ASSESSING INCLUSIONARY HOUSING POLICY IN SANTIAGO, CHILE:

RESIDENTIAL SEGREGATION BY INCOME, 2006-2016

A Thesis Presented to the Faculty of Architecture and Planning COLUMBIA UNIVERSITY

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Urban Planning

by

JOSE GABRIEL LEMAITRE PALMA

May 2017

Abstract

In 2006, residential integration based on income was included for first time as a main goal in Chile's national housing policy. In 2015, the National Council for Urban Development (*Consejo Nacional de Desarrollo Urbano*, CNDU) challenged the homeownership voucher program employed to achieve this goal and recognized the inexistence of any official instrument to measure segregation in Chile. This thesis responds to these concerns and i) provides an index to measure residential segregation of subsidized low-income households; ii) analyzes the index's change during the last decade; and iii) uses these findings to evaluate whether the new policies introduced in 2006 have reduced the levels of residential segregation in the Region of Santiago (RS). The study demonstrates that new housing policies have not reduced the levels of residential segregation affecting subsidized low-income households in Santiago. Complementary, the thesis analyzes the relation between spatial clusters of government assistance with poverty rates, overcrowded conditions, physical deficiencies, infrastructure and social problems, to demonstrate the persistence of negative urban conditions associated to the location of subsidized stock.

List of Acronyms

AMGS	Great Santiago's Urban Area
	Acronym from Spanish: Area Metropolitana del Gran Santiago
CASEN	National Socio-economic Survey
	Acronym from Spanish: Encuesta de Caracterización Socio-
	Económica Nacional
CNDU	National Council of Urban Development
	Acronym from Spanish: Consejo Nacional de Desarrollo Urbano
DS. 1	Supreme Decree No.1 (Medium-Income Acquisition Voucher)
	Acronym from Spanish: Decreto Supremo No.1 (Subsidio de
	adquisición de vivienda para ingresos medios)
DS. 49	Supreme Decree No.49 (Low-Income Acquisition Voucher)
	Acronym from Spanish: Decreto Supremo No.49 (Subsidio de
	adquisición de vivienda para ingresos bajos)
DS.116	Supreme Decree No.116 (Mixed-Income Bonus 2014)
	Acronym from Spanish: Decreto Supremo No.116
DS. 19	Supreme Decree No.19 (Mixed-Income Bonus 2016)
	Acronym from Spanish: Decreto Supremo No.19 (Bono de
	Integración Social 2016)
ECLAC	Economic Commission for Latin America and the Caribbean
INE	National Statistics Bureau
	Acronym from Spanish: Instituto Nacional de Estadística
IRS	Index of Residential Segregation
MINVU	Ministry of Housing and Urban Development
	Acronym from Spanish: Ministerio de Vivienda y Urbanismo
RS	Region of Santiago
RSD	Relative Standard Deviation

Table of contents

Abst	ract	
Table	e of conter	nts4
1.	Introduc	tion6
	1.1. Cor	nceptualizing residential segregation6
	1.2. The	sis question8
2.	Backgro	ound9
	2.1. Chil	lean demand-voucher system9
	2.2. Inst	ruments towards residential integration11
	2.2.1	Mixed-income bonus12
	2.2.2	Location voucher14
	2.3. Inst	ruments' implementation and criticisms14
	2.3.1	Quantitative evaluation14
	2.3.2	Importance of the scale in residential segregation16
3.	Methodo	blogy16
	3.1. Geo	ographic scale of analysis17
	3.1.1	Higher order: Santiago Metropolitan Region (RS)17
	3.1.2	Intermediate order: Provinces and Santiago's internal sectors
	3.1.3	Lower order: Districts or "comunas"
	3.2. Sele	ected attributes
	3.2.1	Housing variables
	3.2.2	Income variables
	3.2.3	Contextual variables
	3.3. Seg	regation Indexes23
	3.3.1	Duncan's Dissimilarity Index
	3.3.2	Index of Residential Segregation (IRS) or analysis of variances24

	3.4.	Res	earch design	.25
	3.5.	Sou	rces, assumptions, and limitations	.27
	3.	5.1	CASEN Survey of Socio-economic Characterization	.27
	3	5.2	Assumptions and limitations	.27
4.	Ana	lysis	I: Spatial segregation of subsidized housing	.28
	4.1	Sub	sidized housing stock by district	.28
	4.2	Inco	me distribution	.32
	4.3	Dist	ribution of poverty rates	.36
5.	Ana	lysis	II: Residential segregation, does it matter?	.38
	5.1.	Ove	rcrowding rates per district	.39
	5.2.	Per	centage of units facing physical deficiencies per district	.39
	5.3.	Env	ironment	.42
	5	3.1.	Infrastructure	.42
	5	3.2.	Social Problems	.44
6.	Мај	or fir	Idings and policy recommendations	.45
7.	Bib	lioar	aphy	.50
8.		llogra		
	Арр	pendi	xes	i
	Ар р 8.1.	oendi App	endix 1: Population by territorial subunits	i i
	Apr 8.1. 8.2.	App App	endix 1: Population by territorial subunits endix 2: Distribution of subsidized stock	i i
	Ap 8.1. 8.2. 8.3.	App App App App	ixes endix 1: Population by territorial subunits endix 2: Distribution of subsidized stock endix 3: Analysis of income distribution	i i ii
	Apr 8.1. 8.2. 8.3. 8.4.	App App App App App	ixes endix 1: Population by territorial subunits endix 2: Distribution of subsidized stock endix 3: Analysis of income distribution endix 4: Income analysis by industry	i ii iii iv
	App 8.1. 8.2. 8.3. 8.4. 8.5.	App App App App App App	ixes endix 1: Population by territorial subunits endix 2: Distribution of subsidized stock endix 3: Analysis of income distribution endix 4: Income analysis by industry endix 5: Distribution of poverty rates	i ii iii iv vi
	Apr 8.1. 8.2. 8.3. 8.4. 8.5. 8.6.	App App App App App App App	ixes endix 1: Population by territorial subunits endix 2: Distribution of subsidized stock endix 3: Analysis of income distribution endix 4: Income analysis by industry endix 5: Distribution of poverty rates endix 6: Overcrowding analysis	i ii iv iv vi
	App 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7.	App App App App App App App App	ixes endix 1: Population by territorial subunits endix 2: Distribution of subsidized stock endix 3: Analysis of income distribution endix 4: Income analysis by industry endix 5: Distribution of poverty rates endix 5: Distribution of poverty rates endix 6: Overcrowding analysis	i ii iv iv vi vi vii viii
	App 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8.	App App App App App App App App App	ixes mendix 1: Population by territorial subunits mendix 2: Distribution of subsidized stock mendix 3: Analysis of income distribution endix 4: Income analysis by industry endix 5: Distribution of poverty rates endix 5: Distribution of poverty rates endix 6: Overcrowding analysis endix 7: Materiality index analysis endix 8: Labor engagement	i ii iv iv vi vi ix

1. Introduction

1.1. Conceptualizing residential segregation

The term segregation refers to the differences or inequalities within a group, which separates group's individuals in different categories with hierarchical distinctions (Rodríguez 2001). Territorial segregation, as the name indicates, is the kind of segregation that considers geographic location as the main category to separate the individuals. Consequently, the term residential segregation—one kind of territorial segregation—refers to the stratification of households made tangible through spatial proximity or territorial agglomeration of families belonging to the same social group. This stratification can be built upon socio-economic attributes, such as a household's income, educational attainment, and material wealth; or socio-cultural attributes like race, ethnicity, language, or religion (Sabatini, Cáceres and Cerda 2001, 27). Both Chilean policies employed since 2006 and this thesis, address residential segregation of subsidized low-income households. This kind of segregation will be referred from now on simply as residential segregation.

Chilean cities—as many other Latin-American cities—are known by their "large scale" residential segregation. This means the presence of i) large districts with concentrated subsidized low-income housing, and ii) notorious agglomerations of high-income districts located in specific areas of urban expansion geographically separated from the "poor" areas. However, Chilean cities also experience residential segregation at a "small scale," or the existence of small homogeneous districts sparsely located in the territory (Rodríguez 2001, Sabatini, Cáceres and Cerda 2001).

As illustrated in Figure 1, the district A4 is composed by only one kind of individuals, thus, it can be considered as a segregated district from others in the city (at a large scale); however, the idea of segregation within A4 (at a small scale) is meaningless, since there is no one to segregate. The same applies in the opposite case, where specific individuals can be sparsely located through the territory (integrated at a large scale) but segregated at a small scale. This is the case of districts A1 and A3. Both districts have 25% of *poor* (or subsidized) individuals, being equally "inclusive" at a large scale (at least more inclusive than district A2). However, at a small scale it is clear that A1— where a homogeneous hierarchy of individuals is concentrated in one specific area—is more segregated than A3, where the same individuals are randomly distributed.

This methodological distinction between scales is important to understand the kind of segregation each policy aims to address, and to evaluate the mechanisms employed to do so. In Chile, the attention given from the Ministry of Housing and Urban Development (MINVU)¹ to residential segregation tried to address both i) vast agglomerations of subsidized housing in peripheral areas (large scale segregation), and ii) homogeneous neighborhoods where poor subsidized households have null opportunities to interact with families of different social status (small scale segregation). These two urban conditions together have created environments of subsidized low-income housing concentrations where opportunities or social mobility are limited, and where social mistrust, violence, and social fragmentation are accentuated (Katzman 2001, Tironi 2003, Sabatini , Mora, et al. 2013, Bresciani 2016).

¹ The Ministry of Housing and Urban Development of Chile (MINVU, from Spanish *Ministerio de Vivienda y Urbanismo*) is in charge of planning and land regulations throughout the country. It is composed by the Ministry's Regional Offices (SEREMIS), and Housing and Urbanization Services (SERVIU) of each region.

1.2. Thesis question

The *New Housing Policy* promoted by MINVU in 2006, addressed segregation of subsidized housing at both small and large scale, by introducing two specific instruments:

- A new voucher to finance mixed-income developments at neighborhood level (i.e. avoid homogeneous concentrations like in district A1, depicted in Figure 1).
- A location voucher to increase the purchasing power of low-income families in order to facilitate their access to high quality locations (i.e. allow *poor* subsidized units to afford district A4 according to the scenario described in Figure 1).

Complementary, and just after the introduction of the new policy, the government decided to increase the public expenditures assigned through housing subsidies. During Michelle Bachelet's first administration (2006-2009) the annual provision of subsidized housing increased from 463 per 100,000 habitants (the average from 1964 to 2006) to 1,068 per 100,000 habitants. As shown in Figure 2, those levels of housing production remained through the following administration of Sebastián Piñera and the second Bachelet mandate with 1,139 units and 1,045 units per 100,000 habitants respectively (Valenzuela-Levi 2016). Despite the important increase in subsidized housing production under the 'new agenda,' by 2013 just twenty mixed-income projects were built nationwide, and only three were located in the region of Santiago (Sabatini , Mora, et al. 2013, 12). Government assistance in this context was canalized through the pre-existing housing vouchers rather than through the new 'inclusionary' ones.

Based on this and other factors, the CNDU highly criticized in 2015 the exclusionary character of the voucher system, and the disconnection between the existing planning tools (land use ordinances, FARs, and other building codes) with the goals of residential integration (CNDU 2015, Ch.5, 1). According to CNDU, residential segregation cannot be solved just through the voucher system, since without zoning tools to ensure mixed-income communities, land markets will continue to exclude vulnerable populations from the areas valued by public action. Considering the attention given to residential segregation, the structural flaws evidenced by CNDU, and the alleged exclusionary effects of the voucher system (CNDU 2015, Bresciani 2016), this thesis aims to address the problem from a planning perspective, and evaluate how the national increment of public-housing production has affected the levels of residential segregation by income in the RS.

Figure 2. Average housing units annually built in Chile per period using government resources.

Source: Valenzuela-Levi, 2016.

2. Background

2.1. Chilean demand-voucher system

Housing assistance in Chile works through a voucher system. Under this system, the state's role is limited to providing a payment to qualifying citizens with which they can purchase any unit provided by the private sector. Under this regime, the private sector is in charge of designing, distributing and building houses, while the state subsidizes the demand through vouchers, i.e. citizens are 'consumers'. According to SERVIU's coordinator of social housing, Pablo Ivelic: "SERVIU works by subsidizing demand, in effect what SERVIU does is to allow the market work (...) and the market works by pursuing the interest of for-profit companies." (Edwards 2013)

Depending on the criteria employed, the privatization of social housing in Chile² is an unprecedented policy success, or a shortcut for socio-economic segregation and ghettoization. The paradox of this neoliberal social housing experiment can be summarized by two facts: the first one is the dramatic quantitative reduction in the numbers of families with housing problems; in 1990, 30% of families lacked adequate housing solutions (squatter settlements or illegal occupations) and that figure has now fallen to 9% (Bresciani 2016). The second fact is that many of the social housing projects built during this period of accelerated construction (1990-today) are universally acknowledged as ghettos located in isolated outposts lacking basic facilities, prone to fires, and often high in crime and social problems (Edwards 2013, CNDU 2015, Bresciani 2016). A brief consideration that explains this phenomenon, is that by directing government assistance to consumers, there is no 'contractual arrangement' or mechanism between the government and the private sector to enforce (nor incentivize) the provision of better quality units from private developers.

In this regard, the private sector is practically under a laissez-faire regime, tending to optimize profits by cutting-corners at least in three moments of housing production. The first moment is in the definition of the project's scale; in order to optimize economies of scale, developers tend to organize serialized processes of production, designing massive developments usually for only one single niche of consumption (low-income vouchers' users). This way, developers produce large agglomerations of homogenous subsidized households that have no contact with different social classes. In a second moment, and in order to have access to these extensive quantities of land at a convenient price, developers locate these large agglomerations in peri-urban areas where these amounts of land are available at the lowest-cost (Brain, Cubillos and Sabatini 2009). Finally, a third moment is the construction phase, often characterized by the use of cheap building materials and minuscule spaces. With almost no regulation from the state, and secured demand—composed by all low-income households that have no other choice than acquiring these 'low quality units'—the proliferation of peripheral 'subsidized ghettos' became a common phenomenon throughout the country. As recognized by many urban scholars, the success

² Implemented in 1975 during Augusto Pinochet dictatorship (1973-1990)

of the system from its quantitative perspective created at the same time important agglomerations of concentrated poverty, located in the outskirts of the city, and subject to progressive physical and social deterioration negatively affecting the wellbeing of its inhabitants (Katzman 2001, Tironi 2003, Zambrano 2010). These negative consequences of the demand-voucher system are exactly what the policies in 2006 aimed to combat.

