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Abstract

We present a translation from programs expressed in a functional
IR into dataflow networks as an intermediate step within a Haskell-
to-Hardware compiler. Our networks exploit pipeline parallelism,
particularly across multiple tail-recursive calls, via non-strict func-
tion evaluation. To handle the long-latency memory operations
common to our target applications, we employ a latency-insensitive
methodology that ensures arbitrary delays do not change the func-
tionality of the circuit. We present empirical results comparing
our networks against their strict counterparts, showing that non-
strictness can mitigate small increases in memory latency and im-
prove overall performance by up to 2x.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; B.6.3 [Logic Design]: Design
Aids

Keywords
Evaluation

Functional Language, Dataflow Networks, Non-strict

1.

A growing fraction of the area in modern chips is dedicated to
application-specific accelerators. These specialized cores consume
less energy to perform a task than a general-purpose processor, and
energy consumption is of critical, growing concern.

The work we present here is part of an ongoing project to
simplify custom accelerator design. Because most accelerators are
synthesized from register-transfer level (RTL) descriptions, their
production is a tedious, error-prone process that impedes exploring
design trade-offs (e.g., between computing resources and memory).

We present a compiler that synthesizes dataflow networks from
algorithms expressed in a functional intermediate representation
(IR) dubbed “Floh.” We target dataflow networks because they are
modular, inherently parallel, naturally “patient” about long, vary-
ing latencies, and they can yield high-speed hardware implemen-
tations [7]. We start from what is effectively a pure functional lan-
guage to provide inherent parallelism and high-level abstractions to
the designer, making it simple to correctly express and reason about
complex parallel algorithms [17]. These abstractions also present
optimization opportunities in our compiler that may otherwise be
infeasible due to side effects or direct control over pointers.

Many high-level synthesis techniques deal well with “scientific”
algorithms expressed as loop nests with affine array indices and
limited conditionals [20]. Instead, we target algorithms with com-
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plicated control and irregular memory access patterns that operate
on data structures such as lists, trees, and graphs. These kinds of
problems motivate the source and target of our compilation: func-
tional languages present elegant solutions to such algorithms (espe-
cially those with recursion), and patient dataflow networks can mit-
igate the long latencies associated with today’s memories. Since ir-
regular algorithms appear in many settings, we and others are work-
ing to address the synthesis challenge they present [16, 29].

To simplify the analysis of programs with irregular memory ac-
cesses, our Floh IR uses an immutable memory model. In particu-
lar, we maintain referential transparency while admitting the poten-
tial for data duplication across multiple memories (to enable paral-
lel computation), all without having to maintain coherence. We as-
sume the presence of automatic garbage collection, which we have
not yet implemented, but it can be done: Bacon et al. [5] show that
real-time garbage collection is practical in hardware, incurring only
modest increases in logic and memory at high clock frequencies.

A novelty of our approach is how designers “ask for” pipeline
parallelism through tail recursion with non-strict functions. Our
functions can begin execution immediately after their first argu-
ment arrives. When such a function calls itself tail-recursively, mul-
tiple invocations of the function run in parallel.

Motivation for this work was partly driven by shortcomings
observed in previous research. The SHard compiler [23] trans-
lates functional programs into dataflow networks before generating
hardware, but their strict function evaluation hinders their ability
to exploit parallelism. Conversely, the MIT tagged-token dataflow
architecture [1] dynamically generates dataflow graphs with fully
non-strict functions, but their stored-program implementation re-
lies on unbounded buffering, an impossible restriction in hardware.

We make two main contributions to attack these limitations: a
largely syntax-directed translation of a functional IR into an ab-
stract dataflow model that exhibits pipeline and other forms of par-
allelism, and a technique for implementing such abstract networks
in hardware with limited, bounded buffering. Our translation han-
dles algebraic data types, non-recursive function calls, and groups
of mutually tail-recursive functions; an earlier pass in our compi-
lation flow dismantles programs with arbitrary recursion into this
form using a technique presented elsewhere [30].

Our paper is structured as follows. Section 2 describes our start-
ing point, the “Floh” IR; Section 3 introduces our target, an ab-
stract dataflow model with unbounded buffers between nodes. Our
translation operates in two steps: Section 4 presents the translation
from Floh to dataflow with unbounded buffers; Section 5 shows
how to practically implement such networks in hardware. Section 6
presents our experimental results, which show our compiler creates
systems that exploit pipeline parallelism and can cope with mem-
ory latency. We defer our discussion of related work to Section 7.

2. Our Intermediate Representation “Floh”

Our synthesis process begins from the Floh (“Functional Language
On Hardware”) intermediate language, whose syntax is shown in
Figure 1. We based this syntax on the Core language of the Glasgow
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program ::= type-def* func-def™
type-def ::= data Tcon = (Dcon type™) ™"
func-def = fid vid* = expr

expr = vid Variable
fid vid*+ Function call
Dcon vid™ Data constructor
let (vid = expr)™ in expr Variable binding
case vid of (pattern — expr)™ Conditional

pattern ;= Dcon (vid | )T

type = Int Finite Integer
Go Trigger (see Section 2.2)
Tcon Algebraic type constructor

vid ::= Variable identifier

fid ::= Function identifier or integer literal (see Section 2.2)

Dcon ::= Data constructor identifier (capitalized)

Tcon ::= User-defined type name (capitalized)

Figure 1. The syntax of Floh, our compiler’s functional IR

Haskell Compiler [21] to attain a simple but rich IR with inherent
parallelism (described in Section 2.1). By design, we limit Floh’s
syntax to simplify its translation into dataflow; our prototype com-
piler, built on GHC, accepts a Haskell subset providing first-class
functions and general recursion, and transforms it into Floh.

A Floh program consists of type and function definitions. An
algebraic data type definition (fype-def) defines a new type named
Tcon consisting of one or more “variants”. Each variant consists of
a globally unique name called a data constructor (Dcon) and one
or more type fields. A function definition binds an expression (the
body of the function) to a function name. Each function has one or
more named arguments; we prohibit partial function application.

We allow only tail-recursion in functions; our compiler uses
the technique of Zhai et al. [30] to transform arbitrary recursion
into tail-recursion with an explicit stack. Although these stacks are
currently in the heap, we will eventually use custom stacks.

