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Line shape parameters including the half-widths and the off-diagonal elements of the relaxation
matrix have been calculated for self-broadened NH3 lines in the perpendicular ⌫4 band. As in the
pure rotational and the parallel ⌫1 bands, the small inversion splitting in this band causes a complete
failure of the isolated line approximation. As a result, one has to use formalisms not relying on this
approximation. However, due to differences between parallel and perpendicular bands of NH3, the
applicability of the formalism used in our previous studies of the ⌫1 band and other parallel bands must
be carefully verified. We have found that, as long as potential models only contain components with
K1 = K2 = 0, whose matrix elements require the selection rule �k = 0, the formalism is applicable for
the ⌫4 band with some minor adjustments. Based on both theoretical considerations and results from
numerical calculations, the non-diagonality of the relaxation matrices in all the PP, RP, PQ, RQ, PR,
and RR branches is discussed. Theoretically calculated self-broadened half-widths are compared with
measurements and the values listed in HITRAN 2012. With respect to line coupling effects, we have
compared our calculated intra-doublet off-diagonal elements of the relaxation matrix with reliable
measurements carried out in the PP branch where the spectral environment is favorable. The agreement
is rather good since our results do well reproduce the observed k and j dependences of these elements,
thus validating our formalism. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979492]

I. INTRODUCTION

It is well known that the non-diagonality of the Liou-
ville scattering operator Ŝ must be taken into account in line
shape theories or calculations of spectroscopic parameters
(half-widths, shifts, relaxation matrices, and Rosenkranz line
mixing parameters).1,2 Unfortunately, due to the use of the
isolated line approximation, the non-diagonality of Ŝ has been
neglected in the semi-classical Robert-Bonamy (RB) formal-
ism.3 In 2013, we have developed a new formalism which does
not use this approximation and with which the uncertainties in
calculated half-widths are reduced, but also the whole relax-
ation matrix W can be predicted thus enabling to address line
mixing effects through, for instance, the first order Rosenkranz
line mixing coefficients.1,2 In more recent works (denoted as
Papers I and II in the following),4,5 the formalism has been
extended to study symmetric tops with inversion symmetry
and applied to self-broadened NH3 lines in parallel bands.

It is expected that a small inversion splitting would cause
a complete failure of the isolated line approximation. This
implies that the RB formalism is not applicable for the ⌫1
and pure rotational bands of NH3. In fact, in comparison with
those predicted with the RB formalism, our calculated self-
broadened half-widths of NH3 lines are significantly smaller
and match measurements very well.4 Furthermore, because
the whole relaxation matrix can be computed, it becomes
possible to calculate the shapes of the Q branch and of

some R manifolds in the ⌫1 band5 where signatures of line
mixing have been experimentally observed by Pine and
Markov.6 More explicitly, our theoretical calculations excel-
lently reproduce the profiles measured by Pine and Markov in
the R(j = 3, k) manifold and the Q branch region and reason-
ably well match the Rosenkranz parameters deduced from the
fit of experimental profiles for the R(3,k) manifold.

A different situation occurs in the ⌫2 and 2⌫2 bands of
NH3 where the inversion splitting increases very quickly as the
quantum number ⌫2 increases. In the ground and ⌫1 = 1 levels,
the splitting is about 1 cm 1. For the ⌫2 = 1 and ⌫2 = 2 levels, it
is about 36 cm 1 and 284 cm 1, respectively. Based on these
numbers one expects, when compared with the ⌫1 band, very
weak the line coupling and line mixing effects in the ⌫2 band
and completely negligible ones in the 2⌫2 band. This expec-
tation was confirmed by both our calculated half-widths and
Rosenkranz coefficients.7 For the former, differences between
those calculated with and without considering line coupling
are very small or even negligible. Meanwhile, the calculated
Rosenkranz coefficients in the ⌫2 band are two orders of mag-
nitude smaller than in the ⌫1 band. However, those measured
by Aroui et al.8 in the ⌫2 and 2⌫2 bands are of the same order
as those measured in the ⌫1 band. On one hand, the inversion
splitting is the main source responsible for line mixing and
its value increases by 36 times from the ⌫1 band to the ⌫2
band. On the other hand, as a measure of line mixing effects,
the Rosenkranz coefficients reported by Aroui et al. do not
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significantly change. Thus, their measured results are, for us,
difficult to understand. In order to clarify this issue, we have
proposed to make some new specific measurements in the ⌫2
band.7

For the ⌫4 band with a small inversion splitting (around
1 cm 1), one expects significant line coupling and line mixing
effects as well. Based on our experience and knowledge from
studies of other bands, we think that it is better to compare our
theoretical results with measurements performed under favor-
able spectroscopic conditions. Fortunately, as demonstrated by
Hadded et al.,9 “cleaner” measurements of intra-doublets cou-
pling elements are possible for some PP(j,k) doublets. Even at
relatively high pressures, the spectral profile of one specific
doublet remains relatively well separated from its adjacent
neighbors. This enabled them to directly measure intra-doublet
off-diagonal elements of the W matrix and, consequently, to
address their k and j dependences. A comparison between reli-
able measured results and theoretical calculations would be a
decisive test of the validity of our theory.

In the present study, we extend the method developed in
Papers I and II to the ⌫4 band which, with respect to parallel
bands, has some new features. It is a perpendicular band where
the degenerate ⌫4 mode is excited and a vibrational angular
momentum l4 = ±1 is present. Due to these new features, one
has to carefully verify the applicability of the formalism used
in parallel bands and make the proper modifications. Once this
is completed, the remaining work is somehow similar to that
reported in these two papers.

The manuscript is arranged in the following way. In
Sec. II, we outline a frame of the theory and address the main
differences between the formalisms applicable for parallel and
perpendicular bands. In Sec. III, we present our calculated
half-widths of NH3 lines in the ⌫4 band. Detailed analy-
ses explain the reductions of calculated half-widths resulting
from considering line coupling in different branches. Because
there is an intrinsic link between the half-width reduction and
the non-diagonality of the relaxation matrix W, the conclu-
sions drawn from the former are also applicable to the latter.
In addition, comparisons of the calculated half-widths with
measurements8,9 and data listed in HITRAN 201210 are also
presented. In Sec. IV, we report calculated W matrix elements
and compare our results in the PP branch with other calcula-
tions and with measurements. Finally, the main conclusions of
this study are presented in Sec. V.

