates that, like the previously measured bulk optical and electrical properties, 

the Raman scattering response is also anisotropic. We show that the anisotropic angle- and 

polarization-resolved Raman spectra of ReS2 provide a method for the determination of 

crystallographic orientation by a purely optical technique, as we confirm using scanning 

transmission electron microscopy (STEM) to image the crystal lattice. Analysis of the difference 

in frequency between appropriate Raman modes is also found to provide a means for 

determining the thickness of a given sample. 

In contrast to the more studied group VI metal dichalcogenides like MoS2 and WSe2, 

ReS2 1Ls exhibit a distorted 1T (1T’) structure as the stable phase (see Figure 6-1). Previous 
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studies of bulk ReS2 have noted that, due to the extra valence electron on the group VII Re 

atoms, ReS2 exhibits both metal-chalcogen and metal-metal bonds. The metal-metal bonds are 

responsible for creating a superlattice structure of Re chains, indicated by a blue line in  Figure 

6-1. These chains distort the 1L crystal from the more symmetric 1T structure.41,134,154 

Experimentally, crystals synthesized by vapor transport cleave with well-defined edges parallel 

to the Re chains, typically denoted as the b-axis, providing a rapid method of crystal orientation 

identification convenient for studying the anisotropic optical and electrical properties.44 While 

we find exfoliated 1L to few-layer samples that are attached to bulk crystals with well-defined 

edges, there is often ambiguity as to whether thinner samples also cleave along the b-axis, as 

well as which of the cleaved edges follows the b-axis. Moreover, recent progress and the 

technological demand for producing large-scale samples of TMDC thin films by chemical vapor 

deposition155-156 necessitate the development of non-destructive techniques for determining 

crystal orientation in thin film materials that are independent of the preparation 

technique.30,142,157  

We study the anisotropic behavior of thin ReS2 using angle-resolved polarized Raman 

spectroscopy, which has been previously utilized in a wide variety of applications including 

studying strain-induced changes in the electronic structure of graphene,158 as well as 

determining the orientation of ReSe2,142 and black phosphorus crystals.30,159  
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Figure 6-8: Raman spectra of 1L-4L ReS2 

 
Figure 6-9: Polarization-resolved Raman spectra for 1L ReS2.  Full (a) and detailed (b) view of the 
spectrum. (c) Unpolarized spectra (offset) as a function of sample orientation angle (taken 
every 20° by rotating sample about its surface normal). 
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A previous report on the ReSe2 system, which possesses the same crystal structure, 

predicted 18 Raman-active vibrational modes.154 Figure 6-8 plots the unpolarized Raman 

spectra of 1L-4L ReS2. We can identify 18 Raman-active vibrational modes. 

For the present study, we restrict our attention to the range of Raman shifts between 

120 cm-1 and 240 cm-1, since the strongest modes occur in this frequency range. Figure 6-9a 

shows the unpolarized Raman spectrum for a 1L. Figure 6-9c depicts the transformation of the 

Raman spectrum as the sample is rotated about the surface normal. The intensity of each peak 

varies strongly with the angle, while the peak positions are unchanged. 

 
Figure 6-10: Raman spectra of 1L-4L ReS2 in the range of 120-240 cm-1 (a) Optical micrograph of 
1L-4L samples. The green double arrow represents the polarization of the 532 nm incident 

laser. (b) Stacked spectra ( = 120°). (c) Frequencies for modes I, III, and V and the frequency 
difference between III and I as a function of thickness. 

Before examining the orientation dependence more closely, we study the layer 

dependence of the unpolarized Raman spectra. Figure 6-10a is a micrograph of a sample 
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containing regions that are 1L-4L thick. A few of the layers cleaved with well-defined edges, as 

highlighted with black dashed lines. Figure 6-10b shows the Raman spectra for each region at a 

fixed orientation ( = 120 degrees). We choose this orientation because all modes of interest 

are sufficiently strong for further analysis. For simplicity, we label the modes from lowest to 

highest wavenumber with Roman numerals I through V, with approximate peak positions of 

135 cm-1, 141 cm-1, 150 cm-1, 160 cm-1, and 211 cm-1.  

This study reveals that it is, in fact, possible to quantify the number of ReS2 layers by 

examining the Raman peak positions, as has been shown for other 2D materials.81 Figure 6-10c 

displays the peak positions of Raman modes I, III, and V as a function of thickness. The positions 

of the modes III and V change only marginally from 1L to 4L, as does mode IV (not shown). The 

position of mode I, on the other hand, varies from 133.1 ± 0.1 cm-1 in the 1L to 136.2 ± 0.2 cm-1 

in the 4L. The weaker mode II shows a similar thickness-dependent tuning. The III-I frequency 

difference is 16.8 ± 0.2 cm-1, 14.9 ± 0.3 cm-1, 14.0 ± 0.3 cm-1, and 13.5 ± 0.2 cm-1 for 1L, 2L, 3L, 

and 4L, respectively and converges to 12.7 ± 0.3 cm-1 in the bulk. (Note: The error bars derive 

from the difficulty of fitting overlapping Lorentzians.) This result provides a method for 

identifying the thickness of samples in the few-layer regime like the technique used for MoS2.81 

Since the peak positions do not shift significantly with polarization angle, these results are 

robust enough to allow comparison between different samples. Crucially, this analysis requires 

using an orientation where all of the relevant peaks are sufficiently strong. This can be achieved 

simply by rotating the sample. We have performed this experiment on numerous samples on 

different substrates, and the behavior is consistent. 
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Figure 6-11: Raman intensity of mode V in the 4L region with unpolarized (black), cross-
polarized (blue), and parallel-polarized (red) collection. 

