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1989; Otsu et  al. 1990), and are also expressed in non-
muscle tissues (Awad et al. 1997); RyR3, originally iden-
tified in the brain (Nakashima et  al. 1997), is also widely 
expressed (Zhang et al. 2011).

RyR1 facilitates the rapid and coordinated release of 
 Ca2+ from SR stores to activate skeletal muscle contrac-
tion. EC coupling is the process that converts electrical sig-
nals and rising  Ca2+ levels into mechanical output (muscle 
contraction). RyRs are highly regulated for precise control 
and  Ca2+ plays the key signaling role in activating the chan-
nel and amplifying the signal (Endo et  al. 1970). In this 
process, depolarization of the plasma membrane activates 
L-type voltage-gated calcium channels  (Cav), which signal
RyRs located on the SR to gate open and release  Ca2+ to 
activate muscle contraction (Rios and Brum 1987; Gor-
don et al. 2000; Tobacman 1996; des Georges et al. 2016). 
RyR is a 2.2 mega Dalton homotetramer, composed of four 
~5000 residue protomers (Marks et  al. 1989; Santulli and 
Marks 2015), making it the largest known ion channel (des 
Georges et  al. 2016; Santulli and Marks 2015; Zalk et  al. 
2015). The narrow transmembrane core and larger cyto-
plasmic shell result in a mushroom shaped structure (des 
Georges et al. 2016; Zalk et al. 2015; Hwang et al. 2012). 
The large shell interacts with other receptors and forms 
much of the regulatory mechanism for the channel, allow-
ing a range of stimuli to exert precise control over opening 
(Marks et  al. 1989; des Georges et  al. 2016; Santulli and 
Marks 2015; Zalk et al. 2015; Brillantes et al. 1994; Marx 
et al. 1998, 2000; Marks 2003; Reiken et al. 2003; Lehnart 
et al. 2005; Huang et al. 2006; Bellinger et al. 2009; Kush-
nir et  al. 2010; Shan et  al. 2010; Andersson et  al. 2011; 
Lanner et al. 2010). The core of RyR houses the approxi-
mately 90 Å long pore responsible for passage of  Ca2+ from 
the ER/SR to the cytoplasm (des Georges et al. 2016; Yan 
et al. 2015). This cation channel is actually poorly selective 

Abstract Calcium  (Ca2+) release from intracellular stores 
plays a key role in the regulation of skeletal muscle con-
traction. The type 1 ryanodine receptors (RyR1) is the 
major  Ca2+ release channel on the sarcoplasmic reticu-
lum (SR) of myocytes in skeletal muscle and is required 
for excitation–contraction (E–C) coupling. This article 
explores the role of RyR1 in the skeletal muscle physiology 
and pathophysiology.
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Introduction

Ryanodine receptors (RyRs) are intracellular calcium 
 (Ca2+) release channels located on the endo/sarcoplasmic 
reticulum (ER/SR) (Flucher et  al. 1993), a heterogene-
ous intracellular compartment consisting of a network of 
tubules (Chen et  al. 2013; Brochet et  al. 2005) represent-
ing the major  Ca2+ reservoir within the cell. There are three 
subtypes of RyRs in mammalian tissues: RyR1 and RyR2 
are required for skeletal muscle and cardiac excitation–con-
traction coupling (E–C coupling), respectively (Marks et al. 
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for  Ca2+ (~7-fold selective for  Ca2+ vs  K+) and displays an 
exceptionally large single channel conductance (Santulli 
and Marks 2015).