2.2. Instruments towards residential integration

All Chilean vouchers work by subsidizing homeowners' demand. This means that MINVU provides a fixed amount of money, only granted once, to low-, moderate- and middle-income households to acquire any new property available in the market. From 1990 to 2016, MINVU granted USD \$26.3 billion in subsidies; 99.6% of the subsidies were given to households to acquire or maintain their units (homeowners), and only 0.4% were designated to rental assistance (MINVU-CEHU 2016). In other words, it is a type of homeownership voucher program. Re-sales are forbidden unless the owner obtains a direct approval from authorities (the unit must have more than 5 years, no pending debts, or active SERVIU's prohibitions). With low rates of turnover, the system is an important engine of new housing stock's creation, as aforementioned in section 1.2.

The two instruments introduced in 2006 to battle residential segregation follow this same rationale in promoting the new agenda, but attaching specific requirements that the unit acquired must comply—such as quality, location, or developments' social integration—in order to qualify for voucher. The first policy analyzed in this thesis, the mixed-income bonus, applies only to low- and moderate-income households; while the second, the location voucher, mainly to middle-income households (see detailed segmentation in Table 1). Without fundamentally challenging the dynamics between housing and the real estate market, the inclusion proposed is heavily constrained by the risk and expected rates of return of developers. The inclusion at neighborhood scale only considers the mix between poor- and slightly less poor-households (usually in the periphery), while middle-income households (with higher purchasing power to afford better land) are the only beneficiaries of the "large scale inclusion"—or the ones with the opportunity to access better quality locations.

2.2.1 Mixed-income bonus

The mixed-income bonus is the only initiative explicitly designed to reduce residential segregation by income at a small scale, which means, bringing low-income households to live together with moderate-income households in the same development. The government introduced the voucher with the *New Housing Policy* (2006), restructured it with the Supreme Decree No. 116 (D.S. 116 in 2014), and readjusted it again with the Supreme Decree No. 19 (D.S. 19 in 2016)³. Today, it forms part of the *Extraordinary Program of Social Integration*, administered by MINVU, in collaboration with the Ministry's regional offices (*Secretarías Regionales Ministeriales* or SEREMIS).

As any other demand voucher, the government offers the bonus to households organized through social housing organizations (known as EGISs by their Spanish initials). In order for households to qualify, the property acquired (new constructions) must be part of a mixed-income development where 20% to 60% of its units are set aside for populations below the first income quintile (approximately from E2 to D). With the bonus, low- and moderate-income beneficiaries reduce the mortgage credit they need to acquire the unit, and increase their chances to obtain the loan. With safer demand, developers increase its sales speed thus reducing the financial costs of the project. The market—following these incentives—should supply customer-oriented products to satisfy the demand created by the voucher.

It is important to clarify the autonomy of this voucher compared to other acquisition subsidies available for low-income households (i.e. D.S.49), or for middle-income households (i.e. D.S. 1) which are commonly complemented with other government subsidies (i.e. the location voucher). The D.S. 19 works by itself and combines a triple assistance composed by an i) acquisition voucher, ii) an incentive depending on the percentage of subsidized units involved—a bonus for *captured subsidies*—and, iii) a mixed-income bonus. The values described in Table 2 are the maximum amounts that households can obtain based on their socio-economic characteristics. However, these maximum values are sensible not only to the administrative region of the country where the development is located, but also to the project's zoning context, design, typology, prices,

³ Supreme Decrees are issued by MINVU, signed by the President, and apply to all national territory.

Income levels	Groups of socio-economic segmentation	Income for a Household of 1 (Annual UDS)	Income for a Household of 3 (Annual USD)
	А	> \$ 68,667	> \$153,769
High	B1	> \$ 42,045	> \$ 94,135
	B2	> \$25,113	> \$ 57,415
Middle	C1a	> \$14,340	> \$34,200
Middle	C1b	> \$8,182	> \$19,807
Modoroto *	C2	> \$4,597	> \$ 11,785
moderale	C3	> \$2,396	> \$6,797
	D	> \$1,189	> \$ 3,780
LOW	E1	> \$ 621	> \$2,360
Extremely Low	E2	> \$0	> \$0

* Income-levels considered by Inclusionary policies. Source: Asociación de Investigadores de Mercado (AIM) 2015.

Table 2. Maximum levels	of assistance as de	efined by D.S.19 ((in American dollars)
		1	· · · · · · · · · · · · · · · · · · ·

Target Population	Property value	Savings required	Acquisition Voucher	Cap/S. bonus	M-I bonus	Maximum voucher	Max.% assist.
Low-Income Households	<44,792	814-1,222	32,579	2,036	9,773	44,385	99%
	<48,864	814-1,222	36,648	2,036	9,773	48,457	99%
ModIncome Households	<89,584	1,629- 3,258	11,198			31,558	35%
	<97,728	1,629- 3,258	13,723			37,340	38%
Percentage of Subs	idized Units						
20% - 25%				2,036	4,072		
25% - 30%				4,072	8,144		
30% - 35%				6,108	10,180		
35% - 60%				8,144	12,216		

Source: MINVU, D.S. N°19, DO 07.14.2016

etc. Each SEREMI evaluates and scores these variables to determine the final allocation of resources (specified in D.S. 19 regulation). To calculate the mixed-income bonus for low-income households, SEREMIs consider the difference (if any) between the total price of the unit, and the aggregate value resulting from family savings, the acquisition voucher, and the bonus by *captured subsidies* (MINVU 2016, D.S. No 19, 8).

2.2.2 Location voucher

In order to tackle large-scale segregation, the government introduced in 2006 the location voucher defined by the Supreme Decree No 174. Following the rationale of the mixed-income bonuses already explained—as demand-subsidies—the location voucher works as an extra bonus up to USD \$7,700 which households may obtain when the property acquired complies with specific requirements. Among them, be located in urban areas with access to sewage systems, accessibility through major roads, proximity to transportation systems, and being located less than 1.5 miles away from health and education facilities.

The location voucher complements acquisition subsidies for middle-income households (like D.S. 49 and D.S. 1 already mentioned but not detailed here) but do not complement the subsidies given under the D.S. 19. This is important since middle-income households become the main beneficiaries of large-scale integration, while small-scale integration is only planned for low- and moderate income household's which can be integrated between them using the mixed-income bonus, but not necessarily in a better location. Although the instrument has been highly criticized—as shown in the next section—it is still in operation under MINVU's decree FSEV 16 (MINVU 2015).

2.3. Instruments' implementation and criticisms

2.3.1 Quantitative evaluation

After the changes introduced in 2014 to the mixed-income bonus, and just in the first two years of D.S.116 implementation (2015-2016) MINVU has assigned 50,462 D.S.116 subsidies. This is equal to 18.2% of the total housing subsidies granted from 2015 to 2016, and to 25.3% of the

total government resources given through housing subsidies during that period⁴ (MINVU-CEHU 2016). An unquestioned improvement compared to the first phase (2006-2013) described in page 8. Regarding the location voucher, the lack of specificity of the instrument (Sabatini , Mora, et al. 2013) coupled with an important rise in land values, has neutralized the effects of the voucher (ProUrbana 2010, Sabatini , Mora, et al. 2013). Although the idea that location subsidies might be the causal effect on upward land values is something still debated, a general consensus exists in the fact that location subsidies tend to rise the demand and expectations from the supply side, and therefore, to rise prices in contexts with fixed supply of urban land (Zambrano 2010). An essential contradiction emerges when the very problem the voucher is trying to solve, is consequence of the voucher's effect over land markets. This is even more critical considering the hypothesis that these effects in land values are not only consequence of the location voucher, but of the voucher system, or vouchers in general, which tend to rise prices.

In a study published in 2004, Francisco Sabatini and Isabel Brain analyze the changes in land prices due to the increment of the vouchers' value. According to the study, which considers the period from 1990 to 2004, the voucher system heavily distorted land markets dynamics in Santiago. Based on evidence gathered in more than 118 developments (33,298 housing units) built through the timeframe selected, they conclude that poor districts in the RS, like *El Bosque, Recoleta*, or *La Granja*, experienced from 1990 to 2004 a 20% annual value increase per square meter of land. Doubling the 10.6% average value increase for the whole capital, and drastically higher than the 4% in wealthy districts like *Vitacura, Providencia*, or *La Reina* for that same period (Brain and Sabatini 2004). Through the vouchers' value adjustments introduced during those years, the government motivated a new low-income demand for housing; consequently, private developers built housing at a higher pace in areas where the land was cheap, and therefore, this end by increasing the land value in these low-income neighborhoods. These trends absorbed 84% of government voucher's readjustments without improving the quality or developments' location (Brain and Sabatini 2004). The overall experience demonstrates that independent of government efforts to reduce the spatial

⁴ From 2015 to July-2016, the government assigned 277,267 subsidies (a total investment of \$3,300 million dollars in subsidies). The investment in D.S.116 subsidies is equal to \$835 million dollars (MINVU-CEHU 2016).

segregation through the market system, the new agenda is heavily constrained by the market dynamics in place; namely risk aversion, and profits maximization from private developers to the detriment of the quality of the housing stock provided. Despite the D.S.116 program concentrates today 18.2% of the vouchers granted since 2015, the deficiencies of the whole system and the distortions it generates over land markets overshadow its apparent success.

2.3.2 Importance of the scale in residential segregation

The mixed-income bonuses—with the limitations already described—respond to residential segregation at a small scale. At a neighborhood level, they supposedly create more economically diverse environments, and counteract the creation of socially homogeneous neighborhoods. However, they do not deal with residential segregation at a large scale, nor tackle the displacement of low- and moderate- developments into areas of the city where land is economically accessible.

Actually, when SEREMIs define the score given to any mixed-income project, it makes no difference if the development is located in poor areas with cheap land, or in a better location. To illustrate this, a project located in the district of *El Bosque* in the province of Santiago (whose poverty rates vary around 30%, and presents severe physical deficiencies in its built environment), receives the same score than a project located in *Las Condes*, a district in the same province but with high quality built environment and poverty rates below 5%. This framework provides no incentives for private developers to pay for good quality or expensive locations. The mixed-income bonuses do not address large-scale segregation, and as proven, location subsidies are very inefficient in doing so, or definitely worsen the situation considering the land market distortions they generate. In this context, the inexistence of any official instrument to measure residential segregation provides not only the opportunity, but also the responsibility to address the matter from a planning perspective.

3. Methodology

Measuring residential segregation—even from the most intuitive approach—requires at least three criteria to be defined:

- i. First, segregation must be understood in relation to a territorial or geographic scale of analysis (region, provinces, districts, etc.). In this case, the study will be focused in large scale segregation, meaning between sectors and districts. Due to the short historical distance and lack of disaggregated data in relation to the mixed-income subsidy application, the analysis of segregation at small scale remains pending for future studies.
- ii. Second, it is necessary to make explicit the attribute that will differentiate the groups physically distanced (income, wealth, subsidies, etc.).
- iii. Finally, the methodology to measure segregation will depend on the attributes selected; for example, measuring a dichotomous attribute like subsidized housing (i.e. subsidized units vs. market units) will require a different technique than a continuous variable such as income, in which any attribute's value is possible.
 Being this the case, the thesis considers—as section 3.4 will explain—two main methodologies; the Dissimilarity Index for measuring segregation based in dichotomous variables such as subsidized stock and poverty, and the Index of Residential Segregation, for measuring segregation based on income.

3.1. Geographic scale of analysis

3.1.1 Higher order: Santiago Metropolitan Region (RS)

Regions are the higher territorial division in Chile⁵, and sixteen of them conform the national territory as shown in Map 1. The RS, where the capital is located, is the smallest region in the country with only 15,209 km²; however, it concentrates the higher population with a total of 7,399,042 habitants (40% of the national population by 2016) according to the estimates of the National Statistics Bureau (INE from Spanish *Instituto Nacional de Estadística*). As can be inferred from its GDP by 2012, the RS stands as a nationwide center of economic activity. Due to the

⁵ Regarding its political administration, a regional government composed by a regional council and a regional intendant (appointed by the President) command each region. The intendant is a territorially deconcentrated governing body and, at the same time, it is a decentralized administrative organ.

Map 1. Regions of Chile

Source: ESRI, Subsecretaría de Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar, Instituto Nacional de Estadística 2016.

centralized character of the country, and the importance of the RS in economic demographic, and political terms, the thesis considers the RS as the larger unit of territorial aggregation, or general framework of study.

3.1.2 Intermediate order: Provinces and Santiago's internal sectors

Six intermediate geo-political subdivisions or provinces⁶ compose the RS. They are: i) Chacabuco, ii) Cordillera, iii) Maipo, iv) Melipilla, v) Santiago, and vi) Talagante. As Map 2 shows,

⁶ Each province is administered by a governor, appointed and removed by the President.

Map 2. Provinces of RS and urban areas

Source: ESRI, Subsecretaría de Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

most of the provinces are predominantly rural—partly due to the region's mountainous geography and the urban area is concentrated almost completely within the province of Santiago. This way, the province of Santiago (the national capital) concentrates 78% of the region's population, as well as 32 of the 52 districts (the lower order of territorial aggregation) within the RS.

Santiago urban area is called *Area Metropolitana del Gran Santiago* (AMGS), and refers to the agglomeration of districts that together conforms the "central or metropolitan city" of the region. This "urban boundary" considers 32 districts within the province of Santiago, plus some districts

Map 3. Provinces and Districts of RS

Source: ESRI, Subsecretaría de Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

from adjacent provinces that have been *conurbated* with AMGS's urban growth, as Map 3 shows. Given the weight of AMGS's population, it is possible to divide the urban area in six internal sectors according to their geographic location: i) east, ii) south-east, iii) south, iv) west, v) north, and vi) center (depicted in Map 4).

These two categorizations (provinces and Santiago internal sectors) conform the intermediate order of territorial aggregation; this categorization serves to analyze large-scale segregation between sectors.

Map 4. AMGS Internal Sectors and Districts

Source: ESRI, Subsecretaría de Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

3.1.3 Lower order: Districts or "comunas"

Comunas, the Spanish for boroughs or districts, define the lower level of territorial aggregation. These are the most basic administrative unit of the country⁷ and 52 of them compose the RS. The estimated population of each district (and different levels of territorial aggregation) is detailed in Appendix 1. All dissimilarity indexes presented in the following sections are calculated for this scale of territorial aggregation (which is the one the location subsidy aimed to address).

⁷ A mayor— democratically elected— and a communal council constitute their administrative body.

3.2. Selected attributes

To analyze whether the voucher system has affected the levels of residential segregation by income in the RS, it is important to identify first whether the voucher system has contributed to the generation of clusters (or dispersion) of subsidized developments. Second, it is important to understand how income distribution has evolved between different geographic sectors and districts. Complementary, it is relevant to consider whether this matters, or if the concentration of subsidized housing is related to other negatives aspects of social marginality. The variables considered are:

3.2.1 Housing variables

The housing analysis intends to calculate the percentage of subsidized stock in each district and provinces. Specifically, this section aims to identify the existence of spatial clusters of government assistance, and their evolution throughout the past decade.