2.1 Expressions

The most primitive expression is a variable: a function parameter
or a local name bound by a let construct or by a pattern in a case
construct. In keeping with tradition, we use the term ‘“variable”
even though it is a misnomer: our “variables” are immutable.

Function calls require one or more arguments, which must all
be variables; we can pass an expression’s value to a function by
first binding the expression to a variable with a ler. The number
and type of arguments to each function must be consistent with
the function’s type, which is inferred from its definition. Data
constructors, which always have one or more arguments, behave
like functions that create objects: if type T has a variant defined as
Dty ...1, the expression D vy ... v, where variable v; is of type ¢;,
creates an object of type T.

Unlike Haskell, Floh uses different strictness policies for data
constructors and function calls to balance simplicity with perfor-
mance. Data constructors are strict: they evaluate all their argu-
ments before producing a result, simplifying the memory system
semantics and eliminating the bookkeeping overhead of Haskell’s
lazy evaluation scheme. Floh functions are only strict in their first
argument: a function may begin evaluation after the first argument
is available, but requires the arrival of all other arguments before
returning a value, even if some are unused. Starting before all ar-
guments are available facilitates pipeline parallelism; insisting on
ultimately having all the arguments simplifies the translation. We
elaborate on our non-strict functions in Section 4.

The let construct binds one or more local variables to expres-
sions. These variables are visible only within the let’s body; no
definition in a given /et can refer to another variable defined by that
let. This restriction provides a simple source of parallelism: since
definitions within a let have no inter-dependencies, we can evaluate
their expressions in parallel. We insist that each variable bound in a
let be referenced at least once in the let’s body. This simplifies the
translation process and prevents the definition of unused variables.

The case construct is a multi-way conditional that selects an ex-
pression to evaluate according to a matching pattern. A case’s argu-
ment (a vid) must be bound to a data constructor for matching; the
case has exactly one pattern for each variant of vid’s data type, and
each pattern must specify every argument for its data constructor.
After matching its argument against one of the patterns, the case
extracts the fields of the data constructor, binding each to the new
local variables named in the pattern or ignoring them if the corre-
sponding argument is the wildcard character (underline). This case
construct is more restrictive than the full pattern-matching mecha-
nism in many modern functional languages, but richer patterns can
be decomposed to this simpler form.

2.2 Numeric Literals and the Go Type

Numeric literals are deliberately missing from Floh to simplify its
translation to dataflow. To avoid the need for “source” nodes that
generate data without being prompted (which lead to scheduling
headaches), we insist that the evaluation of each expression is
triggered by the evaluation of at least one variable. Traditional
numeric literals would violate this invariant.

Each numeric literal in Floh is generated by a primitive function
that takes a single-valued type called “Go” and produces the appro-
priate constant. An object of the Go type functions as a trigger: it
does not carry a value, similar to the void type in C-like languages
and the unit type in many functional languages. For example:

add42 :: Go — Int — Int
add42 g x = let fortyTwo =42 g in
add x fortyTwo

Here, 42 is a function that generates the value 42 when given a Go-
valued argument g. This value is then bound to fortyTwo and added
to x. The type signature here is for illustration only; all signatures
are inferred in Floh and are not part of the syntax.

A program cannot produce a Go object; the environment sup-
plies a single Go object for the program, and functions pass it
around as an argument (like the g above). Specifically, any func-
tion that produces a constant value, either in its own definition or
via a call to another function, will take an additional Go argument.

We also use the Go type for constant data constructors. The Bool
type below illustrates this: both the True and False data constructors
take a single Go argument, and functions operating on Booleans
(such as the logical not function) take an additional g argument to
pass the Go type around. Case statements take these Go fields into
consideration, but ignore them with wildcard characters.

data Bool = True Go
False Go

not :: Go — Bool — Bool

not g boolVal = case boolVal of
True  — False g
False _ — True g

While our Go machinery clutters Floh programs, it simplifies
our translation to dataflow. The Go type is an algebraic type like
any other and the Go-valued variables behave like all other vari-
ables; our translation does not need any special rules for triggering



literals. By contrast, Arvind and Nikhil [1] use two different poli-
cies for literals: many are subsumed into the operator using them;
others use a “trigger” signal similar to our Go. We believe that our
single-policy approach is simpler. In practice, our compiler takes
Haskell programs with traditional constants and inserts the needed
Go machinery as part of its translation into Floh.

2.3 Types and Memory

Values in our language are either finite integers, the single-variant
Go type, or non-recursive algebraic data types. We omit recursive
types due to their unboundedness: statically-sized (i.e., bounded)
bit vectors encode our data types in hardware, and a recursive type
cannot be bounded at compile time, in general.

We model recursive data types with type-specific pointers and a
heap. For example, a binary tree of integers uses types

data Btree = Branch Bptr Int Bptr
Leaf Go

data Bptr = Bptr Int

where Btree is an algebraic type with two variants: Branch, with

pointers to two Btrees and an integer; and Leaf representing an

empty tree (note the use of Go for this constant data constructor).
Such Btree objects are stored and recovered from a heap via two

functions with type signatures

treeWrite :: Btree — Bptr
treeRead :: Bptr — Btree

TreeWrite takes a Btree object, writes it to the heap, and returns a
Bptr that, when given to treeRead, returns the written object.

Providing memory operations in a parallel programming lan-
guage usually introduces data races and nondeterminism; we avoid
these problems with a simple but profound limitation: only mem-
ory write functions can create pointers (e.g., only treeWrite may
construct Bptr objects). This restriction, paired with a heap follow-
ing the standard heap discipline (i.e., live data is never overwrit-
ten), ensures that Floh remains deterministic with explicit memory
operations. Thus, given any object x with type-specific memory op-
erations read and write, read(write(x)) = x always holds.

2.4 An Example: Map

Figure 2 shows how the classical map function can be coded in
Floh. It takes a list of integers and produces a second list by
applying some function f to each element of the first list.

In Haskell, we code map recursively:

map list = case list of

0 —10

(x:xs) — f x : map xs
When the list is empty, the result is empty. Otherwise, map splits
the list into its head (x) and tail (xs), recurses on the tail, and
prepends the result of the call f x to the result of the recursive call.

This function operates in two phases. In the first phase, it tra-
verses the source list and pushes each element (x) on the stack. In
the second phase, it pops each element from the stack, applies f,
and prepends this new list cell to the result list.