II. THEORY
A. States of the NH3 molecule in the 000000 level
and in the ⌫1 and ⌫2 levels

It is well known that the wave functions of a symmetric-
top molecule |jkmi are defined by

|jkmi =
q

(2j + 1)/8⇡2Dj⇤
mk (↵, �, �) , (1)

where Dj
mk (↵, �, �) are rotation matrices and the asterisk

denotes the complex conjugate. For the NH3 molecule, in order
to find a proper expression for its wave functions, one needs
to simultaneously consider the nuclear spin part as well as the
ro-vibrational part. Meanwhile, the total wave functions must

be anti-symmetric under permutation operators acting on its
three H atoms. Readers can find detailed discussions on this
subject provided by Green.11 For states in the 000000 level as
well as in the excited ⌫1 and/or ⌫2 levels, the parity adapted
wave functions of NH3 are defined by

|n⌫"jkmi = |ni ⌦ N" (|⌫jkmi + " |⌫j � kmi) . (2)

In the above expression, a part of the wave functions associated
with the vibrational inversion motion is explicitly presented
by |ni with two choices: the symmetric vibrational inversion
motion “s” and anti-symmetric one “a.” In addition, a short
notation ⌫ is used to represent all vibrational quantum numbers
(i.e., ⌫1, ⌫2, ⌫3 = l3 = ⌫4 = l4 = 0). With respect to rotational wave
functions, the quantum number k is here the absolute value of
the projection of the angular momentum j on the principal
axis of the molecule. In other words, k = 0, 1, ..., j. For the
normalization number N", its value is N" = 1 for k = 0, and
N" = 1/

p
2 for k, 0. Concerning the index ", its value depends

on both k and |ni. More specifically, for k = 0, " = 0 and for k
, 0, " = (�1)j+1 or " = (�1)j corresponding to the “s” or “a”
inversion status.

It is worth mentioning that, once the symmetry associ-
ated with the nuclear spin wave function has been taken into
account, if one assumes that the intermolecular potential does
not act on the nuclear spins, it is unnecessary to explicitly
include the spin wave function in the equations. We here use
this simplifying convention, as done in Papers I and II. With
respect to the vibrational inversion part (i.e., |ni), we will omit
it in the equations when its explicit presence is unnecessary.

The present formalism does not consider the various intra-
molecular coupling terms that exist between the NH3 states.12

This implies that the wave functions adopted here are the
“zero-order” ones. Note that this approximation is not suitable
if one wants to predict the energy levels with high accuracy
(e.g., 0.005 cm 1 as required by databases). However, for the
calculation of pressure broadened line shape parameters, an
uncertainty around, roughly speaking, 1 cm 1 is tolerable. It
turns out that for the vibrational levels considered here, simple
models neglecting all the intra-molecular resonances can be
used. In the present study, we have used a formula containing
two sets of parameters associated with the “s” and “a” inver-
sion symmetries13 to calculate energies in the 000000 level.
Numerical tests have shown that, in most cases, the accuracy
of the calculated energies is satisfactory unless their rotational
quantum numbers are beyond a certain limit (for example,
jmax = 10).

B. States of the NH3 molecule in the 000011 level

For states in the 000011 level, because the vibrational
angular momentum is excited (l4 = ±1) and the Coriolis force
partly removes the degeneracy, their wave functions have a
new feature. In this case, one needs to explicitly include the
value of l4 in the wave functions. For simplifying notations,
except for the ⌫4 and l4 quantum numbers, all the other vibra-
tional numbers are removed. Then, the parity adapted wave
functions are given by

|n⌫4l4"jkmi = |ni ⌦ N" (|⌫4l4jkmi + " |⌫4 � l4j � kmi) , (3)
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where N" = 1/
p

2 with, for the “s” symmetry, " = (�1)j and
for the “a” symmetry, " = (�1)j+1. We note that this definition
is applicable for both k = 0 and k , 0.

Numerous intra-molecular resonances are present in the
000011 levels.13,14 For example, there is a strong Coriolis inter-
action between the ⌫4 states with the “a” symmetry and the 2⌫2
states with the “s” symmetry that can cause avoided crossings
for states with high j values. As a result, simple formulas used
to calculate energy levels do not yield reliable values. We thus
retrieved the energy levels up to jmax = 10 from the data of
NH3 lines in the ⌫4 band provided by HITRAN 2008.15 For the
missing values, we have retained those provided by Huang.16

Now that the wave functions of interest are known, we fol-
low Ben-Reuven’s conventions17 and introduce a set of bases
|ni⌫i"ijikinf ⌫f "f jf kf , JMJii in the linespace defined by

���ni⌫i"ijikinf ⌫4l4"f jf kf , JMJ

EE
=
X

mimf

(�1)jf �mf

⇥C
⇣
jijf J , mi � mf MJ

⌘ ���ni⌫i"ijikiminf ⌫4l4"f jf kf mf

EE
,

(4)

where the C(L1L2L, µ1µ2M) are Clebsch-Gordan coefficients.

C. Potential model

For systems consisting of two symmetric-top molecules,
the potential can be expressed in terms of a spherical tensor
expansion as18

V
⇣
~R (t)
⌘
=

X

L1K1L2K2L

U (L1L2L; K1K2; R (t))

⇥
X

µ1µ2M

C(L1L2L, µ1µ2M)

⇥DL1⇤
µ1K1

(⌦a)DL2⇤
µ2K2

(⌦b)Y ⇤LM (!(t)) . (5)

The isotropic part of the potential corresponding to the L1 = K1
= L2 = K2 = 0 component is modeled by a 12-6 Lennard-Jones
(LJ) with �LJ = 3.018 Å and "LJ = 294.3 K.19 Since we assume
that the isotropic potential does not depend on vibrational
motions, the values of �LJ and "LJ are the same as those used in
Papers I and II. With respect to the anisotropic part, we assume
that it consists of the dipole-dipole (Vdd), dipole-quadrupole
(Vdq), quadrupole-dipole (Vqd), and quadrupole-quadrupole
(Vqq) components. Let us emphasize that, because the dipole
and quadrupole moments of NH3 lie along its symmetric axis,
all these components are labeled by K1 = K2 = 0. It is also
worth mentioning that it is the mean values of the dipole and
quadrupole moments within the initial vibrational state and
within the final one that appear in these potential components.
Except for the dipole moment which has different values in
the 000000 and 000011 levels (i.e., 1.4715 and 1.4554 D20), we
neglect other vibrational dependences for these components.

Because the NH3 molecule has a very large dipole moment
and a significant quadrupole moment, we expect that the com-
bination of the four leading multipole interactions is sufficient
to represent the NH3–NH3 anisotropic potential well. In addi-
tion, we note that, among these components, the Vdd term is
the dominant one. Finally, all the other molecular parameters
used to calculate the S1 terms are derived here as explained
in Paper I, and the “exact” trajectory model governed by the

isotropic LJ potential is used in the present study. More detailed
descriptions on the treatment can be found in Paper I.

D. Expressions for potential matrix elements
in the 000000 and 000011 levels

Once the potential model is chosen, we need to know
whether the formalism developed for the parallel bands in
Paper I can be directly used here or requires some modifi-
cations. In order to answer this question, one has to consider
the differences between the parallel bands and the ⌫4 band.

At the current approximation level, there is only one
important difference resulting from adopting the wave func-
tions of Eq. (3) to represent final states in the ⌫4 band. Due
to this change, a representation constructed from the final
states changes as well. According to textbooks of quantum
mechanics, matrices of operators could have different forms
in different representations. Therefore, one has to check if
changes of the expressions of the potential matrix are needed.

