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Abstract  

Regulation of Proviral Expression  

and Post-Translational Modifications in Embryonic Cells 

Andreia Lee 

 

 Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally 

silenced in mouse embryonic cells by a repressor complex containing tripartite-motif-

containing 28 (Trim28). Trim28 depends on post-translational modifications, such as 

sumoylation and phosphorylation, and its interactions with several co-repressor proteins 

to regulate its repressive activity. YY1 is one such Trim28 co-repressor protein, recently 

found to tether the Trim28 silencing complex to the M-MLV promoter. Here, we 

investigated the biochemical interaction of Trim28 and YY1, and the role of sumoylation 

and phosphorylation of Trim28 in mediating M-MLV silencing. Experiments probing the 

binding of YY1 and Trim28 in vitro suggested that their interaction occurs indirectly. 

Mutational studies demonstrated that the RBCC domain of Trim28 is sufficient for 

interaction with YY1 while the acidic region 1 and zinc fingers of YY1 were necessary 

and sufficient for its interaction with Trim28. Additionally, we found that the K779 

residue was critical for Trim28-mediated silencing of M-MLV in embryonic cells.  

 The repressor complex that silences M-MLV is very large and likely consists of 

many protein subunits. A few proteins contained in the repressor complex have been 

identified, including Trim28, but the identity of most of the components forming the 

repressor complex are unknown. We detected a new form of the complex that is of even 

high molecular weight and likely contains additional associated cofactors. We reported an 



 

approach for purifying this larger repressor complex and identified new candidates for 

cofactors that may potentially function in the silencing of M-MLV.  

 We also examined the regulation of sumoylation in embryonic cells. Sumoylation 

conjugation is a post-translational modification that affects a diverse range of processes 

and is important for embryo survival. Overall inhibition of the SUMO pathways results in 

embryonic lethality demonstrating the importance of the SUMO pathways for embryonic 

viability; however, our understanding of SUMO function in embryos at the cellular and 

molecular level is still greatly lacking. We demonstrated that SUMO1 cannot be 

overexpressed in embryonic carcinoma and embryonic stem cells and that SUMO1 

overexpression is prevented at a post-transcriptional level. This occurred specifically for 

SUMO1 and not for SUMO2 overexpression. Furthermore, blocking conjugation or 

increasing the deconjugation of SUMO1 to substrates significantly improved SUMO1 

overexpression. The results indicate that the overexpression of SUMO1 protein, in itself, 

is tolerated in embryonic cells, but the accumulation of substrate(s) modified by SUMO1 

appears to be strongly prevented by an embryonic-specific post-transcriptional 

mechanism.  
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Chapter 1 : Introduction 

1.1 Retroviruses 

Impact of retroviruses 

 Retroviruses are enveloped RNA viruses, named for the distinctive aspect of their 

replication termed reverse transcription, in which their single-stranded RNA genome is 

converted into a double-stranded DNA intermediate. The DNA intermediate is then 

integrated into the host DNA and thereby becomes a stable component of the host genome. 

Integration of the viral DNA into the host genome results in a mutagenesis event, which can 

have severe consequences. Depending on the site of integration, this event can disrupt or 

upregulate the expression of neighboring genes. Retroviruses are also capable of acquiring 

and adapting cellular genes into their genome during their replicative cycle. This capability 

can have serious consequences, as certain transduced cellular genes can become oncogenic, 

leading to the transmission of these virally activated oncogenes to initiate tumor formation. 

Additionally, if viral genes are integrated into germ cells, the viral genome can get passed 

down to the offspring in a Mendelian fashion. These inherited retroviruses are called 

endogenous retroviruses, and vertebrates have accumulated a shocking number of 

endogenous retroviruses, comprising as much as 8% of the DNA in humans and 10% of the 

DNA in mice (Lander et al. 2001; Stocking & Kozak 2008). Some endogenous retroviruses 

that provide beneficial functions to the host have been co-opted by the host genome, 

demonstrating the important influence endogenous retroviruses have in the evolution of the 

human genome. Furthermore, retroviruses can cause serious diseases in humans such as the 
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progression to AIDS in HIV-1 infected patients. Our knowledge of retroviruses was critical 

for addressing the HIV-1 epidemic and for the development of treatments that are available 

today. According to the World Health Organization, 36.7 million people continue to live with 

HIV/AIDS, and 1.1 million people died from AIDS worldwide in just 2015 alone. As such, 

HIV continues to be a global health issue that further underscores the necessity of retroviral 

research. In summary, studies of retroviruses have been critical for progressing the fields of 

virology and cancer research, for understanding our own genomes, and for developing 

retroviral therapeutics.  

A brief history of retroviruses 

 Retroviruses were first described by Vilhelm Ellermann and Oluf Bang in 1908 and 

by Peyton Rous in 1911 (Rous 1911). These early studies used cell-free filtrates to transmit 

avian cancer from diseased animals to healthy animals, demonstrating the presence of a 

virus. The viruses Ellermann and Bang and Rous described are now known as avian leukosis 

virus (ALV), and Rous sarcoma virus (RSV), respectively. These early studies were followed 

by the discovery of mammalian oncogenic retroviruses. The mouse mammary tumor virus 

(MMTV) was discovered by John Bittner in 1936, and the murine leukemia virus (MLV) was 

discovered by Ludvik Gross in 1951 (Bittner 1936; Gross 1951).  

 The next breakthrough in the field came in 1958 when Howard Temin and Harry 

Rubin established the focus assay, which allowed viral infection and transformation to be 

studied at the cellular level (Temin & Rubin 1958). Before then, tumor viruses were 

primarily studied at the organismal level, which was costly, time-consuming, and difficult to 
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control. The availability of a cell-based model opened the doors for a more quantitative and 

detailed study of the virus, facilitating important advances in the field of retrovirology.  

The most critical and impactful turning point in the field arrived with the discovery of 

the reverse transcriptase enzyme. Up until this point, researchers remained puzzled as to how 

retroviruses replicate because viral infections were sensitive to inhibitors of DNA synthesis. 

Temin first hypothesized that retroviral replication was mediated by a DNA intermediary. 

This was called the proviral hypothesis and was initially met with a great deal of skepticism 

until Howard Temin and David Baltimore provided proof for this idea with the landmark 

discovery of the retroviral reverse transcriptase enzyme in 1970 (Baltimore 1970; Temin & 

Mizutani 1970). The reverse transcriptase enzyme explained how the DNA intermediate was 

made from the RNA genome, and importantly, it revised the central dogma of molecular 

biology, which stated that genetic information travels from DNA to RNA to protein.  

The study of retrovirus-induced tumors also led to the discovery of the first oncogene, 

src. This oncogene was discovered in the genome of the RSV and was thought to be a gene 

originating from the retrovirus. In 1979, Michael Bishop and Harold Varmus made the 

important discovery of a cellular src gene (c-src) and demonstrated that viral src (v-src) is 

actually derived from c-src (H Oppermann 1979). These studies explained that retroviruses 

were capable of transducing oncogenic genes that originated from host cells. Beyond the 

study of virology, this study sparked great interest in the role of oncogenes in cancer. 

The next major event in the history of retrovirology came with the discovery of the 

human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS (Barre-Sinoussi 

et al. 1983). The AIDS epidemic propelled HIV-1 to the forefront of the retrovirology field 

and HIV-1 has now become the most studied retrovirus to date. Major work in the study of 



 4 

HIV-1 has led to important developments in our understanding of retroviruses and in the 

development of retroviral therapeutics.  

Retroviral Classification  

 Retroviruses were initially classified by virion morphology or host range, but the 

current taxonomy of retroviruses organizes the Retrovirdae family into seven genera based 

on the sequence relatedness of the pol gene, the most well-conserved retroviral gene. The 

seven genera are alpharetroviruses, betaretroviruses, gammaretroviruses, deltaretroviruses, 

epsilonretroviruses, lentiviruses, and spumaviruses.     

 Another broader way of classifying retroviruses is by their genomic content. The 

common viral genes of all retroviruses are the gag, pro, pol, and env genes. Retroviruses that 

only contain this basic set of genes are called “simple” retroviruses. The alpha-, beta-, 

gamma-, and epsilon-retroviruses are considered simple retroviruses, and murine leukemia 

virus (MLV) is an example of a simple retrovirus from the gamma-retrovirus genus and a 

main topic of this dissertation. Retroviruses that contain additional accessory genes are called 

“complex” retroviruses. Accessory genes code for additional viral products that aid in the 

replication cycle. The lentiviruses, spumaviruses, and deltaretroviruses are considered 

complex retroviruses, and HIV-1 is an example of a complex retrovirus of the lentivirus 

genus. 

Endogenous retroviruses  

Endogenous retroviruses (ERV) are the result of ancient viral infections of germ cells 

that have been passed down over generations. While the majority of ERVs are defective and 

are slowly lost from the host genome, a significant number of ERVs in some species have 
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remained active and are capable of expression and replication (Stocking & Kozak 2008). 

Endogenous retroviruses make up about 8% of the human genome and 10% of the mouse 

genome (Chinwalla et al. 2002; Lander et al. 2001). As the focus of this dissertation is on 

mouse retroviruses, we will briefly describe the mouse ERVs (mERV). mERVs are classified 

by phylogenic analysis of the RT domain into three classes. Class I mERVs are one of the 

most well-studied ERVs and are close relatives of the gammaretroviruses, class II mERVs 

are most related to lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses, and 

class III ERVs are most closely related to the spumaretroviruses (Stocking & Kozak 2008).  

Retroviral genome 

The genomes of retroviruses vary in length and complexity and are 7–12 kb in size. 

The minimum and necessary genes found in all retroviruses are the gag, pro, pol, and env 

genes, and these genes are always found in the order listed. The gag gene codes for the 

internal structural proteins of the virus, the pro gene codes for a viral protease, the pol gene 

codes for the reverse transcriptase and integrase enzymes, and the env gene codes for the 

surface and transmembrane proteins of the virion.  

Accessory genes of complex retroviruses are found between pol and env, downstream 

of env, or overlapping these two genes. Some examples of well-studied accessory genes are 

those found in HIV-1: tat, rev, nef, vif, vpr, and vpu. The tat gene codes for a transcription 

activator, rev codes for a regulator of splicing and RNA transport, nef codes for a protein 

involved in viral assembly, vif and vpr code for proteins that enhance virion infectivity, and 

vpu codes for a membrane protein that facilitates virion release from host cells.  
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The retroviral genome also contains terminal noncoding regions, which are important 

for replication. The 5’ end contains the R and U5 regions, and the 3’ end contains the U3 and 

R regions. In the process of reverse transcription, these regions are reorganized such that two 

identical elements called the long terminal repeat (LTR) are formed at the terminal ends of 

the double-stranded viral DNA (Figure 1-1). The LTRs contain the noncoding regions in the 

following order: U3, R, and U5. The promoter and enhancer sequences are found in U3, and 

the site of transcription initiation occurs at the U3/R boundary. The poly(A) addition signal is 

found in U3 and R, and the site of pol(A) addition is at the R/U5 boundary. Two additional 

elements that are important for replication are an 18-base region called the primer binding 

site (PBS) and the polypurine tract (PPT). The 3’ end of a tRNA containing a complementary 

sequence binds to the PBS and is used to prime reverse transcription of the RNA genome to 

form the first DNA strand, or “minus” strand. The amino acid linked to the complementary 

tRNA is used to designate the sequence of a PBS. For example, if a PBS sequence uses the 

proline tRNA to prime reverse transcription, then it is called a PBSpro. The PPT sequence 

serves as the RNA fragment used to prime the second DNA strand, or “plus” strand. 

Additional details on the use of these sites for the formation of the dsDNA copy of the RNA 

genome will be further described in the reverse transcription section.  
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Figure 1-1 Retroviral genome   
The viral RNA genome is shown in the first line. The terminal noncoding regions at the 5’ 
and 3’ ends contain the R and U5 regions and the U3 and R regions, respectively. The PBS 
and PPT sequences, necessary for reverse transcription of the viral RNA genome, are 
marked. The dsDNA copy of the viral genome is shown in the second line. Two identical 
LTR elements containing the noncoding regions, U3, R, and U5, are formed in the process of 
reverse transcription. Sequences important for transcription, such as the enhancer, promoter, 
and poly(A) addition signal, are located in the LTRs. Image taken from (Coffin, et al. 1997).  
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Retroviral Gene Expression  

Retroviral particles are typically 80-120 nm in diameter. At their center, retroviruses 

harbor two copies of a single-stranded RNA genome and virally-encoded enzymes in a 

protein capsid shell. An outer plasma membrane, derived from the host cell, encapsulates the 

capsid core to form a viral particle (Figure 1-2). The plasma membrane is embedded with 

retroviral glycoprotein complexes, which are important for viral entry into host cells. 

The Gag protein is the precursor protein derived from gag. Gag contains at least three 

domains, the matrix (MA), capsid (CA), and nucleocapsid (NC). Gag is proteolytically 

cleaved during the last stages of the retroviral replication cycle into mature MA, CA, and NC 

subunits. MA is found at the amino-terminal end of Gag and is crucial for targeting Gag to 

the plasma membrane. CA is the central domain of Gag, and it forms the capsid shell. NC is 

at the carboxy-terminal end of Gag and is found in the capsid core, associated with the RNA 

genome. Additional proteins may also be formed from the Gag precursor in some viruses, but 

the MA, CA, and NC are the minimal products formed from the Gag protein.  

The pro and pol genes encode all the viral enzymes. The pro gene encodes the viral 

protease (PR), which is responsible for cleaving the viral polyproteins into their mature 

components, and the pol gene encodes the reverse transcriptase (RT) and integrase (IN) 

enzymes. RT has both DNA polymerase and RNase H activity and is responsible for 

synthesizing viral DNA, and IN catalyzes the integration of viral DNA into the host genome.  

The primary product of env forms the Env polyprotein precursor, which is 

glycosylated and cleaved to form the mature surface protein (SU) and the transmembrane 

protein (TM). The SU and TM proteins are linked by disulfide bonds and form the 

glycoprotein complexes embedded in the plasma membrane of the virion. SU is a large  
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Figure 1-2: Structure and components of a retroviral particle.  
The components that form a virion are indicated. MA, CA, and NC are the internal structural 
proteins formed from the Gag precursor. PR, RT, and IN are the viral enzymes formed from 
Pro and the Pol precursor. SU and TM are the viral plasma membrane proteins formed from 
the Env precursor. Image taken from (Coffin, et al. 1997).  
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glycosylated protein found on the surface of virions and is responsible for interacting with 

host receptors to gain entry into a cell. SU triggers TM to fuse the viral and host membranes, 

thereby mediating viral entry into a host cell.  

Retroviral replication cycle 

 The retroviral replication cycle can be cleanly divided into the entry and exit phases. 

The entry phase consists of viral entry, reverse transcription, nuclear entry, and integration, 

and the exit phase consists of viral gene expression, assembly, and viral budding (Figure 

1-3). The two phases are separated by the establishment of the integrated viral DNA, which 

is referred to as the provirus. Another distinction is that the entry phase mostly depends on 

virally-encoded proteins whereas the exit phase mostly depends on the cellular machinery.  

Entry and Uncoating  

  Viral entry is initiated with the binding of SU to specific cell surface receptor 

molecules of a host cell. Therefore, the expression of the receptor defines the host range and 

cell tropism of a virus. For example, the Envelope of the ecotropic Moloney murine leukemia 

virus (M-MLV) binds to the mouse amino acid transporter, mCAT (Maddon et al. 1986; Kim 

et al. 1991). Binding of SU to a cell surface receptor activates TM, resulting in the fusion of 

the viral and cell membranes and entry of the capsid core into the cytoplasm. The capsid core 

now begins to disassemble in a process called uncoating.  
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Figure 1-3 The entry and exit phases of the retroviral replication cycle 
A schematic of the entry and exit phases of the retroviral replication cycle are shown. (A) 
The major sequence of events in the entry phase consists of viral entry, reverse transcription, 
nuclear entry, and integration. (B) The major sequence of events in the exit phase consists of 
transcription, assembly, and budding. Image taken from (Goff 2007).  
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Reverse Transcription 

 Following release of the viral core into the cytoplasm, RT is activated and initiates 

reverse transcription of the RNA genome (Figure 1-4). It is not completely clear how RT is 

activated, but it is thought that uncoating of the capsid core and exposure to 

deoxyribonucleotides are involved (Luban et al. 1993; Goff 2001). The viral particle carries 

two copies of the single-stranded RNA genome, and retroviral DNA synthesis can occur 

from either strand. The 3’ end of a partially unwound cellular tRNA, annealed to the RNA 

genome during virion assembly, serves as primer to initiate DNA synthesis. RT synthesizes 

the minus-strand DNA until it reaches the 5’ end of the genomic RNA, at which point, it 

digests the RNA strand of the RNA:DNA duplex. The minus-strand DNA “jumps” to the 3’ 

end of the RNA genome where it contains an R sequence that complements the 3’ end of the 

DNA strand, a process referred to as strand transfer. After strand transfer occurs, minus-

strand DNA synthesis resumes and proceeds through the PBS sequence near the 5’ end of the 

RNA. As elongation proceeds, RNase H digests the template RNA strand except for a short 

polypurine tract, the PPT RNA segment. The PPT is resistant to RNase H degradation and 

serves as the primer for plus-strand DNA synthesis. Plus-strand synthesis proceeds into a 

portion of the tRNA still present at the 5’ end of the minus strand. This step is followed by 

RNase H degradation of the tRNA primer, which creates a PBS overhang on the plus-strand 

DNA. A second strand transfer occurs in which the PBS overhang anneals to the PBS of the 

minus strand. This allows the plus-strand to complete DNA synthesis, resulting in a dsDNA 

copy of the RNA genome with identical LTR sequences at the 5’ and 3’ ends.  
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Figure 1-4 Reverse transcription of the retroviral genome.  
Reverse transcription of the RNA genome involves a complicated sequence of steps outlined 
here. These steps include a series of DNA synthesis and RNA degradation events, catalyzed 
by RT, and two strand-transfer events. Image taken from (Coffin, et al. 1997).  
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Nuclear entry and Integration  

 The newly synthesized DNA product moves from the cytoplasm to the nucleus via 

association with IN and host cell factors that form a complex known as the pre-integration 

complex (PIC).  Some retroviral PICs can only enter the nucleus after breakdown of the 

nuclear envelope during cell division, while others can enter through active transport. Upon 

migrating into the nucleus, IN cleaves two bases from the 3’ ends of both viral DNA strands 

to create 5’ overhangs. Subsequently, the PIC targets host DNA where IN catalyzes the 

breaking and joining of host DNA to viral DNA in a transesterification reaction. The last step 

of integration involves the repair of two short single-stranded gaps and base pair mismatches 

that result from insertion of the viral DNA. The integrated viral DNA is now called a 

provirus, and its integration into the host genome is irreversible.  

Transcription and Splicing 

 Following integration, the provirus behaves like a cellular gene and mostly relies on 

cellular machinery for gene expression and assembly of progeny virions. The duplicate LTRs 

formed from reverse transcription contain cis-acting elements that direct viral gene 

expression, recognized by the host cell RNA polymerase II and transcriptional cofactors. 

Regulatory sequences for initiating transcription, such as the promoter and enhancer 

elements, are found in the U3 region of the 5’ LTR. The control elements for 

posttranscriptional processing are found in the U3, R, and U5 of the 3’ LTR. Transcription of 

the provirus, 5’ end capping, and 3’ end polyadenylation of the viral transcript proceeds as it 

would for any cellular gene. There is only one promoter used for the expression of gag, pro, 

pol, and env, and a single primary transcript is formed. This full-length transcript serves as 
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the mRNA for the Gag and Gag-Pro-Pol polyproteins, as well as the genomic RNA to be 

packaged into progeny viral particles. A fraction of the full-length transcript is spliced into 

subgenomic viral RNA, resulting in transcripts for generating the Env polyprotein and 

accessory proteins. Simple retroviruses undergo a single splicing event to generate the 

transcript encoding Env, while complex retroviruses can undergo multiple splicing events to 

generate transcripts for Env and the additional accessory products (Figure 1-5). 

Synthesis, Assembly, and Budding  

The Env polyprotein is formed from a spliced transcript, the Gag protein is formed 

from the unspliced transcript, and the viral enzymes are produced as fusions proteins to Gag 

in a Gag-Pro-Pol polyprotein. Translation of the unspliced transcript produces the Gag 

polyprotein in highest abundance, but regulated frameshift or readthrough events allow the 

ribosome to bypass the gag stop codon and form the Gag-Pro-Pol polyprotein. These 

polyproteins are later cleaved during viral maturation into their individual subunits.  

 The viral proteins are translated in different regions of the cell, but they assemble at 

the plasma membrane when forming new viral progeny. The Gag and Gag-Pro-Pol 

polyproteins are synthesized on free polyribosomes in the cytoplasm and are subsequently 

directed to the cytoplasmic side of the plasma membrane by Gag. Gag is also responsible for 

bringing two copies of the viral RNA genome to the site of assembly and for initiating 

budding of the plasma membrane. The Env polyprotein is synthesized on membrane-bound 

polyribosomes, is delivered through the golgi apparatus and endoplasmid reticulum to the 

plasma membrane, and finally migrates laterally to the sites of budding. Budding from the 

host cell results in the packaging of the viral proteins, RNA genome, and cellular tRNA to  
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Figure 1-5 Alternative splicing patterns for MLV, RSV, and HIV-1 transcripts.  
MLV is a simple retrovirus that only undergoes a single splicing event to generate the 
transcript encoded by the env gene. RSV is also a simple retrovirus that undergoes two 
splicing events, generating two subgenomic RNA products encoded by the env and src genes. 
HIV-1 is a complex retrovirus that utilizes multiple splicing events to generate RNA 
templates for the expression of Env and its accessory products. Image taken from (Coffin, et 
al. 1997). 
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form “immature” virions. Following the release of the virion from the host cell, the 

polyproteins are cleaved into their respective subunits by viral protease to produce the mature 

virion (Figure 1-6). The mature virion can now infect another host cell and repeat the 

retroviral replication cycle. 

Murine Leukemia Virus  

Ludwik Gross first discovered MLV in 1951 and demonstrated that the virus 

transmitted leukemia to newborn mice (Gross 1951; Gross 1957). Gross’s initial discovery of 

MLV and ensuing studies helped spark great interest in the field of tumor virology and 

established MLV as a model system for studying retroviruses. MLV is a prototype of the 

gammaretrovirus genus and is considered a simple retrovirus. MLV does not infect non-

dividing cells and generally does not cause cell death of host cells upon infection. (T Roe 

1993) There are various strains of MLV, including Friend, Rauscher, and Moloney. We used 

the Moloney strain in the studies described here.  

Receptors 

 MLVs can be organized into four subgroups according to their receptor usage. 

Ecotropic MLV can only infect host cells of mouse or rat origin, xenotropic MLV can infect 

cells of non-murine origin, and polytropic and amphotropic MLV can infect cells of both 

murine and non-murine origin. Most ecotropic MLVs use the ubiquitously expressed murine 

cationic amino acid transporter (mCAT-1), amphotropic MLVs use a sodium-dependent 

inorganic phosphate transporter (PiT2), and xenotropic and polytropic MLVs use the Xpr1 

molecule (Albritton et al. 1989; Battini et al. 1999; D. G. Miller & A. D. Miller 1994). 

Additional receptors can also be utilized by exchanging the natural envelope proteins of 
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Figure 1-6 Structure of the immature and mature viral particle  
The immature viral particles prior to viral polyprotein cleavage is shown on the left, and the 
mature viral particle is shown on the right. Image taken from 
ViralZone:www.expasy.org/viralzone, Swiss Institute of Bioinformatics.  
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MLV for those of another virus. This process is called pseudotyping and is advantageous for 

altering host tropism and increasing gene delivery by retroviral vectors. A commonly used 

pseudotyping envelope protein is the glycoprotein of vesicular stomatitis virus (VSVg) 

because it can transduce a variety of cells from different species and is relatively stable to 

physical handling. 

Fv1 gene 

MLVs can also be categorized by their susceptibility to restriction by the Fv1 gene. 

Frank Lilly’s lab was the first to describe the Fv1 locus and its ability to control MLV 

infectivity (Theodore Pincus 1971). Two major Fv1 alleles, Fv1n or Fv1b, determine 

resistance to MLV strains. MLVs blocked by the protein coded by the Fv1n allele are 

classified as B-tropic, and MLVs blocked by the protein coded by the Fv1b gene are 

classified as N-tropic. Expression of both alleles (Fv1n/b) blocks infection by both N-tropic 

and B-tropic MLV. Some MLV retroviruses, such as M-MLV, are not blocked by the 

proteins coded by either Fv1 alleles and are classified as NB-tropic MLV. Ironically, the Fv1 

gene encodes an ancient and degenerate retroviral Gag protein. The Gag produced by the Fv1 

gene binds CA, restricting the replication cycle at a point between reverse transcription and 

nuclear entry of the PIC. Following the discovery of Fv1, many more inhibitory host factors 

have been identified and these will be further described in the following section.   
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1.2 M-MLV Silencing in Embryonic Cells 

Host Factors with Inhibitory Activity to Retroviruses 

 Host factors that interact with retroviruses can function to either support or inhibit the 

retroviral replication cycle. Some supporting host factors were addressed in the discussion of 

the retroviral replication cycle above, such as the cellular machinery used in proviral 

transcription and translation. However, host cells have also evolved mechanisms to protect 

themselves from retroviral infections. Inhibitory host factors target various stages of the 

retroviral replication cycle. Some such inhibitory factors include the Fv1 gene product, 

APOBEC3G, TRIM5α, Trim28, ZAP, and tetherin (Figure 1-7). The Fv1 gene product was 

the first host restriction factor identified, found to block nuclear import of the pre-integration 

complex for certain strains of MLV (Theodore Pincus 1971). APOBEC3G restricts HIV-1 

replication by creating deoxycytidine to deoxyuridine mutations on the minus-strand DNA 

during reverse transcription (Sheehy et al. 2002; Goff 2004). Some species-specific variants 

of TRIM5α interfere with viral uncoating of HIV-1 and certain strains of MLV (Stremlau et 

al. 2004). Trim28 silences transcription of exogenous and endogenous MLV in mouse 

embryonic cells (Wolf & Goff 2007; Rowe et al. 2010). ZAP targets viral RNA for 

degradation, thereby restricting replication of MLV as well as the replication of some 

alphaviruses such Sindbis and Ebola virus (Gao 2002). Tetherin prevents the release of 

progeny HIV-1 particles from the surface of infected cells (Neil et al. 2008). Collectively, 

these inhibitory host factors demonstrate various strategies host cells developed to restrict 

retroviral replication. In our studies, we focused on the mechanism responsible for 

transcriptional silencing of M-MLV in mouse embryonic cells.  
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Figure 1-7 Host factors that inhibit retroviral replication 
Major stages of the retroviral replication cycle are numbered from 1-10. Some inhibitory host 
factors and the stages at which they block the replication cycle are indicated in red. 
APOBEC3G inhibits reverse transcription, the Fv1 product restricts nuclear entry, Trim5α 
can interfere with viral uncoating, Trim28 inhibits transcription, ZAP degrades viral mRNA, 
and tetherin prevents the release of viral particles. Image taken from (Wolf & Goff 2008).  
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M-MLV Silencing in Embryonic Cells 

 The Moloney murine leukemia virus (M-MLV) is a prototypical retrovirus that 

depends heavily on the host cell machinery for its replication. While M-MLV can carry out a 

productive infection in most cell types, virus replication is potently restricted in embryonic 

stem (ES) cells and embryonic carcinoma (EC) cells (Teich et al. 1977). M-MLV entry, 

reverse transcription, and viral DNA integration into the host genome occurs normally 

(Stewart et al. 1982), but the replication cycle is blocked at the transcriptional level (Niwa et 

al. 1983; Gautsch & Wilson 1983). Transcriptional silencing of M-MLV in embryonic cells 

is thought to be attributable to the absence of enhancer protein function (Linney et al. 1984; 

Hilberg et al. 1987) and the repressive activity of a trans-acting silencing complex (Loh et al. 