Figure 6-11 depicts the orientation-dependent polarization response of mode V in the 4L 

region with cross-polarized (blue) and parallel-polarized (red) collection, as well as an 

unpolarized (black) collection (with respect to the polarization of the incident laser). The cross- 

and parallel-polarized spectra yield 4-lobed and 2-lobed shapes, respectively. With this data, it 

is possible to gain insight into the character of the Raman tensor.142 For our present purposes of 

developing a convenient optical method to determine crystallographic orientation; we will 

concentrate on the parallel polarization data for which the Raman response is significantly 

stronger.  
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Figure 6-12: Angle-resolved Raman response with parallel collection for modes III, V centered at 
~150 cm-1 and 211 cm-1, respectively. (a) Optical image of an exfoliated ReS2 sample. The white 
dashed line represents the reference sample orientation. (b) Angle-resolved Raman intensities 
of modes III and V in a 4L ReS2 presented in a polar plot. Variation with sample orientation of 
the intensity of mode III (c) and V (d) for 1L-4L thickness. The spectra are normalized and offset. 
The solid gray lines represent the angle of maximum intensity.  

In Figure 6-12, we present the parallel polarization Raman response of modes III (green) 

and V (violet). Figure 6-12b is a polar plot of the intensity of modes III and V for the 4L region. 

Mode III exhibits a maximum intensity at an angle of ~58°. Mode V exhibits a maximum 

intensity at an angle of ~91°, which also happens to be parallel to one of the edges of the 

exfoliated flake. These two modes were previously calculated in the literature by DFT 

simulations. Mode III was shown to consist of mostly in-plane vibrations, and mode V was 
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shown to contain out-of-plane vibrations of the sulfur atoms along with in-plane vibrations of 

the Re atoms in the direction of the b-axis.45 We hypothesize that the angle of maximum 

intensity for mode V should be in the direction of the b-axis. 

We examine the consistency of the Raman polarization dependence of each mode as a 

function of layer thickness. Figure 6-12b depicts the polarization dependence of mode III in the 

1L-4L regions. This mode polarization behavior is unchanged for all four different thicknesses, 

with maximum intensity located at ~58°. Figure 6-12c and d show the thickness dependence of 

modes III and V. In contrast to mode III, the polarization of mode V varies slightly with 

thickness, with maximum intensity for this mode at 83° for 1L, 90° for 2L, and 91° for 3L and 4L. 

This variation may be due to interlayer coupling, substrate interactions or strain induced by the 

mechanical exfoliation process, the effects of which are expected to diminish in each 

subsequent layer. The variation in mode V with layer thickness is not reflected in the behavior 

of mode III, suggesting that mode III is less sensitive to the cause of this variation. Nonetheless, 

it is clear that mode V displays a maximum intensity when the excitation is roughly parallel to 

one of the edges of the cleaved crystal. We have observed consistent behavior on more than 20 

samples on different substrates including at least four of 1L-3L thickness.   
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Figure 6-13: Annular dark-field (ADF) STEM of bulk to 1L ReS2. (a) Low magnification ADF-STEM 
image of ReS2 sample on a Quantifoil TEM grid. Inset: optical micrograph of the sample on 
PDMS before transfer. (b) Medium magnification ADF-STEM image of suspended ReS2 where 
the sample tore during the transfer process. (c) High magnification ADF-STEM image of a few-
layer region. (d) Polarization- and orientation-resolved Raman spectra of bulk region. White 
double arrows depict the direction of Re chains in (a)-(c). 

In Figure 6-13, we use annular dark-field scanning transmission electron microscopy 

(ADF-STEM) to image the crystal lattice and confirm that the Raman spectra can be used to 

determine the crystal orientation. Figure 6-13a shows the low-magnification ADF-STEM image 

of a ReS2 sample that was transferred onto a Quantifoil TEM grid. The sample contains regions 

ranging from bulk to 1L, with some areas that are completely suspended. During the transfer 

process, some areas tore with well-defined edges, such as the one marked by the yellow arrow. 

Figure 6-13b shows a higher magnification image of this region and confirms that the b-axis (the 
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Re-Re chain) runs parallel to the cleaved edge. In Figure 6-13c, we present a higher 

magnification ADF-STEM image taken from the few-layer region marked by the blue arrow. The 

bright spots represent the Re atoms and the Re chains, which run in a direction ~90° measured 

clockwise from the vertical, are easily visible. Figure 6-13d depicts the parallel polarization 

response of the Raman spectra for modes III (green) and V (violet) taken on the bulk region of 

the sample, as denoted by the red arrow in Figure 6-13a. Mode III is a maximum at an angle of 

~55° measured clockwise from the vertical and is denoted by the green line in Figure 6-13c. 