Keep in mind that all the components of the potential
model selected in the present study are characterized by K1
= K2 = 0. With Eq. (5), it is obvious that the main part of the
potential matrix elements consists of products of matrix ele-
ments of QL1 DL1⇤

µ1K1=0 (⌦a) in the Hilbert space of the absorber

molecule a and matrix elements of QL2 DL2⇤
µ2K2=0 (⌦b) in the

Hilbert space of the perturber molecule b. Here, QL repre-
sents the parts of operators only acting on vibrational states.
Therefore, one can only focus attention on these two matrix
elements. Let us compare, for instance, the formalisms for the
⌫1 (parallel) and ⌫4 (perpendicular) bands. The only possible
change of expressions for the whole potential matrix results
from a possible difference between the matrix elements of
QL1 DL1⇤

µ1K1=0(⌦a) in the 100000 and the 000011 levels.
In the Appendix, we provide a detailed comparison

between these two expressions. Thanks to the fact that the
potential model retained has K1 = K2 = 0, we have found that
the expression for the potential matrix in the 000011 level is
identical to that in the 000000 level. Consequently, the expres-
sions for the whole potential matrix and all other formulas
developed in Paper I are applicable in the ⌫4 band. However,
note that the above conclusion is only valid for the current
potential model. For potential models containing components
with K1 , 0, such as K1 = 3, one should carefully recheck this
conclusion before carrying out studies.

E. Transition selection rules and interaction
selection rules

With our formalism, one has to distinguish two sets of
selection rules. One is the dipole transition rules with which
one determines allowed lines in specified bands. The other is
the interaction selection rules applicable to matrix elements
of the potential that appear in the expressions of the S2,outer,i,
S2,outer,f, and S2,middle terms.

It is well known that, for parallel bands of NH3 such as
the ⌫1 band, the dipole transition selection rules are�j = 0, ±1;
�k = 0; and s a, a s. For perpendicular bands such as the
⌫4 band, they are �j = 0, ±1; �k = ±1; and s s, a a.

With respect to the interaction selection rules, because we
have verified the similarity of the expressions of the potential
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matrices in different vibrational levels, one can conclude that
the interaction selection rules applicable for the ⌫4 band are
the same as those for the pure rotational and the ⌫1 bands. By
looking at the expressions for the potential matrix elements
given in terms of the DP matrix (see Eq. (9) provided later), it
is easy to derive the interaction selection rules. For L = 1 and
K = 0, they are �j = 0, ±1; �k = 0; and s  a, a  s. For
L = 2 and K = 0, one has �j = 0, ±1, ±2; �k = 0; and s  s,
a a.

F. Construction of sub-blocks in the linespace

We have only derived reliable energy levels in the 000011

level up to jmax = 10. Hence, since high levels of energy in
this level are not available, we have to limit the NH3 lines
to be considered in the ⌫4 band such that their ji values are
not beyond 8. By setting jimax = 8, there are 410 allowed
lines remaining and the size of the matrices in the linespace is
410 ⇥ 410.

As explained in Paper I, the non-diagonality of S2,middle
is the only source responsible for line couplings between NH3
lines. By applying the interaction selection rules with L1 = 1
and L1 = 2 derived from the expressions of the matrix elements
of S2,middle given below by Eq. (6), one can easily determine
whether two given lines are coupled or not and consequently
divide the line coupling matrices into sub-blocks. The smaller
the sizes of these blocks are, the easier to handle all of them.
Thanks for �k = 0 appearing in these interaction selection
rules, the line coupling does not occur between two lines either
whose initial k values are different or whose final k values are
different. This implies that the 410 lines must be categorized
by their initial and final k values. In Table I, we present a list

TABLE I. Sizes of sub-blocks in the linespace constructed by NH3 lines in
the ⌫4 band.

ki 0 1 2 3 4 5 6 7 8
�k = 1 24a 42 36 30 24 18 12 6 2
�k = 1 0 48a 42 36 30 24 18 12 6

aThe sub-block is in the group B. All others are in the group A.

of the sub-blocks labeled by values of ki and �k (⌘kf ki)
and the numbers of lines in each of the sub-blocks. For later
convenience, two sub-blocks with ki = 1, �k = 1 and ki = 0
and �k = 1 are labeled in the group B and the remaining sub-
blocks are in the group A.

As shown in Table I, there are 17 sub-blocks and the largest
one (i.e., ki = 1 and �k = 1) has a size of 48 ⇥ 48, thus well
within the ability range of our diagonalization codes.

G. Matrix elements of the relaxation operator

In order to calculate the relaxation matrix, one needs to
calculate matrix elements of iS1 S2 first. For this pur-
pose, the expressions for S1, S2,outer,i, S2,outer,f, and S2,middle are
required. At this stage, note that the formalism can be written
in the standard or the symmetrized forms.2 In the present study,
we follow the latter where the density matrix ⇢ is symmetrized.
It is easy to switch to the standard form with a replacement ofp
⇢i2 ⇢i02

appearing in the expressions for S2,outer,i, S2,outer,f, and
S2,middle by ⇢i2. Readers can find these expressions and how to
evaluate the two and one dimensional symmetric correlation
functions and their Fourier transforms in Paper I. For simplic-
ity, we only recall the expression for the off-diagonal matrix
elements of Si0f 0,if

2,middle here, i.e.,

Si0f 0,if
2,middle (rc) = 2⇡(�1)1+J�⌫0i⌫i�⌫f⌫

0
f
(�1)jf +j0f

q
(2j0i + 1)(2j0f + 1)(2ji + 1)(2jf + 1)

X

L1K1K01L2K2K02

(�1)L1 W
⇣
j0i j
0
f jijf , JL1

⌘

⇥DP
⇣
"0i j
0
i k
0
i , "ijiki; L1K1

⌘
DP
⇣
"f jf kf , "0f j0f k 0f ; L1K 01

⌘X

i2i02

p
⇢i2 ⇢i02

(2j2 + 1)
⇣
2j02 + 1

⌘

⇥DP
⇣
"02j02k 02, "2j2k2; L2K2

⌘
DP
⇣
"2j2k2, "02j02k 02; L2K 02

⌘
FL1K1K01L2K2K02

✓!i0i + !f 0f

2
+ !i02i2 ,!fi � !f 0i0

◆
. (6)

Once all the matrix elements of S1 and S2 are known, the
remaining task is to calculate matrix elements of exp( iS1

S2). The method used here for this purpose consists of
two procedures. First, to diagonalize the matrix iS1 S2.
Then, based on its eigenvalues and right (or left) eigenvec-
tors, one calculate exp( iS1 S2). A detailed formula and its
explanation can be found in Paper I.

Finally, after the above procedures are completed, the
relaxation matrix elements can be easily obtained from

Wi0f 0,if =
nb ⌫̄

2⇡c

+1⌅

rc,min

2⇡(b
db
drc

)drc

⇥
(
�i0i�f 0f �

DD
i0f 0 ���e�iS1(rc)�S2(rc)��� if

EE)
, (7)

where nb is the number density of the bath molecules, ⌫̄ is the
mean relative speed, b is the impact parameter, and rc is the
closest distance for a given trajectory. We do not perform an
average over the relative kinetic energy at this stage. Such an
approximation is known to be valid for half-width calculations.
For the off-diagonal elements of W, our numerical tests have
also demonstrated its validity for the current NH3–NH3 system
with a dominant dipole-dipole interaction.