1990; Petersen et al. 1991). The repressor complex mediates immediate proviral silencing in 

addition to establishing permanent gene silencing by de novo methylation of the provirus 

(Stewart et al. 1982; Leung et al. 2011; Niwa et al. 1983).  

Cis-acting Elements 

Several cis-acting elements contribute to the silencing of M-MLV in embryonic cells. 

First, enhancer elements are inactive in embryonic cells because of the absence of compatible 

transcription factors that bind to these sites (Linney et al. 1984; Hilberg et al. 1987). Thus, 

insertion of enhancers derived from viruses that express well in embryonic cells, improves 

M-MLV expression. Secondly, repressive elements play a significant role in limiting proviral 

expression. The PBSpro element is a major site of repression, and a single base-pair mutation 

in the PBS called the B2 mutation (PBSB2) is sufficient to relieve proviral repression  
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(Barklis et al. 1986; Loh et al. 1987). Swapping the PBSpro for the PBSgln sequence also de-

represses M-MLV (Grez et al. 1990). Moreover, the PBSpro element is capable of silencing 

the provirus independent of the position and orientation of the site, indicating that the 

repressive function occurs at the DNA level (Loh et al. 1990). Interestingly, the primary 

function of the PBS is to bind a complementary 3’ tRNA sequence onto the viral RNA 

genome to prime viral DNA synthesis, but the repression and DNA synthesis priming activity 

at this site appear to function independently of each other.  Another known site for repression 

occurs at the negative coding region (NCR) located in the 5’ LTR of M-MLV (Flanagan et 

al. 1989). Deletion of the NCR relieves methylation of the provirus and silencing of M-MLV 

in embryonic cells (Schlesinger et al. 2013). Thus, silencing activity at both the PBS and 

NCR elements are needed to achieve maximal M-MLV silencing in embryonic cells.  

Trans-acting Proteins 

The presence of trans-acting factors was first shown from the ability to saturate M-

MLV repression with increasing amounts of competitor DNA containing the PBS region 

(Loh et al. 1988). The trans-acting factors that bind the PBS sequence are referred to as the 

repressor binding site (RBS) complex, and this complex specifically binds to the PBSPro 

sequence and not the PBSgln or PBSB2 sequences that relieve repression (Loh et al. 1990; 

Wolf & Goff 2007). Recent studies have identified some key components of the trans-acting 

silencing complex. Tripartite motif-containing 28 (Trim28) is a major repressor protein that 

mediates repressive activity on both the PBS and NCR elements (Wolf & Goff 2007; 

Schlesinger et al. 2013), and zinc finger protein 809 (ZFP809) and yin yang 1 (YY1) are 
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DNA-binding proteins that recruit Trim28 to these elements (Flanagan et al. 1992; Wolf & 

Goff 2009; Schlesinger et al. 2013).  

Trim28  

Trim28 is also known as KRAB-associated protein-1 (KAP1) or transcriptional 

intermediary factor 1β (TIF1β) and is a ubiquitously expressed transcriptional repressor 

protein that serves as a scaffold for additional co-repressor proteins. Protein-DNA binding 

assays using embryonic cell lysates show that Trim28 binds to the restrictive PBSpro site, but 

not the PBSB2 or PBSgln sites, and knock down of Trim28 relieves embryonic repression of 

M-MLV (Wolf & Goff 2007). Trim28 is also recruited to the NCR element, which leads to 

the enrichment of repressive markers at this site (Schlesinger et al. 2013). Additionally, 

Trim28 is responsible for silencing endogenous retroviruses in embryonic cells (Rowe et al. 

2010; Matsui et al. 2010). Trim28 is enriched on certain endogenous retroviral genes and 

knockdown of Trim28 results in the upregulation of these ERVs. Trim28 also restricts HIV-

1, but it inhibits HIV-1 integration rather than its transcription by mediating the deacetylation 

of IN (Allouch et al. 2011). In addition to retroviral silencing, Trim28 has important 

functions in embryonic development, the regulation of T-cell activation, and mediating the 

DNA damage response, amongst others (Messerschmidt et al. 2012; Ziv et al. 2006; Chikuma 

et al. 2012). Thus, Trim28 regulates a variety of cellular pathways, including retroviral 

expression.  

Trim28 repressor complex 

Trim28 serves as a scaffold for the nucleosome remodeling deacetylase (NuRD) 

complex, heterochromatin protein 1 (HP1), and the histone-lysine N-methyltransferase 
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ESET, which collectively contribute to heterochromatin formation and histone modifications 

to maintain long-term gene silencing (Matsui et al. 2010; Wolf, Cammas, et al. 2008; Schultz 

2002; Schultz et al. 2001; B Le Douarin 1996). The NuRD complex contains several 

subunits, including chromodomain-helicase-DNA-binding protein 3 (CHD3) and the histone 

deacetylases 1 and 2 (HDAC1/2). CHD3 remodels nucleosomes by altering histone-DNA 

contacts, and HDAC removes acetylation modifications from histones. This coupled activity 

facilitates heterochromatin formation and leads to gene silencing (Denslow & Wade 2007). 

ESET trimethylates lysine 9 of histone H3 (H3K9me3), which is a mark of heterochromatin 

and a binding site for HP1. HP1 is a key structural protein in the assembly of the repressor 

complex and stabilizes the heterochromatin domain (Maison & Almouzni 2004). Trim28 

interacts with a large family of repressor transcription factors called Krüppel-associated box 

zinc fingers (KRAB-ZNFs), which recruit Trim28 and its co-repressors to specific DNA 

sequences. Trim28 interacts with these co-repressor proteins using several domains, 

including the ring B1-B2 coiled-coil (RBCC) domain, chromoshadow domain, plant 

homeodomain (PHD), and bromodomain. The KRAB-ZFPs interact with the RBCC domain, 

HP1 interacts with the chromoshadow domain, and CHD3 and ESET interact with the PHD 

and bromodomain (Friedman et al. 1996; Lechner et al. 2000; Schultz et al. 2001; Schultz 

2002). Thus, Trim28 is the central repressor factor in the M-MLV silencing complex, linking 

repressor function to specific gene targets. 

Trim28 modifications 

Trim28 activity is regulated by multiple post-translational modifications. In 

particular, sumoylation and phosphorylation modifications on Trim28 have both been shown 
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to regulate Trim28 repressive activity in the context of the DNA damage response pathway, 

cell cycle progression, and viral latency (Ziv et al. 2006; Goodarzi et al. 2011; Ivanov et al. 

2007; Y.-K. Lee et al. 2007; Benjamin Rauwel 2015; Li et al. 2007). Trim28 contains six 

lysine residues that can be conjugated by the SUMOs: K554, K575, K676, K750, K779, and 

K804. Of these six, K554, K779, and K804 are previously reported to be the most important 

sites for Trim28 repressive activity (Ivanov et al. 2007; Y.-K. Lee et al. 2007; Mascle et al. 

2007; Goodarzi et al. 2011). In a yeast two-hybrid assay, the interaction of Trim28 with 

ESET was disrupted by a mutation at K676, and Trim28 interaction with CHD3 and ESET 

was disrupted by a double mutation at K676 and K779 (Ivanov et al. 2007). In mammalian 

cells, mutating K554, K779, and K804 to arginine results in chromatin relaxation and in 

transcriptional derepression of the p21 promoter and of a reporter gene in a Gal4-based 

system (Y.-K. Lee et al. 2007; Goodarzi et al. 2011; Mascle et al. 2007). Interestingly, the 

PHD of Trim28 functions as an E3 ligase and contributes to its auto-sumoylation as well as 

to the sumoylation of other proteins (Ivanov et al. 2007; Liang et al. 2011).  

The SUMO family consists of four members – SUMO1, SUMO2, SUMO3, and 

SUMO4. While most of the work on Trim28 sumoylation has been done with SUMO1, 

SUMO2 has also been specifically implicated in Trim28-mediated viral silencing. A recent 

genome-wide siRNA screen for proviral silencing factors in embryonic cells identified 

SUMO2 and the SUMO2 conjugating enzymes, but not SUMO1 or SUMO3 (B. X. Yang et 

al. 2015). This study also shows that SUMO2 knock down (KD) abolishes Trim28 binding to 

the LTRs of endogenous retroviruses, and Trim28 KD reduces SUMO2 enrichment on 

proviral elements, suggesting that SUMO2 modification of Trim28 can regulate its proviral 

silencing activity.   
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Phosphorylation of Trim28 abrogates its repressive activity and reduces SUMO 

conjugation of Trim28 (Li et al. 2007; Benjamin Rauwel 2015; Goodarzi et al. 2011). 

Specifically, phosphorylation of two residues, S824 and S473, reduces Trim28 repressive 

activity by perturbing the interaction of Trim28 with CHD3 and HP1, respectively (Goodarzi 

et al. 2011; Chang et al. 2008). Trim28 is also involved in establishing human 

cytomegalovirus (HCMV) latency in hematopoietic stem cells, and phosphorylation of 

Trim28 at the S824 residue relieves latency (Benjamin Rauwel 2015). While these studies 

demonstrate that post-translational modifications on Trim28 regulate its repressive activity, it 

is unknown if the reported modifications are also critical for Trim28-mediated repression of 

M-MLV in embryonic cells. 

KRAB-ZNF family 

As Trim28 cannot directly bind to DNA, it depends on DNA-binding proteins to 

bridge its interaction to specific DNA sequences. The KRAB-ZNF family constitutes the 

largest family of transcription regulators in human and mice and is known to recruit Trim28 

to sites of gene silencing (Emerson & J. H. Thomas 2009). KRAB-ZFPs bind to specific 

DNA sequences by their zinc fingers at their C-termini, and recruit Trim28 by their KRAB 

domain at their N-termini (Wolfe et al. 2000). Interestingly, Trim28 is enriched on the genes 

of KRAB-ZNFs, suggesting a possible auto-regulatory role for the KRAB-ZNFs that 

involves Trim28 (O'Geen et al. 2007). In addition to embryonic-specific silencing of 

retroviruses, KRAB-ZNFs are important for the establishment of global embryonic DNA 

methylation (Quenneville et al. 2012; Wolf & Goff 2009). 



 28 

ZFP809 

ZFP809 is a member of the KRAB-ZNFs, containing a KRAB domain at its N-

terminus and seven zinc fingers at its C-terminus. ZFP808 interacts with Trim28 from its 

KRAB domain and recognizes the PBSpro sequence of M-MLV by its zinc fingers (Wolf & 

Goff 2009). Mutation of the PBS region or knockdown of ZFP809 significantly reduces M-

MLV silencing in embryonic cells (Wolf & Goff 2009; Barklis et al. 1986). ZFP809 protein 

is specifically expressed in embryonic cells and does not normally express well in 

differentiated cells, but expression of a truncated ZFP809 protein was capable of blocking M-

MLV expression in differentiated cells. Our lab recently demonstrates that ZFP809 is 

ubiquitinated and rapidly degraded in differentiated cells, but not in embryonic cells (Cheng 

Wang, unpublished results). This finding provides one explanation for the embryonic-

specific silencing activity occurring on M-MLV.  

ZFP809 is not the only DNA-binding protein responsible for recruiting Trim28 to M-

MLV. Trim28 is enriched on other regions distant from the PBS domain, and introducing the 

PBSB2 mutation does not relieve all repressive activity (Schlesinger et al. 2013). Moreover, 

M-MLV containing a PBSlys1-2 sequence or endogenous retroviruses containing a PBSphe 

sequence were also silenced by the Trim28 silencing complex, although ZFP809 cannot bind 

these PBS sequences (Wolf, Hug, et al. 2008; Rowe et al. 2010). These observations suggest 

the presence of a PBS-independent silencing mechanism that utilizes other ZFPs to recruit 

Trim28 to M-MLV. Recently, we demonstrated that YY1 is another such zinc-finger protein 

that recruits Trim28 to the 5’LTR of M-MLV (Schlesinger et al. 2013).  



 29 

YY1 

YY1, also known as the upstream conserved region binding protein (UCRBP), is a 

well-conserved and ubiquitously expressed protein that derives its name from its unique 

ability to function as both a transcriptional activator and repressor (Shi et al. 1997). YY1’s 

activator function is roughly mapped to the N-terminal end, and its repressor function is 

mapped to the zinc fingers at its C-terminal end (Shi et al. 1997). YY1 contains four zinc 

fingers that recognize a consensus binding motif found in the promoters of a wide variety of 

cellular and viral genes, suggesting its involvement in a vast range of cellular functions 

(Hyde-DeRuyscher et al. 1995). Some notable cellular genes regulated by YY1 include c-

myc, c-fos, and IFN-γ (Shi et al. 1997). YY1 also modulates apoptosis, cellular proliferation, 

and cancer progression from its interaction with several significant cell cycle proteins such as 

p53, Mdm2, Sp1 and retinoblastoma (Rb) (Gordon et al. 2005; J. S. Lee et al. 1993). 

Interestingly, YY1 also interacts with RNA. In the context of X-chromosome inactivation in 

females, YY1 tethers the noncoding RNA, Xist, to the X- inactivation center to mediate 

silencing of one X-chromosome (Jeon & J. T. Lee 2011).  

In addition to its cellular functions, YY1 is also implicated in regulating retroviral 

expression. We became interested in investigating YY1 in the context of M-MLV silencing 

in embryonic cells because of an early report by Flanagan and colleagues demonstrating YY1 

binding to the NCR element (Flanagan et al. 1989; Flanagan et al. 1992). In this study, YY1 

was shown to down-regulate M-MLV transcription in a dose-dependent manner. YY1 was 

also found to associate with LSF (late simian virus 40 transcription factor) and HDAC1 to 

mediate HIV-1 latency in CD4+ cells (Romerio et al. 1997; Coull et al. 2000). Moreover, 

unpublished observations from our lab suggest HTLV-1 is positively regulated by YY1 
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interaction with the HTLV-1 RNA (Gary Wang, unpublished results). Thus, YY1 is a 

multifaceted protein that interacts with DNA, RNA, and proteins to regulate cellular and viral 

functions.  

These studies led us to investigate the involvement of YY1 in the silencing of M-

MLV in embryonic cells. In a study led by Sharon Schlesinger, we demonstrated that 

endogenous YY1 protein specifically binds to the NCR element and that YY1 KD or deletion 

of the NCR element results in the de-repression of M-MLV in embryonic cells (Schlesinger 

et al. 2013). This is further supported by ChIP experiments and bisulfite analysis 

demonstrating that YY1 binding is associated with increased H3K9me3 and DNA 

methylation marks on M-MLV. We also found that intracisternal A particles (IAPs), encoded 

by a family of class II mERVs, are upregulated in the absence of YY1, demonstrating that 

YY1 is involved in the silencing of both exogenous and endogenous retroviruses. Unlike 

ZFP809, YY1 does not contain a KRAB domain, but co-immunoprecipitation experiments 

show that YY1 also binds and recruits Trim28 to the provirus. Taken together, these studies 

demonstrate that the embryonic-specific silencing of M-MLV depends on Trim28, ZFP809, 

and YY1.  

One unexplored aspect of the YY1-Trim28 silencing complex is the nature of the 

biochemical interaction of the two proteins. As YY1 does not contain a domain predicted to 

interact with Trim28, it is unknown how this interaction occurs. An intriguing finding 

demonstrated that the YY1-Trim28 interaction occurs in embryonic cells but not in 

differentiated cells (Figure 1-8) (Schlesinger et al. 2013), even though YY1 and Trim28 are 

expressed in both cell types. This suggests that the YY1-Trim28 interaction could be 

differentially regulated at the post-translational level, which could explain a portion of the  
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Figure 1-8 Detection of Trim28 with the immunoprecipitation of YY1 
Trim28 is shown to interact with YY1 in F9 cells, but not in NIH3T3 cells. Anti-YY1 
antibody was used to immunoprecipitate YY1 from nuclear extracts of the F9 embryonic 
carcinoma cell line and of the NIH3T3 differentiated cells line. Anti-YY1 
immunoprecipitates were analyzed by western blot with anti-Trim28 and anti-YY1 
antibodies. 1% of total lysates used for the immunoprecipitation reactions are shown in the 
input lane as a comparison. Image taken from (Schlesinger et al. 2013).  
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embryonic cell-specificity of M-MLV silencing. A possible mechanism for regulating this 

interaction includes the presence of supporting cofactors or absence of inhibitory cofactors. 

Another possibility is that post-translational modifications regulate the YY1-Trim28 

interaction. There are no strong candidates for possible cofactors involved in the interaction, 

but there are a number of studies indicating the importance of sumoylation and 

phosphorylation modifications for regulating Trim28 interactions and repressive activity, as 

previously described (Ziv et al. 2006; Goodarzi et al. 2011; Ivanov et al. 2007; Y.-K. Lee et 

al. 2007; Benjamin Rauwel 2015; Li et al. 2007). In Chapter 3, we investigated the 

biochemical interaction of YY1 and Trim28 and the role of Trim28 modifications in the 

silencing of M-MLV. We mapped the domains involved in the YY1-Trim28 interaction and 

demonstrated that YY1 and Trim28 do no interact in vitro. Sumoylation and phosphorylation 

modifications were not found to be necessary for the YY1-Trim28 interaction, but the K779 

residue in Trim28 was necessary for the silencing of M-MLV. Our results are consistent with 

what has been reported for the importance of K779 in other settings, but we did not find the 

K554, K804, S473, or S824 residues to be important for Trim28 repression of MLV, 

suggesting that there are significant differences between the Trim28-dependent repressive 

mechanisms occurring on M-MLV in embryonic cells and those involved in the DNA repair 

response, cell cycle progression, and HCMV latency (Y.-K. Lee et al. 2007; Ivanov et al. 

2007; Goodarzi et al. 2011; Benjamin Rauwel 2015).  
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1.3 Small Ubiquitin-Like Modifiers (SUMO) 

Our interest in the regulation of Trim28 silencing activity by SUMO modifications 

led us to an interesting finding in which we observed a strong block to ectopic SUMO1 

expression in embryonic cells, but not in differentiated cells. We have investigated this 

finding further and our studies are reported in Chapter 5. Here, we provide a more in-depth 

background on SUMO and what is currently known about SUMO function in embryonic 

cells.  

Introduction to SUMO  

The conjugation of SUMO to protein substrates is a post-translational modification 

that impacts a diverse range of cellular processes such as transcriptional regulation, RNA 

processing, viral repression, the DNA damage response, and protein localization (Geiss-

Friedlander & Melchior 2007; Verger et al. 2003). The downstream consequences of SUMO 

conjugation are quite varied and substrate specific. Sumoylation or desumoylation can result 

in altered protein-protein interactions, protein-DNA interactions, protein stability, protein 

trafficking, or protein activity (Willson 2009). Several important mammalian proteins are 

modified and regulated by sumoylation including RanGAP1, p53, c-Jun, Trim28, and 

HDAC1, and the list of proteins modified by SUMO continues to expand (Matunis 1996; 

Muller 2000; Mascle et al. 2007). Recent proteomic studies estimate that up to 15% of 

human proteins may be modified by SUMO, revealing a large body of additional proteins 

and pathways that have yet to be investigated for SUMO involvement (Hendriks & Vertegaal 

2016). Moreover, aberrations in the SUMO pathway can result in tumor development and 

progression, heart defects, and the Alzheimer’s disease (Flotho & Melchior 2013; Kessler et 
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al. 2012; L. Lee et al. 2013; Wang et al. 2011). Thus, our growing understanding of SUMO 

and its vast roles in the cell continues to highlight the importance of this modification for 

normal cellular function.  

SUMO Family Members 

The SUMO family consists of four members: SUMO1, SUMO2, SUMO3, and 

SUMO4. SUMO4 is only expressed in the kidney, dendritic cells, and macrophages, so we 

do not address SUMO4 in our studies (Geiss-Friedlander & Melchior 2007; Bohren et al. 

2004). SUMO2 and SUMO3 are often referred to as SUMO2/3, because they are 97% 

identical and are thought to modify the same substrates and affect the same cellular 

functions. On the other hand, SUMO1 only shares 50% sequence identity with SUMO2/3 

and demonstrates distinct cellular functions from SUMO2/3 (Geiss-Friedlander & Melchior 

2007). SUMO2/3 also differs in its ability to form polymeric chains on substrates whereas 

SUMO1 does not (Tatham et al. 2001). Another difference is that SUMO2/3 predominantly 

exists as free or non-conjugated proteins, whereas SUMO1 is predominantly found 

conjugated to protein targets (Saitoh 2000). Moreover, some substrates demonstrate 

preferences for one isoform while others are conjugated by either isoforms (Zhang et al. 

2008). However, it is unclear how relevant these differences are as SUMO2/3 was found to 

compensate for SUMO1 in SUMO1 knockout (KO) mice (Zhang et al. 2008).  

SUMO Conjugation 

The SUMOs resemble ubiquitin in structure and mechanics, as their name implies. 

Similar to ubiquitination, sumoylation involves an enzymatic cascade of three reactions, 

resulting in SUMO conjugation to a substrate via an isopeptide bond. Targets of sumoylation 
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commonly contain the tetrapeptide consensus motif, Ψ-K-x-D/E, where Ψ is a hydrophobic 

residue, K is the lysine that directly conjugates to SUMO, x is any amino acid, and D/E is an 

acidic residue. However, 50% of SUMO conjugation occurs on lysine residues that do not 

adhere to this consensus sequence, demonstrating that this motif is not a requirement for 

sumoylation (Chung et al. 2004). Prior to SUMO conjugation, the SUMOs are cleaved by 

SUMO specific proteases (SENPs) to expose diglycine residues at its C-terminus, producing 

the mature SUMOs. Subsequently, the SUMOs can be covalently conjugated to lysine 

residues of substrates from a cascade of reactions directed by three enzymes – the activating 

enzyme, SAE1/2 (E1), the conjugating enzyme Ubc9 (E2), and one of many ligases (E3). 

SENPs also function in the deconjugation of the SUMOs and are largely responsible for the 

rapid cycles of conjugating and deconjugating SUMOs from its substrates. Six SENP 

proteases are found in mice and human, numbered SENP1, 2, 3, 5, 6, and 7. SENP1 is 

predominantly responsible for deconjugating SUMO1, and SENPs 2, 3, and 5 are 

predominantly responsible for deconjugating SUMO2/3 (Sharma et al. 2013; Gong & Yeh 

2006). Deconjugation by the SENP family is a key process for regulating the steady-state 

levels of a SUMO-modified substrate, which generally makes up less than 5% of the total 

substrate (Willson 2009). Even so, the small amount of SUMO-modified substrates is enough 

to exert large effects on cellular processes.  

Role of SUMO in Embryogenesis  

SUMO KO studies demonstrate that SUMO conjugation is essential for embryonic 

development. Ubc9 KO results in early embryo death at the postimplantation stage, 

indicating that the SUMO pathways are collectively important for embryonic development 
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(Nacerddine et al. 2005). SUMO1 KO mice develop normally, but mice deficient in 

SUMO2/3 are not viable (Zhang et al. 2008; Liangli Wang 2014). Moreover, SENP1 KO is 

embryonic lethal but can be rescued by genetically reducing SUMO1 levels, suggesting that 

maintaining proper levels of SUMO1-modified substrates is critical for embryo survival 

(Sharma et al. 2013). Collectively, the KO studies suggest that SUMO2/3 protein levels are 

important for embryos, while SUMO1 is dispensable and may even be harmful if SUMO1-

modified substrate levels are upregulated.  

While these knockout studies demonstrate the importance of global sumoylation for 

embryonic viability and development, the role of SUMO in embryos at the molecular and 

cellular level has been relatively unstudied. Some studies have explored the effects of SUMO 

conjugation on the pluripotency-associated transcription factors, Oct4, Sox2, and Nanog. 

Sumoylation of Oct4 at its two conserved SUMO sites leads to an increase in Oct4 stability, 

DNA binding, and transactivation (Wei et al. 2007), and elevated levels of SUMO-modified 

Oct4 and Sox2 decreases Nanog expression (Wu et al. 2012). These studies suggest that 

sumoylation of such embryonic proteins could have significant downstream effects in 

embryonic function, but this has yet to be shown.  

Despite mounting evidence indicating the importance of sumoylation for fundamental 

cellular processes, very little is known about this modification in the context of embryonic 

cell function. In Chapter 5, we investigated the effects of SUMO overexpression in 

mammalian cell lines and showed that embryonic cells, but not differentiated cells, cannot 

overexpress SUMO1 at the protein level. We reported that elevated SUMO1 conjugation 

activity was highly unfavorable in embryonic cells and provided evidence for a post-

transcriptional mechanism for tightly regulating SUMO1-modified substrate levels in 
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embryonic cells. These studies underscored the importance of regulating SUMO expression 

and conjugation activity for embryonic cell function. 
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Chapter 2 : Materials and Methods 

Cell culture and RNA interference 

F9, PCC4, E14, Rat2, 293T, HeLa, and NIH3T3 cells were cultured in DMEM media with 

10% FBS, 100 U/mL penicillin, 0.05 mM streptomycin, and 2 mM L-glutamine. E14 cells 

were cultured with in DMEM media with 15% FBS, 20 mM HEPES, 0.1 mM nonessential 

amino acids, 0.1 mM 2-mercaptoethanol, 100 U/mL penicillin, 0.05 mM streptomycin, 2 mM 

L-glutamine, and leukemia inhibitory factor was added fresh at the time of culture. Plates 

were coated with 0.1% gelatin prior to plating embryonic cells. Cells treated with 

pharmacological agents in Chapter 3 were treated at the following concentrations: 20 µM 

chloroquine, 10 µM KU55933, 20 µM chloroquine and 10 µM KU55933, 0.1 µM rapamycin, 

or 200ng/ml Neocarzinostatin (NCS). Cells treated with pharmacological agents in Chapter 5 

were treated at the following concentrations: 10 µM MG132 (EMP Millipore), 100 µM 

chloroquine (Sigma), 1 µM retinoic acid (Sigma), 10 µM - 100 mM hydrogen peroxide 

(H2O2) (Sigma), and 10 – 100 µM ginkolic acid (Abcam).  

