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Abstract

Relative Orbifold Donaldson–Thomas Theory and the Degeneration Formula

Zijun Zhou

We generalize the notion of expanded degenerations and pairs for a simple degen-

eration or smooth pair to the case of smooth Deligne-Mumford stacks. We then de-

fine stable quotients on the classifying stacks of expanded degenerations and pairs and

prove the properness of their moduli’s. On 3-dimensional smooth projective DM stacks

this leads to a definition of relative Donaldson-Thomas invariants and the associated

degeneration formula.
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Chapter 1

Introduction

1.1 Background and motivation

Let X be a smooth projective 3-fold. Motivated by many as a higher-dimensional gauge theory and

introduced by R. Thomas [Tho2000] as a holomorphic analogue of the Casson invariant, Donaldson–

Thomas theory counts ideal sheaves of curves on X in certain fixed topological classes.

A coherent sheaf I can be realized as an ideal sheaf of a 1-dimensional subscheme Z ⊂ X if and only

if it is torsion-free of rank 1 with trivial determinant, which means that DT theory can be viewed either

as a sheaf counting theory or a curve counting theory. The essential connection of DT theory to other

curve counting theories was first established by the work of MNOP [MNOP20069a, MNOP20069b],

known as the Gromov–Witten/Donaldson–Thomas correspondence. They conjectured and proved in

special cases that the generating functions of GW and DT theory can be equated to each other after

a change of variable. They adopted the localization technique in the toric setting and developed the

theory of DT topological vertex.

GW/DT correspondence has also been proved for local curves [BP20081,OP2010]. This is the first

non-toric case one can actually do computations. The crucial tool is the DT degeneration formula,

motivated from the degeneration formula in GW theory and developed by J. Li and B. Wu [LW2015].

With the degeneration formula in the simple degeneration case, one can “split” X into two simpler

spaces Y− and Y+, and express the DT invariant of X in terms of the relative theory of Y± with

respect to the divisor D.

The goal of this paper is to generalize the relative Donaldson–Thomas theory and the degeneration

formula to 3-dimensional smooth projective orbifolds, which in algebraic settings, refers to Deligne–
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Mumford stacks. One important reason why people care about orbifolds is Ruan’s crepant resolution

conjecture [Rua2006,BG2009]: the GW or DT invariants of a 3-orbifold satisfying the hard Lefschetz

condition should be equivalent to those of its crepant resolution (if exists), up to change of variables

and analytic continuations. Orbifold GW theory and its degeneration formula have already appeared

in [AGV2008,AF2016].

On the DT side, the orbifold topological vertex technique was developed in [BCY20121], for toric

Calabi–Yau 3-orbifold. Orbifold DT theory is also treated in [GT2013], for projective CY 3-orbifolds.

In both cases the CY condition gives a symmetric obstruction theory and defines a Behrend’s func-

tion ν, and the DT invariants are defined as weighted Euler characteristic with respect to ν. The

GW/DT correspondence for the orbifold topological vertex with transversal An-singularities was

proved in [Zon2015, RZ2013, RZ2015, Ros2015], and the crepant resolution conjecture for DT vertex

with transversal An-singularities was proved in [Ros2017].

We are particularly interested in the following picture, which indicates the relationship between

various theories involved, and will be pursued in the future work.

QH(Hilb(An))

GW(An × P1) DT(An × P1)

QH(Hilb([C2/Zn+1]))

GW([C2/Zn+1]× P1) DT([C2/Zn+1]× P1).

The upper triangle in the diagram is established in [Mau2009,MO20099,MO200910], and the vertical

lines stand for crepant transformation correspondences. We hope to establish the lower triangle to

complete the whole diagram.

1.2 Outline

For simplicity we work over the field of complex numbers C. We always use A∗, A
∗ to denote

appropriate cohomology and homology theory over Q, which could be Chow groups, Borel-Moore,

etc. K-theory will be either topological or algebraic K-theory, over Q.

In this paper we consider a smooth projective Deligne–Mumford stack W , and define the absolute

DT invariants with descendants and insertions, generalizing the DT invariants in the scheme case. For
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a smooth divisor D ⊂W , we also define the relative DT invariants of W with respect to D. We follow

the approach of introducing a perfect obstruction theory in each case, without the CY assumption.

For simplicity we assume that the divisor D is connected. The theory can be generalized easily for

disconnected D.

We treat the case of the simple degeneration in this paper. Let π : X → C be a projective family

of smooth Deligne–Mumford stacks of relative dimension 3. By a simple degeneration, we roughly

mean that π is in the form of a simple normal crossing near some point 0 ∈ C, with singular fiber

X0 = Y− ∪D Y+ splitting into two pieces. Let Xc be a smooth fiber.

Let F1K(X) be the subgroup of K(X)Q generated by the structure sheaves of 1-dimensional closed

substacks, and Fmr
1 K(X) be the multi-regular subgroup. We construct the virtual fundamental classes

[MP ]vir, [HilbPXc ]
vir, [N θ−,θ0

− ]vir, and [N θ+,θ0
+ ]vir in each case. One can define the generating functions

of absolute and relative DT invariants. Our main theorems are the following, with notations explained

in detail in Section 6,7 and 8.

Theorem 1.1 (Degeneration formula – cycle version).

i!c[MP ]vir = [HilbPXc ]
vir,

i!0[MP ]vir =
∑
θ∈ΛsplP

ιθ∗∆
!
(

[N θ−,θ0
− ]vir × [N θ+,θ0

+ ]vir
)
,

where the classes in the second row are viewed in 0×A1 MP .

Theorem 1.2 (Degeneration formula – numerical version). Given P ∈ F1K(Xc), assume that γi,±

are disjoint with D. We have

〈
r∏
i=1

τki(γi)

〉P
Xc

=
∑

θ−+θ+−P0=P,
S⊂{1,··· ,r},k,l

〈∏
i∈S

τki(γi,−)

∣∣∣∣∣Ck
〉θ−
Y−,D

gkl

〈∏
i 6∈S

τki(γi,+)

∣∣∣∣∣∣Cl
〉θ+
Y+,D

,

where θ± ∈ F1K(Y±) range over all configurations that satisfy θ− + θ+ − P0 = P .

Theorem 1.3 (Degeneration formula – numerical version for multi-regular case). Given β ∈ Fmr
1 K(Xc)/F0K(Xc),

assume that γi,± are disjoint with D. We have

〈
r∏
i=1

τki(γi)

〉β,ε
Xc

=
∑

β−+β+=β,
ε−+ε+=ε+m,
S⊂{1,··· ,r},k,l

〈∏
i∈S

τki(γi,−)

∣∣∣∣∣Ck
〉β−,ε−
Y−,D

gkl

〈∏
i 6∈S

τki(γi,+)

∣∣∣∣∣∣Cl
〉β+,ε+

Y+,D

,
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where β− ∈ Fmr
1 K(Y−)/F0K(Y−), β− ∈ Fmr

1 K(Y+)/F0K(Y+) range over all curve classes that coin-

cide on D and satisfy β− + β+ = β.

Corollary 1.4. Given β ∈ Fmr
1 K(Xc)/F0K(Xc), assume that γi,± are disjoint with D. Then,

Zβ

(
Xc; q

∣∣∣∣∣
r∏
i=1

τki(γi)

)
=

∑
β−+β+=β

S⊂{1,··· ,r},k,l

gkl

qm
Zβ−,Ck

(
Y−, D; q

∣∣∣∣∣ ∏
i∈S

τki(γi,−)

)

·Zβ+,Cl

Y+, D; q

∣∣∣∣∣∣
∏
i 6∈S

τki(γi,+)

 .

The paper is organized as follows. In Section 2 we generalize J. Li’s construction of expanded

degenerations and pairs to the orbifold case, and in Section 3 we discuss the concept of stable quotients.

Section 3,4,5 aim to define and prove the properness of the moduli stacks of stable quotiens on the

classifying stacks of expanded degenerations and pairs. Finally in Section 6,7 and 8 we specialize to the

case of 3-orbifolds, construct perfect obstruction theories on such stacks and prove the degeneration

formula, for both cycle version and numerical version.
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Chapter 2

Stacks of expanded degenerations

and pairs

In this section we construct the stacks of expanded degenerations and expanded pairs, which serve as

the target spaces for relative and degeneration of curve-counting theories. There are several approaches

to this construction. The first algebraic-geometric approach is due to J. Li [Li2001], where the author

explicitly constructs standard families of expanded degenerations and pairs, and then forms the stacks

as limits of them. Various equivalent approaches are well summarized in the paper [ACFW2013], which

works with algebraic stacks and proves the independence of the resulting stacks on the original target.

We will mainly adopt J. Li’s explicit process. In fact, the following are just direct generalizations

of his method to the case of Deligne–Mumford stacks. We will define the notions of expanded degen-

erations and pairs, build standard families of expanded degenerations and pairs, and then construct

the general stacks using the standard models as coverings. Our basic setting is as follows.

Definition 2.1. Let Y be a separated Deligne–Mumford stack of finite type over C, and D ⊂ Y be a

locally smooth connected effective divisor. By locally smooth we mean that étale locally near a point

on D, the pair (Y,D) is a pair of a smooth stack and a smooth divisor. We call such (Y,D) a locally

smooth pair. We call it a smooth pair if both Y and D are smooth.

Definition 2.2. Let X be a separated Deligne–Mumford stack of finite type over C, and (C, 0) be

a smooth pointed curve over C. A locally simple degeneration is a flat morphism π : X → C, with

central fiber X0 = Y− ∪D Y+, where Y± ⊂ X0 are closed substacks, (Y±, D) are locally smooth pairs,

and they intersect transversally as Y− ∩ Y+ = D.
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By Y−∪D Y+ we mean the pushout in the 2-category of algebraic stacks in the sense of [AGV2008].

We denote the divisor D in Y± by D±.

By transversal intersection, we mean the following. For any point p in the divisor D, there are

étale neighborhoods V of 0 ∈ C and U of p ∈ X, such that the following diagram is commutative,

with all horizontal maps étale.

Spec C[x,y,t]
(xy−t) × An

π

��

U

π|U
��

étoo ét // X

π

��
SpecC[t] V

étoo ét // C.

In other words, there is a common étale neighborhood V of SpecC[t] and C, and a common étale

neighborhood U of Spec C[x,y,t]
(xy−t) × An and X.

We call such data a simple degeneration if furthermore (Y±, D±) are smooth pairs, and for any

c ∈ C, c 6= 0, the fiber Xc := π−1(c) is smooth.

We call such U , together the restricted family πU , a standard local model.

Let N− := ND/Y− and N+ := ND/Y+
. Check on local coordinates and one can easily find that

N− ⊗N+
∼= OD.

Remark 2.3. By Artin’s algebraic approximation theorem, our definition of transversality is equivalent

to that in the language of formal neighborhoods, as in [Li2001].

Remark 2.4. In the study of degenerations, we are only interested in local behaviors around the

singular divisor. For convenience, we can always replace the curve C by an étale neighborhood

around 0 ∈ C, and just assume C = A1.

2.1 Expanded degenerations and pairs

For the central fiber X0 = Y− ∪D Y+, consider the P1-bundle over D,

∆ := PD(OD ⊕N+) ∼= PD(N− ⊕OD),

with two sections D− and D+ corresponding to the 0-sections of the two expressions, where ND−/∆
∼=

N+ and ND+/∆
∼= N−. ∆ will often be called a “bubble component”.

For an integer k ≥ 0, take k copies of ∆, indexed by ∆1, · · · ,∆k, and insert them between ∆0 := Y−
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and ∆k+1 := Y+. We have

X0[k] := Y− ∪D ∆1 ∪D · · · ∪D ∆k ∪D Y+,

where D− ⊂ ∆i is glued to D+ ⊂ ∆i+1, i = 0, · · · , k.

X0[k] is a Deligne–Mumford stack of nodal singularities, with k + 2 irreducible components. Fol-

lowing [AF2016], we call X0[k] an expanded degeneration of length k with respect to X0. We index

the divisors in X0[k] in order by D0, · · · , Dk.

For the expanded pair, consider a locally smooth pair (Y,D). In practice, the pair we mostly care

about would be (Y±, D±). Denote by N the normal bundle ND/Y . In the same manner, consider the

P1-bundle

∆ := PD(OD ⊕N),

and for an integer l ≥ 0, let

Y [l] := Y ∪D ∆1 ∪D · · · ∪D ∆l,

where the gluing is proceeded in the same manner.

Denote by D[l] the last divisor D− ⊂ ∆l (in cases where l is implicit we might also use D[∞]).

(Y [l], D[l]) forms a new locally smooth pair. We call (Y [l], D[l]) the expanded pair of length l with

respect to (Y,D). We index the divisors in (Y [l], D[l]) by D0, · · · , Dl−1, Dl = D[l].

Remark 2.5. For X0[k] (resp. Y [l]) above, we can introduce a natural (C∗)k (resp. (C∗)l) -action: the

i-th factor of (C∗)k (resp. (C∗)l) acts on ∆i fiberwise, and trivially on Y± (resp. Y ).

2.2 Expanded degeneration of standard local model

Now we describe the process of building standard family of expanded degenerations. First look at the

baby case,

π : X = Spec
C[x, y, t]

(xy − t)
→ A1 = SpecC[t],

with central fiber X0 = Spec C[x,y]
(xy) and singular divisor D = pt. where Y− is given by the equation

(y = 0). Consider the base change

m : A2 → A1, (t0, t1) 7→ t0t1.
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The family becomes

π : X ×A1 A2 = Spec
C[x, y, t0, t1]

(xy − t0t1)
→ A2 = SpecC[t0, t1],

with smooth generic fibers, and fibers over the axes t0t1 = 0 are isomorphic to X0.

Blow up X ×A1 A2 along the singular divisor D ×A1 0, and denote it by X̃(1). It is the proper

transform of the degree 2 hypersurface (xy− t0t1 = 0) ⊂ A4 in Bl0 A4 = OP3(−1) ⊂ A4×P3. We have

X̃(1) ∼= OP1×P1(−1,−1),

where P1 × P1 ⊂ P3 is given by the Segre embedding.

The next step is to contract one factor of the P1 × P1. For details one can look up in [Li2001],

where calculations are given in explicit coordinates. The contraction map and resulting space are

p : X̃(1)→ X(1), X(1) := OP1(−1)⊕2,

with the associated projection

π : X(1)→ A2.

X(1) obtained this way is a resolution of singularities of X×A1 A2. This is the first standard expanded

degeneration family for the local model X → A1. The properties of this family will be summarized in

the next subsection.

Remark 2.6. In the contraction OP1×P1(−1,−1)→ OP1(−1)⊕2, the choice of the P1 factor to contract

is not canonical. Here we adopt the convention that x is the coordinate on Y− and y is the coordinate

on Y+ respectively, and we choose to contract the first P1-factor. The global criterion for this choice is:

the restriction of resulting family π : X(1)→ A2 to the coordinate line L0 = (t1 = 0) is a smoothing

of the divisor D0 ⊂ X(1)×A2 0 ∼= X[1].

Different choices of contracted factors give different resolutions. Our baby case is actually the

simplest example of Atiyah’s flop.

Remark 2.7. For those familiar with toric geometry, the relationship between X ×A1 A2, X̃(1) and

X(1) can be understood as follows. Let ei, 1 ≤ i ≤ 3 be the standard basis in R3. X ×A1 A2 is the

toric variety associated to the cone Σ spanned by {e1, e2, e3, e1 + e3− e2}. X̃(1) is obtained by adding

the vector e1 + e3 and refining Σ; X(1) is obtained by simply adding the 2-dimensional face spanned

by e1 and e3 to Σ. One can easily see that X(1) is a resolution of X×A1 A2, but not the unique choice.
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2.3 Standard families of expanded degenerations and pairs –

gluing

For general locally simple degenerations π : X → A1, we glue the local models together.

Étale locally around a point p ∈ D, the family π : X → A1 is of the standard form, i.e. there

is an étale neighborhood Vp of 0 ∈ A1, and a common étale neighborhood p ∈ Up of X ×A1 Vp

and
(

Spec C[x,y,t,~z]
(xy−t)

)
×SpecC[t] Vp, where ~z = (z1, · · · , zn), n = dimD. Denote this local family by

πp : Up → Vp. Let Up(1) be the restriction on Up of the standard local model defined in the previous

subsection.

Étale locally around a point p 6∈ D, we can find an étale neighborhood Up of p, with Up ∩D = ∅.

In this case we just define Up(1) := Up ×A1 A2, which is already smooth.

Now {Up | p ∈ X} form an étale covering U =
∐
p Up → X, consisting of standard local models.

We have the underlying relation

R := U ×X U // // U // X.

where we denote the two projection maps by q1 and q2, and the inverse map switching the two factors

by i : R→ R.

Now we define p : U(1) → U and π : U(1) → A2, just as the disjoint union of all Up(1). Let

R(1) := R×q1,U U(1), then we have the relation

R(1) // // U(1),

where the upper arrow is pr2 : R(1) = R×q1,U U(1)→ U(1), and the lower arrow is pr2 ◦i.

It is easy to check that R(1) ⇒ U(1) satisfies the axioms of a groupoid scheme in the sense of

[LMB2000], and the map R(1)→ U(1)× U(1) is separated and quasi-compact. Thus by Proposition

4.3.1 of [LMB2000], the stack-theoretic quotient X(1) := [R(1) ⇒ U(1)] defines a Deligne–Mumford

stack of finite type. The maps p : U(1)→ U , π : U(1)→ A2 also glue globally on the stack.