Our compiler uses the techniques described in Zhai et al. [30]
to translate the recursive Haskell function into the tail-recursive
Floh program in Figure 2. It transforms recursive functions into
continuation-passing style, performs lambda lifting to name each
continuation as a global function, creates a continuation type to en-
code these new functions, and finally builds a pair of functions that
operate on the new type to handle the calls (call) and continuations
(cont) of the map function. The continuations in our language be-
have like activation records and can be managed on a stack.
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data ListPtr = ListPtr Int
data List = Cons Int ListPtr
Nil Go

data ContPtr = ContPtr Int
data Continuation = C1 Int ContPtr
C0 Go

maplp g=1let c0O=COg in
let sp = stackWrite cO in

call 1Ip g sp
call Ip g sp = let le = listRead Ip in
case le of
Cons x xs — let nc = C1 x sp in
let nsp = stackWrite nc in
call xs g nsp
Nil — let nil =Nil g in
let lIpn = listWrite nil in
cont sp lpn
cont sp Ip = let se = stackRead sp in
case se of
Clxnsp — let fx =f x in
let nle = Cons fx Ip in

let nlp = listWrite nle in
cont nsp nlp

o —lp

Figure 2. The map function implemented in Floh. The call func-
tion walks the input list and pushes each element on a stack of
continuations (replacing function activation records) encoded with
a list-like data type; the cont function pops each element x from the
stack, applies f to it, and prepends the result to the returned list.

In Figure 2, the map function receives a list pointer and a Go
object as arguments, pushes an initial terminal continuation (C0) on
the stack, and then starts call. The call function reads a cell of the
input list and either pushes its contents in a C/ continuation on the
stack before tail-recursing or writes an empty list to the heap and
invokes cont. The cont function pops a continuation off the stack
and either applies f, prepends a new list cell to the result list, writes
it to the heap, and tail-recurses, or returns the final list pointer. If

f is a high-latency, pipelined function, cont’s non-strictness can

exploit pipeline parallelism across tail-recursive calls: each call’s
first argument (nsp) will be available before the second (nlp, which
depends on f x), so we can recurse multiple times and fill f’s
pipeline with data from the popped continuations.

3. Dataflow Networks

We translate a Floh program into an idealized dataflow network
with unbounded buffers, which we ultimately convert into hardware
with finite buffers; see Section 5. This intermediate step enables the
exploration of alternative hardware implementations (e.g., trading
area for clock speed) without complicating the translation from the
higher-level language.

We use a dataflow representation to bridge the gap between a
functional software language and hardware because it is inherently
distributed, parallel, and “patient”: infinitely buffered dataflow net-
works can handle long, unpredictable latencies from complex, hi-
erarchical memory systems without requiring any kind of costly
global synchronization. Modeling hardware with streams [30, 11]
does not accommodate delays as readily.
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Figure 3. Our menagerie of dataflow nodes. Those above the line
require data on every input channel to fire.

A dataflow network consists of a collection of nodes connected
via unbounded point-to-point FIFO channels that convey typed,
data-carrying fokens. All tokens on a particular channel have the
same Floh type. When a node fires, it consumes one or more
tokens from at least one of its input channels, performs computation
on their contents, and produces tokens on zero or more output
channels. An enabled node has sufficient input tokens to fire.

At this level, our networks resemble Kahn Process Networks
(KPNs) [15]: a KPN comprises a set of deterministic nodes that
communicate via tokens passed along unbounded FIFOs. Since we
use a nondeterministic merge (arbiter) node in our networks, we do
not exactly follow the KPN model and thus cannot rely on Kahn’s
proof of determinism. However, our networks are deterministic:
we use nondeterministic merges around pure (i.e., side-effect free)
blocks and “correct” for the nondeterminism by splitting merged
streams according to the nondeterministic choices.

The state of a dataflow network consists of the tokens on each
channel. At any point, this state may evolve by firing any or all en-
abled nodes (i.e., those with sufficient tokens on their input chan-
nels). The choice of which nodes actually fire is nondeterministic.

Figure 3 lists the types of nodes in our networks; each has its
own firing policy. Because each channel is an unbounded FIFO
that can always accept another token, a node’s ability to fire solely
depends on the presence of tokens on its input channels.

Each node on the top part of Figure 3 requires exactly one
token per input to fire. A primitive node models a constant, simple
arithmetic or Boolean function and produces a single output token
when it fires. A fork node consumes a single input token and copies
it to each of its output channels.

A case node models the core of the Floh case construct. Each
case node has a single input that accepts tokens of a specific al-
gebraic data type, an output (drawn on the right) that reports the
variant of the input token, and a potentially empty set of output
channels for each variant of the algebraic type. We only provide a
channel for a field if the corresponding case alternative uses it.

When a case fires, it consumes its input token, emits a “choice”
token indicating the input’s variant, splits the input token into its
constituent fields, and generates tokens on the existing output chan-
nels for that variant. Figure 4 illustrates the three ways a particular
three-variant case node may fire. The omission of a channel for B’s
field means that the field is not used in B’s alternative expression.
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data D = A Int
B Go
C Int Int

my

| 4 |3 l
/ABC\er [ABC

¢ 1 Vo e

Figure 4. The three ways a particular 3-variant case node can fire.
The top and bottom rows indicate the state of the node’s channels
before and after firing, respectively. Labeled black dots represent
the location of tokens and their values.
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A demux node routes an input token (from the top) to one of its
output channels depending on the value of a “choice” token (from
the side). A case node is one source of such “choice” tokens.

Memory read and write nodes behave like primitive functions
with single inputs, but deserve special mention anyway. As in Floh,
our dataflow networks assume an immutable, garbage-collected
memory model. As such, a write node takes a data token as input
and generates an address token as output; a read node does the
opposite. Together, these nodes maintain the deterministic memory
operation invariant discussed in 2.3.

Our translation treats read and write nodes abstractly: as inde-
pendent and non-interfering, but their eventual implementation will
be more subtle. For example, the memory system much ensure that
it never generates an address token from a write before it is pre-
pared to respond when that address is passed to a read. We also in-
tend to divide up memory into multiple regions, e.g., based on their
type. This means we must both size these regions wisely and, to
avoid local out-of-memory situations (e.g., stack overflows), back
local memories with a larger off-chip memory. The abstract mem-
ory operations suffice for our purposes here; we will demonstrate a
realistic, garbage-collected memory system in future work.