Mode V is a maximum at an angle of ~91° degrees, which corresponds to the direction parallel 

to the Re chains. 

6.2.2. Conclusion 

In conclusion, these results confirm the utility of angle-resolved polarized Raman 

spectroscopy in determining the crystal orientation in layered TMDCs possessing the distorted 

1T structure. These observations and conclusions are supported by atomic-scale imaging with 

ADF-STEM and will prove invaluable in the future study of the anisotropic optical and electrical 

properties in thin film ReS2. ReS2, however, is only just one of the TMDCs exhibiting the 

distorted 1T phase to be explored in the few-layer limit, and lessons learned here should serve 

to inform future experiments in similar material systems. 

6.2.3. Methods 

Sample Preparation 

Large flakes of ReS2 were deposited from bulk ReS2 crystals by mechanical exfoliation. 

The substrate was a thick PDMS film (base: curing agent ratios of 10: 1). The PDMS substrate 

has negligible optical absorption over the spectral range of interest.105 The layer thicknesses of 
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the ultrathin ReS2 crystals were determined by Raman spectroscopy147 and optical contrast 

measurements, as discussed above.  

Reflection Contrast and PL Measurements 

The reflection contrast spectra were obtained with radiation from a tungsten halogen 

source, in conjunction with a beam splitter and a 50× objective (NA = 0.42). A monochromator 

dispersed the reflected light from the sample onto a liquid nitrogen cooled Si CCD array.  

The equation used for extracting the absorption spectra remains valid while the 

reflection contrast is less than unity, which is the case even for three layers of ReS2 because of 

the comparatively weak optical transitions. The peak positions of those optical transitions are 

less affected than their magnitude as the absorption spectra slightly deviate from the equation 

used. Therefore, reflection contrast measurements provide an appropriate approach to finding 

the peak positions of the optical transitions of few-layer ReS2 without the need for determining 

the full complex dielectric function. 

The PL measurements were performed using a commercial micro-Raman instrument 

(Renishaw In-Via) in a backscattering geometry. A linearly polarized laser provided excitation at 

a wavelength of 532 nm, which was focused by a 100× objective (NA = 0.85) onto the sample. 

The emitted photons were analyzed in a spectrometer equipped with a grating with 600 

lines/mm. The laser power for the PL measurements was approximately 25 μW for the bulk 

crystal and 300 μW for the ultrathin films. For polarization-resolved PL measurements, we 

collected emitted photons with a polarization perpendicular to that of the incident laser 

radiation.  
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We note that for nominally unpolarized measurements, the optical setup might lead to 

slightly different weightings of the response, but not to a degree to change any conclusions of 

this chapter. 

Raman Measurements 

We measure the Raman spectra in a backscattering geometry using a 532 nm laser with 

a fixed linear polarization. The sample is rotated to an angle  between the incident 

polarization and the direction normal to the cleavage plane (depicted by a white dashed line in 

all subsequent figures). A Silicon CCD measures the scattered light, that a spectrometer 

disperses with a 2400 l/mm grating onto, using a linear polarizer to independently measure 

components parallel and perpendicular (cross) to the incident laser polarization. We also study 

the spectra for unpolarized detection by summing the parallel and perpendicular intensities 

after correcting for the relative collection efficiency. This provides Raman spectra equivalent to 

those that would be measured with an ideal, polarization-independent detection system. 

All experiments were performed at room temperature. 
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 Concluding Remarks 

 Conclusion 

In conclusion, this dissertation has probed the ultrathin layers of MoTe2 and ReS2 via 

strain-tuned and polarization-resolved optical spectroscopy. We have introduced their 

fundamental optical properties and the experimental tools to study them.  

We have seen that their electronic structures transform significantly from bulk down to 

monolayer limit. Furthermore, we have found the monolayer MoTe2 to be a direct band gap 

semiconductor with intense PL.  We have presented Raman spectra of MoTe2 which vary 

significantly with crystal thickness due to the changes in the electronic structures and the fact 

that the ultrathin and bulk crystals belong to different space groups. We have established 

Raman spectroscopy as a way of determining the thickness of the ultrathin MoTe2. We have 

demonstrated that tensile strain can significantly reduce the optical gap of monolayer MoTe2 

and partially suppress the intervalley exciton-phonon scattering resulting in narrower near-

band excitonic transitions. 

We have studied the anisotropic light-matter interaction in ultrathin ReS2 via 

polarization-resolved optical spectroscopy. We have noted that the near-band-edge excitons 

shift significantly with decreasing thickness from the bulk to the monolayer, unlike those of Mo 

and W dichalcogenides. We have found that the excitons exhibit linearly polarized absorption 

and emission features. We have discovered that polarization-resolved Raman spectroscopy can 

detect the crystallographic orientation of ReS2 and we have correlated the anisotropy of the 

excitons to the sample’s crystallographic orientation. Thus, we have established ReS2 as a new 
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building block in the family of atomically thin semiconductors, stable down to monolayer 

thickness, with strongly anisotropic optical properties.  