H. Theoretical predictions

After verifying and outlining a framework of the formal-
ism applicable to the ⌫4 band, one can predict some of the
basic features of results obtained later through numerical cal-
culations. As shown in Eq. (6), the coupling between two
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given lines is mainly determined by three factors. The first
two are

!i0i+!f 0f
2 + !i02i2 , called the energy gap, and !fi � !f 0i0

called the frequency gap appearing in the 2-D Fourier trans-
forms FL1K1K01L2K2K02

. By analyzing profiles of FL1K1K01L2K2K02
(see Fig. 3 of Paper I), we know that the smaller these two
gaps are, the larger the magnitude of FL1K1K01L2K2K02

. For two
lines within a specified doublet, the energy gap is mainly deter-
mined by an average of the splits between the initial states and
between the final ones while the frequency gap is simply a
difference between them. This implies that these two gaps are
always small in the ⌫4 band and their variations over differ-
ent doublets are small as well. Based on these considerations,
one can draw two conclusions. First of all, for the ⌫4 band
with its small doublet splitting, the intra-doublet coupling is
much more important than the inter-doublet one. There are
some exceptions for some Q lines in which the inter- and intra-
doublet couplings are comparable that we will discuss later.
Second, the effect of these two gaps on the k and j dependences
of the intra-doublet coupling is small.

The third factor influencing line couplings is the coupling
strength factor defined by

(�1)L1
q

(2j0i + 1)(2j0f + 1)(2ji + 1)(2jf + 1)W
⇣
j0i j
0
f jijf , 1L1

⌘

⇥DP
⇣
"0i j
0
i k
0
i , "ijiki; L1K1

⌘
DP
⇣
"f jf kf , "0f j0f k 0f ; L1K 01

⌘
,

(8)

where an expression for the DP matrix is given by

DP("0j0k 0, "jk; LK) = N"0N"(�1)k {C �jj0L,�kk 0K
�

+ "0C
�
jj0L,�k � k 0K

�

+ "C
�
jj0L, kk 0K

�

+ ""0C
�
jj0L, k � k 0K

� }. (9)

It is worth mentioning that Eqs. (8) and (9) are also applicable
for states in the 000011 level because their quantum numbers
⌫4 and l4 are not relevant to their derivations. As shown by
Eq. (6), because contributions to S2,middle are proportional to
this factor, it plays a more direct role. Given the fact that we
now known that the two gaps do not play a major role, we
expect that the intra-doublet coupling is mainly determined by
the coupling strength factor.

The DP matrix has several symmetry properties. The two
important ones are a symmetry between K and K and a sym-
metry when switching "0j0k0 and "jk. For the case k0 , 0 and k
, 0, they are

DP("0j0k 0, "jk; L � K) = (�1)j+j0+L "0"DP("0j0k 0, "jk; LK),

(10)

and

DP("jk; "0j0k 0; LK) = (�1)j+j0+L+K"0"DP("0j0k 0, "jk; LK).

(11)

For the other three cases of k0 = k = 0; k0 = 0, k, 0; k0 , 0, k = 0,
one has to replace the factor "0" in Eqs. (10) and (11) by 1, ", and
"0, respectively. Alternatively, one can replace "0" by �"00�"0
+ "0 (1 � �"0) + " (1 � �"00) + "0" (1 � �"0) (1 � �"00) to cover
all four cases. In the present study, because all the potential

components are associated with K = 0, Eq. (10) applicable for
k0 , 0 and k , 0 is simplified as

DP("0j0k 0, "jk; L0) = 0 unless "0" (�1)j+j0+L = 1. (12)

With these properties and other theoretical considerations,
one can make several predictions before carrying out numer-
ical calculations. First of all, the line coupling must be very
weak or negligible for the two sub-blocks in the group B. For
the sub-block with ki = 0, it does not contain any doublets. As
a result, the usually dominant intra-doublet coupling does not
exist in this block at all.

For another sub-block in this group, it does consist of
doublets. But, because kf = 0 in the final states of its lines, con-
tributions to the intra-doublet coupling from the Vdd and Vdq
components are zero. The reason for this is in their coupling
strength factor, the matrix element of DP

⇣
"f jf 0, "0f jf 0; 10

⌘

contains the Clebsch-Gordan coefficients C(jf jf 1, 000) = 0.
In addition, one can show that the Vqd and Vqq components
do not make contributions to the intra-doublet coupling at all.
This general conclusion directly results from Eq. (12) because
doublets are always associated with k0 , 0 and k , 0 and
the “unless” factor becomes "s"a (�1)j+j+2 = "s"a = �1.
By applying this conclusion to doublets in this sub-block,
one can conclude that the intra-doublet coupling must be
zero.

Besides, there is an approximate rule applicable to cal-
culated half-widths for two lines which have switched initial
and final inversion symmetries. For example, one expects that
those of the sPQ(j, k) and aPQ(j, k) are almost identical. It is
easy to understand this approximate symmetry because within
each of these doublets, differences only result from the inver-
sion indices “s” and “a” and, in general, the doubling splits
associated with their initial and that with their final states are
small. Although these symmetry properties are approximate,
one can use them as tools to check the consistency of calcu-
lated results and also that of measured data because significant
violations represent red flags.

III. CALCULATED HALF-WIDTHS
A. Reduction of calculated half-widths due
to line coupling

It is known for years that the RB formalism signif-
icantly overestimates the half-widths.21–23 In our earlier
works,1,2,24–26 we have demonstrated that for various systems,
getting rid of the isolated line approximation reduces the cal-
culated half-widths and improves the agreement with measure-
ments. More recently, we have shown that because the doublet
splitting of NH3 lines in the pure rotational and ⌫1 bands is only
around 1 cm 1, the isolated line approximation completely
breaks down there. Consequently, the RB formalism overes-
timates the half-widths by a great amount. For the ⌫2 band
with a 36 cm 1 doublet splitting, the overestimation becomes
much less and for the 2⌫2 band with a 284 cm 1 splitting, it is
fully negligible.7 With respect to the ⌫4 band whose splitting
is at the same level as the ground and ⌫1 bands, we expect that
calculated half-widths with the RB formalism must contain
large errors. Our calculations confirm this prediction, as shown
below.



134312-6 Ma, Boulet, and Tipping J. Chem. Phys. 146, 134312 (2017)

FIG. 1. Reductions of calculated half-
widths due to considering the line cou-
pling in the PP, RP, PQ, RQ, PR, and
RR branches are presented in six plots
labeled by (a)-(f). In the plots, transi-
tions of s  s and a  a are distin-
guished by⇤ and +, respectively. In each
of the branches, symbols in specified k
blocks are given in the same color and
connected by thin lines. Meanwhile, the
sub-blocks are labeled by their k values
at one of their far right members (i.e., j
= 8) with the “a” symmetry.

We present reductions of the half-widths derived without
and with the isolated line approximation for NH3 lines in all
six branches PP, RP, PQ, RQ, PR, and RR in Figs. 1(a)–1(f).
Because both the reduction of calculated half-widths and the
non-diagonality of the relaxation matrices result from the non-
diagonality of the S2,middle operator, there must be an intrinsic
link between them. Alternatively, in a sense, since the half-
widths are diagonal elements of the relaxation matrix W,
the reduced amount of the diagonal element due to remov-
ing the isolated line approximation must somehow go to the
off-diagonal elements located at the corresponding column
and row. Then, knowing what effective coupling mechanisms
exist, one is able to determine not only how large the non-
diagonality of W is but also, in most cases, to figure out
which are the largest off-diagonal elements. Therefore, it is
worthwhile to present a thorough discussion of these figures
in Subsections III B and III C.