3.2.2 Income variables

Income levels are obviously relevant since they not only define the access to better housing solutions, but also influence living standards, quality of life, and access to opportunities and consumption (Turok, Kearns and Goodlad 1999). The analysis at district level allows to identify the percentage of households' under poverty line and their concentration/dispersion within the urban fabric. Other related variables like the incomes by sector of activity (and their spatial patterns in the city) are also included in the study to provide an understanding of the spatial distribution of wealth.

3.2.3 Contextual variables

Finally, the thesis analyzes a set of indicators such as overcrowding, materiality index, and neighborhoods' social environment, in order to contextualize both the physical and social conditions associated to the findings of previous sections (3.2.1 and 3.2.2). Specifically, the indicators are:

i. Physical environment: This section considers the percentage of units facing overcrowding conditions and physical deficiencies, as well as the percentage of housing stock facing environmental pollution and infrastructure deficiencies in each district. These variables contextualize (in qualitative terms) the districts where government assistance is more common. Environmental pollution includes noises,

air, visual contamination, trash, odors, landfills and plagues; while infrastructure deficiencies look at the proximity and distance to basic urban resources like health services, schools, and transportation corridors.

 Social environment: Shows the percentage of housing units per district facing problems like robberies, drugs, street prostitution, or insufficient security. This variable was included to contextualize in social terms the aforementioned variables.

3.3. Segregation Indexes

There is a broad range of procedures and algorithms to measure residential segregation, and the spatial dispersion of the variables mentioned above. The next section briefly presents some of these alternatives, and explains the reasons behind the selected methodology.

3.3.1 Duncan's Dissimilarity Index

Duncan's dissimilarity index (*D*), employed by Brigitte Erbe's (Erbe 1975) and Michael White's (White 1983) among others scholars, is the most widely used indicator to measure segregation. This index is a synthetic indicator that allows the measurement of the social composition in territorial sub-units (sectors and districts) in relation to the social composition of a territorial unit of higher order (region). The indicator acquires values from 0, when there is no segregation, to 1 when there is maximum segregation. It is interpreted as the percentage of members within a minority group that should be moved into a different area to reach a situation of 0 segregation (Rodríguez 2001, 22)

D applies to any categorical variable, but it is better adapted to dichotomous variables; reason why it is very common in American contexts where criteria like race are more significant at measuring segregation (differentiating for example between *black* and *white* populations). The limitations of *D* has been widely addressed (Sabatini, Wormald, et al. 2008, Link, Valenzuela and Fuentes 2015) since it disregards the spatial dimension of segregation at neglecting whether neighborhoods are contiguous or not, or the clusters' size. In any case, it provides a synthetic figure which allows to track the evolution of spatial segregation like this thesis aims to measure.

3.3.2 Index of Residential Segregation (IRS) or analysis of variances

Understanding residential segregation as the weight of a particular households' or attribute's distribution (within a selected sub-unit) over the total variation of a selected attribute, the analysis of variances stands as a logical procedure to measure residential segregation when working with continuous variables. The methodology considers three variances (social attribute's variances) based on the geographic' scale of analysis: i) a total variance for the whole area of study (RS); ii) a second variance calculated between intermediate territorial order (Provinces and Santiago's internal sectors); iii) a third variance calculated intragroup between the smallest units of analysis (the districts within each sector).

Residential segregation will increase (or decrease) when the weight of the variance between territorial subunits over the total variance of the social attribute increases (or decreases). For instance, if 100% of the social attribute's variance (region's variance) can be explained by the territorial sub-unit's variance (districts' variance), the degree of residential segregation would be maximum at district level. Oppositely, if the districts' variance explains 0% of the region variance, this means that the attribute's distribution at district level has a random distribution with no segregation at all. The methodology then, allows to generate an Index of Residential Segregation (IRS, further explained in section 4) which differentiates the scales in which segregation occurs. For instance, if the variance between RS's sectors explain 0% of the total variance of the attribute in use, but the variance between districts explain 100% of the variance at stake, this means that segregation operates within sectors at a district scale but not between sectors. Consequently, as Rodriguez explains in ECLAC's report:

> "The variance between smaller subunits must be (by logic) equal or greater than the variance between higher subunits, and the gap between these two figures will indicate the degree of aggregated segregation resulting from the segregation between smaller subunits (within the larger region) suggesting the geographic scale at which segregation operates." (Rodríguez 2001, 33)

In order complement the IRS analysis, the study also calculate the coefficient of variation, or relative standard deviation (RSD) in each sector. The RSD is a percentage defined by the ratio of the standard deviation to the mean, in other words, it shows the variability of the sample in relation to its mean. In this context, it is included as a standardized measure of dispersion of a frequency distribution in order to evaluate the heterogeneity or homogeneity within sectors.

3.4. Research design

Based in the methodologies described, the research design is defined as follows:

i. The *Index of Dissimilarity (D)* was used to analyze segregation's evolution through dichotomous variables, such as poverty levels, percentage of subsidized stock per district, overcrowding, stock presenting physical deficiencies, percentage of population actively engaged in the labor market, or the percentage of units presenting environmental and social deficiencies per territorial sub-units. *D* is calculated as follows:

$$\frac{1}{2}\sum_{i=1}^{N} \left| \frac{x_i}{x} - \frac{y_i}{y} \right|$$
^[1]

Where x_i is the target population of the i^{th} area (e.g. population below poverty line in district *i*). *X* Is the total population below the poverty line at the higher order of territorial aggregation for which *D* is being calculated (region), y_i is the population above the poverty line in the i^{th} area, and finally, *Y* is the total population above the poverty line at the higher order of territorial aggregation.

ii. For continuous variables like income, the thesis employs the analysis of variances and the *Index of Residential Segregation* (IRS) briefly explained in section 3.3.2. This allows analyzing to what extent segregation occurs between districts or between sectors. Based in the methodology suggested in ECLAC's report (Rodríguez 2001, 28), the IRS is calculated as follows:

Given a quantitative attribute X (i.e. income) of elemental socio-demographic entities (households), and a large scale territorial unit I(RS) which contains different levels of territorial subunits geographically ordered (*II, III, IV...,I*), it is possible to calculate:

The total variance of X, in the territorial unit I

$$\sigma_{total}^2 = \frac{\sum_{I}^{i} (x_i - \bar{x})^2}{N_I}$$
^[2]

The average value of *X*, in each territorial subunit *II*, *III*, *IV*...,*I*

$$\bar{x}_{\text{II,III,IV}\dots,\eta} = \frac{\sum_{l=1}^{i} (x_{l\,\eta})^2}{N_{\eta}} \qquad [3]$$

The variance of the sample mean of X between η territorial sub-units *II*, *III*, *IV...,* η . That is, the variance between territorial sub-units within *I*. This calculation requires to weigh the relative importance of each sub-unit's component (h_n) i.e. the total number of households in each component

$$\sigma_{between}^2 = \frac{\sum_{I}^{n} h_n(\bar{x}_n^2 - \bar{x}^2)}{N}$$
^[4]

With the total variance [2] and the variance between territorial sub-units [4] it is possible to calculate the IRS [5]. The IRS is the proportion of the total variance that can be explained by the variance between sub-units (the geographic component of social heterogeneity).

$$IRS = \frac{\sigma_n^2}{\sigma^2} * 100$$
 [5]

iii. Finally, as mentioned in 3.3.2, the coefficient of variation (CV), or relative standard deviation (RSD) complements the IRS calculating the level of dispersion within districts. The RSD is calculated as follows:

$$RSD = \frac{\sigma}{\mu}$$
^[6]

3.5. Sources, assumptions, and limitations

3.5.1 CASEN Survey of Socio-economic Characterization

All the data for this study comes from the National Survey of Socio-economic Characterization (CASEN, from Spanish *Encuesta de Caracterización Socioeconómica Nacional*), currently carried out in a biennial or triennial periodicity by the Ministry of Social Development. The survey includes household's socio-economic information throughout all national territory (urban and rural areas). CASEN includes demographic information, as well as education, health, housing, labor engagement, and income indicators. This study considers the last 12 available surveys corresponding to the years 1990, 1992, 1994, 1996, 1998, 2000, 2003, 2006, 2009, 2011, 2013 and 2015. CASEN has a probabilistic and stratified survey design, and as any sample survey, it presents estimates of the population. For year 2015, the survey presented an average absolute error (at a regional level) of 1.7 percentage points, and an average relative error of 17.7%.

3.5.2 Assumptions and limitations

The first assumption to clarify relates to the geographic units of analysis, since depending on how they are defined, they will shape the results. The smallest level of aggregation (RS's districts) have local political structures (municipalities) associated to them, and their boundaries have been relatively stable through history. However, Santiago's internal sectors (intermediate order) are delimitations broadly applied in formal and informal contexts, but they do not have any government structure associated to them, and consequently, the criteria might be questionable.

Secondly, the CASEN survey, where the bulk of data for this study comes from, is a sample survey and therefore, it does not allow an accurate analysis like with Census data (which disaggregates the information at a block scale), neither to obtain robust results since, as a sample survey, it is subject to sampling and non-sampling errors as previously mentioned. Consequently, the results presented in this thesis are estimates of the true value of the variables. Despite this fact, CASEN was selected since it allows a more up-to-date information than the Census Data, portraying a richer dynamic process than decennial snapshots (in Chile the last Census available is from 2002).

4. Analysis I: Spatial segregation of subsidized housing

As mentioned so far, the first and most relevant step is to calculate the percentage of subsidized stock at each level of territorial aggregation, and look how these figures have evolved through the last decade. The analysis goes back to the year 1990 to understand the major trends regarding where subsidized housing has been historically built, and to evaluate if there has been any change since the implementation of inclusionary policies in 2006.

The subject of study allows its subdivision in two groups (subsidized units vs. market units) and therefore the most pertinent mechanism to measure segregation here is the Dissimilarity index. *D* indicates the percentage of one of the two groups (i.e. subsidized housing units) that would have 'to move' to different geographic areas in order to produce a distribution that matches that of the larger area (RS).

4.1 Subsidized housing stock by district

As a result of the continuous public incentives encouraging the creation of subsidized stock, the percentage of subsidized housing (from the total stock) rose from 18.8% in 1990, to 26.7% in 2015 (Table 3A). Regarding its location—between sectors (Table 3B)—there is currently a high concentration of government assistance in peripheral areas (Chacabuco, Cordillera, Maipo, Melipilla, and Talagante) where the amount of subsidized housing averages 34% of their total stock. This figure is almost 10% higher than in Santiago, which averages of just 25%.

Within the AMGS (between districts) there is also significant disparities. As indicated in Table 3-B the government assistance goes up to 41.3% in Santiago West, while sectors like Santiago East—the cones of elites—barely reach 9%. In Table 4-B1, it is possible to see how the subsidized stock built post 2006—year in which the new inclusionary policies were announced—has been located primarily in sectors like Santiago North, South, and Cordillera; and almost no stock has been provided for Santiago Center or East. Thus, it is possible to infer that subsidies under the "new" agenda have not been significantly efficient at reverting large-scale segregation patterns, since the majority of new stock provided, was located exactly in districts and sectors where government assistance has been historically high.

Table 3. (A) Historical evolution of subsidized stock as a percentage of total housing stock. (B) Distribution of subsidized housing stock by sector of analysis. Year: 2015.

B. Percentage of subsidized housing by sector of

total housing stock) in RS		RS. Year: 2015	
Year	Subsidized	Sector	Mean
1990	18.78%	Chacabuco	31.69%
1992	5.11%	Cordillera	45.55%
1994	5.11%	Maipo	38.01%
1996	0.79%	Melipilla	28.28%
1998	22.57%	Talagante	26.67%
2000	27.77%	Santiago Center	6.13%
2003	27.76%	Santiago East	8.58%
2006	25.60%	Santiago North	24.81%
2009	27.47%	Santiago South	27.33%
2011	27.55%	Santiago South East	32.38%
2013	31.40%	Santiago West	41.30%
2015	26.70%	Average	28.25%

A. Percentage of subsidized housing (from the total housing stock) in RS

Table 4. Concentration of housing stock. (A) Historical. (B) Only considering stock built post-2006 (*) Extremes rates.

	(A)	(A1)	(B)	(B1) Reat 2006
	Historical - Subsidized Housing Stock (Number of units)	Subsidized Housing Stock (as % of district total stock)	Post 2006 – Subsidized Stock Built (Number of units)	Subsidized Stock Built (as % of district total stock)
Chacabuco	500	3.22%	125	3.94%
(*) Cordillera	2,688	17.32%	427	13.46%
Maipo	899	5.79%	211	6.65%
Melipilla	440	2.83%	105	3.31%
Talagante	526	3.39%	83	2.62%
(*) Santiago Center	109	0.70%	24	0.76%
Santiago East	945	6.09%	206	6.49%
(*) Santiago North	2,971	19.14%	680	21.43%
(*) Santiago South	2,861	18.43%	641	20.20%
Santiago South-East	1,364	8.79%	231	7.28%
Santiago West	2,219	14.30%	440	13.87%
TOTAL	15,522	100.00%	3,173	100.00%

Figure 3 (Above) "*D*" evolution (subsidized-market units) between districts. (Below) Evolution of subsidized units as percentage of total stock per sector. Santiago East, in black; Cordillera, in blue.

These sectors directly relate with low-income and high poverty levels, as next sections will show. This, which might be a positive assessment praising the system efficiency in addressing less favored sectors' needs, can also be interpreted as a system failure concentrating poverty through the housing system. However, the intention is not establishing causalities (understand if subsidized housing provision follows low-income consumers' preferences, or whether the location of subsidized stock creates those low-income sectors), but rather to understand the effectiveness of the policies implemented since 2006, which as can seen in Table 4 has been very modest.

Figure 3 (Above) presents the evolution of *D* for the whole region of Santiago considering the total number of observations grouped by district level (the smaller level of territorial aggregation considered in the study). *D* indicates the percentage of subsidized housing that would have to move to a different district in order to produce a distribution that matches that of the SMR. As the tendency line of *D* shows, the indicator has been increasing over the whole timeframe selected; and specifically, it does not show any tendency to diminish during last years (or at least since 2006). Figure 3 (Below) complements the aforementioned observations by comparing the historical increase in subsidized housing—as a percentage of the total housing stock in each sector—between Santiago East (represented in black) and the sector of Cordillera (in blue).