Both strain-tuned and polarization-resolved optical spectroscopy have proven to be 

valuable in understanding the band structures and fundamental optical properties of atomically 

thin transition metal dichalcogenides. 

 Future Directions 

We would like to present some future directions based on the findings of this 

dissertation. 

Raman modes of ultrathin MoTe2 seem to get enhanced or suppressed by changes not 

only in the crystal symmetry but also in changes of the electronic structure with layer thickness. 

Therefore, excitation dependence study of the Raman spectra can discover more about the 

band structure, phonon dispersion and exciton-phonon coupling of MoTe2 and how these 

transform with thickness. 

We have suggested that tensile strain can reduce exciton-phonon scattering in 

monolayer MoTe2. Therefore, strain-tuned transport studies can be performed to investigate 

the same effect and improve the electronic properties of MoTe2 or similar material systems. 

Higher tensile strain can be much more informative about the optoelectronic properties. 

A difficulty in this direction Is that one needs to achieve high strain without chemically affecting 

the material to clamp it better to the substrate. That way the sole effect of strain can be 

accurately observed and interpreted. 

High tensile strain will strongly reduce the crystal symmetry, and polarization-resolved 

spectroscopy on strained ultrathin TMDCs can be interesting. 
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Strain studies at low temperatures can resolve other features such as trions and can 

examine the effects on them. 

 Final Remarks 

I want to thank the readers of this dissertation. I hope that this work has been 

enlightening and inspiring to you. 

Graduate school has been a very enjoyable experience and I have learned a lot about 

the universe outside and the universe within. I realized that there is only so much we can 

accomplish since more ideas and questions come to mind than a study realizes and answers. 

We begin to understand how little we know each passing day. The more we learn, the more we 

realize that there exists, and even more, to do.  

"Exalted are You; we have no knowledge except what You have taught us. Indeed, it is You 

who is All-Knowing, All-Wise." 
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 Calculations for 2D Optics 

A.1. Electric Field Enhancement on Interfaces 

Assuming normal incidence, non-absorbing media, and, an interface of air (or another 

medium) and a semi-infinite substrate, the electric field on the interface, 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒, will be 

 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑  (16) 

Where 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 and 𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 are the incident and reflected electric fields, respectively 

as depicted in Figure A-1.  

 
Figure A-1: Intensity enhancement as a function of the refractive index of the substrate at an 
interface with three top media: Air, PDMS, and PETG (left). A diagram of air and semi-infinite 
substrate interface (Right).  

Then, 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(1 + 𝑟), where 𝑟 is the reflection coefficient for the air to 

substrate interface and is given by 𝑟 =
𝑛𝑎𝑖𝑟−𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑛𝑎𝑖𝑟+𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
, 𝑛𝑎𝑖𝑟 and 𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  being the refractive 

index of the top and the bottom medium, respectively. Therefore, we obtain the following 

factors: 
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𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝐸𝑖
=

2𝑛𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 = |
2𝑛𝑎𝑖𝑟

𝑛𝑎𝑖𝑟 + 𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
|

2

 

 (17) 

The same argument applies to the emission process: Imagine an infinitely small light 

emitter right on the interface. Looking from the top, we will receive some electric field directly 

from the emitter and some more reflected from the interface. Thus neglecting any effect of the 

emitter on the reflected field, we obtain the same enhancement for collection from interfaces. 

Figure A-1 plots the dependence of the intensity enhancement factor on the refractive index of 

the material as well as a diagram depicting the air-substrate interface. One can calculate the 

relationship between how much a 2D material absorbs on a substrate and air (free-standing; 

unsupported). We will not cover the case of multiple substrates such as SiO2 on Si. 

A.2. Numerical Aperture & Solid Angle relation 

 
Figure A-2: A diagram of a converging lens. 

We can express the solid angle collected by an objective from an object/light source at 

the focal point in terms of the numerical aperture as follows (assuming immersion in air): 
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𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒, 𝑁𝐴, =  𝑠𝑖𝑛𝜃.  𝑆𝑜𝑙𝑖𝑑 𝐴𝑛𝑔𝑙𝑒, Ω, = 2𝜋(1 − cos 𝜃) 

Ω = 2𝜋(1 − √1 − 𝑁𝐴2) 

 (18) 

 

 
Figure A-3: Solid angle as a function of numerical aperture (as described in the chapter). 

The numerical aperture is usually known for an objective, and the solid angle is relevant 

if one needs to know what fraction of light by an isotropic emitter can be collected. 

A.3. Average Power & Fluence: Solving the Pulse Laser 

Problem 

We can calculate the relation between the average power of a pulse laser one measures 

using a standard power meter and the fluence. First, let us relate the average power to fluence 

from the definitions of pulse energy and fluence. 