B. Non-diagonality of the relaxation matrices
in the group A

We start our discussion for lines in the sub-blocks of group
A. As shown in Figs. 1(a)–1(f), the reduction of the line widths
varies from around 0% to 30% and strongly depends on k. The
larger the k is, the larger the reduction. The reduction also

varies with j with a maximum for the lowest j value (=k).
Then, it decreases with a diminishing rate as j increases. By
comparing the reductions in different branches, it appears that
those in branches with �k = 1 are larger than in those with
�k = 1. Among the three ones with �k = 1, they are arranged
as P, Q, and R from the largest to the smallest. However, this
order is reversed for the three branches with �k = 1.

First of all, let us recall some of the theoretical predic-
tions made in Subsection II H. Because the doublet splits
in the ⌫4 band are small, the intra-doublet couplings are, in
general, much more important than the inter-doublet ones.
Second, for the intra-doublet couplings, the values of their two
gaps remain small and only vary slightly, well within a few of
cm 1.

Then, we select the RQ branch as an example to go further
in our analyses. In order to explain the k and j dependences
of the half-width reductions shown in Fig. 1(d) more con-
vincingly, we present the magnitudes of the coupling strength
factor for the doublets with k = 1, 2, ..., 7 in Fig. 2(a). As
can be seen, the most striking feature is the similarity of
the dependences with those of the half-width reductions in
Figs. 1(a)–1(c) and 1(e) for the PP, RP, PQ, and PR branches,
except for the PQ(2,1) lines in Fig. 1(c) which will be dis-
cussed in Section IV B. However, the results in Fig. 2(a) and
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FIG. 2. Magnitudes of the coupling strength factor with L1 = 1 and K1 = K01 = 0 for doublets with k = 1, 2, ..., 7 in the RQ branch are presented in Fig. 2(a).
Meanwhile, values of the energy gap (⇥) and the frequency gap (+) are plotted in Fig. 2(b).

those in Fig. 1(d) look somehow similar but a significant differ-
ence between the variation patterns is observed. The relative
similarity indicates that the coupling strength factor plays a
major role in determining the k and j dependences. Mean-
while, the noticeable difference indicates that other sources
also play a role. Looking at the difference more closely shows
that large magnitudes associated with lines with high k values
in Fig. 2(b) are reduced in Fig. 1(d). It turns out that it is the
frequency gap and the energy gap that cause this diminution.
In Fig. 2(b), we present values of these two gaps for the con-
sidered doublets. Note that the!i02i2 component is neglected in
calculating the energy gap. This simplifying treatment is some-
how justified (not always valid) by the fact that, as shown in
Fig. 3 later,!i02i2 = 0 occurs more often. As shown in Fig. 2(b),
the frequency and energy gaps increase as k and j increase and
the former is larger than the latter. Based on a typical profile
of the leading 2-D Fourier transform F100100 presented in Fig.
3 of Paper I, its magnitude decreases very quickly as its two
arguments go away from their central region. In addition, this
Fourier transform is an even function of its two arguments.
Roughly speaking, once the absolute values of its two argu-
ments are greater than 3-4 cm 1, its magnitude starts to fall
down with an accelerative rate. Based on this fact, it is the fre-
quency gap that plays the main role to reduce the enhancement
of the coupling factor with the k value for the lines with k � 3

FIG. 3. The distribution of W (b)
100

⇣
i2i02
⌘

over !i02 i2
with a resolution of 0.5

cm 1.

and j � 7. Meanwhile, reducing further the energy gap plays
a minor role.

It is worth mentioning that for all other 5 branches plot-
ted in Fig. 1, except for a change of scale, the variations of
the coupling strength factors are very similar. This common
feature enables to explain the k and j dependence of the reduc-
tion for other branches. More explicitly, one can conclude that
the coupling strength factor plays a dominant role in deter-
mining the reduction variation with k and j for the PP, RP, PQ,
and PR branches because there are strong similarity between
Figs. 1(a)–1(c), 1(e), and 2(a). Meanwhile, for the RR branch,
just like the RQ branch discussed above, where large devi-
ations between the two corresponding figures are observed,
one expects the two gaps to play more significant roles there.

C. Non-diagonality of the relaxation matrices
in the group B

We consider here lines in the sub-blocks of group B where
the intra-doublet coupling does not exist. As shown in Figs.
1(a)–1(f), in comparison with lines in other sub-blocks, their
half-width reductions are much smaller. Because a weak cou-
pling means a small reduction and vice versa, this confirms
the theoretical prediction for these two sub-blocks made in
Subsection II H. However, their reductions are not zero, espe-
cially for the s,aPQ(j,1), s,aRQ(j,0), s,aPP(j,1), and s,aRP(j,0)
lines where the maximum reduction reaches 6%. It turns out
that, for these lines, the most important coupling happens
between two lines whose j values differ by 1. In the follow-
ing, we will select some samples and provide our theoretical
explanations of their features.

For the sub-block with ki = 1, �k = 1, we list absolute
values of the three coupling parameters for some pairs con-
sisting of the lines sPQ(j,1) and their nearby neighbours aPQ(j
± 1,1) in Table II. As shown in the left side of Table II, their
coupling strength factor (i.e., |St|) is pretty large and in favour
of strong coupling. Meanwhile, the absolute values of the fre-
quency gap (i.e., |�F|, in cm 1) remain relatively small which
is also in favour of strong coupling. However, their energy gaps
without including !i02i2 (i.e., |�E|, in cm 1) are very large. On
first thought, such large |�E| may cause their coupling to be
very small.

However, one has to remember that the contributions
to the energy gap from the !i02i2 term have not been
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TABLE II. Three coupling parameters for some pairs in two sub-blocks of the group B.

sPQ(j,1) s,aRQ(j,0)

Factors j0 j = 3 j = 4 j = 5 j = 6 s,j = 3 j = 4 j = 5 j = 6

|St|
j 1 1.352 1.417 1.447 1.463 1.352 1.417 1.447 1.463
j + 1 1.417 1.447 1.463 1.473 1.417 1.447 1.463 1.473

|�F|
j 1 0.942 1.204 1.290 1.164 0.224 0.969 0.618 1.251
j + 1 4.029 5.721 7.584 9.512 0.969 0.618 1.251 1.118

|�E|
j 1 59.298 79.230 99.002 118.576 58.936 80.541 98.656 119.872
j + 1 82.090 102.585 123.063 143.452 80.541 98.656 119.872 138.064

taken into account. As shown in Eq. (6), as a part of the
argument

!i0i+!f 0f
2 + !i02i2 of FL1K1K01L2K2K02

, this term occurs
with weighting functions defined by

W (b)
L2K2K02

⇣
i2i02
⌘
=
X

i2i02

p
⇢i2 ⇢i02

(2j2 + 1)
⇣
2j02 + 1

⌘

⇥DP
⇣
"02j02k 02, "2j2k2; L2K2

⌘

⇥DP
⇣
"2j2k2, "02j02k 02; L2K 02

⌘
. (13)

In Fig. 3, we present the leading weighting W (b)
100

⇣
i2i02
⌘

as a
function of !i02i2 [remind that its value divided by 3 (=2L2
+ 1) represents the probability with which a specified value
of !i02i2 occurs in Eq. (6)]. In this figure, the resolution is
0.5 cm 1. In other words, the values within [!0 0.25, !0
+ 0.25] are summed up and displayed at !0. As clearly seen,
besides the most probable !i02i2 � 0, several other values (i.e.,
±59, ±80, ±100, ...) also occur with non-negligible proba-
bilities. For these values, perfect cancelations to the energy
gaps listed in Table II become possible that lead to small val-
ues of the whole energy gap appearing as one argument of
the Fourier transforms and consequently, relatively significant
coupling. Careful readers may notice that there is no symme-
try of listed two gaps between two pairs of {j, j 1} and {j

1, j}. The reason for this is that the inversion symmetries

TABLE III. Self-broadening parameters (in 10 3 cm 1 atm 1).