Definition 2.8. Define X(1) := [R(1) ⇒ U(1)], the associated stack of the groupoid scheme. We

have the projection p : X(1) → X, and the family map π : X(1) → A2, giving the commutative
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diagram

X(1)
p //

π

��

X

π

��
A2 m // A1.

(2.1)

We call π : X(1) → A2 the standard family of length-1 expanded degenerations, with respect to

X → A1.

Note that if we compose π : X(1) → A2 with the second projection pr1 : A2 → A1, (t0, t1) 7→ t1,

the resulting π1 : X(1) → A1 is still a locally simple degeneration. This can be checked on the local

model in explicit coordinates.

Now from X(k) we proceed by induction to construct X(k + 1). Suppose that we already have

π : X(k) → Ak+1, and if projected to the last factor, the composite πk : X(k) → Ak+1 prk−−→ A1 is a

locally simple degeneration. Applying the k = 1 procedure, we obtain the 2-dimensional family

πk(1) : X(k)(1)→ A2,

and we take X(k + 1) = X(k)(1) to be the (k + 1)-th space.

It remains to define the family map. Consider the projection to the first k factors πck : X(k)
π−→

Ak+1
pr1,··· ,k−−−−−→ Ak, and take the composite

p(k) ◦ πck : X(k + 1) = X(k)(1)→ X(k)→ Ak.

Combine the two maps

π = (πk(1), p(k) ◦ πck) : X(k + 1)→ Ak × A2 ∼= Ak+2.

This is the standard length-(k + 1) expanded degeneration family.

Definition 2.9. We have constructed X(k) with projection p : X(k) → X and the family map

π : X(k)→ Ak+1, giving the commutative diagram

X(k)
p //

π

��

X

π

��
Ak+1 m // A1,

(2.2)

where the map m : Ak+1 → A1 is the multiplication (t0, · · · , tk) 7→ t0t1 · · · tk.
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We call π : X(k)→ Ak+1 the standard family of length-k expanded degenerations, with respect to

X → A1.

Now let’s construct the standard families of expanded pairs. There are two equivalent ways of

doing this. Let (Y,D) be a locally smooth pair.

Approach 1. Consider Y (1) := BlD×0(Y × A1), the blow-up of Y × A1 at the closed substack

D × 0. We have the projection π : Y (1) → A1, which is a locally simple degeneration, with central

fiber Y ∪D ∆.

Apply the X(k)-construction as above with respect to this locally simple degeneration, and let

Y (k) := Y (1)(k − 1)deg, where we put the subscript “deg” to indicate it’s the same construction as

above, rather than the “Y (k)” construction we are defining for locally smooth pairs. Here we choose Y

to be the “–” piece and ∆ to be the “+” piece. We have the projection π : Y (k)→ Ak, and contraction

map p : Y (k)→ Y (1)→ Y , which is the composition of the contraction in the degeneration case and

the blow-up. Let D(k) ⊂ Y (k) be the proper transform of D ⊂ Y . Then (Y (k), D(k)) forms a locally

smooth pair.

Definition 2.10. We have constructed the family π : Y (k)→ Ak, with contraction map p : Y (k)→ Y ,

and the locally smooth divisor D(k) ⊂ Y (k). We call π : Y (k) → Ak the standard family of length-k

expanded pairs, with respect to (Y,D). D(k) ⊂ Y (k) is called the distinguished divisor.

Approach 2 (successive blow-up construction). Again we let Y (1) := BlD×0(Y×A1). Assume that

we already have (Y (k), D(k)), which is a locally smooth pair. Define Y (k+1) := BlD(k)×0(Y (k)×A1).

The family map π : Y (k + 1)→ Ak+1 is defined obviously. The following proposition says that these

two approaches are actually equivalent.

Proposition 2.11. Let (Y (k), D(k)) and π : Y (k) → Ak be defined as in Approach 1. There is an

isomorphism Y (k) ∼= BlD(k−1)×0(Y (k − 1)× A1), making the following diagram commutative.

Y (k)
∼ //

π

��

BlD(k−1)×0(Y (k − 1)× A1)

(π,IdA1 )

��
Ak Id // Ak−1 × A1.

The difference of the two definitions lies in the contraction p : Y (k)→ Y (k− 1). If we look at this

contraction on the base, the first one is given by (t1, · · · , tk) 7→ (t1, · · · , tk−2, tk−1tk) and the other is

(t1, · · · , tk) 7→ (t1, · · · , tk−1). In other words, the contraction Y (k) ∼= BlD(k−1)×0(Y (k − 1) × A1) →

Y (k − 1) is different from the contraction p in Approach 1.
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The successive blow-up definition, although easier to describe and appearing more natural, appears

less compatible with the X(k) construction. One can see that later via the different (C∗)k-actions.

Both approaches appear in J. Li’s work on degeneration theories, and both will be used during the

proof of the properness of Quot-stacks.

Remark 2.12. Before stating the properties of the standard families, we introduce the following no-

tation. Denote by (Y (k)◦, π◦) the “reverse” standard family of expanded pairs. Let Y (k)◦ be the

same as Y (k), but π◦ := r ◦ π : Y (k)◦ → Ak, where r : Ak → Ak is the “order-reversing” map

(t1, · · · , tk) 7→ (tk, · · · , t1). For example, Y (1)◦ = Bl0×D(A1 × Y ), and for larger k the construction

is conducted via base change from the left.

2.4 Properties of standard families

Let’s fix some notations on Ak+1 for later use.

1) There is a (C∗)k-action on the base Ak+1. For λ = (λ1, · · · , λk) ∈ (C∗)k, t = (t0, · · · , tk) ∈ Ak+1,

let

λ · t :=

(
λ1t0,

λ2

λ1
t1, · · · ,

λk
λk−1

tk−1, λ
−1
k tk

)
. (2.3)

Under this action (and trivial action on A1), and the multiplicative group homomorphism (C∗)k →

C∗, (λ1, · · · , λk) 7→ λ1 · · ·λk, the multiplication map m : Ak+1 → A1 is equivariant.

2) For a subset I = {i0, · · · , il} ⊂ {0, · · · , k} with |I| = l + 1 ≤ k + 1 and i0 < · · · < il. Let

τI : Al+1 → Ak+1 be the embedding given by

ti =


tip , if i = ip for some p,

1, if i 6= ip for any p .

3) Again for a subset I ⊂ {0, · · · , k}. Let

UI := {(t0, · · · , tk) | ti 6= 0, ∀i 6∈ I},

which is a product of A1’s and Gm’s. We have the natural open immersion τ̃I : UI → Ak+1.

For two subsets I, I ′ ⊂ {0, · · · , k} as above, we have the natural isomorphism given by reordering

the coordinates

τ̃I,I′ : UI
∼−→ UI′ .
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4) For 0 ≤ i ≤ k, denote by pri : Ak+1 → A1 the i-th projection (t0, · · · , tk) 7→ ti.

Now we state the properties of standard families of expanded degenerations π : X(k) → Ak+1.

They can be proved by induction.

Proposition 2.13. 1) X(k) is a separated Deligne–Mumford stack of finite type over C, of dimension

n+k+ 1, where n = dimX0. Moreover, if π : X → A1 is proper, the family map π : X(k)→ Ak+1

is proper; if X is smooth, X(k) is smooth.

2) For t = (t0, · · · , tk) ∈ Ak+1, if t0 · · · tk 6= 0, the fiber of the family over t is isomorphic to the

generic fibers Xc, c 6= 0 in the original family π : X → A1.

Let I ⊂ {0, · · · , k} be a subset with 1 ≤ |I| = l + 1 ≤ k + 1. If ti = 0, ∀i ∈ I and tj 6= 0, ∀j 6∈ I,

then the fiber over t is isomorphic to X0[l].

In particular, the fiber over 0 ∈ Ak+1 is isomorphic to the length-k expanded degeneration X0[k].

3) There is a (C∗)k-action on X(k), making the diagram (2.2) (C∗)k-equivariant. This action gives

isomorphisms of fibers in the same strata described as above. The induced action of the stabilizer

on a fiber isomorphic to X0[l] is the same as described in Remark 2.5.

4) There are also discrete symmetries in X(k), away from the central fiber. For two subsets I, I ′ ⊂

{0, · · · , k} with |I| = |I ′|, the natural isomorphisms τ̃I,I′ : UI
∼−→ UI′ induce isomorphisms on the

families

τ̃I,I′,X : X(k)
∣∣
UI

∼−→ X(k)
∣∣
UI′
,

extending those given by (C∗)k-actions on smooth fibers.

Moreover, restricted to the embedding τI : Al+1 → Ak+1, we have X(k)×Ak+1,τI Al+1 ∼= X(l), and

under the (C∗)k−l-“translations” UI ∼= Al+1 × (C∗)k−l, we have the identification

X(k)
∣∣
UI
∼= X(l)× (C∗)k−l.

Remark 2.14. Here (t0, · · · , tk) ∈ Ak+1 means a closed point Ak+1. But all definitions and descriptions

can be easily generalized to an arbitrary point SpecK → Ak+1. In this case the statement ti 6= 0 or

ti = 1 means that the image of ti ∈ C[t0, · · · , tk] in K is 6= 0 or = 1.

Remark 2.15. We say something about the (C∗)k-action. It’s easy to define the action on local models.

To glue the actions on local models together, say for X(1), the key observation is that the action is

actually trivial on the X factor and only nontrivial on the extra A1 factor. Hence starting from an
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étale covering of X, one can get a natural C∗-equivariant covering of X(1), which easily descends to

a C∗-action on X(1).

For π : Y (k)→ Ak, again we need some notations on Ak. Here we use (t1, · · · , tk) for coordinates

of the base Ak. We adopt almost the same notations τI , τ̃I , and τ̃I,I′ , except that the indices range

from 1 to k instead of 0 to k.

The only difference is the group action. The group (C∗)k (instead of (C∗)k−1) acts on the base

Ak, but differently for the two different constructions. Consider λ = (λ1, · · · , λk) ∈ (C∗)k, t =

(t1, · · · , tk) ∈ Ak.

For Approach 1, the action is

λ · t :=

(
λ1t1,

λ2

λ1
t2, · · · ,

λk
λk−1

tk

)
, (2.4)

whereas for the successive blow-up construction (Approach 2), the action is

λ · t := (λ1t1, λ2t2, · · · , λktk).

The standard families of expanded pairs have the following properties, some of which follows from

the properties of X(k) and the other can be easily proved by induction.

Proposition 2.16. 1) Y (k) is a separated Deligne–Mumford stack of finite type over C, of dimension

n+ k, where n = dimY . If Y is proper, then the map π is proper. Moreover, if (Y,D) is a smooth

pair, so is (Y (k), D(k)).

D(k) ∼= D × Ak, and the restriction of p and π on D(k) can be identified with the two projections

to D and Ak respectively.

2) For t = (t1, · · · , tk) ∈ Ak, if t1 · · · tk 6= 0, then the fiber of the pair over t is isomorphic to the

original pair (Y,D).

Let I ⊂ {1, · · · , k} be a subset with 1 ≤ |I| = l ≤ k. If ti = 0, ∀i ∈ I and tj 6= 0, ∀j 6∈ I, then the

fiber over t is isomorphic to (Y [l], D[l]).

In particular, the fiber over 0 ∈ Ak is isomorphic to the length-k expanded pair (Y [k], D[k]).

3) There is a (C∗)k-action on Y (k), in both constructive approaches, compatible to the corresponding

actions on Ak. This action gives isomorphisms of fibers in the same strata as described above.

In particular, the induced action of the stabilizer on the a fiber isomorphic to Y [l] is the same as

described in Remark 2.5.
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4) There are also discrete symmetries in Y (k), away from the central fiber. For two subsets I, I ′ ⊂

{1, · · · , k} with |I| = |I ′| = l, the natural isomorphisms τ̃I,I′ : UI
∼−→ UI′ induce isomorphisms on

the families

τ̃I,I′,Y : Y (k)
∣∣
UI

∼−→ Y (k)
∣∣
UI′
,

extending those given by (C∗)k-actions on smooth fibers.

The discrete actions restricted on D(k) ∼= D × Ak are just a reordering of the coordinates of the

Ak factors.

Moreover, if restricted to the embedding τI : Al → Ak we have Y (k) ×Ak,τI Al ∼= Y (l), and under

the (C∗)k−l-“translations” UI ∼= Al × (C∗)k−l, we have the identification

Y (k)
∣∣
UI
∼= Y (l)× (C∗)k−l.

Remark 2.17. For the (C∗)k-action we have one more factor than the X(k) case. By construction

the action on X(k) gives a (C∗)k−1-action on Y (k). The last C∗ comes form the original action in

Y (1) = BlD×0(Y × A1). One can see again that an arbitrary étale covering of Y would give us a C∗-

equivariant covering of Y (1), and hence (C∗)k-equivariant covering of Y (k), which makes the action

available. In the successive blow-up construction the action is more obvious – the blow-up process

brings one C∗-factor each time.

Standard families of expanded degenerations and pairs are closely related to each other. Consider

a locally simple degeneration π : X → A1, with central fiber X0
∼= Y− ∪D Y+.

1) (Restriction to hyperplanes) Let Hi ⊂ Ak+1 be the coordinate hyperplane defined by ti = 0,

0 ≤ i ≤ k. The restriction of the family π : X(k)→ Ak+1 to Hi is a “smoothing” of all divisors except

Di, in the following sense.

Proposition 2.18. Composing π with the projection pri : Ak+1 → A1 to the factor ti, we obtain

πi : X(k)→ A1. Then πi is a locally simple degeneration.

Denote the singular divisor by Di(k), and the central fiber decomposition by X(k) ×πi,A1 0 =:

X(k)i− ∪Di(k) X(k)i+. Then one has

Di(k) ∼= Ai ×D × Ak−i, X(k)i−
∼= Y−(i)× Ak−i, X(k)i+

∼= Ai × Y+(k − i)◦.

Moreover, the restriction of the map π : X(k) → Ak+1 on these two components are given in the
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following diagrams

X(k)i−
π0,··· ,i−1

||
πi

��

IdAk−i

##

X(k)i+
IdAi

||
πi

��

π◦i+1,··· ,k

##
Ai 0 Ak−i Ai 0 Ak−i

where the map from Y−(i), Y+(k−i)◦ to the corresponding bases are just the maps of standard families

of expanded pairs.

The gluing is along Di(k) ∼= D−(i)× Ak−i ∼= Ai ×D × Ak−i ∼= Ai ×D+(k − i)◦, where the order

of copies of A1 here reflects the map π|D; and we have Di(k) ∩Dj(k) = ∅ for i 6= j.

All statements above are compatible with the corresponding (C∗)k-actions.

2) (Restriction to lines) Let Li ⊂ Ak+1 be the coordinate line corresponding to ti, 0 ≤ i ≤ k. The

restriction of the family π : X(k) → Ak+1 to Li is a “smoothing” of the divisor Di, in the following

sense.

Proposition 2.19. π|Li : X(k)
∣∣
Li
→ Li ∼= A1 is a locally simple degeneration, with central fiber

decomposition X0[k] = Y−[i] ∪Di Y+[k − i], and generic fiber isomorphic to X0[k − 1].

Moreover, we have a description of the total space:

X(k)
∣∣
L0

is Y−(1) ∪D−(1) (A1 × Y+[k − 1]);

X(k)
∣∣
Li

for 1 ≤ i ≤ k − 1 is

Y−[i](1) ∪D−[i](1) (A1 × Y+[k − i− 1]) ∼= (Y−[i− 1]× A1) ∪D−[i−1]×A1 Y+[k − i](1)◦;

X(k)
∣∣
Lk

is (Y−[k − 1]× A1) ∪D−[k−1]×A1 Y+(1)◦.

2.5 Stacks of expanded degenerations and pairs

Now we can define the stacks parameterizing expanded degenerations and pairs. We start with the

relative case.

Let (Y,D) be a locally smooth pair. We have constructed the standard family π : Y (k) → Ak,

with (C∗)k-action on both Y (k) and the base, making the family maps equivariant. We also have

isomorphisms on open substacks τ̃I,I′,Y : Y (k)
∣∣
UI

∼−→ Y (k)
∣∣
UI′

, compatible with the isomorphisms

τ̃I,I′ : UI
∼−→ UI′ , where I, I ′ ⊂ {1, · · · , k} have the same number of elements |I| = |I ′| = l.

These discrete symmetries do not form a group action on Y (k) or Ak, but they give étale equivalence
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relations. We rephrase the discrete symmetries as the relations

RI,I′,Ak := Al × (C∗)k−l // // Ak, (2.5)

RI,I′,Y (k) := Y (l)× (C∗)k−l //// Y (k),

where the maps are given by open immersions Al×(C∗)k−l ∼−→ UI ↪→ Ak and Al×(C∗)k−l ∼−→ UI′ ↪→ Ak

respectively, and similar for Y (k).

The étale equivalence relation on the whole space is just the union

Rd,Ak :=
∐

1≤|I|=|I′|≤k

RI,I′,Ak , Rd,Y (k) :=
∐

1≤|I|=|I′|≤k

RI,I′,Y (k),

where “d” refers to “discrete”.

In other words, we have Rd,Y (k) = π∗Rd,Ak for π : Y (k)→ Ak, or the following Cartesian diagram,

Rd,Y (k)
//

��

Y (k)× Y (k)

��
Rd,Ak // Ak × Ak.