 𝑃𝑢𝑙𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐹𝑙𝑢𝑒𝑛𝑐𝑒 × 𝑆𝑝𝑜𝑡 𝑎𝑟𝑒𝑎 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
  (19) 

If the average power is not known, it can be calculated as follows: 
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 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 = 1 𝜇𝑊 ×
𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

1𝑀𝐻𝑧
×

𝐹𝑙𝑢𝑒𝑛𝑐𝑒

1 𝐽𝑜𝑢𝑙𝑒
𝑚2⁄

×
𝑆𝑝𝑜𝑡 𝑎𝑟𝑒𝑎

1 𝜇𝑚2
  (20) 

If the fluence is not known, it can be calculated as follows: 

 𝐹𝑙𝑢𝑒𝑛𝑐𝑒 =
1 𝐽𝑜𝑢𝑙𝑒

𝑚2
×

1𝑀𝐻𝑧

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
×

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟

1 𝜇𝑊
×

1 𝜇𝑚2

𝑆𝑝𝑜𝑡 𝑎𝑟𝑒𝑎
  (21) 

Example:  Repetition rate = 80 MHz, spot area = 4 µm, absorption = %5 

Absorbed 𝐹𝑙𝑢𝑒𝑛𝑐𝑒 =
1 𝐽𝑜𝑢𝑙𝑒

𝑚2
×

1𝑀𝐻𝑧

80 𝑀𝐻𝑧
×

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟

1 𝜇𝑊
×

1 𝜇𝑚2

4 𝜇𝑚2
× 5% 

Absorbed 𝐹𝑙𝑢𝑒𝑛𝑐𝑒 =
1 𝐽𝑜𝑢𝑙𝑒

𝑚2
×

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟

6.4 𝑚𝑊
 

A.4. Exciton Density Calculations for CW Laser Excitation 

If 𝑛 = 𝑛(𝑡) is the number of excitons created with a CW laser excitation.1 The rate 

equation for 𝑛 (neglecting the higher order terms in 𝑛) is as follows:  

 
𝑑𝑛

𝑑𝑡
= 𝐺 −

𝑛

𝜏
  (22) 

Where 𝐺, the generation term, is the number of photons absorbed per unit area 

(volume for 3D systems), per unit time. The steady state concentration becomes  𝑛𝑠𝑠 = 𝐺𝜏 . 

Assuming one exciton is created per absorbed photon (internal quantum efficiency of 1), 

 

𝐺 = 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

𝐵𝑒𝑎𝑚 𝑎𝑟𝑒𝑎

= 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 ×
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟

 𝐵𝑒𝑎𝑚 𝑎𝑟𝑒𝑎 × 𝑃ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 
 

 (23) 

 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 × 𝑃ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 (24) 

We write the generation term as follows for quick calculations: 
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 𝐺 = 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 ×
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟

𝜇𝑊

𝜇𝑚2

𝐵𝑒𝑎𝑚 𝐴𝑟𝑒𝑎

𝑒𝑉

𝑃ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦
× 6.25 × 1020𝑐𝑚−2 (25) 

Where, 6.25 × 1020𝑐𝑚−2 =
𝜇𝑊

𝑒𝑉 ×𝜇𝑚2
. 

Example: 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 10%, 𝑃𝑜𝑤𝑒𝑟 = 10 𝜇𝑊, 𝐴𝑟𝑒𝑎 = 1 𝜇𝑚2, 𝑃ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 =

2 𝑒𝑉, 𝜏 = 4 𝑝𝑠.2 We find that 𝑛𝑠𝑠 = 1.25 × 109𝑐𝑚−2 

A.5. Applying Strain to TMDCs 

When a flexible substrate is bent in a direction, there will be tensile strain along the 

same direction (ignoring the general case of strain induced in the other directions). In such a 

case, the tensile strain, 𝜀, can be calculated as follows: 

𝜀 =
𝜏

2𝑅𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒
=

𝜏

𝐷𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒
= 1% ×

𝜏/10𝜇𝑚

𝐷𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒/𝑚𝑚
 

Where 𝜏 is the thickness of the flexible substrate, and 𝑅𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 and 𝐷𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 are 

radius and diameter of curvature at the sample location along the strain direction, respectively. 

 
Figure A-4: Strain as a function of diameter of curvature (5 to 100 mm) on a 250 μm film. 
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Figure A-5 Strain device and a flexible substrate bent to apply tensile strain to a sample on the 
top surface (Left and right, respectively). 

The samples of interest should be as close to the center of the substrate so that an 

objective can go sufficiently down to focus on them. We also note that the strain applied to the 

flexible substrate may not be fully transferred to the flakes on it.3 Having large flakes may help 

transfer the strain better. 

A.5.1. Applying Large Biaxial Strain 

One way of applying large strain to TMDCs is to create a pressure difference across 

suspended membranes to induce biaxial strains. 