We recently solved the high-resolution structure of 
RyR1 using cryogenic electron microscopy (cryo-EM) (des 
Georges et  al. 2016; Zalk et  al. 2015), confirming that it 
adopts a fourfold symmetric mushroom-like superstructure, 
with the large ‘cap’ (about 80% of the mass) located in the 
cytosol and the ‘stalk’ embedded in the ER/SR membrane, 
with six transmembrane helices (S1–S6) per protomer sur-
rounding the central pore (des Georges et  al. 2016). Each 
protomer is built around an extended scaffold of alpha-sole-
noid repeats which include an aminoterminal, a bridging, 
and a core solenoid (des Georges et  al. 2016; Zalk et  al. 
2015). At the extreme outer corners of the tetramer there 
are three SPRY domains and two pairs of RyR repeats, 
RY12 and RY34, the latter containing a regulatory protein 
kinase A (PKA) phosphorylation site (Marx et  al. 2000). 
The RyR1 pore domain most closely resembles that of the 
voltage-gated sodium channel (NavAB) and presents a sin-
gle cytosolic constriction in the ion conduction pathway, at 
the S6 bundle crossing (Zalk et al. 2015). Glycine residues 

in the pore-lining helices may operate as “hinges” to facili-
tate the orientation of the cytoplasmatic extension of S6 in 
order to modulate the aperture of the channel. In particular, 
 Gly4934 is conserved in all RyR isoforms and in the IP3R.

RyR macromolecular complex

The ER/SR of most cell types contains two types of 
intracellular  Ca2+ release channels: the ryanodine recep-
tors (RyRs) and the inositol 1,4,5-trisphosphate recep-
tors (IP3Rs) (Santulli and Marks 2015; Go et  al. 1995; 
Yuan et  al. 2016; Santulli 2017). There is ~40% homol-
ogy between the RyR and lP3R in the putative transmem-
brane regions (Marks et  al. 1989, 1990; Santulli 2017), a 
sequence similarity sufficient to indicate that these two 
channels evolved from a common ancestral cation release 
channel in unicellular species. The structural homology 
between RyR1 and IP3R1 is depicted in Fig. 1.

RyR was named based on its purification using the high 
affinity plant alkaloid ryanodine (Rogers et  al. 1948), an 
agent known to profoundly alter intracellular  Ca2+ handling 
(Fairhurst and Hasselbach 1970). Indeed, when bound to 

Fig. 1  Structural homology between the intracellular  Ca2+ release channels IP3R1 (top) and RyR1 (bottom). In a, c channels are viewed from 
the ER/SR lumen; in c, arrowheads indicate Calstabin
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RyR at low concentrations ryanodine locks the channel in a 
half open state, thereby resulting in depletion of  Ca2+ from 
the SR and subsequent interruption of E–C coupling. This 
explains the historical use of extracts from the Ryania plant 
family by natives of South and Central America as poison 
for blow darts: the release of SR  Ca2+ via the locked open 
RyRs causes tetany, and at high concentrations ryanodine 
blocks the channel (Rogers et  al. 1948). RyR is normally 
closed at low cytosolic  [Ca2+] (~100–200  nM); at sub-
micromolar cytosolic  [Ca2+]  Ca2+ binds to high-affinity 
binding sites on RyR increasing the open probability  (Po) 
of the channel (Bezprozvanny et al. 1993). Channel activ-
ity is maximal at cytosolic  [Ca2+] ~10 μM while elevating 
cytosolic  [Ca2+] beyond this point leads to a reduction in  Po 
(Bezprozvanny et al. 1993; Copello et al. 1997; Laver et al. 
1995).