RNA interference 

RNAi KD was performed with pLKO.1 shRNA (Sigma or GE Dharmacon). The target 

sequence used for mTrim28 KD, mYY1 KD, mUbc9 KD, and mSENP1 KD are listed below:  

mYY1 KD: CGACGGTTGTAATAAGAAGTT 

mTRIM28 KD: CCGCATGTTCAAACAGTTCAA 

Ubc9 KD 1: AGGCCAGCTATCACCATCAAA 

Ubc9 KD 2: TGTTCAAGCTACGGATGCTTT 

Ubc9 KD 3: AGGCCAGCTATCACCATCAAA  
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Ubc9 KD 4: TGGCACAATGAACCTGATGAA  

Ubc9 KD 5: GCCTACACAATTTACTGCCAA  

SENP1 KD 1: CGGGCCTTTGTAGATTTCCTA 

SENP1 KD 2: CGCAAAGACATTCAGACTCTA 

SENP1 KD 3: GCCATATTTCCGAAAGCGAAT 

SENP1 KD 4: CCAGCCTATCGTCCAGATTAT 

SENP1 KD 5: CGTAACGGTAACCAGGATGAA 

Plasmid construction 

Trim28, YY1, SUMO1, SUMO2, RanGAP1, and SENP1 cDNA were cloned into the pLVX-

EF1a-IRES vector with the drug resistance markers, neomycin, hygromycin, or puromycin, 

or the ZsGreen1 reporter gene (Clontech). ZsGreen1 was cloned from the pLVX-CMV-

ZsGreen1 vector (Clontech). Silent mutations at the YY1 and Trim28 shRNA target were 

created to prevent the knockdown of the exogenous proteins. SUMO and phosphorylation 

mutant Trim28 constructs were introduced using primers containing the desired mutations in 

overlapping PCR reactions or the GENEART Site-Directed Mutagenesis System (Thermo 

Fischer Scientific). Trim28, YY1, and HP1 were cloned into the pQE80L vector (Qiagen) for 

the generation of recombinant proteins.  

Virus production 

Viruses were produced in 293T cells. 3.5x106 293T cells were plated in a 10 cm plate. The 

following day, 293T cells were transfected with 8 µg of a retroviral transfer plasmid, 4 µg of 

a vector contain the VSV-G envelope gene, and 4 µg of a plasmid containing the gag and pol 

genes. MLV-GFP viruses were produced by co-transfection of pNCA-GFP, pCMV-intron, 
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and pMD.G in 293T cells, as previously described (Lim et al. 2002; Wolf & Goff 2007). 

Lentiviruses were produced by co-transfection of pLVX-EF1a-IRES or pLKO.1 vectors with 

pCMVΔr8.2 and pMD.G in 293T cells, as previously described (Schlesinger et al. 2013). 

Transfections were carried out using Polyethylenimine (PEI). Virions were harvested 48 

hours and 72 hours after transfection, and cells were transduced with virus for 3 hours with 8 

µg/ml of polybrene.  

Cell colony formation assay and measuring viral titer 

105 F9 cells were plated on 6-well plates. The following day, cells were infected with virus 

for three hours, and replaced with fresh media. 48 hours later, antibiotic was added to the 

cells, and surviving cells were allowed to form colonies over 2 weeks. When colonies were 

visible, cells were washed with D-PBS, and fixed with 100% chilled methanol for 10 

minutes. Cells were died using Giemsa staining and colonies were counted. This method was 

also used to determine viral titers, but 293T or HeLa cells were used instead.   

GFP expression from MLV vector 

F9 cells were plated at 2x105 cells per well of a 6-well dish and transduced with virus 

preparations containing an MLV vector expressing GFP (pNCA-GFP) at an MOI of 1. 48 

hours after infection, cells were trypsinized, washed with D-PBS, and re-suspended in D-

PBS supplemented with 2% FBS. Cells were examined for GFP expression by flow 

cytometry on the Guava flow cytometer (EMD Millipore) and analyzed with FlowJo 

software (TreeStar).  
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Recombinant protein expression and purification 

BL21 cells (NEB) were transformed with pQE80L vectors expressing recombinant proteins. 

Bacterial cultures were grown with ampicillin and 1 mM IPTG for 4 hours. Cells were 

harvested and lysed with Buffer A (6 M GuHCl, 100 mM NaH2PO4, 10 mM Tris-Cl, 5 mM 

B-mercaptoethanol, 10 mM imidazole, pH 8.0) for 15 minutes. Lysates were clarified by 

centrifugation at 16.1 RCF for 1 h. The lysates were mixed with pre-washed Ni-NTA 

Agarose beads (Qiagen) for 30 minutes and then loaded onto a centrifuge column (Pierce). 

Beads were washed 4 times with buffer A and recombinant protein was eluted with elution 

buffer (Buffer A with 100 mM imidazole). Recombinant protein was dialyzed into folding 

buffer (Golebiowski et al 2011) or PBS using the Slide-a-Lyzer Dialysis Cassette (Peirce) 

(Golebiowski et al. 2011).  

F9 total cell lysate preparation 

Cells were grown to confluent in 10-cm dishes and collected and washed in ice cold D-PBS 

per immunoprecipitation reaction. Ice-cold 0.1% NP40 lysis buffer (0.1% NP40, 250 mM 

NaCl, 20 mM Na3PO4, pH 7.0, 30 mM Na4P2O7, 5 mM EDTA, 10 mM NaF) with 1x 

complete protease inhibitor (Roche) was added to the pellet at 2x the cell pellet volume. Cells 

were lysed on ice for 30 minutes and the lysates were clarified by centrifugation for 15 

minutes at 14,000 RPM at 4°C. 

Co-immunoprecipitation  

Cell lysates were diluted to 400 µl total volume in lysis buffer, per IP reaction. 2% of total 

lysate volume was saved for input lanes, and remaining lysate was incubated with 4 µg anti-

YY1 antibody (sc281, Santa Cruz Biotechnology) or rabbit control antibody (sc-2027, Santa 
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Cruz Biotechnology) for 16 hr in 4°C. Prewashed protein A/G dynabeads (Thermo Fischer 

Scientific) were added to the lysates and incubated for 1 hour in 4°C. For anti-myc IP 

experiments, lysates were incubated with 20 µl of anti-myc beads (Pierce) for 1 hour in 4°C. 

For in vitro co-IP experiments, recombinant proteins were incubated with antibody or beads 

in 400 µl of lysis buffer. 10 µl of prewashed anti-Flag beads (M8823, Sigma) were used for 

the IP of Flag-rHP1 protein. Beads were washed 3x with lysis buffer and bound proteins 

were eluted and analyzed by Western blot.  

Lysate preparation and immunoprecipitation of sumoylated substrates 

Flag-tagged SUMO proteins were co-expressed with HA-tagged Trim28 in 293T cells. Cell 

lysates were prepared in SDS lysis buffer (5% SDS, 30% glycerol, 0.15M Tris-HCl, pH 6.8), 

diluted 1:4 with 0.5% NP40/PBS, added to pre-washed anti-HA magnetic beads (Pierce), and 

incubated overnight at 4°C in rotation. Beads were washed with 0.5% NP40/PBS three times 

and bound proteins were removed with 1x SDS sample buffer and boiling for 5 minutes at 

95°C. Co-IP of proteins was analyzed by Western blot.  

DNA precipitation of binding proteins 

50 ul of pre-washed streptavidin coated dynabeads (ThermoFisher) were incubated with 50 

pmols of annealed biotinylated oligonucleotide in 200 µl binding buffer (1 M NaCl, 5 mM 

Tris, 1 mM EDTA) for 10 minutes. The same biotinylated oligonucleotides sequences used 

for EMSA reactions were used here. Beads were washed twice and resuspended with 200 µl 

EMSA buffer (10 mM Tris, 50 mM KCl, 2.5% glycerol, 5mM MgCl2, and 0.05% NP40). 2 

µg poly(dI:dC) (Sigma) and 2 µg rYY1 protein or F9 cell lysate was added to the beads and 

incubated for 30 minutes. Beads were washed 3 times with EMSA buffer (100mM KCl, 5% 
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glycerol, 10mM MgCl2, 0.1% NP40, and 10mM Tris, pH 7.5) and the bound proteins were 

eluted and analyzed by SDS-Page.  

F9 nuclear extract preparation  

All procedures were performed on ice. Cells collected, washed with D-PBS, resususpended 

in Dignam buffer A (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT 

Protease inhibitor cocktail (Roche)), and lysed with 15-20 strokes of a dounce homogenizer. 

Nuclei were pelleted by centrifugation at 4300 x g for 5 minutes, and resuspended in Buffer 

C (20 mM HEPES pH 7.9, 1.5 mM MgCl2, 25% v/v glycerol, 0.2 mM EDTA, 0.5 mM DTT, 

Protease inhibitor cocktail (Roche)). Nuclei were lysed with 15-20 strokes of a dounce 

homogenizer, and nuclear extracts were clarified by centrifugation.  

EMSA  

Nuclear extracts were prepared as previously described. Double-stranded DNA probes were 

end labeled with biotin and used for EMSA reactions with the LightShift Chemiluminescent 

EMSA Kit (cat. #20148; Thermo Scientific) according to the manufacturer’s instructions. For 

the detection of supershifts, antibody was added 30 min prior to adding the probe. Protein 

complexes were analyzed by a 5% native polyacrylamide gels and transferred to 0.45 µM 

pore nitrocellulose membrane for 40 minutes at 380 mAmps in 4°C. Membranes were 

immediately crosslinked using the UV Crosslinker (Fischer Scientific) for 1 minute prior to 

blocking. The biotinylated oligonucleotides were purchased from IDT and their sequences 

are listed below: 

 NCR: AGCTTAAGTAACGCCATTTTGCAAGGCA 

NCRm: AGCTTAAGTAATACGGCTATGCAAGGCA 
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 PBS: GGGGGCTCGTCCGGGATCGGGAGACCCC 

B2: GGGGGCTCGTCCGAGATCGGGAGACCCC 

BS2 + PBS: GTCTTTCATTTGGGGGCTCGTCCGGGAT 

BS2 + B2: GTCTTTCATTTGGGGGCTCGTCCGAGAT 

BS2: CTACCCGTCAGCGGGGGTCTTTCATTTG 

BS2 scram: CTACCCGTCAGCGGGGGTCTTTCGGCTA 

ΔBS2 + PBS:  GCGGGGGTCTTGGGGGCTCGTCCGGGAT 

ΔBS2 + B2: GCGGGGGTCTTGGGGGCTCGTCCGAGAT 

Precipitation of protein complexes by ammonium sulfate  

By gradual addition of powdered (NH4)2SO4, F9 nuclear extract was raised to 25% 

saturation, incubated for 30 min on ice, and precipitated proteins were removed by 

centrifugation at 13,000 RPM for 10 minutes and resuspended in Dignam D. The remaining 

extract sample was then raised to 40% (NH4)2SO4 saturation, incubated for 30 min on ice, 

and the precipitated proteins was centrifuged and dissolved in Dignam D. This was repeated 

for the collection of precipitated proteins in nuclear extract samples brought to 80% 

(NH4)2SO4 saturation. (NH4)2SO4 was removed from the protein samples by desalting in an 

Amicon 100 kD column. Fractions were monitored for binding activity to the BS2 + PBS 

probe by EMSA. 

Sucrose gradient and immunoprecipitation 

A 10-40% sucrose gradient was prepared using BioComp’s Gradient Master in EMSA buffer 

(see EMSA protocol). F9 nuclear extract was slowly loaded onto the sucrose gradient and 

centrifuged in a Beckman SW55 rotor for 10 hours at 40,000 RPM and 4°C. 12 fractions 
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were collected, and the proteins in the fractions were examined for binding to the BS2 + PBS 

probe by EMSA. Fractions found to contain the RBS or large RBS complex were pooled. 

Pooled samples were divided into two and anti-Trim28 or control antibody was added. 

Samples and antibody were incubated overnight in rotation at 4°C. Prewashed protein A 

beads were added and incubated for 1 hour in rotation at 4°C. Bound proteins were washed 3 

times with EMSA buffer (see EMSA protocol), removed from beads, and resolved on a 4-

20% gradient gel. 

Protein identification by mass spectrometry  

Gel slices containing the proteins samples were excised, proteins were subjected to tryptic 

digest followed by peptide identification by lc-ms/ms using a hybrid high-resolution 

quadrupole time-of-flight electrospray mass spectrometer. Results were analyzed using the 

MASCOT database search tool (Matrix Science).  

PCR 

PCR reactions were conducted using the KOD Hot Start DNA Polymerase (EMD Millipore) 

kit according to manufacturer’s instructions. For qRT-PCR reactions, RNA was extracted 

from cells using the RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions. 

cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) according to manufacturer’s instructions. For qPCR reactions, total DNA was 

isolated using DNeasy kit (Qiagen) according to the manufacturer’s instructions. DNA 

isolates or cDNA was combined with FastStart universal SYBR Green Master (Roche) 

containing 300 nM of indicated primers. qPCR was performed in 96-well plates using 

LightCycler96 (Roche) with the following reaction conditions: 10 min at 95°C, followed by 
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45 cycles of 30 s at 95°C, 30 s at 60°C and 30 s at 72°C. Primer sequences used for PCR, 

qPCR, and qRT-PCR reactions are listed below: 

PCR primers for amplifying transgene inserts in the pLVX-EF1 vector 

pLVX-F: TCAAGCCTCAGACAGTGGTTC 

pLVX-R: ACCCCTAGGAATGCTCGTCAAGAA 

q-PCR primers 

SUMO1-F: ACAAGGTTACTAGTTCTAGAATGTCTGA 

SUMO1-R: GTATCTCACTGCTATCCTGTCCAATAA 

hGAPDH F: ACATCATCCCTGCCTCTAC 

hGAPDH R: TCAAAGGTGGAGGAGTGG 

mCyclophilin A-F: GCAGGTCCATCTACGGAGAGAAA 

mCyclophilin A-R: GTCAACAGATCCCATTCACTGTTTCTTA 

Puro-F: GCCGCGCAGCAACAGAT 

Puro-R: CGCTCGTAGAAGGGGAGGTT 

qRT-PCR primers: 

mSUMO1-F: ATTGGACAGGATAGCAGTGAGA 

mSUMO1-R: TCCCAGTTCTTTCGGAGTATGA 

mSUMO2-F: TGGAGTAAAGTAGCAGGCTCCCTTT 

mSUMO2-R: ACTAATGAAAGCCTATTGTGAAC 

mGAPDH-F: AACGACCCCTTCATTGAC 

mGAPDH-R: TCCACGACATACTCAGCAC 

mSENP1-F: ATTATCACTCAGATAACCCTTCCTCAGA 

mSENP1-R: ACTTTGACCAAAGGTTCTTACGTCA 
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mUbc9-F: AAGGGGACTCCATGGGAAGG 

mUbc9-R:CTCCAGGATGGACAGGCACA 

Detection of SSEA-1 expression by flow cytometry  

2x104 cells were collected per sample for SSEA-1 staining. Cells were spun down and 

resuspended in 200µl of 10% FBS/D-MEM medium and 5 ul of alexa fluor 488 anti-SSEA-1 

antibody (125609, Biolegend). Cells were incubated on ice and protected from light for 30 

minutes. After incubation, cells were washed once with cold D-PBS and resuspended in 200 

µl of D-PBS. Cells were analyzed by flow cytometry on the Guava flow cytometer (EMD 

Millipore) and analysis of data was done using the FlowJo software (TreeStar). The 

percentage of cells expressing GFP is reported relative to the percent of NIH3T3 cells 

expressing GFP infected in parallel.  

Fluorescence-activated cell sorting (FACS) 

F9 cells were transduced with the SUMO1-ZsGreen or SUMO1GG-ZsGreen vectors. Cells 

demonstrating greater ZsGreen expression intensity relative to untreated F9 cells were 

selected by FACS (FACSAria Cell Sorter, BD Biosciences). Data were acquired on an 

automated cell analyser (LSR II; BD Biosciences) and analysed with FlowJo software 

(Treestar). Collected cells were allowed to recover and multiply over 8-10 days before 

repeating the sorting procedure. Cells were selected over three rounds of FACS.   

Antibodies 

Antibodies used for Western blots were as follows: anti-Trim28 20C1 (ab22553, Abcam), 

anti-YY1 C-20 (sc281, Santa Cruz Biotechnology), anti-HA.11 (901515, BioLegend), anti-

myc 71D10 (2278, Cell Signaling Technology), anti-myc 9E10 (sc-40, Santa Cruz 
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Biotechnology), anti-Flag M2 (F3165, Sigma-Aldrich), pS824-Trim28 (ab70369), anti-

SUMO antibody (sc-9060, Santa Cruz Biotechnology), anti-Oct3/4 (H-134, Santa Cruz 

Biotechnology), and anti-β-actin (A1978, Sigma). Antibodies used for co-IP experiments are 

as follows: anti-YY1 C-20 (sc281, Santa Cruz Biotechnology), anti-Trim28 antibody 

(ab10484, Abcam), and rabbit control antibody (sc-2027, Santa Cruz Biotechnology). 

Antibodies used for EMSA shifts were as follows: anti-YY1 C-20 (sc281, Santa Cruz 

Biotechnology), anti-Trim28 20C1 (ab22553, Abcam), and rabbit control antibody (sc-2027, 

Santa Cruz Biotechnology). The antibody used for flow cytometry was AF488 anti-SSEA-1 

antibody (125609, Biolegend).  
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Chapter 3 : Characterization of the Interaction Between Trim28 

and YY1 in Transcriptional Silencing of Moloney Murine 

Leukemia Provirus  

 In a previous study, we demonstrate that YY1 mediates the silencing of M-MLV by 

recruiting Trim28 to the negative coding region (NCR) in the 5’LTR of the provirus 

(Schlesinger et al. 2013). Co-IP experiments revealed that YY1 interacts with Trim28, 

although YY1 does not contain a domain predicted to interact with Trim28. This interaction 

was detected in the F9 embryonic cell line but not in the NIH3T3 differentiated cell line. The 

results from this study provided the foundation for the work we report here, in which we 

further examined the nature of the YY1-Trim28 biochemical interaction and investigated 

possible mechanisms for regulating the YY1-Trim28 interaction and silencing activity.  

Recombinant YY1 and TRIM28 do not interact in vitro 

 To test for a direct interaction between YY1 and Trim28, we conducted in vitro co-

immunoprecipitation (co-IP) experiments using recombinant proteins expressed in E. coli. 

Trim28 has been demonstrated to interact directly with HP1, so this interaction was used as a 

positive control (B Le Douarin 1996). We expressed recombinant His6-tagged YY1, His6-

tagged Trim28, or His6-Flag-tagged HP1 in bacteria and purified the recombinant proteins by 

nickel affinity chromatography. rYY1 was incubated with anti-YY1 antibody in 0.1% NP40 

lysis buffer, followed by the addition of protein A/G beads and rTrim28. In parallel, rHP1 

was incubated with anti-Flag beads, followed by the addition of rTrim28. Bound proteins 

were removed from the beads and analyzed by Western blot (Figure 3-1). We did not detect  
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Figure 3-1 In vitro co-IP monitoring interaction between rYY1 and rTrim28. 
rYY1 was immunoprecipitated using anti-YY1 antibody, and rabbit control antibody was 
used in the control IP. Protein and antibody complexes were incubated with protein A/G 
beads in 0.1% NP40 cell lysis buffer (see methods) and bound proteins were removed from 
beads and analyzed by Western blot. An in vitro co-IP with rHP1 and rTrim28 was 
conducted alongside as a positive control. Flag-rHP1 was immunoprecipitated using anti-flag 
beads, and the corresponding control IP mixed rTrim28 with anti-flag beads in the absence of 
rHP1. 10% of total recombinant protein used for each IP was loaded in the input lanes.  
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rTrim28 with the IP of rYY1 using this approach. Analysis of the control antibody IP showed 

some traces of rYY1, probably due to non-specific binding, but significantly less than the 

levels of rYY1 detected in the YY1 IP lane. In contrast, we detected rTrim28 with the IP of 

rHP1. We performed similar experiments with an alternative binding buffer (EMSA buffer, 

see methods) or longer incubation periods, but the various conditions we attempted did not 

result in a detectable interaction between rYY1 and rTrim28. We also generated GST-tagged 

rTrim28 protein, immunoprecipitated GST-Trim28 with glutathione beads, and incubated 

bound rTrim28 protein with rYY1. Proteins were removed from the beads and analyzed by 

Western blot probed with anti-YY1 antibody. We did not detect rYY1 with the IP of rTrim28 

with this approach either (data not shown). The inability for rYY1 and rTrim28 to co-

immunoprecipitate in vitro suggests that this interaction may occur indirectly. 

 One possible explanation for the failure to detect an interaction is that the YY1 

antibody could have blocked rTrim28 interaction with rYY1 because of the order of addition 

of the components in which we conducted our co-IP experiments. To test for this possibility, 

we conducted the in vitro co-IP with a different order of protein addition. rYY1 and rTrim28 

were first incubated together at high concentrations, and rYY1 was subsequently 

immunoprecipitated using anti-YY1 antibody and protein A/G beads. Bound proteins were 

removed from the beads and analyzed by Western blot probing for Trim28. We did not detect 

rTrim28 in the rYY1 IP using this approach either (data not shown), suggesting that rYY1 

and rTrim28 most likely interact indirectly in the cell.  
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Trim28 RBCC domain is necessary for its interaction with YY1 

 As we could not detect an interaction between recombinant YY1 and Trim28 in vitro, 

we continued further examination of the YY1-Trim28 interaction detected by 

immunoprecipitation from mammalian cell lysates. To determine the domains on Trim28 

responsible for the YY1-Trim28 interaction, we conducted co-IP experiments with HA-

tagged Trim28 mutants in the embryonic carcinoma F9 cell line, in which M-MLV silencing 

occurs. As embryonic cells are difficult to transfect and can silence a variety of promoters, all 

knockdown and overexpression studies were conducted by lentiviral transduction mediating 

expression of Trim28 and a drug resistance gene, driven by the EF1α promoter. Cells 

expressing exogenous Trim28 were selected for stable expression of the drug resistance gene, 

followed by knock down (KD) of endogenous Trim28 by shRNA. We found that endogenous 

Trim28 expression returned after prolonged culture, likely because Trim28 is critical for 

long-term embryonic cell function and survival (Cammas et al. 2000).  Thus, Trim28 was 

knocked down immediately prior to using the cells in our various assays, and KD levels were 

confirmed by Western blot.  

To determine which Trim28 domain(s) were necessary for its interaction with YY1, 

we expressed mutant forms of Trim28 with deletions of its major domains, generating 

Trim281-628 (with deletion of the PHD/Bromodomain), Trim28∆441-522 (with deletion of the 

chromoshadow domain, denoted “PxVxL” for its pentapeptide sequence), and Trim28388-834 

(with deletion of the RBCC domain) (Figure 3-2A). An HA-Trim28WT cell line was also 

produced as a positive control. Cell lysates were prepared, and a fraction of the total lysate 

was saved for the input lane of SDS PAGE gels, while the remaining lysate was incubated 

with anti-YY1 antibody or control antibody. Antibodies and their interacting proteins were  
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Figure 3-2 Co-IP of YY1 with Trim28 mutants containing deletions of major domains 
(A) Schematic of the Trim28 wild-type and mutant proteins. All mutants were HA-tagged at 
the N-terminus. Domains known to interact with other repressor partners are noted above the 
domain. The Trim28 mutants that interact with endogenous YY1 are indicated in the right 
column. A strong interaction is noted by “++”, no interaction is indicated by “-”, and mutants 
that displayed poor expression are noted by n/a. (B) HA-Trim28 constructs were 
overexpressed in F9 cells, YY1 was immunoprecipitated with an anti-YY1 antibody, and 
bound proteins were examined by Western blot probed with anti-HA antibody. The bands 
corresponding to the Trim28 mutants are noted in the input lanes by an asterisk.  
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immunoprecipitated by protein A/G beads, displayed on SDS PAGE and transferred to 

Western blots, and probed for HA-Trim28 (Figure 3-2B). All mutant constructs expressed 

well except for Trim28388-835, the construct missing the RBCC domain. Trim28WT, Trim281-

628, and Trim28∆441-522 were found to interact with endogenous YY1, indicating that the 

PHD/Bromodomain and chromoshadow domain are not necessary for YY1 interaction. We 

did not detect HA-Trim28 or YY1 in any of the IPs with the control antibody, demonstrating 

the specificity of the anti-YY1 antibody.  To confirm the importance of the RBCC domain, 

we expressed a Trim28 mutant containing only the RBCC domain (Trim281-441) (Figure 

3-2A). Cell lysates were prepared, YY1 was immunoprecipitated, and bound proteins were 

examined by Western blot probing for HA-Trim28. The Trim281-441 mutant was detected 

with the IP of YY1 (Figure 3-2B), demonstrating that the RBCC domain is sufficient for 

Trim28 interaction with YY1.  

 We attempted to narrow down the Trim28 domains necessary for YY1 interaction 

further by making smaller deletions in the RBCC domain. We expressed Trim28 constructs 

with 100 amino acid region deletions in the RBCC (Trim28∆154-241, Trim28∆242-341, 

Trim28∆378-427, Trim28∆342-441) (Figure 3-2A).  Lysates were prepared, YY1 was 

immunoprecipitated, and bound proteins were examined for mutant Trim28 interaction with 

YY1 by Western blot. Of these mutants, only Trim28∆378-427 expressed well, as indicated in 

the 2% input lanes for each mutant cell line. We did not detect Trim28∆378-427 interaction with 

YY1, in contrast to Trim28WT, which expressed well and interacted with YY1 (Figure 3-3A). 

To determine if smaller deletions in the RBCC could improve Trim28 expression, we 

expressed Trim28 constructs with 50 amino acids region deletions (Trim28∆154-191, 

Trim28∆192-242, Trim28∆288-332, Trim28∆333-377) (Figure 3-2A). YY1 was immunoprecipitated   
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Figure 3-3 Co-IP of YY1 and Trim28 mutants containing deletions in the RBCC 
domain  
(A) Trim28 mutants containing 100 amino acid deletions in the RBCC domains were 
expressed in F9 cells. Lysates were prepared, YY1 was immunoprecipitated with an anti-
YY1 antibody, and bound proteins were examined by Western blot probed with anti-HA 
antibody. The bands corresponding to the Trim28 mutants are noted to the left of the input 
lanes by an asterisk. (B) Trim28 mutants containing 50 amino acid deletions in the RBCC 
domain (except Δ342-441, which has a 100 amino acid deleted region) were expressed in F9 
cells and examined for YY1 interaction with the Trim28 in the same fashion as conducted for 
the previous Trim28 mutants. The bands corresponding to the Trim28 mutants are noted in to 
the left of the input lanes by an asterisk.  
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from total cell lysates, and bound proteins were examined for mutant Trim28 interaction with 

YY1 by Western blot. These mutants also showed low or no expression, as indicated in the 

input lanes for each mutant Trim28 cell line (Figure 3-3B). These experiments suggest that 

an intact RBCC domain is important for Trim28 expression and that deletions in this region 

may be disruptive to its structure. Our results demonstrate that the smallest region of Trim28 

found to interact with YY1 was the RBCC domain. 