Let Sk be the symmetric group acting on Ak by permuting the coordinates. The discrete relation on

Ak is a sub-relation of the Sk-action

Rd,Ak
� � // Sk × Ak //// Ak.

Hence the two maps Rd,Ak ⇒ Ak are open immersions followed by a disjoint trivial covering, which is

quasi-affine and étale.

Now let’s describe the combined equivalence relation. Sk ⊂ GL(k) acts on (C∗)k by conjugation

and we can form the semidirect product (C∗)koSk. We have the following smooth equivalence relation

∼ generated by (C∗)k-action and discrete symmetries, which is quasi-compact and separated,

R∼,Ak := (C∗)k ×Rd,Ak
� � // (C∗)k o Sk × Ak //// Ak.
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We also have the similar relation R∼,Y (k) on Y (k) and they form a non-Cartesian diagram

R∼,Y (k) = (C∗)k ×Rd,Y (k)
// //

��

Y (k)

��
R∼,Ak = (C∗)k ×Rd,Ak //// Ak.

R∼,Ak and R∼,Y (k) are the equivalence relations generated by the (C∗)k-action and discrete symme-

tries.

Consider the quotients, Artin stacks [Ak/R∼,Ak ] of dimension 0 and [Y (k)/R∼,Y (k)] of dimension

(dimY − k), with induced 1-morphism π : [Y (k)/R∼,Y (k)]→ [Ak/R∼,Ak ].

Now consider the embeddings τI : Al ↪→ Ak and τI,Y : Y (l) ↪→ Y (k), which are compatible

with the equivalence relation. Thus we have embeddings of Artin stacks [Al/R∼,Al ] → [Ak/R∼,Ak ]

and [Y (l)/R∼,Y (l)]→ [Y (k)/R∼,Y (k)]. In fact they are open immersions. To see this one can use the

property Y (k)|UI ∼= Y (l)×(C∗)k−l and take the smooth covers Al×(C∗)k−l → Al and Y (l)×(C∗)k−l →

Y (l). Now it is clear that these immersions form inductive systems, leading to the following definition.

Definition 2.20. Define A := lim−→ [Ak/R∼,Ak ] to be the stack of expanded pairs, with respect to

(Y,D), and let Y := lim−→ [Y (k)/R∼,Y (k)] be the universal family of expanded pairs. There is a family

map π : Y→ A, which is of Deligne–Mumford type and is proper.

We interpret the definition in the categorical sense. For a fixed map ξ0 : S → Ak, pulling back the

standard family Y (k), one obtains π : YS := ξ∗0Y (k)→ S, a family of expanded pairs over (S, ξ0). The

equivalence relation acts on ξ0 by acting on the target, and for maps related by this relation we get

isomorphic families of expanded pairs. In this way one can think of a map ξ0 as a family of expanded

pairs over S, up to the action of the equivalence relation.

Given a morphism of schemes f : T → S, and a map ξ : S → Ak, one can take the composite

ξ ◦ f : T → Ak. The corresponding family of expanded pairs over T is just given by YT = f∗YS . By

the following lemma we see that it is unique up to unique isomorphism.

Lemma 2.21. Suppose one has the following 2-commutative diagram

YT
F //

��

YS

��
T

f // S.

Then the 1-morphism of stacks F is representable. As a consequence, F has no nontrivial 2-isomorphisms.
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Proof. By Lemma 4.4.3 of [AV2002], it suffices to prove that the homomorphisms between isotropy

groups of geometric points are monomorphisms. Since maps between fibers are just maps between

expanded pairs Y [k] → Y [l], it suffices to prove for those maps. But any map Y [k] → Y [l] is a

successive composition of contractions of bubbles and embeddings, which is obviously representable.

Let S be a scheme. An object ξ̄ ∈ A(S) is a compatible system of objects ξk ∈ [Ak/R∼,Ak ](S).

By construction, an object ξ ∈ [Ak/R∼,Ak ](S) is given by a “descent datum” over S, i.e. a map

ξ : Sξ → Ak, where Sξ =
∐
Si → S is a surjective étale covering of S which satisfies the descent

compatibility on overlaps; in other words, we have a map rξ : Rξ := Sξ ×S Sξ → R∼,Ak compatible

with the groupoid structure. By the interpretation above, one can view this as a family of expanded

pairs over Sξ.

The 2-isomorphisms are as follows. Given another ξ′ : Sξ′ → Ak′ representing the same object,

we can embed Ak and Ak′ into a larger base Ak′′ for k′′ ≥ k, k′, and pass to the refinement Sξξ′ :=

Sξ ×S Sξ′ . Then for sufficiently large k′′, the two resulting maps Sξξ′ → Ak′′ give the same object on

the k′′ level. In other words, they factor through the relation R∼,Ak′′ → Ak′′ × Ak′′ .

For a map of schemes f : T → S, passing to the étale cover, we have fξ : Tξ := T ×S Sξ → Sξ.

Then the 1-arrow is defined by the composition ξ ◦ f .

In particular, for a fixed object ξ̄ ∈ A(S), the stabilizer group of this object is as follows. Take a

representative ξ : Sξ → Ak. The stabilizer group of this representative is the group scheme Aut∼(ξ, k)

over Sξ in the following Cartesian diagram,

Aut∼(ξ, k) //

��

Sξ //

∆◦ξ
��

S

R∼,Ak // Ak × Ak .

Note that this group scheme actually does not depend on k for large k, and by descent theory of affine

morphisms it glues to a group scheme over S. We denote it by Aut∼(ξ̄), which is independent of Sξ

and k for large k. As a result, one can see that A is actually a 0-dimensional Artin stack.

Now let’s apply the same procedure to a locally simple degeneration π : X → A1. We have

constructed the standard family π : X(k) → Ak+1, again with a compatible (C∗)k-actions on X(k)

and the base. We introduce smooth equivalence relations on X(k) and Ak+1 in the same manner. For

k ≥ 0, [Ak+1/R∼,Ak+1 ] and [X(k)/R∼,X(k)] also form inductive systems.

Definition 2.22. Define C := lim−→ [Ak+1/R∼,Ak+1 ] to be the stack of expanded degenerations, with
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respect to the locally simple degeneration π : X → A1, and let X := lim−→ [X(k)/R∼,X(k)] be the

universal family of expanded degenerations. There is a family map π : X → C, of Deligne–Mumford

type and proper, making the following diagram commute (but not Cartesian):

X
p //

π

��

X

π
��

C
p // A1.

Both C and X can be viewed as Artin stacks over A1. C is 1-dimensional and X is of dimension

dimX.

Given an A1-map ξ : S → Ak+1, a family of expanded degenerations π : XS → S over (S, ξ) is

obtained by pull back of the standard family. Given a morphism of A1-schemes f : (T, η) → (S, ξ),

the pull-back 1-morphism is just given by f∗XS = XT , unique up to 2-isomorphisms.

For an A1-scheme S, an object ξ̄ ∈ C(S) is represented by an A1-map ξ : Sξ → Ak+1, where

Sξ =
∐
Si is a surjective étale covering of S. Different representatives of the same object are related

by embedding into a common larger base Ak′+1 and the equivalence relation over that base.

Remark 2.23. Given a family of expanded pairs (resp. degenerations) π : Y → S (resp. X → S), each

fiber of the family is an expanded pair (resp. degeneration) with respect to (Y,D) (resp. π : X → A1).

Given a base change f : (T, η) → (S, ξ), the induced map between fibers are given by maps of the

corresponding expanded pairs (resp. degenerations). In this way we see that the definition makes

sense to parameterize all expanded pairs (resp. degenerations).
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Chapter 3

Admissible sheaves and stable

quotients

In this section we introduce the notion of admissible sheaves, the correct objects we need to consider

for the relative Donaldson–Thomas Theory. Again, our definitions are direct generalizations of J. Li

and B. Wu [LW2015].

Let W be a separated Deligne–Mumford stack of finite type, and Z ⊂ W be a closed substack.

Let F be a coherent sheaf on W .

Definition 3.1. F is said to be normal to Z if TorOW1 (F ,OZ) = 0. Moreover, we say that F is

normal to Z at a point p ∈ Z, if there is an étale neighborhood i : Up → W of p, such that i∗F is

normal to Z ×W Up.

According to the following lemma, most properties of the normality of coherent sheaves can be

directly generalized to Deligne–Mumford stacks.

Lemma 3.2. F is normal to Z if and only if it is normal to Z at every point p ∈ Z. In other words,

normality is a local property in the étale topology.

Proof. Let I be the ideal sheaf of Z. F is normal to Z if and only if the map I ⊗F → F is injective,

which is a local property in the étale topology.

Remark 3.3. From the definition we note that normality can be checked on stalks or completion over

local rings.

In the following we will consider two cases we mostly care about, the relative case and degeneration

case.
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3.1 Relative case

This is the case where Y is a separated Deligne–Mumford stack of finite type and D ⊂ Y is an effective

Cartier divisor. Take an affine étale neighborhood U = SpecA of p ∈ D, where D|U is defined by

some nonzero-divisor f ∈ A. Then there is a map U → A1 = SpecC[y], given by y 7→ f . A coherent

sheaf F on U is represented by an A-module M . The following lemma gives a local description of

normality in this case.

Lemma 3.4. The followings are equivalent.

1) F|U is normal to D|U ;

2) The map M
×f−−→M is injective;

3) M is flat over A1 at the point 0 ∈ A1, i.e. the stalk of M at 0 ∈ A1 is flat over the local ring

OA1,0 = C[y](y).

Let’s look closer into the coherent sheaf F and analyze its normality. Let I ⊂ OY be the ideal

sheaf of i : D ↪→ Y . Define FI := i!F to be the maximal subsheaf of F supported on D. More

precisely, locally in an affine open U , for I(U) = I,

FI(U) := {m ∈M | ann(m) ⊃ Ik, for some k ∈ Z+}.

One can easily check by descent theory that this definition defines a global coherent sheaf on Y . We

call FI the torsion subsheaf of F along D.

Another way to define the torsion subsheaf is to just take FI(U) = MI = ker(M
×f−−→ M), which

is the torsion part of M as a C[y]-module. In this viewpoint the torsion free quotient is

F tf := F/FI = coker(M
×y−−→M),

and we have the short exact sequence

0 // FI // F // F tf // 0.

Proposition 3.5. F is normal to D at p ∈ D if and only if (FI)p = 0, where the subscript p stands

for the stalk in the étale topology. In particular, F is normal to D if and only if FI = 0.

The following propositions tell us that normality is an open condition.
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Proposition 3.6. Let S be a scheme, and F be a coherent sheaf on Y ×S which is flat over S. Then

the set {s ∈ S | F|s := F ⊗OS k(s) is normal to D × s} is open in S.

In order to prove this proposition, we use the fiberwise criterion for flatness, which is a consequence

of Theorem 11.3.10 of [GD1961] (also see Theorem 36.16.2 of [The2017, Tag 039C]).

Lemma 3.7 (Fiberwise criterion for flatness of coherent sheaves). Let S,X, Y be locally noetherian

schemes, and g : X → S, h : Y → S be two morphisms of schemes. Let f : X → Y be an S-morphism,

and F be a coherent sheaf on X. x ∈ X, y = f(x), s = h(y) = g(x). Assume that the stalk Fx 6= 0.

Then the followings are equivalent:

1) F is flat over S at x, and F|s is flat over Ys at x ∈ Xs;

2) Y is flat over S at y, and F is flat over Y at x.

Proof for Proposition 3.6. Suppose for s ∈ S, F|s is normal to D. Then ∀p ∈ D, F|s is normal to D

in some affine étale neighborhood Up of p. Consider the local diagram

Up × S //

""

A1 × S

||
S,

where Up → A1 is given as above.

We know that F|s, as a sheaf in Up×{s}, is flat over A1×{s} at (p, s). By the fiberwise criterion,

F is flat over A1 × S at this point; in other words, there exist affine étale neighborhoods of p ∈ Y ,

which we still call Up, and Vp of s ∈ S such that on Up × Vp ⊂ Y × S, F is flat over SpecOA1,0 × Vp.

Since D is quasi-compact, we can take a finite subcover Ui × Vi, 1 ≤ i ≤ N such that {Ui} cover D,

and take V := V1 ×S × · · · ×S VN . Then we have V ⊂ {s ∈ S | F|s is normal to D}, which proves the

proposition.

3.2 Degeneration case

In this case we consider X0 = Y− ∪D Y+, where the two separated finite-type Deligne–Mumford

stacks Y± transversally intersect along an effective Cartier divisor, and X0 is the glueing along D.

By transversality we mean that étale locally around p ∈ D we have a common affine neighborhood

http://stacks.math.columbia.edu/tag/039C
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U = SpecA of the following,

T × SpecC[x, y]/(xy) U
étoo ét // X0,

where T is a scheme.

Hence we have a map U → SpecC[x, y]/(xy). The ring can be rewritten as C[x, y]/(xy) ∼= C[x]×C

C[y] = {(f, g) ∈ C[x]× C[y] | f(0) = g(0)}.

A coherent sheaf F on U is represented by an A-module M . We have the following lemma.

Lemma 3.8. The followings are equivalent.

1) M is flat over the local ring (C[x, y]/(xy))(x,y);

2) M/yM is flat over C[x](x), and M/xM is flat over C[y](y);

3) F|U∩Y± are normal to D|U ⊂ U ∩ Y±;

4) FU is normal to D|U .

In particular, 1)-4) implies that

5) M ∼= (M/yM)×M/(x,y)M (M/xM).

Proof. 2)⇔3) is the consequence of the relative case. 1)⇔4) is true since 4) is equivalent to the

injectivity of the map (x, y) ⊗M → M , which is equivalent to 1) since (x, y) is the maximal ideal,

and the map is obviously injective at nonzero point. 1)⇒2) is the base change property of flatness.

Let’s prove 2)⇒ 5). Suppose 2) holds. The obvious map ϕ : M → (M/yM)×M/(x,y)M (M/xM) is

easily seen to be surjective. In fact, given (m̄1, m̄2) in the target, one can choose m1,m2 ∈M in the

preimages of m̄1, m̄2 respectively. By construction, there exist a, b ∈M such that m1−m2 = ax+ by.

Then m1 − by = m2 + ax ∈M is in the preimage of (m̄1, m̄2).

For the injectivity, ϕ is identity at points (x, y) 6= (0, 0), thus it remains to check its injectivity at

(0, 0), or equivalently, over the local ring at (0, 0). If for some m ∈ M(x,y), ϕ(m) = 0, then there are

some m1,m2 ∈M(x,y), such that m = xm1 = ym2. Then by 2), xm1 = ym2 implies that m1 ∈ yM(x,y)

and m2 ∈ xM(x,y), which implies that m = 0. Thus ϕ is injective and 5) is proved.

Finally let’s prove 2)⇒1). Just need to check the injectivity of the map (x, y)⊗M(x,y) →M(x,y). We

can view (x, y) as (x)×C (y), the maximal ideal of (C[x, y]/(xy))(x,y)
∼= C[x](x)×C C[y](y). By 2)⇒5),

M ∼= (M/yM) ×M/(x,y)M (M/xM); thus it suffices to check the injectivity on the two components,

which reduces to the flatness stated in 2).
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Corollary 3.9. F is normal to D if and only if F|Y± are normal to D ⊂ Y± respectively. Moreover,

in this case F ∼= ker(F|Y− ⊕F|Y+
→ F|D).

Again one can consider the maximal torsion subsheaf supported on D, denoted by FJ , where

J ⊂ OX0
is the ideal sheaf of D ⊂ X0. Let I± be the ideal sheaves of D ⊂ Y±, and FI± be the

corresponding torsion subsheaves defined in the relative case. We have the short exact sequence

0 // FJ // F // F tf // 0.

Now the case is a little more complicated. F tf in general is not normal to D, but it satisfies the

splitting property as in 5) of Lemma 3.8.

Lemma 3.10. If FJ = 0, then F ∼= ker(F|Y− ⊕F|Y+ → F|D).

Proof. Locally the map ϕ : M → (M/yM)×M/(x,y)M (M/xM) is surjective, where M,x, y is the same

as in Lemma 3.8. Take v ∈M in the kernel. By definition there is m,n ∈M such that v = xm = yn.

Thus we have (x, y) · v = 0, which implies v ∈MJ = 0.

To determine whether F is normal to D we look at the quotient F tf . It is normal to D if and only

if F tf |Y± is normal to D. Thus we have the following.

Corollary 3.11. F is normal to D if and only if FJ = (F tf |Y−)I− = (F tf |Y+
)I+

= 0.

Combining Corollary 3.9 with Proposition 3.6 we also have the following.

Corollary 3.12. Let S be a scheme, and F be a coherent sheaf on X0×S which is flat over S. Then

the set {s ∈ S | F|s := F ⊗OS k(s) is normal to D × s} is open in S.

3.3 Admissible sheaves

Consider a locally smooth pair (Y,D) for the relative case and a locally simple degeneration π : X →

A1, X0 = Y− ∪D Y+ for the degeneration case. We make the following definition.

Definition 3.13. A coherent sheaf F on Y [k] (resp. X0[k]) is called admissible if it is normal to each

Di ⊂ Y [k] (resp. Di ⊂ X0[k]), 0 ≤ i ≤ k.