The presence of areas with subsidized low-income housing concentrations, notoriously separated from the areas with almost no subsidized stock (Map 5), demonstrates that despite the efforts to promote dispersion, new housing policies have not been efficient enough in reverting the patterns of residential segregation at a large-scale. As shown in Map 5, the areas with higher concentration of subsidized stock are mainly peripheral areas of West Santiago; areas where the government assistance has been historically high. As section 4.3 will demonstrate, areas such as Santiago North, West, and South—where government assistance through housing vouchers is mostly concentrated—are precisely the places where poverty rates are most critical (22.1%, 20.7%, and 24.9% respectively). The upward trends on income inequality, shown in section 4.2, also complement the aforementioned observations confirming this increase in large-scale residential segregation. As analyzed so far, by providing cash assistance to 'consumers' the government has null incidence in the location of the new housing stock, leaving "location" to be decided by market

Map 5. Subsidized housing stock by district – AMGS 2015

Includes: VSDsD, Vivienda Básica (all), Vivienda Progresiva (all), Renovación Urbana, PET, Lote con Servicios, and others.

Source: ESRI, Casen 2015 Ministerio de Desarrollo Social, Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

dynamics. Consequently, wealthy neighborhoods like Santiago East (with higher land values) has been losing subsidized housing stock (with a total percentage change of -2.3% between 1990 and 2015) contrasting with low-income sectors like Cordillera, where the increase has been of almost of 30% (more details in Appendix 2).

4.2 Income distribution

In order to complement the analysis of the subsidized housing stock—its concentration and dispersion—the income analysis pretends to understand how wealth is distributed within the region. Unlike the previous section that can be analyzed using *D*, the segregation based on income levels

(a continuous variable) must be studied using the Index of Residential Segregation. The IRS presented is based in three variances obtained from grouping the datasets (for each year) in three scales of territorial aggregation. A first variance (the most general one) was calculated using all observations corresponding to the RS, available from CASEN survey. This "general" variance, calculated using R-Studio statistical software, represents the spread of the whole range of dataset's observations for the largest area of territorial aggregation. A second variance was calculated between the averages obtained from grouping the observations by sectors (it is the variance between the incomes' average in each sector). Finally, a third variance was calculated from the values obtained by grouping the observations by district.

With these three variables, it is possible to obtain two IRS, the first one corresponds to the sectors' variance over the total variance (the percentage of the total variance that can be explained by sectors' variance) while the second is the districts' variance over the total variance (the percentage of the total variance that can be explained by districts' variance). Both IRSs allow understanding segregation between districts, as well as between sectors.

The income analysis considers the total household income, calculated as the sum of household's autonomous money-income and all money-subsidies. The former refers to earnings coming from wages, salaries, self-employment, bonuses, rents, interests, private pensions, and transfers between private individuals; and the latter (money subsidies) refers to all cash contributions from state to individuals as public pensions, health bonuses, etc. (it does not considers housing vouchers). All incomes since 1990 to 2015 were adjusted by the Consumer Price Index (CPI published by INE), and converted to USD according to the exchange rate to date.

Incomes have significantly increased throughout the region during the period of study. The average annual income for the RS in 1990 was USD \$111,720, and it doubled by 2015 to USD \$276,452 (more details in Appendix 3). This probably reflects the overall economic improvements that have positioned the country as one of the strongest economies in Latin America during the last decade⁸. As indicated in Table 5, the average annual percentage change (AAPC) in the province of

⁸ According to El Mercurio, by 2016 Chile's GDP (US \$22,316) far exceeded the one of Brazil (US \$15,000) and that of México (US \$17,000) two of the most important economies in Latin America (El Mercurio 2016). That

		Income (USD)	
Sectors	1990	2015	AAPC
Chacabuco	74,164	173,883	5.85%
Cordillera	136,825	213,701	3.02%
Маіро	93,659	181,930	4.53%
Melipilla	73,217	169,765	5.77%
Talagante	91,007	199,834	5.38%
Santiago Center	100,876	231,038	5.68%
Santiago East	333,501	596,253	3.95%
Santiago North	86,795	186,029	5.21%
Santiago South	82,912	195,183	5.87%
Santiago South East	112,390	265,379	5.90%
Santiago West	95,334	206,211	5.28%

Table 5. Income AAPC by sector (First year: 1990, End year: 2015). Annual incomes adjusted by CPI. Currency exchange CLP \$1 = USD \$ 0.001514

Figure 4. IRS evolution based on income 1990-2015. District's IRS (in black) Sector's IRS (in blue)

same year, Chile stood out as the country with greater income disparity among the Organization for Economic Co-operation and Development (OECD). According to the latest OECD's report, Chile presents a Gini Index of 0.46—being "0" perfect equality, and "1" total inequality—followed by Mexico (0.45) and the United States (0.39). (El Mercurio 2016)

Map 6. Annual Median Income by District - AMGS 2015*

Adjusted by CPI to December 2016 / Currency conversion at 02.2017 : 1 USD = 641,5 CLP

\$ 2,360 - \$ 21,500
 \$ 21,501 - \$ 34,000
 \$ 34,001 - \$ 61,900
 \$ 61,901 - \$ 100,000 USD
 Source: ESRI, Casen 2015 Ministerio de Desarrollo Social, Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

Santiago (5.32%) was slightly higher than in the peripheral provinces (with an AAPC of 4.9%) and although "poor areas" have a comparative higher AAPC's increase, there are still important income inequalities, as can be seen between Santiago East (averaging USD \$596,253 by 2015) and Santiago North or Santiago South (averaging incomes of USD \$186,029 and USD \$195,183 respectively). The IRS analysis in Figure 4 complement these statements by providing an idea about how large-scale segregation has evolved (at both district levels, as well as sector's level).

By 2015, the IRS analysis in Figure 4 shows a diminution of residential segregation at sectors' level, however, considering the variability of the sample, it is not enough to support a consolidated trend backing up this statement. In any case, as depicted in Map 6, higher incomes

are concentrated in a few districts of Santiago East—known as the *cone of elites*—referring to the districts of Providencia, Vitacura, Las Condes, and Lo Barnechea. Which is precisely the sector where public assistance is null. These trends has been maintained through the period of study, which explains the IRS upward trends shown in Figure 4. Regarding small-scale segregation, the overall reduction of internal RSDs (see Appendix 3) suggest a homogenization of the internal composition of each sector, but it is not enough to reach a strong conclusion about the spatial dynamic associated to it.

4.3 Distribution of poverty rates

While incomes have been increasing at a constant rate since 1990, poverty rates have decreased from 37.3% in 1990, to 18.0% in 2015. The reduction of poverty is more significant in Santiago (with an average change of -24.76%) than in peripheral provinces (with an average change of -17.59%). This is consistent with the previous findings and the fact that it is precisely the urban

Map 7. Poverty rates by District – AMGS 2015

The poverty line (PL) identifies a basic food basket (CBA) and a multiplier factor / PL(Urban): 2 x CBA / PL(Rural) 1.75 x CBA

Source: ESRI, Casen 2015 Ministerio de Desarrollo Social, Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

area where better opportunities are provided. As well as the analysis of subsidized stock, poverty is a dichotomous variable that allows its analysis through *D*, (considering two categories: as populations below or above the poverty line). The upwards trends of *D*, as detailed in Figure 5 (specially since 2006) show an increase in the levels of segregation based in poverty levels. One particular fact of interest is the 10% increase in *D*, which rose from 17.4% in 2006 to 26.0% in 2013. What *D* indicates, is coherent with the contrast between sectors and their poverty rates: sectors like Chacabuco (with a poverty rate of 25.86% by 2015), Cordillera (22.13%), or Santiago North and South (20.7% and 24.9% respectively) contrast with sectors like Santiago Center of East, with poverty rates of 12.6% and 7.3% respectively (See map 7).

Map 8. Percentage of housing units facing overcrowding conditions - AMGS 2015

Overcrowding is considered with 2.5 people or more per room.

Source: ESRI, Casen 2015 Ministerio de Desarrollo Social, Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

5. Analysis II: Residential segregation, does it matter?

As shown in the previous sections, residential segregation by income has not been reversed with the policies implemented since 2006; contrarily, it has been increasing ever since. However, why does this matter? The literature reviewed, considers residential segregation as one of the causes negatively affecting opportunities and social mobility, and a factor accentuating violence, social fragmentation and social mistrust. The following sections aim to complement these statements, and identify some pressing aspects that may help to guide future housing policies. Among the housing indicators analyzed, the ones worth to discuss are i) overcrowding indexes, ii) housing stock facing physical deficiencies, and the ii) environmental analysis focused in infrastructure (proximity to health services, schools, and transportation corridors) and social problems (presence of drugs, prostitution, and street violence).

5.1. Overcrowding rates per district

Overcrowding in the context of this thesis refers to units presenting more than 2.5 person per room. Although the empirical evidence correlating overcrowding with broader urban problems is thin, higher rates might induce psychological and social stress, and cause health problems. In general, the percentage of housing stock facing overcrowding conditions has diminished consistently since 1990 (from 36.5% in 1990 to 11.3% in 2015). However, there are still significant differences between districts (see Appendix No.6). Complementary, map 8 shows higher percentages of overcrowded conditions in Santiago South and North with overcrowding rates up to 27%, contrasting with the west-east corridor whose figures varies between 1% and 10%.

These contrasts, coupled with the income and poverty disparities already demonstrated, can have "very damaging health effects through feelings of personal failure, inferiority, insecurity, stress, depression and anxiety [which] can dominate people's consciousness and severely undermine their all-important subjective quality of life" (Turok, Kearns and Goodlad 1999, 376)

5.2. Percentage of units facing physical deficiencies per district

Complementing the overcrowding analysis, this thesis analyses the percentage of units facing physical deficiencies per district. This indicator was built based in the Materiality Index (only included in CASEN 2013-2015) which looks at the material quality of roofs, walls, and floors of the dwellings. In order to build this indicator for the whole period of analysis, this study provides a score between "0" to "1" to each category (0 if "good", 0.5 if "acceptable", and 1 if deficient); then, all units scoring more than 2.0 were considered "deficient units".

As expectable after previous analysis, the higher percentages of units facing physical deficiencies are located in peripheral areas and Santiago's poor sectors (North and South as shown in Map 9). This is significant since agglomerations of units facing deficiencies may produce health hazards, fire hazards and overall negative impacts on neighbors. It is even more critical if the

Map 9. Percentage of housing units facing physical deficiencies - AMGS 2015

Based in Materiality Index of walls, ceilings and floors.

Source: ESRI, Casen 2015 Ministerio de Desarrollo Social, Desarrollo Regional y Administrativa (SUBDERE), Instituto Geográfico Militar | Projection UTM 19

subsidized units are the ones contributing to the creation of deficient housing stock. One example that summarizes the negative consequences of substandard subsidized housing—not only presenting physical deficiencies, but also high overcrowding rates—is Bajos de Mena, a massive housing complex privately-built between 1990 and 2004 in Puente Alto using government assistance, today known as Chilean's largest ghetto. The housing development of 25,466 units, accommodates 122,278 low-income residents. According to CASEN, after its construction, the subsidized stock in Puente Alto rose from 11% in 1990, to 60% by the year 2000.

In 1997—even after the project was fully built—the units began experiencing physical deficiencies; and although the government has been investing (ever since) to solve those problems,

Images 1(Above) Aerial view over Bajos de Mena (Below) Bajos de Mena's Demolition. Source: (Kilometrocero 2015)

by 2012 it finally decided to announce a special plan to demolish the buildings and relocate Bajos de Mena's population. The decision was based in the deficient quality of the units, the high rates of overcrowding, and the concentration of poverty affecting the social being of its inhabitants. The total aggregated cost of building and demolishing the complex—without considering repairs and the cost of relocation—was more than USD \$ 280,165,434 (Edwards 2013, Kilometrocero 2015). Bajos de Mena is one example that evidences the pernicious consequences of the low-quality housing stock provided with government assistance, but also the inherent moral hazards present in the voucher system, created by the lack of incentives for private developers to provide a genuine social good, against the social goals (and whole economic efficiency) of the housing policy.

5.3. Environment

In order to characterize the physical and economic environment where subsidized housing is concentrated, the previous sections have evaluated the relationship between subsidized clusters and low-income levels, poverty rates, and housing indicators such as overcrowding and physical deficiencies. The last step is the environmental assessment, which considers the access to urban infrastructure (proximity to health services, schools, and transportation corridors); and their socio-spatial conditions (presence of drugs, prostitution, and street violence).

5.3.1. Infrastructure

The infrastructure assessment aims to evaluate the quality of neighborhoods and availability of local services and facilities, a significant factor influencing "people's views of their home area and whether their community matters to society at large" (Turok, Kearns and Goodlad 1999). At the same time, this variable aims to counteract the lack of information in CASEN regarding commuting times—or jobs-homes balance—in order to understand the isolation of less favored populations in some areas of the city, something that might affect their sense of social inclusion, self-esteem and psychological wellbeing. The analysis considers whether the units are located a more than:

- i. 0.6 miles from a transportation corridor
- ii. 1.5 miles from an educational facility
- iii. 1.5 miles from a health center
- iv. 1.5 miles from a supermarket
- v. 1.5 miles from a ATM
- vi. 1.5 miles from a sport facility
- vii. 1.5 miles from a green public space (parks or plazas)
- viii. 1.5 miles from a community center
- ix. 1.5 miles from a pharmacy

If a unit is facing more than 50% of these conditions, then is considered by this study as presenting infrastructure problems. Although there is a relatively good provision of facilities within

Figure 7. Units presenting infrastructure problems by sector

Santiago, as shown in Figure 7, there is a critical situation in peripheral areas like Melipilla, Cordillera and Talagante, where 20% to 32% of the units are facing infrastructure problems. It is important to highlight that these sectors present an important concentration of subsidized housing. In Melipilla, Cordillera, and Talagante, 28%, 45%, and 26% of their respective housing stock is subsidized (see Appendix 2). In addition, as shown in Table 4 in page 29, those three sectors concentrate not only 23.5% of the total subsidized stock historically built by 2015, but also 20% of the subsidized housing built since 2006.

These factors are critical since condemn people with government assistance—which usually are tied to the unit through housing mortgages up to 25-30 years—to live in places lacking adequate infrastructure or far from transportation corridors that allow them access better jobs opportunities. Based on these findings, it is important to envisage a more active role for planning at influencing infrastructure provision; in order to mobilize investment from other public and private sources into land improvement, strategic development sites and the provision of appropriate infrastructure accommodating the subsidized stock currently being build.

Figure 8. Percentage of units presenting social problems by sector by 2015

5.3.2. Social Problems

The social assessment complements the aforementioned analysis by looking at social problems affecting human relations and social capital of the community. Street violence, presence of drugs, and prostitution not only erode community values such as tolerance, solidarity or trust, but also affect the neighborhood quality, image, stability, cohesion and connections within the community. The analysis considers whether: units have witnessed i) graffiti and other street damage, ii) street prostitution, iii) people consuming or trafficking drugs in the public space, vi) street fighting, and v) shootings. If a unit is facing two or more of these conditions, then is considered by this study as presenting social problems.