YY1 acidic region 1 and zinc fingers are necessary for Trim28 interaction 

 To determine the domains on YY1 necessary for interaction with Trim28, a panel of 

myc-tagged YY1 mutants were expressed in F9 cells and tested for their interaction with 

endogenous Trim28. The major domains of YY1, starting from the N-terminus, are the acidic 

region 1 (AR1), acidic region 2 (AR2), GA-rich region (GA), and the four zinc fingers 

(ZNFs). We were unable to produce a construct with a deleted AR1 region, but constructs 

with deletions of each of the other regions were made: YY1Δ54-144 (with deletion of the AR2), 

YY1Δ151-209 (with deletion of the GA), YY1Δ177-273 (with deletion of the spacer), and YY11-295 

(with deletion of the ZNFs) (Figure 3-4A). The empty vector was used as a negative control, 

and a YY1 wild-type construct (YY1WT) was produced and used as a positive control. F9 

cells were transduced with the empty vector, or the YY1WT or mutant YY1 vectors and were 

selected for stable expression of the drug resistant gene. Lysates were prepared and 

exogenous YY1 was immunoprecipitated using anti-myc beads. Bound proteins were 

removed from the beads and analyzed by Western blot probed with an anti-Trim28 antibody 

(Figure 3-4B). IP of myc-YY1, in the YY1WT cell lysate, demonstrated Trim28 interacted 

with exogenous YY1. Trim28 was undetectable with the IP of myc in the empty vector cell  
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Figure 3-4 Co-IP of Trim28 and YY1 mutants  
(A) Schematic of the YY1 wild-type and mutant proteins. All mutants were myc-tagged at 
the N-terminus. Domains known to interact with other repressor partners are noted above the 
domain. The YY1 mutants found to interact with endogenous Trim28 are indicated in the 
right column. A strong interaction is noted by “++”, a weak interaction is noted by “+”, and 
no interaction is indicated by “-”. (B) Myc-YY1 constructs were overexpressed in F9 cells, 
and cell lysates were prepared for co-IP experiments. Myc-YY1 proteins were 
immunoprecipitated with anti-myc beads, and bound proteins were examined by Western 
blot probed with an anti-Trim28 antibody. The bands corresponding to the YY1 mutants are 
noted to the left of the input lanes by an asterisk. Mutants analyzed on this blot include the 
four mutants in which the AR2, GA, spacer, and ZNFs regions were independently deleted. 
(C) Mutants analyzed on this blot include the mutants in which two or more regions were 
deleted.  
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lysates. IPs of the myc-YY1 mutants showed that Trim28 interacted with YY1 in the absence 

of the AR2 domain (YY1Δ54-144), indicating that this domain is not necessary for the 

interaction. However, Trim28 proteins were undetectable in the IPs of myc-YY1Δ151-209, myc-

YY1Δ177-273, and myc-YY11-295, demonstrating that these mutants do not interact with 

Trim28. We constructed additional mutants containing only the N-terminal domains (YY11-

209), only the C-terminal domains (YY1142-414 and YY1198-414), or both terminal domains 

(YY1∆54-209, YY1Δ54-295, and YY1Δ85-144, Δ177-273) of YY1 (Figure 3-4A). F9 cells were 

transduced with these constructs and selected for stable expression of the drug resistance 

gene. Cell lysates were prepared and myc-tagged YY1 mutants were immunoprecipitated and 

examined for their interaction with endogenous Trim28 by Western blot (Figure 3-4C). As 

shown in the previous Western blot, Trim28 was undetectable following myc 

immunoprecipitation in the empty vector cell lysate but was detected in the YY1WT cell 

lysate. We did not detect Trim28 in the IPs of mutants containing only the N-terminal 

domains (YY11-209) or only the C-terminal domains (YY1142-414, YY1198-414), indicating that 

these mutants did not interact with endogenous Trim28. On the other hand, Trim28 interacted 

with the YY1 mutants containing both terminal domains (YY1∆54-209, YY1Δ54-295, and 

YY1Δ85-144, Δ177-273), revealing that both terminal domains of YY1 are necessary and sufficient 

for interaction with Trim28. YY1Δ54-295 was the mutant with the fewest domains that still 

successfully interacted with Trim28. This demonstrated that the AR2, GA, and spacer are 

dispensable, but the combination of the AR1 and ZNFs are necessary for YY1 interaction 

with Trim28.  

An additional observation to note is that the interaction between ectopic YY1WT and 

Trim28 was weaker relative to the interaction we detected between endogenous YY1 and 
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Trim28. One possibility is that the myc-tag at the N-terminus interfered with YY1WT 

interaction with Trim28. Moving the myc-tag to the C-terminus of YY1WT did not improve 

its interaction with Trim28, making this possibility less likely (data not shown). Another 

possibility is that there is a limiting level of endogenous Trim28 available to interact with 

exogenous YY1, because all available Trim28 molecules are already interacting with 

endogenous binding partners. To test this possibility, we expressed exogenous YY1WT with 

the KD of endogenous YY1 or with the overexpression of Trim28, but these conditions also 

did not improve the interaction. It is also possible that expression levels of exogenous 

YY1WT are lower than that of endogenous YY1 and that the levels of Trim28 detected with 

the IPs of the respective YY1 proteins are actually proportional to its expression levels. We 

are currently testing for this possibility by quantifying and comparing the ratios of Trim28 to 

YY1 protein detected in the IPs of YY1 and by increasing the expression of ectopic YY1WT.  

Residue K779 of Trim28 is necessary for M-MLV silencing  

 SUMO modification of Trim28 was reported to be necessary for several Trim28 

interactions (Goodarzi et al. 2011; Ivanov et al. 2007), and it is possible that sumoylation of 

Trim28 is important for the YY1-Trim28 interaction as well. To test this, we designed 

Trim28 constructs with mutations at the six lysine residues reported to be SUMO-modified 

(Figure 3-5A). We mutated the lysine residues to arginine to eliminate the SUMO 

conjugation site while retaining the same positive charge. Each site was mutated 

independently (Trim28K554R, Trim28K575R, Trim28K676R, Trim28K750R, Trim28K779R, and 

Trim28K804R), or all six collectively (Trim286KR). In addition to the seven Trim28 mutants, 

Trim28WT and an empty vector were included as controls. As previously done, F9 cells were  
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Figure 3-5 Mutations of major sumoylation sites on Trim28 
(A) Schematic of Trim28 protein with the lysine residues that are sumoylated indicated. (B) 
Mutant Trim28 was expressed and endogenous Trim28 was knocked down in F9 cells, and 
cell lysates were prepared and analyzed by Western blot. The “No KD” lane shows basal 
Trim28 levels in F9 cells. The empty vector (EV) lane shows the level of endogenous Trim28 
expression in all KD lines, and the remaining lanes show expression levels of exogenous 
Trim28. (C) Western blots monitoring interaction of mutant Trim28 with YY1 by co-IP. 
YY1 was pulled-down with anti-YY1 antibody and the western blot was probed for Trim28. 
Co-IP results for four mutants are show in the top panel and for the 3 remaining mutants on 
the bottom panel. (D) NIH3T3, untreated F9 cells, and Trim28 mutant lines were infected 
with the M-MLV-GFP virus, and GFP expression was measured by flow cytometry. 
Uninfected cells were used to set our gates for counting “GFP-positive” expressing cells. 
Cells infected with the M-MLV-GFP vector were counted as GFP-positive if GFP expression 
was greater than that detected in the uninfected cells. NIH3T3 represent maximal M-MLV 
expression levels, and F9 cells represent maximal repression of M-MLV expression. We 
report the percentage of GFP-positive cells detected. Values represent the mean percentage 
of three biological replicates, and error bars represent the standard error mean.  
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transduced with the empty vector, or a Trim28WT or Trim28 mutant vector and selected for 

stable expression of the drug resistance gene. Subsequently, endogenous Trim28 was 

knocked down by shRNA. Lysates were prepared and analyzed by Western blot for Trim28 

expression (Figure 3-5B). We detected Trim28 in the untreated F9 cells (No KD), reflecting 

the basal levels of endogenous Trim28, and we detected only very low levels of Trim28 in 

the KD cells expressing the Trim28 shRNA and lacking the Trim28 cDNA (the empty vector 

line). This indicated that endogenous Trim28 was knocked down well in our Trim28 KD 

lines. We also detected high levels of Trim28 in the Trim28 mutant-expressing cell lines, 

demonstrating that all our mutants expressed well. YY1 was immunoprecipitated with an 

anti-YY1 antibody from cell lysates, and bound proteins were examined for the presence of 

exogenous Trim28 by Western blot (Figure 3-5C). Control co-IP reactions demonstrate 

background levels of Trim28 detected when lysates were incubated with non-specific 

antibodies. Trim28 was detected with the IP of YY1 in untreated F9 cell lysate (F9) but not 

with the IP of YY1 in the Trim28 KD cell lysate (EV), demonstrating that endogenous 

Trim28 had been knocked down to levels such that any interaction with YY1 was not 

detectable. All mutant Trim28 proteins, including Trim286KR, were expressed at comparable 

levels and interacted with YY1 to similar degrees as Trim28WT, indicating that the six lysine 

residues examined on Trim28 are not necessary for the YY1-Trim28 interaction. 

 It has been reported that sumoylation modifications on Trim28 are required for its 

transcriptional repressive activity (Y.-K. Lee et al. 2007; Goodarzi et al. 2011; Mascle et al. 

2007). We asked if the sites of sumoylation were also required for silencing of M-MLV 

transcription in embryonic cell lines. To investigate this, we infected the Trim28 mutant lines 

with an M-MLV-GFP virus, in which a GFP reporter gene driven by the M-MLV LTR is 
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packaged into a virus. Cells were infected at a constant multiplicity of infection, and M-MLV 

expression was measured two days after infection by flow cytometry. Cells that demonstrated 

greater GFP expression levels relative to uninfected cells were counted as GFP-positive cells 

(Figure 3-5D). Knockdown of endogenous Trim28 was confirmed at the time of M-MLV-

GFP infection by Western blot, such that any M-MLV silencing detected could be attributed 

to the activity of the exogenous Trim28. M-MLV-GFP expression level measured in the 

differentiated line, NIH3T3, represented the maximal M-MLV expression level and that in 

the F9 cells represented maximal M-MLV repression level. Cells with Trim28 knocked down 

and carrying the empty vector construct (EV) contained roughly the same percentage of 

GFP-positive cells as that measured in NIH3T3 cells, underscoring the importance of Trim28 

for M-MLV silencing. The Trim28WT expressing cells showed very strong repression of M-

MLV-GFP, demonstrating that exogenous Trim28 rescues the repressive phenotype very 

effectively. Cells expressing five of the Trim28 mutants –Trim28K55R, Trim28K575R, 

Trim28K676R, Trim28K750R, Trim28K804R – displayed similar percentages of GFP-positive cells 

to that measured in Trim28WT cells, indicating that these sites were not critical for M-MLV 

silencing. However, the repressive activity of the Trim28K779R and Trim286KR mutants were 

significantly compromised, as indicated by the high percentage of GFP-positive cells 

detected in cells expressing these two mutants. The fact that the Trim28K779R mutant showed 

the same loss of function as the Trim286KR mutant indicates that the K779R mutation makes 

up for most, if not all, of the derepression detected in the 6KR mutant. Also, the similar 

percentages of GFP-positive cells detected in the Trim28K779R and empty vector expressing 

cells indicates that mutation of this residue results in close to no Trim28 repressive function 

on M-MLV. The importance of K779 for Trim28 repressive activity in this setting is 
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consistent with what has been reported in previous studies of Trim28 silencing in other 

settings. In contrast, our results indicating that K554 and K804 are not critical for Trim28 

silencing activity of M-MLV is distinct from what has been reported for Trim28-mediated 

transcriptional silencing of other gene targets (Ivanov et al. 2007; Y.-K. Lee et al. 2007; 

Mascle et al. 2007). 

Trim28 is modified by SUMO2 at the same sites as those used by SUMO1 

The vast majority of studies on the effects of sumoylation modifications on Trim28 

have involved the SUMO1 protein, but it is unknown if SUMO1, SUMO2/3, or all isoforms 

can mediate Trim28 repressive activity. A recent study implicating SUMO2 involvement in 

Trim28-mediated viral silencing prompted us to investigate whether SUMO2 could be 

conjugated to Trim28 and if it conjugates the same lysine residues as those conjugated by 

SUMO1 (B. X. Yang et al. 2015). To confirm that the six reported lysine residues on Trim28 

were the only available sites for SUMO1 conjugation, we co-expressed HA-tagged Trim28WT 

or Trim286KR with Flag-tagged SUMO1 or SUMO1GG, a mutant form of SUMO1 that cannot 

be conjugated to any substrate, in 293T cells. Cell lysates were prepared using a lysis buffer 

that prevents SUMO deconjugation, HA-Trim28 was immunoprecipitated with anti-HA 

beads, and precipitated proteins were examined for SUMO1 modifications by Western blot 

probing for Flag-SUMO1. We detected a ladder of SUMO1-modified Trim28 products in the 

Trim28WT expressing cells and not in the Trim286KR expressing cells, demonstrating that 

Trim28 is modified by SUMO1 at one or more of the 6 lysine residues that were mutated in 

the 6KR mutant (Figure 3-6A). As expected, SUMO1GG was not detected with the IP of  
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Figure 3-6 Detecting for SUMO conjugation of Trim28 
(A) Immunoprecipitation of HA-tagged Trim28 and probing for Flag-tagged SUMO1. Wild-
type Flag-SUMO1 (WT) or Flag-SUMO1GG (GG) was stably co-expressed with wild-type 
HA-Trim28 (WT) or HA-Trim286KR (6KR) in 293T cells. The input lanes demonstrate the 
expression levels of Flag-SUMO1, Flag-SUMO1GG, HA-Trim28, or HA-Trim286KR. 
Trim28 was immunoprecipitated using anti-HA magnetic beads and bound proteins were 
analyzed by Western blot probed with anti-Flag antibodies to detect sumoylation levels on 
Trim28. (B) Immunoprecipitation of HA-tagged Trim28 and probing for Flag-tagged 
SUMO2. SUMO2 is indicated by “2” and SUMO2GG is indicated by “2gg,” and 
immunopreciptiation of HA-Trim28 with SUMO1 was included as a control in in the first 
two lanes.   
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Trim28WT or Trim286KR. These results confirmed that the six reported lysine residues on 

Trim28 encompass all available sites that can be conjugated by SUMO1. 

To determine if SUMO2 can be conjugated to Trim28 and whether it conjugates to 

the same lysine residues as those conjugated by SUMO1, we co-expressed HA-Trim28WT 

and HA-Trim286KR with either Flag-SUMO2 or Flag-SUMO2GG in 293T cells. As previously 

done, cell lysates were prepared, HA-Trim28 was immunoprecipitated with anti-HA beads, 

and precipitated proteins were analyzed by Western blot probing for the Flag-tag. We 

detected a ladder of SUMO2-modified Trim28WT products, similar to the ladder of SUMO1-

modified Trim28WT products, but SUMO2 conjugation to Trim286KR was not detected 

(Figure 3-6B). As expected, SUMO2GG was not detected with the IP of either Trim28 

proteins. These results indicate that one or more of the six reported lysine residues on Trim28 

are targets for both SUMO1 and SUMO2 conjugation, opening the possibility for M-MLV 

silencing to be mediated by SUMO1, SUMO2, and possibly, other modifications that can 

potentially occur at the K779 residue. 

Major phosphorylation sites of Trim28 are not involved in the YY1-Trim28 interaction 

or derepression of M-MLV 

 The interaction of Trim28 with co-repressor proteins such as HP1 and CHD3, is 

disrupted by phosphorylation modifications on S473 or S824 (Ivanov et al. 2007; Goodarzi et 

al. 2011; Bolderson et al. 2012; Chang et al. 2008). To test whether phosphorylation of these 

sites could also regulate the YY1-Trim28 interaction, we generated a panel of Trim28 

phosphorylation mutants and tested them for binding to YY1. We constructed four Trim28 

phosphorylation mutants – an alanine substitution mutation at S473 (S473A) or S824 
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(S824A), or a phosphomimetic mutation at S473 (S473E) or S824 (S824D) (Figure 3-7A). 

The alanine mutations rendered those sites unavailable for phosphorylation while the 

phosphomimetic mutations mimicked constitutively phosphorylated sites. The empty vector, 

Trim28WT, or a Trim28 mutant were expressed in F9 cells, followed by endogenous Trim28 

KD and preparation of lysates. To measure expression levels of mutant Trim28 constructs, 

lysates were analyzed by Western blot probing for Trim28. We detected Trim28 in the 

untreated F9 cells (No KD), reflecting the basal levels of endogenous Trim28, but only very 

low levels of Trim28 in the cells expressing the empty vector and Trim28 shRNA (EV). This 

indicated that endogenous Trim28 was knocked down well in our Trim28 KD lines. We also 

detected high levels of exogenous Trim28 expression for all mutants except for Trim28S473A 

(Figure 3-7B). YY1 was immunoprecipitated with an anti-YY1 antibody from cell lysates, 

and bound proteins were examined for the presence of exogenous Trim28 by Western blot. 

Trim28WT and all mutant Trim28 proteins interacted with YY1 to a similar degree (Figure 

3-7C), indicating that the S473E, S824A, and S824D mutations did not measurably impact 

the YY1-Trim28 interaction. 

 As phosphorylation modifications were also reported to interfere with Trim28 

transcriptional repressive activity (Li et al. 2007; Benjamin Rauwel 2015), we investigated 

the importance of the phosphorylation sites for the silencing of M-MLV using the MLV-GFP 

reporter assay. As previously described, the Trim28 phosphorylation mutant cell lines were 

infected with an M-MLV-GFP vector at a constant multiplicity of infection and the 

percentage of GFP-positive cells was measured by flow cytometry (Figure 3-7D). The 

percentage of GFP-positive cells was 79% for NIH3T3 cells, 8% in untreated F9 cells, and 

69% in the F9 cells expressing the empty vector and Trim28 shRNA (EV). The Trim28 
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Figure 3-7 Mutation of two major phosphorylation sites on Trim28  
(A) Schematic of Trim28 protein with the major phosphorylation sites marked. Serine sites 
were mutated to alanine or to an acidic residue that mimics a constitutively phosphorylated 
residue. (B) Mutant Trim28 was expressed and endogenous Trim28 was knocked down in F9 
cells, and cell lysates were prepared and analyzed by Western blot. The “No KD” lane shows 
basal Trim28 levels in F9 cells. The empty vector (EV) lane shows the level of endogenous 
Trim28 expression in all KD lines, and the remaining lanes show expression levels of 
exogenous Trim28. (C) Western blot monitoring interaction of mutant Trim28 with YY1 by 
co-IP. YY1 was pulled-down with anti-YY1 antibody and the western blot was probed for 
Trim28. (D) NIH3T3, untreated F9 cells, and Trim28 mutant lines were infected with the M-
MLV-GFP virus, and GFP expression was measured by flow cytometry. Uninfected cells 
were used to set our gates for counting “GFP-positive” expressing cells. Cells infected with 
the M-MLV-GFP vector were counted as GFP-positive if GFP expression was greater than 
that detected in the uninfected cells. NIH3T3 represent maximal M-MLV expression levels, 
and F9 cells represent maximal repression of M-MLV expression. We report the percentage 
of GFP-positive cells detected. Values represent the mean percentage of three biological 
replicates, and error bars represent the standard error mean.   
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mutant expressing cell lines expressed M-MLV-GFP to the same levels as Trim28WT, 

indicating that these sites were not critical for regulating Trim28-mediated repression of M-

MLV in embryonic cells. These results are distinct from those reported in studies of Trim28 

regulation of HCMV latency and cell cycle progression (Li et al. 2007; Benjamin Rauwel 

2015). 

 To test the importance of phosphorylation for the YY1-Trim28 interaction and M-

MLV silencing using a different approach, we utilized pharmacological agents reported to 

alter phosphorylated Trim28 (pTrim28) levels. Chloroquine is a protease inhibitor, KU55933 

is an ATM kinase inhibitor, and rapamycin is an mTOR inhibitor. Chloroquine was reported 

to increase pTrim28 levels, whereas KU55933 and rapamycin act to decrease pTrim28 levels 

(Benjamin Rauwel 2015). Neocarzinostatin (NCS), a potent DNA damaging agent shown to 

increase pS824Trim28 levels (Ziv et al. 2006), was used as a positive control. As NCS 

treatment results in a significant amount of DNA damage, we did not use this as one of our 

experimental conditions. Embryonic cells can also be induced to differentiate by retinoic acid 

(RA) treatment (Jiao et al. 2012), and differentiation has been reported to decrease the 

phosphorylation of Trim28 (Seki et al. 2010). Therefore we also measured pS824Trim28 levels 

in F9 cells treated with RA.   

 We attempted to check the basal and induced pS824Trim28 levels in NIH3T3 and F9 

cells by Western blot. pS473Trim28 levels could not be checked due to the unavailability of a 

good antibody to this modified site. Lysates were prepared from NIH3T3s, F9s, and F9 cells 

differentiated by RA treatment and analyzed for pS824Trim28 levels by Western blot; 

however, we did not detect pS824Trim28 in any cell lysates (Figure 3-8A). Next, we tried 

altering phosphorylation levels by treating F9 cells with chloroquine, KU55933, chloroquine  
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Figure 3-8 Treatment with pharmacological agents that alter phosphorylation levels 
(A) F9, NIH3T3, and F9 RA treated cells were analyzed by Western blot probed with anti-
pS824-Trim28 (ab70369). (B) Western blot analysis of cells treated with 20 µM chloroquine, 
10 µM KU55933, 20 µM chloroquine and 10 µM KU55933, or 0.1 µM rapamycin for 30 
minutes or 24 hours. Cells treated with 200 ng/ml of Neocarzinostatin (NCS) for 30 minutes 
was used as a positive control. (C) YY1 was immunoprecipitated with anti-YY1 antibody 
and detected for interaction with Trim28 by Western blot in F9 cells treated with drugs for 30 
minutes. (D) F9 cells treated with drugs were infected with the M-MLV-GFP vector and the 
percentages of GFP-positive cells were measured by flow cytometry.   
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and KU55933, or rapamycin for 30 minutes or 24 hours. F9 cells treated with NCS for 30 

minutes were used as a positive control. Lysates were prepared from the drug-treated cells 

and pS824Trim28 levels were measured by Western blot. pS824Trim28 levels remained 

undetectable after 30 minutes and 24 hours of drug treatments and was only detected in the 

NCS-treated cells (Figure 3-8B).  

 Even though we could not detect changes in phosphorylation in most settings, we 

nevertheless examined the effects of drug treatment on the YY1-Trim28 interaction and M-

MLV silencing activity. Lysates were prepared from F9 cells treated with DMSO, 

chloroquine, KU55933, chloroquine and KU55933, or rapamycin for 24 hours, YY1 was 

immunoprecipitated, and bound proteins were analyzed by Western blot. The Trim28 

interacted with YY1 to similar levels across all drug-treated and untreated cells (Figure 

3-8C), indicating that treatment of F9 cells with the various drugs did not affect the YY1-

Trim28 interaction. To determine if drug treatment affected M-MLV silencing activity, we 

infected cells with M-MLV-GFP virus after 30 minutes of drug treatment, as conducted in 

previous studies (Benjamin Rauwel 2015). Cells expressing higher levels of GFP relative to 

uninfected cells were counted as GFP-positive. Expression levels in NIH3T3-infected cells 

represented maximal expression and in untreated F9-infected cells represented maximal 

repression. The percentage of GFP-positive cells measured for cells treated with the various 

drug conditions were similar to that measured for untreated cells (Figure 3-8D), indicating 

that Trim28-mediated silencing activity on M-MLV was not affected by drug treatment. 

However, we could not confirm that drug treatment altered pS824Trim28 levels as reported, so 

it is also possible that the drugs failed to generate an effect in our hands. 
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YY1-Trim28 complex is fragile and cannot be easily isolated 

 The results of the in vitro co-IP experiments raised the possibility that the YY1-

Trim28 interaction depended on additional cofactors. So far, several cofactors have been 

studied for their involvement in the YY1-Trim28 interaction. Our previous work shows that 

the YY1-Trim28 interaction does not depend on DNA, RNA, or the presence of ZFP809 

(Schlesinger et al. 2013). In this work, we have also eliminated SUMO and phosphorylation 

modifications on Trim28 as possible cofactors regulating the interaction (Figure 3-5C and 

Figure 3-7C), but other Trim28 modifications or YY1 modifications still remain viable 

options. Another possibility is that additional proteins bridge the YY1-Trim28 interaction.  

 Isolating the YY1-Trim28 complex could potentially identify additional bridging 

proteins, and several approaches can be utilized to isolate protein complexes. One method is 

to fractionate F9 nuclear extracts and monitor fractions for binding activity to M-MLV 

probes by EMSA, as previously done by Daniel Wolf in the purification of the silencing 

complex that bound the PBS element (Wolf & Goff 2007). Fractions containing binding 

activity to the M-MLV probes can be assayed by mass spectrometry to determine the 

components of the purified complex. We attempted to identify bridging proteins using this 

procedure. The first step was to detect the YY1-Trim28 complex by EMSA using an NCR 

probe. We incubated F9 nuclear extracts with a biotinylated NCR or NCR mutant probe, in 

which the YY1 binding site was scrambled. The lysates and probe mixture were displayed on 

a native gel, transferred to Western blot, and examined for the migration of the biotinylated 

probe. The NCR probe, and not the NCR mutant probe, was shifted when incubated with F9 

lysates, demonstrating the presence of proteins binding specifically to the NCR sequence. 

(Figure 3-9A). When F9 nuclear extract was incubated with the NCR probe and anti-YY1  
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Figure 3-9 Isolating the YY1-Trim28 complex  
(A) F9 nuclear lysates were incubated with biotinylated NCR (WT) or NCR mutant (Mut) 
oligonucleotides. Lysates and oligonucleotides were displayed on a non-denaturing gel, 
transferred to a membrane, and examined for the migration of the biotinylated 
olionucleotides. A shift of the NCR probe is noted with an asterisk and a supershift of the 
probe is noted with two asterisks. (B) DNA precipitation assay using biotinylated NCR or 
NCR mutant (NCRm) oligonucleotides bound to streptavidin beads. Beads were mixed with 
rYY1 protein as a control (left blot) and with F9 lysate (right blot). Proteins were removed 
from beads and displayed on Western blot to detect for the presence of YY1 and Trim28.   
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antibody, we detected a supershift of the NCR probe, indicating the presence of YY1 in this 

binding complex. However, when F9 lysates was incubated with the NCR probe and anti-

Trim28 antibody, the NCR probe was not supershifted, indicating that we were detecting 

YY1 but not the YY1-Trim28 complex. We were discouraged from proceeding with further 

purification without indication of the retention of Trim28 in the shift complex.  