Hadded et al. Aroui et al. Calculations

Doublet �s �a �s �a �s �a

PP(2,2) 581 (19) 584 (12) 581 (4) 590 (3) 593 592
PP(3,1) 336 (3) 347 (4) 335 (2) 348 (1) 339 339
PP(3,3) 620 (3) 616 (5) 612 (2) 626 (3) 616 616
PP(4,3) 523 (4) 522 (9) 533 (2) 535 (3) 533 532
PP(4,4) 607 (8) 619 (4) 604 (2) 617 (4) 625 624
PP(5,3) 483 (4) 485 (3) 476 (4) 488 (3) 481 484
PP(5,4) 552 (9) 544 (6) 553 (2) 545 (2) 560 562
PP(5,5) 598 (7) 598 (11) 596 (3) 604 (4) 624 624
PP(6,4) 496 (8) 486 (10) 501 (2) 497 (2) 507 508
PP(6,5) 555 (8) 553 (6) 558 (2) 558 (2) 571 571
PP(6,6) 595 (11) 609 (12) 594 (11) 600 (8) 619 619
PP(7,6) 575 (15) 553 (7) 569 (3) 559 (4) 572 573
PP(7,7) 592 (7) 587 (7) 612 (4) 592 (4) 613 614
PP(8,7) 533 (22) 590 (11) 561 (3) 573 (3) 569 570
PP(8,8) 576 (10) 582 (15) 586 (3) 596 (5) 608 608

involved are not identical. For example, the coupling between
sPQ(4,1) and aPQ(3,1) differs from that between sPQ(3,1) and
aPQ(4,1).

Similarly, we select some pairs of lines in the sub-block
with ki = 0 and �k = 1 and list their coupling parameters in
the right side of Table II. The main mechanism responsible
for their coupling is the same as that explained above for the
sub-block with ki = 1 and �k = 1 and all analyses presented
there are applicable here. We only note that there is a symmetry
between two pairs of {j, j 1} and {j 1, j}. In the current
case, the inversion symmetry is fixed with j. As a result, their
“s” and “a” assignments are identical.

D. Comparison with experimental data

As mentioned in the Introduction, the PP(j,k) doublets
in the ⌫4 band offer favorable conditions for reliable mea-
surements of both line-broadening and line-mixing terms. In
Table III, we present a comparison between our calculated
half-widths of s,aPP(j,k) lines in the ⌫4 band and the measured
results by Hadded et al.9 and by Aroui et al.8 The agreements
are good.

E. Comparisons between calculated half-widths
and those listed in HITRAN 2012

In our previous studies of parallel bands of NH3, we found
that the agreements between our calculated half-widths and the
values listed in HITRAN 2012 are not satisfactory and vary
from reasonably good to poor among different branches. Our
current study in the ⌫4 band confirms this result. In general,

FIG. 4. A comparison between calculated half-widths of lines (⇤) in sRP(j,k)
and HITRAN 2012 data (+).
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FIG. 5. The same as Fig. 4 except for lines in aRQ(j,k) branch.

TABLE IV. Measured half-widths (in units of 10 3 cm 1 atm 1) for some
doublets by Aroui et al.8

Doublet PP(6,2) PP(7,4) RQ(2,1) RQ(3,1) RQ(3,2) PQ(4,4) PQ(5,5)

�s 396 439 551 384 506 560 564
�a 363 474 491 418 561 651 676

the agreement is better for lines in PP, PQ, and RR branches
than for the others. The worst situations occur for lines in
RP and RQ branches, as shown in Figs. 4 and 5 for aRP(j,k)
and aRQ(j,k) lines. Based on this, one can conclude that the
empirical formulas27 used to provide the HITRAN 2012 data
have to be updated.

F. Approximate rule applicable to the half-widths
of doublets

In Paper I, we have explained why the partners of a dou-
blet (i.e., sP(j,k) and aP(j,k)) in the ⌫1 band have almost equal
half-widths. As shown by Table III, the situation is rather
similar in the ⌫4 band (and for the same reasons): differ-
ences between the calculated half-widths of the two lines
with switched “s” and “a” are much less than 1%. Look-
ing at the self-broadened half-width data in HITRAN 2012,
we found that they follow this rule exactly. With this use-
ful tool, we have also analyzed the measurements by Aroui
et al.8 As shown in Table III, they follow this rule reasonably
well with differences below 4%. However, there are red flags
elsewhere. In Table IV, we list some lines where differences
between measured half-widths for doublet partners are beyond

10%, the largest 20% difference occurring for the doublet
s,aPQ(5,5).

IV. CALCULATED RELAXATION MATRICES
A. Calculated W matrices for the sub-blocks
in group A

The analysis of the k and j dependences of the reduc-
tion of the line widths provided first indications on the non-
diagonality of the W matrices for the sub-blocks in group A.
They are, of course, corroborated by the calculation of the
corresponding W matrices. In Figs. 6(a) and 6(b), we present
bar plots of calculated magnitudes of W elements in the PP(j,2)
and PP(j,4) branches. The first branch with ki = 2 contains
14 lines ordered as: sPP(2,2), aPP(2,2); aPQ(3,2), sPP(3,2);
sPP(4,2), aPP(4,2); aPP(5,2), sPP(5,2); sPP(6,2), aPP(6,2);
aPP(7,2), sPP(7,2); sPP(8,2), aPP(8,2) and the latter has 10 lines
ordered as: sPP(4,4), aPP(4,4); aPP(5,4), sPP(5,4); ...; sPP(8,4),
aPP(8,4). With these line order choices, the inter-doublet
couplings allowed by the leading Vdd and Vdq interactions
are kept out from the super-diagonal (i.e., Wl ,l+1) and sub-
diagonal (i.e., Wl+1,l) lines of the corresponding matrices. As
a result, it becomes easier to identify the intra-doublet coupling
elements.

Comparing Figs. 6(a) and 6(b) with the two curves for
s,aPP(j,2) and s,aPP(j,4) shown in Fig. 1(a) shows that the k
and j dependences of the reduction in Fig. 1(a) are similar to
those in Fig. 6. The plots also clearly demonstrate that the
intra-doublet elements are the largest off-diagonal elements
and that the inter-doublet ones are almost negligible. We do
not present similar plots for other branches, but readers can find
all these calculated symmetrized relaxation matrix elements in
the supplementary material.