The large and complex structure of RyR contains func-
tion-modifying phosphorylation sites and protein-binding 
domains, providing an attractive target for disease inter-
vention (des Georges et al. 2016; Santulli and Marks 2015; 
Zalk et  al. 2015; Brillantes et  al. 1994; Marx et  al. 1998, 
2000; 2001; Marks 2003; Lehnart et al. 2005; Kushnir et al. 
2010; Marks et al. 2002). RyRs are macromolecular signal-
ing complexes, in which multiple proteins bind to a domain 
of the channel modulating its function (Marks et al. 1989, 
2002). The  Ca2+ stabilizing proteins calstabin1 (Calcium 
channel stabilizing binding protein, previously known as 
FKBP12) and calstabin2 (FKBP12.6) are peptidyl-pro-
pyl-cis–trans isomerases that associate via amphiphilic 
β-sheet structures with RyR1 and RyR2, respectively, such 
that one calstabin protein is bound to each RyR monomer 
(des Georges et al. 2016; Zalk et al. 2015; Jayaraman et al. 
1992; Timerman et  al. 1993; Xin et  al. 1995; Yuan et  al. 
2014), in order to modulate the channel gating through pro-
tein–protein interactions (Brillantes et  al. 1994) and pre-
vent pathological intracellular  Ca2+ leak that cause diseases 
(Marks 2003; Huang et al. 2006). Calstabin1 and calstabin2 
differ at only 18 positions out of 108 residues. We identi-
fied the calstabin-binding loop as part of the aminotermi-
nal subdomain of the bridging solenoid (Zalk et al. 2015). 
Calstabin binding may rigidify the interface between such 
a subdomain with SPRY1–2, thereby stabilizing the con-
nection with the cytosolic regulatory domains and eventu-
ally altering the relative orientation of these domains (Zalk 
et  al. 2015). Highly conserved leucine–isoleucine zipper 
motifs in RyR2 form binding sites for adaptor proteins 
that mediate binding of other proteins (Marx et  al. 2001; 
Marks et  al. 2002), including kinases (e.g. PKA) (Reiken 
et al. 2003; Shan et al. 2010) CaMKIIdelta (Kushnir et al. 
2010) and phosphatases (e.g. PP1 and PP2A). Specifi-
cally, the adaptor protein mAKAP mediates the binding 
of PKA and phosphodiesterase PDE43, whereas PP1 and 
PP2A are targeted to RyR2 via spinophilin and PR130, 

respectively (Marx et al. 2000; Lehnart et al. 2005). All of 
the above mentioned proteins regulate the phosphorylation-
dephosphorylation of RyR2 in  Ser2808 (Shan et al. 2010) in 
response to stress (Andersson et al. 2011; Shan et al. 2010; 
Liu et al. 2012; Tester et al. 2007). Other channels are also 
regulated by stress signals including the voltage-gated  Ca2+ 
channels (Maki et  al. 1996). RyRs are also regulated by 
oxidation and nitrosylation (Shan et  al. 2010; Andersson 
et  al. 2011; Santulli 2017; Fauconnier et  al. 2010). Other 
modulatory proteins complex directly and indirectly with 
RyR, including sorcin (Farrell et  al. 2004), calmodulin 
(Meissner and Henderson 1987), homer (Feng et al. 2002), 
histidine-rich  Ca2+ binding protein (Lee et al. 2001), triadin 
(Rossi et al. 2014), junctin (Zhang et al. 1997), and calse-
questrin (Ohkura et al. 1998).

Intracellular  Ca2+ leak

Ca2+ finely regulates innumerable events as muscle con-
traction, secretion, and gene transcription (Santulli and 
Marks 2015; Santulli 2017; Ringer 1883; Zetterstrom and 
Arnhold 1958; Jayaraman and Marks 2000). Cytosolic  Ca2+ 
signals are produced by rapidly increasing the concentra-
tion of free  Ca2+ ions (Blaustein 1993) by opening channels 
permeable to  Ca2+ either in the surface cell membrane or in 
the membranes of intracellular organelles containing high 
 Ca2+ concentrations. Amplification of external stimuli by 
triggering the release of intracellular  Ca2+ stores represents 
a common signaling mechanism in the cell. The key role of 
RyRs in the rapid and voluminous release of  Ca2+ from the 
SR during E–C coupling is well known. Importantly, RyRs 
are also crucially involved in maintaining  Ca2+ homeostasis 
in the cell under resting conditions. Stress-induced remod-
eling of RyRs results in leaky channels and the inappro-
priate release of  Ca2+ from the intracellular stores into the 
cytosol, contributing to the pathophysiology of diverse dis-
orders including heart failure, cardiac arrhythmias, muscu-
lar dystrophy, diabetes, and cognitive dysfunction (Brillan-
tes et al. 1994; Marx et al. 1998, 2000, 2001; Marks 2003; 
Reiken et al. 2003; Lehnart et al. 2005; Huang et al. 2006; 
Bellinger et al. 2008, 2009; Kushnir et al. 2010; Shan et al. 
2010; Andersson et  al. 2011, 2012; Santulli 2017; Marks 
et  al. 2002; Liu et  al. 2012; Tester et  al. 2007; Faucon-
nier et al. 2010; Ward et al. 2003; Umanskaya et al. 
2014; Matecki et  al. 2016; Santulli et  al. 2015a, 2015b; 
Xie et  al. 2013, 2015).