 The second approach we attempted was to isolate the YY1-Trim28 complex by 

binding to NCR oligonucleotides. Biotinylated NCR or NCR mutant oligonucleotides were 

immobilized to streptavidin-coated beads and incubated with F9 nuclear extract or with rYY1 

as a positive control. Beads were washed with cell lysis buffer and bound proteins were 

removed and analyzed for the presence of the YY1-Trim28 complex by Western blot. We 

show that rYY1 was precipitated with the NCR, but not with the NCR mutant 

oligonucleotides, indicating the specificity of YY1 for the NCR sequence. We also detected 

endogenous YY1 in the nuclear extract proteins precipitated with the NCR, but not the NCR 

mutant oligonucleotide. Low levels of Trim28 were also detected, but similar levels of 

Trim28 were detected in the proteins precipitated with both the NCR and NCR mutant 

oligonucleotides, indicating that these are only background levels of Trim28 nonspecifically 

binding to the beads (Figure 3-9B). This result indicates that the YY1-Trim28 complex is 

unlikely to be isolated using this method either. The inability to isolate the YY1-Trim28 

complex through the various methods attempted, suggests that the YY1-Trim28 complex is 

fragile and may be difficult to purify biochemically.  
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Chapter 4 : Detection, Isolation, and Identification of Larger RBS 

Complex 

Detection of a larger RBS complex with an extended PBS probe 

 Early studies on the silencing of M-MLV in embryonic cells utilized exonuclease III 

protection assays and electrophoretic mobility shift assays (EMSA) to demonstrate the 

presence of a trans-acting silencing complex on the PBS element (Loh et al. 1990; Petersen 

et al. 1991). This complex is also referred to the repressor binding site (RBS) complex and 

contains Trim28 and ZFP809 (Wolf & Goff 2007; Wolf & Goff 2009). The RBS complex 

specifically binds to probes containing the PBSPro sequence (Loh et al. 1990; Petersen et al. 

1991), but not to probes containing sequences permissive for M-MLV expression (PBSB2 and 

PBSGln,) (Grez et al. 1990; Barklis et al. 1986; Wolf & Goff 2007). Interestingly, we found a 

site containing the YY1 binding motif just upstream of the PBS site (Shi et al. 1997). We 

called this site “binding site 2” (BS2) and investigated whether YY1 and the RBS complex 

could bind to it. To assess this, we designed various biotinylated oligonucleotide probes 

spanning the region containing the BS2 and/or the PBS sequence and detected for their 

interaction with protein complexes in F9 nuclear extracts by EMSA. Biotinylated probes 

containing the following sequences were made: the PBS sequence alone (PBS), the PBSB2 

mutant sequence (BS), the BS2 and PBS sequences (BS2 + PBS), the BS2 and PBSB2 

sequences (BS2 + B2), the BS2 sequence alone (BS2), the BS2 sequence scrambled (BS2 

scram), the sequence upstream of the BS2 and the PBS sequence (ΔBS2 + PBS), and the 

sequence upstream of the BS2 and the PBSB2 sequence (ΔBS2 + PBSB2) (Figure 4-1A). The 

B2 probe served as the negative control for the PBS probe, the BS2 + B2 probe served as the  
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Figure 4-1 Detection of the large RBS complex 
(A) A fragment of the M-MLV sequence containing the BS2 and PBS sequences is shown. 
The sequence of the BS2 site is underlined with a solid line and the sequence of the 
repressor-binding site contained within the PBS sequence is underlined with a dotted line. 
Sequences for the various biotinylated probes created are listed below the M-MLV sequence. 
Probes containing the PBSB2 (B2) sequences served as the negative control for the probes 
containing the PBS sequence. Probes containing the BS2 scrambled sequence (BS2 scram) or 
a sequence upstream of the BS2 (ΔBS2 + B2) were used as negative controls for probes that 
contained the BS2 sequence. Mutations are indicated with red font and deletions are 
indicated with a hash mark line in place of the deleted sequence. (B) F9 cell nuclear extracts 
were incubated with the indicated biotinylated probes for 30 minutes, resolved on a non-
denaturing gel, transferred to a nitrocellulose membrane, UV crosslinked, probed with a 
streptavidin-HRP conjugate, and incubated with a substrate to detect for HRP. Probes that 
shifted with the RBS and larger RBS complexes are marked with a single and double 
arrowhead, respectively.   
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negative control for the BS2 + PBS probe, the BS2 scram probe served as the negative 

control for the BS2 probe, and the ΔBS2 + PBSB2 probe served as the negative control for the 

ΔBS2 + PBS probe. Nuclear extracts were prepared from F9 cells and incubated with the 

probes in a standard binding buffer. The nuclear extract and bound probe were resolved on a 

non-denaturing gel, transferred to a nitrocellulose membrane, UV crosslinked, probed with a 

streptavidin-HRP conjugate, and incubated with a substrate to detect HRP. As seen in 

previous studies, the PBS probe shifted with the RBS complex while the B2 probe did not 

(Figure 4-1B). We also found that the BS2 + PBS probe shifted with a complex that ran at a 

higher molecular weight than the RBS complex, whereas the BS2 + B2 probe did not. The 

necessity for the wild-type PBS sequence suggests that the higher molecular weight complex 

contained the RBS complex; hence, we referred to this complex as the “larger RBS 

complex.” However, we found that the BS2 and BS2 scram probes did not shift when 

incubated with F9 nuclear extracts, indicating the necessity of the PBS site for detection of 

the larger RBS. Surprisingly, we found that the ΔBS2 + PBS probe, which contained the PBS 

site and a sequence upstream of the BS2, was also capable of shifting with the larger RBS 

complex, whereas the ΔBS2 + B2 did not. We created additional probes with various non-

specific sequences upstream of the PBS, and found that these probes also shifted with the 

larger RBS complex (data not shown). These results demonstrate that the larger RBS 

complex is not specific for the BS2 + PBS sequence, but rather, depends on the presence of 

the PBS and the addition of extra nucleotides upstream of the PBS, apparently of any 

sequence.   
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Larger RBS complex contains Trim28 but not YY1 

To determine if YY1 and Trim28 were contained in the larger RBS complex, we 

conducted binding reactions in which the BS2 + PBS probes were incubated with F9 nuclear 

extracts and anti-YY1 antibody or anti-Trim28 antibody. Binding reactions containing 

nuclear extracts and the PBS and BS2 + PBS probes, without antibody addition, were 

conducted as positive controls. Binding reactions containing nuclear extract and the B2, BS2 

+ B2, and ΔBS2 + B2 probes were conducted as negative controls. Nuclear extracts were 

resolved on a non-denaturing gel, transferred to a nitrocellulose membrane, and examined for 

migration of the DNA probes (Figure 4-2A). As we had shown before, the PBS and BS2 + 

PBS probes shifted with the RBS and larger RBS complexes, respectively, whereas the 

negative control probes (B2 and BS2 + B2) did not. The ΔBS2 + PBS probe also shifted to 

the molecular weight of the larger RBS complex, as we had previously seen. We found that 

the addition of anti-Trim28 antibody to a binding reaction containing the BS2 + PBS probe 

and nuclear extract supershifted the probe, indicating the presence of Trim28 in the RBS and 

larger RBS complex. However, the addition of anti-YY1 antibody to a binding reaction 

containing the BS2 + PBS probe and nuclear extract did not supershift either the RBS or 

larger RBS complexes. These results may indicate that YY1 is absent from these complexes 

or that the YY1 antibody failed to bind YY1 protein within the context of the complex. Thus, 

we were unable to demonstrate the presence of YY1 in these complexes. A technical 

difficulty of this experiment was that the larger RBS complex runs at a very high molecular 

weight, making it difficult to resolve from a shifted larger RBS complex. To improve 

separation of the large RBS complex and the shifted larger RBS complex, we increased the 

amount of time we ran the gel from four hours to ten hours. This provided a better separation  
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Figure 4-2 Large RBS Complex contains Trim28  
F9 cell nuclear extract was incubated with the indicated biotinylated probe for 30 minutes, 
resolved on a non-denaturing gel, transferred to a nitrocellulose membrane, UV crosslinked, 
probed with a streptavidin-HRP conjugate, and incubated with a substrate to detect for HRP. 
Binding reactions that included anti-Trim28 antibody (T), anti-YY1 antibody (Y) or no 
antibody (“-”) are indicated. Probes that shifted with the RBS and larger RBS complexes are 
marked with a single and double arrowhead, respectively. Probes that shifted with a 
supershifted complex are marked with a triple arrowhead.  
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of the higher molecular weight complexes but also decreased the amount of complex 

detected. Thus, we were unable to improve the detection of the supershifted probes under the 

conditions necessary to separate the large molecular weight complexes. 

Factors identified in the larger RBS complex  

Although we did not identify YY1 in the larger RBS complex, we were interested to 

identify any additional factors contained in the larger RBS complex. To identify these 

factors, we tried two methods for purifying the larger RBS complex. The first was to separate 

out the complex by ammonium sulfate ((NH4)2SO4) precipitation, the method used to 

originally precipitate the RBS complex by Daniel Wolf and colleagues (Wolf & Goff 2007). 

F9 nuclear extract was prepared and treated with increasing concentrations of ammonium 

sulfate. Precipitated proteins were collected by centrifugation after 25%, 40%, and 80% 

saturation by ammonium sulfate. The precipitated proteins were re-dissolved, ammonium 

sulfate was removed by a centrifugal filter unit, and proteins were examined for the presence 

of the larger RBS complex by EMSA (Figure 4-3A). F9 nuclear extracts that had not been 

treated with ammonium sulfate were used as a positive control (untreated F9 lysate). F9 

nuclear extract or protein complexes fractionated by ammonium sulfate precipitation were 

incubated with the PBS, B2, BS2 + PBS, or BS2 + B2 probes. Protein and probe binding 

reactions were resolved on a non-denaturing gel, transferred to a nitrocellulose membrane, 

and detected for the DNA probes. Binding reactions with the F9 nuclear extract demonstrated 

a shift of the PBS and BS2 + PBS probes, to the molecular weights of the RBS and large 

RBS complex, respectively. From the precipitated proteins, only proteins complexes  
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Figure 4-3 Isolation of the large RBS complex 
(A) Protein complexes were precipitated from F9 nuclear extract by saturating nuclear extract 
samples with 25%, 40%, and 80% ammonium sulfate. At each saturation step, precipitated 
proteins were collected by centrifugation, resuspended, and passed through a buffer exchange 
column. F9 cell nuclear extracts or proteins fractionated by ammonium sulfate precipitation 
were incubated with the indicated biotinylated probe for 30 minutes, resolved on a non-
denaturing gel, transferred to a nitrocellulose membrane, UV crosslinked, probed with a 
streptavidin-HRP conjugate, and incubated with a substrate to detect for HRP. Probes that 
shifted with the RBS and larger RBS complexes are marked with white and black arrowhead, 
respectively. (B) F9 nuclear extract protein complexes were separated by velocity 
sedimentation using a 10-40% sucrose gradient. 12 fractions were collected and examined for 
the presence of the larger RBS complex by EMSA. 8% of each fraction was incubated with 
the BS2 + PBS probe. F9 nuclear extracts were incubated with the PBS and BS2 + PBS 
probes as a positive control (last two lanes). Nuclear extracts and probes were resolved on a 
non-denaturing gel, transferred to a nitrocellulose membrane, and examined for the migration 
of the probes.  
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precipitated at 40% ammonium sulfate saturation demonstrated binding to the PBS and BS2 

+ PBS probes. Both probes shifted to the molecular weight of the RBS complex but neither 

shifted to the molecular weight of the large RBS complex. These results show that the 

ammonium sulfate precipitation method does not precipitate the larger RBS complex as 

effectively as it does the RBS complex. Perhaps this suggests that the larger RBS complex is 

more susceptible to disintegration in the high salt concentrations and requires gentler 

methods for isolation. 

To try a gentler method for isolating the larger RBS complex, we separated F9 

nuclear extract protein complexes by velocity sedimentation on a 10-40% sucrose gradient. 

Fractions were collected, and samples of each fraction were incubated with the BS2 + PBS 

probe and examined for the presence of the larger RBS complex by EMSA. Total F9 nuclear 

extracts were incubated with the PBS or BS2 + PBS probes as a positive control. Proteins 

and bound probes were resolved on a non-denaturing gel, transferred to a nitrocellulose 

membrane, and examined for the migration of the probes. The results suggested that it was 

possible to separate distinct complexes with distinct components. In particular, we detected 

the smaller RBS complex in fractions with lower sucrose densities and the larger RBS 

complex in fractions with higher sucrose densities (Figure 4-3B, above). Fractions were also 

examined by Western blot for the presence of Trim28. Trim28 was most abundant in the 

same fractions in which we found to contain both the RBS and larger RBS complexes 

(Figure 4-3B, lower blot). We separately pooled fractions containing either the RBS complex 

or fractions containing the large RBS complex and immunoprecipitated Trim28 using a 

polyclonal Trim28 antibody. Immunoprecipitation of proteins using a control antibody was 

also conducted for both pooled fractions as a negative control. Protein A/G beads were added 
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to the nuclear extract and antibody complex, and bound proteins were removed from the 

beads and analyzed by mass spectrometry. A list of proteins detected with the IP of Trim28 

was compiled, and proteins also found in the control antibody IPs were eliminated as non-

specific binding proteins. The remaining list demonstrates 27 proteins in the larger RBS 

complex and 22 proteins in the RBS complex as candidates that may interact with Trim28 

(Table 1). Several proteins such as KHDR1, SK2L2, LC7L3, and ARGL1 were notable for 

their connections to viral or transcriptional functions and warrant further investigation for 

their involvement in the silencing of M-MLV. These proteins are further described in the 

discussion section.  

In summary, we have identified a large complex that contains Trim28 and the RBS 

complex, and we demonstrate an effective approach for purifying the large complex. We 

have provided a list of proteins identified in the purified complexes by mass spectrometry, 

which can serve to identify new repressor cofactors involved in the transcriptional silencing 

of M-MLV in embryonic cells.  
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Chapter 5 : The Regulation of SUMO1-modified Substrates in 

Mouse Embryonic Cells 

SUMO1 cannot be overexpressed in mouse embryonic cells 

SUMO1 can be successfully overexpressed in differentiated cells (Fukuda et al. 2009; 

Bossis & Melchior 2006), and there are no studies that suggest that SUMO1 would not be 

overexpressed just as effectively in embryonic cells. Our interest in SUMO1 expression in 

embryonic cells developed from an observation that attempts to induce SUMO1 

overexpression in the F9 embryonic carcinoma cell line were not successful – SUMO1 

expression was highly inefficient. The basis for this problem was not clear.  

As embryonic cells are difficult to transfect and can silence a variety of promoters, 

we examined a number of gene constructs introduced into these cells. In one series of 

experiments, we used the pLVX lentiviral vector to overexpress Flag-tagged SUMO 

constructs by transduction. In this system, the expression of the transgene is driven by the 

EF1α promoter, followed by an IRES element and a drug resistance gene, which allows the 

SUMO and the drug resistance genes to be expressed as a single bicistronic transcript and 

translated separately. Lentiviral particles were produced by transfection in 293T cells, 

supernatants containing virions were collected, passed through a 0.45 µ filter, and were used 

to infect F9 cells. We designed constructs containing either the wild-type SUMO1 gene or a 

truncated form of SUMO1 that cannot be conjugated to any substrate (termed the 

SUMO1GG mutant). F9 cells transduced with the Flag-SUMO1 or Flag-SUMO1GG vectors 

were selected for stable expression of the drug resistance gene, and exogenous SUMO1 

expression levels were analyzed by Western blot probing for the Flag-tag. We observed that 
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SUMO1 expression was strikingly less efficient than SUMO1GG expression in F9 cells 

(Figure 5-1A, left panel). This unexpected result led us to try overexpressing SUMO1 in 

other embryonic cell lines. PCC4 is a mouse embryonic carcinoma cell line, and E14 is a 

mouse embryonic stem cell line. We transduced both cell lines with the SUMO1 and 

SUMO1GG vectors, selected for stable expression of the drug resistance gene, and assessed 

SUMO1 protein expression by Western blot. Again, we found SUMO1 was poorly expressed 

in both PCC4 and E14 cells, while SUMO1GG expressed well (Figure 5-1A, center and right 

panels). To test if SUMO1 could be overexpressed in differentiated cells, we transduced the 

mouse NIH3T3 and human 293T cell lines with the SUMO1 and SUMO1GG vectors, 

selected for stable expression of the drug resistance marker, and measured Flag-SUMO1 

expression in total cell lysates by Western blot. In contrast to the embryonic cells, the 

differentiated cells expressed similar levels of SUMO1 and SUMO1GG (Figure 5-1B). These 

results indicate that embryonic cells, but not differentiated cells, have a block against 

overexpression of SUMO1.  

 Retinoic acid (RA) treatment of embryonic cells activates a cascade of changes in the 

chromatin structure and transcription that result in the differentiation of embryonic cells (Jiao 

et al. 2012). To determine if differentiation of embryonic cells by RA treatment could 

improve SUMO1 overexpression, F9 cells transduced with the SUMO1 or SUMO1GG 

vectors were selected for the stable expression of the SUMO vectors and were treated with 

RA for five or seven days. Cell lysates were prepared and analyzed by Western blot probing 

for the expression of exogenous SUMO1. RA treatment for five or seven days did not 

improve SUMO1 overexpression in F9 cells (Figure 5-2A, left). These results suggested that 

SUMO1 overexpression could not be improved by RA treatment, or that cells needed to be   
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Figure 5-1 SUMO1 cannot be overexpressed in embryonic cells 
(A) Western blot displaying expression levels of Flag-SUMO1 or Flag-SUMO1GG in F9, 
PCC4, and E14 cells transduced with and selected for stable expression of the SUMO vectors 
by drug selection. (B) Western blot displaying expression levels of Flag-SUMO1 or Flag-
SUMO1GG in NIH3T3 and 293T cells transduced by and selected for stable expression of 
the SUMO vectors by drug selection.   
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Figure 5-2 SUMO1 overexpression levels in embryonic cells differentiation by retinoic 
acid  
(A) Western blot displaying expression levels of SUMO1 or SUMO1GG in F9 cells 
transduced with and selected for the expression of the SUMO vectors, followed by retinoic 
acid (RA) treatment for 5 or 7 days (left). Western blot displaying expression levels of 
SUMO1 or SUMO1GG in F9 cells treated, or untreated, with RA for 3 days prior to 
transduction with and selection for the expression of the SUMO vectors (right). (B) NIH3T3 
cells, F9 cells, and F9 cells treated with RA for 3 days were stained with the AF488 SSEA-1 
antibody, and expression levels of the SSEA-1 cell surface marker were measured by flow 
cytometry. Each flow cytometry histogram represent 5,000 collected events, and the 
expression levels are shown on a logarithmic scale.  
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differentiated prior to SUMO1 overexpression. To test the latter possibility, we treated F9 

cells with RA for three days prior to transduction with the SUMO1 or SUMO1GG vectors. 

Lysates were prepared and analyzed for SUMO1 overexpression by Western blot. We found 

that exogenous SUMO1 was not expressed well regardless of prior RA treatment (Figure 

5-2A, right), indicating that differentiation by RA treatment was insufficient to alter SUMO1 

expression levels in F9 cells. To confirm that cells were indeed differentiated as result of the 

RA treatment, F9 cells treated with RA for three days were examined for expression of the 

cell-surface embryonic stem cell marker, SSEA-1, by flow cytometry. We also measured 

SSEA-1 expression levels on NIH3T3 cells as a negative control and on untreated F9 cells as 

a positive control. The flow cytometry histograms demonstrate that NIH3T3 cells express 

very low levels of SSEA-1, untreated F9 cells express high levels of SSEA-1 and F9 cells 

treated with RA express moderate levels of SSEA-1 (Figure 5-2B). These results demonstrate 

a clear shift of the F9 cell population towards lower SSEA-1 expression levels with RA 

treatment, though not to the extent that is detected in fully differentiated NIH3T3 cells. 

Prolonging RA treatment to five and eight days also did not lower the SSEA-1 expression 

levels on F9 cells any further (data not shown). These results indicate that RA treatment may 

only partially differentiate F9 cells, and that the level of differentiation achieved by RA 

treatment is insufficient for achieving the ability to the overexpress SUMO1 in these cells.   

 One possible explanation for the apparently low levels of exogenous SUMO1 

expression in embryonic cells was that SUMO1 overexpression was causing cell death and 

only cells that maintained low SUMO1 expression were surviving. To test this, we 

transduced F9 cells with equal titers of the SUMO1 or SUMO1GG containing virions and 

selected cells for expression of the drug resistance marker over two weeks. Surviving cells 
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formed colonies and were counted as a readout for survival with the expression of the SUMO 

vectors. We found that cells transduced with the SUMO1 and SUMO1GG vectors formed 

roughly equivalent numbers of colonies (Figure 5-3), demonstrating that the expression of 

the SUMO1 vector was not causing more cell death than expression of the control vector.  

 To check if SUMO1 could be expressed in the first few days after transduction, we 

measured SUMO expression after transient transduction with no drug selection. F9 cells were 

transduced with the SUMO constructs, and lysates were prepared 72 hours after transduction 

and were examined for SUMO1 overexpression by Western blot. We detected some 

expression of SUMO1 after transient transduction, but SUMO1 levels were still lower 

relative to SUMO1GG (Figure 5-4). The transient expression experiments suggest that a low 

level of SUMO1 overexpression may be attained, but even at this point we see lower levels 

of SUMO1 expression relative to SUMO1GG expression, indicating that an activity is 

limiting expression of the wild-type SUMO but not a non-conjugatable SUMO. We also 

probed for SUMO1 and SUMO1GG levels by Western blot 24 and 48 hours after 

transduction, but SUMO1GG expression levels were still too low to detect at these time 

points (data not shown).  

 To further investigate if embryonic cells can tolerate low to moderate overexpression 

of SUMO1, we selected for SUMO1 overexpressing cells by a different selection marker.  

We cloned the ZsGreen reporter gene into the SUMO1 and SUMO1GG vectors, in place of 

the drug resistance genes. F9 cells were transduced with these constructs and selected for 

expression of the ZsGreen reporter by fluorescence-activated cell sorting (FACS). Cells 

expressing ZsGreen above the background of uninfected cells were counted as ZsGreen-

positive and were collected. Cells were sorted three times in succession at 8, 16, and 26 days 
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Figure 5-3 Tittering SUMO1 and SUMO1GG viruses on F9 cells 
F9 cells were transduced with equal quantities of the Flag-SUMO1 or Flag-SUMO1GG 
vectors and selected for stable expression of the vectors by drug selection over 2 weeks. 
Surviving cells formed colonies and were quantified. Values represent the mean of three 
biological replicates, and error bars represent the standard error mean.  
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Figure 5-4 Transient transduction of the SUMO vectors in embryonic cells 
F9 cells were transduced with the Flag-SUMO1 or Flag-SUMO1GG vectors with no drug 
selection. Lysates were prepared three days after transduction and analyzed for exogenous 
SUMO1 or SUMO1GG expression by Western blot.  
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after transduction to continue increasing the purity of ZsGreen-expressing cells over the three 

sorts. After each sorting event, cells were allowed to recover and expand over several days, 

and ZsGreen expression was confirmed by flow cytometry. The proportion of cells 

expressing the ZsGreen reporter was less than 1% 6 days after transduction for both cell 

lines. By 29 days after transduction, we were able to recover populations in which 43% of the 

cells were scored as ZsGreen-positive for the SUMO1-ZsGreen expressing cell population 

and 39.5% for the SUMO1GG-ZsGreen expressing cell population (Figure 5-5A and B). Cell 

lysates were prepared from the sorted populations and examined for SUMO1 and 

SUMO1GG expression by Western blot. SUMO1 and SUMO1GG expression were 

undetectable in the cells selected by the ZsGreen reporter gene (Figure 5-5C). The lack of 

SUMO1GG expression was unexpected, but can possibly be explained by our sorting 

strategy. Cells selected for expression of the ZsGreen reporter were not under a sufficient 

amount of pressure to select for SUMO expression levels high enough to be detected by 

Western blot, whereas we can detect SUMO1GG in the cells selected for expression by the 

drug selection marker.  

Expression levels of endogenous SUMO are too low to detect in murine cell lines 

 These observations led us to ask whether endogenous SUMO1 is also expressed at 

higher levels in differentiated cells than in embryonic cells. To assess endogenous SUMO1 

protein expression levels, we prepared cell lysates from the differentiated murine cell lines, 

Rat2 and NIH3T3, and embryonic cell lines F9, PCC4, and E14. We also prepared lysates 

from F9 cells expressing the SUMO1GG vector as a positive control. Lysates were examined 

for SUMO1 expression by Western blot probed with an anti-SUMO1 antibody 
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Figure 5-5 Selection for expression of the SUMO1 vector by a ZsGreen reporter 
(A) The levels of ZsGreen expression were measured by flow cytometry. 5,000 events were 
collected for each sample and were analyzed by the FlowJo software. Events are shown on a 
dot plot measuring forward scatter (FSC) and ZsGreen expression plot. Cells expressing 
higher levels of ZsGreen relative to the uninfected cells were counted as ZsGreen-positive. 
An example of flow cytometry dot plots measuring ZsGreen expression 29 days after 
transduction is shown. (B) The progression in the proportion of ZsGreen-expressing cells for 
each cell line was monitored over the course of the 29 days. The percentage of ZsGreen-
expressing cells quantified by flow cytometry at 6, 14, 23, and 29 days after transduction are 
shown in the bar graph. (C) Western blot probing for the expression of SUMO1 or 
SUMO1GG in cells selected for SUMO1-ZsGreen and SUMO1GG-ZsGreen expression by 
FACS. Lysates from F9 cells transduced with and selected for the expression of the SUMO 
vectors containing the drug resistance marker gene were used as controls.   
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(Figure 5-6A). Endogenous SUMO1 protein levels were too low to detect in all cell lines 

tested, except for the positive control, demonstrating that basal SUMO1 protein expression 

levels in these cell lines fall below the detection limit by Western blot. To assess endogenous 

SUMO1 mRNA levels, we isolated RNA from the aforementioned cell lines, synthesized 

cDNA and measured endogenous SUMO1 expression by quantitative reverse transcriptase 

PCR (qRT-PCR) using primers that span an exon-exon junction. SUMO2 expression was 

also measured as a comparison. Endogenous SUMO1 and SUMO2 transcript levels were low 

in all cell lines and could not be reliably measured, except for in the positive control (Figure 

5-6B). Thus, we were unable to compare endogenous SUMO1 protein and transcript levels 

between differentiated and undifferentiated cells due to our inability to measure basal 

SUMO1 expression levels either by Western blot or qRT-PCR. These results demonstrate 

that basal SUMO1 levels are found in very low levels across a variety of murine cell lines.  

