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ABSTRACT 

Plant diversity, physiology, and function in the face of global change 

Case Mahone Prager 

One central goal in ecology is to understand how biodiversity, and key organismal traits, 

interact with ecosystem properties and processes, and ultimately to understand and predict how 

these interactions will be affected by rapid environmental change.  Thus, global change 

experiments and observational gradients in diversity provide the opportunity to examine and test 

hypotheses about how organismal traits, multiple dimensions of biodiversity, and ecosystem 

function will respond to environmental change.  In Arctic tundra, increased nitrogen (N) and 

phosphorus (P) availability accompanying rapid warming is thought to significantly alter plant 

community composition and ecosystem function.  The following four chapters examine 

hypotheses about the responses of species’ traits, multiple dimensions of biodiversity, and 

ecosystem function to the effects Arctic warming.  Chapter 1 examines plant community 

composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem 

respiration, and gross primary production) across a gradient of experimental N and P addition 

expected to more closely approximate warming-induced fertilization, demonstrating declines in 

plant diversity and an increase in the capacity for ecosystem carbon uptake at the highest level of 

fertilization.  Chapter 2 examines a set of physiological and functional leaf traits across the same 

N and P gradient in order to evaluate the possible physiological mechanisms underlying 

community and ecosystem responses, highlighting the effects of increasing nutrient availability 

for deciduous shrub species.  Chapter 3 found that single-dose, long-term nutrient addition (i.e., 



> 20 years) led to significant declines in multiple dimensions of diversity (taxonomic, functional

and phylogenetic), and that these effects persist through time, increasing for dimensions that 

capture organismal traits (functional and phylogenetic).  Finally, Chapter 4 examined the 

relationship between multidimensional diversity and ecosystem function across a natural gradient 

of diversity, and found that taxonomic diversity and functional diversity were significantly and 

positively related to whole ecosystem productivity, and, conversely, functional evenness and 

dispersion were significantly and negatively related to ecosystem productivity.  Cumulatively, 

these four chapters advance our understanding of the connections between communities and 

ecosystems in a rapidly changing ecosystem. 
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INTRODUCTION 
As human-altered landscapes now dominate our earth, great emphasis has been placed on 

understanding how species are impacted by human-induced environmental change, and the 

consequences of shifts in biological diversity for ecosystem and Earth-system functioning 

(Cardinale et al. 2012, Naeem et al. 2012).  The body of work linking biodiversity (and 

organismal traits) with ecosystem function has grown exponentially since its emergence just two 

decades ago, and a great amount of effort has been placed on developing theory and empirical 

methods to describe the nature of the relationship between biodiversity and ecosystem function 

(BEF) and the mechanisms (selection effect and niche complementarity) that are thought to 

underlie these connections (Loreau and de Mazancourt 2013, Tilman et al. 2014).  This 

dissertation combines data generated from long-term experiments and observational gradients in 

order to better understand and predict the effects of Arctic warming on the relationships between 

plant diversity and ecosystem function with an attention to the physiological mechanisms that 

underlie these linkages. Specifically, this dissertation centers on the interactions between 

warming-related nutrient enrichment, multiple dimensions of biodiversity, functional and 

physiological leaf traits, and ecosystem CO2 exchange across low Arctic tundra (Figure 1). 

Experimentally, taxonomic and functional-group diversity, principally of producer 

species, has been shown to exhibit positive, saturating relationships with ecosystem function – 

typically some measure of productivity – most markedly at low levels of species diversity, often 

in artificially-assembled grassland systems (Tilman et al. 1997a, Tilman et al. 1997c, Chapin et 

al. 1998, Reich et al. 2004).  Less is known, however, about the causal relationship between 

diversity and function across naturally assembled systems, or systems undergoing long-term 

warming or nutrient fertilization, elsewhere on the globe (Bunker et al. 2005, Hooper et al. 
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2005).  In addition, biodiversity is a complex, dynamic and often scale-dependent entity that 

cannot be readily reduced to a single value or dimension.  As human-induced biodiversity losses 

are escalating, accurately measuring the change in relevant dimensions of biodiversity (i.e. 

genetic, taxonomic, functional, phylogenetic, structural, etc.) in order to best predict potential 

ecological consequences is paramount (Purvis and Hector 2000, Naeem et al. 2016b).   In the 

BEF framework, traditional approaches often involve examining species and/or functional group 

richness, but employing a multidimensional approach may be the most comprehensive strategy 

for understanding the mechanisms underlying diversity’s influence over ecosystem function 

(Wright et al. 2006, Carroll et al. 2011, Naeem et al. 2016b).  

The overarching aim of this dissertation is to understand the connections between plant 

physiology and multiple dimensions of plant diversity and to explore how these connections are 

impacted by an indirect effect of global environmental change, nutrient enrichment.  In addition, 

the studies included in this dissertation explore the relationships between organismal traits, 

multiple dimensions of diversity, and larger scale ecosystem processes, such as ecosystem CO2 

exchange.  Each chapter tests hypotheses about how plant traits, species functional, phylogenetic 

and taxonomic relationships, and ecosystem function are expected to respond to warming-related 

nutrient enrichment. 

 

Study system  

High-latitude ecosystems have experienced rapid warming in recent decades.  Mean 

Arctic surface temperature has increased by 2°C over the past 50 years compared to an increase 

of approximately 0.72°C in global mean surface temperature (IPCC 2013). Consequently, Arctic 

tundra ecosystems are predicted to be affected more by warming than any other terrestrial 
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ecosystem due to a network of positive feedbacks among regional temperature, water vapor, 

albedo, snow depth, permafrost thaw, and sea ice extent (Chapin et al. 2005, Serreze and Francis 

2006, Hinzman et al. 2013).  

The effects of Arctic warming include a deepening active (soil) layer and increased soil 

nutrient mineralization, resulting in the fertilization of a historically nitrogen (N)- and 

phosphorus (P)-limited landscape (Shaver and Chapin 1986, Chapin 1991). Greater nutrient 

availability is thought to lead to shifts in plant community composition due to increases in the 

relative abundance of woody, deciduous shrub species, with consequences for key ecosystem 

functions such as carbon (C) and nutrient cycling (Rastetter et al. 1991, Hobbie and Chapin 

1998, Myers-Smith et al. 2011).   In addition, increased nutrient availability is expected to 

stimulate primary production, enhancing aboveground biomass and ecosystem C gain and 

belowground productivity and C cycling (Hobbie et al. 2002, Hill and Henry 2011). 

The subsequent four chapters are based on data collected near Toolik Lake, Alaska on the 

North Slope of the Brooks Range between June 2013 and August 2015. Three of the four studies 

presented here utilized long-term global change experiments at the Arctic Long-Term Research 

site (ARC LTER) – two of the four chapters use a long-term nitrogen (N) and phosphorus (P) 

enrichment gradient experiment established in 2006, and one chapter uses data from ARC LTER 

single-dose N and P addition experiments initiated in 1989, 1996 and 1997.  The final chapter 

uses data from an observational gradient of naturally assembled plant communities, not exposed 

to any experimental treatment, near Toolik Lake and the ARC LTER.  

 

Thesis structure 

Chapter 1 (Published as Prager et al., 2017 in Ecology and Evolution) examines the 
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impact of increasing N and P availability on plant diversity and ecosystem function.  

Specifically, this chapter estimates the amount of N released in association with warming-related 

permafrost thaw and explores the consequences of a gradient of N and P addition on species 

richness, abundance-weighted measures of plant diversity and three key measures of ecosystem 

CO2 exchange: net ecosystem exchange (NEE), ecosystem respiration and gross primary 

production.  In addition, this chapter compares measured ecosystem CO2 flux data to a widely 

used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 

exchange with nutrient addition.  

Chapter 2 expands on the findings of Chapter 1, exploring the species-specific 

physiological responses of Arctic tundra vegetation to increasing nutrient availability.  

Specifically, Chapter 3 examines how a set of leaf nutrient and physiological characteristics of 

eight dominant plant species, spanning four plant functional groups, respond to experimental N 

and P enrichment.  This chapter highlights the importance of quantifying and monitoring 

physiological mechanisms that perhaps underlie changes at the community and/or ecosystem 

level, aiding in a more comprehensive understanding of the impacts of global change on larger 

scale processes and properties. 

Chapter 3 explores the impact of long-term (i.e., > 20 years), single-dose N and P 

enrichment on three relevant dimensions of biodiversity (i.e., functional, phylogenetic and 

taxonomic) in Arctic tundra.   While it is generally understood that biodiversity is 

multidimensional, little attention has been given to integrating multiple dimensions of diversity 

in assessments of the effects of global change on communities and ecosystems, possibly 

underestimating the magnitude of the impact of global change on natural systems.     

Finally, Chapter 4 examines simultaneous changes in multiple dimensions of plant 
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diversity (i.e., functional, phylogenetic and taxonomic) and whole ecosystem productivity across 

Arctic tundra (both NEE and aboveground biomass).  As the majority of existing work linking 

biodiversity and ecosystem function (BEF) is experimental, and far less is understood about the 

causal relationship between biodiversity and function across naturally assembled systems, this 

chapter advances the BEF framework to naturally-assembled Arctic ecosystems undergoing 

rapid environmental change.  In addition, this chapter examines multiple dimensions of diversity 

simultaneously, permitting inferences into possible mechanisms underlying the connections 

between diversity and function in this system. 

 

 

Figure I.1 1 

Figure I.1. Conceptual diagram linking the four data chapters presented in this dissertation.  

Solid black lines represent measured connections between areas of investigation with arrows 

representing the hypothesized direction tested and solid grey arrows indicate links that were not 

explicitly evaluated, but findings from specified chapters have direct implications for those 
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relationships.  Grey dashed lines represent all hypothetical connections between study areas not 

covered by this dissertation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

Chapter 1 - A gradient of nutrient enrichment reveals non-linear impacts of fertilization on 
Arctic plant diversity and ecosystem function 

 
Citation: Prager, C.M., S. Naeem, N.T. Boelman, J.U.H. Eitel, H.E. Greaves, M.A. Heskel, T.S. 

Magney, D.N.L. Menge, L.A. Vierling, and K.L. Griffin. 2017. A gradient of nutrient 

enrichment reveals non-linear impacts of fertilization on Arctic plant diversity and ecosystem 

function. Ecology and Evolution. 00:1-12 https://doi.org/10.1002/ece3.2863. 
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Abstract 
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, 

structure, and function of plant communities, resulting in changes in the pools and fluxes of 

nutrients.  In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying 

warming is known to impact plant diversity and ecosystem function; however, to date, most 

studies examining Arctic nutrient enrichment focus on the impact of relatively large (> 25x 

estimated naturally occurring N enrichment) doses of nutrients on plant community composition 

and net primary productivity.  To understand the impacts of Arctic nutrient enrichment, we 

examined plant community composition and the capacity for ecosystem function (net ecosystem 

exchange, ecosystem respiration, and gross primary production) across a gradient of 

experimental N and P addition expected to more closely approximate warming-induced 

fertilization.  In addition, we compared our measured ecosystem CO2 flux data to a widely used 

Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 

exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at 

low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon 

uptake did not change until the highest level of fertilization.  When we compared our measured 

data to the model, we found that the model explained roughly 30-50% of the variance in the 

observed data, depending on the flux variable, and the relationship weakened at high levels of 

enrichment.  Our results suggest that while a relatively small amount of nutrient enrichment 

impacts plant diversity, only relatively large levels of fertilization – over an order of magnitude 

or more than warming-induced rates – significantly alter the capacity for tundra CO2 exchange.  

Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient 

enrichment gradient, as warming-related nutrient availability may impact ecosystems differently 

than single-level fertilization experiments.  
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Introduction 
High-latitude ecosystems have experienced rapid warming in recent decades.  Mean 

Arctic surface temperature has increased by 2°C over the past 50 years compared to an increase 

of approximately 0.72°C in global mean surface temperature (IPCC 2013). Arctic tundra is 

warming rapidly due to a network of positive feedbacks among regional temperature, water 

vapor, albedo, and associated variations in snow depth, permafrost thaw, and sea ice extent 

(Chapin et al. 2005, Serreze and Francis 2006, Hinzman et al. 2013).  Consequently, Arctic 

tundra ecosystems are predicted to be affected more by warming than any other terrestrial 

ecosystem (IPCC 2013).   

The effects of Arctic warming are complex and diverse, including a deepening active 

layer, increased soil nutrient mineralization and subsequent fertilization of a historically nitrogen 

(N)- and phosphorus (P)-limited landscape (Shaver and Chapin 1986, Chapin 1991). Greater 

nutrient availability is thought to lead to shifts in plant community composition and physical 

structure due to increases in the relative abundance of woody, deciduous shrub species, with 

consequences for key ecosystem functions such as carbon (C) and nutrient cycling (Rastetter et 

al. 1991, Hobbie and Chapin 1998, Myers-Smith et al. 2011).   In addition, increased nutrient 

availability is expected to stimulate primary production, enhancing aboveground biomass and 

ecosystem C gain and belowground productivity and C cycling (Hobbie et al. 2002, Hill and 

Henry 2011), as has been shown by modeling efforts (Jiang et al. 2016). However, recent 

assessments suggest that, regardless of shifts in aboveground biomass and ecosystem 

productivity, concurrent increases in organic matter decomposition are weakening the strength of 

the Arctic CO2 sink (Hayes et al. 2011), and the region is likely to become a net C source to the 

atmosphere by 2100 (Abbott et al. 2016).  As high-latitude ecosystems contain twice as much C 

as there is presently in the atmosphere (Zimov et al. 2006, Tarnocai et al. 2009), more than three 
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times the C in global forest biomass (Houghton 2007), and between a quarter and a third of the 

globe’s total C pools (Carvalhais et al. 2014, Schimel et al. 2015), understanding the ecological 

consequences of rapid warming and a growing nutrient pool for leaf, community, and ecosystem 

processes across Arctic tundra ecosystems is paramount. 

The majority of nutrient addition experiments – across all ecosystems – aim to examine 

the extent of nutrient limitation on annual net primary productivity (NPP) (LeBauer and Treseder 

2008). To do so, nutrients are often added at levels that far exceed plant demand – at times an 

order of magnitude greater than predicted deposition or warming-induced increases in nutrient 

availability (Hobbie et al. 2002).  Experimental N and P additions have been used to simulate 

enrichment in Arctic tundra ecosystems as warming is thought to increase nutrient availability 

via increases in active layer depths and accelerations in the decomposition of soil organic matter 

(Hartley et al. 1999, Schimel et al. 2004, Aerts et al. 2006).  Such large dose, long-term 

fertilization experiments (i.e., annual additions of ≥10 g m−2 yr−1 N and ≥5 g m−2 yr−1 P) across 

varying Arctic tundra types have documented increases in NPP and pronounced shifts in plant 

community composition and physical structure over time (Shaver and Chapin 1986, Shaver et al. 

1998, Boelman et al. 2003, Boelman et al. 2005) often occurring in connection with increases in 

the abundance of deciduous woody shrub species and decreases in evergreen, grass/sedge, and 

moss cover (Shaver and Chapin 1986, Shaver et al. 1998).     

Shifts in the evenness and dominance of plant species, and declines in plant diversity, are 

often attributable to shifts in competitive interactions between plant species with increasing 

nutrient availability (Tilman 1984, 1987) and the competitive displacement of low stature species 

due light limitation (Goldberg and Miller 1990).  One study has shown that high levels of N and 

P fertilization doubled NPP, but soil C – a much larger pool – decreased substantially, resulting 
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in a net decrease of ecosystem C storage (Mack et al. 2004).  In contrast, examination of more 

gradual shifts in nutrient availability via long-term warming showed increases in plant biomass 

and dominance of woody shrub species with no changes in total soil C and N pools, ultimately 

increasing net ecosystem C storage after 20 years (Sistla et al. 2013).  However, it is unclear how 

much of this response was driven by direct effects of temperature increases vs. indirect effects of 

warming-related nutrient enrichment (Sistla et al. 2013).  In addition, large-scale experimental 

and observational warming studies have documented increases in deciduous shrub cover that is 

often indirectly attributed to nutrient enrichment (Elmendorf et al. 2012a, Elmendorf et al. 

2012b).  While substantial variation in the structure and composition of tundra vegetation exists, 

previous work has illuminated relatively consistent relationships between productivity and 

biomass, and canopy leaf area and nutrient use or allocation (Shaver and Chapin 1995, Shaver et 

al. 1998, Williams and Rastetter 1999).  These findings point to the functional convergence of 

canopies – suggesting similar controls over canopy-level C exchange regardless of any 

compositional differences in plant communities (Williams and Rastetter 1999, Williams et al. 

2001, Shaver et al. 2007, Street et al. 2007) – regardless of the impacts of any variation in 

resource availability not captured by canopy leaf area.   

Monitoring plant community and ecosystem responses across a gradient of fertilization 

may reveal important dynamics and relationships between plant nutrient availability and use. For 

example, there may be a point at which plant nutrient availability or uptake outpaces utilization, 

or non-linear relationships may emerge between nutrient enrichment and ecosystem function 

(Aber et al. 1998, Bai et al. 2010).  Further, experiments that have added a range of N and P 

levels report shifts in diversity or biomass at all levels of nutrient addition (Tilman 1987, 

Bowman et al. 2006, Britton and Fisher 2007), suggesting that ecosystem properties or processes 
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may be impacted by low levels of enrichment (Clark and Tilman 2008). Addressing both the 

magnitude and variability of nutrient enrichment in a changing world is important if we are to 

improve our overall understanding of the effects of nutrient availability on plant communities 

and ecosystem function. 