 
Figure A-6: Applying strain via pressure difference above and below 1L MoS2 a) Device 
schematic. (b) A CVD grown sample of MoS2 membranes suspended over cylindrical cavities 
(scale bar is 20 μm). (c) An AFM cross-section of a device at various pint, resulting in different 
biaxial strains at the center of the device.4 
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 Sample Preparation and 

Optical Alignment Procedure 

B.1. Making PDMS (Polydimethylsiloxane) 

PDMS substrates used for fabrication and transfer of the materials mentioned in this 

dissertation have been prepared according to the following recipe:  

1. We clean a recyclable plastic or glass cup with IPA and dry it by blowing nitrogen.  

Base and curing agent of “Sylgard 184 Silicone Elastomer Kit” have been used. Base to 

curing agent ratio is 10:1 or 10.5:1 by volume, not by weight. Syringes help the accuracy. The 

stickiness of PDMS increases with the increasing proportion, but it gets less stiff which is harder 

to handle. Thus if one needs to transfer exfoliated samples from PDMS to other substrates the 

base: curing agent ratio should not be much higher than 10.5:1.  

2. Next, we pour the ingredients with the ratio above into the clean cup.  

3. We mix them with a mixer and then pour into a clean petri dish with a very flat base.  

4. Place the petri dish in a desiccator to remove the air bubbles that should already be 

visible in PDMS.  

5. Use a leveler or a smartphone with the right application to make sure the petri dish is 

very flat.  

There are advantages of having the PDMS surface super-flat: It is much easier to look for 

few-layer materials under a microscope and to focus onto a specific flake while transferring.  

6. Keep it in a desiccator for 48 hours. There is no need for baking the PDMS.  
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PDMS surface is sticky thus it is going to catch dust and other kinds of dirt from the air 

over time. In that case, nitrogen blowing can help. Keep it in a desiccator when not in use. 

Endgame solution is to use the bottom surface of the PDMS which will stay cleaner than the top 

surface. 

B.2. How to Exfoliate TMDCs? 

We have videotaped a few demonstrations on how to prepare a Scotch tape and use it 

to exfoliate, starting from a commercial bulk crystal.5 There are many other online resources on 

this; we firmly recommend investing some time in that before attempting exfoliating. 

B.2.1. Exfoliating onto PDMS 

We use a tape called “blue tape” to exfoliate onto PMDS. A demonstration video is 

available online.6 Figure B-1 shows a good blue tape which can give good ultrathin layers. A 

good blue tape is expected to have shiny, large, unbroken crystals. Normally, since the PDMS 

has a sticky surface, 1Ls+ can be obtained easily with little pressure. If PDMS is not able to 

cleave relatively high amount of shiny bulk flakes, some more pressure can be applied. 

 
Figure B-1: Blue tape with some amount of TMDC crystal. 

Blue tapes from Semiconductor Equipment Corp. with the part number “18133CR-7.50 

Blue Low Tack Sq CR” have been used. Blue tape can be supported by Scotch tape as the blue 

tape is softer and can break the crystals on it. 
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B.2.2. Exfoliating onto Polycarbonate 

Polycarbonate (PC) is a polymer, and we can use it as a flexible substrate for strain-

optics experiments. One way of obtaining TMDCs is to transfer from PDMS onto flexible 

substrates as will be explained in Appendix B.4. Another way is to exfoliate directly onto the 

substrate. We first clean a piece of PC with ethanol and dry it with nitrogen. We then follow the 

same exfoliation method described for PDMS. If the blue tape does not give a good yield of 

ultrathin flakes, one can try Scotch tape (personal communication, Dr. Ali Dadgar and Prof. 

Abhay Pasupathy, April 21, 2017). 

B.3. Large Monolayers on PETG Substrates 

It is desirable to have large 1L+ crystals on PETG (Polyethylene terephthalate glycol-

modified) substrates. Exfoliating large 2L and 3Ls of MoTe2 on PDMS has been more often and 

easier than 1Ls. Therefore, we have used the gold assisted thermal release tape method to 

deposit large 1Ls onto PETG substrates directly.7-8 A standard gold evaporator was employed to 

deposit 100 nm thick gold on a few blue and Scotch tapes. 

 
Figure B-2: Various tapes of MoTe2 crystals coated with a layer of 100 nm Au.  

Such tapes are shown in Figure B-2. The tape on the far right was copied onto a thermal 

release tape to use on a substrate directly. PETG substrates became very soft and gathered 

much glue from the thermal release tape. Large 1Ls on PETG have been obtained. Reflection 

measurements have confirmed the position of the A excitons; however, no PL counts have been 
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detected. We suspect that the softening of PETG (with heating) or the acid treatment caused 

this since MoTe2 is relatively less stable compared to other group-VI TMDCs. 

B.4. Transferring an ultrathin TMDC onto another 

substrate from PDMS and PPC/PDMS 

PDMS loses its stickiness at around 40 °C. One can place the desired substrate on a hot 

plate. Then the PDMS with flakes can be slowly approached by micromanipulators and even 

monitored by objectives and cameras. Imaging is especially necessary if one needs to align the 

flakes on PDMS with others already placed on the target substrate. It is also okay to hold the 

PDMS by hand and make it touch the new surface. After about 30 seconds, the PDMS can be 

removed the same way it was made to contact the substrate. The few-layer flakes should have 

been transferred now.  