The nodes on the bottom half of Figure 3 only require tokens
on a subset of their inputs to fire. A mux node is the opposite of the
demux node: it takes a choice token (from the side) and a token on
the input corresponding to the choice (on the top), and transfers the
input token to the output.

A merge node is an arbiter: it consumes a token from one of
its inputs (if tokens are available on more than one input channel,
this selection is nondeterministic) and routes it to its output. Merge-
Choice nodes have an additional choice output (drawn on the right)
that generates a token indicating which input channel provided the
selected token. This choice output often drives a demux that, to-
gether with a merge node, manages access to a shared resource.

A lock node limits calls to a cluster of mutually recursive func-
tions; after receiving arguments for a given call, it blocks additional
inputs until an “unlock” token arrives. A lock node for a function
of n arguments has n pairs of inputs and outputs and a single “un-
lock” input on the side. It operates in two phases. In the first phase,
the node passes a single argument token from each of its inputs to
the corresponding output as soon as the input is available, blocking
any further arguments that may arrive. Once a single token has been
consumed from every top input, the lock enters the second phase,
where it waits to consume a single “unlock” token on its side input
before returning to the first phase.
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4. Translation from Floh to Dataflow

In this section, we describe our translation procedure that trans-
forms a Floh program into a dataflow network. Overall, each func-
tion is transformed into a subgraph of the network with at least one
input channel per argument and one output channel (except for tail-
recursive calls). When one function calls another, additional inputs
and outputs are added as described below.

Running a program amounts to supplying a single token to each
argument input channel of a distinguished “main” function and
waiting for a single output token to be produced in response. The
“main” function typically takes a single Go-valued argument, but
may take other values from the external environment.

4.1 Translating Expressions

The dataflow subgraph we generate for each Floh expression be-
haves like a function: the subgraph has a non-zero number of input
ports, one per live variable in the expression (including, perhaps, a
channel for Go tokens that trigger constants), and a single output
channel (tail-recursive calls are the exception). Delivering a single
token on each input channel of the subgraph will trigger the eval-
uation of the expression, which will produce a single token on the
output.

Our translation maintains an invariant that each live variable has
its own fork node; a reference to a variable in an expression adds
an output port and channel from that variable’s fork, as shown in
Figure 5 (this may produce unary fork nodes, which we optimize
away). This implicitly assumes every reference to a variable in an
expression will be consumed, which our translation rules enforce.

A call to a built-in function (arithmetic, Boolean logic, and
memory operations) or data constructor is converted into a single
node. As shown in Figure 6, we add a new connection from each
argument’s fork (each argument is necessarily a variable) to the
appropriate input port. Constants are handled similarly: they take
a single Go-valued argument passed in from the appropriate fork.
The result channel from such an expression is the output channel
from the function/constructor/constant node.

Translating a let construct, depicted in Figure 7, consists of
translating the expression for each new variable, connecting the
output of each to a new fork, and then translating the body of the
let to produce the final result.

Our translations of case nodes and calls to user-defined func-
tions, especially tail-recursive calls, are context-dependent; we de-
scribe them in the next sections.
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4.2 Translating Simple Functions and Cases

We divide Floh functions into two groups for translation: simple
and clustered. A simple function has no tail-recursive calls; a group
of one or more mutually (tail-) recursive functions is a cluster.

Simple functions are easily pipelined; function clusters often
exhibit pipelines internally, but pipelining calls to clusters is dif-
ficult because the subgraph for a cluster may return results from
multiple calls out of order. While pipelining clusters would be pos-
sible by tagging tokens and adding reorder buffers, we have not yet
attempted to do so. We plan to consider this in future work.

Figure 8 shows how each simple function becomes a collec-
tion of nodes surrounding the translation of the function’s body.
Arguments are channeled from call sites to the function via merge
and mux nodes; the first (leftmost) argument goes through a merge
that generates a choice token indicating which call site provided
the argument. Every other argument comes from a mux that uses
the choice token to select the input channel corresponding to the
same call site. The choice token is also sent to a demux that routes
the result of the body expression back to the appropriate caller.
Each argument—the output of either the merge or one of the mux
nodes—is fed into a dedicated fork that distributes the argument
wherever it is used within the expression. Each additional call site
for a simple function adds another input to each of the merge and
mux nodes for the arguments and another output to the demux.

Here, we make an important choice that separates us from sim-
ilar dataflow translations: function calls are not strict. In particular,
the nodes comprising a function’s body may start firing before ev-
ery function argument is available; once the first argument from a
given call site passes through the merge node, the other arguments
from that call site can arrive in any order, allowing computation to
proceed in a data-dependent manner and enabling pipeline paral-
lelism across multiple calls. Since our translation does not reorder
arguments, the programmer can help enable parallelism by order-
ing function arguments appropriately.

Our asymmetric handling of arguments is key to this non-strict
policy: if each argument had its own merge, for example, each
might make a different choice when faced with simultaneous calls,
effectively permuting the arguments among multiple call sites. We
avoid this problem with a single merge node that dictates which
call site to service.
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Figure 9. Translating a case construct: a case node checks the data
constructor of input w and splits the token into fields: x and y for
A or z for B. The case also produces a choice token that indicates
which branch was selected (A or B); this token drives both the mux
that selects the case’s result and the demuxes that steer the values of
live variables p and ¢ to the alternatives that use them. The omitted
demux output for ¢ means e4 does not reference that variable.

Although nondeterministic merge nodes break Kahn’s seman-
tics (and thus prevent a simple proof of determinism), they let us
avoid a global scheduler to arbitrate access to shared functions.
Such a scheduler would be inefficient, as Kahn’s semantics would
prevent it from doing any kind of dynamic load balancing across
the shared resources.

Figure 9 illustrates how a case construct is translated in general
(some cases within clustered functions require special treatment).
The network is built around a case node that takes in the argument,
identifies which data constructor it represents, and sends that con-
structor’s fields out (if they are referenced) to its alternative expres-
sion as newly bound variables.