The few incremental nutrient addition experiments that have been conducted in Arctic 

tundra have found community-level responses to small differences in nutrient enrichment.  One 

study in Northwest Greenland found that ecosystem CO2 exchange, vegetation cover, and 

composition were highly sensitive to low rates (i.e., 0.5 g N m−2 y−1) of N input just 1-2 years 

after fertilization, suggesting that small increases in N availability have the potential to alter 

ecosystem structure and function in the high Arctic (Arens et al. 2008). However, subsequent N 

addition from 1 to 5 g N m−2 y−1 did not further alter CO2 exchange or vegetation characteristics, 

possibly indicating ecosystem N saturation (Arens et al. 2008).  In addition, recent leaf-level 

work in low Arctic Alaska illuminated species-specific decoupling of respiration and 

photosynthesis and shifts in leaf nutrient content across a nutrient enrichment gradient, with 

possible consequences for ecosystem carbon balance (Heskel et al. 2012).  

In this study, we sought to examine the effects of incremental N and P enrichment on 

plant community composition and ecosystem function in low Arctic tundra. Specifically, we 

examined how plant diversity, canopy leaf area, and key components of the capacity for 

ecosystem C cycling (i.e., net ecosystem exchange (NEE), ecosystem respiration (ER), and gross 

primary productivity (GPP)) respond to a gradient of experimental N and P enrichment at a low 

Arctic tundra site in northern Alaska.  As we were interested in how the maximum capacity for 

ecosystem CO2 exchange was impacted by the magnitude of nutrient addition, and not how 

nutrient addition impacts CO2 exchange throughout a season, we focused on measuring 
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ecosystem processes during the period of peak tundra greenness.  In addition, we explored the 

potential to scale up our findings from the plot to the ecosystem by comparing predictions of 

CO2 fluxes derived from a widely-used Arctic ecosystem CO2 exchange model developed by 

Shaver et al. (2007) to our measured CO2 flux data.  We also used this model to help partition 

CO2 flux responses to nutrient enrichment between various drivers (i.e., leaf area, irradiance or 

temperature).  Overall, we hypothesized that plant diversity (e.g., species richness and 

abundance-weighted diversity) and ecosystem function (e.g., NEE, GPP, ER) would respond to 

relatively low levels of nutrient addition.  

 

Methods 
 
Site description and experimental manipulation 

All field sampling for this study took place during peak growing season (i.e., the period 

of peak tundra greenness) across a long-term nitrogen (N) and phosphorus (P) enrichment 

experiment established in 2006 by G. Shaver and colleagues at the Arctic Long Term Ecological 

Research (ARC LTER) site, located at Toolik Lake in the northern foothills of the Brooks 

Range, Alaska (68°38’N and 149°43’W, 760 m a.s.l.).  The nutrient addition gradient is located 

on moist acidic tundra with soils comprised of 30–55 cm of a peaty organic and silty mineral 

layer, atop continuous permafrost. Each year, following snowmelt but before leaf-out, granular 

ammonium nitrate and superphosphate is distributed on each 5 × 20 m plot, corresponding to 

fertilization treatment.  Treatment name denotes the amount of fertilizer applied at the beginning 

of each growing season: “CT”, a control that receives no fertilizer; “F0.5” (0.5 g N m-2 yr-1 + 

0.25 g P m−2 yr-1); “F1” (1 g N m-2 yr-1 + 0.5 g P m−2 yr-1); “F2” (2 g N m-2 yr-1+ 1 g P m−2 yr-1); 

“F5” (5 g N m-2 yr-1 + 2.5 g P m−2 yr-1); and “F10” (10 g N m-2 yr-1+ 5 g P m−2 yr-1). The nutrient 
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enrichment plots are replicated in a complete three-block design, resulting in 18 sampled 

treatment plots, and blocks are positioned roughly 50-100 m apart. The growing season at the 

ARC LTER site spans 10-12 weeks, beginning in early to mid-June, with an average growing 

season temperature of 10°C.  The period of peak tundra greenness for low Arctic tundra plant 

communities that are dominated by graminoids and evergreen shrubs is approximately 30-35 

days (Sweet et al. 2015).  As the growing season in this system is short, we focused on 

measuring plant community properties and ecosystem function during the period of peak tundra 

greenness to ensure that we were examining the effects of nutrient addition, and not seasonality, 

on plant communities and the maximum capacity for ecosystem function.  

To compare the magnitude of the experimental nutrient additions to that of naturally 

occurring fertilization, we calculated a rough estimate of thawing related nutrient enrichment.  

To do so, we combined data on bulk soil N from Arctic tundra soils (Mack et al. 2011), the 

change in annual maximum thaw depth from 2000 to 2012 at the Toolik Lake LTER (Shaver and 

Laundre 2012), ANPP from Arctic tundra (Shaver 2013), and tissue N content (Field and 

Mooney 1986, Jackson et al. 1997).  Assuming steady state of the pre-thawing soil pool, we 

estimated a mineralization rate constant, which we used to estimate thawing-driven N 

mineralization (see Appendix S1 for detailed calculation). According to this calculation, 

naturally occurring enrichment due to thawing permafrost is around 0.3 g N m-2 yr-1, which falls 

just below the lowest nutrient enrichment treatment in our study.  We suspect that the true 

thawing-driven nutrient enrichment is likely lower than this (see Appendix S1).   

 

Leaf area index, plant community composition, and plant diversity 
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To calculate leaf area index (LAI; m2 one-sided green leaf m-2 ground), we used the 

Normalized Difference Vegetation Index (NDVI).  Derived from reflectance data, NDVI 

captures the relative amount of green vegetation, and thus is an indicator of canopy “greenness” 

(Rouse et al. 1974).  NDVI has proven to be sensitive to differences in aboveground plant 

structure, biomass and canopy cover in Arctic tundra ecosystems (Vierling et al. 1997, Boelman 

et al. 2003, Steltzer and Welker 2006, Boelman et al. 2011).  We obtained spectral reflectance 

measurements during peak tundra greenness (July 12-20, 2015) for a subset of at least two of our 

CO2 flux locations per plot (N=39) with a field portable double channel spectrometer (UniSpec 

DC, PP Systems, Amsbury, M.A., USA). The foreoptic was held 1 m above the top of the 

canopy, with a circular footprint of approximately 0.15 m2 and a 40 cm diameter field of view.  

Three measurements were made within each sampled flux quadrat (roughly 0.75 m in diameter) 

and averaged to capture spatial heterogeneity.  Each vegetation upwelling radiance measurement 

was immediately followed by a measurement of a 99% reflectance standard from a white 

Spectralon™ disc (LabSphere, North Sutton, N.H., USA). By dividing the reflected vegetation 

radiance by the spectralon radiance, we obtained a value for spectral reflectance. NDVI values 

were calculated from spectral reflectance measurements using Eqn (1), where NIR indicates 

reflectance at 800 nm [a near-infrared (NIR) wavelength], and R is reflectance at 660 nm [a 

visible red (R) wavelength]. The NDVI values at each CO2 flux plot were averaged to obtain a 

mean value. 

   NDVI = (NIR – R)/(NIR + R)    (1) 

Mean NDVI for each flux plot was used to estimate LAI using a model developed by Street et al. 

(2007) for varying tundra vegetation types, generalized by Shaver et al. (2007) (Eqn  2).  This 

model is commonly employed in studies of Arctic vegetation and carbon fluxes (Loranty et al. 
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2011, Street et al. 2012, Shaver et al. 2013, Sweet et al. 2015) and it assumes that differences in 

NDVI during the period of peak leaf-out (when our study was conducted) are primarily the result 

of changes in tundra leaf area.  

 

LAI = 0.0026e8.0783*NDVI     (2) 

To examine treatment effects on plant diversity, we analyzed percent cover during the 

period of peak tundra greenness (July 13 – 16, 2012) by using data available through the LTER 

data portal (http://ecosystems.mbl.edu), collected at eight 1-m2 quadrats within each 5 x 20 m 

treatment plot).     We used these percent cover data to calculate the number of species in the 

community, species richness (S), and two common abundance-weighted diversity metrics, the 

Shannon Index (Eqn 3) and the Simpson Index (Eqn 4), that represent the evenness and 

dominance of species in a community, where Pi is the fraction of the community made up of 

species i and S is the species richness of a given community. 

         
   𝐻𝐻 =  ∑ − (𝑃𝑃𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑆𝑆

𝑖𝑖=1 )     (3)  
                                                                   

             𝐷𝐷 =  1
∑ 𝑃𝑃𝑖𝑖

  2𝑆𝑆    
𝑖𝑖=1

                                  (4) 

 
All measures of diversity were calculated using the vegan package (Okasen et al. 2015) in R v. 

3.2.1 (R Core Team 2015).  As plant percent cover data were taken at eight subplots within the 

control, F0.5, F2, F5 and F10 treatment plots, they are an accurate, thorough representation of 

plant communities across the experimental plots.  Given the short growing season and the large 

abundance of perennial and evergreen species with conservative growth strategies in this system 

(Bliss and Petersen 1992) plant communities likely shift slowly, rather than abruptly, in response 

to environmental change and resource availability (Camill and Clark 2000, Dormann and 

Woodin 2002).  In addition, previous work in this region has shown that plant percent cover in 
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this system is unlikely to change over short (e.g., < 5 years) temporal scales (Jorgenson et al. 

2015). 

 

Measured CO2 flux measurements and calculations  

During the period of peak tundra greenness (July 12-16, 2015), changes in CO2 

concentration, water vapor, photosynthetically active radiation (PAR) and air temperature were 

measured using a Li-Cor 6400XT infrared gas analyzer (IRGA; Li-Cor, Lincoln, Nebraska, 

USA) operated in closed-system mode.  The IRGA was affixed to a transparent, cylindrical, 

portable polycarbonate chamber (r= 0.36 m; h=0.61 m), with internal fans to ensure adequate 

mixing of air and steady chamber temperatures, atop a separate base (r=0.37 m; h=0.15 m) fitted 

with a plastic skirt, sealed to the ground with two heavy chains.  Because the range of LAI values 

across all plots was relatively small (Fig. 4a), the same chamber was used for all gas exchange 

measurements.  At each sampling location, we conducted flux measurements to permit 

calculation of both net ecosystem exchange (NEE) and ecosystem respiration (ER).  Each 

measurement cycle began by lowering the chamber onto the base and sealing it.  Once a 

consistent rate of CO2 exchange was achieved, we began logging a 40-second flux measurement 

– following a method similar to the International Tundra Experiment (ITEX) and that of Shaver 

et al. (1998), Shaver et al. (2007) and (Shaver et al. 2013) – in the light (for calculation of NEE) 

at a sampling frequency of 0.5 Hz.  Once we completed a flux measurement in the light, the flux 

chamber was covered with an opaque black cloth and allowed to acclimate for 15-30 seconds 

before logging a 40-second flux measurement in the dark (for calculation of ER). This cycle was 

repeated five times, yielding five flux measurements in the light and five in the dark at each 

sampling location.  The temperature in the chamber did not exceed 25.2 °C during any 
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measurement, and conditions for each repeated measure were stable.  For each sampling location 

within each treatment plot, we averaged the five fluxes made in the light and the dark 

respectively and we calculated three relevant flux metrics: NEE, ER, and gross primary 

production (GPP).  Measurements from the three sampling locations were averaged to obtain a 

mean value for each treatment plot, resulting in three observations per treatment (one mean value 

per treatment per block), and outliers were removed prior to averaging.  

To calculate NEE (µmol m−2 s−1), we used Eqn 5 to quantify the continuous exchange of 

CO2 between the atmosphere, vegetation and soil in the light. In Eqn 5, ρ is the air density (mol 

air m-3), defined as 𝑃𝑃
𝑅𝑅𝑅𝑅

, where P is the average pressure (Pa), R is the ideal gas constant (8.314 J 

mol-1 air K-1), and T (K) is the mean temperature. V is the chamber volume (m3), dC/dt is the 

slope of the chamber CO2 concentration against time (µmol CO2 mol−1 air s−1), and A is the 

surface area of the ground (m2) within the chamber.  Negative NEE values indicate fluxes from 

the atmosphere to the ecosystem and positive values indicate fluxes to the atmosphere from the 

ecosystem. 

    NEE  = (ρ*V *(dC/dt)/A)          (5) 

GPP = ER – NEE      (6) 

In addition, we calculated ER using Eqn 5 for all flux measurements taken in the dark.  

We then calculated gross primary production (GPP) as the difference between ER and NEE (Eqn 

6).   

  

Modeled CO2 fluxes 

To compare our flux measurements to those predicted at a system-level scale we modeled 

net ecosystem exchange (NEEM) using the model developed initially by Shaver et al. (2007) 
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(Eqn 7 through 9) and further modified by Shaver et al. (2013) which requires input of three 

variables: LAI, PAR, and air temperature (T). Predicting CO2 fluxes using only LAI, PAR, and 

air T, has been shown to produce a reasonable estimation of Arctic tundra CO2 exchange (Shaver 

et al. 2007, Street et al. 2007, Rastetter et al. 2010).  While the model is often viewed as a bulk 

NEE model, accurate representations of ER and GPP are critical to determining realistic 

estimates of NEE.  In addition, previous work has shown that robust estimates of NEE, 

particularly at the landscape scale, require an accurate and mechanistic understanding of both ER 

and GPP (Loranty et al. 2011). 

PAR and T data were obtained from the Li-Cor 6400XT used for CO2 flux 

measurements. PAR and T values were calculated for each of the five measurements made in the 

light and then averaged to obtain mean values.  NEEM (µmol CO2 m-2 s-1) was calculated using 

Eqn (7) as the difference between modeled ER (ERM) and GPP (GPPM) where negative values of 

NEEM represent net CO2 uptake by the ecosystem.  While variations on the model exist, we used 

model parameter values estimated on low Arctic (the bioclimatic region our study was conducted 

in that lies between the sub-Arctic and high Arctic) datasets that encompass a variety of low 

Arctic tundra vegetation types (Shaver et al. 2013).   

  NEEM = ERM- GPPM      (7) 

ERM was calculated using Eqn (8), using parameter values for β, R0, and RX as 

determined by Shaver et al. (2013).  Here, R0 (1.177 µmol CO2 m-2 leaf s-1) is the basal 

respiration rate, accounting for both autotrophic and heterotrophic respiration, β (0.046 °C-1) is 

an empirically fit parameter, and T is air temperature (°C).  The additional source of respiration 

in Eqn (8), RX (0.803 µmol CO2 m-2 ground s-1), corresponds to respiration at deeper soil 

horizons, is independent of LAI and fluctuations in air T, and is included in the model as it 
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enhances accuracy, model fit, and prevents ER from dropping to zero when there is no canopy 

leaf area (Shaver et al. 2013). 

  ERM = (R0*eβ*airT*LAI)+Rx      (8) 

  GPPM = (PmaxL/k)*ln((PmaxL+E0*I)/(PmaxL+E0*I*e(-k*LAI))) (9) 

Modeled gross primary productivity (GPPM) was calculated using Eqn (9) and parameter 

values for PmaxL, k, and E0 from Shaver et al. (2013), where PmaxL (14.747 µmol CO2 m-2 leaf s-1) 

is the light-saturated photosynthetic rate per unit leaf area, k (0.5 m2 ground m-2 leaf) is a Beer’s 

law extinction coefficient, and E0 (0.041 µmol CO2 fixed µmol-1 photons absorbed) is the initial 

slope of the light response curve.  Incoming solar irradiance (I) is the top-of-the-canopy 

photosynthetic photon flux density (µmol photons absorbed m-2 ground s-1).  Irradiance is 

assumed to be the same per leaf area as per ground area at a given layer in the canopy.  I was 

calculated from PAR data recorded by an upward-looking sensor logged by the LiCor 6400XT 

IRGA; we calculated an average PAR value for each flux location.  

 

Statistical analyses 

We used a series of mixed effects models for each of our response variables (e.g., plant 

diversity and ecosystem function) with treatment as a fixed effect and block as a random effect.  

Block did not have a significant effect in any of our preliminary analyses.  Therefore, to 

determine the influence of nutrient enrichment on measured and modelled CO2 fluxes, plant 

diversity, relative cover of plant functional groups and LAI, we used one-way analyses of 

variance (ANOVA) followed by Tukey Honest Significance Difference post-hoc tests when 

ANOVA results were significant (N=3 for each treatment level).  Linear models were used to 

compare measured and modeled flux metrics, and we characterized the strength of the 
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relationship between measured and predicted ecosystem CO2 flux metrics (i.e., NEE, ER, GPP) 

using the coefficient of determination (R2) and root mean squared error (RMSE).  In addition, we 

compared a subset of our measured flux data for which we had LAI values and our modeled 

fluxes between nutrient treatments using a two-way ANOVA. For all analyses, P-values < 0.05 

were considered statistically significant. All analyses were completed in R v. 3.2.1 (R CoreTeam 

2015) using the ggplot2 (Wickham 2009), lme4 (Bates et al. 2015), lsmeans (Lenth 2016) and 

vegan (Okasen et al. 2015) packages. 