Another common goal of transfers is to cover the flakes of interest with hBN to protect 

them. If hBN does not fully cover the flakes, the overlapping part should still be okay. 

B.4.1. Hand-Transferring from PDMS onto PETG 

We cut a 28 by 28 mm2 piece of PETG. The PETG should have a protective film; 

otherwise, it will be full of scratches and dirt such that the surface may not accept the transfer. 

We clean some of the PETG substrates with acetone, isopropanol, and distilled water before 

transferring. One can clean multiple times until the PETG looks clean under a microscope. 

We exfoliate the desired flake onto PDMS. Then, the standard transfer procedure is 

performed. Here are some more tips: We mark the locations of the flakes both on the slide and 

the PDMS with the help of the microscope light as shown in Figure B-3. 
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Figure B-3: Marking the slide and PDMS to locate the samples. 

Then, we very slowly remove the PDMS by pushing a pair of tweezers between PDMS 

and the slide starting from the edge further from the flakes, as shown in Figure B-4. It needs to 

be slow, because any sudden movement may break the 1L+ flakes. 

 
Figure B-4: Gently removing the PDMS from the slide. The bottom-right inset shows the 
marking on the PDMS after it has been lifted off. 

Then we put the pre-cleaned PETG onto a hot plate at 40-45 °C. We slowly place the 

PDMS onto the PETG substrate by making sure that the markings indicate that the flakes will be 

in the middle after transferring as shown in Figure B-5. Keep the PETG still using a second pair 

of tweezers. 



113 
 

 
Figure B-5: Placing PDMS onto PETG on a hot plate. 

We wait for 15-30 seconds. Then slowly remove the PDMS at an angle close to normal 

(by pulling upwards rather than folding the PDMS on top of itself and pulling backward) as 

shown in Figure B-6. 

 
Figure B-6: Removing PDMS from PETG at normal incidence. 

We have one warning for this method: We have noticed that not all but about a half to a 

third of the flakes transferred gets strained and the PL peak redshifts by a few meV to ~50 meV. 

This has been helpful because we can see the huge effect of strain on the spectral width of the 

2L flakes. Nevertheless, one has to be very gentle when dealing with TMDCs on PDMS and 

flexible substrates. Heating and cooling the substrate might also help relax the strain that 

occurs after hand-transfers. 
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B.4.2. Transfer stage for transferring from PDMS onto PETG 

  
Figure B-7: Equipment used for transfers . Left: Transfer arm to slowly manipulate the contact 
between PDMS and the target substrate (PETG in this case). Top right: PETG piece fixed on an 
iron plate with magnets. Bottom right: Glass slide with PDMS faces the PETG substrate under a 
microscope objective. 

As PDMS loses stickiness at an elevated temperature, less PDMS residue is expected to 

be left on the transferred flakes. Thus, we fix the PETG with magnets onto an iron bar of 

rectangular prism shape. We focus on the PETG surface close to the mid-point and then lower 

the stage to open some space to lower the PDMS. Then, we focus on the PDMS surface using 

the linear stage shown in Figure B-7 and find the flake of interest and lift the PDMS up back. 

Next, we remove the iron piece and heat it on a hot plate to about 45 °C. We bring the iron 

back under the microscope, focus back on the PETG and make sure that the local area is clean 

for the flake to be transferred. Next, we lower the transfer stage and bring the PDMS to focus. 

Then, we slowly raise the microscope stage, and the PETG will soon be focused as well as the 

Magnet

Iron pieces

Glass 
slide

Linear stage for 
vertical movements
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flakes. PDMS should touch the surface, and the boundary between the areas of the PDMS that 

are in contact and not in contact will appear and propagate through the field of view. If it does 

not, despite lowering the slide sufficiently, one can use a stick or non-magnetic tweezers to 

press on the slide. After the boundary passes by the area of inspection, wait for about 30 

seconds, and then the stage can be lowered slowly, looking for the boundary to go back. The 

flake should end up on the PETG surface. 

B.4.3. Preparing PPC on PDMS 

1. Place a clean PDMS on a clean microscope slide 

2. Etch PDMS with oxygen plasma at a power of 50 W for 15 seconds. 

3. Spin coat PPC onto PDMS at 2000 rpm, heat it at 80 °C for 5 minutes on a hot plate. 

4. Transfer PPC/PDMS onto a clean slide 

5. Cut down PDMS to a smaller size 

6. Exfoliate some hBN onto SiO2/Si 

7. Pick up that hBN with PPC/PDMS at 40 °C 

8. hBN/PPC/PDMS can pick up another few-layer at 40 °C. 

B.4.4. Preparing PPC on SiO2/Si 

One can also directly exfoliate onto PPC/SiO2/Si with Scotch tape and then physically 

remove the PPC and place onto PDMS and transfer the PPC, with the flakes, onto the desired 

substrate at 80 °C. PPC needs to be cleaned afterward. 

1. Place a SiO2/Si chip on a spin coater, turn in the chuck vacuum to hold the chip. 

2. 2 drops of PPC on the chip. 