The case node also generates a token that encodes which alter-
native was selected, which we use to steer local variables to differ-
ent alternatives. A fork distributes this token to a demux for each
free variable that is live in some alternative. If the token encodes an
alternative that does not need a given free variable, that variable’s
demux simply consumes its inputs without producing an output; the
demux for g in Figure 9 does this when alternative A is selected.
This ensures that no extraneous tokens are produced, and that all
produced tokens will be consumed.

The output of the case is selected by a mux according to which
alternative was evaluated. By definition, a simple function may
not contain a tail-recursive call, so every alternative expression
will produce a value. This invariant does not hold within clusters,
necessitating an alternate translation scheme.

4.3

A function containing a tail-recursive call—a clustered function—
presents a wrinkle in our translation scheme. Unlike all the expres-
sions presented so far, a tail-recursive call within a cluster does
not generate a subgraph with an output channel; it induces a cycle
in the network that feeds arguments to a function within the same
cluster. These cycles necessitate a different approach for translating
calls within and to a cluster. Before presenting this new scheme, we
first discuss how to deal with tail-recursive calls produced by case
constructs.

Our original translation of case constructs assumed an out-
put channel for every alternative; case alternatives ending in tail-
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recursive calls (which can only occur in a cluster) violate this as-
sumption, since they induce cycles instead of providing a new out-
put channel. Note that these types of cases cannot occur within
let-bound expressions, even in a cluster; any recursive call within
such a case would require more computation after the call returned
i.e. such a call is not tail-recursive.

Figure 10 illustrates our solution to this problem; two of the
case’s alternatives return results while a third yields a tail-recursive
call. A standard case node still examines and dismantles the alge-
braic data type into fields, and a choice token still steers live vari-
ables (not shown in Figure 10), but alternatives ending in a tail-
recursive call do not produce a value and thus are not assigned a
dedicated output channel. A more significant change is the replace-
ment of the case’s mux with a merge; we use a merge node because
tail-recursive calls make it difficult to determine where a result will
ultimately come from.




We translate a cluster of functions as a whole since they tail call
each other (by definition). Each cluster is assumed to have only
one entry point (i.e., we do not handle clusters where more than
one member of the cluster is called from the outside); we add a
merge and muxes for the arguments and a demux for the result as in
the simple function case. Functions within the cluster are translated
differently, however.

Figure 11 shows how we translate a cluster of two functions,
f and g, that recursively tail-call each other and themselves. Each
function within a cluster still has a merge and group of muxes that
manage intra-cluster calls to it, but the results of each function are
passed to a single merge node for the cluster (i.e., rather than the
per-function demuxes used in our translation of simple functions).
Again, our use of a merge node is motivated by the presence of
tail-recursion.

The other substantial difference in translating a cluster is a lock
node that blocks multiple external calls from accessing the cluster.
The interior of a function cluster does not behave like a simple
pipeline: intra-cluster tail calls turn into data-dependent feedback
paths. If we allowed n external calls to access a cluster, the network
for the cluster would still produce 7 result tokens, but not in any
pre-determined order. Rather than adding tags to every token and a
reorder buffer to guarantee in-order delivery of results, we instead
opt to limit each cluster to one external call at a time.

The lock node passes exactly one external function call at a time
into the internals of the cluster. The lock accepts exactly one token
on each (top) input channel and blocks any additional inputs until
the cluster signals it has produced its result, which is indicated
by duplicating the result token with the fork near the bottom of
Figure 11 and passing it as an “unlock” token to the lock.

4.4 Putting It All Together: Translating the Map Example

Figure 12 shows the dataflow network our procedure generates for
the map example introduced in Figure 2. As described in Sec-
tion 2.4, this walks an input list and pushes each value on a stack,
then repeatedly pops the stack, removing each element, applying
the function f, and prepending the result to a new list.

Call and cont contain tail-recursive calls but are not mutually
recursive, so each is treated as a cluster. Thus, we place a lock node
on both of their inputs to ensure they will not accept another outside
call until they have generated an output.

This example illustrates how tail recursion coupled with non-
strict functions and buffering enables pipeline parallelism. The tail-
recursive call in the call function induces three separate loops—
1, 2, and 3—which operate largely independently. In particular,
loop 1, which reads the input list, can race ahead, producing data
tokens on channel 4. These tokens are eventually consumed by
loop 3, which places them on the stack as a series of “C1” objects.
Loop 2 is a bit wasteful: it waits and releases a Go token when the
end of the list is reached, triggering the creation of the result list.

A strict implementation of the call function would force all three
loops to operate in lock-step, i.e., the next element of the list could
not be read before the stack was pushed.

Pipelining is even more effective in the cont function. Loop 5
pops data off the stack so that f can be applied to it. If f is a long-
latency function, loop 6 will be slow because it will have to wait for
f to complete, write the new list element, and recurse. But the tail-
recursive call to cont is non-strict so loop 5 can race ahead, perhaps
even filling /s pipeline to greatly improve parallelism.

In Section 6, we quantify how well our technique exposes par-
allelism in this example and others.

5. Dataflow Networks in Hardware

We take a structural, distributed approach to implementing dataflow
networks in hardware: each node becomes a small block of combi-
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Figure 12. A dataflow graph for the map function from Figure 2.
This initializes the stack (map); walks the input list, pushing each
element on the stack (call); then pops each element off the stack,
applies f, and places the result at the head of the new list (cont). Tail
calls to call and cont are not strict, decoupling loops 1 and 3, and
more importantly, loops 5 and 6, to enable pipelining.

national logic, and each buffer is bounded as a finite bank of flip-
flops. A large, central memory could simulate unbounded buffers,
but such an approach would likely require additional throttling
mechanisms, such as Arvind and Nikhil [1] found. Our approach
thus maintains the parallelism of the dataflow network while en-
abling high-speed hardware, since far-flung parts of the circuit do
not need to communicate with a global memory or each other.
Bounded buffers complicate node firing rules, which must also
take into account the availability of space downstream. Since this
“availability information” flows upstream, a naive translation may
generate an excessively slow circuit due to long combinational
paths or a broken circuit plagued with combinational cycles. Cao
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Figure 13. The flow-control protocol, after Cao et al. [7]. Data and
valid bits flow downstream; ready bits flow upstream.

et al. [7] present a solution to these issues by implementing each
channel as a two-token buffer. This technique breaks any poten-
tial cycle or long combinational path with a flip-flop but hinders
throughput, as tokens can only cross up to one node per cycle. Since
some nodes do more work than others, grouping simple nodes into
a single cycle would reduce latency without affecting clock speed.