Following the trends described so far, the neighborhoods presenting higher social problems (as depicted in Figure 8) are Sectors like Santiago South, Cordillera, Maipo, and Santiago North. All neighborhoods with high concentration of subsidized stock (historically, and built post 2006), high poverty levels, and where physical and infrastructure deficiencies are more common.

Map 10. Percentage of units facing social problems - AMGS 2015

6. Major findings and policy recommendations

Both *D* and the IRS (employed to analyze income) are two indicators that can effectively provide an idea about how residential segregation has evolved during last decades. Although they allow analyzing large-scale segregation (at sectors and districts' scale), it is not possible to analyze small-scale segregation using CASEN data. The diminution of internal RSD in each sector (regarding incomes, subsidized stock, etc.) suggests that neighborhoods have been experiencing processes of internal homologation and therefore, differentiating the total population in different sectors according to their wealth. However, without disaggregated data at block level, it is difficult to reach a more precise conclusion regarding the internal dynamics or small-scale segregation within each district. This analysis will remain pending until new census data is available.

Regarding large-scale segregation, the study evidences the existence and ongoing production of important clusters of subsidized housing in peripheral areas. The increase of large scale residential segregation based on income implies that location subsidies, as structured under MINVU's decree FSEV 16, are not being neither efficient enough to battle the large-scale residential segregation, nor promoting better locations or low-income housing dispersion. Secondly, it is possible to relate the location of those clusters of government assistance, with negative urban conditions such as overcrowding (see section 5.1), physical deficiencies (see section 5.2), and infrastructure and social problems (see section 5.3). These conditions not only erode the opportunities of people receiving government vouchers, but also devaluate the government's investments made through the housing system; perpetuating environments of poverty concentration where opportunities or social mobility are limited, and where social mistrust, violence, and social fragmentation are accentuated.

The attempt by the Chilean government to improve the location of subsidized housing and generating inclusive communities through the private market is not a novel idea, it has been tried in many places including UK, Spain, Italy, among many other European countries. The findings depicted through this thesis confirm the general experience worldwide; while private markets are efficient partners at encouraging productivity and providing housing, they will never generate social benefits without the required incentives. The reason is simple: in the end, someone has to pay for the good provided (in this case, the quality guaranteed price for prime locations) and to ensure the minimum risk for developers. This makes privatization of social housing a viable yet expensive strategy for the government in order to work as desired, since not only is it necessary to "buy" from developers (through subsidies, zoning allowances, or tax exemptions) the land that low-income households cannot pay, but also to provide the resources that deal with the developments' risk, and thus, maintaining the developers' *rates of return*.

The "inclusion" proposed by Chilean policies almost only occurs today between poor- and slightly less poor-households in the periphery without fundamentally challenging the dynamics

between housing and the real estate market. In spite of some scholars still arguing for the liberalization of urban limits to reduce the value of land, or for increasing (even more) the value of subsidies to improve location standards, the Chilean government has already applied those strategies without mayor success (Brain and Sabatini 2004). Coming back to the centralized government alternative is not a viable solution either, given its lack of productivity (see Figure 2) in battling housing shortages. Notwithstanding, and based in the analysis portrayed by this study, multiple planning strategies can be implemented to improve the current situation according to the goals stated, while dispersing at the same time the economic burden of providing quality-housing solutions. Some of them are:

i. Improve contractual conditions under which vouchers are assigned.

As described throughout the thesis, government vouchers are assigned based on projects' conditions (location, or a development's social composition). Therefore, the most direct strategy to improve the quality of the stock provided is to improve the government's requirements at assigning the vouchers. Evidently, requiring better locations (proximity to services and transportation corridors, quality public space, health facilities, etc.), better quality units (size and material-quality) or deeper social mixture, will increase the cost of land, the cost of the building itself, and will increase the risk involved in the business; therefore, diminishing the private interest in participate. One way to counteract this cost—without increasing the vouchers value—is to adjust the benefits provided by the government in form of bonuses or zoning allowances. A brief look into international experience in this issue provides a diverse range of instruments such as FAR bonuses, tax credits and exemptions, that may be mechanisms easily transferable to a neoliberal context like Chile.

ii. Implement inclusionary zoning in underutilized areas near transportation corridors.

The creation of zoning ordinances in underdeveloped areas—mandatory inclusionary areas requiring future developments to include a fixed percentage of affordable units in every development—will create permanent mixed-income communities in neighborhoods where demand increases is expected in the future due to public intervention. This works as a tax—in the form of affordable units—to return a fraction of the private benefits received by government investment.

One situation in which this can be applied, is in the areas surrounding the two new subway lines projected throughout Santiago that will feed Santiago North and West (Lines 3 and 6), precisely the less advantaged areas of the city.

These new transportation corridors will increase the demand in those sectors, and land markets will inevitably displace vulnerable populations from these areas valued by public action. Today, without introducing any change in current building codes, 236,806,029 sqf of residential FAR are available in less than 0.3 miles of these new subway stations, which equals approximately to 411,000 housing units (Greene, et al. 2015). Without specific planning or zoning tools to ensure mixed-income communities, households with higher willingness to pay will capture them, displacing the low-income communities today living in those zones.

iii. Apply new subsidies (location and mixed-income subsidies) in existing housing stock as well as in new developments.

Considering location as a scarce resource with fix supply, the requirement to apply acquisition subsidies only for new constructions implies its use mainly in peripheral areas (where land is available to new developments), usually far from public services which commonly grow at a significantly slower pace than urban expansion. Allowing the purchase of second-hand units, would save the associated cost of urbanization and will provide a new affordable stock in already consolidated neighborhoods.

iv. Encourage rental tenure:

The current voucher system works only by subsidizing homeownership. This model is diverting an important amount of public resources—and low-income households' resources tied to mortgages up to 20 or 30 years—to acquire a unit that very often gets devaluated given its low quality emplacement. This way, the focus in homeownership not only implies an important loss for the state and a household's wealth, but also affect households' mobility in terms of job opportunities, or the adaptability of the voucher system to the changes experienced through a household's life, both in economic terms, and family composition (labour sources, mobility, etc.).

v. Affordability outside the market rationale:

Considering the historical performance and market reactions to the existing voucher system, it is expectable that issuing rental vouchers will raise rents. This consideration also applies for recommendation "iii" regarding issuing vouchers for second-hand units. One direct solution is simply to rely more heavily in regulations, among which rent controls are definitely the most effective strategy for keeping housing prices down. Although a "cheap" solution for the State, it transfers all the cost to the private sector, with the multiple consequences it has on productivity levels.

The five points depicted above are just a few considerations to improve two specific housing policies implemented in Chile under the conditions depicted in this thesis; however, they do not pretend to solve a complex issue that involves a multidisciplinary approach. Inclusionary policies not only rely in the housing policy itself, but also in the cultural acceptance or willingness to build a more inclusionary society. This must be achieved through the educational curriculum, and supported by multiple other policies that seek to improve the working conditions, increase the minimum wages, provide better public spaces throughout the city, better transportation corridors, health plans and pensions, among many other variables improving life conditions in our cities. Despite these facts, one important take away is that housing policies in Chile have not only failed due to the complexity of a multidisciplinary problem, but due to the unbalance between the dual condition of housing policies: "the dual condition of housing as social policy [wealth distribution] and as industrial policy [housing production and the benefits it brings to the national economy]" (Valenzuela-Levi 2016).

Although the voucher system in Chile has reduced the housing deficit from a 'successful' industrial perspective, it has not been able to provide a genuine social good, and its economic success has been coupled with important failures in terms of distribution. To revert this, it is crucial to introduce new zoning tools designed for the new inclusionary agenda, and start focusing in the social aspect of the policies to meet the minimum quality standards required. Otherwise, land markets will continue to exclude vulnerable populations from areas valued by public action, and the qualitative housing deficit will endure.

7. Bibliography

Brain, Isabel, and Francisco Sabatini. "Los precios del suelo en alza carcomen el subsidio
habitacional, contribuyendo al deterioro en la calidad y localización de la vivienda social."
ProUrbana. Programa de Apoyo a las Políticas Urbanas y de Suelo en Chile., 2004.

Bresciani, Luis Eduardo. "De la política de vivienda a la política urbana integración social." *Ciudad y Arquitectura*, no. 152 (May 2016).

- CASEN. "Encuesta de Caracterización Socioeconómica Nacional." Serie de Documentos Metodológicos Observatorio Social. Edited by Gobierno de Chile Ministerio de Desarrollo Social. Santiago, November 1990, 2015.
- CNDU. *Política Nacional de Desarrollo Urbano.* Santiago, Chile: MInisterio de Vivienda y Urbanismo MINVU, 2015.
- Edwards, Sam. "Why the government is spending millions on demolishing and rebuilding cast tracts of social housing built less than 15 years ago." *Santiago Times*, May 3, 2013.
- El Mercurio. "Desarrollo y desaceleración económica: ¿un país rico o pobre?" *El Mercurio Online*, August 2016.
- —. "Desigualdad: Chile se mantiene como el país de la OCDE con la mayor brecha de ingresos." El Mercurio Online, November 24, 2016.
- Erbe, Briggite. "Race and socioeconomic segregation." *American Sociological Review*, no. 40 (1975).
- Greene, Margarita, Juan de Dios Ortúzar, Christian Figueroa, and Natan Waintrub. "Densificación residencial e integración social en torno a estaciones de Transporte Masivo (presentation)." Santiago, Chile: CEDEUS Centro de Desarrollo Sustentable, 2015.
- Katzman, Rubén. "Seducidos y abandonados: el aislamiento social de los pobres urbanos." *Revista de la CEPAL, N°75*, 2001.
- Kilometrocero. Las promesas agrietadas de bajos de mena. Periodismo Universitario, Santiago, Chile: Facultad de Comunicaciones UC, 2015.
- Link, Felipe, Felipe Valenzuela, and Luis Fuentes. "Segregación, estructura y composición social del territorio metropolitano en Santiago de Chile. Complejidades metodológicas en el análisis de la diferenciación social en el espacio." *Revista de Geografía del Norte Grande*, no. 62 (2015): 151-168.
- MINVU. Circular FESV No 16. Aclara aplicación de Subsidio Diferenciado a la Localización. Santiago, Chile: MInisterio de Vivienda y Urbanismo, 2015.

- —. "D.S. No 19." Texto del D.S. No 19 de 2016. Santiago, Chile: División de Política Habitacional-División Jurídica, July 07, 2016.
- MINVU-CEHU. "Subsidios pagados programa regular y reconstrucción." *Series Estadísticas de Subsidios.* Ministerio de Vivienda y Urbanismo. Equipo de Estadísticas MINVU-CEHU. Santiago, Chile, June 2016.
- Observatorio Social. *Reportes Comunales de Caracterización Social.* Encuesta de Caracterización Social Casen, Santiago: Observatorio Social, 2014.
- ProUrbana. Efectos del Subsidio Diferenciado a la Localización en la ubicación y precio de la vivienda social. Santiago, Chile: Lincoln Institute of Land Policy, 2010.
- Rodríguez, Jorge. Segregación residencial socioeconómica: ¿qué es?, ¿cómo se mide?, qué está pasando?, ¿importa? Proyecto Regional de Población CELADE-FNUAP, Centro Latinoamericano y Caribeño de Demografía CELADE - División de Población, Economic Commission for Latin America and the Caribbean, Santiago, Chile: United Nations, 2001.
- Sabatini , Francisco, Pía Mora, Ignacia Polanco, and Isabel Brain. *Conciliando integración social y negocio inmobiliario.* Working Paper, Santiago, Chile: Lincoln Institute of Land Policy, 2013.
- Sabatini, Francisco, Gonzalo Cáceres, and Jorge Cerda. "Segregación residencial en las principales ciudades chilenas: Tendencias de las tres ultimas décadas y posibles cursos de acción." *EURE*, December 2001: 81-42.
- Sabatini, Francisco, Guillermo Wormald, Carlos Sierralta, and Paul Peters. "Segregación Residencial en Santiago: Tendencias 1992-2002 y efectos vinculados con su escala geográfica." *Pontificia Universidad Católica de Chile - Instituto Nacional de Estadísticas*, 2008: 19-41.
- Tironi, Manuel. *Nueva pobreza urbana. Vivienda y capital social en Santiago de Chile, 1985-2001.* Santiago, Chile: Universidad de Chile, Predes/RIL Editors, 2003.
- Turok, I., A. Kearns, and R. Goodlad. "Social Exclusion: In What Sense a Planning Problem?" The Town Planning Review, A National Spatial Planning Framework (Liverpool University Press) 70, no. 3 (1999).
- Valenzuela-Levi, Nicolás. "Que se muevan los bulldozers. La política industrial de vivienda mirada a través de la economía política." *Ciudad y Arquitectura n°15*2, 2016.
- White, Michael. "The measurement of spatial segregation." *American Journal of Sociology* 88, no. 5 (1983): 1008-1018.
- Zambrano, Gustavo. "Análisis crítico del Subsidio Diferenciado a la Localización." 6º Congreso Internacional Ciudad y Territorio Virtual. 2010. 13.