  

Results 
 
Leaf area index, plant fractional cover, and plant diversity  

 We detected a statistically significant difference in leaf area index (LAI) with nutrient 

addition.  LAI was significantly greater in the highest nutrient addition treatment (F10) than in 

all other treatment levels, except for F5 (Fig. 1).  Mean LAI hovered around 1 for the CT, F0.5, 

F1, and F2 treatments, and mean LAI was 1.19 (SE = 0.04) and 1.44 (SE = 0.09) at F5 and Fl0 

respectively (Fig. 1).  When examining plant community composition and diversity, we found 

strikingly divergent trends in plant species richness, the number of species in a community (S), 

and two abundance-weighted measures of plant diversity, the Shannon (H) and Simpson (D) 

indices, in response to nutrient addition.  Species richness did not decrease significantly with 

nutrient addition until the highest level of enrichment (Fig. 2a), when mean S dropped to 8.5 (SE 

= 0.31) compared to 10.4 (SE = 0.20) in control plots.  However, when abundance-weighted 

measures of plant diversity were considered, control plots had 69% and 76% higher H and D 

index values, respectively, than the lowest nutrient addition treatment (F0.5) which had 39% - 

59% higher H values and 41% - 64% higher D values than all other treatment levels (Fig. 2b,c).  
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 In order to further examine shifts in plant communities with nutrient addition, we 

decomposed our diversity measures and explicitly examined changes in the percent cover of four 

plant functional groups: deciduous shrubs (e.g., Betula nana, Salix pulchra, Vaccinium 

uligonosum), evergreen shrubs (e.g., Empetrum nigrum, Vaccinium vitis-idea), forbs (e.g., Rubus 

chamaemorus, Polygonum bistorta), and graminoid species (e.g., Eriophorum vaginatum, Carex 

bigelowii). We found statistically significant effects of nutrient addition on deciduous shrub, 

evergreen shrub and forb cover.  The relative abundance of deciduous shrubs was significantly 

higher at F10 than in the control, and the percent cover of the dominant deciduous shrub species, 

B. nana, was higher in the F10 treatment than in CT, F0.5 and F2 treatment plots.  In addition, 

the relative abundance of forb species was significantly higher at F10 than in control plots and at 

F0.5.  Finally, evergreen shrub cover decreased with nutrient enrichment and was significantly 

lower at F10 than at F0.5 and F2, and tended toward being significantly lower at F10 than at CT 

and F5 (both P<0.1).  We did not detect statistically significant differences between treatments 

for graminoid (grass/sedge) cover.   

 

Measured ecosystem CO2 fluxes 

Environmental conditions were relatively stable throughout the sampling period (see 

Figure S1 in Supporting Information), and there were no statistically significant differences in 

PAR or T across sampling dates or between nutrient addition treatments (see Figure S2 in 

Supporting Information).  Across all fluxes and treatment plots, measured NEE ranged from -

9.12 to -3.61 (M = -5.62, SE = 0.20), ER from 3.73 to 8.69 (M =5.14, SE = 0.21), and GPP from 

8.52 to 16.41 (M = 10.94, SE = 0.38), all µmol CO2 m-2 ground s-1. There were statistically 

significant differences in GPP (P < 0.001), NEE (P < 0.01) and ER (P < 0.05) across nutrient 
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addition treatments. NEE values were significantly larger (NEE was more negative indicating 

larger fluxes to the ecosystem) in the highest nutrient addition treatment (F10) when compared to 

all other treatments (Fig. 3a).  In addition, GPP and ER were higher at F10 than at all other 

treatments (Fig. 3b,c).  

 

Measured-modeled CO2 flux comparison 

We calculated modeled NEE, GPP, and ER using a model that required the input of three 

measured variables: LAI, PAR, and T.  LAI ranged from 0.58 to 1.63 (M =1.11, SE = 0.04) m2 

leaf m-2 ground, PAR ranged from 909-1779 (M = 1406, SE = 37.07) μmol photons m-2 ground s-

1, and T from 16.58 to 25.17 (M = 21.94, SE = 0.34) °C (Fig. 4a-c).  For modeled values, NEEM 

ranged from -11.20 to -3.41 (M = -7.09, SE = 0.30), ERM from 2.47 to 6.28 (M = 4.38, SE = 

0.14), and GPPM from 5.88 to 16.28 (M = 11.47, SE = 0.42), all µmol CO2 m-2 ground s-1.  We 

found similar trends for modeled NEE and GPP as those observed for measured fluxes. NEE and 

GPP were significantly greater (more negative in the case of NEE) at F10 than all other 

treatments except for F5 (Fig. 5a,c). We did not find any significant differences in modeled ER 

across nutrient addition treatments (Fig. 5b).     

When we compared our measured flux data to the model developed by Shaver et al. 

(2007), we found that the model explained 50.9% of the variance in NEE in our dataset, and the 

root mean square error (RMSE) for measured versus modeled NEE was 1.29 µmol 

CO2 m−2 ground s−1 (Fig. 6a).  For GPP, the regression explained 52.4% of the variance and the 

RMSE was 1.76 µmol CO2 m−2 ground s−1 (Fig. 6b).  The model explained less of the variance 

for ER (25.9%) with a RMSE of 1.71 µmol CO2 m−2 ground s−1 (Fig. 6c).  To assess the role of 

LAI in our modeled flux calculations, as opposed to temperature or PAR, we re-calculated our 
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modeled fluxes using randomized LAI values across our dataset, and we found that the model 

explained less than 8.5% of the variance for all flux variables (i.e., NEE, ER, GPP), with no 

significant slopes (all p > 0.05).  The relationship between modeled and measured data appeared 

to weaken at the highest level of nutrient addition. To examine potential differences between 

measured and modeled fluxes at the highest nutrient addition treatment, we compared the subset 

of our measured data for which we had LAI data (Fig. 5a-c) to the modeled CO2 flux data by 

treatment level.  We found significant differences between measured ER and modeled ER with 

nutrient addition, and measured ER was significantly higher than modeled ER at the F10 

treatment (Fig. 5b).  We did not detect statistically significant differences between measured and 

modeled NEE or GPP with nutrient addition.  

 

Discussion 
The goals of this study were to assess how incremental nutrient additions ranging from 

small to large doses impacted Arctic tundra (1) plant community properties; and, (2) key 

components of the capacity for ecosystem carbon cycling during the period of peak tundra 

greenness.  Warming-induced nutrient enrichment is presumably a gradual process, and 

understanding the responses of plant communities and ecosystem function to relatively low 

levels of nutrient fertilization is a crucial step in predicting ecological responses to global 

change. We found that a gradient of nutrient enrichment revealed non-linear responses of plant 

communities and the capacity for ecosystem CO2 exchange to nutrient manipulations at a low 

Arctic site, largely deviating from our initial hypotheses. This study advances our understanding 

of the responses of Arctic plant communities and the capacity for ecosystem function to 

scenarios of gradual nutrient enrichment that are likely to be more indicative of warming-
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induced shifts in nutrient availability than additions of large amounts of N and P that were 

designed to illustrate and understand Arctic tundra nutrient limitation.    

 

Plant diversity declines with small increases in nutrient availability 

 Consistent with our hypotheses, we found that plant diversity indices that account for 

species evenness and dominance declined with just a small amount of nutrient addition (Fig. 

2b,c) – the level that is most comparable to our estimate of thawing-induced enrichment.  

However, nutrient enrichment did not affect species richness (S) until high levels of addition 

(Fig. 2a).  Nutrient-limited ecosystems are often characterized by plant communities with species 

that differ strongly in their ability to respond to alterations in resource availability; thus, shifts in 

plant diversity or in species-specific, leaf-level physiology may precede any changes in 

ecosystem processes and properties (Aber et al. 1998).  Long-term (i.e., >20 years) Arctic tundra 

enrichment experiments with additions comparable to the highest (F10) treatment in this study 

have documented declines in species richness and shifts in species dominance and evenness with 

nutrient enrichment (Gough et al. 2002, Gough and Hobbie 2003), as have studies in other 

biomes (Zavaleta et al. 2003, Suding et al. 2005). However, our findings indicate that after six 

years of enrichment, plant diversity measures that capture relative abundance are nearly as 

sensitive to low levels of nutrient fertilization as they are to high levels.    

There are a variety of ecological mechanisms that might explain shifts in abundance-

weighted plant diversity, but not species richness, with low to moderate levels of nutrient 

addition.  Lower levels of nutrient enrichment of a N- and P-limited system may reduce niche 

differentiation or complementarity that would otherwise promote species coexistence (Harpole et 

al. 2011), leading to increases in the relative abundance of species that outcompete neighbors 
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with lower growth rates (Hautier et al. 2009).  We found that large increases in nutrient 

availability (i.e., F10) ultimately favored deciduous shrub and forb species and led to declines in 

evergreen shrub cover.  These findings are in keeping with previous work in this system that 

found that after six years of N and P fertilization comparable to the F10 treatment in our study, 

increases in LAI of the dominant deciduous shrub species, Betula nana, and the formation of a 

dense canopy resulted in light limitation of other shrub species and plant functional types (Bret-

Harte et al. 2001).  In addition, previous work across our study gradient found that B. nana foliar 

N increased at high levels of fertilization (e.g., F10), but not at low levels, and found no effect of 

fertilization on foliar N of the dominant graminoid species, Eriophorum vaginatum (Heskel et al. 

2012).   Here, we found that LAI increased with nutrient addition (Fig. 1), as species evenness 

declined, ultimately resulting in changes in ecosystem CO2 exchange at high levels of nutrient 

addition, likely due to the competitive advantage of deciduous shrub species.  

 

High levels of nutrient enrichment impact ecosystem CO2 exchange  

Although low levels of nutrient addition led to declines in plant diversity via shifts in 

species evenness and dominance, the capacity for ecosystem CO2 exchange was not impacted 

until high levels of addition. We found that nine years of nutrient enrichment had significant 

effects on NEE, ER and GPP at the highest level of addition when NEE became significantly 

more negative (greater fluxes to the ecosystem) because increasing GPP overcame increasing ER 

(Fig. 4a-c).  The documented responses of plant communities and ecosystem functioning to 

gradual addition may be due to a variety of mechanisms; however, we focus on three primary 

explanations: 1) the ecosystem-level consequences of plant adaptations and responses to chronic 
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nutrient limitation, 2) the role of microbial activity in mediating ecosystem function, and 3) 

abiotic nutrient sinks and/or losses.   

First, as the availability and subsequent uptake of limiting resources is predicted to 

stimulate primary productivity, we expected to see an immediate increase in GPP and NEE after 

nine years of low or moderate nutrient enrichment; however, plant communities across 

chronically nutrient limited landscapes may exhibit lower overall maximum potential growth 

rates or may allocate resources to belowground structures in order to maximize nutrient uptake 

and retention (Grime 1977, Chapin 1980, Chapin et al. 1986, Chapin 1991). Thus, increasing 

nutrient availability may not be diverted to the production of photosynthetic biomass, inducing 

shifts in below versus aboveground allocation with functional consequences for ecosystem CO2 

exchange, until high levels of fertilization. 

Second, nitrogen (N) and phosphorus (P) mineralization in Arctic soils is thought to be 

low during the growing season, linked to the immobilization of nutrients by microorganisms, 

contrasted with a high release rate during the winter (Giblin et al. 1991, Nadelhoffer et al. 1991).  

These findings point to competition between plants and microbes during the growing season that 

might explain the lag in GPP until a high level of enrichment is reached, possibly driving the 

decoupling of plant community and ecosystem responses to multi-level nutrient enrichment.  

While Arctic tundra plant communities are known to be nutrient-limited, tundra microbial 

communities are also nutrient-limited, as is evidenced by the stimulation of microbial N-

immobilization and enhancement of microbial activity with nutrient enrichment (Mack et al. 

2004, Lavoie et al. 2011).  As a result, nutrient enrichment effects on ecosystem-level process, 

and specifically the stimulation of ecosystem CO2 exchange, may not be seen until high levels of 

fertilization when nutrient availability outpaces microbial utilization.  
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Finally, there are two abiotic mechanisms that may be responsible for our documented 

ecosystem-level responses to a gradient of nutrient enrichment: abiotic sinks and leaching.  First, 

abiotic sinks via the adsorption and precipitation of P might initially compete with plants and 

microorganisms for increasing P availability (Olander and Vitousek 2004), ultimately resulting 

in a P sink that is not saturated until high levels of experimental P addition (i.e., the F10 

treatment in this study).  While strong abiotic P sinks are well known, abiotic sinks for N are less 

well understood, but possibly play a significant role.  In addition, leaching of dissolved organic 

N and nitrate and denitrification may be important loss pathways in this system (Giblin et al. 

1991, Mack et al. 2004).  Abiotic mechanisms may have dampened the effects of lower levels of 

nutrient addition, but it is not clear how they might help explain the contrasting responses of 

plant communities to low levels of addition and ecosystem responses to high levels of 

enrichment.  

 

Modeled CO2 fluxes estimate ecosystem responses to low-to-moderate levels of fertilization 

As the Arctic continues to warm, our ability to accurately measure, monitor and predict C 

cycling across large spatial and temporal scales is paramount.  This task is challenging as Arctic 

tundra landscapes are complex and heterogeneous, and are often dominated by varying plant 

functional groups, with important effects on key components of C cycling (Chapin et al. 2006).  

However, previous research has shown that canopy C exchange across a wide range of Arctic 

ecosystems is controlled by the same factors despite pronounced differences in plant community 

composition, providing evidence of functional convergence (Williams and Rastetter 1999, 

Williams et al. 2001, Street et al. 2007).  As such, modeling efforts have assumed that, regardless 

of plant diversity or community structure, canopy C exchange can be predicted from leaf area, 
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light and temperature alone (Shaver et al. 2007).  Less is known, however, about how canopy C 

exchange is impacted by increasing nutrient availability.  

When comparing our measured fluxes with fluxes calculated from an Arctic ecosystem 

exchange model by Shaver et al. (2007), we found that the model explained less of the variance 

than found in previous studies (e.g. Shaver et al. 2013), though it still explained roughly half of 

the variance for both NEE (51%) and GPP (52%), and 23% of the variance in ER (Fig. 6a-c).  

The amount of variance explained dropped to < 8.5% for all three flux variables when we 

randomized LAI values in our dataset, suggesting that the impact of nutrient addition on LAI, 

and not temperature or irradiance, is the principle driver of the variation we can account for with 

this model.  However, given the relatively low amount of variance explained for ER, nutrient 

enrichment appears to have an effect on ER that cannot be explained by canopy leaf area.  This 

effect is perhaps driven by the response of microbial communities to fertilization that is not 

captured by the parameter in the Shaver et al. (2007) model that represents microbial respiration 

from deeper soil horizons (RX), though it is surprising that this is not significant until the highest 

nutrient addition treatment (Fig. 5b).  As previous work in this system has shown that nutrient 

enrichment stimulates the decomposition of C pools in deeper soil horizons (Mack et al. 2004), 

incorporating variable RX values into the model may help account for this discrepancy.  

The discrepancy between our measured and modelled data under high nutrient 

fertilization may also be explained in part by the effects of background reflectance (e.g., the 

effects of soil or non-foliar vegetation reflectance) on the relationship between NDVI and LAI 

(Rocha and Shaver 2011).  The potential impact of background reflectance, coupled with our 

observed shifts in community composition and possibly canopy architecture, suggest that NDVI 

derived LAI may not be an appropriate leaf area estimate for structurally diverse canopies.  In 
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addition, Shaver et al. (2007, 2013) suggest that the success of the model in predicting NEE 

using just LAI or whole canopy N content is due to a high degree of convergence in canopy 

structure and function, and our results suggest that high levels of nutrient addition may alter this 

relationship.  

Overall, our data comparison demonstrates that the Shaver et al. (2007) model estimates 

NEE and GPP relatively well even when plant communities are subjected to resource 

manipulations (Shaver et al. 2013).  However, the diminished ability of the model to accurately 

estimate ER (Fig. 5b), particularly at high levels of nutrient addition, suggests that further work 

is needed to understand how to model ecosystem responses to nutrient enrichment. As Arctic 

systems continue to warm rapidly, accurate estimates of ecosystem CO2 exchange will be a 

crucial component of understanding and predicting responses and feedbacks to global change, 

and our findings suggest that increasing nutrient availability may impact our ability to rely on 

current model parameterizations.    

 

Implications 

To date, results from long-term experiments examining the impacts of large annual doses 

of nutrients in Arctic tundra have documented significant shifts in plant community composition 

and dominance, aboveground biomass, and ecosystem function. However, this level of 

fertilization may be an unrealistic outcome of warming-induced nutrient enrichment in the 

Arctic.  Our study is one of the first to examine how Arctic plant communities and the capacity 

for ecosystem function (e.g., CO2 exchange) during the period of peak tundra greenness respond 

to a gradient of enrichment.  We demonstrate that, despite reorganization of plant communities 

with low levels of addition, significant alteration of ecosystem CO2 exchange only occurs at the 
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highest level of nutrient enrichment, suggesting a shift in the capacity for ecosystem C gain only 

at high levels of fertilization that likely exceed warming-induced enrichment.  In addition, we 

show that examining a gradient of nutrient addition may help identify thresholds past which 

models intended to upscale estimates of ecosystem function may decline in accuracy – 

improving our ability to model and comprehend the impacts of global-change. In addition, our 

results point to the need for further work examining the role of the magnitude of nutrient 

enrichment on below and aboveground plant community properties and ecosystem processes and 

any temporal variation in these patterns and relationships.   
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Figures 

 

Figure 1.1 1 Leaf area index (LAI) across nutrient addition treatments. Points are mean LAI values 
(N=3) and error bars represent the standard error (SE) of the mean.   LAI increased with nutrient 
addition; and, LAI was significantly higher at the highest treatment (F10) compared to all other 
treatments (except for F5) and the control (CT), indicated by non-overlapping symbols. 
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Figure 1.2 1 Plant diversity by nutrient addition treatment. Species richness (S) is the number of 
vascular plant species in a community and the Shannon (H) and Simpson (D) values are unitless 
index values representing relative abundances of species in a community.  Statistically significant 
differences are represented by non-overlapping symbols (N=3).  Error bars represent the standard 
error (SE) of the mean.  (a) S was significantly lower at the highest nutrient addition treatment 
(F10) than all other treatments and the control.  There were no significant differences between the 
remaining treatments or between the control and addition treatments.  (b, c) H and D, respectively, 
decreased from the control treatment to the first addition treatment (F0.5) and again between F0.5 
and all other addition treatments (F2, F5 and F10). 