We adopt a variant of Cao et al. in which channels are either
two-place buffers or direct wires. Having two choices allows us to
control the work per clock cycle by “fusing” multiple nodes to-
gether. Our circuits use the flow-control protocol shown in Fig-
ure 13, which presents a danger of a combinational cycle (and
hence deadlock) if the valid signal depends on the ready signal
and vice versa. Below, we discuss our implementation technique
for avoiding these cycles.

5.1 Evaluation Order

Establishing a fixed, constructive evaluation order for valid and
ready signals prevents deadlock in the flow control logic. We
choose a three-phase evaluation order starting from the buffers
of Cao et al. [7]: the valid and ready outputs from every buffer are
defined at the beginning of each cycle and do not depend on any
inputs. In the second phase, valid bits propagate downstream, un-
affected by ready bits. Finally, ready bits are propagated upstream
and may depend on valid bits. For this arrangement to work, the
valid outputs of a node may never depend on its ready inputs in the
same cycle, which turns out to be a delicate property to guarantee.

5.2 Stateless Nodes

Under our valid-then-ready evaluation order, nodes that produce
a single token when fired have fairly straightforward flow control
logic. Primitives nodes are simple: the output is valid if all the
inputs are valid; the inputs are ready if the output is valid and ready.
A demux is similar: the chosen output is valid if both the inputs are
valid; the inputs are ready if the chosen output is valid and ready. A
mux is slightly more complicated: the output is valid if the choice
(side) input and the chosen input are valid; the choice input and
chosen input are ready if the output is valid and ready. The merge is
still more complicated: we currently use a priority-based arbitration
scheme in which the output is valid if at least one input is valid; the
leftmost valid input is ready if the output is valid and ready.

5.3 Stateful Nodes

Nodes such as fork that generate multiple tokens when they fire
present a challenge to our evaluation scheme. Tokens could be
erroneously duplicated if we used the obvious rules for fork, i.e.,
all the outputs are valid if the input is valid and the input is ready
if all the outputs are ready. Under these rules, if one of the outputs
was not ready when the fork fired, that output would not consume
the token but the others would; a duplicate token would then be
presented to all the outputs again on the next cycle, even though
some already consumed it. It might seem possible to address this
by making the outputs valid only if all the outputs are ready, but
this violates our evaluation order policy and can cause deadlock.
Our solution is to add a few bits of state to nodes that can gen-
erate multiple tokens: fork, case, lock, and mergeChoice. Specifi-
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cally, each output is given a state bit that indicates whether a token
has been generated from the output in the current “round” of firing.
When sufficient tokens are available on the inputs to produce out-
puts, an output’s bit is set if its channel is not ready. Once tokens
have been generated on all the relevant outputs (e.g., every one for
a fork; the appropriate group for a case) in a given round, all the bits
are reset and the next round can begin in the next cycle. Locks are
reset differently: they require the arrival of an unlock token before
another round can begin.

With this policy, a state bit can disable a valid output, prevent-
ing the erroneous duplication of tokens, but a valid signal never
immediately depends on a ready signal, satisfying our scheduling
criteria.

5.4 Inserting Buffers

As stated above, we implement certain channels in our dataflow
graph with the two-token buffers described in Cao et al. [7] and
the rest as simple wires, leaving them unbuffered. We insert buffers
primarily to avoid deadlock, although additional ones are often de-
sirable to balance both per-cycle computation and pipelined paths.

Figure 14 shows part of a network after buffer insertion. Un-
buffered cycles result in deadlock, so we first ensure cycles have
been broken with buffers using the following heuristic: find the
shortest unbuffered cycle in the graph (we modify Dijkstra’s
shortest-paths algorithm to solve this); find a node on the cycle
with the largest number of outputs; place a buffer on the output
that belongs to the cycle. We repeat this process until all cycles
are buffered. This heuristic targets nodes with multiple outputs to
prevent throughput degradation on the other outputs that are not
part of the cycle. In Figure 14, buffer 2 was inserted to break the
cycle.

A far more subtle form of deadlock can arise from mismatched
reconvergent paths. Multiple paths in a network are reconvergent
if they share the same source and destination nodes but no others.
These paths necessarily originate at multi-output nodes and termi-
nate at multi-input nodes. Two such paths are mismatched if exactly
one is buffered.

As an example of reconvergent deadlock, consider the dataflow
graph shown in Figure 14, but without buffers 3 and 4; two mis-
matched reconvergent paths originate at the fork and terminate at
g. If a token is in buffer 1 when the fork first fires, f will consume
both inputs and produce a token in buffer 2. However, g cannot con-
sume the fork’s right output token yet, so the fork does not consume
its input token. In the next cycle, buffer 2 and the right output of the
fork will both supply a token to g, which would normally enable it
to fire, but f is blocked because it does not have a new token from
above. This will in turn block g, creating a deadlock.

To prevent this situation, we find and buffer mismatched re-
convergent paths after breaking cycles (since the latter may buffer
some mismatched paths implicitly). Although finding all such paths
is tractable in DAGs [22], it is NP-hard in general, requiring a
heuristic solution.

Our heuristic leverages an approximation algorithm for count-
ing reconvergent paths [28] between nodes i and j. We convert our
network into a weighted graph by assigning a O to unbuffered edges
and a 1 to buffered edges. We find a shortest path on this graph be-
tween 7 and j (terminate if no such path exists), remove it from the
graph, and repeat. The set of removed paths comprises a set of re-
convergent paths from 7 to j. Let out; and in; be the out-degree of
i and in-degree of j, respectively; then min(out;,in;) is an upper
bound on the number of searches required. Using Dijkstra’s algo-
rithm on a graph with m edges and n nodes, this algorithm runs in
O(min(out;,in;)(m+nlogn)) time.

Our heuristic applies this algorithm to each pair (i, j) of multi-
output (i) and multi-input (j) nodes, keeps any mismatched sets of
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Figure 14. An example of our buffer allocation scheme. We insert
buffers to break cycles in the network (e.g., 2) and prevent recon-
vergent deadlock (e.g., 3).

paths, and returns the unbuffered members of each set. We walk
over this set of unbuffered paths, selecting the first edge from
each (unless a selected edge from a previous path is also on the
current path), and assign a buffer to each edge in the resulting set,
updating their weights in the graph. Let d = min(outay, imayx),
where outy,,y (inygy) is the largest out-degree (in-degree) of any
node in our set of p node pairs. Then this heuristic algorithm runs
in O(pd(m+nlogn)) time.