Skeletal muscle

E–C coupling is similar in skeletal and cardiac muscle 
but there are important differences (Santulli 2017). 
Briefly, whereas in the heart a depolarizing  Na+ current 
activates  Ca2+ influx via the L-type  Ca2+ channel 
(LCC,  Cav1.2), 
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which in turn activates the RyR2 isoform via  Ca2+-induced 
 Ca2+ release (Fabiato and Fabiato 1975), the depolariza-
tion of skeletal myocytes involves a protein–protein inter-
action (Rios and Brum 1987) across the junctional cleft 
between the dihydropyridine receptor  (Cav1.1) on special-
ized invaginations of the sarcolemma (transverse tubules) 
and RyR1 on the SR membrane (terminal cisternae), lead-
ing to  Ca2+ release (Nelson et al. 2013). Both morphologic 
and electrophysiological data are consistent with the con-
cept that four  Cav1.1s interact with a single RyR1 tetramer 
(one  Cav1.1 binding to each RyR1 subunit). However, Fran-
zini-Armstrong and Kish determined that a cluster of four 
 Cav1.1 overlie only every other RyR1 tetramer (Franzini-
Armstrong and Kish 1995). Reconciling those findings, 
we have demonstrated coupled gating of RyR1 (Marx et al. 
1998), which provides a mechanism by which RyR1 chan-
nels that are not associated with  Cav1.1 can be regulated. 
RyRs were initially observed in skeletal muscle, visualized 
in electron micrographs as large electron-dense masses 
located along the face of the SR terminal cisternae, which 
is closely apposed to transverse tubule membranes to form 
a structure named triad junction (Santulli 2017; Block et al. 
1988). Therefore, the RyRs were initially termed triad junc-
tional foot proteins (Wagenknecht et al. 1989; Brandt et al. 
1990). Noda and colleagues provided the in vivo evidence 
for a functional role of RyR1 in E–C coupling, engineer-
ing a mouse lacking exon 2 of RyR1 and demonstrating that 
such a mouse exhibits severe skeletal muscle abnormalities 
and dies perinatally due to respiratory failure (Takeshima 
et  al. 1994). Subsequent ultrastructural studies of hind 
limb and diaphragm muscles demonstrated the absence of 
RyR1-Cav1.1 complexes (Takekura et al. 1995), which are 
essential for a proper E–C coupling in the skeletal muscle 
(Nakai et al. 1996).

RyR1 dysfunction has been described in both inher-
ited and acquired muscle disorders (Bellinger et  al. 2008; 
Andersson et  al. 2012). Central core disease (CCD) and 
malignant hyperthermia (MH) represent the best examples 
of RyR1 channelopathies in the skeletal muscle.

Central core disease (CCD)

CCD is a congenital myopathy first described in 1956 
(Magee and Shy 1956), characterized by the presence 
of tissue cores with reduced oxidative activity in type I 
myofibers, which results in progressive muscle weakness 
(Sewry et  al. 2002). Common symptoms include hypoto-
nia, delayed motor milestones, and skeletal abnormalities 
including congenital hip dislocation and scoliosis. Over 60 
different RyR1 mutations have been linked to CCD, which 
presents during infancy as delayed motor development 
and hypotonia. CCD occurs in 1:100,000 live births, and 

comprises 16% of total congenital myopathies (Jungbluth 
2007).