8. Appendixes

i	Chacabuco	205,718	26	Providencia	126,595
1	Colina	119,557	27	Vitacura	78,313
2	Lampa	69,730	viii	Santiago North	928,217
3	Tiltil	16,431	28	Cerro Navia	129,630
ii	Cordillera	819,206	29	Conchalí	101,796
4	Pirque	24,779	30	Huechuraba	86,542
5	Puente Alto	779,984	31	Independencia	48,565
6	San José De Maipo	14,443	32	Quilicura	230,871
iii	Маіро	490,446	33	Quinta Normal	83,187
7	Buin	74,692	34	Recoleta	119,303
8	Calera De Tango	28,589	35	Renca	128,323
9	Paine	67,648	ix	Santiago South	961,603
10	San Bernardo	319,517	36	El Bosque	164,572
iv	Melipilla	163,198	37	La Cisterna	68,370
11	Alhué	4,634	38	La Granja	120,144
12	Curacaví	30,514	39	La Pintana	201,726
13	María Pinto	11,879	40	Lo Espejo	95,503
14	Melipilla	108,122	41	Pedro Aguirre Cerda	88,229
15	San Pedro	8,049	42	San Joaquín	73,197
v	Talagante	285,156	43	San Miguel	68,855
16	El Monte	31,752	44	San Ramón	81,007
17	Isla De Maipo	32,554	x	Santiago South-East	741,397
18	Padre Hurtado	51,498	45	La Florida	396,684
19	Peñaflor	89,190	46	Macul	93,943
20	Talagante	80,162	47	Peñalolén	250,770
vi	Santiago Center	156,049	xi	Santiago West	1,471,245
21	Santiago	156,049	48	Cerrillos	64,307
vii	Santiago East	847,410	49	Estación Central	107,335
22	La Reina	94,037	50	Lo Prado	88,305
23	Las Condes	291,971	51	Maipú	931,211
24	Lo Barnechea	115,963	52	Pudahuel	280,087
25	Ñuñoa	140,531			

8.1. Appendix 1: Population by territorial subunits

Source: (Observatorio Social 2014)

A. IRS		C. Variance	s Ratio	E. Sector Com	parison at 2015	Interpretation / OI	bservations:							
Vear Don Mea	in IDC District IDC-Costo	Vaar	54/L	Cartor	NeaM	Ganaral.								
										11 0000	11010 . 1001			
1990 18.78	% na n.	a 1990	37.30	% chacabuco	31.69%	(1) From "A": The su	ubsidized stock	has increased	significantly sin	ce 2000 (trom	18% to 31%)			
1992 5.11	% na na	a 1992	35.66	% cordillera	45.55%	(2) From "F": The hi	gher concentra	tions of public	housing are loca	ated in periphe	rral areas; bein	ig the		
1000	ed %	1001	35 66	%	38.01%	cubeidized unit	te about 3.4% of	its total stock	compared to the	a 75% in cantia	an (from "E")	0		
TT'C +66T	911 P11	1001 B	00.00		%T0.05									
1996 0.79	% na ni	a 1996	58.31	% melipilla	28.28%	(3) From "E": By 20.	13, the higher c	oncentration of	subsidized stoc	ck was located	outside Santia,	go.		
1998 22.57	% na ni	a 1998	28.50	% talagante	26.67%	Large scale dispersi	o							
2000 27.77	% na na	a 2000	40.20	% stgo_c	6.13%	(4) The RSD by sect	or and district,	have remained	relatively stable	e				
2003 27.76	% na ná	a 2003	43.40	% stgo e	8.58%	This means that	residential sear	eaation at larae	scale has remain	ned relatively st	able independe	ent of the		
2006 25.60	% na nă	a 2006	34.95	% stgo n	24.81%	aovernment atte	empts in reducir	a it. Moreover, I	both according to	o the RSD, and	D to different	levels it seems	to be	
2009 27.47	% na	e002	22.28	% stpo s	27.33%	a rise in the sear	reaction indexe	since 2006.						
2011 27 55	su eu	2011	53.86	% stan se	37.38%	Small scale disnersi								
31.40	en %	2013	58.19	% sten w	41.30%	(5) The IRS hv di str	ict has exnerie	nred less increa	se than the IRS I	hv Sector				
2015 26.70	n an %	2015	74.63	% AVG	28.25%									
	11 21% 12 20%					This means that	the nercentage	of the total vari	ance that can be	exulation of hut	he subunits'			
B BCD Coofficient of Maria		Discionile	attent ta da co	codor Chon	4	union concerno enere	ure per centrage	of the coston	these for districts	a La national a La	tion by costor			
D. NJU COETICIETIC OL VALIA	IIIII		u ity index	L' SECIOI CIIGII	ŝ	אמוומוורב ווח? ווור	i kuuhiis nasnar	sinnas infaini	contract and the second	nhaihac ainiii)	inna ar ini			
Year	RSD-District RSD-Secto	r Year		D Sector	Change	than by district).	. It demonstrate	s that <u>small scal</u>	e segregation ho	asn't increased	as much as lara	je scale		
1990	36.71% 22.429	% 1990	18.62	% chacabuco	7.51%	segregation								
1992	58.77% 35.10%	% 1992	25.42	% cordillera	29.57%	(6) The Internal RSI	D shows in whie	ch sectors have	been important	changes (3b).	Seen in detail i	t is possible to		
1994	58.77% 35.10%	6 1994	25.42	% mai po	23.11%	appreciate how	in certain dist	icts heterogene	ity is built base	d on displacen	nent (or the los	s of subsidized	stock),	
1 996	76 93% 58 74%	1996	18.04	% melinila	15 14%	while in others	through the con	rentration of s	inhsidized housi				2	
1000	044 CC 200 C F3	1000	1010	% talaganta	7 50%	Conductore:				.o				
0000		0000	FO TC		0/ CC /			and the second second	and the second second		and a state of the last			
2002	CT.05 %20.70	2002	33.U4 09 f c	% stgo_c	%0T'+T-	(c) Ine arorementic	brea points ren	ectinatime gov	ernment, al mou	ign nas peen as	sisting the cor	recttarjet		
2002	270'00 %TA'00	5005		20 Stgu_e	-2.34%	population, nas	Deen reproduc	ing the patients	or spanar segr	ega non pased				
2006	(1/.67 %5°.06	9002 %	55.12	% stgo_n	%0 <u><</u> .0	previous years.	The relevance	ot this finding w	rill be measured	In the followin	ng analyses reg	garding social		
2009	47.84% 22.589	% 2009	27.49	% stgo_s	5.72%	and environmer	ntal disparities							
2011	54.96% 40.339	% 2011	33.62	% stgo_se	12.12%									
2013	48.12% 36.719	% 2013	33.24	<u>%</u> stgo_w	20.04%									
2015	50.39% 43.535	6 2015	36.29	% AVG	9.53%									
Avg. Subsidized	Stock		RSD - Districts	s (black) Sectors (ye	llow)		Dissimilarity	Index		Change in S	Sub. stock Stgo	-East (black) - C	ordillera (blu	(e)
50%		100%				700%					•			
		e/ nnt				10/0			• 70.00	%0				
40%		80%				35%	•	•	. 60.00	%0				
		200	•			30%	•			200			-	
30%		60%				25%							\	•
•					•	20%			40.00	0%				
20%		40%				15%			30.00	%0	•		•	
						10%			20.00	0%	•			
%OT		20%				2%			10.01	• 700		•		:'
		700/				200			5.51				•	
1990 1993 1996 1999 ;	2002 2005 2008 2011 2014 201	7 1990	1993 1996 1999	2002 2005 2008 201	1 2014 2017	1990 1993 199	96 1999 2002 200	15 2008 2011 203	L4 2017 U.U	1000 1003	1000	100 2006	00 1100 00	2106 11
	- -		-							COOT OCOT	0001 0001	5007 5007 F	17 1107 00	1107 41
<u>30. Subsidized Hou</u>	ising stock - Uispersio		SCLORS											
Internal PSD	Ave	-	300 100	1 99/1	1006	1 00.8	2000	2009	2003	2006	2011	2012	2015	Chanae
charabiro	36 1 70	A5 8	8% 14.80	% 1/1 8/0%	%UU U	70 1 Q%	63 N5%	13 35%	50 Q 3%	35.67%	25 10%	34.08%	36.75%	2010
cordillera	54.05%	12.0	2% 57 96	% 57 96%	%UU U	94 97%	87 84%	6165%	77 19%	49 72%	37 47%	64.06%	47 77%	35.7%
maino	A7 56%	1 44 1	8% 60.06	% FO D6%	58.25%	55 40%	55.67%	1753%	46.45%	35 36%	42.06%	18 96%	16 78%	-77.4%
melinilla	39.579	50.1	2% 43.87	% 43.87%	44.69%	29.20%	46.88%	39 34%	27.81%	37.02%	31.81%	42.15%	38.06%	-12.1%
talagante	42.949	28.3	7% 81.78	% 81.78%	39.49%	35.14%	21.36%	24.44%	24.24%	25.43%	43.09%	58.73%	51.46%	23.1%
stgo_c	, u		na r	ia na	na	na	na	na	na	na	na	na	na	na
stgo_e	84.439	6 46.3	5% 116.71	% 116.71%	34.51%	76.69%	94.84%	113.88%	72.78%	72.04%	127.79%	94.04%	46.80%	0.5%
stgo_n	52.395	6.9 8.9	6% 57.39	% 57.39%	33.02%	62.40%	54.79%	56.84%	53.83%	60.90%	52.37%	71.44%	58.33%	48.4%
stgo_s	44.669	6 16.2	7% 31.75	% 31.75%	40.61%	61.18%	50.89%	44.68%	52.04%	62.16%	44.17%	49.84%	50.58%	34.3%
stgo se	25.329	9.6	0% 32.49	% 32.49%	30.57%	33.88%	30.40%	20.57%	33.13%	27.56%	14.59%	20.35%	17.96%	8.1%
stgo_w	37.569	6 28.9	2% 29.38	% 29.38%	57.02%	34.74%	31.99%	38.55%	25.59%	36.53%	62.59%	38.26%	37.75%	8.8%
3c. Selected sub-ur	nits detailed													
G May / Min Comparative	evolution													
		19	90 195	1994	1996	1998	2000	2003	2006	2009	2011	2013	2015	%Change
stgo e	la reina	17.7	6% 0.48	% 0.48%	0.62%	11.72%	6.73%	10.93%	18.04%	4.94%	10.15%	33.06%	9.62%	-8.14%
stgo e	Las condes	8.3	9% 0.29	% 0.29%	%66.0	9.54%	2.90%	7.64%	11.34%	8.06%	3.70%	5.76%	8.18%	-0.21%
stan e	Lo barnechea		na 5.33	% 5.33%	1.67%	16.19%	19.91%	19.09%	30.95%	50.91%	44.27%	11.51%	17.90%	12.57%
stan e		10.7	6% 2.83	× 2.33%	0.85%	6.84%	17.26%	12 80%	11.36%	19.86%	4 37%	4 97%	10.73%	-0.03%
			20.7		2000	/170/	207 J	120/02/1	/001 0	C 15%	///		/076 1	2020
stan e	pi ovi derici a vi te crire	ţ.	0100 60	%0C0 %	%CE:D	0.61%	% CO.O	7 18%	3.1U%	% CT-0	%5E9	763%	0.02.C	2000 V
cordillera	ni rome	16.7	6% 1 95	<u>% 1 95%</u>	e e	8 00%	12 76%	13.08%	28.17%	18.27%	55.02%	37.87%	12 84%	-3 97%
conditiena	puente alto	17.6	6% 10 99	% 10 99%	20 59%	55.43%	60.03%	51 56%	52.02%	52 35%	43.24%	57 11%	47 83%	30.17%
cordillera	san iose de maino	13.2	4% 6.18	% 6.18%	eu	7.54%	7.70%	9.43%	14.14%	13.53%	19.64%	6.60%	29.11%	15.88%
Weighted Avg.	stan e	10.9	2% 1.74	% 1.74%	0.86%	8.67%	8.59%	10.19%	15.24%	16.79%	10.09%	8.22%	8.58%	-2.34%
Weighted Avg.	stee_c	9.51	2% 5.44	% P44%	0.59%	24.76%	20.76%	76 57%	22 77%	31 76%	43.61%	51 88%	45 55%	20 57%
Welginen Avg.	COT GLI I ET d	C' 1 T	070 U.111	70 0.444.0	e/ 70'0	0/0/-47	72.4070	0//07	0//7.05	0/ N/ TC	0/TO'CH	0/ 00'TC	0/00.04	0/10.67

8.2. Appendix 2: Distribution of subsidized stock

8.3. Appendix 3: Analysis of income distribution

8.4. Appendix 4: Income analysis by industry

INDUSTRY'S PARTICIPATION IN THE MARKET (by number of observations)

	2015	2013	2011	2009	2006	2003	2000	1998	1994	1992	1990	Change
Agriculture, livestock, fishing	2.58%	3.61%	5.21%	8.85%	10.46%	11.02%	11.40%	12.29%	12.90%	14.34%	22.48%	-19.90%
Wholesale trade	29.19%	36.50%	37.69%	22.48%	20.80%	20.35%	20.39%	19.35%	18.02%	16.57%	18.73%	10.46%
Energy (Electricity, Gas and Water supply)	0.65%	0.45%	0.82%	0.74%	0.62%	0.66%	0.77%	0.87%	0.77%	0.79%	0.00%	0.65%
Finance, Insurance	3.21%	2.83%	2.92%	9.07%	8.57%	8.24%	7.94%	7.20%	6.43%	5.11%	7.68%	-4.47%
Real Estate and Construction	21.53%	21.09%	19.94%	8.30%	9.27%	8.44%	7.93%	8.05%	8.99%	9.09%	7.96%	13.57%
Manufacturing	12.99%	14.80%	14.01%	13.43%	15.35%	15.15%	16.50%	16.82%	19.24%	21.87%	22.44%	-9.45%
Mining	1.11%	1.18%	1.14%	1.11%	0.81%	0.66%	0.64%	0.54%	0.82%	0.95%	1.11%	0.00%
Other services (exept public administration)	19.69%	10.37%	9.91%	28.40%	27.33%	28.96%	27.54%	28.16%	26.76%	25.61%	11.95%	7.75%
Transportation and Warehousing	9.04%	9.64%	9.17%	8.36%	7.41%	7.19%	7.65%	7.58%	6.84%	6.46%	7.66%	1.39%
Total Observations	23875	14632	10530	19888	21763	21208	19413	20147	15274	15101	10905	
AVERAGE INCOME BY INDUSTRY												
	2015	2013	2011	2009	2006	2003	2000	1998	1994	1992	1990	Change
Agriculture, livestock, fishing	\$ 223,179	\$ 191,130	\$ 210,565	\$ 136,845	\$ 129,158	\$ 126,296	\$ 117,223	\$ 121,209	\$ 88,074	\$ 96,184	\$ 81,574	49.2%
Wholesale trade	\$ 276,903	\$ 210,307	\$ 239,454	\$ 202,870	\$ 199,810	\$ 215,525	\$ 175,581	\$ 204,971	\$ 199,968	\$ 191,080	\$ 139,997	35.6%
Energy (Electricity, Gas and Water supply)	\$ 362,952	\$ 267,678	\$ 416,800	\$ 198,474	\$ 195,983	\$ 237,832	\$ 166,316	\$ 172,479	\$ 149,171	\$ 242,394	na	27.0%
Finance, Insurance	\$ 420,906	\$ 421,491	\$ 504,029	\$ 301,758	\$ 330,810	\$ 384,184	\$ 281,167	\$ 352,786	\$ 276,965	\$ 299,046	\$ 215,846	35.1%
Real Estate and Construction	\$ 330,692	\$ 306,315	\$ 347,409	\$ 182,765	\$ 185,380	\$ 204,308	\$ 144,689	\$ 181,387	\$ 145,218	\$ 186,815	\$ 105,784	56.3%
Manufacturing	\$ 302,136	\$ 220,519	\$ 239,773	\$ 181,573	\$ 189,409	\$ 199,071	\$ 166,017	\$ 181,224	\$ 201,125	\$ 159,640	\$ 120,901	45.0%
Mining	\$ 421,696	\$ 362,482	\$ 472,582	\$ 273,082	\$ 260,326	\$ 233,716	\$ 207,836	\$ 211,015	\$ 168,418	\$ 185,537	\$ 95,244	79.7%
Other services (exept public administration)	\$ 316,013	\$ 328,249	\$ 374,118	\$ 224,891	\$ 250,085	\$ 264,422	\$ 200,857	\$ 239,714	\$ 268,217	\$ 225,598	\$ 177,585	32.0%
Transportation and Warehousing	\$ 320,021	\$ 240,937	\$ 243,811	\$ 214,757	\$ 225,226	\$ 212,184	\$ 203,299	\$ 189,204	\$ 164,106	\$ 179,171	\$ 145,330	39.6%