Although this scheme successfully prevents reconvergent dead-
lock, its overly conservative nature yields unnecessary buffers. As
shown in Figure 14, the heuristic will first allocate buffer 3 to bal-
ance the reconvergent paths terminating at g. The placement of this
buffer means that the reconvergent paths from the fork to f are now
mismatched, which will cause the heuristic to place buffer 4. How-
ever, this buffer is unnecessary, as buffers 2 and 3 together pre-
vent the deadlock. In some cases, these excessive buffers improve
performance by providing implicit pipelining. Other topologies are
hurt by these buffers, as they can increase overall completion time
without increasing throughput.

Our heuristic algorithm adds some non-determinism to our
translation: permuting the heuristic’s input can lead to different
buffer allocations for the same topology. However, this only affects
the performance of the resulting circuit, not its correctness. Insert-
ing minimal, efficient buffering is a difficult problem which we will
address in future work.

6. Performance Evaluation

To evaluate the quality of the dataflow networks produced by this
compilation pass, we simulate several examples. We analyze the
impact of non-strict evaluation, the importance of argument order,
and sensitivity to memory latency.

6.1 Methodology

Simulator To evaluate the performance of our generated dataflow
networks, we wrote a simulator that executes a network on a given
set of inputs and reports both the final output token (to compare
against the output of the original Floh program) and the number of
clock cycles required.

In one mode, our simulator runs a cycle-accurate model of a
hardware implementation that employs the finite buffers of Cao et
al. [7]. In particular, it models their single cycle latency.

In the other mode, our simulator calculates a lower bound on
the number of cycles hardware would take by assuming ideal, fast
buffering. Here, buffers are modeled as unbounded, but in each
cycle, each node is limited to firing at most once. While such
behavior is unrealizable, this value provides a lower bound on the
cycles a particular network requires to process the input.

Test Programs We compiled six recursive Haskell programs into
dataflow graphs for evaluation. Append, Filter, and Map each tra-
verse a list and perform computation on each element: append
prepends each element to a new list, map applies a function f, and
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Figure 15. Non-strict evaluation is generally superior to strict.
When combined with a good function argument ordering, the finite,
non-strict implementations yield a 1.3—2x speedup over strict.

filter applies a Boolean-producing function g whose result deter-
mines if an element is kept or discarded. We assume f and g are
both fully pipelined and each have a latency of 10 cycles. TreeMap
functions the same as Map but operates on a tree.

The DFS and MergeSort tests are more complicated. DFS ap-
plies depth-first search to a binary tree, producing a preordering
of its elements. At each tree node we recurse on the left and right
subtrees, append the results, and prepend the node’s element to the
final list.

MergeSort is the well-known sorting algorithm with four tail-
recursive functions: evens and odds together partition a list into its
even- and odd-indexed elements, merge combines two sorted lists
into a single sorted list, and mergeSort drives the other three func-
tions. The translated dataflow graph consists of seven clusters: the
call and cont components of mergeSort are mutually recursive and
thus share a cluster, while the components of the other functions
each have their own cluster. This application represents the types
of real-world programs our work targets: memory-intensive algo-
rithms implemented with multiple interactive recursive functions.

Input Data Each program is fed a Go object that triggers the
construction of an input data structure. This structure is either a 100
element list or 100 element balanced binary tree, according to the
test program. This structure is then processed by the main program.

6.2 Strict vs. Non-strict Tail Recursive Calls

Our first experiment measures the performance impact of our non-
strict function evaluation policy intended to enable pipelining. We
generate each test’s dataflow graph under three different policies:
non-strict tail-recursive calls with infinite FIFOs on each channel,
non-strict with finite buffering, and strict with finite buffering. We
also vary the order of function arguments under each policy; a
“good” ordering implies that the first argument routinely arrives be-
fore the others (like the first argument to call and cont in Figure 12),
which enables the function to start being evaluated; a “bad” order-
ing entails one or more arguments arriving at muxes before the first
arrives at its merge, meaning the function waits longer to start than
absolutely necessary. These orderings are dictated by the input pro-
gram’s syntax, i.e., neither our translation nor our buffering scheme
affects this ordering.

Figure 15 shows the fraction of cycles each test took relative
to a strict policy with the same argument order. For reference, the
baseline for Append (i.e., under a strict policy) was 1107 and 1308
cycles with good and bad argument orders; MergeSort was the
longest at 14324 and 16973 cycles.



i)
17}
° 0.8
2 o\
] [
g o6 = N —— &
o ¢ e N —
s \ i o ‘
B e +/ s
E. 0.4
3 Append —+—
o DFS —<—
9 02 Filter
= Map
> MergeSort
© TreeMap —&—

0

0 5 10 15 20

Memory Latency (Clock Cycles)

Figure 16. Mitigating increasing memory latency with non-strict
function evaluation.

Figure 15 shows non-strictness with proper argument ordering
yields faster completion times, which we attribute to the successful
exploitation of pipelining. Under “bad” ordering, non-strict does
slightly better than strict in most cases (the anomalous performance
loss in DFS is due to our heuristic making poor buffering choices);
combining non-strictness with effective ordering leads to approxi-
mate speedups from 1.3x (DFS, Filter, TreeMap) to 2x (Append,
Map, MergeSort). The infinite FIFO policy gives roughly twice the
performance with non-strict functions under a good ordering, sug-
gesting improved buffering can substantially improve performance.

6.3 Sensitivity to Memory Latency

Above, we modeled memory optimistically, taking only a single cy-
cle; in reality, memory is rarely this fast. We conducted additional
experiments to see how well our generated networks coped with
higher memory latencies.

Figure 16 shows how long it took each program to run under
increasing memory latency. Again, we used strict functions as our
baseline and calculated the improvement under a non-strict policy
(under “good” argument ordering throughout).