Let YS → S (resp. XS → S) be a family of expanded pairs (resp. degenerations) and F be a

coherent sheaf on YS (resp. XS), flat over S. We call F admissible if for every point s ∈ S, the fiber

F|s is admissible on the fiber YS,s (resp. XS,s).
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Remark 3.14. The difference of the definition of admissibility on X0[k] and Y [k] is that we include

the distinguished divisor Dk in the relative case.

We would like to prove that admissibility is an open condition. Before that, we need a criterion

for normality on a locally simple degeneration.

Lemma 3.15. Consider the standard simple degeneration π : X = SpecC[x, y, t]/(xy − t) → A1 =

SpecC[t], with singular divisor of the central fiber D = SpecC. Let M be a coherent sheaf on X, flat

over A1. Then M is normal to D ⊂ X if and only if M |0 is normal to D ⊂ X0.

Proof. This is an immediate consequence of the Slicing Criterion for flatness, which can be found in

Corollary 6.9 of [Eis1995].

Proposition 3.16. Let YS (resp. XS) be a family of expanded pairs (resp. degenerations). Let F be

a coherent sheaf on YS, flat over S. Then the set {s ∈ S | F|s is admissible} is open in S.

Proof. For standard families Y (k) → Ak, by Lemma 3.15, it suffices to prove the points in Ak over

which F is normal to all Di(k) form an open subset. From the properties of Y (k) we know that after

projection to the i-th coordinate, 0 ≤ i ≤ k − 1, the 1-dimensional family πi := pri ◦π : Y (k) → A1

is also a locally simple degeneration. In other words, locally around Di(k), Y (k) has a common étale

neighborhood with the local model Di(k)×SpecC[x, y, ti]/(xy−ti) ∼= Di×Ak−1×SpecC[x, y, ti]/(xy−

ti). At points where ti 6= 0, the normality of F is trivial. Moreover, by Corollary 3.12, the points

s ∈ Hi = (ti = 0) where F is not normal to Di form a closed subset. Thus it is still closed in Ak,

whose complement is open. Similar proof for the distinguished divisor D(k). For general families YS

over S, the proof works by pulling everything back to S.

3.4 Stable quotients

Now we come to the stability condition, and the notion of stable quotients, following the convention

of J. Li and B. Wu [LW2015].

In this subsection, let (Y,D) and π : X → A1 be as above, we have the contractions p : Y [k]→ Y

and p : X0[k] → X0, contracting the extra bubbled components. Let V be a vector bundle of finite

rank on Y (resp. X).

Consider quotient sheaves of the form φ : p∗V → F on Y [k] (resp. X0[k]). For two quotients

φ1 : p∗V → F1 and φ2 : p∗V → F2, an equivalence between them is defined as a pair (σ, ψ), where

σ : Y [k] → Y [k] (resp. X0[k] → X0[k]) is an isomorphism induced from the (C∗)k-action, and
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ψ : F1
∼−→ σ∗F2 is an isomorphism of coherent sheaves, making the following diagram commute,

p∗V
φ1 //

Id

��

F1

ψ

��
σ∗p∗V = p∗V

σ∗φ2 // σ∗F2.

Let Aut(φ) be the group of autoequivalences of a fixed quotient φ : p∗V → F . There is a map

Aut(φ) → (C∗)k, (σ, ψ) 7→ σ forgetting the second component. This is an injection, since for a fixed

quotient σ = 1 will just identify p∗V and induce Id on F . As a result, Aut(φ) ⊂ (C∗)k is a subgroup.

Remark 3.17. An equivalent definition of the equivalence of quotients is to consider the kernels of the

quotients, say 0 → Ki → p∗V → Fi → 0, and define an equivalence as an isomorphism of the two

kernels as subsheaves of p∗V. It is clear from this definition that Aut(φ) ⊂ (C∗)k is a subgroup.

Definition 3.18. Let φ : p∗V → F be a quotient sheaf on Y [k] (resp. X0[k]). φ is called stable if F

is admissible, and Aut(φ) is finite.

For standard families Y (k) and X(k), we have contraction maps p : Y (k)→ Y and p : X(k)→ X,

which pass to general families.

Definition 3.19. Let YS → S (resp. XS → S) be a family of expanded pairs (resp. degenerations),

with contraction map p : YS → Y (resp. p : XS → X) and φ : p∗V → F be a quotient sheaf on YS

(resp. XS), with F flat over S. Then φ is called stable if for every point s ∈ S, the fiber F|s is stable

on the fiber YS,s (resp. XS,s).

The (C∗)k-actions on Y (k) and Ak induce a (C∗)k-action on the Quot-space Quotp
∗V
Y (k)/Ak , which

is a separated algebraic space locally of finite type by [OS2003]. For a fixed object (ξ, φ) represented

by ξ : S → Ak and an S-flat quotient φ on YS , the stabilizer is given by

Aut∗,S(ξ, φ, k) //

��

S

∆◦(ξ,φ)

��
(C∗)k ×Quotp

∗V
Y (k)/Ak

// Quotp
∗V
Y (k)/Ak ×Quotp

∗V
Y (k)/Ak .

(3.1)

We see that Aut∗,S(ξ, φ, k) ↪→ (C∗)k × S is a subgroup scheme over S. Thus it is quasi-compact and

separated over S, which means that the action is quasi-compact and separated.

We also have the open condition property.
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Proposition 3.20. Let YS → S (resp. XS → S) be a family of expanded pairs (resp. degenerations),

with contraction map p : YS → Y (resp. p : XS → X) and φ : p∗V → F be a quotient sheaf on YS

(resp. XS), with F flat over S. The set {s ∈ S | φs := p∗V → F|s is stable } is open in S.

Proof. By Proposition 3.16, it suffices to prove the finiteness of the autoequivalence group is an open

condition. We take the relative case for example; the degeneration case is similar.

Now (C∗)k acts on Quotp
∗V
Y (k)/Ak by diagram (3.1). Given an object (ξ, φ) ∈ Quotp

∗V
Y (k)/Ak(S), the

stabilizer group scheme of the action is just Aut∗,S(ξ, φ, k). Thus the set {s ∈ S | φs := p∗V →

F|s is stable } would be the set where Aut∗,S(ξ, φ, k)→ S is quasi-finite, which is open.

We still need some concepts for later discussions of sheaves. The following definitions can be found

in [Lie2007] and [Nir2008b].

Definition 3.21. Let F be a coherent sheaf on a Deligne–Mumford stack W . The support of F is

the closed substack defined by the ideal sheaf 0 → I → OW → E ndOW (F). The dimension of F is

the dimension of its support. F is called pure, if any proper subsheaf of it has the same dimension as

F .

Definition 3.22. Let Ti(F) be the maximal subsheaf of F of dimension ≤ i. Then we have the

torsion filtration

0 ⊂ T0(F) ⊂ · · · ⊂ Td(F) = F ,

where d = dimF and each factor Ti(F)/Ti−1(F) is 0 or pure of dimension i.

Proposition 3.23. Let F be a coherent sheaf on a locally smooth pair (Y,D). Then F is normal to

D if and only if no irreducible components of any nonempty SuppTi(F) lie in D.

Proof. If F is normal to D, and some irreducible component of Ti(F) lies in D, then for some point in

that component, F is not flat along the normal direction to D since the multiplication in the normal

direction vanishes on Ti(F). Contradiction.

Conversely, suppose no irreducible components of any Ti(F) lie in D and F is not normal to D.

Then FI 6= 0, where I is the ideal sheaf of D ⊂ Y . Suppose dimFI = d′, then SuppFI ⊂ D contains

some irreducible components of SuppTd′(F). Contradiction.

The followings are some examples for stable quotients.

Example 3.24. Let V = OY (similar with OX0
) be the structure sheaf. A quotient sheaf is just a

closed substack Z of Y [k].
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If dimZ = 0, in other words, Z is just a collection of (possibly multiple or gerby) points. Then

OY [k] → OZ is stable if and only if none of the points of Z supports on any divisor Di, 0 ≤ i ≤ k.

If dimZ = 1 and Z is pure, then Z is admissible if and only if none of its irreducible components

lies entirely in any divisor Di, 0 ≤ i ≤ k. Z is stable if furthermore it is not “entirely fiberwise”; in

other words, restricted to any extra bubbled component of Y [k], it is not a fiber (or a union of fibers)

of the corresponding (possibly orbi) P1-bundle.

3.5 C∗-equivariant flat limits

To conclude this section we describe the completion of flat families of quotients. LetW be a separated

Deligne-Mumford stack of finite type, with a vector bundle V, and π : W → A1 be proper and flat.

Let φ◦ : V|C∗ → F◦ be a quotient of coherent sheaves on W|C∗ , flat over C∗.

By properness of the Quot-space QuotVW/A1 (Theorem 1.5 of [OS2003]), there is a unique quotient

φ : V → F on W, flat over A1, whose restriction to W|C∗ is the given family. We call φ the flat

completion and φ|0 the flat limit of the given family at 0 ∈ A1.

Consider the following special case. Let W be a proper Deligne-Mumford stack, with a vector

bundle V . Consider the family π : W ×A1 → A1, with the other projection p : W ×A1 →W . C∗ acts

obviously on the A1-factor of the family W × A1. Given φ◦ : p∗V |W×C∗ → F◦ be a C∗-equivariant

and C∗-flat quotient of coherent sheaves on W × C∗, we have the flat completion φ, which is still

C∗-equivariant.

Lemma 3.25. φ ∼= p∗φ|0.

Proof. We rephrase the situation in terms of the language of Quot-spaces. φ◦ defines a C∗-equivariant

map from F ◦ : C∗ → QuotW . Here the C∗-action on the Quot-space is the trivial action. Hence F ◦

is a constant map, defined by restricting φ◦ to any fiber. By the properness of QuotW , the unique

extension of F ◦ to A1 is the constant map, which gives the trivial family p∗φ|0.

Let (Y,D) be a locally smooth pair as in previous sections, and V be a vector bundle on Y . Let

∆ = PD(O ⊕N)
p−→ D be a bubble component.

Proposition 3.26. Let φ : p∗V → F be an admissible C∗-equivariant quotient on ∆, with C∗ acting

along the fiber. Assume furthermore that C∗ acts trivially on V |D, i.e. ∀p ∈ D, V |p is trivial as a

C∗-representation. Then F ∼= p∗F|D.
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Proof. Lemma 3.26 applies locally to ∆−D−, where admissibility implies the flatness along the A1-

direction. Separatedness of QuotW in Lemma 3.26 ensures that the isomorphisms are unique, and

hence glue to a global isomorphism.

We still need a technical lemma for later use. Consider SpecR := SpecC[x, y, t]/(xy). Let R0 =

R/tR, R− = R/yR and R0,− = R0/yR0. Let J = (x, y) ⊂ R, J0 = (x, y) ⊂ R0, I− = (x) ⊂ R− and

I0,− = (x) ⊂ R0/yR0 be ideals. Let C∗ acts on t by weight a < 0, on x by weight b > 0, and trivially

on y. Let φ : R⊕r → M → 0 be a C∗-equivariant quotient, flat over C[t]. Let φ− : R⊕r− → M− → 0

be its restriction on R−.

Lemma 3.27 (Lemma 3.13, Lemma 3.14 of [LW2015]).

1. MJ ⊗R R0
∼= (M ⊗R R0)J0

;

2. Let M∗− be the flat limit of the restriction of M− on SpecC[x, x−1, t] along the x-direction to

the locus (x = 0), and let M∗0,− be flat limit of the restriction of M0,− := M− ⊗R− R0,− on

SpecC[x, x−1] along the x-direction to the locus (x = 0). Then M∗− is the pull back of M∗0,−

along the projection SpecC[x, x−1, t]→ SpecC[x, x−1].

Proof. The proof is exactly the same as in [LW2015].
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Chapter 4

Moduli of stable quotients

4.1 Quot-functor of stable quotients

Now let’s consider stable quotients on the stacks of expanded pairs and degenerations. Let (Y,D) be

a locally smooth pair and π : X → A1 be a locally simple degeneration. Let V be a vector bundle of

finite rank on Y or X. We have the stacks A and C, with universal families Y and X.

First let’s describe the equivalence relation on the Quot-spaces. Recall we have the discrete sym-

metries given in the following Cartesian diagram

Rd,Y (k)
////

��

Y (k)

��
Rd,Ak

//// Ak.

One has an étale equivalence relation

R
d,Quotp

∗V
Y (k)/Ak

:= Quotp
∗V
Rd,Y (k)/Rd,Ak

//// Quotp
∗V
Y (k)/Ak ,

induced by the two projections in the Cartesian diagram above. Here the maps are well-defined

because Rd,Ak ⇒ Ak are actually disjoint unions of open immersions.

This is the induced discrete symmetries on the Quot-space. Two representatives (ξ, φ), (ξ′, φ′),

with ξ, ξ′ : S → Ak, represent the same object if the associate map factors through R
d,Quotp

∗V
Y (k)/Ak

.
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Recall that we also have the (C∗)k-action

(C∗)k ×Quotp
∗V
Y (k)/Ak

//// Quotp
∗V
Y (k)/Ak .

They combine to give a smooth equivalence relation on the Quot-space, still as a subrelation of the

group action by the semidirect product (C∗)k o Sk,

R∼,Quotp
∗V
Y (k)/Ak

:= (C∗)k ×R
d,Quotp

∗V
Y (k)/Ak

� � // (C∗)k o Sk ×Quotp
∗V
Y (k)/Ak

// // Quotp
∗V
Y (k)/Ak .

In particular, for a fixed object represented by a map ξ : S → Ak and a quotient φ on YS , its

isotropy group is the pull back in the following Cartesian diagram,

Aut∼,S(ξ, φ, k) //

��

S

∆◦(ξ,φ)

��
R∼,Quotp

∗V
Y (k)/Ak

// Quotp
∗V
Y (k)/Ak ×Quotp

∗V
Y (k)/Ak .

(4.1)

Aut∼,S(ξ, φ, k) is a subgroup scheme over S of (C∗)koSk×S, which is quasi-compact and separated.

We know that the smooth relation R∼,Quotp
∗V
Y (k)/Ak

is quasi-compact and separated.

Now we have the following Cartesian diagram of closed or open embeddings, for |I| = l ≤ k,

Y (l) �
� τI,Y //

p

��

Y (k)|UI
� � τ̃I,Y //

��

Y (k)

p

��
Al �
� τI // UI

� � τ̃I // Ak,

which induces the closed embedding Quotp
∗V
Y (l)/Al ↪→ Quotp

∗V
Y (k)/Ak , and the open embedding (C∗)k−l ×

Quotp
∗V
Y (l)/Al

∼= Quotp
∗V
Y (k)|UI /UI

↪→ Quotp
∗V
Y (k)/Ak . Hence we have the embeddings,

R∼,Quotp
∗V
Y (l)/Al

� � //

�� ��

(C∗)k−l ×R∼,Quotp
∗V
Y (l)/Al

� � //

�� ��

R∼,Quotp
∗V
Y (k)/Ak

�� ��
Quotp

∗V
Y (l)/Al

� � // (C∗)k−l ×Quotp
∗V
Y (l)/Al

� � // Quotp
∗V
Y (k)/Ak .

Let Quotp
∗V,st
Y (k)/Ak ⊂ Quotp

∗V
Y (k)/Ak denote the subfunctor of the ordinary Quot-functor, consisting of

stable quotients. By Proposition 3.20 this is an open subfunctor, thus represented by an algebraic

subspace of the Quot-space. It is invariant under the equivalence relation.
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Define the stable Quot-stack as

QuotVY/A := lim−→

[
Quotp

∗V,st
Y (k)/Ak

/
R∼,Quotp

∗V
Y (k)/Ak

]
.

Similarly in the degeneration case one has the corresponding stable Quot-stack

QuotVX/C := lim−→

[
Quotp

∗V,st
X(k)/Ak+1

/
R∼,Quotp

∗V
X(k)/Ak+1

]
,

where the transition maps in the directed system are again open immersions and the limits make

sense.

We interpret the objects and morphisms of QuotVX/C and QuotVY/A in the categorical sense. For any

scheme S, an object (ξ̄, φ̄) of QuotVY/A(S) is represented by some object (ξ, φ) ∈ [Quotp
∗V,st
Y (k)/Ak /R∼,Quotp

∗V
Y (k)/Ak

](S),

for some k, possibly after some further étale base change; more precisely, passing to a surjective étale

covering, we have the map ξ : Sξ =
∐
Si → Ak and a stable quotient φ : p∗V → F on the associated

family of expanded pairs YSξ .

Different representations are compatible in the following way. Given another (ξ′, φ′) with ξ′ :

Sξ′ → Ak′ , passing to the refinement Sξξ′ := Sξ ×S Sξ′ , denote the two induced families by YSξξ′ and

Y ′Sξξ′ . By construction they are isomorphic to each other via some σ : Y ∼−→ Y ′, by embedding into

a larger ambient space Y (k′′) for some k′′ ≥ k, k′ and pulling back the ∼ equivalence relation. Then

the compatibility means that, passing to Sξξ′ , there is an isomorphism φ
∼−→ σ∗φ′.

Given f : T → S, the map QuotVY/A(S) → QuotVY/A(T ) is defined by pull back. Suppose (ξ̄, φ̄) ∈

QuotVY/A(S). For a representative (ξ, φSξ), we have the corresponding map fξ : Tξ := T ×S Sξ → Sξ.

The 1-arrow between the two objects is defined by the composite η = ξ ◦ fξ and the pull back

YT,ξ = f∗ξ YS,ξ, φT,ξ := f∗φS,ξ.