3a: Incomes categorized by industry and districts

(see page v)

1b. Average Income by Industry (adjusted by CPI)

Wholesale trade		2015		2013		2011		2009		2003		2000	199	B	1994		1992		1990
chacabuco	\$	194,777	\$	184,028	\$	174,964	\$	155,793	\$	197,337	\$	142,677 \$	187,399	\$	124,203	\$	102,411	\$	120,549
cordillera	Ś	222 888	Ś	169 271	Ś	170 573	Ś	217.060	Ś	172 247	Ś	174 765 \$	216.066	Ś	201 183	Ś	234 541	Ś	159 822
	è	200 572	ç	100,271	è	177 100	ć	1 61 201	ć	202,200	è	125.540 ¢	100,000	ć	201,105	ç	150.070	ć	155,022
narpo	Ş	209,572	Ş	160,163	Ş	1//,133	Ş	101,301	Ş	207,580	Ş	135,540 \$	100,827	ې د	202,393	Ş	156,870	Ş	155,554
melipilla	Ş	178,621	Ş	149,013	Ş	151,124	Ş	207,231	Ş	172,887	Ş	219,557 Ş	149,260	Ş	115,088	Ş	141,696	Ş	104,731
talagante	\$	240,599	\$	181,662	\$	215,628	\$	162,571	\$	154,936	\$	143,304 \$	149,690	\$	116,024	\$	171,365	\$	112,622
stgo_c	\$	233,666	\$	228,605	\$	238,678	\$	175,570	\$	208,820	\$	219,739 \$	201,474	\$	336,412	\$	147,256	\$	102,853
stgo e	Ś	491,914	Ś	532,663	Ś	635.421	Ś	516.817	Ś	652.457	Ś	491.648 \$	638.514	Ś	563.094	Ś	525.583	Ś	359.644
stao n	ć	102.062	ć	165 2/1	ć	191 225	ć	175 525	ć	162 500	ć	161 479 \$	156 092	ć	160 691	ć	151 996	ć	116 722
3@_11	ې م	192,003	ç	105,541	ې م	101,225	د م	175,525	ڊ م	102,505	ډ م	101,478 \$	150,582	ڊ م	100,031	د م	151,880	ر م	110,722
stgo_s	Ş	187,807	Ş	169,487	Ş	1/2,26/	Ş	169,381	Ş	147,797	Ş	151,193 \$	151,227	Ş	135,635	Ş	156,450	Ş	105,866
stgo_se	\$	243,676	\$	205,154	\$	192,309	\$	205,066	\$	195,068	\$	165,545 \$	178,799	\$	196,815	\$	132,732	\$	111,251
stgo_w	\$	217,259	\$	193,702	\$	207,737	\$	195,395	\$	168,903	\$	165,524 \$	161,530	\$	163,923	\$	155,988	\$	112,807
Energy (Electricity, Gas and Water supply)																			
chacabuco	¢	305 404	¢	264 244		na	Ś	141 966	Ś	553 707	¢	117527 \$	187 736	¢	81 5 7 9	Ś	95 935		na
	ç	222,004	ç	100 207	ć	211 245	ç	172,007	ç	1 (2 1 4 0	ć	149.621 ¢	105 441	, ,	127.275	ç ç	00 154		
cordinera	\$	223,099	Ş	199,297	\$	211,245	\$	172,997	Ş	103,148	\$	148,021 \$	105,441	ې	127,375	\$	90,154		na
maipo	Ş	210,425	Ş	184,456	Ş	359,798	Ş	201,333	Ş	220,874	Ş	232,438 \$	100,932	Ş	165,077	Ş	49,621		na
melipilla	\$	228,027	\$	88,075	\$	145,779	\$	168,446	\$	68,296	\$	161,472 \$	149,511	\$	37,882	\$	94,850		na
talagante	\$	300,327	\$	100,235	\$	175,752	\$	177,900	\$	216,217	\$	103,146 \$	90,777	\$	73,788	\$	95,507		na
stgo c	Ś	279.076		na	Ś	513.656	Ś	75,979	Ś	87.711	Ś	196.183 \$	215.342	Ś	131.499	Ś	341.355		na
stan o	ć	700.000	ć	660 557	ė	050.040	ć	440 284	ć	702 244	é	441 204 €	450 639	é	260 709	é	625 511		
stgo_e	ş	790,999	Ş	009,557	ې م	333,949	Ş	440,284	ې م	705,544	ې م	441,504 5	430,038	د م	500,798	ş	023,311		lid
stgo_n	Ş	214,/53	Ş	255,510	Ş	145,745	Ş	141,932	Ş	224,385	Ş	161,853 \$	149,094	Ş	122,075	Ş	107,632		na
stgo_s	\$	216,663	\$	197,493	\$	214,716	\$	165,504	\$	160,445	\$	90,171 \$	144,284	\$	161,800	\$	587,562		na
stgo_se	\$	567,034	\$	264,482	\$	588,295	\$	252,203	\$	281,926	\$	190,116 \$	240,909	\$	237,613	\$	133,125		na
stgo w	\$	218,214	\$	218,722	\$	197,050	\$	208,000	\$	125,248	\$	146,430 \$	146,408	\$	141,793	\$	117,682		na
Beal Estate and Construction		·																	
chacabuco	Ş	216,452	Ş	159,250	Ş	211,150	Ş	134,166	Ş	168,392	Ş	95,962 \$	124,955	Ş	84,357	\$	80,333	Ş	79,929
cordillera	\$	231,667	\$	197,236	\$	212,421	\$	152,950	\$	198,060	\$	111,292 \$	183,912	\$	157,221	\$	117,605	\$	102,899
maipo	\$	197,439	\$	180,039	\$	189,213	\$	170,075	\$	217,672	\$	130,799 \$	128,600	\$	123,471	\$	94,300	\$	100,392
melipilla	\$	193,548	\$	155,482	\$	327,427	\$	150,895	\$	138,167	\$	124,695 \$	167,294	\$	106,078	\$	80,487	\$	53,711
talagante	Ś	238 201	Ś	266.030	Ś	252 723	Ś	146 265	Ś	174 782	Ś	143 152 \$	148 603	Ś	95 949	Ś	133 904	Ś	108 444
	č	272 701	ć	265 016		250 210		252 405		125 049		152546 \$	120 202	<u>.</u>	110.934	<u>.</u>	172 420	<u>.</u>	61 255
stgo_c	ş	2/5,/01	Ş	505,010	ې م	550,519	Ş	232,403	ې م	155,940	ې م	132,340 3	150,502	د م	119,824	ş	172,430	Ş	01,235
stgo_e	Ş	/00,276	Ş	/32,288	Ş	/92,311	Ş	532,685	Ş	/34,/83	Ş	565,324 \$	583,699	Ş	458,361	Ş	805,853	Ş	380,709
stgo_n	\$	219,219	\$	192,327	\$	198,566	\$	158,250	\$	152,184	\$	131,472 \$	130,127	\$	108,960	\$	105,336	\$	92,040
stgo_s	\$	225,898	\$	207,618	\$	170,058	\$	147,944	\$	134,899	\$	123,303 \$	125,575	\$	110,913	\$	99,043	\$	85,891
stgo se	\$	321,580	\$	235,490	\$	262,330	\$	149,497	\$	178,774	\$	124,549 \$	136,485	\$	132,277	\$	113,539	\$	92,650
stgo w	Ś	239 013	Ś	232 950	Ś	248 144	Ś	244 796	Ś	163 436	Ś	126.439 \$	128 374	Ś	124 044	Ś	101 485	Ś	84 922
Manufacturia a	Ŷ	200,010	Ŷ	232,550	Ŷ	210,211	Ŷ	211,750	Ŷ	100,100	Ŷ	120,135 Ç	120,071	Ŷ	12 1,0 11	Ŷ	101,105	Ŷ	01,522
Manufacturing																			
chacabuco	\$	165,515	\$	185,029	\$	161,304	\$	141,832	\$	135,863	\$	112,367 \$	111,664	\$	115,900	\$	103,721	\$	75,001
cordillera	\$	235,075	\$	191,908	\$	166,041	\$	156,429	\$	191,752	\$	182,137 \$	197,430	\$	176,845	\$	161,998	\$	189,939
maipo	\$	194,931	\$	177,369	\$	190,986	\$	160,748	\$	199,050	\$	129,372 \$	296,343	\$	126,304	\$	123,624	\$	112,212
melinilla	¢	199 937	¢	129 944	¢	213 991	¢	156 354	Ś	151 227	¢	171/185 \$	127 630	ć	106 614	¢	93 113	¢	88 133
talaganta	ç	100.052	ç	200 545	è	170 705	ç	150,354	ç	124.024	ć	122202 0	120,000	, ,	105,014	ې د	120 501	ç	127 500
	÷	190,032	÷	208,545	÷	1/8,/05	÷	152,795	÷	154,054	÷	155,505 5	120,092	~~~ <u>`</u>	105,290	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	120,501	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	127,509
stgo_c	Ş	220,545	Ş	338,072	Ş	249,505	Ş	225,803	Ş	180,986	Ş	165,134 Ş	205,216	Ş	167,113	Ş	123,295	Ş	112,072
stgo_e	\$	539,390	\$	633,515	\$	786,873	\$	560,601	\$	720,239	\$	614,203 \$	595,915	\$	1,340,908	\$	586,808	\$	327,575
stgo_n	\$	198,971	\$	180,125	\$	173,052	\$	174,431	\$	139,618	\$	139,742 \$	130,111	\$	120,499	\$	122,175	\$	90,688
stgo s	\$	205,208	\$	191,907	\$	165,652	\$	159,519	\$	152,018	\$	134,173 \$	134,256	\$	120,923	\$	123,683	\$	89,277
stao se	¢	245 598	¢	207 287	¢	255 781	¢	168 648	Ś	188 378	¢	167 157 \$	184 331	ć	152 294	¢	110.450	¢	120 243
step_se	ç	243,550	ç	100 430	è	200,000	ç	100,040	ç	152.040	ć	107,157 \$	104,551	, ,	132,254	ç	120,450	ç	105 (72
sigo_w	Ş	212,957	Ş	199,420	Ş	209,906	Ş	180,913	Ş	153,049	Ş	137,523 \$	155,597	Ş	130,205	Ş	130,815	Ş	105,672
Other services (exept public administration)																			
chacabuco	\$	192,831	\$	192,709	\$	304,333	\$	157,530	\$	202,727	\$	120,275 \$	152,602	\$	102,211	\$	88,714	\$	86,669
cordillera	\$	228,451	\$	235,291	\$	228,027	\$	186,644	\$	218,075	\$	171,305 \$	198,734	\$	190,807	\$	131,639	\$	138,860
maipo	Ś	222,889	Ś	200,322	Ś	172.563	Ś	179,686	Ś	215,362	Ś	168,925 \$	153.044	Ś	161.122	Ś	119.274	Ś	152.273
melinilla	ć	106.044	ć	220 240	é	155 500	é	177 200	ć	157 224	é	120 150	120 5 65	, ,	116 007	é	04 040	é	120 452
nerprira	Ş	196,044	Ş	220,340	Ş	155,502	Ş	177,299	Ş	157,221	Ş	129,150 \$	129,505	ې د	116,697	Ş	94,849	Ş	120,453
talagante	Ş	181,553	Ş	213,525	Ş	389,903	<u>ş</u>	176,105	Ş	170,958	<u>ş</u>	152,807 \$	140,920	Ş	110,582	Ş	165,587	Ş	148,402
stgo_c	\$	219,705	\$	395,138	\$	319,361	\$	235,940	\$	196,326	\$	267,039 \$	231,233	\$	213,102	\$	139,788	\$	131,603
stgo_e	\$	704,254	\$	664,882	\$	770,540	\$	538,516	\$	670,106	\$	576,337 \$	622,960	\$	743,882	\$	554,852	\$	374,171
stgo n	Ś	201.058	Ś	217.982	Ś	235.676	Ś	175,132	Ś	169.292	Ś	149.875 Ś	147.513	Ś	133.656	Ś	123.025	Ś	99,959
stao s	ć	227 211	ć	224 705	ć	172 094	ć	182 260	ć	149 156	ć	146.967 \$	152 269	ć	122 127	ć	149 760	ć	117517
step_s	ې د	227,211	ڊ م	234,755	ې د	200 74 2	ر م	102,205	ç	140,130	ڊ م	140,507 5	102,200	ر م	132,137	د م	143,700	ç	462 702
sigo_se	\$	275,654	\$	270,955	\$	280,/12	\$	180,525	\$	186,619	\$	167,532 Ş	186,/08	Ş	1/5,188	Ş	119,928	\$	162,/93
stgo_w	\$	208,264	\$	238,099	\$	245,932	\$	212,796	\$	155,972	\$	143,294 \$	159,750	\$	155,221	\$	127,206	\$	138,626
Transportation and Warehousing																			
chacabuco	\$	205,738	\$	177,502	\$	175,044	\$	168,428	\$	152,275	\$	108,179 \$	151,646	\$	133,603	\$	116,838	\$	86,428
cordillera	Ś	229 490	Ś	203 076	Ś	228 367	Ś	228 254	Ś	175 111	Ś	254 177 ¢	222 066	ć	229 861	¢	202 861	Ś	147 719
maine	ć	100 224	ç ¢	160.000	é	101 001	ç	170 000	¢	162 100	ب خ	104 600 *	124 000	ر م	115 000	ر م	102,001	ç	124 552
marpo	Ş	188,331	Ş	108,069	Ş	191,031	Ş	1/9,606	Ş	163,109	Ş	194,698 Ş	134,650	Ş	112,900	Ş	155,605	Ş	124,552
melipilla	Ş	168,842	Ş	145,186	Ş	219,195	Ş	178,855	Ş	209,867	Ş	139,236 \$	152,288	\$	139,757	\$	117,132	Ş	121,582
talagante	\$	194,071	\$	188,273	\$	229,710	\$	182,042	\$	181,432	\$	179,651 \$	139,180	\$	106,368	\$	155,868	\$	120,315
stgo_c	\$	269,688	\$	284,709	\$	251,630	\$	161,750	\$	168,536	\$	290,382 \$	257,897	\$	355,823	\$	154,575	\$	111,100
stgo e	Ś	566.435	Ś	552.899	Ś	605.476	Ś	529.274	Ś	568.699	Ś	577.013 \$	424 260	Ś	378.503	Ś	412.244	Ś	432.006
stao n	ć	215 620	ć	200 005	é	194 720	é	100 61 4	ć	194 400	ć	190.000	1=1 007	, ,	176 500	ć	156 007	é	102.070
5 KGO_11	ş	213,030	ې د	200,895	ې د	104,/28	ې د	190,014	ې د	104,482	ې د	100,339 \$	104,80/	ې	120,500	ډ د	150,88/	ې د	102,979
stgo_s	Ş	231,169	Ş	204,562	Ş	201,981	Ş	199,538	Ş	168,257	Ş	181,055 \$	165,628	Ş	122,847	Ş	159,227	Ş	104,339
stgo_se	\$	314,062	\$	243,633	\$	217,240	\$	198,715	\$	212,719	\$	200,199 \$	222,360	\$	184,301	\$	123,397	\$	134,688
stgo w	\$	269,069	\$	223,082	\$	214,275	\$	223,152	\$	164,283	\$	160,972 \$	171,563	\$	177,769	\$	146,182	\$	115,058