3. 5500 rpm for 60-75 seconds with an acceleration of 4000 rpm/s2 
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4. Bake at 80 °C for 3 minutes. 

5. Drill a hole on a clean Scotch tape and cover the PPC covered chip with it. 

6. Exfoliate your desired material regularly. 

7. The Scotch tape can remove the PPC from the chip and can be carried onto PDMS to 

transfer to the target substrate of choice. 

B.4.5. Gently Handling Flexible Substrates 

 
Figure B-8: PETG substrate fixed on a slide with magnets and a thin razor blade. 

When a flake is placed on a flexible substrate, it is important to handle it gently (see the 

discussion towards the end of B.4.1). Our setup includes an inverted microscope, and we need 

to fix the substrates onto glass slides so that they will not fall. We have realized that if one uses 

tapes to fix them, then removing them from tapes may introduce strain or cracks on flakes. 

Therefore, we use the structure shown in Figure B-8. The flexible substrate is placed between a 

slide and a thin razor. Magnets placed on the other side of the slide fix the razor and the 

substrate. 

B.5. Optics in the Near-Infrared Spectral Range 

MoTe2 has a band gap around 1 eV. Neither silicon detectors are efficient, nor can we 

humans see the light, energy of which is in the near-infrared range. Thus, an InGaAs detector is 

a solution, and some precaution needs to be taken on the excitation and collection path: 
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 An objective that has good transmission in the IR region and has invariant focus in a 

broad range is needed. The near infra-red (NIR) light is expected to be focused once the 

red light (closest color to the infra-red that we humans can see) is focused on the 

sample. 

 A webcam can be used to see further into the NIR for both focusing and aligning. Older 

phones and webcams might work better as they may not be optimized in order not to 

capture any light humans cannot see for more realistic photography (above 700 nm). 

 We have utilized a few Helium-Neon lasers (HeNe) which had multiple sharp lines 

around 1.1 eV. We have filtered them with a band pass filter. 

B.6. Aligning an Invisible Laser 

One might need to use a laser that is in the IR, but they will not be able to see it. How 

can we align it? Safety first: An invisible laser is more dangerous than a visible one, so wear 

appropriate goggles. The procedure is as follows: 

1. Align the optical path using a visible laser and place 2-3 adjustable apertures (irises) on 

the optical path and make light spots perfectly symmetric around the small apertures. 

2. Place a flip mirror in the appropriate position to be able to switch between the two 

lasers. 

3. Two mirrors before the apertures are needed to guide the invisible laser into the optical 

path so that one does not have to change another mirror which would affect the 

alignment of the other light sources. 
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4. Invisible laser beam should be aligned with the centers of the apertures with the help of 

an alignment card or a camera. A power meter can also be used by maximizing the 

transmitted laser power after the apertures. 

5. A camera (if it can see the laser wavelength) can be used to make sure the invisible light 

spot is at the desired point on the sample. Avoid looking at the (invisible) reflected laser 

by the sample. 

B.7. Obtaining Circularly Polarized Laser Light 

One can follow these steps to obtain circularly polarized light: 

1. Linearly polarize the laser. Use a neutral charge density filter to adjust the laser power 

(not a second linear polarizer otherwise circular polarization will be lost). 

2. A half-wave and a quarter-wave plate are needed because the optics (between the 

quarter wave plate and the sample) will introduce elliptical polarization.  

3. Check that the power changes less than 10% (or less if needed) under the objective 

when a linear polarizer (right before or right after a non-birefringent objective) is 

rotated. Recursively minimize this power change using the wave plates. 

4. With a Fresnel rhomb or a second quarter wave plate, check that the light reflected by 

the sample is also circularly polarized if needed. 
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 Tools and Software 

C.1. Thin Film Optics Calculations 

If the research requires thin film optics calculations, there is a Python code by Steve 

Byrnes.9 He also mentions other people’s work that could be of interest. 

C.2. Useful Online Tools 

For an optics researcher, there are handy tools that save time such as a unit converter 

for energies.10 

C.3. Drawing the Crystal Structures of TMDCs 

We have used VESTA, which is free software, for some of the studies included (e.g., see 

Figure 1-2 and Figure 1-6).11 Specific crystal structure data are available online.  

C.4. Handling Photos of Ultrathin TMDCs 

ImageJ is very useful and easy-to-use software for handling the photos of TMDCs. One 

can calculate the contrast (in a color channel of RGB) of flakes and estimate their thicknesses 

easily. One can calibrate a microscope (parameters such as exposure time and light intensity) 

on a sample with the flakes of known thicknesses on a specific substrate. Then, ImageJ can be 

used to compare the contrast of other flakes to the known ones. There are many other features 

one can explore too. 
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C.5. Extracting Data from Figures 

Some academic publishers started requiring a “data availability statement” from the 

authors for publications. However, it is still not uncommon that there is data one would like to 

use for calculations, but it is only an image that exists rather than the proper data file. It could 

be a figure in a published paper or an efficiency curve in a datasheet. No worries, there are 

online tools available for this purpose.12 
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