The functor in the degeneration case can be defined in the same manner. For any A1-scheme S,

QuotVX/C(S) is defined as the set of all pairs (ξ̄, φ̄), where ξ̄ ∈ C(S) and φ̄ is a stable quotient of sheaves

on the family over ξ̄.

Theorem 4.1. 1) QuotVY/A is a Deligne–Mumford stack, locally of finite type;

2) QuotVX/C is a Deligne–Mumford stack, locally of finite type over A1.

Proof. We only prove for the relative case and the degeneration case is similar. The limit stack is

defined by the stack associated to the limit groupoid, with objects and morphisms described as above.

It remains to prove it is Deligne–Mumford.
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Look at the stabilizer of a fixed object (ξ̄, φ̄) ∈ QuotVY/A(S), which is represented by ξ : Sξ → Ak

and a stable quotient φ on YSξ . The stabilizer of this representative is given in the following Cartesian

diagram,

Aut∼(ξ, φ, k) //

��

Sξ //

∆◦(ξ,φ)

��

S

R∼,Quotp
∗V,st
Y (k)/Ak

// Quotp
∗V,st
Y (k)/Ak ×Quotp

∗V,st
Y (k)/Ak .

Again one can see that for k sufficiently large, this stabilizer does not depend on k, since the limit

is taken over open immersions of stacks, which are representable. It also does not depend on the

choice of Sξ, since the lower horizontal map is affine, and by descent theory of affine morphisms we

glue to obtain a group scheme over S. Denote this group scheme by Aut∼(ξ̄, φ̄). It is the stabilizer

of the object, independent of k and choice of representatives for k large. Moreover, Aut∼(ξ̄, φ̄) is a

quasi-compact and separated (actually affine) group scheme over S. Thus QuotVY/A is an Artin stack.

It remains to check that each [Quotp
∗V,st
Y (k)/Ak /R∼,Quotp

∗V
Y (k)/Ak

] is a Deligne–Mumford stack, locally

of finite type. Recall that R∼,Quotp
∗V
Y (k)/Ak

∼= (C∗)k × Quotp
∗V
Rd,Y (k)/Rd,Ak

. The (C∗)k-action has finite

stabilizer due to the stability condition. On the other hand,

R
d,Quotp

∗V
Y (k)/Ak

� � // Sk ×Quotp
∗V
Y (k)/Ak

//// Quotp
∗V
Y (k)/Ak

is obviously étale. We conclude that the stabilizer is finite and the stack is Deligne–Mumford. Since

each Quot-space Quotp
∗V
Y (k)/Ak is of finite type, the stack we are considering is locally of finite type.

4.2 Projective Deligne–Mumford stacks

From now on we need the notion of projective Deligne–Mumford stacks. The references for this are

[OS2003], [Kre2009] and [Nir2008b]. First we list some properties of coarse moduli spaces, which can

be found in [AOV2008], [AV2002] and [Nir2008b]. We collect these results here just for the later use.

They are not stated in the full generality.

Proposition 4.2. Let W be a Deligne–Mumford stack, W be a noetherian scheme and c : W → W

be a proper quasi-finite map.

1) If W is the coarse moduli space of W , and W ′ →W is any morphism of schemes, then W ′ is the

coarse moduli space of W ′ ×W W ;
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2) If W ′ → W is a flat surjective morphism of schemes, and W ′ is the coarse moduli space of

W ′ ×W W , then W is the coarse moduli space of W ;

Proposition 4.3. Let W be a separated Deligne–Mumford stack over C and c : W →W be its coarse

moduli space.

1) There exists an étale covering
∐
Wα → W , such that W ×W Wα

∼= [Uα/Γα], where each Uα is a

scheme with finite group Γα acting on it;

2) The map c is proper. The functor c∗ carries quasi-coherent sheaves to quasi-coherent sheaves,

coherent sheaves to coherent sheaves, and is exact;

3) c∗OW ∼= OW .

Now we introduce the notion of generating sheaves, which can be understood as “relatively ample”

sheaves of a stack over its coarse moduli space.

Definition 4.4. Let W be a Deligne–Mumford stack over C, with coarse moduli space c : W → W .

A vector bundle E on W is called a generating sheaf on W , if for every quasi-coherent sheaf F , the

morphism θE(F) : c∗c∗Hom(E ,F)⊗OW E → F , defined as the left adjoint of the map c∗(F⊗OW E∨)
Id−→

c∗(F ⊗OW E∨), is surjective.

Proposition 4.5. 1) E is a generating sheaf if and only if for every geometric point of W , the

representation of the stabilizer group of that point on the fiber of E contains every irreducible

representation;

2) Let f : W ′ → W be any morphism of algebraic spaces, then W ′ is the coarse moduli space of

W ′ := W ×W W ′, with map f ′ : W ′ → W . Suppose E is a generating sheaf on W , then f ′∗E is a

generating sheaf on W ′.

Example 4.6 (Proposition 5.2 of [OS2003]). Let G be a finite group. A sheaf F on BG is equivalent to

a complex G-representation. Then F is a generating sheaf if and only if it contains every irreducible

representations of G as a G-submodule. In particular, the left regular representation R of G is a

generating sheaf.

More generally, let U be a scheme with a G-action. Let f : [U/G] → BG be the canonical

1-morphism. Then f∗R is a generating sheaf on [U/G].

Corollary 4.7. Let W be a Deligne–Mumford stack over C, with generating sheaf E. Then

1) E∨ is still a generating sheaf;
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2) If f : W ′ → W is a representable 1-morphism between Deligne–Mumford stacks, then f∗E is a

generating sheaf on W ′.

Proof. 1) follows directly from 1) of the previous proposition. 2) follows from Frobenius reciprocity and

the property of representable maps that homomorphisms between isotropy groups are monomorphic.

Definition 4.8. A Deligne–Mumford stack W over C is called projective, if it has a coarse moduli

space c : W →W , where W is a projective scheme, and it possesses a generating sheaf.

Let π : W → S be a Deligne–Mumford stack over S, with coarse moduli space c : W →W . Then

π : W → S is called a family of projective stacks if the underlying map of schemes π : W → S is

projective, and W possesses a generating sheaf.

There are some equivalent definitions of a projective Deligne–Mumford stack.

Proposition 4.9 (Proposition 5.1 and Corollary 5.4 of [Kre2009]). Let W be a Deligne–Mumford

stack over C, then the following are equivalent:

1) W is a projective Deligne–Mumford stack;

2) W has a projective coarse moduli space and is isomorphic to the quotient of a projective scheme

by a reductive algebraic group acting linearly;

3) W has a projective coarse moduli space and every coherent sheaf admits a surjective morphism

from a vector bundle;

4) W admits a closed embedding into a smooth proper Deligne–Mumford stack with projective coarse

moduli space.

In particular, a smooth Deligne–Mumford stack over C with projective coarse moduli space is always

projective.

The following concept first appeared in [OS2003], with the name “generalized Hilbert polynomial”,

as an analog to the usual Hilbert polynomials on schemes to refine the ordinary Quot-spaces. We will

also use this later, with a little modification.

Definition 4.10. The Hilbert homomorphism of a coherent sheaf F on W with respect to E is the

group homomorphism P EF : K0(W )→ Z, defined as

[V ] 7→ χ (W,V ⊗OW F ⊗OW E∨) ,
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where V is a vector bundle on W and extended additively to K0(W ).

The following concept is introduced in [Nir2008b] to define the stability condition. We will also

use it later for the boundedness.

Definition 4.11. Let H be an ample line bundle on the projective coarse moduli space W , and

H = c∗H. The modified Hilbert polynomial of F with respect to the “polarization” (E , H) is the

polynomial P E,HF defined as P E,HF (v) := P EF (H⊗v).

One of the reasons that we are interested in generating sheaves is the following property, the

consequence of a series of propositions in [Nir2008b].

Proposition 4.12. Let W be a projective Deligne–Mumford stack over C, and c : W → W be its

coarse moduli space, together with a generating sheaf E. Let F be a coherent sheaf on W . Then

1) c∗(F ⊗OW E∨) = 0 if and only if F = 0;

2) The sheaf c∗(F⊗OW E∨) on W has the same dimension with F . Moreover, if F is pure, Supp c∗(F⊗OW

E∨) = c(SuppF);

3) F = 0 if and only if P EF = 0, also if and only if the polynomial P E,HF = 0.

To end this section we give a description about the coarse moduli space of the bubble.

Proposition 4.13. Let (Y,D) be a locally smooth pair and ∆ = P(OD ⊕ ND/Y ) be the bubble. Let

D, ∆ be the corresponding coarse moduli spaces. Then there is a P1-bundle B over D, fitting into the

following diagram

∆

  
∆ //

��

??

B

��
D // D,

where the map ∆→ B is surjective, proper and quasi-finite, and ∆→ B is finite.

In particular, ∆ is a projective scheme and ∆ is projective as a Deligne–Mumford stack.

Proof. By definition ∆ = ProjOD (
⊕∞

d=0N
d
D/Y ). By Lemma 2.1.2 of [AGV2008], there is a smallest

integer e such that Ne
D/Y

∼= c∗M for some line bundle M on the coarse moduli space. Take

B := ProjOD

(
⊕∞d=0N

de
D/Y

)
∼= PD(OD ⊕M).
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There is a proper, quasi-finite and surjective map ∆ → B induced by the embedding of the graded

algebras, which by the universal property of coarse moduli spaces, factors through c : ∆ → ∆. The

induced map ∆ → B is also quasi-finite. By Proposition 2.6 of [Vis1989], there is a finite surjective

map A→ ∆ where A is a scheme. Then the map ∆→ B is also proper as the image of a proper map,

and thus finite as a map between schemes.

4.3 Moduli of stable quotients with fixed topological data

To refine the Quot-stacks and get some finite-type spaces, we need to fix some topological data. From

now on, let (Y,D) be a smooth pair, with Y projective; and let π : X → A1 be a simple degeneration,

which is a family of projective Deligne–Mumford stacks. Let EX , EY be generating sheaves on X and

Y , which we will just call E if there is no confusion.

Consider the Grothendieck K-group of Y . Note that by smoothness and 3) of Proposition 4.9 we

have K0(Y ) ∼= K0(Y ), just denoted by K(Y ) for simplicity. Let p : Y [k]→ Y be the contraction map,

and F be a coherent sheaf on Y [k]. We can define a homomorphism P EF : K(Y )→ Z, still called the

Hilbert homomorphism with respect to E , as follows,

[V ] 7→ χ (Y [k], p∗V ⊗OW F ⊗OW p∗E∨) ,

where V is a vector bundle and the homomorphism is naturally extended additively. Again, if one

chooses an ample line bundle H on the coarse moduli space c : Y → Y , one can define the modified

Hilbert polynomial as P E,HF (v) := P EF (p∗H⊗v), where H = c∗H.

Note that properties in Proposition 4.12 do not necessarily hold in this case. Although p∗E would

still be a generating sheaf on Y [k], the pull-back of H may not be ample. But we can still use them

to refine the Quot-stacks.

Consider a family of expanded pairs π : YS → S, with a coherent sheaf F on YS , flat over S.

For each point s ∈ S, we have a Hilbert homomorphism on the fiber P EF|s : K(Y ) → Z. By the

same argument as Lemma 4.3 of [OS2003], if S is connected, there exists a group homomorphism

P : K(Y )→ Z, such that P EFs = P , ∀s ∈ S.

Now fix P : K(Y ) → Z, and let QuotV,PY/A be the subfunctor of QuotVY/A parameterizing stable

quotients with Hilbert homomorphism P . This is an open and closed subfunctor and thus represented

by a Deligne–Mumford stack, locally of finite type.

For the expanded degenerations, we make the similar definition. The only subtle difference is that
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we need to composite with the restriction K(X) → K(Xc) for c 6= 0 and K(X) → K(X0) for the

Hilbert homomorphisms on fibers. Also for a fixed P : K(X)→ Z, one can define QuotV,PX/C, which is

an open and closed subfunctor of QuotVX/C. As for the modified Hilbert polynomial, one needs to fix

a relatively ample line bundle H for π : X → A1.
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Chapter 5

Properness of the moduli of

1-dimensional stable quotients

In this section we prove the properness of the Quot-stacks QuotV,PY/A and QuotV,PX/C, for a fixed gener-

alized Hilbert polynomial P . Since our main interest is the application in Donaldson–Thomas theory

and Pandharipande–Thomas theory, we concentrate on the 1-dimensional case. We will use the valua-

tive criteria for separatedness and properness of Deligne–Mumford stacks. Let (Y,D) and π : X → A1,

E , H be fixed as in Subsection 4.3.

The following lemmas justify what we mean by the 1-dimensional case.

Lemma 5.1. Let F be an admissible sheaf on Y [k] (resp. X0[k]), with contraction map p : Y [k]→ Y

(resp. p : X0[k]→ X0). Then dimF = dim p∗F .

Proof. It suffices to prove the result for k = 1 and the general case simply follows by induction. Let

dimF = d. Then dimF|∆ = d or dimF|Y = d. If the latter is true, the lemma is proved.

Now we assume that dimF|∆ = d and dim p∗F ≤ d−1. For this to be true, F|∆ must support along

the fibers of ∆. Hence dimF|D = dimF|∆ − 1 = d− 1. On the other hand, by admissibility (F|Y )|D

must have the same dimension as F|D, and therefore dimF|Y = dimF|D + 1 = d. Contradiction.

Thus dim p∗F = d, which proves the lemma.

Lemma 5.2 (Lemma 3.18 in [LW2015]). Let ∆ be a bubble component with divisor D = D− and

contraction p : ∆→ D. Suppose F on ∆ is normal to D, then R1p∗F = 0. Moreover, if P E,HF = P E,HF|D ,

then F ∼= p∗F|D.
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Proof. Choose a surjection p∗V → F → 0, where some V is a vector bundle on D and let K be the

kernel. Look at the long exact sequence

· · · → R1p∗p
∗V → R1p∗F → R2p∗K → · · · .

It’s clear that R1p∗p
∗V = 0, and R2p∗K = 0 by dimensional reasons. Thus R1p∗F = 0.

Now suppose P E,HF = P E,HF|D . By admissibility, we have the short exact sequence 0 → F(−D) →

F → F|D → 0. By R1p∗F(−D) = 0 we have the surjection p∗F → F|D → 0. Since H is ample on

D, P E,HF = P E,HF|D implies that this is actually an isomorphism p∗F ∼= F|D. Take the pull back of the

inverse map we have p∗F|D ∼= p∗p∗F → F , which we can assume to be surjective if one replaces F

by its twist with a sufficiently relatively ample line bundle at the beginning. Again by comparison of

the modified Hilbert polynomials, one concludes that this map is also injective and p∗F|D ∼= F .

Corollary 5.3. Let F be an admissible sheaf on Y [k] or X0[k]. Then the Hilbert homomorphism

and modified Hilbert polynomial can be computed using p∗F on Y or X0, i.e. P EF = P Ep∗F , and

P E,HF = P E,Hp∗F .

Proof. This follows from R1p∗F = 0.

5.1 Boundedness

In this subsection for a fixed group homomorphism P : K(Y )→ Z (resp. P : K(X)→ Z), we require

that the associate modified Hilbert polynomial v 7→ P (H⊗v) has degree one or less. We denote it by

f(v) = av+b, with a ≥ 0. Consider Quot-stacks QuotV,PY/A and QuotV,PX/C. By the previous two lemmas,

one can see that the objects parameterized by them have dimF = deg f . By boundedness we mean

the quasi-compactness of the Quot-stacks.

Proposition 5.4. The stack QuotV,PY/A (resp. QuotV,PX/C) is of finite type over C (resp. over A1).

Recall that
∐
k≥0[Quotp

∗V,st,P
Y (k)/Ak /R∼,Quotp

∗V
Y (k)/Ak

] forms an étale covering of QuotV,PY/A. It suffices to

prove the following.

Proposition 5.5. Fix a polynomial f(v) = av + b with a, b ∈ Z, a ≥ 0, and a polarization (E , H)

on Y (resp. X). There exists a constant N = N(f, E , H), such that for any k ≥ 0, and any stable

quotient φ : p∗V → F on Y [k] (resp. X[k]), with modified Hilbert polynomial P E,HF = f , one has

k ≤ N .
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The rest of this subsection is to prove this proposition. We mainly concentrate on the relative

case; for the degeneration case the proof will be similar. Let’s first state some results that would be

useful.

Lemma 5.6 (Proposition 5.9.3 of [CG1997], Cororllary VI.2.3 of [Kol1996]). Let W be an n-dimensional

scheme over C, with the topological filtration 0 = Γ−1 ⊂ Γ0 ⊂ · · · ⊂ · · ·Γn = K0(W ), where Γi consists

of those classes generated by coherent sheaves of dimension ≤ i. Let F be a coherent sheaf on W with

dim SuppF = d. Then we have [F ] ∈ Γd, and

[F ] =
∑

Z⊂SuppF
mult(F ;Z)[OZ ] mod Γd−1

in K0(W ), where the sum is over all d-dimensional irreducible components of SuppF , and mult(F ;Z)

is the length of F as a module over the generic point of Z.

We need a result of Grothendieck on boundedness of families of sheaves.