 

Figure 1.3 1 Boxplots depicting treatment differences between three measured flux variables: net 
ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary productivity (GPP). 
Asterisks denote significant differences between means (N=3) at the highest nutrient addition 
treatment (F10) for all three CO2 exchange metrics.  

 

 



34 
 

Figure 1.4 1 Frequency distributions of environmental data and leaf area index (LAI) collected 

during CO2 exchange measurements for the calculation of predicted CO2 fluxes using a widely 

employed Arctic ecosystem exchange model by Shaver et al. (2007).  (a) LAI values ranged 

from 0.58 to 1.63 (M =1.11, SE = 0.04) m2 leaf m-2 ground. (b) Photosynthetically active 

radiation (PAR) ranged from 909-1779 (M = 1406, SE = 37.07) μmol photons m-2 s-1. (c) Air 

temperature across all sampling locations ranged from 16.58 to 25.17 (M = 21.94, SE = 0.34) °C. 
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Figure 1.5 1 Boxplots showing a comparison of the subset of measured CO2 flux data (the subset 

for which we have leaf area index values) and modelled data across nutrient treatments (N=3 for 

both modeled and measured data at each treatment level). Statistically significant differences 

between measured and modeled data within a treatment are indicated by non-overlapping 

symbols. Measured ER values were significantly higher than modeled values in the F10 

treatment. There were no statistically significant differences between measured and modeled 

NEE or GPP by treatment.  

 

 

Figure 1.6 1 Relationships between measured and modeled CO2 flux variables.  Predicted fluxes 

were calculated using a widely employed Arctic CO2 exchange model by Shaver et al. (2007).  

All plots include a solid linear regression line, a shaded 95% confidence interval of the 

regression line, and a dashed one to one line.  (a) The model explained 51% of the variance in 

net ecosystem exchange (NEE) (b) 52% of the variance in gross primary production (GPP); and 

(c) it explained 26% of the variance in ecosystem respiration (ER).  
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Supporting Information  
Appendix S1. Code used to calculate an estimate of naturally occurring enrichment based 

on existing, published data on bulk soil N from Arctic tundra soils, the change in annual 

maximum thaw depth across 12 years at the Toolik Lake LTER, ANPP from Arctic tundra, and 

tissue N content estimates.  In this calculation we assume steady state of the pre-thawing soil 

pool, and we estimated a mineralization rate constant, which we used to calculate thawing-driven 

N mineralization.  We estimate naturally occurring enrichment due to thawing permafrost at 

around 0.3 g N m-2 yr-1, and we note that true thawing-driven nutrient enrichment is likely lower 

than this estimate.   

 
 
Figure S1.1 1 

Figure S1.1 Environmental conditions at the Toolik Field Station meteorological tower during 

our sampling period (July 12-16, 2015). There were no cloudy days during the sampling period 

(a), no precipitation events (b), and air temperature was relatively stable, with a slight increase in 

maximum temperature on the final day of sampling (c).   
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Figure S1.2 1 

Figure S1.2 Distribution of light (PAR) and temperature data by nutrient addition treatment.  

There were no significant differences in PAR (a) or in temperature (b) between treatments.  

 

Corrigendum to “A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on 

Arctic plant diversity and ecosystem function” 

 

In a recent paper (Prager et al. 2017), we presented results for abundance-weighted plant 

diversity measures generated by a plant community composition data file that miscoded plot ID 

as species abundance.  We re-calculated the Shannon and Simpson indices and find that they 

now follow a similar non-linear trend as species richness and ecosystem function.  These 

changes are reflected in an updated Figure 2 (a-c).   

 

The abstract should reflect this change as “Our results suggest that only relatively large levels of 

fertilization … significantly alter the capacity for plant diversity and CO2 exchange in the 
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tundra.”  In the discussion, the plant diversity sub-heading should now read “Plant diversity 

declines with increasing nutrient availability” followed by “We found that nutrient enrichment 

did not affect species richness (S) or abundance-weighted diversity indices until high levels of 

addition (Fig. 2a-c).” 

 

We also provide additional information about the plant composition data used for our plant 

diversity calculations below (Gough 2015). 

 

We thank Laura Gough for uncovering our error, and we also acknowledge an additional funding 

source, NSF grant DEB-1026843 awarded to G. Shaver and colleagues at the Arctic Long Term 

Ecological Research (ARC LTER) site. 

 

Authorship 

CMP corrected the article, all authors approved the correction. 
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Prager CM, Naeem S, Boelman NT, et al. 2017. A gradient of nutrient enrichment reveals 

nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function. Ecol 

Evol.  7:2449–2460. https://doi.org/10.1002/ece3.2863 
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Figure C1.2 1 Plant diversity by nutrient addition treatment. Species richness (S) is the number 

of vascular plant species in a community and the Shannon (H) and Simpson (D) values are 

unitless index values representing relative abundances of species in a community.  Statistically 

significant differences are represented by non-overlapping symbols (N=3).  Error bars represent 

the standard error (SE) of the mean.  (a) S was lower at the highest nutrient addition treatment 

than all other treatments and the control, though not significantly. (b, c) H and D, respectively, 

decreased with increasing nutrient availability, and values were lower at F10 than at F2 or F0.5.  

Differences in H and D between F10 and control plots tended toward significant (i.e., P < 0.1), 

indicated by significance coding in italics.  
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Chapter 2 – A mechanism of expansion: Arctic deciduous shrubs capitalize on increasing 
nutrient availability 
 
Case M. Prager, Natalie T. Boelman, Jan U.H. Eitel, Heather E. Greaves, Mary A. Heskel, Troy 

S. Magney, Duncan N.L. Menge, Shahid Naeem, Lee A. Vierling and Kevin L. Griffin 
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Abstract 
Increasing nutrient availability, which is predicted to accompany Arctic warming, should 

have strong impacts on plant physiology, as Arctic tundra is a biome that is thought to be 

historically nitrogen (N)- and phosphorus- (P) limited.  Thus, warming-induced nutrient 

enrichment may lead to shifts in leaf-level physiological properties and processes, affecting 

species and plant functional types differentially, with potential consequences for plant 

community dynamics and ecosystem function.  To explore the physiological responses of Arctic 

tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and 

physiological characteristics of eight plant species, spanning four plant functional groups, 

respond to experimental N and P enrichment.  Specifically, we examined a set of chlorophyll 

fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf 

nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long 

Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska.  In 

addition, we assessed the relationships between chlorophyll fluorescence measures and 

increasing leaf %N.  We found significant differences in physiological and nutrient traits 

between species and plant functional groups, and we found that species within one functional 

group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. 

In addition, we found positive, saturating relationships between leaf %N and chlorophyll 

fluorescence measures across all species.   Our results highlight species-specific differences in 

leaf nutrient traits and physiology in this ecosystem.  In particular, the effects of a gradient of 

nutrient enrichment were most prominent in deciduous plant species, the plant functional group 

known to be increasing in relative abundance with warming in this ecosystem. Overall, our 

results point to both complex and mixed responses of Arctic tundra vegetation to global-change 

induced nutrient enrichment. 
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Introduction 
 

High-latitude ecosystems are warming rapidly, and Arctic tundra is predicted to be 

affected more by global environmental change than any other terrestrial ecosystem (IPCC 2013).  

The effects of Arctic warming include a deepening active (soil) layer, as well as increased soil 

nutrient mineralization, leading to the fertilization of a historically nitrogen (N)- and phosphorus 

(P)-limited landscape (Shaver and Chapin 1986, Chapin 1991). Greater nutrient availability is 

known to lead to shifts in plant community composition and physical structure with implications 

for key ecosystem functions such as carbon (C) and nutrient cycling (Rastetter et al. 1991, 

Hobbie and Chapin 1998, Myers-Smith et al. 2011).  Existing fertilization experiments designed 

to explore the consequences of warming-induced nutrient enrichment of previously N- and P-

limited Arctic tundra ecosystems have documented increases in net primary production (NPP) 

linked to shifts in plant community composition and physical structure over time (Shaver and 

Chapin 1986, Shaver et al. 1998, Boelman et al. 2003, Boelman et al. 2005).  However, 

monitoring plant physiological responses to fertilization is equally important as plant traits often 

influence larger scale processes (Lavorel and Garnier 2002, Garnier et al. 2007).  Understanding 

the relationship between a changing climate and plant physiology is particularly relevant in the 

Arctic as high-latitude ecosystems contain twice as much C as there is presently in the 

atmosphere (Zimov et al. 2006, Tarnocai et al. 2009) and between a quarter and a third of the C 

pools in the terrestrial biosphere (Carvalhais et al. 2014, Schimel et al. 2015). 

Plant functional trait-based research is now a key component of community ecology 

(McGill et al. 2006), ultimately facilitating a more robust understanding of the relationship 

between species and the functioning of ecosystems (Wright et al. 2006, Messier et al. 2010), and 

the responses of plant communities to environmental change (Chapin 2003, Yang et al. 2011). In 
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addition, nutrient-limited ecosystems are often characterized by plant species that differ strongly 

in their ability to respond to alterations in resource availability. In nutrient-limited systems, shifts 

in plant diversity or responses of species-specific leaf physiology may precede any changes in 

ecosystem function (Aber et al., 1998).  Therefore, monitoring species-specific, physiological 

mechanisms that perhaps underlie changes at the community and/or ecosystem level is critical to 

a comprehensive understanding of the impacts of global change on natural ecosystems, and is 

particularly important in ecosystems that are undergoing rapid environmental change.   

At the leaf level, experimental nutrient enrichment in Arctic tundra has resulted in a 

variety of responses, including the stimulation of photosynthetic and respiratory rates (Baddeley 

et al. 1994, Chapin and Shaver 1996), unchanged or depressed photosynthetic/respiratory rates 

(Shaver et al. 1998, Bret-Harte et al. 2001), and the decoupling of leaf-level respiration and 

photosynthesis (Heskel et al. 2012), making it difficult to predict possible consequences for 

ecosystem C balance.  However, at a fundamental level, all observed responses to nutrient 

fertilization represent a change in plant energetics, as the metabolic processes driving the 

biogeochemistry of C and N (e.g., photosynthesis and N metabolism) require energy inputs from 

the environment. Plant responses also result in the strategic allocation of biochemical resources 

to maximize net C gain (Bloom et al. 1985).  For example, leaf N plays a key role in energy 

capture, first as a component of chlorophyll, the main light capturing pigment, and then as an 

essential part of the proteins comprising both the electron transport chain and the Calvin cycle 

(Field and Mooney 1986, Lambers et al. 2006).  In addition, there is a well-known relationship 

between leaf N and photosynthesis or respiration (Field and Mooney 1986, Reich et al. 1998, 

Reich et al. 2008) that is widely used in global terrestrial biosphere and dynamic vegetation 

models (Cox et al. 2000, Kattge et al. 2009).  
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The relationship between leaf N and leaf metabolism suggests that leaf traits reflecting 

the status of energy capture and use should respond to nutrient fertilization and be used to 

monitor and predict plant and ecosystem processes and properties.  Chlorophyll fluorescence has 

long been used as a non-invasive “probe of photosynthesis” and is widely used to evaluate 

photosystem II (PSII) photochemistry, linear electron flux, and even CO2 assimilation in vivo 

(Baker 2008).  While these chlorophyll fluorescence metrics have proven useful in thousands of 

studies, they have rarely been used in Arctic plants or included in studies of leaf traits, though 

recent work by Griffin et al. (2013) and Magney et al. (In press) highlight its efficacy in this 

system.  

In this study, we examined how plant physiology differs between eight dominant species 

in low Arctic tundra exposed to nine years of incremental N and P enrichment.  Specifically, we 

examined how multiple chlorophyll fluorescence measures and biochemical leaf traits (i.e., 

percent leaf C and N) of eight of the most abundant plant species at our study site, spanning four 

plant functional types, respond to a gradient of nutrient enrichment in northern Alaska.  In 

addition, we evaluated the effects of variation in percent leaf N on other physiological traits 

across all species, as increasing soil nutrient availability should result in increasing leaf N 

content or greater interspecific variation in leaf N content. We hypothesized that deciduous 

species (i.e., deciduous shrub and forb species) would respond more strongly to nutrient 

enrichment than other plant functional types, due to relatively rapid leaf turnover and high rates 

of nutrient uptake, but that all species would show increases in leaf N and chlorophyll 

fluorescence traits with fertilization. In addition, we hypothesized that photosynthetic capacity 

and efficiency, as measured by a suite of chlorophyll fluorescence parameters, would be 

positively associated with leaf N content.  
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Methods 
 
Site description and experimental design 

All field sampling for this study took place during peak tundra leaf-out or greenness (July 

10-25, 2015) across a long-term nitrogen (N) and phosphorus (P) enrichment experiment 

established in 2006 at the Arctic Long Term Ecological Research (ARC LTER) site, located at 

Toolik Lake in the northern foothills of the Brooks Range, Alaska (68°38’N and 149°43’W, 760 

m a.s.l.).  As we were interested in the effects of the magnitude of nutrient enrichment on the 

capacity for leaf-level physiology, we focused on examining a set of leaf properties and 

processes during the period of peak tundra greenness or leaf out which is approximately 30-35 

days (Sweet et al. 2015) with an average growing season temperature of 10°C.   As the growing 

season is short, we focused on conducting all field sampling during peak tundra leaf-out to 

ensure robust comparability of data between species and treatments.  

The nutrient addition gradient is located on moist acidic tundra with soils comprised of 

30–55 cm of a peaty organic and silty mineral layer, atop continuous permafrost. Each year 

following snowmelt, granular ammonium nitrate and triple superphosphate is distributed on the 5 

× 20 m plots, corresponding to fertilization treatment.  Treatment name corresponds to the 

amount of fertilizer applied at the beginning of each growing season: “CT”, a control that 

receives no fertilizer; “F0.5” (0.5 g N m-2 yr-1 + 0.25 g P m−2 yr-1); “F1” (1 g N m-2 yr-1 + 0.5 g P 

m−2 yr-1); “F2” (2 g N m-2 yr-1+ 1 g P m−2 yr-1); “F5” (5 g N m-2 yr-1 + 2.5 g P m−2 yr-1); and 

“F10” (10 g N m-2 yr-1+ 5 g P m−2 yr-1). The nutrient enrichment plots are replicated in a 

complete three-block design. Naturally occurring, thawing related nutrient enrichment is 

estimated to be roughly 0.3 g N m-2 yr-1, falling just below the lowest nutrient enrichment 

treatment in our study (Prager et al. 2017).  
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At each treatment plot, we measured a set of leaf physiological traits for eight species that 

account for roughly 75% of the plant cover in the experimental plots, spanning four plant 

functional types: deciduous shrubs, evergreen shrubs, forbs and grasses/sedges (here, “graminoid 

species”).  We sampled two deciduous shrub species (Betula nana and Vaccinium uliginosum), 

two evergreen shrub species (Ledum palustre and Vaccinium vitis-idaea), two forb species 

(Polygonum bistorta and Rubus chamaemorus) and two graminoid species (Carex bigelowii and 

Eriophorum vaginatum). 

 
Chlorophyll a fluorescence and leaf nutrient trait collection 
 

As light energy absorbed by chlorophyll is diverted to photochemistry, lost as heat, or re-

emitted as light, this technique allows us to assess the relative photosynthetic status of leaves 

without directly measuring leaf-level gas exchange (Bolhar-Nordenkampf and Oquist 1993). 

Well-developed methods exist to rapidly survey leaves and assess a wide variety of energetic 

parameters, including the maximum efficiency at which light absorbed by PSII is used for 

reduction of Quinone A (QA – the first electron acceptor of photosynthesis; Fv/Fm), the efficiency 

with which a trapped excitation energy can move beyond QA (ET0/TR0), and the fluorescence 

value at 300 μs (K), which has been shown to reflect leaf N status (Schmitz and Maldonado-

Rodriguez 2001).  For each leaf sampled, we measured three chlorophyll fluorescence variables: 

(1) maximum quantum yield of primary photochemistry (Fv/Fm ratio), which is a reliable 

measure of plant stressors that affect photosystem II (PSII); (2) the efficiency (ET0/TR0) with 

which a trapped excitation energy can move an electron into the electron transport chain further 

than the Quinone A (QA); and (3) the fluorescence value at 300 μs (K).  We measured these 

three fluorescence traits using a modulated fluorometer model OS30p+ (Opti-Sciences, Hudson, 

NH, US) prior to harvesting leaves for nutrient analyses.  We chose our three measures of 
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chlorophyll fluorescence because they are known to be indicative of photosynthetic stress and 

overall performance (i.e., Fv/Fm and ET0/TR0) or are thought to be most sensitive (i.e., K) to 

nutrient limitation (Schmitz and Maldonado-Rodriguez 2001, Strasser et al. 2004).  In addition, 

these measures are presumably influenced by leaf nutrient status, and are comparable between 

species as well as between treatments (Cavender-Bares and A. Bazzaz 2004).  Prior to each 

measurement, leaves were dark-adapted for at least 30 min to force reaction centers of PSII open 

(Strasser et al. 2000).  Following dark acclimation, we administered a “JIP” Test protocol using a 

single strong pulse of light (i.e., 3500 μmol m-2 s-1) generated by an array of red LEDs (650 nm). 

We conducted one test per leaf and sampled five leaves (separate plants) per species per 

treatment plot per block.  The five replicates were averaged to obtain plot level values for each 

species, yielding three observations per species per treatment.  