We now know that RyR1 mutations cause the disorder 
which should be reclassified as RyR1 myopathies. There 
are no established therapeutics for RyR1 myopathies 
(Witherspoon and Meilleur 2016). The phenotypic presen-
tation is quite variable ranging from near normal to neona-
tal death.

The histopathological appearance of CCD is most 
closely linked to dominant RyR1 mutations (often mis-
sense) clustered (Fig. 2) in disease causing “hot spots” in 
RyR1 (Quane et al. 1993; Zhang et al. 1993; Lynch et al. 
1999; Monnier et al. 2000; Scacheri et al. 2000), whereas 
RyR1 mutations (often truncating) causing recessive RyR1-
related myopathies, including multi-minicore disease, cen-
tronuclear myopathies, and congenital fiber-type dispro-
portion, are evenly distributed throughout the entire RYR1 
coding sequence (Amburgey et al. 2013; Klein et al. 2012).

Malignant hyperthermia (MH)

MH is a pharmacogenetic disorder, inherited in an auto-
somal dominant fashion and causes inhaled anesthetic-
induced deaths in otherwise healthy individuals (Censier 
et  al. 1998). MH episodes are typically rapid and severe, 
reaching core body temperatures of 43 °C, leading to organ 
failure and death if not rapidly treated. Susceptibility can be 
determined in vitro by measuring the contractile response 
to caffeine or halothane in biopsied muscle fibers. Over 100 
RyR1 mutations have been associated with MH, involving 
inappropriate activation of RyR1, which causes uncon-
trolled release of SR  Ca2+ and muscle contractions. MH 
occurs at a rate of 1:50,000–100,000 adults and 1:15,000 
children undergoing anesthesia; some studies have sug-
gested a much more frequent rate of 1:5000 adults with MH 
susceptible mutations occurring at 1:3000 (Rosenberg et al. 
2007; Monnier et  al. 2002). The exact prevalence of MH 
susceptibility is difficult to determine since the syndrome 
only becomes apparent after exposure to triggering agents 
including volatile anesthetic agents such as halothane, iso-
flurane, sevoflurane, desflurane, enflurane and the neuro-
muscular blocking agent succinylcholine (Larach 2007). 
A related syndrome referred to as porcine stress syndrome 
is found in certain lines of domestic swine where stressed 
pigs undergo stress-induced hyperthermia (Nelson and 
Bee 1979). Alterations in 3H-ryanodine binding properties 
in porcine MH samples provided evidence linking RyR1 
dysfunction to the disease (Mickelson et  al. 1988), which 
was later confirmed by biophysical experiments (Fill et al. 
1990).

Although dantrolene is an established therapeutic that 
quickly resolves MH episodes, mortality from this event 
remains at approximately 7% and a validated mechanism 
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of action for dantrolene has yet to be reported (Paul-Pletzer 
et al. 2002; Zhao et al. 2001). This remains a concern for 
otherwise healthy individuals harboring these mutations 
(Fill et  al. 1990). Mutations causing MH are autosomal 
dominant and typically seen (Fig.  2) in the central and 
N-terminal clusters. Another MH mutation hotspot is at the
inter-protomer contacts between the N-terminal domains A
and B, which are disrupted in channel opening (Kimlicka
et al. 2013).

Notably, there is no clear division between MH and 
RyR1 myopathies and some RyR1 mutations have been 
linked to a combined MH and RyR1 myopathy phenotype 
(Zhou et al. 2007). Importantly, the mutated codons giving 
rise to MH and RyR1 myopathies tend to cluster in three 
specific regions of the RyR1 gene (Fig.  2) correspond-
ing to the following domains in the amino acid sequence: 
regions 1 (C35–R614) and 2 (D2129–R2458) reside in the 
myoplasmic foot domain of the protein, whereas region 3 
(I3916–G4942) is located in the transmembrane/luminal 
region of the highly conserved carboxy-terminal domain, 
important for allowing  Ca2+ flux through the channel 
(Zalk et  al. 2015). Mutations in RyR1 are also associ-
ated with other rare RyR1 related congenital myopathies 
including centronuclear myopathy, multi-minicore dis-
ease, Samaritan myopathy, heat/exercise induced exertional 

rhabdomyolysis, congenital fiber-type disproportion, late-
onset axial myopathy, and atypical periodic paralyses 
(Bharucha-Goebel et al. 2013; Zvaritch et al. 2009; Ferreiro 
et al. 2002; Capacchione et al. 2010; Zhou et al. 2010; Inui 
et al. 1987; Takeshima et al. 1989; Loseth et al. 2013).