SUMO1 overexpression is prevented at the post-transcriptional level 

 The mechanism responsible for restricting SUMO1 overexpression could be 

regulating SUMO1 expression on any of several levels, including at the level of transcription, 

post-transcriptional mRNA processing and stability, translation, or post-translational protein 

stability. Although unlikely, in some rare events retroviral vectors are unstable and can delete 

genes from the viral genome, making it possible that some of our cells selected for the 

SUMO1 vector contained the drug resistance gene and not the SUMO1 transgene. To rule 

out this possibility, we first examined the SUMO1 transgene. We isolated DNA from F9 cells 

infected with the empty vector, or the SUMO1 or SUMO1GG vectors that had been selected 

for stable expression of the drug selection marker. SUMO1 plasmid DNA was used as a 
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Figure 5-6 Endogenous SUMO1 expression levels  
(A) Western blot probing for endogenous SUMO1 protein in lysates prepared from 
differentiated (Rat2 and NIH3T3) and undifferentiated (F9, PCC4, and E14) cell lines. 
Lysate prepared from F9 cells expressing the SUMO1GG vector was used as a positive 
control. (B) Measurement of endogenous SUMO1 and SUMO2 mRNA levels in 
undifferentiated (F9, PCC4, E14) and differentiated (NIH3T3, Rat2) cell lines by qRT-PCR. 
RNA isolated from F9 cells transduced with the SUMO1GG vector was used as a positive 
control. Expression levels were normalized to the housekeeping gene, GAPDH, and were 
reported relative to F9 cells.   
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positive control. SUMO1 and SUMO1GG transgene levels were measured by qPCR using 

primers spanning an exon-exon junction such that endogenous SUMO1 DNA would not be 

amplified, and only the SUMO1 DNA introduced by the viral vector would be detected. We 

calculated similar SUMO1 and SUMO1GG transgene levels relative to the puromycin gene 

in F9 cells (Figure 5-7A). SUMO1 DNA was not detected in F9 cells expressing the empty 

vector (F9 EV), and SUMO1 amplified well in the plasmid control (SUMO1 DNA). This 

experiment demonstrates that the difference between the SUMO1 and SUMO1GG 

expression levels were not due to rare events in which the SUMO vectors did not 

successfully transduce the SUMO transgene.  

 Next, we checked if the integrated transgene contained any mutations that could 

prevent SUMO1 expression. Genomic DNA was isolated from F9 cells transduced with the 

SUMO1 or SUMO1GG vectors, and the SUMO1 insert was amplified by PCR using primers 

that spanned the EF1α promoter and IRES region (Figure 5-7B, top). PCR amplification of 

the SUMO1 insert was also conducted with plasmid DNA as a positive control and with 

DNA isolated from uninfected F9 cells as a negative control. PCR of DNA extracted from F9 

cells transduced with the SUMO1, SUMO1GG, or empty vector demonstrated PCR products 

that were the same size as the PCR products amplified from the corresponding plasmid 

controls (Figure 5-7B, bottom). The PCR products amplified from F9 cells were purified and 

sequenced. The sequences did not contain any detectable mutations in the SUMO1 transgene, 

indicating that the SUMO1 transgene remained intact in F9 cells.  

To examine exogenous SUMO transcript levels, we isolated RNA from F9 and 

NIH3T3 cells transduced with and selected for the stable expression of the SUMO1 and 

SUMO1GG vectors. RNA was also isolated from untreated F9 and NIH3T3 cells as negative 
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Figure 5-7 Post-transcriptional mechanism for preventing SUMO1 expression in 
embryonic cells 
(A) Genomic DNA was isolated from F9 cells transduced with the SUMO1 or SUMO1GG 
vectors or the empty vector. SUMO1 plasmid DNA was used as a positive control. SUMO1 
and SUMO1GG transgene levels were measured by qPCR and were quantified relative to the 
puromycin resistance gene levels. (B) Primer locations used for PCR are indicated on a 
schematic of the SUMO1 vector (above). An agarose gel showing PCR products amplified 
from the empty vector, SUMO1, or SUMO1GG plasmid DNAs and DNAs isolated from F9 
cells transduced with the empty vector, SUMO1, or SUMO1GG vectors (below). PCR using 
DNA isolated from untreated F9 cells was included as a negative control. (C) Quantification 
of exogenous SUMO1 and SUMO1GG mRNA levels in F9 and NIH3T3 cells by qRT-PCR. 
Expression levels were normalized to GAPDH, and were reported relative to untransduced 
cells. (D) F9 cells were transduced with the SUMO1 or SUMO1GG vectors and treated with 
10 µM MG132 or 100 µM chloroquine for 4 hours, 3 days after transduction. Lysates were 
prepared and were examined for exogenous SUMO1 and SUMO1GG expression by Western 
blot.    
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controls. SUMO1 and SUMO1GG mRNA levels were measured by qRT-PCR using primers 

overlapping a SUMO1 exon-exon junction. We detected roughly similar levels of exogenous 

SUMO1 and SUMO1GG transcripts in both F9 cells and in NIH3T3 cells (Figure 5-7C), 

suggesting that differences in the expression of these two constructs in embryonic cells must 

be occurring at the post-transcriptional level.  

 One possible mechanism for preventing expression at the post-transcriptional stage is 

by protein degradation. Protein degradation can occur through the proteasomal or lysosomal 

pathway, which can be blocked by MG132 and chloroquine, respectively (Shintani 2004; 

Rock et al. 1994). To determine if either pathway degrades SUMO1, we transduced F9 cells 

with the SUMO1 or SUMO1GG vectors, and 72 hours later treated cells with MG132 or 

chloroquine for 4 hours. Cell lysates were prepared and analyzed for SUMO1 expression by 

Western blot. We found that SUMO1 expression levels did not improve after 4 hours of 

treatment with either drug (Figure 5-7D), and prolonging drug treatment to 8, 12, or 24 hours 

did not make a difference in the SUMO1 expression levels (data not shown). By 24 hours of 

drug treatment, we observed some cell death in the chloroquine and MG132 treated cells, 

indicating that longer time points would not be feasible or result in reliable measurements. 

These results suggest that the overexpression of SUMO1 is not likely regulated by the 

proteasomal and lysosomal pathways.  

SUMO2 can be overexpressed in embryonic and differentiated cells 

 To determine if SUMO2 is also poorly expressed in embryonic cells, we cloned Flag-

tagged SUMO2 and SUMO2GG into the same pLVX lentiviral vector used for producing the 

SUMO1 constructs. F9, E14, and 293T cells were transduced with the SUMO2 or 
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SUMO2GG vectors, selected for stable expression of the drug resistance gene, and cell 

lysates were prepared and examined for SUMO2 and SUMO2GG expression by Western 

blot. F9 cells expressed SUMO2 and SUMO2GG proteins at roughly similar levels, while 

SUMO1 protein expression levels were dramatically lower than that for SUMO1GG, as seen 

before (Figure 5-8A, left blot). E14 cells also expressed SUMO2 and SUMO2GG at similar 

levels, while SUMO1 was poorly expressed relative to SUMO1GG (Figure 5-8A, right blot). 

293T cells transduced with the SUMO2 and SUMO2GG vectors expressed both constructs 

well and at similar levels to SUMO1GG, as expected (Figure 5-8B). These results indicate 

that poor SUMO expression in embryonic cells occurs specifically for SUMO1, and not for 

all the SUMO family members. While we did not test for the overexpression profile of 

SUMO3, we suspect that it would reflect the same trends we demonstrated for SUMO2 given 

their high similarity.  

Reducing SUMO1 conjugation activity improves SUMO1 expression 

 SUMO1GG is missing the last six amino acids of SUMO1, which includes the di-

glycine residues necessary for conjugation to substrates. Although unlikely, it was possible 

that the last six amino acids are toxic or are a target for post-transcriptional regulation. To 

rule out this possibility, we created a construct with the full-length Flag-tagged SUMO1 

containing alanine substitutions at the di-glycine residues (SUMO1AA). F9 cells were 

transduced with the SUMO1 or SUMO1AA vector, and lysates were prepared and examined 

for SUMO expression by Western blot. As we had seen with SUMO1GG, SUMO1AA also 

expressed well relative to the poor overexpression of SUMO1 in embryonic cells (Figure 

5-9A). This result demonstrates that the last few amino acids do not negatively impact   
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Figure 5-8 SUMO2 overexpression in embryonic and differentiated cells 
(A) Western blot displaying expression levels of SUMO1, SUMO1GG, SUMO2, and 
SUMO2GG in F9 and E14 cells transduced with and selected for stable expression of the 
SUMO vectors. (B) Western blot displaying expression levels of SUMO2, SUMO2GG, and 
SUMO1GG in 293T cells transduced with and selected for stable expression of the SUMO 
vectors.  
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Figure 5-9 Blocking or reducing sumoylation improves SUMO1 overexpression in 
embryonic cells 
(A) Western blot displaying expression levels of SUMO constructs in F9 cells transduced 
with and selected for stable expression of the Flag-SUMO1 or Flag-SUMO1AA vectors by 
drug selection. (B) Western blot displaying expression levels SUMO constructs in F9 cells 
co-expressing Flag-SUMO1 (WT) or Flag-SUMO1GG (GG) and HA-Trim28 (WT) or HA-
Trim286KR (6KR). The first four lanes show expression levels detected in cells transduced 
with the SUMO vectors first, and the last four lanes show expression levels detected in cells 
transduced with the Trim28 vectors first. (C) Western blot analysis of F9 cells co-expressing 
Flag-SUMO1 or Flag-SUMO1GG and HA-SENP1. The first two lanes show expression 
levels detected in cells transduced with the HA-SENP1 vector first, and the last two lanes 
show expression levels detected in cells transduced with the SUMO1 vectors first.  
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SUMO1 overexpression, and suggests it is the conjugation of SUMO1 to substrates in 

embryonic cells that causes SUMO1 overexpression to be restricted.  

If elevated SUMO1-modified substrates are preventing the overexpression of 

SUMO1, then reducing levels of some SUMO1-modified substrates should allow SUMO1 to 

be overexpressed. To achieve the reduction of SUMO1 conjugation of endogenous 

substrates, one approach we tested was to co-express SUMO1 with a substrate that could act 

as a scaffold or “sponge” for exogenously expressed SUMO1. Tripartite motif-containing 28 

(Trim28) is a ubiquitously expressed transcriptional repressor protein that is abundantly 

expressed in embryonic cells and displays six lysine residues that can be conjugated by 

SUMO (Ivanov et al. 2007). HA-tagged Trim28 was cloned into a pLVX lentiviral vector 

containing the neomycin resistance gene and was co-expressed with the Flag-tagged SUMO 

vectors containing the puromycin resistance gene. We also created a Trim28 construct in 

which the six lysine residues were mutated to arginine, rendering the mutant unavailable for 

SUMO conjugation (Trim286KR). F9 cell lines were prepared in which the SUMO construct 

was introduced first, followed by the Trim28 construct. Other cell lines were prepared in the 

opposite order in which the Trim28 construct was introduced first, followed by the SUMO 

construct. Cell lysates were prepared from these cells and SUMO1 expression levels were 

assessed by Western blot. Cells transduced with the SUMO vectors first, before transduction 

with the Trim28 vectors, continued to show weak expression of SUMO1 in the presence of 

exogenous Trim28WT or Trim286KR
 proteins (Figure 5-9B). As expected, SUMO1GG was 

well expressed in the presence of either Trim28 protein. However, cells transduced with the 

Trim28 vectors before transduction with the SUMO vectors yielded different results. Here, 

the SUMO1 overexpression was greatly improved in the background of Trim28WT 
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overexpression, whereas SUMO1 overexpression did not improve in the background of 

Trim286KR expression (Figure 5-9B). Thus, the availability of an overexpressed substrate for 

sumoylation relieved the lack of expression and allowed for much higher SUMO1 

expression, and the identical substrate lacking the lysines for SUMO addition did not do so. 

This result indicates that SUMO1 conjugation to endogenous substrates is a likely cause for 

the lack of SUMO1 overexpression in embryonic cells and that embryonic cells can 

accumulate free SUMO1 protein with no obvious consequences, so long as it is not 

conjugated to endogenous substrates. An important point here was that SUMO1 

overexpression was only improved in embryonic cells when the SUMO sponge was present 

at the time of SUMO1 transduction, but not after cells had already been selected for SUMO 

in the absence of the SUMO sponge. This suggests that the mechanism for maintaining low 

SUMO1-conjugated substrate levels in embryonic cells may not be easily reversed. 

We wanted to confirm that the rescue of SUMO1 expression in the presence of high 

levels of Trim28 was not due to the impact of Trim28 itself on embryonic cells, but instead 

resulted from its ability to sequester SUMO1 away from endogenous substrates. To evaluate 

this possibility, we repeated the previous experiments using a different SUMO sponge. Ran 

GTPase-activating protein 1 (RanGAP1) is a trafficking protein that is commonly used in 

SUMO1 studies, as one of the earliest proteins found to be a target of SUMO1 conjugation 

(Matunis 1996). Myc-tagged RanGAP1 was cloned in the pLVX lentiviral vector containing 

the neomycin resistance gene and was co-expressed with the Flag-SUMO vectors containing 

the puromycin resistance genes. As previously described for the Trim28 constructs, 

RanGAP1 was overexpressed in F9 cells before or after transduction with the SUMO 

constructs. Lysates were prepared from these cells, and Flag-SUMO1 expression levels were 
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examined by Western blot. We found that SUMO1 overexpression markedly improved with 

the co-expression of RanGAP1, but only when RanGAP1 was overexpressed prior to 

SUMO1 overexpression (Figure 5-9C). These results provide further evidence to support the 

notion that SUMO1 conjugation of endogenous substrates, and not the accumulation of free 

SUMO1 protein, causes the down-regulation of SUMO1 in embryonic cells. 

In another approach to reduce the levels of SUMO1 conjugation to substrates, we 

tested the overexpression of SENP1. SENP1 is a protease that deconjugates SUMO1 from its 

substrates. The overexpression of SENP1 could potentially improve SUMO1 overexpression 

as the SUMO sponges had done. A cDNA encoding an HA-tagged SENP1 was cloned into 

the pLVX vector containing the neomycin resistance gene and was co-expressed with the 

Flag-SUMO vectors containing the puromycin resistance genes. As previously described for 

Trim28 and RanGAP1, SENP1 was overexpressed in F9 cells before or after transduction 

with the SUMO constructs. Lysates were prepared and were analyzed for SUMO1 expression 

by Western blot. We found that SENP1 overexpression prior to transduction with the SUMO 

vectors dramatically improved SUMO1 overexpression levels, almost reaching SUMO1GG 

expression levels (Figure 5-9D). However, SUMO1 overexpression levels did not improve 

when this order was reversed. Consistent with our previous results, we demonstrate that 

increasing the deconjugation activity of SUMO1 from substrates allows for SUMO1 to be 

overexpressed and that these effects are not seen when we increased the deconjugation 

activity in cells that have already been selected for SUMO.  

Collectively, we found that reducing SUMO1 conjugation by mutation of the di-

glycine residues, the co-expression of a SUMO sponge, or the overexpression of SENP1 

significantly improved SUMO1 overexpression. These results indicate that the post-
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transcriptional mechanism(s) for reducing SUMO1 overexpression is only elicited upon the 

accumulation of SUMO1-modified proteins and not from the accumulation of free SUMO1 

protein itself. Moreover, this mechanism may be irreversible or have some long-term effects 

as reducing the levels of SUMO1-modified proteins after this mechanism has been set in 

place did not improve SUMO1 overexpression.  
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Supplemental data 

Additional attempts to reduce or block SUMO1 conjugation activity  

Ubc9 is responsible for conjugating all SUMO proteins to their substrates, so 

knockdown of Ubc9 would affect all SUMO pathways. To investigate if we could reduce the 

levels of SUMO1 conjugation to endogenous substrates from this approach, we knocked 

down Ubc9 by transducing F9 cells with pLKO-1 lentiviral vectors containing a drug 

resistance gene and shRNAs targeting Ubc9. Cells were subjected to drug selection, but only 

two out of five Ubc9 KD lines survived the drug treatment. RNA was isolated from surviving 

cells, Ubc9 mRNA expression levels were measured by qRT-PCR using primers that 

spanned a Ubc9 exon-exon junction, and expression levels were normalized to GAPDH. 

Ubc9 expression levels were decreased by 54% and 47% for the two Ubc9 KD lines, relative 

to expression levels in cells expressing the non-targeting shRNA vector (Figure 5-10). This 

demonstrates that obtaining strong Ubc9 KD levels in F9 cells may not be feasible. Given 

that Ubc9 knockout mice are embryonic lethal, it is also likely that F9 cells with greater 

Ubc9 KD levels did not survive. 

Treatment of cells by hydrogen peroxide (H2O2) is reported to result in the 

crosslinking and inactivation of the SAE2 and Ubc9 enzymes (Bossis & Melchior 2006). To 

determine if H2O2 could decrease levels of sumoylated substrates, we treated 293T cells 

expressing the SUMO1 vector with various concentrations of H2O2 (0.01 - 100 mM). Only 

cells treated with H2O2 at the 1 mM concentration demonstrated a detectable decrease in 

sumoylated protein levels (Figure 5-11A); however, H2O2 treatment at this concentration was 

too toxic to the cells to conduct any further experiments.   
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Figure 5-10 Ubc9 mRNA expression levels in Ubc9 KD cells  
mRNA expression levels of Ubc9 were measured in F9 cells transduced with the pLKO-1 
vectors containing Ubc9 shRNAs, by qRT-PCR. Ubc9 expression was normalized to the 
housekeeping GAPDH gene and reported relative to the negative control (-Ctrl) cells, which 
expressed a non-targeting shRNA.  

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

!"Ctrl" UBC9"KD"1" UBC9"KD"2"

Ex
pr
es
si
on

"re
la
7v

e"
to
"!C

tr
l"



 115 

A 

 

B 

 

Figure 5-11 Pharmacologic agents for inhibiting SUMO conjugation 
(A) 293T cells expressing the SUMO1 vector were treated with 10 µM – 100 mM H2O2 for 
one hour. Cells treated at 10 and 100 mM H2O2 died after treatment and were discarded. 
Lysates were prepared for the remaining cells using the SDS lysis buffer, which prevents the 
deconjugation of SUMO from substrates. As a control, lysates were also prepared from 
untreated 293T cells and 293T cells expressing the SUMO vectors with 0.1% NP40 lysis 
buffer, which does not prevent the deconjugation of SUMO from substrates. Proteins in 
lysates were analyzed by Western blot probing for the Flag-tag. (B) 293T cells expressing the 
SUMO1 vector were treated with 10 µM – 100 µM ginkgolic acid for 4 hours. Lysates were 
prepared using the SDS lysis buffer and analyzed by Western blot probing for the Flag-tag. 
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Ginkgolic acid treatment is shown to directly bind the E1 enzyme (SAE1/SAE2), 

thereby preventing SUMO conjugation to substrates (Fukuda et al. 2009). We assessed if 

preventing the SUMO pathways by ginkolic acid treatment could improve SUMO1 

overexpression. To determine the appropriate dosage of GA to use in our experiments, 293T 

cells expressing the Flag-SUMO1 vector were treated with DMSO or GA at various 

concentrations (10 – 100 µM) for 4 hours. Lysates were prepared using an SDS lysis buffer 

that inhibits SUMO deconjugation and the levels of SUMO1-modified endogenous substrates 

were examined by Western blot probing for the Flag-tag. Fukuda and colleagues demonstrate 

that endogenous protein sumoylation levels are decreased after 4 hours of 50 µM GA 

treatment, but we did not detect this in cells treated with 50 or 100 µM GA treatment relative 

to the DMSO treated cells (Figure 5-11B). Prolonged GA treatment before or after F9 cells 

were transduced with the SUMO1 or SUMO1GG vectors did not improve SUMO1 

overexpression levels relative to the untreated cells (data not shown).  

SENP1 cannot be effectively knocked down in embryonic cells 

To determine if SENP1 KD could have the opposite effect of SENP1 overexpression, 

we transduced F9 cells with pLKO-1 lentiviral vectors containing shRNAs targeting SENP1. 

Cells transduced with a pLKO.1 vector containing a non-target shRNA control were used as 

a negative control. To measure SENP1 expression levels in the various SENP1 KD lines, we 

measured SENP1 mRNA levels by qRT-PCR using primers that span an SENP1 exon-exon 

junction. SENP1 levels were normalized to the housekeeping gene GAPDH and are reported 

relative to cells expressing a non-targeting shRNA vector (Figure 5-12). We were not able to 

get a significant reduction in SENP1 mRNA levels, with any of the five shRNA constructs 
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used. Given that SENP1 knockout mice are embryonic lethal, this result suggests that SENP1 

may be essential for the survival of embryonic cells and possibly the reason for why we were 

unsuccessful in knocking down SENP1 mRNA levels in F9 cells. 
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Figure 5-12 SENP1 knockdown is highly inefficient in embryonic cells 
mRNA levels of SENP1 were measured in F9 cells transduced with the pLKO-1 vectors 
containing SENP1 shRNAs, by qRT-PCR. SENP1 expression was normalized to the 
housekeeping GAPDH gene and reported relative to the negative control (-Ctrl) cells, which 
expressed a non-targeting shRNA. 
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Chapter 6 : Discussion 

Trim28 and YY1 in Silencing Proviral DNA of M-MLV 

 Trim28 is a key repressor protein in the complex that mediates transcriptional 

silencing of the M-MLV provirus (Wolf & Goff 2007; Rowe et al. 2010). M-MLV silencing 

specifically occurs in mouse embryonic cells although Trim28 is ubiquitously expressed 

across all developmental stages, raising the question of how Trim28-mediated silencing of 

M-MLV is regulated. The identification of the zinc-finger proteins, ZFP809 and YY1, 

responsible for recruiting Trim28 to the provirus, provided some clues. The full length 

ZFP809 protein can only be expressed in embryonic cells, such that the PBS-dependent 

silencing mechanism is absent in differentiated cells by limitation of ZFP809 expression 

(Wolf & Goff 2009). Our lab has recently elucidated the mechanism for this, showing that 

ZFP809 protein is stable in embryonic cells but is ubiquitinated and rapidly degraded in 

differentiated cells (Cheng Wang, unpublished data). The selectivity of YY1 activity seems 

to result from a different mechanism. YY1 is expressed well in both embryonic and 

differentiated cells, but the YY1-Trim28 interaction is detected preferentially in embryonic 

cells (Schlesinger et al. 2013), suggesting that this interaction is regulated. Sumoylation and 

phosphorylation modifications on Trim28 were found to regulate Trim28 interactions and 

repressive activity in the context of the DNA damage response, cell cycle progression, and 

HCMV latency (Ivanov et al. 2007; Goodarzi et al. 2011; Bolderson et al. 2012; Chang et al. 

2008; Li et al. 2007; Benjamin Rauwel 2015). In Chapter 3, we have shed light on the YY1-

Trim28 interaction by mapping out the interacting domains of both proteins and investigating 

possible explanations for the regulation of this interaction. Furthermore, we determined that 
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the K779 residue on Trim28 is necessary for mediating M-MLV silencing. Based on other 

studies of Trim28 functions, this residue is likely the site of modification by SUMO addition. 

 Several functional domains of Trim28 are known to interact with critical co-repressor 

proteins. Trim28 contains an RBCC domain, chromoshadow domain, PHD domain, and 

bromodomain. The chromoshadow domain, also called the HP1 box, interacts with HP1 (B 

Le Douarin 1996), the PHD-Bromodomain interacts with CHD3 and ESET (Schultz et al. 

2001; Schultz 2002), and the RBCC domain interacts with the repressive KRAB domain of 

KRAB-ZNFs, such as ZFP809 (Friedman et al. 1996; Wolf & Goff 2009). Our findings 

demonstrated that the RBCC domain of Trim28 is sufficient for interaction with YY1, 

despite YY1 not containing a KRAB domain (Figure 3-2B). The YY1 interaction with the 

RBCC domain of Trim28 may involve other KRAB domain-containing proteins that serve as 

bridging proteins. This notion is consistent with our inability to detect a direct interaction 

between YY1 and Trim28 (Figure 3-1). 

A particular feature of YY1 is that it can behave as a transcriptional activator or 

repressor, depending on the context and the partners available for interaction (Shi et al. 

1997). The repressor domains of YY1 have been mapped to the GA-rich region and the 

ZNFs, while the activating domains have been mapped to the N-terminal domains, AR1 and 

AR2 (M. J. Thomas & Seto 1999). Thus far, it is known that the GA-rich region of YY1 is 

required for its interaction with several co-repressor proteins, including the histone 

deacetylase 1 (HDAC1), enhancer of zeste homolog 2 (EZH2), and the HP1 proteins (W. M. 

Yang et al. 1996; Morey et al. 2012). Our experiments showed that Trim28 interaction with 

YY1 depended on the AR1 and ZNFs (Figure 3-4B and C). The involvement of the ZNFs is 

consistent with what is thought to be the repressive domains of YY1, but the involvement of 
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AR1 was surprising. As the AR domains of YY1 are responsible for its transcriptional 

activator activity, the necessity for this region within a repressor complex was unexpected 

(Bushmeyer et al. 1995). Furthermore, we consistently detected a weaker interaction between 

exogenous YY1WT and Trim28 relative to the interaction detected between endogenous YY1 

and Trim28. Moving the myc-tag, knocking down endogenous YY1, or overexpressing 

Trim28 did not improve this interaction. We are currently attempting to improve the YY1-

Trim28 interaction by increasing ectopic YY1WT expression levels. However, a continued 

inability to improve this interaction may suggest that exogenous YY1 is not as suitable as 

endogenous YY1 for forming the silencing complex needed for the YY1-Trim28 interaction 

to occur.   

 One possible complication in our studies is the presence of YY2, an isotype of YY1. 

YY2 cross-reacts with YY1 antibodies, binds to some of the same sequences that YY1 

occupies, and is 86.4% identical to YY1 in its zinc fingers (Klar & Bode 2005; Klar 2010; 

Chen et al. 2010; Nguyen et al. 2004). Thus, what was previously believed to be the silencing 

activities of YY1, alone, may actually be representative of the combined repressive activities 

of YY1 and YY2. It is also possible that YY2 interacts with Trim28 and is 

immunoprecipitated with the anti-YY1 antibody. However, YY2 does not contain the AR1 

domain demonstrated to be necessary for Trim28 interaction, making this less likely.  

  Several studies have demonstrated the importance of sumoylation and 

phosphorylation modifications for Trim28 interaction and repressive activity  

(Ivanov et al. 2007; Goodarzi et al. 2011; Bolderson et al. 2012; Chang et al. 2008; Li et al. 