In addition, we collected fresh leaf tissue from sunlit leaves used for chlorophyll 

fluorescence measurements, and we dried leaf samples at 65º C for 48 hours. All leaf samples 

were subsequently ground (Mini Bead Beater, Biospec) and processed at the Stable Isotope Core 

laboratory at Washington State University, where %C and %N were determined using automated 

dry combustion on a per mass basis (TruSpec CN, Leco Corporation, St. Joseph, MI).  Three leaf 

samples were averaged to obtain plot level values at each block resulting in three independent 

observations for each species per block.  For select species, we found no individuals in certain 

treatments or blocks, resulting in a reduction in the number of independent observations (see 

Tables 1-5). Leaf C and N reflect plant function because leaf C is thought to correlate with leaf 

mass per area, as leaves containing may high levels of vascular and sclerenchymatic are often 

correlated with high concentrations of leaf C (Reich 2014, de la Riva et al. 2016) and leaf N is 

essential in energy capture and use as discussed above.  We consider all five leaf measures 
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sampled in this study to be functional traits as they represent morphological and physiological 

processes and properties which impact fitness indirectly via their effects on growth, reproduction 

and survival (Violle et al. 2007). 

  

Statistical Methods 

We ran a series of mixed effects models for each of our response variables (e.g., 

chlorophyll fluorescence measures and leaf nutrients) with treatment as a fixed effect and block 

as a random effect.  Block did not have a significant effect, as determined by using simulation-

based likelihood ratio tests, in any of our initial analyses. For all analyses, P-values < 0.05 were 

considered statistically significant.  We also evaluated goodness of fit of additional non-linear 

models (i.e., Michaelis-Menten and logistic), using the Akaike Information Criterion (AIC) for 

model selection.  In addition, we fit a series of nonlinear least squares models with percent leaf N 

as the predictor variable and chlorophyll fluorescence measures as response variables, using AIC 

for model selection. Finally, we conducted a principal component analysis to ordinate species by 

all five functional and physiological traits and by plant functional groups, delineating groups 

using a normal probability ellipse of 68%.  All analyses were completed in R v. 3.2.1 (R 

CoreTeam 2015) using the cluster (Maechler et al. 2015), ggplot2 (Wickham 2009), lme4 (Bates 

et al. 2015), lsmeans (Lenth 2016), nlstools (Baty et al. 2015), nlsMicrobio (Baty and Delignette-

Muller 2013), and stats (Team 2015) packages. 

 

Results 
 
Chlorophyll fluorescence and leaf nutrients by species 
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We found significant differences in leaf nutrients (i.e., leaf %C and %N) and 

fluorescence metrics (i.e., ET0/TR0, Fv/Fm and K) between species and between plant functional 

types (e.g., deciduous shrubs, evergreen shrubs, forbs and graminoids), aggregating across all 

nutrient addition treatments.  Overall, when considering all five leaf traits, individuals tended to 

group by plant functional type (Figure 1), and we found that 66% of the variation in the data 

could be explained by the first two principal components – 43% by the first axis and 24% by the 

second (Table 1). The main traits driving the first axis were %C and %N, in opposite directions. 

The second axis was primarily determined by Fv/Fm (Table 2).  While we found clustering by 

plant functional group, deciduous shrubs and forbs had greater scatter than evergreen shrub 

species or graminoids (Figure 1).   

In addition, when we compared each trait individually across species, we found 

significant differences between species in leaf %N.  Specifically, we found that Polygonum 

bistorta, a forb species, had significantly higher leaf %N than all other species (M=3.64, 

SD=0.81), and that both forb species (i.e., P. bistorta and Rubus chamaemorus) and deciduous 

shrub species (Betula nana and Vaccinium uliginosum) had higher leaf %N than evergreen shrub 

species (Rhododendron tomentosum and V. vitis-idaea) and graminoid species (i.e., Carex 

bigelowii and Eriophorum vaginatum), and there were no differences between evergreen and 

graminoid species (Table 3).  For leaf %C, R. tomentosum had significantly higher values than 

all other species except for the only other evergreen shrub species (V. vitis-idaea), and B. nana 

had higher %C than the two forb species and two graminoid species (Table 4).  We found 

species-specific differences in Fv/Fm, with B. nana, P. bistorta, and Ru. chamaemorus exhibiting 

significantly higher ratios than the four evergreen shrub and graminoid species, but not higher 

than V. uliginosum nor each other (Table 5).  For ETo/TRo, we found fewer consistent patterns 
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(Table 6). For K, we found that E. vaginatum and R. tomentosum were not different from each 

other, but these two species displayed significantly lower K values than all other species (Table 

7).  

 

Nutrient enrichment impacts on functional groups and species 

There were no significant differences in any leaf trait for species or functional groups 

with nutrient addition except for leaf %N.   For deciduous shrub species, we found a significant, 

positive effect of nutrient addition on leaf %N, with 38% of the variance explained (Figure 2a; P 

< 0.0001).  We did not find any significant differences between nutrient addition treatments and 

leaf %N for any of the other plant functional groups.  However, when we examined plant 

functional groups based on their respective species, we found a significant effect of fertilization 

on leaf %N on both deciduous shrub species (i.e., B. nana and V. uliginosum), one forb species, 

R. chamaemorus, and one graminoid species (i.e., E. vaginatum).  For B. nana we found that leaf 

%N increased with nutrient addition, and 72% of the variance explained (Figure 3a; P < 0.0001). 

For V. uliginosum we found that the slope was significant (P < 0.05) and 26% of the variance 

was explained (Figure 3a), for R. chamaemorus, 34% of the variance was explained (Figure 3b; 

P < 0.05), and 21% of the variance was explained for E. vaginatum (Figure 3c; P < 0.05).   

 

Variation in leaf %N influences chlorophyll fluorescence measures 

 Given the variation in leaf N captured by incorporating multiple plant functional groups 

subjected to nutrient addition, we assessed the relationship between leaf %N and our three 

chlorophyll fluorescence traits. The relationship between Fv/Fm and %N was best described by a 

Michaelis-Menten model (Km = 0.50, SE=0.06; Vm = 0.86, SE=0.02), indicating a positive, 



52 
 

saturating relationship between Fv/Fm and %N (Figure 4). The relationship between the 

fluorescence value at 300 μs (K) and %N was also best described by a Michaelis-Menten model, 

indicating a positive, saturating relationship between K and %N (Km = 468.18, SE=31.15; Vm = 

1.007, SE=0.22).  All of these relationships were found across all species, and not within a given 

species or functional group. 

  

Discussion 
 

As warming is occurring rapidly in Arctic tundra, predicting plant community and 

ecosystem-level responses to the effects of environmental change is of critical importance.  The 

primary goals of this study to fertilizer addition were: 1) to assess how key functional traits 

differed among the eight most abundant plant species at a low Arctic tundra site, spanning four 

plant functional groups, 2) to determine how incremental nutrient addition affected these species 

and traits differentially, and 3) to explore the relationships between leaf nutrient and chlorophyll 

fluorescence traits across all eight species.   

 

Inter-specific trait variation  

There is a long-standing tradition in ecology of attempting to document and understand 

inherent morphological and physiological differences between plant species (Lambers et al. 

2006) and the responses of such traits to environmental change (Lavorel and Garnier 2002, 

Suding et al. 2008).  Here, we examined the most abundant plant species at our low Arctic tundra 

study site, and in support of our initial hypotheses, we found that species and functional groups 

differed fundamentally in their leaf traits regardless of nutrient addition.  Not surprisingly, 

deciduous plant species (e.g., deciduous shrubs and forbs) demonstrated greater %N and Fv/Fm 
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ratios than evergreen species (here, both evergreen shrubs and graminoid species), and trait 

values were less constrained for deciduous species than they were for evergreen species (see 

Figure 1), with greater variation seen in deciduous shrub species attributable to their responses to 

nutrient enrichment.  These findings are consistent with previous studies conducted across 

biomes, showing that species with relatively high leaf turnover tend to converge on rapid 

resource acquisition strategies compared to plant species with longer leaf lifespans (e.g., 

evergreen species) and conservative resource strategies (Grime et al. 1997, Diaz et al. 2004, 

Wright et al. 2004).  

 

Nutrient enrichment impacts deciduous plant species 

Across all nutrient-limited ecosystems, fertilization is known to impact leaf, community 

and ecosystem-level properties and processes, as nutrient enrichment leads to shifts in 

competitive interactions between plant species (Tilman 1984, 1987).  In Arctic tundra, large-

scale experimental studies have documented pronounced shifts in plant community composition 

over time with concurrent increases in net primary productivity (NPP), occurring in connection 

with increases in the abundance of deciduous woody shrub species and decreases in evergreen, 

grass/sedge, and moss cover (Shaver and Chapin 1986, Shaver et al. 1998, Boelman et al. 2003, 

Boelman et al. 2005).  In addition, previous research at our study site found that six years of N 

and P fertilization comparable to the F10 treatment in our study resulted in increases in canopy 

leaf area of Betula, proposed as a plant morphological mechanism underlying increasing NPP 

(Bret-Harte et al. 2001). It is perhaps not surprising that we did not find strong responses in 

species within other functional groups, as some plants species are inherently less affected by 

fertilization and the alleviation of nutrient limitation as others.  We may see a response in some 
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species, but not in others, as the traits that allow for the conservation of nutrients also tend to 

inhibit the acquisition and utilization of increasingly available nutrients (Chapin 1980, Chapin et 

al. 1986).  However, our chlorophyll fluorescence measures, coupled with leaf N content, may 

suggest that the majority of the species that we evaluated are perhaps not nutrient limited.  

Across the same nutrient addition gradient experiment used in this study, previous work 

found that deciduous shrub and forb species increased in relative abundance at high levels of 

nutrient addition, while evergreen shrub cover decreased. This community level response 

ultimately resulted in increased gross primary production (GPP) at high levels of nutrient 

addition (Prager et al. In press). Here, we show that two deciduous shrub species show 

increasing leaf N with nutrient enrichment that may contribute to this, suggesting both a 

physiological and morphological response of deciduous shrub species to nutrient enrichment.  

Previous work across this gradient examining two species, the current and historically dominant 

sedge species (E. vaginatum) and B. nana, showed that only leaf N of B. nana responded to high 

levels of fertilization (Heskel et al. 2012).  Thus, our findings confirm previous findings and 

expand them to demonstrate that other deciduous shrub species respond similarly to increasing 

nutrient availability. 

Ultimately, plant responses to nutrient addition may influence community and ecosystem 

dynamics via changes in leaf physiology and/or changes in relative abundance (Suding et al. 

2005, Suding et al. 2008).  While we did not find significant increases in leaf N for species in 

other functional groups, we did find that forb species had consistently high levels of leaf N, 

comparable to Betula leaf N at high levels of fertilization.  Therefore, though we did not see a 

strong response in foliar N of forb species, canopy N would increase disproportionately with 
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increasing nutrient addition due to relatively high overall levels of leaf N combined with 

increased percent cover of these species.    

 

Positive, saturating relationships between leaf nitrogen and chlorophyll fluorescence 

All of the biochemical processes of photosynthesis require nitrogenous compounds – 

from proteins that catalyze the reactions of CO2 fixation to those produced by light-driven 

electron transport.  Thus, the degree of nitrogenous investment in leaves is inherently linked to 

complex physiological processes associated with photosynthesis and C gain (Field and Mooney 

1986, Lambers et al. 2006). Here, given the variation generated by inter-specific differences in N 

use across species and functional groups, and by experimental nutrient fertilization, we found 

positive, saturating relationships between leaf %N and chlorophyll fluorescence traits across all 

species and plots.  As chlorophyll fluorescence is often used to assess photosynthetic efficiency 

and plant performance (Cavender-Bares and A. Bazzaz 2004), these positive, saturating 

relationships demonstrate the importance of leaf N in modulating plant function and show that 

inherently high levels of foliar N, or the ability to acquire and utilize greater N availability, 

appear to be advantageous in this system. While these relationships are perhaps not surprising, 

given known relationships between foliar N and photosynthesis, the saturating nature of the 

relationship between these traits has not yet been described for Arctic tundra plant species.  
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Tables 
 

Table 2.1 1 

Table 1. Plant Trait Principal Component Analysis 
Principal 

Component Axis PC1 PC2 PC3 PC4 PC5 

Proportion of 
Variance 
Explained 

0.43 0.24 0.17 0.13 0.04 

Cumulative 
Variance 
Explained 

0.43 0.66 0.83 0.96 1 

 

 
Table 2.2 1 

Table 2. Plant Trait Principal Component Analysis Loadings 
Trait PC1 PC2 PC3 PC4 PC5 

K -0.47 0.33 -0.50 0.48 0.44 
Fv/Fm -0.61 -0.23 -0.07 0.15 -0.74 

ETo.TR -0.26 -0.79 0.26 0.13 0.47 

%N -0.50 0.14 -0.05 -0.83 0.21 

%C 0.29 -0.44 -0.82 -0.21 -0.06 



57 
 

Table 2.3 1 

Table 3. Results from Tukey's Honest Significance Difference (HSD) test on Leaf %N across species.   

                             Tukey’s HSD Comparisons (Leaf %N) 

Group n SD Mean Betula 
nana 

Vaccinium 
uliginosum 

 
 

Polygonum 
bistorta 

 
Rubus 

chamae
-morus 

 
 

Carex 
bigelowii 

 
 

Eriophorum 
vaginatum 

 
 

Ledum 
palustre 

Vaccini
um 

vitis-
idea 

Betula nana 18  0.81    
3.07 -  

     
 

Vaccinium 
uliginosum 14  0.41 2.28 < .001 - 

     
 

Polygonum 
bistorta 18 0.41 3.64 < .001 < .001 

 
- 

    

 

Rubus 
chamaemorus 12 0.23 2.41 < .001 .975 

 
<.001 

 

 
- 

   
 

Carex 
bigelowii 18 0.27 2.26 <.001 1 

 
<.001 

 
.970 

 
- 

  

 

Eriophorum 
vaginatum 17 0.26 2.15 <.001 .994 

 
<.001 

 
.637 

 
.991 

 
- 

 
 

Ledum 
palustre 18 0.09 1.96 <.001 .399 

 
<.001 

 
<.05 

 
.287 

 
.846 

 
-  

Vaccinium 
vitis-idea 18 0.14 1.95 < .001 .388 

 
<.001 

 
<.05 

 
.846 

 
.836 

 
1 

- 
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Table 2.4 1 

Table 4. Results from Tukey's Honest Significance Difference (HSD) test on Leaf %C across species.   

    Tukey’s HSD Comparisons (Leaf %C) 

Group n SD Mean Betula 
nana 

Vaccinium 
uliginosum 

 
Polygonum 

bistorta 

Rubus 
chamae-
morus 

 
Carex 

bigelowii 

 
Eriophorum 
vaginatum 

 
Ledum 
palustr

e 
Vaccinium 
vitis-idea 

Betula nana 18  5.47 48.18 -  
     

 

Vaccinium 
uliginosum 14  3.84 47.69 .999 - 

     
 

Polygonum 
bistorta 18 3.01 42.68 < .001 < .005 

 
- 

    

 

Rubus 
chamaemorus 12 1.32 41.60 < .001 <.001 

 
.993 

 

 
- 

   

 

Carex bigelowii 18 3.39 44.01 <.02 .101 

 
.959 

 
.644 

 
- 

  

 

Eriophorum 
vaginatum 17 4.38 44.56 .078 .269 

 
.799 

 
.394 

 
.999 

 
- 

 

 

Ledum palustre 18 3.23 53.62 <.001 <.001 

 
<.001 

 
<.001 

 
<.001 

 
<.001 

 
- 

 

Vaccinium vitis-
idea 18 2.77 50.46 .576 .408 

 
<.001 

 
<.001 

 
<.001 

 
<.001 

 
.173 

- 
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Table 2.5 1 

Table 5. Results from Tukey's Honest Significance Difference (HSD) test on Fv/Fm across species.   

    Tukey’s HSD Comparisons (Fv/Fm) 

Group n SD Mean Betula nana Vaccinium 
uliginosum 

 
Polygonum 

bistorta 

Rubus 
chamae-
morus 

 
Carex 

bigelowii 

 
Eriophorum 
vaginatum 

 
Ledum 

palustre Vaccinium 
vitis-idea 

Betula nana 18  0.04   0.74 -  
     

 

Vaccinium 
uliginosum 14  0.04 0.70 .120 - 

     
 

Polygonum 
bistorta 18 0.01 0.78 .399 < .001 

 
- 

    

 

Rubus 
chamaemorus 12 0.03 0.74 .999 .406 

 
.309 

 

 
- 

   
 

Carex 
bigelowii 18 0.03 0.68 <.001 .822 

 
<.001 

 
<.009 

 
- 

  

 

Eriophorum 
vaginatum 17 0.05 0.65 <.001 <.030 

 
<.001 

 
<.001 

 
.437 

 
- 

 
 

Ledum 
palustre 18 0.04 0.64 <.001 <.004 

 
<.001 

 
<.001 

 
.166 

 
.999 

 
-  

Vaccinium 
vitis-idea 18 0.06 0.68 < .001 .738 

 
<.001 

 
<.006 

 
.999 

 
.542 

 
.233 

- 
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Table 6. Results from Tukey's Honest Significance Difference (HSD) test on ET0/TR0 across species.   