Intracellular  Ca2+ leak and muscular dystrophy

We recently demonstrated that intracellular  Ca2+ leak via 
RyR1 represents an essential feature of different forms of 
muscular dystrophy (MD), including Duchenne muscu-
lar dystrophy (Bellinger et  al. 2009) and limb-girdle (or 
Erb’s) MD (Andersson et  al. 2012). Specifically, RyR1 
from a Duchenne muscular dystrophy murine model (mdx 
mouse) was excessively cysteine nitrosylated and the RyR1 
complex was depleted of calstabin1, leading to increased 
spontaneous RyR1 openings and reduced specific muscle 
force (Bellinger et al. 2009). Similar findings were obtained 
when evaluating RyR1 in β-sarcoglycan-deficient mice, 
an established model of limb-girdle muscular dystrophy 
(Andersson et  al. 2012). Thus, we demonstrated common 
mechanisms of stress-induced remodeling of RyR1, includ-
ing post-translational modifications of the channel and dis-
sociation of the stabilizing subunit calstabin1, in two major 
disorders that weaken the muscular system hampering 

Fig. 2  RyR1 with localization of the reported mutations for CCD 
(a–c) and MH (d–f). a and d are the full tetramer viewed top down 
from the cytosol, while b and e are rotated 90° to show the narrow 
transmembrane core and the larger cytoplasmic shell (an additional 
45° rotation along the vertical axis was also performed). In c, f one 

protomer is depicted (following a 60° rotation), demonstrating the 
high proportion of interprotomer mutation sites (in pink). Interest-
ingly, CCD mutations typically occur in the pore forming C-terminal 
domain, while MH mutations occur in central and N-terminal clusters
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locomotion and that remain without effective pharma-
cological treatment. We demonstrated in both cases that 
stabilizing the RyR1-calstabin1 association using a novel 
small molecule Rycal called S107 improved muscle func-
tion (Bellinger et al. 2009; Andersson et al. 2012), thereby 
providing an innovative therapeutic target and potential 
options for the treatment of muscular dystrophy.

In conditions of strenuous muscular stress or in a dis-
ease such as heart failure, both of which are characterized 
by chronic activation of the sympathetic nervous system 
and increased production of reactive oxygen and nitrogen 
species (Santulli 2014; Dalla Libera et  al. 2005; Santulli 
and Iaccarino 2016), skeletal muscle function is impaired, 
possibly due to remodeling of RyR1 and impaired E–C 
coupling. We have shown in both an animal model as well 
as in exercising humans that chronic βAR stimulation and 
depletion of calstabin1 from RyR1 plays a role in contrac-
tile failure and muscle fatigue, defined as a decline in abil-
ity of a muscle to generate force during sustained exercise 
(Bellinger et al. 2008). Consistent with these observations, 
we have demonstrated that the remodeling of RyR1 plays a 
role in sarcopenia or age-dependent loss of muscle function 
(Andersson et al. 2011) and we were able to reduce RyR1 
dysfunction and improve skeletal muscle function in aged 
mice (2 years old) by genetically enhancing mitochondrial 
antioxidant activity (Umanskaya et al. 2014).

Since skeletal muscle dysfunction, as observed in HF or 
muscular disorders, remains without effective treatment, 
drugs that restore RyR  Ca2+ release function represent 
promising candidates. In this sense, Rycal treatment could 
be ideal in conditions that impair both cardiac and skeletal 
muscle function. Indeed, as well as muscular RyR1 under-
goes post-translational modifications in HF (Reiken et  al. 
2003; Ward et  al. 2003), remodeling of the cardiac RyR2 
has been also reported in murine models of Duchenne mus-
cular dystrophy, triggering ventricular arrhythmias (Fau-
connier et al. 2010).