The initially negative slopes in Figure 16 show that our non-
strict evaluation policy does do an increasingly better job with
small memory latencies (e.g., under 5 cycles) than a strict policy
does, but the differences become negligible after that, i.e., while
the non-strict policy is consistently better, its advantage levels off
at a constant improvement factor. After inspecting the execution
traces for these workloads, we attribute these results to unbalanced
buffer capacities along reconvergent paths in our networks.

To explain, consider two reconvergent paths originating at some
node n, such that one path has more buffers (i.e., has higher ca-
pacity) than the other. Depending on the frequency of n’s firing,
the smaller capacity path can fill up before the longer path, pre-
venting n from filling the longer path’s pipeline. If the buffer ca-
pacity on the short channel matched the long channel’s pipeline
length, n could continue firing and potentially fill up both chan-
nels’ pipelines, yielding higher throughput and lower completion
times. Although others have presented solutions for finding these
reconvergent paths [22, 28], determining how to distribute buffers
along these paths remains a difficult problem that requires further
study.

6.4 Sensitivity to Function Latency

We also conducted an experiment designed to illuminate how our
networks deal with varying function latency. Specifically, the func-
tion applied to each element in Map, Filter, and TreeMap may take
longer than 10 cycles to execute.
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We varied this function’s latency in these three tests from 1 to
50, keeping the memory latency at a single cycle. Not surprisingly,
the resulting trends are nearly identical to those seen in Figure 16
(we omit the exact results for space): after a slight widening of the
gap between non-strict and strict, non-strict completion cycles rise
before plateauing off. This further supports our previous conclu-
sions that our buffer allocation scheme is not mature enough to fill
up long pipelines, be they be functional or memory-related.

7. Related Work

The high-level synthesis community has produced a wealth of tools
for synthesizing hardware from software specifications [20] most
often coded in C. These facilitate design space exploration [18]
and can produce low-power, application-specific cores [27], but
they have difficulty with concurrent accesses to shared resources,
algorithms with irregular memory access, and complex control.

Bluespec [2] takes an alternate approach, drawing inspiration
from Haskell to provide a rich type system and inherent parallelism.
Designers describe behavior with guarded atomic actions, which
are then synthesized into globally scheduled combinational logic
blocks. Our flow control effectively acts as a distributed scheduler.

Our translation of a functional language to dataflow was in-
spired by that of Arvind and Nikhil [1], but differs in an important
way: they generate dynamic dataflow graphs, i.e., loops and func-
tion calls are unrolled on-the-fly as their programs run. We choose
a more challenging, higher performance target: physical networks,
which means we have to build dataflow graphs with loops that
explicitly arbitrate shared resources. Since our goal is low-power,
high-performance custom hardware, our solution will produce su-
perior results because it avoids general-purpose overhead.

Arvind and Nikhil’s virtual approach allows them to support
unbounded buffers. While this does eliminate the danger of insuffi-
cient buffering, it requires the introduction of additional nodes and
channels to throttle loops. Our hardware uses only finite buffers
and naturally throttles itself, although choosing appropriate buffer
capacities is not a trivial problem.

Finally, our Go type leads to a simpler translation than Arvind
and Nikhil, who rely on additional rules for producing constants.

Like ours, the SHard compiler of Saint-Mleux et al. [23] com-
piles a functional language (Scheme) into a dataflow representation
to produce custom hardware. However, they only implement strict
functions and do not exploit the pipelined parallelism we can. Their
treatment of memory is unusual: they only directly support closures
(a lambda lifting pass removes them in our compiler). In their sys-
tem, data structures such as lists must be coded as closures.

The FLaSH compiler of Mycroft and Sharp [19, 25] also com-
piles a functional language into hardware. Their original language
(SAFL) was simpler than our Floh IR; they later added paramet-
ric channels (SAFL+) [24] and a type-based approach for direct
stream processing (SASL) [10]. Their technique for sharing re-
sources (i.e., functions called from multiple places) inspired ours.
They, too, place an arbiter at the entry to a shared function, remem-
ber which caller gained access, and finally route the result back
to the caller. However, their functions cannot be pipelined; only a
single call is handled at once.

Kuper’s CAash project [4, 3] has similar goals as ours and a
Haskell front-end, but requires the programmer to specify what
calculations are performed in each hardware clock cycle. Such
a synchronous specification is more in the spirit of a hardware
description language. Our model is at a higher level of abstraction.
Furthermore, CAash only supports recursively defined variables;
our compiler can handle recursive functions and data types.

Like us, Ghica et al. [12] synthesizes recursive functions into
dataflow-like hardware, but they start from a imperative language
with side-effects, making it harder to analyze.



Gammie’s survey [11] addresses how researchers have at-
tempted to describe arbitrary digital circuits with functional pro-
grams. A structural approach is typical, in which functions use
gate-level constructs to operate over streams of data. E.g., Sheeran’s
UFP language [26] champions higher-order combinators for com-
posing circuit primitives; the various Lava variants [6, 13] imple-
ment an embedded hardware description language by harnessing
Haskell’s type classes. We, instead, take a behavioral approach,
presenting designers with a higher level of abstraction that allows
the compiler more flexibility to optimize the result.

Others, notably Janneck [14], have synthesized dataflow net-
works to hardware, but few technical details of this are public.

Carloni’s Latency-Insensitive Design [8] and Elastic Circuits [9]
inspired our synthesized dataflow hardware, but our approach is far
richer because of its support of data-dependent behavior.

8. Conclusions

We have presented a largely syntax-directed translation from a
functional IR to distributed, parallel datafiow networks to be real-
ized in hardware. Our networks are designed to exploit pipeline par-
allelism via non-strict function evaluation, especially across multi-
ple calls to tail-recursive functions. We realize these networks in
hardware by introducing finite buffering and leveraging a latency-
insensitive flow-control protocol.

We measured the efficacy of our translation by compiling some
Haskell programs into dataflow networks and comparing their com-
pletion times against two other implementation policies: infinite
buffering and finite buffering with strict evaluation. These experi-
ments showed that our networks generally outperform their strict
counterparts with speedups of 1.3-2Xx, indicating that our com-
piler was able to automatically infer pipelines, but that further gains
could be achieved with a stronger buffer allocation heuristic. Fur-
thermore, the improvement shown by a non-strict policy over a
strict policy widens under low memory latencies, but remains con-
stant as memory latency increases further, suggesting that there re-
mains more parallelism to exploit with other techniques.
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