Lemma 5.7 (Lemma 2.6 of [Gro1995]). Let W be a projective scheme over a noetherian scheme S,

and OW (1) be ample on W relative to S. Let E be a family of isomorphism classes of coherent sheaves

on the fibers of W/S, contained in the family of isomorphism classes of the quotients of a certain fixed

coherent sheaf on W , such that ∀F ∈ E, the Hilbert polynomial of F is

PF (v) = aF
vr

r!
+ bF

vr−1

(r − 1)!
+ · · ·

and aF is bounded. Then bF is bounded from below.

Moreover, if bF is bounded, then the family consisting of all F(r) is bounded, where F(r) := F/Tr(F)

is F quotient by its torsion subsheaf.

Proof of Proposition 5.5. By Corollary 3.9, given a stable quotient φ : p∗V → F on Y [k], we have the

short exact sequence

0→ F → F|Y ⊕
k⊕
i=1

F|∆i
→

k⊕
i=1

F|Di−1
→ 0.

Thus

av + b = χ(Y [k],F ⊗ p∗(Hv ⊗ E∨))

= χ(Y,F|Y ⊗Hv ⊗ E∨) +

k∑
i=1

χ(∆i,F|∆i ⊗ p∗(Hv ⊗ E∨))
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−
k∑
i=1

χ(Di−1,F|Di−1
⊗ p∗(Hv ⊗ E∨))

= χ(Y,F|Y ⊗Hv ⊗ E∨) +

k∑
i=1

χ(∆i,F|∆i
(−Di−1)⊗ p∗(Hv ⊗ E∨)) (5.1)

=: (a0(k,F)v + b0(k,F)) +

k∑
i=1

(ai(k,F)v + bi(k,F)),

where in (5.1) we use the exact sequence 0→ F|∆i(−Di−1)→ F|∆i → F|Di−1 → 0, by admissibility.

Here the coefficients a’s and b’s also depend on the polarization E , H, but we only emphasize that on

k and F . Let

Λ := {i | 1 ≤ i ≤ k, ai(k,F) > 0},

and write

av + b = (a0(k,F)v + b0(k,F)) +
∑
i∈Λ

(ai(k,F)v + bi(k,F)) +
∑
i 6∈Λ

bi(k,F). (5.2)

By ai ≥ 1, i ∈ Λ and a =
∑k
i=0 ai we can bound the size of Λ by |Λ| ≤ a.

For i 6∈ Λ, we know bi(k,F) 6= 0, because otherwise by Lemma 5.2 F|∆i
would be a pull-back from

Di−1 and thus unstable. Thus bi(k,F) ≥ 1.

Now by the following Lemma 5.8 for i ∈ Λ ∪ {0}, we have the lower bound bi(k,F) ≥ −M . By

(5.2) we have b ≥ (|Λ|+ 1)(−M) + k− |Λ|. Thus k ≤ b+M + (M + 1)|Λ| ≤ b+M + (M + 1)a, which

proves the proposition.

Lemma 5.8. In the proof of the previous proposition, there exists M = M(f, E , H) > 0, which does

not depend on k and F , such that bi(k,F) ≥ −M , ∀i ∈ Λ ∪ {0}.

Proof. Consider i ∈ Λ. Let ∆ ∼= ∆i, with divisor D− ∼= Di−1. By Proposition 4.13 there is a diagram

∆

  
∆

cB //

p

��

c

??

B

pB

��
D

c // D,

where the underlined are corresponding coarse moduli spaces, B is a P1-bundle over D, and ∆ is finite

over B.
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Let’s compute the terms in (5.1). For simplicity let Gi := (cB)∗(F|∆i
(−Di−1)⊗ p∗E∨), 1 ≤ i ≤ k

and G0 := c∗(F|Y ⊗ E∨). Then

ai(k,F)v + bi(k,F) = χ(∆,F|∆i
(−Di−1)⊗ p∗E∨ ⊗ p∗Hv)

= χ(∆, c∗(F|∆i(−Di−1)⊗ p∗E∨)⊗ p∗Hv)

= χ(B,Gi ⊗ p∗BH
v),

where we used p∗c∗ = c∗p∗ and the projection formula.

By Corollary 4.7 we see that (p∗E∨)∨ is still a generating sheaf on ∆, and by 2) of Proposition

4.12 we have dim SuppGi = dimF|∆i . Thus by Lemma 5.6,

ai(k,F)v =
∑

Z⊂SuppGi

mult(Gi;Z) · χ(Z,OZ ⊗ p∗BH
v) mod Γ0,

where Z ranges over the 1-dimensional irreducible components of SuppGi. We see (by choosing a

divisor for H and computing the leading coefficients by exact sequence) that χ(Z,OZ ⊗ p∗BH
v) has

leading term vc1(p∗BH) · [Z], where one can view c1(p∗BH) ∈ N1(B) and [Z] ∈ N1(B). Thus

ai(k,F) = c1(p∗BH) ·
∑
Z

mult(Gi;Z) · [Z] (5.3)

= : c1(p∗BH) · [Gi],

where [Gi] is the numerical 1-cycle determined by the support of Gi.

However, p∗BH is not ample on B, and the above is not a Hilbert polynomial, as required by

Lemma 5.7. We need to introduce some ample line bundles on B. Replace H by its sufficiently large

power, such that p∗BH ⊗OB(D) is ample on B. Consider h := c∗B(p∗BH ⊗OB(D)) = H ⊗ c∗BOB(D)

on ∆. Note that this procedure does not depend on k.

Now let’s compute the modified Hilbert polynomial with respect to h. Let a′i(k,F)v + b′i(k,F) :=

χ(∆,F|∆i
(−Di−1)⊗ p∗E∨ ⊗ hv), and a′0v + b′0 := a0v + b0. By the similar computation we arrive at

the following

a′i(k,F) = (c1(p∗BH) + [D]) · [Gi].

Combining (5.3) we get

a′i(k,F) = ai(k,F) + [D] · [Gi] ≤ a+ [D] · [Gi]. (5.4)
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Now the lemma follows from the following claim and Lemma 5.7.

Claim: there is a uniform upper bound for a′i, ∀i.

We prove this by induction. For i = 0, a′0(k,F) = a0(k,F) ≤ a. Then analogous to (5.3) we have

a0(k,F) = c1(H) · [G0]. (5.5)

Since H is ample on Y , the boundedness of a0(k,F) implies that {[G0] | k,F} is bounded as a subset

in N1(Y ). Thus the pairing [D] · [G0] is bounded, say by some constant C0 > 0. On the other hand,

we have

[D] · [G0] = [D] · [G1],

which follows from definition and restrictions of F to D ∼= D0 from Y and ∆1 respectively. Thus by

(5.4) we have

a′1(k,F)− a1(k,F) ≤ C0.

Now one can proceed by induction. Assume that a′i(k,F) − ai(k,F) ≤ Ci for some uniform bound

Ci. Then one has {[Gi] | k,F} is bounded as a subset in N1(∆). By admissibility

[D] · [Gi+1] = [D+] · [Gi],

is bounded by some uniform bound Ci+1.

Now we look at i+ 1. If i+ 1 ∈ Λ, then we have

a′i+1(k,F)− ai+1(k,F) = [D] · [Gi+1] ≤ Ci+1

is bounded.

If i + 1 6∈ Λ, then Gi+1 is of dimension 0 in ∆i+1, which by admissibility does not intersect with

the divisors. Thus in this case one has

a′i+1(k,F)− ai+1(k,F) = 0.

Keep proceeding by induction, and finally we have the set of numbers {a′i(k,F) − ai(k,F) | 0 ≤

i ≤ k} is bounded by C := max{Ci | 0 ≤ i ≤ k}, where there are only |Λ| many of nonzero Ci’s, and

each nonzero one is determined by the previous nonzero one in some way independent of k and F

(The process only depends on the intersections and bounds on N1(B)). Thus a+C does not depend
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on k and F (but depends on the choice of H, E) and bounds all a′i(k,F).

5.2 Separatedness

In this section we prove the following.

Proposition 5.9. The stack QuotV,PY/A (resp. QuotV,PX/C) is separated over C (resp. over A1).

We use the valuative criterion of separatedness for Deligne–Mumford stacks. Consider S = SpecR,

where R is a valuation ring, with fractional field K. Let η = SpecK be the generic point and

η0 = Spec k be the closed point. Since we have proved the Quot-stack is of finite type, by Proposition

7.8 in [LMB2000], it suffices to treat the case where R is a complete discrete valuation ring with

an algebraically closed residue field k. Let u ∈ R be the uniformizer. Again we concentrate on the

relative case; the proof for the degeneration case would be similar.

Remark 5.10. By our description of the objects we need to consider representatives ξ : Sξ → Ak,

where Sξ :=
∐
Si → S is an étale covering of S. Since R is a discrete valuation ring, for each Si → S

to be étale, it must be an isomorphism. Therefore we can always assume Sξ = S.

Suppose that we are given two arrows (ξ̄, φ̄), (ξ̄′, φ̄′) : S → QuotV,PY/A, represented by (ξ, φ), (ξ′, φ′),

whose restrictions to η are isomorphic. ξ : S → Ak, ξ′ : S → Ak′ are of the following form

C[t1, · · · , tk]→ R, ti 7→ ci(u)uei ,

C[t1, · · · , tk′ ]→ R, ti 7→ c′i(u)ue
′
i ,

where ci(u), c′i(u) are either 0 or invertible in R, and ei, e
′
i ≥ 0. Embedding them into a larger target

and applying the ∼ equivalence relation, we can assume that k = k′ and the maps are of the following

form

(t1, · · · , tk) 7→ (ue1 , · · · , uel , 0, · · · , 0),

(t1, · · · , tk′) 7→ (ue
′
1 , · · · , ue

′
l , 0, · · · , 0),

where the two expressions have the same number of zero’s, due to the isomorphism over η. The proof

of the separatedness then reduces to the following lemma.

Lemma 5.11. Consider the map ξ : S → A1, given by C[t1]→ R, t1 7→ ue, e ≥ 1. Let ξ̃ : S → Ae be

C[t1, · · · , te] → R, (t1, · · · , te) 7→ (u, · · · , u). Let YS, ỸS be the corresponding associated families of
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expanded pairs. Then there is a map h : ỸS → YS, which is an isomorphism on η, and a contraction

Y [e]→ Y [1] on η0, where the only un-contracted component is ∆e.

Proof. This is due to the construction of X(k). By the following diagram and the universal property

of fiber product, we get the map h,

ỸS //

��

Y (e)
p //

��

Y (1)

��
S

ξ̃ // Ae // A1.

The map on the base is multiplication and the map on the central fiber is the contraction of the

inserted components.

Proof of Proposition 5.9. We need to prove that the isomorphism on η extends to S. Let E :=
∑l
i=1 ei

and E′ :=
∑l
i=1 e

′
i. First we consider the special case E = E′.

Consider the map ξ̃ : S → AE+k−l, given by (t1, · · · , tE , · · · , tE+k−l) 7→ (u, · · · , u, 0, · · · , 0).

Repeatedly applying the previous lemma, there is a map between associated families h : ỸS → YS ,

such that h|η is an isomorphism and h|η0 : Y [E+ k− l]→ Y [k] is a contraction of components, where

the un-contracted components are ∆e1 ,∆e1+e2 , · · · ,∆E and the last (k − l) one’s corresponding to

the 0’s. Applying the same with ξ′, we also have a map h′ : ỸS → Y ′S contracting the corresponding

components for ξ′.

Consider quotient sheaves h∗φ and h′∗φ′ on ỸS . Now (ξ̃, h∗φ) and (ξ̃, h′∗φ′) are isomorphic over

η (since h|η, h′|η are isomorphisms), and flat over S by admissibility and Lemma 3.15. By the

separatedness of the ordinary Quot-space Quotp
∗V
Y (E+k−l)/AE+k−l , they are also isomorphic over S. On

the other hand, h∗φ|η0
and h′∗φ′|η0

are stable on un-contracted components of Y [E + k − l], but are

unstable on contracted one’s. For them to be isomorphic, the contracted components for h and h′

must coincide, which implies ei = e′i, ∀1 ≤ i ≤ l, in which case h, h′ must be isomorphisms and the

conclusion follows.

For the general case, assume E ≤ E′. We take the embeddings

ξ̃ : S → AE+k−l, (t1, · · · , tE , · · · , tE+k−l) 7→ (u, · · · , u, 0, · · · , 0),

ξ̃′ : S → AE
′+k−l, (t1, · · · , tE , · · · , tE′ , · · · , tE′+k−l) 7→ (u, · · · , u, u, · · · , u, 0, · · · , 0),

with corresponding associated families ỸS , Ỹ ′S . By the successive blow-up construction (Proposition

2.11), there is a map c : Ỹ ′S → ỸS , which is a contraction of components if restricted to η0. c is given
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by the following diagram,

Ỹ ′S //

��

Y (E′ + k − l)
pBl //

��

Y (E + k − l)

��
S

ξ̃′ // AE′+k−l
pr // AE+k−l,

where pBl is the contraction map for the successive blow-up construction, and the projection pr :

AE′+k−l → AE+k−l is to forget the tE+1, · · · , tE′ components. Again by the separatedness of the

ordinary Quot-space, we have an isomorphism c∗h∗φ ∼= h′∗φ′. Compare the stable components of the

two quotients and one obtains the conclusion ei = e′i, ∀1 ≤ i ≤ l.

5.3 Numerical criterion for admissibility

Before getting into the proof of properness, we need a numerical criterion for a sheaf to be admissible.

Let F be a coherent sheaf on Y [k] (resp. X0[k]), with generating sheaf E on Y and a line bundle H

which is a pull back of an ample line bundle from the coarse moduli space. Let I−i and I+
i be the

ideal sheaf of the divisors Di−1, Di ⊂ ∆i, and I+
0 be the ideal sheaf of D0 ⊂ Y . Let Ji be the ideal

sheaf of Di ⊂ Y [k]. Let F tf be the quotient in the following exact sequence,

0 //⊕k−1
i=0 FJi // F // F tf // 0.

Definition 5.12. Define the i-th error of F to be the following polynomial (here we write the

subscript in parenthesis, making them easy to read).

In the relative case:

ErrE,Hi (F)(v) : = P E,H(FJi)(v) + P E,H(F tf |∆i,I+
i

)(v) + P E,H(F|tf
∆i+1,I−i+1

)(v)

−1

2
P E,H((F tf |∆i,I+

i
)|Di)−

1

2
P E,H((F tf |∆i+1,I−i+1

)|Di),

for 0 ≤ i ≤ k − 1, and

ErrE,Hk (F)(v) := P E,H(F tf |∆k,I+
k

)(v),

where we denote ∆0 := Y and F tf |∆i,I+
i

:= (F tf |∆i
)I+
i

.
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In the degeneration case:

ErrE,Hi (F)(v) : = P E,H(FJi)(v) + P E,H(F tf |∆i,I+
i

)(v) + P E,H(F tf |∆i+1,I−i+1
)(v)

−1

2
P E,H((F tf |∆i,I+

i
)|Di)−

1

2
P E,H((F tf |∆i+1,I−i+1

)|Di),

for 0 ≤ i ≤ k, where we denote ∆0 := Y− and ∆k+1 := Y+.

Moreover, we define the total error as

ErrE,H(F)(v) :=

k∑
i=0

ErrE,Hi (F)(v).

For simplicity we will just omit the E , H and write Erri(F) and Err(F). Here the polynomials are

actual Hilbert polynomials and there is no problem with the ampleness of the pull back of H, since the

definition only involves the restriction of H to Di. Hence F is admissible if and only if Err(F) = 0.

In other words, the error polynomial measures the failure for a sheaf to be admissible.

For ∆i, 0 ≤ i ≤ k, let (F tf |∆i
)tf be the quotient in the following exact sequences,

0 // F tf |∆i,I−i
⊕F tf |∆i,I+

i

// F tf |∆i
// (F tf |∆i

)tf // 0, 1 ≤ i ≤ k;

0 // F tf |Y,I+
0

// F tf |Y // (F tf |Y )tf // 0, i = 0.

It is clear that (F tf |∆i
)tf are admissible. Restrict to Di and we get the following sequences,

0 // (F tf |∆i,I−i
)|Di−1

// F tf |Di−1
// (F tf |∆i

)tf |Di−1
// 0,

0 // (F tf |∆i,I+
i

)|Di // F tf |Di // (F tf |∆i)
tf |Di // 0.

Let

δ−i (F) := P ((F tf |∆i
)tf)− P ((F tf |∆i

)tf |Di−1
), 1 ≤ i ≤ k,

δ+
i (F) := P ((F tf |∆i

)tf)− P ((F tf |∆i
)tf |Di), 0 ≤ i ≤ k − 1,

and set

δ−0 (F) := P ((F tf |Y )tf), δ+
k (F) := P ((F tf |∆k

)tf).

We have the following lemma.

Lemma 5.13. 1) PF = Err(F) + 1
2

∑k
i=0(δ−i (F) + δ+

i (F));
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2) For 1 ≤ i ≤ k − 1, the leading coefficients of δ±i are non-negative. They vanish if and only if

(φ|∆i
)tf is C∗-equivariant, and also if and only if (φ|∆i

)tf is a pull-back from Di or Di−1.

Proof. 2) simply follows from Lemma 5.2. For 1), let’s compute the modified Hilbert polynomial.