RyR1 mutations: clinical significance and structural 
effects

Over 300 mutations have been mapped to RyRs that are 
implicated in human diseases and 200 more that do not 
result in modified channel function. The disease causing 
mutations are most often found in hotspots, including the 
N-terminal (~1–600), the central (~2000–2600) and the
C-terminal (~4000–5000) regions. High-resolution cryo-
EM reconstructions have recently become available making
it possible to see how these hotspots are localized, some in
the channel pore and others in the inter-protomer and inter-
domain interfaces (Tung et al. 2010). The phosphorylation
domain is another hotspot for disease causing mutations
(Yuchi et al. 2012).

Proper post-translational modifications and interac-
tion with other proteins are also critical for RyR function. 
Several human disorders are linked to improper phospho-
rylation or oxidation of RyRs including ventilator-induced 
diaphragmatic dysfunction (VIDD) and Duchenne mus-
cular dystrophy (DMD). VIDD involves diaphragm mus-
cle weakness after extended mechanical ventilation and 
has been linked to oxidation of RyR (Matecki et al. 2016). 
RyR1 cysteine-nitrosylation has been shown to have a 
role in DMD (Bellinger et  al. 2009). An age-dependent 
increase in cysteine-nitrosylation occurs with dystrophic 
changes in the muscle, depleting the RyR1 macromolecu-
lar complex of calstabin1 resulting in  Ca2+ leak. This find-
ing links muscle inflammation and  Ca2+ leak in the patho-
genesis of DMD (Tidball and Villalta 2009). Indeed, in 
inflamed tissues there is an increased expression of induc-
ible nitric oxide synthase (iNOS), which binds to RyR1 
leading to  Ca2+ leak and eventually to the activation of 
 Ca2+-dependent proteases (calpains) that promote muscle 
damage and wasting.

These alterations affect the function of RyRs, but the 
direct impact on the tetrameric assembly has yet to be 
shown in structural studies. Due to the critical requirement 
of the channel for proper muscle function, mutations that 
severely destabilize or significantly alter the channel struc-
ture most likely lead to non-viable embryos. These muta-
tions most often lead to changes in the open probability of 
the channel, leading to  Ca2+ leak. This hypersensitive acti-
vation can come from mutations on either the luminal or 
the cytosolic side of the receptor (Tong et al. 1997; Jiang 
et  al. 2004). One potential explanation is that defects at 
the interface between the central and N-terminal regions 
would weaken the interactions stabilizing the receptor 
in the closed state, leading to increased susceptibility to 
stimuli (Tateishi et  al. 2009; Suetomi et  al. 2011). Albeit 
many disease-associated RyR1 mutations do increase the 
open probability of the channel, this is far from certain for 
all RyR1 mutations, in particular with regards to recessive 
RyR1-related myopathies associated with reduction of the 
RyR1 protein. Therefore, compounds enhancing the closed 
probability of the channel would have limited application 
in conditions where the RyR1 mutations result in reduced 
rather than enhanced  Ca2+ conductance, or where the pre-
cise functional consequences of the specific RyR1 muta-
tions are not known.

Adjacent RyRs are known to signal cooperatively as 
paracrystalline arrays in checkerboard patterns, allow-
ing for simultaneous opening of multiple channels (cou-
pled gating) in response to a stimulus (Marx et  al. 1998; 
Cabra et  al. 2016). This provides a mechanism by which 
RyR channels can effect the rapid and coordinated SR  Ca2+ 
release (via mechanically triggering neighboring channels) 
that is required for EC coupling. Thus, RyRs act as both 
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signal amplifiers and integrators by triggering neighboring 
channels both physically and chemically with  Ca2+ (Endo 
et al. 1970; Fabiato 1983).
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