    Tukey’s HSD Comparisons (ET0/TR0) 

Group n SD Mean Betula 
nana 

Vaccinium 
uliginosum 

 
Polygonum 

bistorta 

Rubus 
chamae-
morus 

 
Carex 

bigelowii 

 
Eriophorum 
vaginatum 

 
Led
um 
pal
ustr

e 

Vaccin
ium 

vitis-
idea 

Betula nana 18  0.0
5 0.60 -  

     
 

Vaccinium 
uliginosum 14  0.0

7 0.62 .979 - 
     

 

Polygonum 
bistorta 18 0.0

4 0.69 < .001 < .002 

 
- 

    

 

Rubus 
chamaemorus 12 0.0

3 0.65 .100 .621 
 

.469 
 

 
- 

   
 

Carex 
bigelowii 18 0.0

5 0.57 .793 .259 

 
<.001 

 
<.001 

 
- 

  

 

Eriophorum 
vaginatum 17 0.0

5 0.63 .649 .997 
 

<.01 
 

.929 
 

<.05 
 
- 

 
 

Ledum 
palustre 18 0.0

4 0.64 .288 .925 
 

<.05 
 

.996 
 

<.005 
 

.999 
 
-  

Vaccinium 
vitis-idea 18 0.0

5 0.65 .050 .537 

 
.285 

 
1 

 
<.001 

 
.905 

 
.99
5 - 

Table 2.6 1 
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Table 2.7 1 

Table 7. Results from Tukey's Honest Significance Difference (HSD) test on K across species.   

    Tukey’s HSD Comparisons (K) 

Group n SD Mean Betula 
nana 

Vaccinium 
uliginosum 

 
Polygonum 

bistorta 

Rubus 
chamae-
morus 

 
Carex 

bigelowi
i 

 
Eriophorum 
vaginatum 

 
Ledum 
palustr

e 

Vacci
nium 
vitis-
idea 

Betula nana 18  43.72 337.91 -  
     

 

Vaccinium 
uliginosum 14  69.81 367.12 .665 - 

     
 

Polygonum 
bistorta 18 32.15 381.88 .107 .988 

 
- 

    
 

Rubus 
chamaemor
us 

12 29.13 341.67 .999 .870 
 

.311 
 

 
- 

   
 

Carex 
bigelowii 18 34.52 367.46 .570 1 

 
.984 

 
.825 

 
- 

  
 

Eriophorum 
vaginatum 17 37.05 213.12 <.001 <.001 

 
<.001 

 
<.001 

 
<.001 

 
- 

 
 

Ledum 
palustre 18 48.88 236.44 <.001 <.001 

 
<.001 

 
<.001 

 
<.001 

 
.827 

 
-  

Vaccinium 
vitis-idea 18 65.81 362.84 .760 .999 

 
.928 

 
.930 

 
.999 

 
<.001 

 
<.001 - 
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Figures 
 

 
 

Figure 2.1 1 

Figure 1. Principal component analysis of eight study species, grouped by plant functional type, 

by two leaf nutrients (leaf %C and %N) and three chlorophyll fluorescence metrics (ETo/TRo, 

Fv/Fm, and K).  Ellipses are normal data probability ellipses, using a normal probability of 68%.  

We found that 66% of the variation in the data could be explained by the first two principal 

components – 43% by the first axis and 24% by the second – and the main traits driving the first 

axis were %C and %N, in opposite directions. The second axis was primarily determined by 

Fv/Fm.  We found that individuals grouped by species and plant functional type (e.g., deciduous 

shrubs, evergreen shrubs, forbs and graminoids), but that deciduous shrubs and forbs had greater 

scatter than evergreen shrub species or graminoids.  
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Figure 2.2 1 

Figure 2. Percent leaf N by plant functional type across a gradient of nutrient (N and P) addition.  

Points are mean leaf %N and a solid, gray linear regression line is shown.  (a) For deciduous 

shrub species, leaf %N increased with nutrient addition, and 38% of the variance was explained 

(p < 0.0001). (b-d) There were no significant effects of nutrient addition on any other plant 

functional group. 
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Figure 2.3 1 

Figure 3.  Linear regressions depicting the relationship between nutrient addition and leaf %N 

for individual species within plant functional groups.  Points represent mean %N, and solid 

regression lines are shown.  (a) For both Betula nana (BETNAN) and Vaccinium uliginosum 

(VACULI), leaf %N increased with nutrient addition, with a stronger response of B. nana to 

addition than for V. uliginosum.  For B. nana, 72% of the variance in leaf %N was explained (p < 

0.001), and for V. uliginosum 26% of the variance was explained (p < 0.05). (b) For forb species, 

one species, Rubus chamaemorus (RUBCHA), leaf %N increased with nutrient addition, and 

34% of the vriance was explained. (c) For one graminoid species, Eriophorum vaginatum 

(ERIVAG), leaf %N increased with nutrient enrichment, and 21% of the variance was explained. 

(d) There was no impact of increasing nutrient availability on either evergreen shrub species (p > 

0.05).  
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Figure 2.4 1 

Figure 4.  Significant relationships between chlorophyll fluorescence measures and percent leaf 

nitrogen (N). Optimum Fv/Fm values may vary from species to species, but generally fall within 

0.79-0.84. (a) Relationship between maximum quantum yield of primary photochemistry (Fv/Fm 

ratio), across all species, and leaf %N.  The relationship between Fv/Fm and leaf %N was best 

described by a Michaelis-Menten model (Km = 0.50, SE=0.06; Vm = 0.86, SE=0.02), as 

determined by the Akaike Information Criterion (AIC), indicating a positive, saturating 

relationship between Fv/Fm ratio and leaf %N. (b) Relationship between the fluorescence value at 

300 μs (K) and leaf %N was best described by a Michaelis-Menten model, indicating a positive, 

saturating relationship between K and leaf % (Km = 468.18, SE=31.15; Vm = 1.007, SE=0.22). 
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Chapter 3 – Long-term nutrient enrichment differentially impacts multiple dimensions of 
biodiversity 

 

Case M. Prager, Natalie T. Boelman, Kevin L. Griffin, Shahid Naeem 
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Abstract 
 Globally, biodiversity losses due to environmental change are escalating, resulting in the 

impairment of key ecosystem processes and properties.  Therefore, understanding how multiple 

dimensions of diversity (e.g., functional, phylogenetic, taxonomic) respond to long-term global 

change is paramount, particularly across ecosystems that are experiencing rapid environmental 

change.  While biodiversity is generally understood to be a complex entity, little attention has 

been given to examining multiple dimensions of diversity simultaneously, possibly 

underestimating the magnitude of the effects of global change on communities and ecosystems.  

Here, we examined how three dimensions of biodiversity (functional, phylogenetic and 

taxonomic) respond to long-term nutrient enrichment (i.e., > 20 years) in Arctic tundra, a biome 

warming twice as fast as the global average.   Overall, we found that long-term nitrogen (N) and 

phosphorus (P) addition led to significant declines in all three dimensions of diversity, and that 

these effects persist through time.  In addition, we found that the effects of N and P addition on 

two dimensions of diversity that capture important organismal traits – functional dispersion (FDis) 

and mean pairwise distance (MPD), a measure of phylogenetic diversity – increased with time.  

Our results highlight the importance of measuring and monitoring multiple dimensions of 

diversity as global change does not impact species and species’ traits uniformly.  Furthermore, as 

functional diversity (FD) and phylogenetic diversity (PD) are known to be strong predictors of 

ecosystem processes (e.g., productivity and nutrient cycling) and properties (e.g., stability and 

resilience), the differential impacts of nutrient enrichment on FD and PD have potentially 

significant implications for the long-term maintenance of ecosystem functioning in this biome.  
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Introduction 
 The indirect and direct effects of climate change are leading to significant declines in 

biodiversity and the impairment of ecosystem functioning worldwide (McMahon et al. 2011).   

As biodiversity losses are escalating, accurately measuring changes in relevant dimensions of 

biodiversity (e.g., taxonomic, functional, phylogenetic, etc.) in order to best predict the potential 

ecological consequences of global environmental change is paramount (Naeem et al. 2016a, 

Seddon et al. 2016), and, consequently, monitoring the responses of biodiversity to global 

change is under intense investigation (Pereira et al. 2010, Dawson et al. 2011).  Furthermore, as 

biodiversity is now generally accepted to positively influence larger scale ecosystem processes 

and properties (Tilman et al. 1997b, Loreau et al. 2001, Naeem et al. 2012), aaccurately 

predicting the impacts of global change on ecosystems relies on an accurate and comprehensive 

understanding of the dimensions of biodiversity.  What constitutes a dimension of biodiversity 

varies, with taxonomic, functional, and phylogenetic the most frequently used (Naeem et al. 

2016b).  Other dimensions include genetic, genomic, and measures of trophic- or community-

web properties, to name just a few, and may be further refined by the incorporation of relative 

abundance or reference to temporal or spatial scales, such as turnover or landscape diversity.  

Examining multiple dimensions of diversity – combining an understanding of taxonomic 

(species), functional (trait) and phylogenetic diversity – may help better predict ecosystem 

consequences of realistic species losses. 

While biodiversity is understood to be multidimensional, very few studies go beyond 

examining a single dimension of diversity (Naeem et al. 2016b).  Recent work suggests that 

using functional diversity (FD) – quantifying the type, range and relative abundance of 

organismal traits in ecological communities – rather than taxonomic diversity (TD) can improve 

our ability to develop a mechanistic understanding of how and why biodiversity loss impacts 
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ecosystem functioning and the services derived from these functions (Petchey et al. 2004, de 

Bello et al. 2009, Cardinale et al. 2012).  Furthermore, recent work suggests that additional 

dimensions of diversity, beyond taxonomic and functional diversity, are important to consider as 

phylogenetic diversity (PD) – a measure of evolutionary history in a community – may explain 

significantly more variation in primary productivity than species or functional group richness 

(Cadotte et al. 2008, Flynn et al. 2011, Cadotte 2013) because functional traits are often 

conserved over the phylogeny.  In addition, PD may influence processes and properties beyond 

ecosystem productivity, such as stability (Cadotte et al. 2012) and multitrophic interactions 

(Dinnage et al. 2012).  Furthermore, PD is an important dimension to consider as species losses 

are often non-random and closely related species presumably share similar traits making them 

more or less predisposed to be affected by environmental change (Willis et al. 2008).  Finally, 

PD captures the intrinsic conservation value of communities (Winter et al. 2013, Frishkoff et al. 

2014).  Thus, using multi-dimensional diversity – combining an understanding of TD, FD and 

PD – is an important step toward better predictions of the consequences of realistic species 

losses, particularly in ecosystems that are undergoing rapid environmental change. 

High-latitude ecosystems are warming quickly and Arctic tundra ecosystems are 

predicted to be strongly impacted by increasing surface air temperatures (IPCC 2013).  The 

effects of warming on Arctic ecosystems include a deepening soil layer during the growing 

season as well as increased soil nutrient mineralization (Shaver and Chapin 1991).  Because 

Arctic ecosystems are thought to be nitrogen (N) and phosphorus (P) limited, increasing N and P 

availability accompanying warming likely reduces plant diversity and affects interspecific 

competition, advantaging plant species differentially, favoring species with a greater capacity to 

access and utilize a growing soil nutrient pool (Shaver and Chapin 1986, Chapin 1991). For 
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example, increasing nutrient availability across tundra ecosystems is known to lead to shifts in 

plant community composition and physical structure with implications for ecosystem functions 

such as carbon (C) cycling (Rastetter et al. 1991, Hobbie and Chapin 1998, Myers-Smith et al. 

2011). 

 Existing nutrient addition experiments designed to explore the consequences of 

warming-induced nutrient enrichment, and the alleviation of nutrient limitation in Arctic tundra, 

have demonstrated increases in net primary production (NPP) and in deciduous shrub cover with 

concurrent decreases in evergreen shrub and grass/sedge cover (Shaver and Chapin 1986, Shaver 

et al. 1998, Boelman et al. 2003, Boelman et al. 2005).  While great attention has been given to 

the impacts of warming-related nutrient enrichment on plant functional group relative abundance 

and ecosystem productivity, little consideration has been given to the impacts of long-term 

nutrient addition on multiple dimensions of Arctic plant diversity that capture key relationships 

between species and are potentially indicative of important community and ecosystem dynamics, 

processes and properties.  

Here, we examine how long term experimental nutrient enrichment (i.e., > 20 years) 

impacts multiple dimensions of Arctic tundra plant diversity and we evaluate how these effects 

vary through time.  Specifically, we focus on understanding the impact of high levels of N and P 

addition (i.e., 10g/m2 N as NH4NO3 and 5 g/m2 P as triple superphosphate) on two measures of 

plant TD, species richness and one abundance-weighted measure (the Shannon Index), one 

measure of FD that captures species abundances and the distribution of functional traits within 

the trait space of a community (functional dispersion), and one abundance-weighted measure of 

PD (mean pairwise distance, MPD).  We hypothesized that nutrient addition would lead to 

reductions in all dimensions of diversity, but reductions in diversity would be greatest for 
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measures of diversity that encompass both relative abundance and organismal traits (e.g., FD and 

PD).  Furthermore, we hypothesized that the difference in diversity levels between control plots 

and nutrient addition plots would increase through time given shifts in interspecific interactions 

driven by changes in nutrient availability.  

 

Methods 
 
Site description and experimental design 

All field sampling for this study took place during the period of peak tundra greenness 

from 1996-2010 across long-term global change experiments established in 1989, 1996 and 1997 

at the Arctic Long Term Ecological Research (ARC LTER) site, located at Toolik Lake in the 

northern foothills of the Brooks Range, Alaska (68°38’N and 149°43’W, 760 m a.s.l.).  The 

growing season at the ARC LTER site spans 10-12 weeks, beginning in early to mid-June, with 

an average growing season temperature of 10°C. The LTER moist acidic tussock (MAT) global 

change experiment was established in 1989 and is comprised of four blocks of 5 x 20 m plots 

with randomly assigned environmental change treatments within each block.  Treatments include 

a control (CT) and nitrogen (N) plus phosphorus (P) addition.  Granular fertilizer comprised of 

10g/m2 N (NH4NO3) and 5 g/m2 P (triple superphosphate) is added annually following snowmelt. 

In addition, to evaluate the impact of herbivory, exclosure plots were set up at the MAT site in 

July 1996 on reserved 5 x 20 m plots within the existing four-block design of the 1989 MAT 

experimental plots. In each block, two fenced plots were established: a plot with no fertilizer and 

a plot with annual fertilization treatments as described above. Thus, the treatments established 

are no fence, no fertilizer (NFCT); small mesh fence, no fertilizer (SFCT); large mesh fence, no 

fertilizer (LFCT); no fence, N plus P (NFNP); small mesh fence, N plus P (SFNP); and large 
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mesh fence, N plus P (LFNP).  Experimental plots were established at the LTER moist non-

acidic tussock (MNT) site in 1997 following the same methods describe above, replicated in a 

three-block design.  As we were primarily interested in the effects of long-term nutrient 

enrichment, we consider all control or NP addition plots, regardless of site (MAT or MNT), as 

one group. Thus, for this study, we evaluated the control (CT) and N plus P (NP) addition plots 

at the MAT and MNT sites and the control and NP plots without fencing added to the MAT 

experiment in 1996.  

 

Plant percent cover and trait data 

Following standard protocol outlined in Gough and Hobbie (2003), eight 1m2 permanent 

quadrats are sampled annually in late July in each treatment plot per block. Within each quadrat, 

aerial percent cover of all vascular plants species was recorded as well as bare ground, lichen and 

moss cover. To standardize cover among plots, all percent cover values were summed within 

each plot, and then each value was divided by the total resulting in a percent cover value 

standardized to 100%.  All percent cover and trait data were available through the LTER data 

portal(Gough 2015b, d, f, e, a, c, Gough and Hobbie 2015b, a).    

In 2000, 2006 and 2012 four quadrats were randomly located along line transects in each 

of the replicate blocks of each treatment. Quadrats were then harvested and sorted into species 

and tissue type within 24 hours, and all leaf tissue samples were then dried at 65 C and weighed.  

Samples were aggregated by block and subsequently ground in a Wiley Mill and percent C and 

N were analyzed using an elemental analyzer at the University of Nebraska, Lincoln (ECS 4010, 

Costech Analytical, Valencia, California).  Further detail on biomass harvests and subsequent 

plant nutrient analyses are provided in Shaver and Chapin (1991).  
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Dimensions of biodiversity 

Functional diversity (FD)   Functional diversity (FD) was trait based (e.g., as opposed to 

functional groups) and was measured given the distribution of plant functional traits within trait-

space.  We calculated functional dispersion (FDis) implemented in the R Package FD (Laliberte 

and Legendre 2010).  FDis is the mean distance of individual species to the centroid of all species 

in the community and accounts for relative abundances by computing distances of individual 

species to a weighted centroid (Laliberte and Legendre 2010), capturing the degree to which 

species are close to the center of functional trait space or closer to the edges of the 

multidimensional volume.  FDis was calculated using standardized values of two functional traits: 

leaf carbon content (%C) and leaf nitrogen content (%N).  Leaf C reflects fundamental 

components of overall plant function as it is thought to correlate with leaf mass per area (Reich 

2014, de la Riva et al. 2016), and leaf N plays a key role in energy capture, first as a component 

of chlorophyll, the main light capturing pigment, and then as an essential part of the proteins 

comprising both the electron transport chain and the Calvin cycle (Field and Mooney 1986, 

Lambers et al. 2006).  Furthermore, there is a well-documented relationship between leaf N and 

photosynthesis and respiration (Field and Mooney 1986, Reich et al. 1998, Reich et al. 2008).  

Because trait data were only available in years when biomass harvests were conducted, we 

matched trait data sampled in 2000 for community data sampled from 1996-2002, trait data 

sampled in 2006 for community data sampled from 2003-2009, and trait data collected in 2012 

for community data sampled from 2010-2012.  