Before completing our discussions on the W matrices in
group A, one has to investigate the matrix associated with
the s,aPQ(j,2) curve in Fig. 1(c). As mentioned previously, a
subtle different behavior of this curve has caught our atten-
tion. In order to explain it, one needs to find out, besides
the intra-doublet coupling which is the dominant mechanism
responsible for other curves, if there is here another coupling
mechanism. In Figs. 7(a) and 7(b), we present bar plots to
show the intra- and inter-doublet off-diagonal elements of the
s,aPQ(j,2) matrix constructed from the following 14 ordered
lines: sPQ(2,2), aPQ(2,2); aPQ(3,2), sPQ(3,2); ...; sPP(8,2),
sPP(8,2). As shown in the plots, the inter-doublet off-diagonal
elements become significant starting from j � 3. They are

FIG. 6. Magnitudes of the relaxation
matrix elements Wn ,l (10 3 cm 1

atm 1) in two s,aPP(j,2) and s,aPP(j,4)
branches containing 14 and 10 ordered
NH3 lines.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-034713
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FIG. 7. Magnitudes of the off-diagonal
elements Wn ,l (10 3 cm 1 atm 1) in the
s,aPQ(j,2) branch containing 14 ordered
lines of NH3.

comparable with the intra-doublet ones for j � 4 and become
even larger for j � 6. Thus, one can conclude that it is the inter-
doublet coupling that affects the results for s,aPQ(j,2) shown
in Fig. 1(c). Now, the remaining question is as follows: why do
significant inter-doublet couplings exist only for these Q lines,
but not for their s,aPP(j,2) and s,aPR(j,2) partners. It is easy to
find an answer by looking at their three coupling parameters.
In general, the main features of the coupling parameters for
the inter-doublet pairs are very similar to those listed in the
left side of Table II, i.e., to have large values of the coupling
strength factor, small frequency gaps (less than 1.5 cm 1),
and large energy gaps (without including !i02i2 ). Based on the
explanation for sPQ(j,1) provided above, the set of coupling
parameters for these Q lines give relatively large inter-doublet
elements. With respect to their partners in the P and R branches,
it turns out that their frequency gaps are always larger than
18 cm 1 which is enough to completely kill their couplings.

B. Calculated W matrices for the two sub-blocks
in group B

Now, we present our calculated W matrices in the group
B. As shown in Figs. 1(a)–1(f) and based on our discussions on
these two sub-blocks in Section III A, two matrices constructed
by lines in their Q branches have the largest non-diagonality
and their coupling mechanisms have been explained. Here, we
only present their bar plots to support our conclusions. First,
we present the W matrix constructed from 10 ordered PQ(j,1)
lines: sPQ(1,1), aPQ(1,1); aPQ(2,1), sPQ(2,1); ...; sPQ(5,1),
aPQ(5,1) in Fig. 8(a). Note that the full size would be 16
⇥ 16 matrix but, in order to improve visibility, we only plot
the 10 ⇥ 10 part located at its left-upper corner. Readers need
to pay extra attention on the elements along the super- and

sub-diagonal lines because these zero-elements confirm that
intra-doublet coupling does not exist here. The largest off-
diagonal elements are located at the next super- and sub-
diagonal lines. This confirms our prediction that the most
effective coupling happens for two lines whose j values differ
by 1.

Next, we present the W matrix constructed by 8
RQ(j,0) lines in another sub-block with ki = 0: sPQ(1,0),
aPQ(2,0), sPQ(3,0), aPQ(4,0), sPQ(5,0), aPQ(6,0), sPQ(7,0),
and aPQ(8,0) in Fig. 8(b) where its non-diagonality is clearly
exhibited. Because there are no doublets here, the largest off-
diagonal elements located at the super- and sub-diagonal lines
result again from coupling between two lines whose j values
differ by 1.

C. Comparison with measurements

As mentioned previously, we have used the symmetrized
formalism to carry out numerical calculations. One can easily
change the calculated relaxation matrices to their correspond-
ing ones given in the standard form.5 For intra-doublet off-
diagonal elements Wsa, by applying a factor of exp

⇣
��Esa

2kT

⌘

where �Esa is the doublet splitting between their initial states,
one can obtain values in the standard form from the sym-
metrized ones. Because�Esa << 2kT at room temperature and
in the ⌫4 band, the values given in the two forms are almost
identical. Based on this fact, we can directly compare our
results with other experimental and theoretical values given
in the standard form.

A comparison between some of the calculated off-
diagonal elements of W in the PP branch and measured ones8,9

is presented in Table V. We note that Aroui et al. have only pro-
vided their measured Rosenkranz mixing coefficients Yl, but

FIG. 8. Magnitudes of the relaxation
matrix elements Wn ,l (10 3 cm 1

atm 1) in the two sub-blocks of the
group B. In Fig. 8(a), the matrix is con-
structed by 10 ordered Q lines in the
s,aPQ(j,1) branch and in Fig. 8(b), it is
by 8 Q lines in the RQ(j,0) branch.
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TABLE V. Intra-doublet mixing elements of the relaxation matrix (in 10 3

cm 1 atm 1). N/A means it is impossible to derive the value because Ys and
|Ya | differ too much.

Doublets Hadded et al.9 Aroui et al.8 Present work

PP(2,2) �277(49) 377(21) 279
pP(3,1) �33(44) N/A 0
pP(3,3) �385(19) 392(6) 351
pP(4,3) �260(4) 268(12) 235
pP(4,4) �349(26) 415(14) 386
pP(5,3) �243(16) 190(18) 166
pP(5,4) �263(12) 306(17) 282
pP(5,5) �450(12) 500(19) 411
pP(6,4) �280(68) 321(22) 217
pP(6,5) �305(11) 326(12) 318
pP(6,6) �441(14) 458(13) 431
pP(7,6) �404(27) 384(14) 349
pP(7,7) �484(15) 537(11) 448
pP(8,7) �148(106) 403(24) 375
pP(8,8) �498(54) 596(13) 461

no off-diagonal elements in this branch.8 The corresponding
values listed in Table V have thus been derived by us. Indeed,
assuming Ys = �Ya and introducing Y = (Ys + |Ya |) /2, one
can express the intra-doublet element as Wsa = Ȳ�Fsa/2,
where �Fsa is the frequency gap.

As shown in Table V, in general, the agreement, includ-
ing the k and j dependences, is reasonably good. One of the
Hadded’s measured values9 deserves to be pointed out. For the
doublet PP(3,1), their measured value (i.e., 33(44)) is one order
smaller than other values. As mentioned several times previ-
ously, our theoretical value is zero. By considering the large
uncertainty attached to this measured value, the measurement
supports our theory.

D. Comparison with other calculations

Recently, Starikov28 has used the method developed by
Cherkasov29,30 to calculate some intra-doublet coupling ele-
ments of the W matrix. In Fig. 9, we present his calculated
matrix elements associated with s,aPP(j, k = j) lines together
with our results and measured values.9 As shown in the

FIG. 9. Comparison between calculated and measured magnitudes of the
intra-doublet elements Ws,a for PP(j,k = j) doublets in the ⌫4 band.

figure, both theoretical results exhibit a similar variation pat-
tern as j varies. But, in comparison with measurements, the
agreement reached by our results is better. We note that
although the trajectory model adopted by Starikov in his cal-
culations differs from ours, the effect of this difference is
very small. Furthermore, the potential models used in both
calculations, including the LJ parameters �LJ and "LJ, are iden-
tical. In our opinion, the improvement is mainly caused by an
essential difference between the two methods. In both the for-
malisms, the Liouville scattering operator Ŝ is given by expo-
nential forms which are however different. In the formalism of
Cherkasov, the operator appearing in the exponential form for
Ŝ depends on states of the bath molecule. As a result, he had to
introduce an additional approximation to avoid diagonal-
izing huge matrices. With our method, the exponential
form is obtained through the well-known cumulant expan-
sion and the operators appearing there do not depend on
bath states. Thus, one can accurately evaluate matrix ele-
ments of our exponential operator without any additional
approximation.