A IRS		í.	Variances Ratio		E Sector Compariso	nn at 2015	Internretation / OI	hservations.							
	inc nitter inc o			4											
Leal Lob. Meal			10	AU/AC	Jection	INICAL	delieldi.								
1990 37.27%	na	na 19;	06	55.25%	chacabuco	25.86%	(1) From "A": Total	population une	der poverty line	has decreased	throughout the	e time frame sel	ected		
1992 29.46%	na	na 195	92	50.15%	cordillera	22.13%	(2) From "F": Mode	rate income se	ctors (i.e. Talag.	ante) were the o	nes w/bestim	provements			
1994 24.41%	eu	na 194	74	79.54%	maino	18.39%	However, the re	duction in nove	rtv mtes is still h.	iaher in Santiaa	o (Ava24.76%	%) compared to	the other		
	5	101					and the set of the set	4 7 5 0 1 hove	les le sereistent.	ignine in oning	CONTA - GARDO	· lasans" and	air ound		
1996 11.41%	na	na 19:	96	65./1%	melipilla	20.2 %	provinces (Avg	n noinn (ec. / L	Iso is consistent	with the finding.	s from "Median	n Income" analy:	SIS.		
1998 18.08%	na	na 19:	98	48.81%	talagante	18.46%	(3) From "E": The hi	gher indexes o	of poverty rates v	were located ou	its ide Santi ago	by 2013.			
2000 18.47%	na	na 20(00	68.52%	stgo_c	12.65%	Large scale dispersi	ion							
2003 15.81%	na	na 200	33	48.06%	steo e	7.37%	(4) The RSD by sect	or and district	has experience	d a significant i	ncrease (doub)	le)			
2006 11 29%	ec	00 eu	16	19 50%	stan n	20.76%	This means that	the sauare roo	t of the variance	fstandard devic	tion) has incre-	ased in relation	to the		
2000 CT 000 C	2	000		2010 66		2000	dictricte le actore	magn therefore	a increasing the	difference hetwi	aan cubunite				
2/00- FF 5500		07 DI		201 UC	3160_3	%CC:47		meun, merejure	c, intercond are	uijjerence verm	con suburits.	a alatan al otras			
%02.11 1102	IId	.07 PU	1	000.65	stgu_se	% CT . QT	ייישי אמ חכא שווו	i moli sibalar io	ange scare segre	מתוסנו (סו נסוונג	vod lo uonnus	אבורא זוו בבונמות מ	(snai		
2013 10.38%	na	na 20.	13	46.96%	stgo_w	14.66%	has increased.								
2015 18.06%	na	na 20.	15	52.52%	AVG	18.54%									
	28.34% 17.5	55%					Small scale dispersi	u							
B. RSD Coefficient of Variatid	bu	6	Pissimilarity Ind	ex	F. Sector Change		(5) There is an over	rall increase in	the RSD within	sectors. Howeve	er the detailed	analysis show	that that's		
Year	RSD-District RSD-Se	ctor Yea	١٢	٥	Sector	Change	that's mainly ba	ased in the fact	that some distr	-icts have succe	ed in eliminati	ing poverty, whi	ile others not.		
1990	32.26% 23.5	98% 199	Û€	20.05%	chacabuco	-12.39%	This may explai	in the low rate-	increase in RSD	by sector, com	pared to the his	eh increase in F	RSD by district		
1992	30.67% 21.	72% 196	<i>c</i> t	17 13%	cordillera	-7 81%	Condusions:				_	0			
1001				2000 00	con con co co		(E) Cusassian and	baa (C) old sta	d veloci O colorid	seener and see	de danca de acto	a time from the second			
T 9 94	"CC %00.9C	-03% T3.	14	× 647.07		%7T.UZ-	und Bun Inddne (c)	DITE (C) . OVI 411	(+) (IIIE D III (HA)				elected.		
1996	41.07% 33	29% 19:	96	21.28%	melipilla	-21.40%	(6) A though pover	ty levels have d	diminished cons	siderable durin _§	g the last decac	de there are stil.	important		
1998	41.26% 28.8	83% 195	98	19.52%	talagante	-28.49%	disparities bet	ween neighborl	hoods (see "G")	which support _I	previous point:	,s			
2000	35.25% 29.	18% 200	00	16.96%	støn c	-17.67%	(7) While small sca	ale segregation	heterogeneity v	vithin sectors) h	has diminished	-			
2003	36 91% 25 1	20%	5	18 76%	stan e	-4 49%	large scale seg	regation has in	icreased						
				20 / O /	3160_5				ici casea.						
2006	37.84% Ib.	VU2 0/1 /-	<u>م</u>	1 / .44 %	stgo_n	%05.41-									
2009	43.59% 25	20% 200	60	19.00%	stgo_s	-17.16%									
2011	52.04% 32.	78% 20.	11	23.04%	stgo_se	-17.58%									
2013 2015	60.60% 41 30.28% 287	53% 20. 47% 20.	13	26.03%	stgo_w av/G	-23.86%									
CTOZ	.07 0/07'EC	V 1 10	1	0/ 10 7	DAY	0/0C'/T-									
Average Population II	nder novertv line			CDG											
								Dissimilarity	Index		Change in	n Poverty Santi	ago East (black)	- Maipo (blue	_
40%		20	%				30%			C	/800				
35%									•	1.06	%00				
		00	 20				25%		•	100	2000				
30%		20	%		•	_	•		•	40.1	• • • • •				
25%		40	~~~~	•	•	•	20%	•	•	30.6	• %OC				
20%		2		•			15%	•			1	1			
15%		œ	•	•		•				20.0	%0C	•			
10%	•	20	•				%OT				•		•	•	
		10	~				5%			10.0	%00		•		
		č					òõ			0	2004			•	
1990 1993 1996 1999 200	32 2005 2008 2011 2014 2	2017	1990 1993 195	96 1999 2002	2005 2008 2011 2	2014 2017	1990 1993 1996	1999 2002 20	05 2008 2011 20	714 2017	1990 1993	1996 1999	2002 2005 2	08 2011 20	14 2017
2b. Poverty rates - D	Dispersion within s	sectors													
Internal RSD		Avg.	1990	1992	1994	1996	1998	2000	2009	2003	2006	2011	2013	2015	Change
chacabuco	16.5	89%	33.05%	17.53%	19.95%	0.00%	20.42%	11.36%	14.40%	8.98%	29.80%	36.94%	4.81%	5.39%	-27.7%
		/01.0													
cordillera	. 42	%/7	10.0/%	%AT.6	14.8U%	0.00%	20.89%	23.90%	9.97%	24.1/%	11.21%	%/1.75	50.40%	51.84%	32.2%
maipo	26	27%	16.45%	12.33%	26.53%	32.63%	24.61%	30.38%	14.98%	14.49%	37.10%	67.37%	21.96%	16.40%	0.0%
melipilla	24.	76%	8.17%	12.89%	20.32%	0.87%	11.94%	22.85%	41.95%	30.47%	19.22%	57.72%	56.30%	14.45%	6.3%
talagante	26.	70%	14.58%	9 07%	13.55%	47.28%	30.45%	21.51%	22.69%	29.70%	39.62%	39.75%	24.86%	27 38%	12.8%
		ç	5	6	ŝ	ŝ	ŝ	9	9	ŝ		9	9	ŝ	
3.60_0		D			110	DI		DI1		011		B=			
stgo_e	40.	% C7	23.49%	%/4/%	%C8.Ub	32.09%	%QC.65	31.39%	45.84%	40.49%	33.22%	93./9%	/3.14%	%//.cc	32.3%
stgo_n	- 67	70%	27.47%	19.07%	25.06%	33.76%	30.57%	23.74%	38.55%	27.75%	36.95%	29.95%	37.29%	21.00%	-6.5%
stgo_s	35.	39%	18.27%	29.89%	18.52%	36.57%	46.66%	30.32%	42.00%	36.24%	47.09%	32.62%	59.36%	27.16%	8.9%
steo se	20.5	85%	33.76%	13.14%	32.71%	20.49%	25.08%	17.93%	16.05%	23.22%	18.22%	21.25%	18.87%	9.43%	-24.3%
sten w	23.6	61%	20.28%	19.27%	38 98%	77 q5%	22 30%	15.47%	27.21%	20 90%	18 76%	22 62%	76.76%	22 76%	25%
			20101		20000	20014	2021			20004	20101	0.40.44	20104	20	
2c. Selected sub-uni	<u>ts detailed</u>														
G. Max. / Min. Comparative ev	volution														
			1990	1992	1994	1996	1998	2000	2003	2006	2009	2011	2013	2015	%Change
stgo_e	la_reina		16.12%	10.71%	10.17%	7.08%	6.99%	7.25%	6.40%	9.32%	3.20%	4.02%	0.56%	6.01%	-10.11%
stgo e	las condes		10.87%	10.36%	7.46%	10.96%	5.31%	6.01%	9.80%	5.43%	3.84%	0.96%	3.53%	4.79%	-6.07%
stgo e	lo barnechea		na	31.12%	21.43%	6.67%	13.62%	9.29%	11.55%	11.23%	7.62%	8.30%	6.82%	16.54%	-14.59%
stgo e	nunoa		8.61%	10.47%	15.00%	4.06%	4.05%	4.48%	4.79%	5.22%	5.55%	4.97%	0.76%	11.25%	2.64%
stro e	provi denci a		11.13%	7.51%	6.51%	10.48%	4.07%	12.34%	2.97%	4.87%	1.23%	0.31%	3.76%	4.63%	-6.51%
stgo_e	vitacura		na	11.28%	14.42%	na	12.12%	8.59%	9.82%	10.03%	6.38%	0.25%	2.06%	4.78%	-6.50%
maipo	buin		40.21%	40.47%	26.50%	na	24.10%	25.81%	18.18%	12.63%	10.26%	11.22%	10.66%	16.08%	-24.12%
maipo	calera_de_tango		39.30%	31.31%	27.77%	12.00%	11.44%	11.61%	14.50%	5.99%	11.94%	0.79%	14.83%	19.08%	-20.21%
maipo	paine		45.16%	29.51%	34.65%	28.05%	18.62%	14.40%	18.64%	11.63%	13.03%	7.51%	19.84%	24.32%	-20.84%
maipo	san_bernardo	+	28.00%	33.57%	15.36%	26.60%	19.42%	20.30%	21.99%	18.81%	15.49%	18.54%	17.95%	17.28%	-10.72%
Weighted Avg.	stgo_e		11.86%	14.55%	12.98%	7.64%	8.33%	6.68%	8.02%	8.09%	4.65%	2.73%	2.99%	7.37%	-4.49%
Weighted Avg.	maipo		38.51%	33.75%	26.42%	25.45%	18.24%	18.08%	18.56%	12.47%	12.96%	13.16%	16.94%	18.39%	-20.12%

8.5. Appendix 5: Distribution of poverty rates

8.6. Appendix 6: Overcrowding analysis

8.7. Appendix 7: Materiality index analysis

8.8. Appendix 8: Labor engagement

A. Sector Com	nparison at 2013			Interpretati	ion / Observations:							
Sector	Pollution	Infras.	Social									
melipilla	5.46%	32.24%	10.66%	General:								
talagante	9.89%	20.99%	15.77%									
chacabuco	8.75%	20.79%	19.77%									
maipo	13.07%	18.22%	27.10%									
cordillera	14.34%	5.24%	27.28%									
stgo_w	5.26%	4.67%	20.86%									
stgo_n	9.33%	4.14%	22.47%									
stgo_se	5.15%	4.06%	19.70%	Large scale	segregation:							
stgo_c	17.15%	3.82%	21.93%									
stgo_s	9.86%	1.98%	31.42%									
stgo_e	3.58%	1.07%	4.68%									
35.00%				provincia	comuna	total	abs.pol	(%) lod	abs.inf	inf(%)	abs.soc	s oc (%)
•				stgo_e	la_reina	416	16	3.8%	0	0.0%	24	5.8%
30.00%				stgo_e	las_condes	3337	68	2.0%	28	0.8%	77	2.3%
JE 000/				stgo_e	lo_barnechea	514	33	6.4%	13	2.5%	54	10.5%
%00.62		*		stgo_e	nunoa	3459	157	4.5%	63	1.8%	286	8.3%
20.00%				stgo_e	providencia	2702	120	4.4%	14	0.5%	75	2.8%
	•	• (stgo_e	vitacura	587	0	%0.0	0	0.0%	na	na
15.00%				stgo_n	cerro_navia	1104	237	21.5%	16	1.4%	460	41.7%
10.00%		***		stgo_n	conchali	4961	374	7.5%	166	3.3%	1278	25.8%
°.	•	•		stgo_n	huechuraba	438	67	15.3%	30	6.8%	146	33.3%
5.00%]		,**	stgo_n	independencia	407	27	6.6%	S	1.2%	21	5.2%
			ļ	stgo_n	quilicura	1780	64	3.6%	32	1.8%	174	9.8%
0.00%			•	stgo_n	quinta_normal	1013	65	6.4%	65	6.4%	117	11.5%
			s / °	stgo_n	recoleta	1231	102	8.3%	06	7.3%	194	15.8%
Sele, Jour			256	stgo_n	renca	1043	182	17.4%	92	8.8%	301	28.9%
-				cordillera	pirque	257	10	3.9%	78	30.4%	4	1.6%
• • • • •	Pollution In:	ıfras. —×— So	icial	cordillera	puente_alto	5407	836	15.5%	188	3.5%	1595	29.5%
				cordillera	san_jose_de_maipo	237	0	0.0%	43	18.1%	11	4.6%

8.9. Appendix 9: Environment