Recall that Lemma 3.10 implies F tf = ker(
⊕k

i=0 F tf |∆i
→
⊕k−1

i=0 F tf |Di). Thus

P (F) =

k−1∑
i=0

P (FJi) +

k∑
i=0

P (F tf |∆i)−
1

2

k∑
i=1

P (F tf |Di−1)− 1

2

k−1∑
i=0

P (F tf |Di)

=

k−1∑
i=0

P (FJi) +

k∑
i=1

P (F tf |∆i,I−i
) +

k∑
i=0

P (F tf |∆i,I+
i

) +

k∑
i=0

P ((F tf |∆i
)tf)

−1

2

k∑
i=1

P ((F tf |∆i,I−i
)|Di−1

)− 1

2

k−1∑
i=0

P ((F tf |∆i,I+
i

)|Di)−
1

2

k∑
i=1

P ((F tf |∆i
)tf |Di−1

)

−1

2

k−1∑
i=0

P ((F tf |∆i
)tf |Di).

By definition we have

Err(F) =

k−1∑
i=0

P (FJi) +

k∑
i=0

P (F tf |∆i,I+
i

) +

k∑
i=1

P (F|tf
∆i,I−i

)− 1

2

k−1∑
i=0

P ((F tf |∆i,I+
i

)|Di)

−1

2

k∑
i=1

P ((F tf |∆i,I−i
)|Di−1

).

Then

P (F)− Err(F) =

k∑
i=0

P ((F tf |∆i)
tf)− 1

2

k∑
i=1

P ((F tf |∆i)
tf |Di−1)− 1

2

k−1∑
i=0

P ((F tf |∆i)
tf |Di)

=
1

2

k∑
i=0

(δ−i (F) + δ+
i (F)).

To compare the polynomials, we introduce the following order in the set of Hilbert polynomials.

For two polynomials f(v) = ar
vr

r! + · · · and g(v) = bs
vs

s! + · · · , where ar, bs ∈ Z+. We say f ≺ g,

if r < s or r = s and ar < bs; f � g, if “<” is replaced by ≤. Note modified Hilbert polynomials

are actually of this kind, since they can be viewed as usual Hilbert polynomials on coarse moduli

spaces. Another observation is that under this order the space of Hilbert polynomials satisfies the

strict descending condition: any strictly descending chain f1 � f2 � · · · must attains 0 at some finite

step.
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5.4 Properness

In this subsection we prove the properness.

Theorem 5.14. QuotV,PY/A (resp. QuotV,PX/C) is a complete Deligne–Mumford stack over C (resp. over

A1). In particular, if the associated modified Hilbert polynomial P (H⊗v) has degree 0 or 1, the stack

is proper (resp. over A1).

Remark 5.15. Here by complete we mean that it satisfies the valuative criterion for properness, but is

not necessarily quasi-compact. In other words, it is separated and universally closed. We expect the

“dimension≤1” condition to be superfluous and the properness is true for moduli of stable quotients

in any dimensions, which is treated in [LW2015], but for simplicity we just pose this assumption and

restrict to the 1-dimensional case.

Again let S = SpecR, where R is a complete discrete valuation ring with uniformizer u ∈ R,

generic point η = SpecK and closed point η0 = Spec k. As remarked in the separatedness part, we

also work on S directly instead of passing to an étale covering. Let (ξ̄η, φ̄η) : η → QuotV,PY/A be an

object of QuotV,PY/A(η), represented by some map ξη : η → Ak, and a stable quotient φη : p∗V → Fη on

Yη. By the valuative criterion, it suffices to extend this object over η0 after some finite base change

of S.

Applying the ∼ equivalence relation, one can always make ξη in the following form

ξη : η → Ak, C[t1, · · · , tk]→ K,

(t1, · · · , tk) 7→ (1, · · · , 1, 0, · · · , 0),

where ti 7→ 1 for the first l (possibly 0) coordinates. Note that if l > 0, then ξη actually factors

through the standard embedding {(1, · · · , 1)}×Ak−l ↪→ Ak. In this case we can pull everything back

to Ak−l and work on Ak−l instead of Ak. Thus we can assume that l = 0.

Now for this ξη there is a naive extension ξ : S → Ak, which maps S constantly to 0 ∈ Ak.

Then YS ∼= S × Y [k], and by the completeness of the ordinary Quot-space Quotp
∗V
Y [k] (Theorem 1.1 of

[OS2003]), φη extends to some φ over S. If φ|η0
is stable, then we are done; otherwise, we need to

modify our extension ξ. We’ll see that a good modification is always available.

Step 1. Normal to the distinguished divisor.

Lemma 5.16. Let ξ : S → Ak be a map and φ : p∗V → F be a quotient on YS, flat over S, such that

φ|η is admissible. Then there exists (ξ′, φ′), with ξ′ : S → Ak′ and S-flat quotient φ′ on Y ′S, such that
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(ξ′, φ′)|η ∼= (ξ, φ)|η, and φ′ is normal to the distinguished divisor D′S ⊂ Y ′S.

Proof. Consider D[k] ⊂ Yη0
∼= Y [k]. If φ|η0

is normal to D[k]× η0, then we are done. Suppose this is

not the case. Let’s look at what this means in a local chart. Étale locally near a point in D[k]× η0,

the local model of YS can be taken as U = SpecA := SpecR[y, ~z], where (D[k]× η0)|U is defined by

the ideal (u, y). Geometrically, ~z stands for coordinates in D, and y = 0 is the local defining equation

for D.

The quotient φ is represented by a sequence 0 → K → A⊕r → M → 0. Assume that K =

(f1(u, y), · · · , fm(u, y)), with generators

fi(u, y) = ci + uαigi(u) + yhi(u, y) ∈ A⊕r, (5.6)

where ci ∈ k[~z]⊕r, gi ∈ k[~z]⊕r[u], hi ∈ k[~z]⊕r[u, y], gi(0) 6= 0 and αi ≥ 1. By generic normality,

ci+u
αigi(u) 6= 0. Assume that these generators are minimal in the sense that m is as small as possible.

One can easily observe that M is flat over R if and only if ∀i, u - fi(u, y), i.e. ci + yhi(0, y) 6= 0.

Restricting to η0 and using flatness, φ|η0
is given by the sequence 0 → K0 → A⊕r0 → M0 → 0,

with K0 = (f1(0, y), · · · , fm(0, y)). The subscript 0 here means restriction to η0. By our assumption,

M0 is not normal to D[k], which is equivalent to y | fi(0, y), i.e. ci = 0, for some i.

To modify this family, we apply successive blow-ups at the divisor D[k]× η0 ⊂ YS ; in other words,

we take the modified family as

Y ′S ∼= BlD[k]×η0
YS .

This is still a family of expanded pairs, as it fits into the diagram

Y ′S //

��

Y (k + 1)
pBl //

��

Y (k)

��
S

ξ′ // Ak+1
pr1,··· ,k // Ak,

where ξ′ is given by (t1, · · · , tk, tk+1) 7→ (ue1 , · · · , uek , u).

The the local model of Y ′S is the blow up of SpecR[y, ~z] at the ideal (u, y). Thus étale locally around

a point in the new distinguished divisor D[k+1]×η0 ⊂ Y ′S , the local model is SpecB := SpecR[w, ~z],

with y = uw.

By completeness of the ordinary Quot-space, φ|η extends to an S-flat quotient φ′ on the new

family. Locally φ′ is given by a sequence 0 → K ′ → B⊕r → M ′ → 0. By construction of flat limit
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one has

K ′ = Ku ∩B⊕r,

where we view A ⊂ B ⊂ Bu = Au as submodules. Then

K ′ = (f1(u, uw), · · · , fm(u, uw))A⊕ru ∩B⊕r,

fi(u, uw) = uαigi(u) + uwhi(u, uw),

from which we see that u | fi(u, uw).

Take γi := min{αi, ord(h) + 1} ≥ 1, where ord(h) is the minimal degree of the monomials of h in

u and y. We have

fi(u, uw) = uγi
(
uαi−γigi(u) + w

hi(u, uw)

uγi−1

)
= uγi

(
uαi−γigi(u) + wh′i(u,w)

)
,

where h′i is some polynomial with u - (uαi−γigi(u) + wh′i(u,w)).

After localizing at u and intersection with B⊕r, we may take

f ′i(u,w) := uα
′
igi(u) + wh′i(u,w)

as the generators of K ′, where α′i := αi − γi < αi.

If α′i > 0 for some i, then c′i as similarly defined in (5.6) for f ′i are still all 0. We can repeat the

procedure above to further decrease α′i. After finitely many steps we get all αi to be 0, i.e. all c′i are

nonzero; in other words, φ′|η0
, after successive blow-ups, would be normal to D[k]× η0.

Step 2. Admissibility. The crucial lemma in this step is the following.

Lemma 5.17. Let ξ : S → Ak be a map and φ : p∗V → F be a quotient on YS, flat over S, such that

YS |η is smooth over η, φ|η is admissible. Then there exists a finite base change S′ → S, and (ξ′, φ′),

with ξ′ : S′ → Ak′ , and S′-flat quotient φ′ on YS′ , such that (ξ′, φ′) ∼= (ξ, φ) ×η η′, where η′ is the

generic point of S′, φ′ is admissible, and
[
Aut(φ′|η′0) : Aut(φ|η0

)
]

is finite.

One can assume that ξ : S → Ak is of the form C[t1, · · · , tk]→ R given by

(t1, · · · , tk) 7→ (ue1 , · · · , uek),

where ei ≥ 1. Moreover, by Step 1, we assume that φ|η0
is normal to D[k].
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Pick 1 ≤ l ≤ k − 1, such that deg Errl(φ|η0
) = deg Err(φ|η0

), and we would like to modify the

family and reduce this l-th error. Our strategy is to embed η into a lager Ak+1, take the flat limit in

the larger target and somehow resolve the error to the new introduced divisor. However, the generic

point can approaches 0 ∈ Ak+1 in many different ways. To parameterize those different directions, we

apply the following procedure, analogous to the construction of X(1).

Consider the map m : S × S → S given by R→ R⊗R, u 7→ v ⊗ w, which fits in the diagram

S
α // S × S

ξ̃ //

m

��

Ak+1

(tl,tl+1) 7→tltl+1

��
S

ξ // Ak.

Then ξ̃ : S × S → Ak+1 is given by

C[t1, · · · , tk+1]→ R⊗R,

(t1, · · · , tk+1) 7→ (ue1 , · · · , uel−1 , vel , wel , uel+1 , · · · , uek),

where u = vw, and we view (v, w) as uniformizers of S × S. Let C∗ act on S × S by λ · (v, w) :=

(λv, λ−1w).

Any map α : S → S × S will give an arrow ξ̃ ◦ α : S → Ak+1, which is isomorphic to ξη over the

generic point. Note that there are two obvious such α’s from the standard embedding, α : S ↪→ {1}×S

and S ↪→ S×{1}; and if el = 1 they are the only one’s. (Here by 1 ∈ S we mean the C-point SpecC→ η

given by K → C, u 7→ 1.) In general m ◦α : S → S is a finite base change. ξ̃ : S×S → Ak+1 contains

the information of all possible further embeddings of the original family.

By C∗-action, the stable quotient φη on Yη ∼= Y{1}×η extends to a C∗-equivariant stable quotient

on Yη×η, which furthermore extends to an equivariant family of quotients on YS×S−η0×η0
, by the

original extension given in the assumption of Lemma 5.17. This extension on YS×S−η0×η0
is stable

over the points η × η0 and η0 × η.

Now for the origin η0 × η0, the problem comes that different choices of α give different flat limits.

In other words, the equivariant family of quotients over YS×S−η0×η0
is equivalent to an equivariant

map f : S ×S − η0× η0 → Quotp
∗V,P
Y (k+1)/Ak+1 , but it does not necessarily extends to the codimension-2

point η0 × η0.

We need the resolution of indeterminacy. Here S×S−η0×η0 is a smooth surface, and Quotp
∗V,P
Y (k+1)/Ak+1

is a projective scheme over Ak+1 by Theorem 1.5 of [OS2003]. In this case, f extends to some
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f̃ : V → Quotp
∗V,P
Y (k+1)/Ak+1 , where V → S × S is a composite of successive blow-ups at points, and the

exceptional divisor E is a chain of rational curves. Moreover, f̃ is C∗-equivariant with respect to the

canonical C∗-actions on both sides.

Let’s describe the family (YV , φ̃) induced by f̃ . Let E =: Σ1 ∪ · · · ∪Σm be the exceptional divisor

of V → S×S; let Σ0 and Σm+1 be the proper transforms of S× η0 and η0×S respectively. The only

intersections are qi := Σi ∩ Σi+1, 0 ≤ i ≤ m. Then by properties of X(k) (Proposition 2.19) we have

YV |Σ0
∼= BlDl×η0

(∪l∆× S) ∪D×S (Y [k − l]× S),

YV |Σm+1
∼= (Y [l]× S) ∪D×S BlD×η0

(∪k−l∆× S),

and YV |Σi ∼= P1 × Y [k + 1], for 1 ≤ i ≤ m. Then φ̃ : p∗V → F̃ is a C∗-equivariant quotient YV , flat

over V , obtained as the pull-back via f̃ of the universal family on the Quot-scheme.

We have φ̃|a ∼= φ|η0
for every C-point a ∈ η × η0 = Σ0 − q0 or η0 × η = Σm+1 − qm; and the

restriction of φ̃ on E parameterizes various flat limits of φ|S×S−η0×η0
from different directions. For

convenience, we denote the singular divisors in Y [k + 1] by

D0, · · · , Dl−1, D
−
l , D

+
l , Dl+1, · · · , Dk,

and bubble components by

∆1, · · · ,∆l, ∆̃,∆l+1, · · · ,∆k.

We see that YV |Σ0
is a smoothing of D−l , and YV |Σm+1

is a smoothing of D+
l . C∗ acts by weights

±el on Σ0, Σm+1, and by weights ±2el on other Σi’s and the newly inserted components ∆̃ along the

fiber. It acts trivially on other components.

Lemma 5.18. For any 0 ≤ i ≤ m− 1, pick a ∈ Σi+1 − {qi, qi+1}. Then

1) Errl−(F̃ |a) = Errl−(F̃ |qi), Errl+(F̃ |a) = Errl+(F̃ |qi+1
), where Errl± denote the error at D±l ; more-

over, Errl+(F̃ |q0) = Errl−(F̃ |qm) = Errl(F|η0
).

2) Errj(F̃ |qi) = Errj(F̃ |a) = Errj(F̃ |qi+1
), for any j 6= l, l + 1.

3) Errl−(F̃ |q0) = Errl+(F̃ |qm) = 0.

Proof. For 1), we observe that nearD−l ×{qi}, there is an étale local chart SpecA := SpecC[~z, x, y, t]/(xy)

of YΣi+1−qi+1
, where t is the coordinate in Σi+1, x, y are coordinates along ∆̃ and ∆l respectively. C∗

acts on x and t by weights of opposite signs. We are in the situation of Lemma 3.27. Globally this
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implies that for a ∈ Σi+1 − {qi, qi+1},

P ((F̃ |a)Jl− ) = P (F̃J̃l− |a) = P (F̃J̃l− |qi) = P ((F̃ |qi)Jl− ),

where J̃l− denotes the ideal sheaf of D−l × Σi+1 ⊂ Y [k + 1] × Σi+1. The first equality follows from

the isomorphism given by C∗-action over Σi+1 − {qi, qi+1}, the second by flatness and the third from

Lemma 3.27. One has the similar equality for F̃ tf |∆l,Il+ , F̃ tf |∆̃,I
D
−
l
⊂∆̃

and their restriction to D−l .

Thus 1) holds.

2) follows from the C∗-action on Σi+1.

For 3), one needs to prove that F̃ |q0 is normal to D−l . Let Θ := BlDl×η0
(∆l×S) be the irreducible

component of YΣ0
, and Θ∗ := Θ− (proper transform of Dl−1 × S ∪Dl × S). Consider the map

g : Θ∗ ↪→ Θ = BlDl×η0
(∆l × S)

pBl−−→ ∆l × S → ∆l

which is the contraction map of YΣ0 to the original family Yη0×S, restricted on the involved component

Θ.

Consider φ̃|Θ∗ . From the C∗-equivariance there is an isomorphism between g∗((φ|η0
)tf |∆l

)tf and

φ̃|Θ∗ over Θ∗−Yq0 . Since they are both flat over Σ0 (because any torsion over the closed point would

contradict the flatness of g∗((φ|η0
)tf |∆l

)tf on ∆×S), they must have the same flat limit over q0. Thus

it suffices to prove that g∗((φ|η0
)tf |∆l

)tf , restricted to Yq0 , is normal to D−l , which is obvious from

construction.

Proof of Lemma 5.17. If φ|η0
is stable, then we have nothing to do. Suppose otherwise; i.e. φ|η0

is

normal to D[k], but not admissible. Take l as above, 1 ≤ l ≤ k−1. We apply the procedure as above.

Since F̃ is flat over V , F̃ |a has the same modified Hilbert polynomial, for every C-point a ∈ V .

By 1) of Lemma 5.13 and 2) of the last lemma, the following is constant for each a ∈ Σ1 ∪ · · ·Σm,

Errl−(F̃ |a) + Errl+(F̃ |a) +
1

2
(δ−∼(F̃ |a) + δ+

∼(F̃ |a)),

where δ±∼ denote the δ polynomials defined for the component ∆̃.

Since φ̃ is C∗-equivariant and each Ỹqi is C∗-invariant under the action, φ̃|qi is C∗-equivariant.