V. CONCLUSION

This work is our effort to verify the theoretical method
presented in Paper I for the calculation of self-broadened half-
widths and relaxation matrices of NH3 lines. In order to meet
requirements for the remote sensing inversion of tropospheric
and planetary spectra, adding accurate line mixing parameters
into NH3 databases becomes necessary. Since reliable mea-
surements of the line mixing parameters are very difficult to
perform, validated theoretical calculations can provide some
supports to achieve this goal.

Regarding theoretical calculations of the half-width of
NH3 lines, removing the isolated line approximation from the
RB formalism has significantly improved the accuracy of cal-
culated results both in parallel4,7 and perpendicular (present
work) bands. The smaller the inversion splitting is, the more
this approximation breaks down. For the pure rotational, ⌫1,
and ⌫4 bands where the splitting is very small, reductions of
calculated half-widths resulting from removing this approxi-
mation can be very large (up to 30% in some cases). Mean-
while, the reduction significantly varies as k and j vary. In
contrast, for the ⌫2 band, its inversion splitting of 36 cm 1

results in very small or negligible reductions. Finally, thanks
for having very strong long-range anisotropic interactions in
the NH3–NH3 system where the current formalism can yield
reliable theoretical results; our calculated half-widths are in
good agreements with the available experimental data in all
these bands.

Concerning the relaxation matrix, significant reductions
of calculated half-widths directly indicate a strong non-
diagonality. Fortunately, the PP(j,k) doublets in the ⌫4 band
are relatively well isolated and enable reliable measurements
of the intra-doublet off-diagonal elements of the W matrix
and consequently, to address their k and j dependences. For
these doublets, our calculated W elements agree well with the
measured values, including their k and j variation patterns.

Unfortunately, due to unfavorable spectral conditions,
there are no other reliable measured data available in the
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literature. In addition, there is no measurement to demonstrate
the signatures of line mixing in the ⌫4 band similar to that
reported in the ⌫1 band. In Paper II, we have shown that our
formalism can successfully match the latter.

As a possible way to improve the quality of measured
data for less favorable spectral regions, our suggestion is to
impose some rules established from theoretical considerations
while fitting measured spectra. With respect to refining our
theoretical method, it would be interesting to see whether the
strong intramolecular couplings (Coriolis, etc...) affect calcu-
lated results or not. In the present study, we have only adopted
the 0-th order wave functions in which the mixture of the a-⌫4
and s-2⌫2 states has been neglected. Finally, the present for-
malism may be extended to consider foreign-broadening cases
(NH3–N2, NH3–atoms, etc....) where some experiments have
shown that line mixing effects differ significantly from those
observed and calculated in the self-broadening case.6,31

SUPPLEMENTARY MATERIAL

See the supplementary material for all the calculated
relaxation matrices in the ⌫4 band.
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APPENDIX: MATRIX ELEMENTS OF THE POTENTIAL
OPERATOR IN THE 000000 AND 000011 LEVELS

In the following, we assume that the intermolecular poten-
tial model does not contain any components with K1 , 0 or
K2 , 0. Without losing any generality, we consider a part
of the potential operator in the Hilbert space of the absorber
molecule a and assume that it consists of a product of QL1 and
X where the former is the dipole operator µ10 with L1 = 1 or
the quadrupole operator ⇥20 with L1 = 2. Meanwhile, X is the
rotational operator DL1⇤

µ1K1=0 (⌦a).
Let us derive expressions for potential matrices in the

000000 level first. Keep in mind that because K1 = 0, the rota-
tional matrix elements of hj’k’m’|X|jkmi are zero unless k0 = k.
Then, we have

⌦
n0v"0j0k 0m0 ��QL1 X �� n⌫"jkm

↵
=
⌦
n0v ��QL1

�� n⌫↵N"0N"
�
�k0k
⌦
j0k 0m0 |X | jkm

↵
+ "�k0�k

⌦
j0k 0m0 |X | j � km

↵

+ "0��k0k
⌦
j0 � k 0m0 |X | jkm

↵
+ "0"��k0�k

⌦
j0 � k 0m0 |X | j � km

↵�

=
⌦
n0v ��QL1

�� n⌫↵ ⇥ N"0N"�k0k
�⌦

j0k 0m0 |X | jkm
↵

+ "0"
⌦
j0 � k 0m0 |X | j � km

↵�
. (A1)

While deriving the last step we have used the fact that for k0 = k > 0, �k0�k = ��k0k = 0 and for k0 = k = 0, "0 = " = 0. Thus, one
can remove the second and third terms in the second line of Eq. (A1).

Then, we present the potential matrix elements in the 000011 level as
D
n0v4l04"

0j0k 0m0 ��QL1 X �� n⌫4l4"jkm
E
= N"0N"

⇣D
n0v4l04

��QL1
�� n⌫4l4

E
�k0k
⌦
j0k 0m0 |X | jkm

↵

+ "
D
n0v4l04

��QL1
�� n⌫4 � l4

E
�k0�k

⌦
j0k 0m0 |X | j � km

↵

+ "0
D
n0v4 � l04

��QL1
�� n⌫4l4

E
��k0k

⌦
j0 � k 0m0 |X | jkm

↵

+ "0"
D
n0v4 � l04

��QL1
�� n⌫4 � l4

E
��k0�k

⌦
j0 � k 0m0 |X | j � km

↵⌘
. (A2)

Similarly, for k0 = k, 0, the second and third terms of Eq. (A2) are zero. For k0 = k = 0, the previous argument does not work because
the definition of " has been changed. However, for NH3 states with k = 0 in the 000011 level, their quantum number l4 is fixed. In
addition, because the operator QL1 does not change the vibrational angular motion, there is a Kronecker factor of �l04�l4 attached to
these two terms that causes them to be zero again. Finally, based on the fact that

�⌦
n0⌫4l4 ��QL1

�� n⌫4l4
↵
=
⌦
n0v4 � l4 ��QL1

�� n⌫4 � l4
↵�

,
we obtain

D
n0v4l04"

0j0k 0m0 ��QL1 X �� n⌫4l4"jkm
E
=
⌦
n0⌫4l4 ��QL1

�� n⌫4l4
↵

N"0N"�k0k
�⌦

j0k 0m0 |X | jkm
↵

+ "0"
⌦
j0 � k 0m0 |X | j � km

↵�
. (A3)

By comparing Eqs. (A1) and (A3), it is obvious that their forms
are identical. We note that the values of the dipole moment in
the 000000 and 000011 levels (i.e., 1.4715 and 1.4554 D) come
from

⌦
n0v ��QL1=1�� n⌫↵ in Eq. (A1) and

⌦
n0⌫4l4 ��QL1=1�� n⌫4l4

↵
in

Eq. (A3), respectively.
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