2007; Benjamin Rauwel 2015). We investigated the need for the sites of these modifications 

in the context of silencing M-MLV in embryonic cells. None of the sites tested were found to 
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be responsible for regulating the YY1-Trim28 interaction. Thus, the basis for the regulated 

interaction between these proteins remains unknown. Functional tests, however, show that 

the K779 residue was necessary for Trim28-mediated silencing of M-MLV (Figure 3-5D). A 

study using a yeast-two hybrid assay previously demonstrated that the K779R mutation does 

not perturb binding of the Trim28 PHD/Bromo domain to CHD3 or ESET, but mutations at 

both K779 and K676 eliminates CHD3 and ESET binding (Ivanov et al. 2007). We suspect 

that the single K779R mutation may be capable of disrupting its interaction with ESET, 

CHD3, or both, in our settings, as we found this mutation to greatly reduced Trim28 

silencing of M-MLV. In addition to the K779 residue, previous studies have highlighted the 

importance of the K554 and K804 residues for the repressive activity of Trim28 in the DNA 

damage response pathway and in the regulation of cell cycle genes (Y.-K. Lee et al. 2007; 

Goodarzi et al. 2011; Mascle et al. 2007). In contrast to what has been reported in these 

settings, the K554 and K804 residues were not found to be critical for the silencing of M-

MLV when mutated independently. It is still possible that these sites have redundant 

repressive functions, thereby requiring the combined mutation of multiple residues to disrupt 

silencing activity. Another difference between previous studies and our study is that Trim28 

phosphomimetic mutations at S473 or S824 had no impact on Trim28 silencing of M-MLV 

(Figure 3-7D), whereas phosphomimetic mutations at these sites abrogates Trim28 repressive 

activity in the context of HCMV latency, the DNA damage response, and the expression of 

cell cycle genes (Goodarzi et al. 2011; Chang et al. 2008; Benjamin Rauwel 2015). Notably, 

Trim28S473A did not express well, indicating the importance of this single residue for proper 

expression. A caveat of these results is that our functional assay only tested for short-term M-

MLV silencing, as expression of the M-MLV-GFP reporter is measured 48 hours after 
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infection. Thus, it is possible that mutations at the K554, K804, S473, or S824 residues 

impact long-term silencing, but short-term silencing of M-MLV is only dependent on the 

K779 residue. The findings highlight differences in the requirement for sumoylation 

modification on Trim28 in the context of differentiated cells, as opposed to the context of 

embryonic cells.  

  We have also investigated which of the SUMO proteins can conjugate to Trim28 at 

the six lysine residues examined. The lysine residues on Trim28 can be modified by any of 

several modifications that target lysine residues (Gill 2004; Enchev et al. 2014), but evidence 

from previous studies pointed to SUMO1 and SUMO2 as the most probable options for 

mediating Trim28 repressive activity (Ivanov et al. 2007; Goodarzi et al. 2008; Goodarzi et 

al. 2010; Goodarzi et al. 2011; Liangli Wang 2014; B. X. Yang et al. 2015). Most studies 

addressed the role of SUMO1 in Trim28-mediated repression, and specifically tested for 

activity in differentiated cells and in the context of the DNA damage or cell cycle pathways. 

Very few studies have explored the role of Trim28 modification by SUMO2. A recent 

genomic-wide siRNA screen showed that SUMO2 and its associated sumoylation factors are 

necessary for silencing of endogenous retroviruses in embryonic cells (B. X. Yang et al. 

2015). Moreover, this study demonstrates that the sets of endogenous retroviral genes 

upregulated from Trim28 KD and SUMO2 KD greatly overlap, implicating the two proteins 

in a co-dependent repressive function. We showed that both SUMO1 and SUMO2 can be 

conjugated to Trim28 and that mutation of the six lysine residues prevented conjugation by 

both SUMO1 and SUMO2 (Figure 3-6A and B). It is currently unknown if all SUMOs, one 

of the SUMOs, or possibly another modification mediates Trim28 silencing activity at the 
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K779 residue. It will be important to distinguish between these possibilities in future studies 

of the Trim28 silencing activity. 

 In conclusion, we have mapped the interacting domains on Trim28 and YY1 and 

demonstrated the necessity of the K779 residue on Trim28 for mediating M-MLV silencing. 

We demonstrated that the RBCC domain of Trim28 is sufficient for its interaction with YY1 

and that the AR1 and the zinc fingers of YY1 were necessary and sufficient for its interaction 

with Trim28. Moreover, our in vitro experiments suggest that this interaction occurs 

indirectly. The K779 residue on Trim28 was shown to be necessary for its repression of M-

MLV, but the other sumoylation and phosphorylation sites were dispensable. Thus, our 

results suggest that silencing of M-MLV in embryonic cells utilizes a Trim28-mediated 

silencing mechanism different from what has been described in studies of DNA damage, cell 

cycle progression, and HCMV latency. Further studies aimed at elucidating the consequences 

of Trim28 modifications at the various residues in different pathways and cell types will be 

important for developing a more comprehensive understanding of how Trim28 silencing 

activity is regulated.   

Large RBS Complex 

 A major target of M-MLV repression is a 17-nucleotide sequence, contained in the 

18-nucleotide primer binding site (PBS) element (Barklis et al. 1986; Loh et al. 1987). 

Protein-DNA binding assays with embryonic nuclear extracts demonstrate the presence of a 

complex binding to DNA probes containing the PBS element (Loh et al. 1990; Petersen et al. 

1991; Wolf & Goff 2007). This complex is also referred to as the repressor binding site 

(RBS) complex and was isolated by Daniel Wolf and colleagues. The PBS probe designed by 
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Wolf to detect the RBS complex was 28 nucleotides long, including the 17-nucleotide 

repressive sequence contained in the PBS and 11 nucleotides found downstream of the PBS 

(Wolf & Goff 2007). However, we found a putative YY1 binding site in the 5 nucleotides 

upstream of the PBS sequence (5’-CATTT-3’), and we refer this site as the “BS2.” If YY1 

binds to this site, it would potentially not have been detected in past protein-DNA binding 

studies using the original PBS probe. To investigate if YY1 protein and the RBS complex 

could bind together to a probe containing the BS2 and PBS sequences, we designed probes 

which contained the PBS sequence and the 11 nucleotides found upstream of it. We called 

this probe the BS2 + PBS (Figure 4-1A). EMSA experiments in which we tested for protein 

binding to the BS2 + PBS probe demonstrated a large molecular weight complex interacting 

with the BS2 + PBS sequence that migrated slower than the conventional RBS complex by 

native gel electrophoresis (Figure 4-1B). A probe containing the BS2 and the mutant PBSB2 

sequences (BS2 + B2) or using a probe containing only the BS2 site did not bind this large 

molecular weight complex, demonstrating its specificity for the repressive wild-type PBS 

sequence. We refer to this slower-migrating complex as the “larger RBS complex.” 

Surprisingly, a BS2 + PBS probe with a scrambled BS2 sequence was still capable of shifting 

with the larger RBS complex, demonstrating that its binding to the BS2 + PBS probe was not 

dependent on the identity of the BS2 sequence – merely on the presence of extra base pairs. 

We also found that the larger complex contained Trim28, but we could not detect YY1 in our 

assays (Figure 4-2). These experiments suggest that there are likely to be additional factors 

that associate with the RBS complex and that these factors require extra nucleotides upstream 

of the PBS to support its binding.  
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 Although we could not determine if the larger RBS complex contained YY1, the 

detection of the larger RBS complex presented an opportunity to search for additional co-

repressor proteins that may also participate in the silencing of M-MLV. To identify these 

proteins, we used two methods for purifying the larger RBS complex. The first method was 

to purify protein complexes in F9 nuclear extracts by ammonium sulfate precipitation, the 

method used by Daniel Wolf and colleagues to purify the RBS complex (Wolf & Goff 2007). 

Applying this method, we were able to detect the RBS complex in the 40% ammonium 

sulfate fraction but were unable to detect the larger RBS complex in any fraction (Figure 

4-3A). This indicated that precipitation by ammonium sulfate was not suitable for the 

isolation of the larger RBS complex, possibly because it was more fragile than the RBS 

complex or disintegrated in the high salt concentrations. The second method we tried was to 

fractionate protein complexes in F9 nuclear extract by velocity sedimentation through a 

sucrose gradient. Fractions from these gradients were examined for the presence of the larger 

RBS complex by EMSA using the BS2 + PBS probe. We detected the RBS and larger RBS 

complexes in these fractions, with some partial separation achieved by differential 

sedimentation (Figure 4-3B), demonstrating that separation of protein complexes by a 

sucrose gradient was an effective method for recovering the larger RBS complex. The 

fractions that contained the RBS and larger RBS complexes were also found to contain the 

highest amounts of Trim28, as expected. These results indicate that previous methods used 

for purifying the RBS complex may have resulted in loss of certain binding factors that are 

more sensitive to the procedures involved in protein precipitation by ammonium sulfate. The 

fractions containing the RBS or larger RBS complexes were pooled and used to 

immunoprecipitate Trim28. Bound proteins were analyzed by mass spectrometry, resulting in 
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a list of 22 and 27 proteins detected in the samples containing the RBS or larger RBS 

complexes, respectively (Table 1). KHDR1, SK2L2, LC7L3, and ARGL1 were some of the 

proteins detected that are worth highlighting. KHDR1 was detected in the samples containing 

the RBS and larger RBS complexes; SK2L2 was detected only in the sample containing the 

larger RBS complex; and LC7L3 and ARGL1 were only detected in the sample containing 

the RBS complex. 

 Studies on KHDR1 and SK2L2 indicate a link between these proteins and 

retroviruses. KHDR1 (KH domain-containing, RNA-binding, signal transduction-associated 

protein 1), also known as SAM68, is reported to be involved in the export of HIV-1 RNA 

from the nucleus (Modem 2005). However, this study describes KHDR1 as a supportive 

retroviral factor rather than an inhibitory factor. SK2L2 (superkiller viralicidic activity 2-

like) is reported to interact with the Rev accessory protein of HIV-1 in a proteomics screen, 

but its effects on HIV-1 replication have not been examined (Naji et al. 2012). LC7L3 and 

ARGL1 may also be interesting to investigate further because they are associated with 

transcriptional activities. LC7L3 (Luc7-like protein 3) is a zinc finger protein found to bind 

DNA regulatory elements (Shipman et al. 2006), and GO annotation suggests the ARGL1 

(Arginine and glutamate-rich protein 1) protein is involved in cellular transcription (Baltz et 

al. 2012). Further studies investigating these genes and others in our list can serve as a good 

starting point for identifying additional co-repressor proteins functioning in retroviral 

repression.  

 As expected, Trim28 was detected in both samples containing the RBS and large RBS 

complex, but we did not find other proteins known to interact with Trim28 and silence M-

MLV, such as ZFP809. The absence of ZFP809 from our mass spectrometry list may be 
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explained by the fact that ZFP809 is not very abundant in F9 cells, and a large amount of 

starting nuclear extract was required to identify ZFP809 (Wolf & Goff 2009). Our 

fractionation methods could be repeated with a larger quantity of nuclear extract to detect 

these less abundant proteins.  

 Thus, we have demonstrated the detection of a larger RBS complex that likely 

contained the RBS complex and additional binding factors. The larger RBS complex 

contained Trim28 and specifically interacted with a PBS probe containing extra nucleotides 

upstream of the PBS sequence. We also demonstrated a method for partially enriching for the 

larger RBS complex and presented a list of proteins that were detected in association with the 

complex.  

Regulation of SUMO1-modified Substrates in Embryonic Cells 

SUMO conjugation regulates a variety of basic cellular functions including 

chromosome segregation, transcription, and the cell cycle (Hay 2005). Not surprisingly, the 

SUMO pathways are necessary for cell viability in yeast, nematodes, and high eukaryotic 

cells (Hay 2005) and for embryonic viability of mammals as demonstrated by knockout 

studies of the SUMO components in mice (Sharma et al. 2013; Liangli Wang 2014; 

Nacerddine et al. 2005). In Chapter 5, we provide evidence for a post-transcriptional 

mechanism that prevents the accumulation of SUMO1-modified substrates in embryonic 

cells. This mechanism acts specifically against the overexpression of SUMO1 and not 

SUMO2/3, and some effects of this mechanism appear to be irreversible by the methods we 

explored. 
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SUMO1 can be effectively overexpressed in differentiated cells (Fukuda et al. 2009; 

Bossis & Melchior 2006), and we suspected that SUMO1 could be overexpressed just as well 

in embryonic cells. Unexpectedly, we found that SUMO1 overexpression was highly 

inefficient in both embryonic carcinoma and embryonic stem cells (Figure 5-1A and B), 

whereas SUMO1 was overexpressed well in differentiated cells, as other studies had 

previously shown. One possible explanation for the lack of detectable ectopic SUMO1 

expression in embryonic cells was that the overexpression of SUMO1 was toxic or resulted 

in greater cell death in embryonic cells, and cells that survived transduction and stable 

selection of the SUMO1 vector had a unique ability to maintain low levels of SUMO1. In an 

assay for survival of embryonic cells carrying the SUMO vectors, we counted roughly 

similar number of cells surviving transduction with and selection for the SUMO1 vector as 

we did for cells transduced with and selected for an equivalent quantity of the SUMO1GG 

vector (Figure 5-3). This suggested that the lack of SUMO1 overexpression in embryonic 

cells was not due to greater cell death of SUMO1 overexpressing cells, but rather, the result 

of an embryonic-specific response to elevated levels of SUMO1 protein or SUMO1 

conjugation.  

Endogenous SUMO1 is predominantly found conjugated to substrates and not as 

“free” SUMO1 (Saitoh 2000), and it was possible that either elevated levels of free SUMO1 

or of SUMO1-modified proteins was highly unfavorable or selected against in embryonic 

cells. We found that SUMO1 mutants that are unable to conjugate to substrates (SUMO1GG 

and SUMO1AA) were expressed in embryonic cells just as well as they were expressed in 

differentiated cells (Figure 5-1A and B, and Figure 5-9A), indicating that the non-

conjugatable SUMO1 protein is permitted to accumulate in embryonic cells and that the 
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functional activity of SUMO1 is what prevents it from being overexpressed in embryonic 

cells. To assess this further, we blocked or reduced SUMO1 conjugation to endogenous 

substrates using various approaches. One approach was to co-express SUMO1 with 

substrates that could act as a “SUMO sponge” for excess SUMO1 protein expression. We 

chose Trim28 and RanGAP1 as SUMO sponges because Trim28 displays multiple sites that 

are targets of sumoylation (Ivanov et al. 2007), and RanGAP1 was one of the first substrates 

found to be conjugated by SUMO1 (Hay 2005). In the background of Trim28 and RanGAP1 

overexpression, SUMO1 overexpression greatly improved in embryonic cells (Figure 5-9B 

and C). This suggested that SUMO1 overexpression in embryonic cells is prevented as a 

response to or result of the accumulation of unknown endogenous substrates conjugated by 

SUMO1, and not the overexpression of SUMO1 protein per se. In another approach, we 

overexpressed SUMO1 with SENP1, the enzyme responsible for deconjugating SUMO1 

from its substrates (Sharma et al. 2013). Consistent with our previous results, we found that 

in the background of SENP1 overexpression, SUMO1 overexpression was greatly improved 

(Figure 5-9D). These results indicate that the accumulation of SUMO1-modified substrates 

could be prevented by the upregulation of SENP1 deconjugating activity, which allows 

SUMO1 to be overexpressed in embryonic cells.  

An important aspect of these experiments was that SUMO1 overexpression only 

improved when the SUMO sponge or SENP1 were overexpressed prior to transduction with 

the SUMO1 vector. Reversing this order did not improve SUMO1 overexpression (Figure 

5-9B, C, and D), SUMO1 modification of substrates are reported to have long-term effects 

even when SUMO1 is no longer conjugated to the substrate (Hay 2005), and perhaps 
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SUMO1 modification of certain embryonic substrates creates long-term effects that are not 

immediately reversible by the approaches we utilized.  

SUMO1 overexpression can be potentially regulated at any of several stages 

including at the level of transcription, mRNA processing and stability, translation, or post-

translational processing and degradation. Rare events can also occur in which the retroviral 

vector deletes genes from the viral genome, making it possible that our cells contained the 

drug resistance marker and not the SUMO1 transgene. Embryonic cells transduced with the 

SUMO1 or SUMO1GG vectors showed equivalent levels of the SUMO transgenes (Figure 

5-7A), suggesting that the inability to overexpress SUMO1 was not due to of rare events in 

which the SUMO1 gene is deleted from the retroviral vectors. We also detected similar levels 

of the SUMO transcripts, indicating that the mechanism for reducing SUMO1-modified 

proteins was acting at some post-transcriptional level (Figure 5-7C). Next, we checked if 

protein degradation by the proteosomal and lysosomal pathways could be involved by 

treating embryonic cells transduced with SUMO1 or SUMO1GG vectors with inhibitors of 

both pathways (Figure 5-7D). However, we did not find evidence to support the involvement 

of these pathways. Other possibilities include a mechanism that regulates SUMO1 mRNA 

processing and stability or SUMO1 translation, and additional studies investigating these 

possibilities will be required for understanding how embryonic cells regulate the steady-state 

levels of SUMO1-modified proteins.  

Another important aspect of this mechanism is that it was specific to SUMO1 and not 

to the other SUMO family members. SUMO2 was overexpressed in both embryonic and 

differentiated cells as efficiently as SUMO2GG and SUMO1GG (Figure 5-8). This result 

highlights a notable difference between SUMO1 and SUMO2/3 that specifically occurs in 
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embryonic cells. SUMO2 may not conjugate to the same substrates that lead to SUMO1 

down-regulation, or SUMO2 conjugation of these substrates leads to different consequences.  

One SUMO1 knockout study raises the possibility that the reason SUMO1 is dispensable for 

normal mouse development is because its loss is compensated by SUMO2/3 (Zhang et al. 

2008). While this is possible for certain substrate targets, our results indicate important 

differences for these modifications in embryonic cells; we are seeing distinct differences in 

the response to SUMO1 versus SUMO2 conjugation. There may be differences in the bulk 

extent of conjugation of SUMO1 versus SUMO2. Because endogenous SUMO1 is normally 

found conjugated to substrates, it is possible that the overexpression of SUMO1 is prevented 

because it is more actively conjugated to substrates whereas the overexpression of SUMO2 

might accumulate more readily as free SUMO2 proteins. 

In summary, we provide evidence for a post-transcriptional mechanism that acts to 

maintain low steady-state levels of SUMO1-modified proteins. Our results are consistent 

with a previous studies in which increases of SUMO1-modified substrate levels by SENP1 

knockout was embryonic lethal, but can be rescued from genetically lowering SUMO1 levels 

(Zhang et al. 2008; Sharma et al. 2013). In Chapter 5, we demonstrate the importance of 

regulating steady-state levels of SUMO1-modified proteins at the cellular level. We provide 

evidence for an embryonic-specific post-transcriptional mechanism that is elicited from the 

increase of SUMO1-modified proteins and results in the downregulation of SUMO1 

overexpression. Identifying the SUMO1-modified substrate(s) that lead(s) to SUMO1 down-

regulation and determining the stage at which SUMO1 overexpression is prevented will be 

critical for further understanding this mechanism and the function of SUMO1 in embryonic 

cells.  
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Concluding remarks 

 We have investigated two embryonic-specific mechanisms in these studies. In 

Chapter 3 and 4, we examined transcriptional silencing factors involved in the repression of 

M-MLV expression. We mapped the domains necessary for interaction between YY1 and 

Trim28 and we demonstrate the necessity of the K779 residue on Trim28 to mediate 

repression of M-MLV. Furthermore, we demonstrate the detection and enrichment of a larger 

RBS complex and provide a list of proteins identified within this complex. Elucidating the 

impact of Trim28 modification at the K779 residue and identification of additional repressor 

cofactors will be important for developing a more detailed understanding of the silencing 

mechanism acting on M-MLV.  

 In Chapter 5, we investigated a previously unreported mechanism for regulating the 

levels of SUMO1-modified substrates in embryonic cells. We demonstrated that the 

accumulation of SUMO1-modified substrates down-regulated the expression of SUMO1 in a 

post-transcriptional manner, and this occurred specifically for SUMO1 but not SUMO2. This 

mechanism has been largely unexplored, and there are several gaps that remain to be filled. 

Determining the post-transcriptional stage in which SUMO1 is downregulated and 

identifying potential embryonic substrates that may be involved in the response leading to the 

downregulation of SUMO1 expression will be fundamental to understanding this mechanism.  
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Appendix 

 

TRIM28 Immunoprecipitation in pooled fractions 3-4 (RBS complex)
!TOP2A_MOUSE  DNA topoisomerase 2-alpha OS=Mus musculus GN=Top2a PE=1 SV=2
!CPSF6_MOUSE  Cleavage and polyadenylation specificity factor subunit 6 OS=Mus musculus GN=Cpsf6 PE=1 SV=1
!NONO_MOUSE  Non-POU domain-containing octamer-binding protein OS=Mus musculus GN=Nono PE=1 SV=3
!TIF1B_MOUSE  Transcription intermediary factor 1-beta OS=Mus musculus GN=Trim28 PE=1 SV=3
!DDX3X_MOUSE  ATP-dependent RNA helicase DDX3X OS=Mus musculus GN=Ddx3x PE=1 SV=3
!DDX5_MOUSE  Probable ATP-dependent RNA helicase DDX5 OS=Mus musculus GN=Ddx5 PE=1 SV=2
!SFPQ_MOUSE  Splicing factor, proline- and glutamine-rich OS=Mus musculus GN=Sfpq PE=1 SV=1
!PARP1_MOUSE  Poly [ADP-ribose] polymerase 1 OS=Mus musculus GN=Parp1 PE=1 SV=3
!TOP2B_MOUSE  DNA topoisomerase 2-beta OS=Mus musculus GN=Top2b PE=1 SV=2
!CPSF5_MOUSE  Cleavage and polyadenylation specificity factor subunit 5 OS=Mus musculus GN=Nudt21 PE=2 SV=1
!TCOF_MOUSE  Treacle protein OS=Mus musculus GN=Tcof1 PE=1 SV=1
!DDX17_MOUSE  Probable ATP-dependent RNA helicase DDX17 OS=Mus musculus GN=Ddx17 PE=2 SV=1
!LAP2A_MOUSE  Lamina-associated polypeptide 2, isoforms alpha/zeta OS=Mus musculus GN=Tmpo PE=1 SV=4
!G3P_MOUSE  Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gapdh PE=1 SV=2
!CPSF7_MOUSE  Cleavage and polyadenylation specificity factor subunit 7 OS=Mus musculus GN=Cpsf7 PE=1 SV=2
!PR40A_MOUSE  Pre-mRNA-processing factor 40 homolog A OS=Mus musculus GN=Prpf40a PE=1 SV=1
!MYH9_MOUSE  Myosin-9 OS=Mus musculus GN=Myh9 PE=1 SV=4
!RBM25_MOUSE  RNA-binding protein 25 OS=Mus musculus GN=Rbm25 PE=1 SV=2
!DHX15_MOUSE  Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 OS=Mus musculus GN=Dhx15 PE=2 SV=2
!SP16H_MOUSE  FACT complex subunit SPT16 OS=Mus musculus GN=Supt16h PE=1 SV=2
!SRRM1_MOUSE  Serine/arginine repetitive matrix protein 1 OS=Mus musculus GN=Srrm1 PE=1 SV=2
!H2B1B_MOUSE  Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3
!ROA3_MOUSE  Heterogeneous nuclear ribonucleoprotein A3 OS=Mus musculus GN=Hnrnpa3 PE=1 SV=1
!ITCH_MOUSE  E3 ubiquitin-protein ligase Itchy OS=Mus musculus GN=Itch PE=1 SV=2
!SRSF3_MOUSE  Serine/arginine-rich splicing factor 3 OS=Mus musculus GN=Srsf3 PE=1 SV=1
!SRSF1_MOUSE  Serine/arginine-rich splicing factor 1 OS=Mus musculus GN=Srsf1 PE=1 SV=3
!NPM_MOUSE  Nucleophosmin OS=Mus musculus GN=Npm1 PE=1 SV=1
!RPA1_MOUSE  DNA-directed RNA polymerase I subunit RPA1 OS=Mus musculus GN=Polr1a PE=1 SV=2
!TF2H1_MOUSE  General transcription factor IIH subunit 1 OS=Mus musculus GN=Gtf2h1 PE=2 SV=2
!SRRM2_MOUSE  Serine/arginine repetitive matrix protein 2 OS=Mus musculus GN=Srrm2 PE=1 SV=3
!IF2P_MOUSE  Eukaryotic translation initiation factor 5B OS=Mus musculus GN=Eif5b PE=1 SV=2
!FUS_MOUSE  RNA-binding protein FUS OS=Mus musculus GN=Fus PE=2 SV=1
!TRAP1_MOUSE  Heat shock protein 75 kDa, mitochondrial OS=Mus musculus GN=Trap1 PE=1 SV=1
!CDC5L_MOUSE  Cell division cycle 5-like protein OS=Mus musculus GN=Cdc5l PE=1 SV=2
!SRSF5_MOUSE  Serine/arginine-rich splicing factor 5 OS=Mus musculus GN=Srsf5 PE=1 SV=2
!SRSF2_MOUSE  Serine/arginine-rich splicing factor 2 OS=Mus musculus GN=Srsf2 PE=1 SV=4
!COPB2_MOUSE  Coatomer subunit beta' OS=Mus musculus GN=Copb2 PE=2 SV=2
!IF4A3_MOUSE  Eukaryotic initiation factor 4A-III OS=Mus musculus GN=Eif4a3 PE=2 SV=3
!UBF1_MOUSE  Nucleolar transcription factor 1 OS=Mus musculus GN=Ubtf PE=1 SV=1
!H4_MOUSE  Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 SV=2
!SMU1_MOUSE  WD40 repeat-containing protein SMU1 OS=Mus musculus GN=Smu1 PE=2 SV=2
!SMD1_MOUSE  Small nuclear ribonucleoprotein Sm D1 OS=Mus musculus GN=Snrpd1 PE=1 SV=1
!PRDX1_MOUSE  Peroxiredoxin-1 OS=Mus musculus GN=Prdx1 PE=1 SV=1
!RU17_MOUSE  U1 small nuclear ribonucleoprotein 70 kDa OS=Mus musculus GN=Snrnp70 PE=1 SV=2
!NOP56_MOUSE  Nucleolar protein 56 OS=Mus musculus GN=Nop56 PE=1 SV=2
!KHDR1_MOUSE  KH domain-containing, RNA-binding, signal transduction-associated protein 1 OS=Mus musculus GN=Khdrbs1 PE=1 SV=2
!K22O_MOUSE  Keratin, type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=2 SV=1
!SRP68_MOUSE  Signal recognition particle subunit SRP68 OS=Mus musculus GN=Srp68 PE=2 SV=2
!CWC22_MOUSE  Pre-mRNA-splicing factor CWC22 homolog OS=Mus musculus GN=Cwc22 PE=1 SV=1
!H2AX_MOUSE  Histone H2A.x OS=Mus musculus GN=H2afx PE=1 SV=2
!SMD2_MOUSE  Small nuclear ribonucleoprotein Sm D2 OS=Mus musculus GN=Snrpd2 PE=1 SV=1
!RBM14_MOUSE  RNA-binding protein 14 OS=Mus musculus GN=Rbm14 PE=1 SV=1
!NUCL_MOUSE  Nucleolin OS=Mus musculus GN=Ncl PE=1 SV=2
!H2A1F_MOUSE  Histone H2A type 1-F OS=Mus musculus GN=Hist1h2af PE=1 SV=3
!SSRP1_MOUSE  FACT complex subunit SSRP1 OS=Mus musculus GN=Ssrp1 PE=1 SV=2
!KIF4_MOUSE  Chromosome-associated kinesin KIF4 OS=Mus musculus GN=Kif4 PE=1 SV=3
!SF3B3_MOUSE  Splicing factor 3B subunit 3 OS=Mus musculus GN=Sf3b3 PE=2 SV=1
!LEO1_MOUSE  RNA polymerase-associated protein LEO1 OS=Mus musculus GN=Leo1 PE=1 SV=2
!SK2L2_MOUSE  Superkiller viralicidic activity 2-like 2 OS=Mus musculus GN=Skiv2l2 PE=2 SV=1
!SMD3_MOUSE  Small nuclear ribonucleoprotein Sm D3 OS=Mus musculus GN=Snrpd3 PE=1 SV=1
!RED_MOUSE  Protein Red OS=Mus musculus GN=Ik PE=2 SV=2
!PTK6_MOUSE  Protein-tyrosine kinase 6 OS=Mus musculus GN=Ptk6 PE=1 SV=1
!FZD2_MOUSE  Frizzled-2 OS=Mus musculus GN=Fzd2 PE=2 SV=1
!COPG1_MOUSE  Coatomer subunit gamma-1 OS=Mus musculus GN=Copg1 PE=2 SV=1
!CD11B_MOUSE  Cyclin-dependent kinase 11B OS=Mus musculus GN=Cdk11b PE=1 SV=2
!HSP7C_MOUSE  Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1
!S30BP_MOUSE  SAP30-binding protein OS=Mus musculus GN=Sap30bp PE=2 SV=2
!FYN_MOUSE  Tyrosine-protein kinase Fyn OS=Mus musculus GN=Fyn PE=1 SV=4
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!CDK13_MOUSE  Cyclin-dependent kinase 13 OS=Mus musculus GN=Cdk13 PE=1 SV=3
!H32_MOUSE  Histone H3.2 OS=Mus musculus GN=Hist1h3b PE=1 SV=2
!COPA_MOUSE  Coatomer subunit alpha OS=Mus musculus GN=Copa PE=1 SV=2
!SRS10_MOUSE  Serine/arginine-rich splicing factor 10 OS=Mus musculus GN=Srsf10 PE=1 SV=2
!CDC73_MOUSE  Parafibromin OS=Mus musculus GN=Cdc73 PE=2 SV=1
!AGTRA_MOUSE  Type-1A angiotensin II receptor OS=Mus musculus GN=Agtr1a PE=1 SV=1
!HNRH1_MOUSE  Heterogeneous nuclear ribonucleoprotein H OS=Mus musculus GN=Hnrnph1 PE=1 SV=3
!CTR9_MOUSE  RNA polymerase-associated protein CTR9 homolog OS=Mus musculus GN=Ctr9 PE=1 SV=2
!SRSF7_MOUSE  Serine/arginine-rich splicing factor 7 OS=Mus musculus GN=Srsf7 PE=1 SV=1
!ACTG_MOUSE  Actin, cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=1 SV=1
!SR140_MOUSE  U2 snRNP-associated SURP motif-containing protein OS=Mus musculus GN=U2surp PE=1 SV=3
!U2AF1_MOUSE  Splicing factor U2AF 35 kDa subunit OS=Mus musculus GN=U2af1 PE=1 SV=4