Phylogenetic diversity   Phylogenetic diversity (PD) was estimated using an abundance-

weighted metric, mean pair-wise distance (MPD), previously shown to be the best predictor of 
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ecosystem function (Cadotte et al. 2008), calculated using the picante package in R (Kembel et 

al. 2010) with phylogenetic relationships and branch lengths obtained from a locally stored 

phylogeny in phylomatic (Zanne et al. 2014), processed using Phylomatic V3 (Webb et al. 2008) 

and the ape (Paradis et al. 2004) and phytools (Revell 2012) packages in R. MPD is the mean 

sum of the phylogenetic branch lengths between all species pairs within a community. 

Taxonomic diversity (TD) We calculated species richness (S), the number of species in a 

community, and the Shannon (H) index that reflects evenness and dominance of species within a 

community.  All measures of taxonomic diversity were calculated using the vegan package 

(Okasen et al. 2015) in R v. 3.2.1 (R Core Team 2015). 

  

Statistical Methods 

We ran a series of linear mixed effects models for each of our response variables (i.e., 

measures of functional, phylogenetic and taxonomic diversity and the differences between 

control plots and nutrient addition plots for each of the four diversity metrics) with treatment and 

year as fixed effects and site as a random effect.  In addition, we calculated correlation 

coefficients between our diversity measures.  All analyses and data visualizations were 

completed in R v. 3.2.1 (R CoreTeam 2015) using the ggplot2 (Wickham 2009), lme4 (Bates et 

al. 2015), lsmeans (Lenth 2016), and stats (Team 2015) packages. 

 

Results 
We found that control plots consistently exhibited higher levels of diversity than nutrient 

addition plots, despite relatively comparable initial levels of diversity.  However, for all 

measures of diversity in both control and nutrient addition plots, diversity declined through time 

with the exception of functional dispersion (FDis) in control plots, which increased with time 
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(Figure 1a-d).  The change in species richness (S) through time was significant (Figure 1a) and 

52% of the variance was explained in control plots and 41% of the variance was explained for S 

in nutrient addition plots.  For the Shannon Index (H), relationships were significant, and 38% of 

the variance was explained in control plots versus 59% of the variance in nutrient addition plots 

(Figure 1b).  For FDis, 38% of the variation was explained in control plots and 48% of the 

variance was explained in nutrient addition plots (Figure 1c).  Finally, for MPD, 33% was 

explained in control plots and 71% of the variance was explained in nutrient addition plots 

(Figure 1d). 

Mean S in control plots dropped from 25.33 (SD 2.08) in year two to 12.25 (SD 0.69) in 

year 10 to 12.01 (0.82) in year 21, compared to S in nutrient enrichment plots which was 25.50 

(SD 0.71) in year two, dropping to 5.29 (SD 1.25) in year 10 and then to 4.33 (SD 0.58) in year 

21.  Mean H values in control plots started at 2.76 in year two, dropping to 2.09 (SD 0.07) and 

did not change from year 10 to 21 (i.e., M=2.10, SD=0.09 in year 21).  In nutrient addition plots, 

mean H in year two was 2.67 (SD 0.02), dropping substantially to 0.96 (SD 0.31) in year 10 and 

then to 0.89 (SD 0.10) in year 21.  Mean FDis in control plots was 0.33 (SD 0.005) in year two, 

increasing slightly in year 10 (i.e., M=0.35, SD=0.01), and in year 21 mean FDis was 0.42 (SD 

0.01).  In nutrient addition plots, mean FDis in year two was 0.30 (SD 0.02), dropping to 0.19 (SD 

0.08) in year 10, and then to 0.10 (SD 0.05) in year 21.  Finally, mean MPD in control plots in 

year two was 253.22 (SD 1.82), 238.83 (SD 4.47) in year 10, dropping to 234.21 (SD 3.46) in 

year 21.  For nutrient addition plots, MPD was 256.25 (SD 1.99) in year 2, dropping to 175.15 

(SD 21.26) in year 10 and then to 127.49 (SD 14.62) in year 21.  

When we explored the difference in our four measures of diversity between control and 

nutrient addition plots, we found that the effect of nutrient addition on diversity remained the 
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same for two measures of diversity (i.e., S and H) and changed through time for two measures of 

diversity (i.e., FDis and MPD).  For FDis, the difference between control plots and nutrient addition 

plots increased as the experiment went on and 27% of the variance was explained (P < 0.002; 

Figure 2c).  Likewise, the difference between MPD in control plots and nutrient addition plots 

increased through time, and 15% of the variance was explained (P < 0.007; Figure 2d).   

 

Discussion 
Our results indicate that increased nutrient availability results in a reduction in 

biodiversity, regardless of the dimension of diversity examined; however, the magnitude of the 

effect varies depending on the observed measure of diversity. As biodiversity is known to 

influence the functioning of ecosystems, especially when considering dimensions of diversity 

that capture key functional traits and evolutionary relationships, monitoring and predicting the 

impacts of global change on multidimensional biodiversity through time is paramount.  

Furthermore, our findings highlight the importance of considering biodiversity to be 

multidimensional, as the examination of a single dimension of diversity may obscure potential 

impacts of global change on plant the functioning of plant communities.  

 

Nutrient addition reduces taxonomic diversity 

Across 21 years, we found that both species richness (S) and an abundance-weighted 

measure of taxonomic diversity (TD), the Shannon Index (H) declined through time.  However, 

we found that no more species were lost from communities, due to nutrient enrichment, in year 

21 than in year 10.  Furthermore, the relative effect of nutrient addition on TD did not change 

through time – the difference in measures of TD in nutrient addition plots and control plots did 

not increase with time as they did for functional (FD) and phylogenetic diversity (PD).  While 
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we also found a reduction in S and H in control plots, presumably due to the effects of naturally 

occurring warming, the difference between the control and addition plots remained the same.  

These findings are in keeping with both empirical and modeling work across the globe 

examining the impacts of increasing nutrient availability (often, N deposition) on TD, finding 

significant shifts in plant community composition and reductions in overall species richness 

(Bobbink et al. 2010).  In Arctic tundra, studies examining the effects of annual N and P 

additions, some of which conducted on these plots, have demonstrated increased cover of 

vascular plants, decreased cover of bryophytes and lichens, and associated overall declines in 

species richness (Shaver and Chapin 1995, Gordon et al. 2001, Gough and Hobbie 2003, 

Soudzilovskaia and Onipchenko 2005).   

 

Nutrient enrichment decreases functional dispersion 

In our study, functional dispersion (FDis) decreased with nutrient addition at a more rapid 

rate than for either measure of TD.   Interestingly, FDis increased in control plots through time, 

indicating that the distribution of functional traits within communities became more evenly 

spaced, farther away from the centroid of the community through time, possibly indicating a 

decrease in functional redundancy or an increase in the potential for niche complementarity.  As 

the relative importance of plant diversity as a driver of ecosystem functioning has been shown to 

increase over time (Cardinale et al. 2012) in studies examining the connections between 

biodiversity and ecosystem function, these findings have potential consequences for larger scale 

ecosystem processes and properties. Often, communities with high degrees of functional 

divergence or dispersion, indicating a high degree of niche differentiation, correspond to high 

levels of ecosystem function, and high species turnover may allow for communities of greater 
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diversity to support higher levels of productivity via complementarity through time as species 

that are rare in some years may become dominant in others, driving biomass production in those 

years (Allan et al. 2011).   

In addition, we found that increased nutrient availability led to decreased FDis and that the 

effect of nutrient addition on FDis increased through time, in contrast with what we found for TD.  

We found that the relative effects of nutrient addition on FDis  grew through time, due in part to 

small increases in FDis in control plots and simultaneous decreases in FDis in nutrient enrichment 

plots.  These findings are perhaps not surprising as species’ sensitivity to disturbance is 

modulated by key organismal traits (Keinath et al. 2017), and disturbance has been shown to 

impact measures of FD in other systems.   For example, a meta-analysis examining the effects of 

land-use change on FD of multiple taxa found that land-use change associated declines in FD are 

often greater than expected for mammal, bird and non-herbaceous plant taxa (Flynn et al. 2009).  

Our finding that the difference in FD between control and nutrient addition plots increased 

through time is particularly important both in the context of the perceived positive relationship 

between biodiversity and ecosystem function and in light of our finding that the difference 

between TD in control and nutrient addition plots did not appear to change through time.  

 

Phylogenetic diversity declines sharply with nutrient addition 

Similarly, we found that mean pairwise distance (MPD), a measure of phylogenetic 

diversity (PD), decreased with nutrient addition, and that MPD continued to decline in nutrient 

enrichment plots, relative to control plots, through time.  Responses of PD to anthropogenic 

disturbance have been examined across taxa, usually with an attention to the responses of PD to 

land conversion or other local environmental disturbances (e.g., species invasion).  In such 
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studies, disturbance has been shown to lead to the persistence of subsets of closely related clades, 

resulting in declines in PD (Dinnage 2009, Helmus et al. 2010). In addition, PD of flowering 

plants in the northeastern United States has been shown to respond strongly to warming, as 

species that are declining in abundance with warming are more closely related than expected by 

chance and species with flowering times that do not track seasonal temperature shifts have 

declined in abundance over the past 100 years (Willis et al. 2008).  In our study, increased 

nutrient availability may act as an ecological filter, ultimately resulting in declines in PD. 

 

Conclusion 

Despite a long-standing effort to monitor and predict the consequences of warming for 

Arctic tundra plant functional group richness and ecosystem productivity, the impact of 

increasing nutrient availability on Arctic plant functional and phylogenetic diversity is relatively 

unknown.  In addition, though the relationship between climate and the distribution and 

abundance of species through space and time is well established, how climate-related 

environmental change affects multiple dimensions of diversity simultaneously is understudied.  

Given our findings, it is important to more comprehensively quantify biodiversity and shifts in 

multiple dimensions of diversity with environmental change, as solely evaluating taxonomic or 

functional group diversity may underestimate the long-term responses of biological communities 

to warming-related nutrient enrichment and the ability of these communities to support multiple 

ecosystem properties and processes through time.  
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Figure 3.1 1 

Figure 1. Taxonomic, functional and phylogenetic diversity (i.e., TD, FD, PD) over time for 

control and nutrient addition plots at the Arctic long-term research (ARC LTER) site. Taxonomic 

diversity was quantified by both species richness (a) and an abundance-weighted measure that 

prioritizes evenness (Shannon Index) in a community (b), FD was measured using functional 

dispersion (FDis), the mean distance of species from the centroid of all species, weighted by 

abundance (c), and PD was measured using an abundance-weighted metric, mean pairwise 

distance (MPD), that captures evolutionary relationships in a community (d).  For all plots, 

control plots are in grey and nutrient addition plots are in green, points represent a plot-level 

average in a given year and in all panels, solid lines represent linear regressions and dashed lines 

represent best fit non-linear curves (a & b).  

 

 
 
Figure 3.2 1 
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Figure 2.  Relationships between the difference in diversity between control plots and nutrient 

addition plots through time.  Points represent the value for a given nutrient addition plot minus 

the diversity value at a corresponding control plot, and all panels include a solid linear regression 

line.  Fit statistics are not shown for plots (a,b) with no significant linear relationship, but are 

shown for those with significant relationships (c,d).  Dashed linear regression lines show where 

best fit curve is non linear (exponentially decreasing trends shown in a & b). 
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CHAPTER 4 – Multiple dimensions of diversity drive ecosystem function in a natural system 
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Introduction 
As human-altered ecosystems now dominate our earth, great emphasis has been placed 

on understanding which species decrease, persist, or increase in these altered or newly created 

habitats and the consequences of declines in biodiversity for the functioning of ecosystems 

(Cardinale et al. 2012, Naeem et al. 2012). Biodiversity is now generally accepted to exhibit 

positive, saturating or decelerating relationships with ecosystem function (Tilman et al. 1997a, 

Tilman et al. 1997c, Chapin et al. 1998, Reich et al. 2004); however, the majority of existing 

work is experimental, and far less is understood about the causal relationship between 

biodiversity and ecosystem function across naturally assembled systems, the applicability of 

experimental findings to natural variation in diversity (Jiang et al. 2009), or the simultaneous 

influence of multiple dimensions of diversity (e.g., genetic, functional, phylogenetic, taxonomic, 

etc.) on measures of ecosystem function (Naeem et al. 2016b).  Here, we show that simultaneous 

changes in multiple dimensions of plant diversity and whole ecosystem productivity are linked in 

Arctic tundra.  We found that taxonomic diversity and functional diversity were significantly and 

positively related to whole ecosystem productivity, measured using net ecosystem CO2 exchange 

and total aboveground biomass.  Conversely, we found that functional evenness and dispersion – 

measures of functional diversity that quantify the distribution of plant traits within the trait space 

of a community – were significantly and negatively related to ecosystem productivity.  While 

phylogenetic diversity was positively associated with ecosystem productivity, the relationship 

was not significant.  Our results demonstrate how multiple dimensions of biodiversity 

simultaneously impact ecosystem function in complex ways in a natural system undergoing rapid 

environmental change. We suggest that integrating multiple dimensions of diversity allows for a 

more complete understanding of ecosystem function while simultaneously permitting inferences 

to be made into the underlying mechanisms of relationships between biodiversity and ecosystem 
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function in natural systems, an exciting potential avenue for future work integrating experimental 

and observational approaches.  

Human alteration and simplification of ecosystems through habitat modification, the 

introduction of domestic and exotic species, and anthropogenic climate change, are leading to 

significant declines in biodiversity and the impairment of ecosystem functioning worldwide 

(Naeem et al. 2012).  After over 20 years of research, an experimental and theoretical framework 

for exploring the connections between biodiversity and ecosystem function has produced widely 

accepted generalities about these relationships and dynamics (Tilman et al. 2014). This 

framework has focused on experiments in which species are randomly added or removed, 

providing a foundation for exploring the impacts of natural or human-induced variation in 

biodiversity in order to understand the impacts of alternate assembly and disassembly processes 

(Grime 1998, Wardle 1999, Huston et al. 2000, Jiang et al. 2009) on BEF relationships.   

Results from previous experimental studies that have attempted to approximate real-

world scenarios of biodiversity losses via non-random species removal, coupled with a limited 

number of observational studies, vary considerably, with some suggesting positive associations 

between diversity and function (Flombaum and Sala 2008, Zhu et al. 2016), and others finding 

no evidence of significant relationships (Weeks et al. 2016), or even negative associations (Wang 

et al. 2013).   These conflicting results may suggest variation in relationships between 

biodiversity and ecosystem function across aspects of community composition and assembly 

(Weeks et al. 2016) or across ecosystem functions, but they may also reflect the challenges 

associated with replicating natural systems in experimental contexts. By exploring the 

connections between biodiversity and ecosystem function across observational gradients, it is 

possible to evaluate the applicability of experimentally derived findings for natural systems, 
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particularly those most affected by global environmental change.    

While traditional experimental approaches have typically relied on manipulating 

taxonomic diversity (i.e. species richness and/or evenness), evaluating multiple dimensions of 

diversity in natural systems can both refine our understanding of the relationship between 

biodiversity and ecosystem function and has the potential to capture mechanisms underlying the 

relationship in a non-experimental context. Biodiversity is a complex, dynamic and often scale-

dependent entity that cannot be readily reduced to a single value or dimension, and while 

biodiversity is well understood to be multidimensional, very few studies go beyond examining 

the connections between a single dimension of diversity and ecosystem function (Naeem et al. 

2016b).  Recent studies suggest that using functional diversity (FD) – quantifying the type, range 

and relative abundance of organismal traits in ecological communities – rather than taxonomic 

diversity (TD) can improve our ability to develop a mechanistic understanding of how and why 

biodiversity loss impacts ecosystem functioning and the services derived from these functions 

(Petchey et al. 2004, de Bello et al. 2009).  In addition, phylogenetic diversity (PD) may explain 

significantly more variation in primary productivity than TD or FD (Flynn et al. 2011) because 

measured functional traits may be correlated with other important traits not included in FD 

metrics, but are often evolutionarily conserved and thus correlated.  However, PD does not 

always reflect unmeasured traits that influence ecosystem properties or processes, as any 

additional information provided by PD may reflect ecologically irrelevant trait variation (Cadotte 

2006, Cadotte et al. 2008, Losos 2008, Best et al. 2013).  A priori determination of which 

dimension of diversity will be most relevant is not yet feasible, and may never be appropriate, 

making comprehensive multidimensional methods an important strategy for understanding the 

relationship between biodiversity and ecosystem function and the mechanisms thought to 
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underlie diversity’s influence on ecosystem function (Wright et al. 2006, Carroll et al. 2011).  In 

addition, examining multiple dimensions of diversity – combining an understanding of TD, FD 

and PD – will help better predict ecosystem consequences of realistic species losses due to global 

change. 

Here, we examine the link between natural variation in multiple dimensions of plant 

diversity and ecosystem function in Arctic tundra, an ecosystem undergoing rapid warming, but 

relatively free of the effects of other global change drivers, such as habitat degradation, invasive 

species, and N deposition. We used structural equation modeling (SEM) to examine how 

multiple dimensions of plant diversity (FD, PD, and TD), and the distribution of functional traits 

through trait space, are related to two measures of ecosystem function associated with whole 

ecosystem C dynamics – aboveground biomass (AGB) and net ecosystem exchange (NEE).  We 

test for the first time in a natural system whether or not different dimensions of diversity are 

positively associated with ecosystem function, owing to niche complementarity (a positive 

association between the evenness or dispersion of functional traits and ecosystem function) or 

selection effects. 