Control Antibody Immunoprecipitation in pooled fractions 3-4 (RBS complex)
!TOP2A_MOUSE  DNA topoisomerase 2-alpha OS=Mus musculus GN=Top2a PE=1 SV=2
!NONO_MOUSE  Non-POU domain-containing octamer-binding protein OS=Mus musculus GN=Nono PE=1 SV=3
!SFPQ_MOUSE  Splicing factor, proline- and glutamine-rich OS=Mus musculus GN=Sfpq PE=1 SV=1
!TOP2B_MOUSE  DNA topoisomerase 2-beta OS=Mus musculus GN=Top2b PE=1 SV=2
!TCOF_MOUSE  Treacle protein OS=Mus musculus GN=Tcof1 PE=1 SV=1
!DDX3X_MOUSE  ATP-dependent RNA helicase DDX3X OS=Mus musculus GN=Ddx3x PE=1 SV=3
!DDX5_MOUSE  Probable ATP-dependent RNA helicase DDX5 OS=Mus musculus GN=Ddx5 PE=1 SV=2
!PARP1_MOUSE  Poly [ADP-ribose] polymerase 1 OS=Mus musculus GN=Parp1 PE=1 SV=3
!NPM_MOUSE  Nucleophosmin OS=Mus musculus GN=Npm1 PE=1 SV=1
!CPSF6_MOUSE  Cleavage and polyadenylation specificity factor subunit 6 OS=Mus musculus GN=Cpsf6 PE=1 SV=1
!LAP2A_MOUSE  Lamina-associated polypeptide 2, isoforms alpha/zeta OS=Mus musculus GN=Tmpo PE=1 SV=4
!UBF1_MOUSE  Nucleolar transcription factor 1 OS=Mus musculus GN=Ubtf PE=1 SV=1
!MYH9_MOUSE  Myosin-9 OS=Mus musculus GN=Myh9 PE=1 SV=4
!PR40A_MOUSE  Pre-mRNA-processing factor 40 homolog A OS=Mus musculus GN=Prpf40a PE=1 SV=1
!RBM25_MOUSE  RNA-binding protein 25 OS=Mus musculus GN=Rbm25 PE=1 SV=2
!SP16H_MOUSE  FACT complex subunit SPT16 OS=Mus musculus GN=Supt16h PE=1 SV=2
!DDX17_MOUSE  Probable ATP-dependent RNA helicase DDX17 OS=Mus musculus GN=Ddx17 PE=2 SV=1
!SRRM1_MOUSE  Serine/arginine repetitive matrix protein 1 OS=Mus musculus GN=Srrm1 PE=1 SV=2
!ROA3_MOUSE  Heterogeneous nuclear ribonucleoprotein A3 OS=Mus musculus GN=Hnrnpa3 PE=1 SV=1
!CPSF5_MOUSE  Cleavage and polyadenylation specificity factor subunit 5 OS=Mus musculus GN=Nudt21 PE=2 SV=1
!CD11B_MOUSE  Cyclin-dependent kinase 11B OS=Mus musculus GN=Cdk11b PE=1 SV=2
!K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3
!RBM14_MOUSE  RNA-binding protein 14 OS=Mus musculus GN=Rbm14 PE=1 SV=1
!PML_MOUSE  Protein PML OS=Mus musculus GN=Pml PE=1 SV=3
!DDX46_MOUSE  Probable ATP-dependent RNA helicase DDX46 OS=Mus musculus GN=Ddx46 PE=1 SV=2
!COPA_MOUSE  Coatomer subunit alpha OS=Mus musculus GN=Copa PE=1 SV=2
!SRSF5_MOUSE  Serine/arginine-rich splicing factor 5 OS=Mus musculus GN=Srsf5 PE=1 SV=2
!SRSF2_MOUSE  Serine/arginine-rich splicing factor 2 OS=Mus musculus GN=Srsf2 PE=1 SV=4
!IF2P_MOUSE  Eukaryotic translation initiation factor 5B OS=Mus musculus GN=Eif5b PE=1 SV=2
!CWC22_MOUSE  Pre-mRNA-splicing factor CWC22 homolog OS=Mus musculus GN=Cwc22 PE=1 SV=1
!K2C71_MOUSE  Keratin, type II cytoskeletal 71 OS=Mus musculus GN=Krt71 PE=1 SV=1
!SRSF3_MOUSE  Serine/arginine-rich splicing factor 3 OS=Mus musculus GN=Srsf3 PE=1 SV=1
!EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3
!RBM27_MOUSE  RNA-binding protein 27 OS=Mus musculus GN=Rbm27 PE=2 SV=3
!COPB2_MOUSE  Coatomer subunit beta' OS=Mus musculus GN=Copb2 PE=2 SV=2
!RU17_MOUSE  U1 small nuclear ribonucleoprotein 70 kDa OS=Mus musculus GN=Snrnp70 PE=1 SV=2
!SMC2_MOUSE  Structural maintenance of chromosomes protein 2 OS=Mus musculus GN=Smc2 PE=1 SV=2
!K22O_MOUSE  Keratin, type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=2 SV=1
!SRSF7_MOUSE  Serine/arginine-rich splicing factor 7 OS=Mus musculus GN=Srsf7 PE=1 SV=1
!HSP7C_MOUSE  Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1
!SMD2_MOUSE  Small nuclear ribonucleoprotein Sm D2 OS=Mus musculus GN=Snrpd2 PE=1 SV=1
!H2B1B_MOUSE  Histone H2B type 1-B OS=Mus musculus GN=Hist1h2bb PE=1 SV=3
!U2AF1_MOUSE  Splicing factor U2AF 35 kDa subunit OS=Mus musculus GN=U2af1 PE=1 SV=4
!DHX15_MOUSE  Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 OS=Mus musculus GN=Dhx15 PE=2 SV=2
!H4_MOUSE  Histone H4 OS=Mus musculus GN=Hist1h4a PE=1 SV=2
!RCC2_MOUSE  Protein RCC2 OS=Mus musculus GN=Rcc2 PE=2 SV=1
!ACTG_MOUSE  Actin, cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=1 SV=1
!FUS_MOUSE  RNA-binding protein FUS OS=Mus musculus GN=Fus PE=2 SV=1
!PRDX1_MOUSE  Peroxiredoxin-1 OS=Mus musculus GN=Prdx1 PE=1 SV=1
!TF2H1_MOUSE  General transcription factor IIH subunit 1 OS=Mus musculus GN=Gtf2h1 PE=2 SV=2
!FYN_MOUSE  Tyrosine-protein kinase Fyn OS=Mus musculus GN=Fyn PE=1 SV=4
!SRRM2_MOUSE  Serine/arginine repetitive matrix protein 2 OS=Mus musculus GN=Srrm2 PE=1 SV=3
!SNRPA_MOUSE  U1 small nuclear ribonucleoprotein A OS=Mus musculus GN=Snrpa PE=2 SV=3
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!PAF1_MOUSE  RNA polymerase II-associated factor 1 homolog OS=Mus musculus GN=Paf1 PE=2 SV=1
!SRSF1_MOUSE  Serine/arginine-rich splicing factor 1 OS=Mus musculus GN=Srsf1 PE=1 SV=3
!SRP68_MOUSE  Signal recognition particle subunit SRP68 OS=Mus musculus GN=Srp68 PE=2 SV=2
!AGTRA_MOUSE  Type-1A angiotensin II receptor OS=Mus musculus GN=Agtr1a PE=1 SV=1
!S30BP_MOUSE  SAP30-binding protein OS=Mus musculus GN=Sap30bp PE=2 SV=2
!PR38A_MOUSE  Pre-mRNA-splicing factor 38A OS=Mus musculus GN=Prpf38a PE=1 SV=1
!RBM39_MOUSE  RNA-binding protein 39 OS=Mus musculus GN=Rbm39 PE=1 SV=2
!SSRP1_MOUSE  FACT complex subunit SSRP1 OS=Mus musculus GN=Ssrp1 PE=1 SV=2
!G3P_MOUSE  Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gapdh PE=1 SV=2
!RFC1_MOUSE  Replication factor C subunit 1 OS=Mus musculus GN=Rfc1 PE=1 SV=2
!COPG1_MOUSE  Coatomer subunit gamma-1 OS=Mus musculus GN=Copg1 PE=2 SV=1
!SMD1_MOUSE  Small nuclear ribonucleoprotein Sm D1 OS=Mus musculus GN=Snrpd1 PE=1 SV=1
!TF2H4_MOUSE  General transcription factor IIH subunit 4 OS=Mus musculus GN=Gtf2h4 PE=2 SV=1

TRIM28 Immunoprecipitation in pooled fractions 5-7 (large RBS complex)
!NONO_MOUSE  Non-POU domain-containing octamer-binding protein OS=Mus musculus GN=Nono PE=1 SV=3
!SFPQ_MOUSE  Splicing factor, proline- and glutamine-rich OS=Mus musculus GN=Sfpq PE=1 SV=1
!FUS_MOUSE  RNA-binding protein FUS OS=Mus musculus GN=Fus PE=2 SV=1
!DDX3X_MOUSE  ATP-dependent RNA helicase DDX3X OS=Mus musculus GN=Ddx3x PE=1 SV=3
!DDX5_MOUSE  Probable ATP-dependent RNA helicase DDX5 OS=Mus musculus GN=Ddx5 PE=1 SV=2
!CPSF5_MOUSE  Cleavage and polyadenylation specificity factor subunit 5 OS=Mus musculus GN=Nudt21 PE=2 SV=1
!CPSF6_MOUSE  Cleavage and polyadenylation specificity factor subunit 6 OS=Mus musculus GN=Cpsf6 PE=1 SV=1
!DDX17_MOUSE  Probable ATP-dependent RNA helicase DDX17 OS=Mus musculus GN=Ddx17 PE=2 SV=1
!LAP2A_MOUSE  Lamina-associated polypeptide 2, isoforms alpha/zeta OS=Mus musculus GN=Tmpo PE=1 SV=4
!TIF1B_MOUSE  Transcription intermediary factor 1-beta OS=Mus musculus GN=Trim28 PE=1 SV=3
!SRSF2_MOUSE  Serine/arginine-rich splicing factor 2 OS=Mus musculus GN=Srsf2 PE=1 SV=4
!CPSF7_MOUSE  Cleavage and polyadenylation specificity factor subunit 7 OS=Mus musculus GN=Cpsf7 PE=1 SV=2
!ROA3_MOUSE  Heterogeneous nuclear ribonucleoprotein A3 OS=Mus musculus GN=Hnrnpa3 PE=1 SV=1
!PARP1_MOUSE  Poly [ADP-ribose] polymerase 1 OS=Mus musculus GN=Parp1 PE=1 SV=3
!TOP2A_MOUSE  DNA topoisomerase 2-alpha OS=Mus musculus GN=Top2a PE=1 SV=2
!RBM14_MOUSE  RNA-binding protein 14 OS=Mus musculus GN=Rbm14 PE=1 SV=1
!SRSF3_MOUSE  Serine/arginine-rich splicing factor 3 OS=Mus musculus GN=Srsf3 PE=1 SV=1
!ROA1_MOUSE  Heterogeneous nuclear ribonucleoprotein A1 OS=Mus musculus GN=Hnrnpa1 PE=1 SV=2
!ITCH_MOUSE  E3 ubiquitin-protein ligase Itchy OS=Mus musculus GN=Itch PE=1 SV=2
!SRSF5_MOUSE  Serine/arginine-rich splicing factor 5 OS=Mus musculus GN=Srsf5 PE=1 SV=2
!HNRPF_MOUSE  Heterogeneous nuclear ribonucleoprotein F OS=Mus musculus GN=Hnrnpf PE=1 SV=3
!SRRM1_MOUSE  Serine/arginine repetitive matrix protein 1 OS=Mus musculus GN=Srrm1 PE=1 SV=2
!SRRM2_MOUSE  Serine/arginine repetitive matrix protein 2 OS=Mus musculus GN=Srrm2 PE=1 SV=3
!PR38A_MOUSE  Pre-mRNA-splicing factor 38A OS=Mus musculus GN=Prpf38a PE=1 SV=1
!ROA2_MOUSE  Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Mus musculus GN=Hnrnpa2b1 PE=1 SV=2
!THOC4_MOUSE  THO complex subunit 4 OS=Mus musculus GN=Alyref PE=1 SV=3
!RBM26_MOUSE  RNA-binding protein 26 OS=Mus musculus GN=Rbm26 PE=1 SV=2
!SRSF1_MOUSE  Serine/arginine-rich splicing factor 1 OS=Mus musculus GN=Srsf1 PE=1 SV=3
!HNRPM_MOUSE  Heterogeneous nuclear ribonucleoprotein M OS=Mus musculus GN=Hnrnpm PE=1 SV=3
!KHDR1_MOUSE  KH domain-containing, RNA-binding, signal transduction-associated protein 1 OS=Mus musculus GN=Khdrbs1 PE=1 SV=2
!K2C74_MOUSE  Keratin, type II cytoskeletal 74 OS=Mus musculus GN=Krt74 PE=2 SV=1
!DDX46_MOUSE  Probable ATP-dependent RNA helicase DDX46 OS=Mus musculus GN=Ddx46 PE=1 SV=2
!PRDX1_MOUSE  Peroxiredoxin-1 OS=Mus musculus GN=Prdx1 PE=1 SV=1
!RSRC2_MOUSE  Arginine/serine-rich coiled-coil protein 2 OS=Mus musculus GN=Rsrc2 PE=2 SV=1
!RBM27_MOUSE  RNA-binding protein 27 OS=Mus musculus GN=Rbm27 PE=2 SV=3
!SRS10_MOUSE  Serine/arginine-rich splicing factor 10 OS=Mus musculus GN=Srsf10 PE=1 SV=2
!ACTG_MOUSE  Actin, cytoplasmic 2 OS=Mus musculus GN=Actg1 PE=1 SV=1
!IF4A3_MOUSE  Eukaryotic initiation factor 4A-III OS=Mus musculus GN=Eif4a3 PE=2 SV=3
!LMNA_MOUSE  Prelamin-A/C OS=Mus musculus GN=Lmna PE=1 SV=2
!PR40A_MOUSE  Pre-mRNA-processing factor 40 homolog A OS=Mus musculus GN=Prpf40a PE=1 SV=1
!G3P_MOUSE  Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gapdh PE=1 SV=2
!DHX15_MOUSE  Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 OS=Mus musculus GN=Dhx15 PE=2 SV=2
!CWC22_MOUSE  Pre-mRNA-splicing factor CWC22 homolog OS=Mus musculus GN=Cwc22 PE=1 SV=1
!TCOF_MOUSE  Treacle protein OS=Mus musculus GN=Tcof1 PE=1 SV=1
!HNRPK_MOUSE  Heterogeneous nuclear ribonucleoprotein K OS=Mus musculus GN=Hnrnpk PE=1 SV=1
!SRSF7_MOUSE  Serine/arginine-rich splicing factor 7 OS=Mus musculus GN=Srsf7 PE=1 SV=1
!H2A1F_MOUSE  Histone H2A type 1-F OS=Mus musculus GN=Hist1h2af PE=1 SV=3
!LC7L3_MOUSE  Luc7-like protein 3 OS=Mus musculus GN=Luc7l3 PE=1 SV=1
!ARGL1_MOUSE  Arginine and glutamate-rich protein 1 OS=Mus musculus GN=Arglu1 PE=1 SV=2
!AL1A3_MOUSE  Aldehyde dehydrogenase family 1 member A3 OS=Mus musculus GN=Aldh1a3 PE=2 SV=1
!HNRL1_MOUSE  Heterogeneous nuclear ribonucleoprotein U-like protein 1 OS=Mus musculus GN=Hnrnpul1 PE=1 SV=1
!SAFB1_MOUSE  Scaffold attachment factor B1 OS=Mus musculus GN=Safb PE=1 SV=2
!HNRPL_MOUSE  Heterogeneous nuclear ribonucleoprotein L OS=Mus musculus GN=Hnrnpl PE=1 SV=2
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Table 1 Proteins detected in RBS and large RBS complexes by Mass spectrometry 
F9 cell lysates were separated by an velocity sedimentation on a 10-40% sucrose gradient, 
and fractions were collected and analyzed by EMSA using the BS2 + PBS probe to detect for 
the RBS and large RBS complexes. Fractions containing the RBS (fractions 3-4) or large 
RBS (fractions 5-7) complexes were pooled, separately, and protein complexes were 
immunoprecipitated with an anti-Trim28 antibody or control antibody. Precipitated proteins 
were resolved by SDS-Page, gel slices containing the proteins samples were excised, and 
proteins were subjected to tryptic digest followed by peptide identification by lc-ms/ms using 

!MFAP1_MOUSE  Microfibrillar-associated protein 1 OS=Mus musculus GN=Mfap1 PE=1 SV=1
!ITPR3_MOUSE  Inositol 1,4,5-trisphosphate receptor type 3 OS=Mus musculus GN=Itpr3 PE=1 SV=3
!HNRH2_MOUSE  Heterogeneous nuclear ribonucleoprotein H2 OS=Mus musculus GN=Hnrnph2 PE=1 SV=1
!SNRPA_MOUSE  U1 small nuclear ribonucleoprotein A OS=Mus musculus GN=Snrpa PE=2 SV=3

Control Antibody Immunoprecipitation in pooled fractions 5-7 (large RBS complex
!NONO_MOUSE  Non-POU domain-containing octamer-binding protein OS=Mus musculus GN=Nono PE=1 SV=3
!DDX5_MOUSE  Probable ATP-dependent RNA helicase DDX5 OS=Mus musculus GN=Ddx5 PE=1 SV=2
!SFPQ_MOUSE  Splicing factor, proline- and glutamine-rich OS=Mus musculus GN=Sfpq PE=1 SV=1
!DDX3X_MOUSE  ATP-dependent RNA helicase DDX3X OS=Mus musculus GN=Ddx3x PE=1 SV=3
!DDX17_MOUSE  Probable ATP-dependent RNA helicase DDX17 OS=Mus musculus GN=Ddx17 PE=2 SV=1
!CPSF6_MOUSE  Cleavage and polyadenylation specificity factor subunit 6 OS=Mus musculus GN=Cpsf6 PE=1 SV=1
!RBM14_MOUSE  RNA-binding protein 14 OS=Mus musculus GN=Rbm14 PE=1 SV=1
!SRSF2_MOUSE  Serine/arginine-rich splicing factor 2 OS=Mus musculus GN=Srsf2 PE=1 SV=4
!FUS_MOUSE  RNA-binding protein FUS OS=Mus musculus GN=Fus PE=2 SV=1
!LAP2A_MOUSE  Lamina-associated polypeptide 2, isoforms alpha/zeta OS=Mus musculus GN=Tmpo PE=1 SV=4
!TOP2A_MOUSE  DNA topoisomerase 2-alpha OS=Mus musculus GN=Top2a PE=1 SV=2
!K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4
!K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3
!K2C75_MOUSE  Keratin, type II cytoskeletal 75 OS=Mus musculus GN=Krt75 PE=1 SV=1
!HNRPF_MOUSE  Heterogeneous nuclear ribonucleoprotein F OS=Mus musculus GN=Hnrnpf PE=1 SV=3
!RBM27_MOUSE  RNA-binding protein 27 OS=Mus musculus GN=Rbm27 PE=2 SV=3
!CPSF5_MOUSE  Cleavage and polyadenylation specificity factor subunit 5 OS=Mus musculus GN=Nudt21 PE=2 SV=1
!SRSF1_MOUSE  Serine/arginine-rich splicing factor 1 OS=Mus musculus GN=Srsf1 PE=1 SV=3
!CPSF7_MOUSE  Cleavage and polyadenylation specificity factor subunit 7 OS=Mus musculus GN=Cpsf7 PE=1 SV=2
!ROA3_MOUSE  Heterogeneous nuclear ribonucleoprotein A3 OS=Mus musculus GN=Hnrnpa3 PE=1 SV=1
!SRRM1_MOUSE  Serine/arginine repetitive matrix protein 1 OS=Mus musculus GN=Srrm1 PE=1 SV=2
!G3P_MOUSE  Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus GN=Gapdh PE=1 SV=2
!SRSF5_MOUSE  Serine/arginine-rich splicing factor 5 OS=Mus musculus GN=Srsf5 PE=1 SV=2
!PRDX1_MOUSE  Peroxiredoxin-1 OS=Mus musculus GN=Prdx1 PE=1 SV=1
!PARP1_MOUSE  Poly [ADP-ribose] polymerase 1 OS=Mus musculus GN=Parp1 PE=1 SV=3
!THOC4_MOUSE  THO complex subunit 4 OS=Mus musculus GN=Alyref PE=1 SV=3
!SRSF3_MOUSE  Serine/arginine-rich splicing factor 3 OS=Mus musculus GN=Srsf3 PE=1 SV=1
!RBM26_MOUSE  RNA-binding protein 26 OS=Mus musculus GN=Rbm26 PE=1 SV=2
!HNRPM_MOUSE  Heterogeneous nuclear ribonucleoprotein M OS=Mus musculus GN=Hnrnpm PE=1 SV=3
!EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3
!ROA2_MOUSE  Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Mus musculus GN=Hnrnpa2b1 PE=1 SV=2
!DDX46_MOUSE  Probable ATP-dependent RNA helicase DDX46 OS=Mus musculus GN=Ddx46 PE=1 SV=2
!U2AF1_MOUSE  Splicing factor U2AF 35 kDa subunit OS=Mus musculus GN=U2af1 PE=1 SV=4
!HNRPK_MOUSE  Heterogeneous nuclear ribonucleoprotein K OS=Mus musculus GN=Hnrnpk PE=1 SV=1
!SSRP1_MOUSE  FACT complex subunit SSRP1 OS=Mus musculus GN=Ssrp1 PE=1 SV=2
!SRRM2_MOUSE  Serine/arginine repetitive matrix protein 2 OS=Mus musculus GN=Srrm2 PE=1 SV=3
!PR40A_MOUSE  Pre-mRNA-processing factor 40 homolog A OS=Mus musculus GN=Prpf40a PE=1 SV=1
!K22O_MOUSE  Keratin, type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=2 SV=1
!PR38A_MOUSE  Pre-mRNA-splicing factor 38A OS=Mus musculus GN=Prpf38a PE=1 SV=1
!M21D2_MOUSE  Protein MB21D2 OS=Mus musculus GN=Mb21d2 PE=1 SV=1
!SAFB1_MOUSE  Scaffold attachment factor B1 OS=Mus musculus GN=Safb PE=1 SV=2
!ITCH_MOUSE  E3 ubiquitin-protein ligase Itchy OS=Mus musculus GN=Itch PE=1 SV=2
!SNRPA_MOUSE  U1 small nuclear ribonucleoprotein A OS=Mus musculus GN=Snrpa PE=2 SV=3
!IF4A1_MOUSE  Eukaryotic initiation factor 4A-I OS=Mus musculus GN=Eif4a1 PE=2 SV=1
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a hybrid high-resolution quadrupole time-of-flight electrospray mass spectrometer. Results 
were analyzed using the MASCOT database search tool (Matrix Science).  
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