 

 

 

Methods 
Site description  

All field sampling for this study took place during peak growing season (i.e., the period 

of peak tundra greenness) near the Arctic Long Term Ecological Research (ARC LTER) site and 

Toolik Field Station (TFS) located at Toolik Lake in the northern foothills of the Brooks Range, 

Alaska (68°38’N and 149°43’W, 760 m a.s.l.).  All study plots are situated on moist acidic 
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tundra with soils comprised of 30–55 cm of a peaty organic and silty mineral layer, atop 

continuous permafrost.  The growing season at the ARC LTER and TFS site spans 10-12 weeks, 

beginning in early to mid-June, with an average growing season temperature of 10°C.  The 

period of peak leaf out for low Arctic tundra plant communities, dominated by graminoids (grass 

and sedge species) and deciduous and evergreen shrubs, is approximately 30-35 days (Sweet et 

al. 2015). All sampling for this study took place during the period of peak tundra leaf out in 2013 

and 2014. 

 

Ecosystem CO2 exchange and aboveground biomass 

During the period of peak tundra leaf out or greenness (mid-July 2013 and 2014), 

changes in CO2 concentration, photosynthetically active radiation (PAR) and air temperature 

were measured using a Li-Cor 7500 infrared gas analyzer (IRGA; Li-Cor, Lincoln, Nebraska, 

USA) at 35 randomly selected plots (diameter = 1m).  The IRGA was affixed to a cylindrical, 

portable chamber with a polyvinyl chloride (PVC) frame and transparent plastic sheeting with 

internal fans to ensure adequate mixing of air and steady chamber temperatures, atop a separate 

PVC base fitted with a plastic skirt, sealed to the ground with two heavy chains.  At each 

sampling location, we conducted flux measurements to permit calculation of net ecosystem 

exchange (NEE).  Each measurement cycle began by lowering the chamber onto the base and 

sealing it.  Once a consistent rate of CO2 exchange was achieved, we began logging a two to 

three minute flux measurement in the light (for calculation of NEE) at a sampling frequency of 

0.5 Hz.  Once we completed a flux measurement, the flux chamber was opened and allowed to 

acclimate to ambient CO2 concentrations (roughly 400 ppm) for 15-30 seconds before logging a 

second flux measurement.  This cycle was repeated three times, yielding three flux 
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measurements in the light.  The temperature in the chamber did not exceed 23.5 °C during any 

measurement.  For each study plot, we averaged the three fluxes made in the light and we 

calculated NEE (µmol m−2 s−1) using Eqn 1 to quantify the continuous exchange of CO2 between 

the atmosphere, vegetation and soil.  

NEE  = (ρ*V *(dC/dt)/A)          (1) 

In Eqn 1, ρ is the air density (mol air m-3), defined as P/RT, where P is the average 

pressure (Pa), R is the ideal gas constant (8.314 J mol-1 air K-1), and T (K) is the mean 

temperature. V is the chamber volume (m3), dC/dt is the slope of the chamber CO2 concentration 

against time (µmol CO2 mol−1 air s−1), and A is the surface area of the ground (m2) within the 

chamber.  Prior to calculating NEE, we converted CO2 density into a dry mole fraction. Positive 

NEE values indicate fluxes from the atmosphere to the ecosystem and negative values indicate 

fluxes to the atmosphere from the ecosystem.  Upon completion of CO2 flux sampling, we 

harvested the aboveground biomass in three randomly selected subplots (r=10cm) in each plot, 

and sorted vascular plant biomass to species.  After biomass harvests were sorted by species, we 

dried them at 60 °C for at least 48 hours or until weight measurements stabilized. 

 

Trait data 

For roughly 70% of the species found across all study plots, spanning rare and common 

species, we collected six leaf functional traits that are thought to be mechanistically linked to 

ecosystem processes related to C cycling and storage: specific leaf area (SLA), leaf carbon 

concentration (%C), leaf nitrogen concentration (%N), light saturated rate of net CO2 

assimilation (Amax), maximum respiration in the dark (Rdark), and integrated water use efficiency 

(WUE, the intrinsic magnitude of C gain per unit water loss, calculated using a C-isotope 
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approach as photosynthetic enzymes discriminate against the heavier stable isotope 13C relative 

to 12C during photosynthesis (Hubick and Farquhar 1989).  For all traits, except leaf-level gas 

exchange measures, which were measured on 3-5 individuals, we sampled 7-10 individuals in or 

near our study plots, and we dried leaf tissue at 60 °C for 72 hours. All traits were sampled 

following standard protocols outlined by Cornelissen et al. (2003). 

 

Dimensions of biodiversity 

We examined three dimensions of biodiversity: (1) TD, quantified by two metrics, (2) 

PD, quantified by two metrics, and (3) trait-based FD, quantified by three metrics.  Conceptually, 

we considered trait-space volume to be more coherent with species-based metrics than trait-

distribution-based metrics, a distinction important in some of the statistical analyses.     

Taxonomic diversity was measured using species richness (S), the Simpson Index (D), 

and Shannon’s Index (H) indices that reflect evenness and dominance of species within a 

community.  All measures of taxonomic diversity were calculated using the vegan package 

(Okasen et al. 2015) in R v. 3.2.1 (R Core Team 2015). 

Phylogenetic diversity (PD) was estimated using two indices: mean pair-wise distance 

(MPD) and Faith’s phylogenetic diversity (FPD).  These metrics were calculated using the 

picante package in R (Kembel et al. 2010) with phylogenetic relationships and branch lengths 

obtained from a locally stored phylogeny in phylomatic (Zanne et al. 2014), processed using 

Phylomatic V3 (Webb et al. 2008) and the ape (Paradis et al. 2004) and phytools (Revell 2012) 

packages in R. MPD is the mean sum of the phylogenetic branch lengths between all species 

pairs within a community.  FPD represents the sum of all branch lengths connecting all of the 

members of a community and is highly correlated with species richness. 
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  Functional diversity (FD) was characterized using three metrics of FD: functional 

richness, functional evenness, and functional dispersion(Villeger et al. 2008), implemented in the 

R package FD (Laliberte and Legendre 2010). All FD metrics were calculated using standardized 

values of three functional traits: specific leaf area (SLA), leaf nitrogen content (%N) and the 

ratio of foliar photosynthesis to respiration (A/R). We selected these three traits from our total 

trait pool, as they are mechanistically linked to C cycling, and by reducing the number of traits it 

enabled us to maximize the number of communities included in our analyses, as 

multidimensional trait-space FD metrics require more species in a community than traits.  

Functional richness (FRic) was used to estimate the total volume of a multidimensional trait space 

defined by the functional traits of the species in a community (Villeger et al. 2008). Functional 

evenness and functional dispersion were used to characterize the distribution of species through 

trait space. Functional evenness quantifies the regularity with which species are distributed 

throughout a multidimensional functional space. If the species in a community are clustered 

within functional space, FEve will be low, and vice versa. Similarly, FDis describes the distribution 

of species throughout a multidimensional space, but captures the degree to which species are 

close to the center of the functional space or close to the edges of the functional space.  

Communities with a high proportion of species clustered near the center of functional space will 

have low FDis, while communities with high proportions of species near the edges of the space 

will have high FDis values.  

 

Statistical analyses 

 We used structural equation modeling (SEM) to analyze the relationships between 

multiple dimensions of biodiversity, NEE and total aboveground biomass (AGB) as well as an 
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integrated (latent) measure of ecosystem carbon (C) dynamics that integrates NEE and AGB. 

SEM is a set of statistical techniques that allows for complex relationships between one or more 

independent variables and one or more dependent variables using a combination of regression 

and factor analysis methods, and is reviewed in Mitchell (1992), Hershberger (2003), and Grace 

et al. (2012). The influence of multiple dimensions of biodiversity on ecosystem function were 

modeled using SEM, implemented in the R package lavaan (Rosseel 2012). Following Weeks et 

al.(Weeks et al. 2016) we modeled the distribution of functional traits through trait space as a 

latent variable (here, “functional trait distribution”), and treated functional richness as a distinct 

exogenous variable.  The latent functional trait distribution variable was measured using FEve and 

FDis, with a variance fixed to 1 and the loading on functional evenness constrained to 1. Faith’s 

PD, FRic and the Simpson Index (D) were considered exogenous variables. Ecosystem function 

(both as a latent variable and an exogenous variable, with the variance fixed to 1, depending on 

the model) was regressed onto functional trait distribution, FRic, FPD, and D.  Finally, in order to 

explicitly explore the distribution of species through functional trait space, we ran a principal 

component analysis using the package stats in R.  We ordinated species using all six functional 

traits to examine the distribution of species in functional trait space.   

Results 
We used two SEM structures, one in which ecosystem function was considered a latent 

variable, measured by net ecosystem exchange (NEE) and total aboveground biomass (AGB; 

Fig. 1), and one in which both NEE and AGB were modeled individually in separate SEMs (Fig. 

S1; Methods). When we treated ecosystem function as a latent variable, the best-supported model 

explained 60% of the variance in ecosystem function and was significantly better than a null 

model (n = 33, χ2 = 59, df = 10, P < 0.0001; Fig. 1).  In addition, we found that functional 

diversity (FD) as measured by the functional richness of a community (FRic; Methods) and 
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taxonomic diversity (TD) as measured by the Simpson Index (D) were significantly, positively 

related to ecosystem function (3.49 ± 1.72, z = 2.03, P < 0.05; 1.3 ± 0.33, z = 3.91, P < 0.0001; 

Fig. 1).  Phylogenetic diversity (PD) as measured by Faith’s PD was positively related to 

ecosystem function, but the relationship was not statistically significant.  In addition, functional 

trait distribution was negatively related to ecosystem function (-2.79 ± 0.55, z = -5.04, P 

<0.0001; Fig. 1).   

Next we decomposed ecosystem function into its measured components, NEE and AGB, 

and modeled them individually (Fig. S1; Methods).  We found that the model was significantly 

better at explaining variation in NEE than a null model (n = 33, χ2 = 54.6, df = 6, P < 0.0001; 

Fig. S1a), and explained roughly 85% of the variance in NEE.  For this model, only TD was 

positively related to NEE (1.36 ± 0.34, z = 4.01, P <0.0001; Fig. S1a) and functional trait 

distribution was significantly negatively associated with NEE (-3.03 ± 0.6, z = -5.1, P <0.0001; 

Fig. S1a).  For AGB, the model is significantly better than a null model (n = 33, χ2 = 54.4, df = 

6, P < 0.0001; Fig. S1a), and explained roughly 35% of the variance in AGB.  Functional trait 

distribution was the only variable – exogenous or latent – significantly (negatively) associated 

with AGB (-1.31 ± 0.5, z = -2.67, P <0.001; Fig. S1b).   

We subsequently performed a principal components analysis (PCA) on the species 

present in at least 10% of plots using our five plant traits (LMA, %C, %N, Amax, and RD). In the 

PCA, 49% of the variation in the data could be explained by the first axis and 23% by the second 

axis (Fig. 3; Table 1). The traits with the highest loadings on PC1 were LMA and Amax, and the 

second axis was primarily determined by %N (Table 2).  The species included in this analysis 

tended to group loosely by functional type (e.g., deciduous shrubs, evergreen shrubs, forbs and 

grasses/sedges; Fig. 3).   
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Discussion 
Overall, we found evidence of the positive effects of biodiversity on ecosystem 

functioning across an observational gradient in Arctic tundra.  While we found a positive 

relationship between FD (functional richness, FRic), PD (Faith’s PD, FPD), TD (Simpson Index, 

D) and whole ecosystem C cycling and storage, only FD and TD were significantly, positively 

related to ecosystem function, demonstrating that in natural systems different dimensions of 

diversity may be differentially related to ecosystem function.  This is in contrast to most 

experimental findings, where studies examining more than one dimension of diversity tend to 

find consistent relationships, regardless of the dimension of diversity examined (Flynn et al. 

2011).  Interestingly, our finding that both the magnitude and the direction of the relationship 

between biodiversity and function depend on the dimension of diversity considered, is less 

consistent with experimental studies within the same taxonomic group (plants) than it is with 

other studies that differ in terms of taxa, but also examine connections between biodiversity and 

ecosystem properties across a natural system (Weeks et al. 2016). This could reflect an important 

difference between experimental and natural contexts – for example, differences between 

diversity (Jiang et al. 2009) or broader assembly processes (Weeks et al. 2016) – that may not be 

captured by studies examining univariate diversity.  This is important both for understanding 

relationships between diversity and function, but also because it may reflect differences in 

mechanisms underlying these relationships across natural and experimental systems. 

The most widely supported mechanisms hypothesized to underlie the positive, saturating 

relationship between biodiversity and ecosystem functioning observed in theoretical and 

experimental studies are niche complementarity (Tilman 1997, Tilman et al. 1997b), selection 

effects (Tilman et al. 1997b), or a combination of the two (Hooper et al. 2005, Chiang et al. 

2016, Grace et al. 2016).  We hypothesize that increases in trait volume, or functional richness 
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(FRic), represent new, potentially complementary traits entering the community, which might be 

consistent with increasing niche complementarity and/or a greater opportunity for dominance to 

result in selection effects.  In addition, we hypothesize that decreases in functional trait 

distribution within trait space may reflect greater redundancy among species because more 

evenly and widely dispersed traits reflect more comprehensive trait-space coverage.  Increasing 

redundancy among species may both lessen the likelihood of niche complementarity or, where 

dominance occurs, selection effects to positively influence ecosystem function and ultimately 

constrain possible community responses to future dimensions of global change (e.g., species 

invasions, pathogen introduction, land-use change). Though, in the absence of experimentation, 

it is not possible to definitively test these hypotheses, we suggest that by unifying observational 

work such as ours, with subsequent experimental approaches – both by returning to observational 

sites and conducting experimental work and by evaluating multiple dimensions of diversity 

within experimental studies that have focused on taxonomic diversity alone – it may be possible 

to establish whether or not the relationships across different dimensions of diversity are as 

informative as we posit here.  Such a finding would allow for widespread evaluation of the 

mechanisms underlying relationships between biodiversity and function in natural systems. 

Unlike experimental studies in which covarying factors are controlled to maximize the 

detection of diversity effects, multiple covarying factors may enhance, dilute, confound, or 

prevent the detection of diversity effects.  Here, we demonstrate that diversity effects in Arctic 

tundra, an ecosystem experiencing rapid environmental change, may experience significant 

changes in C cycling and storage depending on the nature of the changes in biodiversity, not just 

changes in hydrology and nutrients as many studies have argued. More broadly, our findings 

have important implications for assumptions about the role of biodiversity in mediating 
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ecosystem function across naturally assembled systems and highlight the functional importance 

of biodiversity in environments experiencing rapid environmental change.  In addition, our 

findings demonstrate the importance of simultaneously examining multiple dimensions of 

diversity, as ecosystem function may be differentially governed by certain aspects of biological 

diversity not captured by unidimensional metrics, allowing for inferences to be made about the 

mechanisms underlying the relationship between biodiversity and ecosystem function.   
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Tables 
 

Table 4.1 1 

Table 1. Plant Trait Principal Component Analysis 

Principal Component Axis PC1 PC2 PC3 PC4 

Proportion of Variance 

Explained 
0.49 0.23 0.16 0.11 

Cumulative Variance 

Explained 0.49 0.72 0.89 1.00 
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Table 4.2 1 

Table 2. Plant Trait Principal Component Analysis Loadings 

 

 

 

Figures 

 

Trait PC1 PC2 PC3 PC4 

N  0.46 -0.58 0.60 -0.31 

A  0.56  0.34 0.26  0.70 

LMA -0.47  0.46 0.74 -0.12 

R  0.50 0.58 -0.15 -0.62 
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Figure 4.1 1 

Figure 1.  Structural equation model of the relationship between the distribution of functional 

traits, functional richness, Faith’s phylogenetic diversity and taxonomic diversity (Simpson 

Index) and ecosystem function (a latent variable in the model measured by net ecosystem 

exchange [NEE] and total aboveground biomass) shows a positive relationship between 

functional richness and the Simpson Index and function.  In addition, there is a negative 

relationship between the distribution of functional traits within trait space and ecosystem 

function. Parameter estimates are standardized, and the paths are scaled to reflect effect size. 

Significant relationships are denoted with asterisks.  The fixed loading of the distribution of traits 

on functional evenness and the fixed loading of NEE on ecosystem function are shown as dashed 

lines. Here, the four dimensions of diversity explain roughly 60% of the variance in ecosystem 

function. 
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Figure 4.2 1 

Figure 2. Structural equation models of the relationship between the distribution of functional 

traits, functional richness, Faith’s phylogenetic diversity, the Simpson Index (taxonomic 

diversity) and (a) net ecosystem exchange (NEE) or (b) total aboveground biomass. (a) There is a 

significant and positive relationship between the Simpson Index and NEE and a significant 

negative relationship between functional trait distribution and NEE.  All other relationships are 

positive, but not significant. Here, the four dimensions of diversity explain 86% of the variance 

in ecosystem function.  (b) A significant negative relationship between the distribution of 

functional traits within trait space and total biomass. Parameter estimates are standardized, and 

paths are scaled to reflect effect size. Significant relationships are denoted with asterisks.  The 

fixed loading of the distribution of traits on functional evenness and the fixed loading of NEE on 

ecosystem function are shown as dashed lines. Here, the four dimensions of diversity explain 

roughly 40% of the variance in ecosystem function. 
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Figure 4.3 1 

Figure 3. Principal component analysis of the species present in at least 10% of study plots by 

our six plant traits (i.e., SLA, %C, %N, Amax, RD and WUE).  We found that 49% of the variation 

in the data could be explained by the first axis and 23% by the second axis, and the main traits 

driving the first axis were SLA and Amax, in opposite directions, and the second axis was 

primarily determined by %N.  The species included in this analysis tended to loosely group by 

functional type (e.g., deciduous shrubs, evergreen shrubs, forbs and grasses/sedges.  
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