By 2) of Lemma 5.13, we have δ±∼(F̃ |qi) = 0, 0 ≤ i ≤ m and δ±∼(F̃ |a) have non-negative leading
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coefficients. Hence,

Errl−(F̃ |qj ) + Errl+(F̃ |qj ) = Errl(F̃ |η0
), ∀0 ≤ j ≤ m.

On the other hand, we have Errl−(F̃ |q0) = 0 and Errl−(F̃ |qm) = Errl(F̃ |η0
) 6= 0. Thus there exists

some i such that Errl−(F̃ |qi) ≺ Errl−(F̃ |qi+1). Then for a ∈ Σi+1 − {qi, qi+1}, by the last lemma, we

have

Errl−(F̃ |a) + Errl+(F̃ |a) = Errl−(F̃ |qi) + Errl+(F̃ |qi+1
)

≺ Errl−(F̃ |qi+1
) + Errl+(F̃ |qi+1

)

= Errl(F̃ |η0
).

Thus Err(F̃ |a) ≺ Err(F̃ |η0). Moreover, since the total Hilbert polynomial is constant, we must have

δ±∼(F̃ |a) � 0; in particular, Aut(F̃ |a) is finite on the new bubble ∆̃.

Since V is smooth, one can pick a curve S′ ⊂ V that contains a, such that the map S′ → V →

S × A1 → S is finite. Take the map ξ′ : S′ → V → Ak+1, and the quotient pulled back from the

universal family. We obtain a quotient φ′ on YS′ , with φ′|η′ ∼= φ|η ×η η′, Err(F ′|η′0) = Err(F̃ |a) ≺

Err(F|η0
) and only finitely many new autoequivalences arise. Repeat this process, and finally we’ll

get Err(F ′|η′0) = 0.

Step 3. Finite autoequivalences.

Lemma 5.19. Consider the family ∆ × S → S, viewed as a component of the family YS associated

to the map ξ : S → A1, where ξ maps S constantly to 0 ∈ A1. Let φ be an S-flat quotient on ∆× S,

such that φ|η is stable, but φ|η0
is C∗-equivariant. Then there is another S-flat quotient ψ, such that

ψ|η is related to φ|η via C∗-action on Y (1)→ A1, and F|η0 normal to D−.

Proof. First note that δ±∆ = 0 by Lemma 5.13. Thus Err(F|η0
) 6= 0, i.e. the sheaf must be not

admissible. Suppose F|η0 is not normal to D− × η0.

Étale locally around a point in D− × η0, ∆ × S has an affine local chart SpecA := SpecR[y, ~z],

where D− × η0 is defined by the ideal (u, y). The quotient φ is represented by a sequence 0→ K →

A⊕r →M → 0. Assume that K = (f1(u, y), · · · , fm(u, y)), with generators

fi(u, y) = ci + uαigi(u) + yhi(u, y) ∈ A⊕r,
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where ci ∈ k[~z]⊕r, gi ∈ k[~z]⊕r[u], hi ∈ k[~z]⊕r[u, y], gi(0) 6= 0 and αi ≥ 1. As in Step 1 one concludes

that

fi(u, y) = uαigi(u) + yhi(u, y) ∈ A⊕r.

Now we take some N ≥ max{αi} and apply the C∗-action induced by

η → C∗, C[t1, t
−1
1 ]→ K, t1 7→ uN ,

which acts as y 7→ uNy on ∆.

The family φ|η becomes a new family ψη represented by 0 → K ′u → A⊕ru → M ′u → 0, where the

generators become

fi(u, u
Ny) = uαigi(u) + uNyhi(u, u

Ny),

and we may also take

f ′i(u, y) = gi(u) + uN−αiyhi(u, u
Ny)

as the generators of K ′u.

Let’s look at its flat limit ψ, or a new sequence 0 → K ′ → A⊕r → M ′ → 0. By construction we

have

K ′ = K ′u ∩A⊕r,

with generators f ′i . Now for the i with αi = α, f ′i is not divisible by y, i.e. the flat limit ψ|η0 is normal

to D− × η0.

Lemma 5.20. Let ∆× S be given as in the previous lemma. Let φ be an S-flat quotient on ∆× S,

such that φ|η is stable. Then there is another S-flat quotient ψ, such that ψ|η is related to φ|η via

C∗-action on Y (1)→ A1, with Aut(φ|η0
) finite.

Proof. Suppose Aut(φ|η0) is not finite. Then φ|η0 is C∗-equivariant and it must be not admissible. By

the previous lemma, up to a C∗-action we can assume that it is normal to D+. Again by the previous

lemma, there is another quotient ψ|η, related to φ|η via a C∗-action λ : η → C∗, such that ψ|η0
is

normal to D−.

We apply a similar argument to Step 2. Consider the 2-dimensional family ∆ × S × S and two

different embeddings of ∆ × S into it. The first is the standard one induced by {1} × S → S × S,

i.e. u 7→ (1, u); and the second is given by u 7→ (λ · u, 1). Let C∗ acts on S × S via multiplication by

µ · (u, v) := (λ · µu, µ−1v). Then as in Step 2, there is a C∗-equivariant quotient on S × S − η0 × η0,
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whose restrictions to the two embeddings are φ|η and ψ|η respectively.

Again we pass to a successive blow-up V → S × S, and obtain a C∗-equivariant quotient φ̃ on V .

The exceptional fiber E = Σ1 ∪ · · · ∪Σm is a chain of P1’s. Let Σ0 := {1} × S and Σm+1 := S × {1}.

Again Σm+1 is viewed as twisted by λ. V |Σi ∼= ∆× Σi.

For a ∈ Σ0 or Σm+1, φ̃|a is isomorphic to φ|η0
and ψ|η0

respectively, whose Err’s concentrate on

D−, D+ respectively. By same arguments as in Step 2, one concludes that there is some 1 ≤ i ≤ m

and a ∈ Σ◦i , such that Err(F̃ |a) ≺ Err(F|η0
). Equivalently, this means δ±∆(F̃ |a) 6= 0 and Aut(φ̃|a) is

finite. Again one pick a curve S′ ⊂ V starting passing through a and projects to S isomorphically.

The lemma follows.

Proof of Theorem 5.14. The proof is a combination of the three steps. As mentioned at the beginning

of the subsection, we have a naive extension (ξ, φ) with ξ : S → Ak, mapping constantly to 0 ∈ Ak,

and φ : p∗V → F on YS ∼= S × Y [k], such that φ|η is stable, but φ|η0
not necessarily stable. By

Lemma 5.20, we can assume that Aut(φ|η0
) is finite. Thus we just need admissibility.

Let’s modify ξ. We have

YS ∼= S × Y [k] = (S × Y ) ∪S×D · · · ∪S×D (S ×∆k).

Apply Lemma 5.16 and5.17 to each smooth pair (∆j , Dj−1 ∪Dj). After a finite base change S′ → S,

for each 0 ≤ j ≤ k, one can find ξ′ : S′ → Ak′ , and extend φ|η ×η η′ to an admissible quotient φ′i on

Yj,S′ , where Yj,S′ is the associated family of expanded pairs with respect to the pair (∆j , Dj−1 ∪Dj).

Note that φ′i for adjacent ∆’s must coincide on the intersecting divisors because of admissibility and

the uniqueness of the flat limit. Hence these quotients glue together to an admissible quotient (ξ′, φ′)

on YS′ , and φ′|η′ ∼= φ|η ×η η′.

During each step the autoequivalence group remains finite, and for the base changes we can take

the fiber products and pass to a common finite base change. The resulting φ′|η′ is stable.
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Chapter 6

Orbifold Donaldson–Thomas theory

In this section we consider the (absolute) Donaldson–Thomas theory on 3-dimensional smooth Deligne–

Mumford stacks. Let S be a scheme and π : W → S be a smooth family of projective Deligne–Mumford

stacks over C, of relative dimension 3, and let c : W → W be the coarse moduli space. Let E be a

generating sheaf on W , and H = c∗H be a pull-back of an relatively ample line bundle H on W → S.

Let P : K(W ) → Z be a group homomorphism, and we require that the associated Hilbert

polynomial P (H⊗v) has degree not greater than 1. One can form the Hilbert scheme M := HilbPW/S

parameterizing certain closed substacks of W over S. M is a projective scheme over S by Theorem

4.4 of [OS2003]. The following lemma gives another description of M.

Lemma 6.1. M is the fine moduli space of torsion free coherent sheaves I on W with relative Hilbert

homomorphism PI = POW − P and det I trivial.

Proof. We sketch the idea of the proof. Let M′ denote the functor parameterizing such sheaves on

W , i.e. given any T → S,M′(T ) consists of T -flat families IT of coherent sheaves on T ×SW , whose

fibers are torsion free, have Hilbert homomorphism POW − P and trivial determinant. There is a

natural transformation M → M′, sending a flat family of closed substacks to its ideal sheaf. This

is obviously fully faithful. One can check that this is a bijection over closed points by embedding a

torsion free sheaf into its double dual and apply Lemma 1.1.15 of [OSS1980]. For the proof in families,

one can apply Lemma 6.13 of [Kol1990].

In the following we define a perfect relative obstruction theory on M over S, in the sense of

[BF1997]. The construction follows from the idea of D. Huybrechts and R. P. Thomas [HT2009] and

is already adopted by A. Gholampour and H.-H. Tseng in [GT2013].
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Let p :M×S W →M, q :M×S W →W be the projections and Z ⊂M×S W be the universal

family of the Hilbert scheme. Let I ⊂ OM×SW be the universal ideal sheaf. We have maps (in the

derived category) Id : OM×SW → RHom(I, I) and tr : RHom(I, I)→ OM×SW which give a splitting

of RHom(I, I).

Let L•M×SW/S be Illusie’s cotangent complex of M×S W → S. We have the Atiyah class

AtM×SW/S(I) ∈ Ext1
M×SW (I, I⊗ L•M×SW/S),

which can be seen as a map I→ I⊗L•M×SW/S [1]. By functoriality, if we compose it with the natural

projection L•M×SW/S → p∗L•M/S , we get the Atiyah class of I as a module over M,

AtM×SW/W (I) ∈ Ext1
M×SW (I, I⊗ p∗L•M/S).

After restriction to the traceless part we get RHom(I, I)0 → p∗L•M/S [1], and then tensor with the dual-

izing sheaf RHom(I, I)0⊗q∗ωW/S → p∗L•M/S⊗q
∗ωW/S [1] ∼= p!L•M/S [−2], where the last isomorphism

is the Serre duality for Deligne–Mumford stacks [Nir2008a]. We have obtained the map

Φ : E• := Rp∗(RHom(I, I)0 ⊗ q∗ωW/S)[2]→ L•M/S .

Theorem 6.2. The map Φ : E• → L•M/S is a perfect relative obstruction theory on M over S, in

the sense of [BF1997].

Proof. First let’s prove that Φ is an obstruction theory. Consider a square-zero extension T ↪→ T of

schemes with ideal sheaf J , and a map g : T →M. The canonical map

g∗L•M/S → L•T/S → L•
T/T
→ τ≥−1L•

T/T
∼= J [1]

gives an element ω(g) ∈ Ext1(g∗L•M/S , J), which is the obstruction to extending the map g to T .

Composing with Φ, we get Φ∗ω(g) ∈ Ext1(g∗E•, J).

By the the relative version of Theorem 4.5 of [BF1997], it suffices to prove that Φ∗ω(g) is also an

obstruction to the extension of g to T , i.e. Φ∗ω(g) = 0 if and only if an extension ḡ of g to T exists,

and in that case all extensions form a torsor under Ext0(g∗E•, J).

Denote by pT and qT the corresponding projections from T×SW to T and W . By the construction
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above, Φ∗ω(g) is the composite of

g∗Φ : g∗E• = RpT ∗(RHom(g∗I, g∗I)0 ⊗ q∗TωW/S)[2]→ g∗L•M/S ,

with g∗L•M/S → L•T/S , and the Kodaira–Spencer map

κ(T/T/S) : L•T/S → L•
T/T
→ τ≥−1L•

T/T
∼= J [1].

By functoriality and Serre duality, the first composition

g∗E• = RpT ∗(RHom(g∗I, g∗I)0 ⊗ q∗TωW/S)[2]→ g∗L•M/S → L•T/S ,

is just the traceless part of the Atiyah class

AtT×SW/W (g∗I) ∈ Ext1
T×SW (g∗I, g∗I⊗ p∗TL•T/S).

Hence, viewed as an element in the Ext2 group below, the element

Φ∗ω(g) ∈ Ext−1
T (RpT ∗(RHom(g∗I, g∗I)0 ⊗ q∗TωW/S), J) ∼= Ext2

T×SW (g∗I, g∗I⊗ p∗TJ)0,

is just the product of the traceless Atiyah class and Kodaira–Spencer class

p∗Tκ(T/T/S) ◦AtT×SW/W (g∗I).

We claim that this is an obstruction as desired. Note that (as in the proof of Theorem 4.5 of

[BF1997]) it suffices to work under the further assumption that T is affine. Now we can apply

Proposition 3.1.8 of [Ill1971], which says that the obstruction class to extending I from T to T , as

a coherent sheaf is exactly the product of Atiyah class and Kodaira–Spencer class. Now similar

arguments as in [Tho2000] would show that the traceless part is exactly the obstruction with det I

fixed.

A map g : T →M, by Lemma 6.1, corresponds exactly to an ideal sheaf, given by the pull-back

of the universal ideal sheaf g∗I, and g extends to T if and only if g∗I extends in M. As an open

condition, the torsion-free condition poses no restriction on possible deformations. Thus Φ∗ω(g) gives

precisely the obstruction to the extension of g, and Φ is an obstruction theory.

It remains to prove that Φ is perfect. The argument is completely the same with [HT2009] and
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[PT2009]. It suffices to prove that Rp∗RHom(I, I)0 is quasi-isomorphic to a perfect complex with

amplitude in [1, 2]. Pick a finite complex of locally free sheaves A• resolving RHom(I, I)0 such that

Rip∗A
j = 0 for ∀i 6= 0 and ∀j. Then each F j := p∗A

j is locally free and the complex F • is a resolution

of Rp∗RHom(I, I)0.

By the following Lemma 6.3 and the cohomology and base change theorem, F • has nontrivial

cohomology only in degree 1 and 2. Suppose F j with j > 2 is the last nonzero term of F •. We can

replace F j−1 → F j → 0 by ker(F j−1 → F j)→ 0→ 0. Same with the nonzero terms before 1. Finally

one obtains a two-term perfect complex.

We still need the following lemma to finish the proof.

Lemma 6.3. Let W be a 3-dimensional smooth projective Deligne–Mumford stack over C and Z ⊂W

be a 0 or 1-dimensional closed substack, with ideal sheaf I. Then ExtiW (I, I)0 = 0, for all i 6= 1, 2.

Proof. It suffices to show that ExtiW (I, I)0 = 0 for i = 0, 3, or in other words, ExtiW (I, I) =

Hi(W,OW ) for i = 0, 3. For 0→ I → OW → OZ → 0 we have the long exact sequence,

0 // HomW (OZ , I) // HomW (OZ ,OW ) // HomW (OZ ,OZ)

// Ext1W (OZ , I) // Ext1W (OZ ,OW ),

where HomW (OZ ,OW ) = Ext1W (OZ ,OW ) = 0, since codimZ ≥ 2 (see Proposition 1.1.6 of [HL2010]).

Hence HomW (OZ , I) = 0, Ext1W (OZ , I) = OZ . Then we look at

0 = HomW (OZ , I) // HomW (OW , I) // HomW (I, I)

// Ext1W (OZ , I) // Ext1W (OW , I) = 0,

Hence HomW (I, I) differs with I by a sheaf OZ of codimension 2, and we have Hom(I, I) =

H0(W, I) = H0(W,OW ). The last equality is because I coincides with OW up to codimension

2.

Tensoring the sequence above with ωW we have HomW (I, I ⊗ ωW ) coincides with I ⊗ ωW , and

hence ωW , up to codimension 2. Thus by Serre duality Ext3
W (I, I) = HomW (I, I⊗ωW )∨ = H0(W, I⊗

ωW )∨ = H0(W,ωW )∨ = H3(W,OW ).

Corollary 6.4. There is a virtual fundamental class [M]vir ∈ Avdim +3(M), of virtual dimension

vdim = rkE•.
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The following gives the deformation invariance of the perfect obstruction theory.

Proposition 6.5. Assume that the base S is smooth of constant dimension. For each closed point

s ∈ S, we have the pull-back i∗sE
• is a perfect (absolute) obstruction theory on the fiber Ms, and

[Ms]
vir = i!s[M]vir.

Proof. Appy Proposition 7.2 of [BF1997].

Following [Edi2013] and Appendix A of [Tse2010], we introduce the following notion of Chern

character. Let X be a smooth proper Deligne–Mumford stack and let IX be the inertia stack.

Connected components of IX are gerbes over their coarse moduli spaces. Given a vector bundle

V on IX , it splits into a direct sum of eigenbundles
⊕

ζ V
(ζ) of the gerbe actions, where V (ζ) has

eigenvalue ζ.

Definition 6.6. Define ρ : K(IX )→ K(IX )C as

ρ(V ) :=
∑
ζ

ζV (ζ) ∈ K(IX )C.

Define c̃h : K(X )Q → A∗(IX )C as

c̃h(V ) := ch(ρ(π∗V )),

where π : IX → X is the usual projection and ch is the usual Chern character.

It is easy to see that c̃h is a ring homomorphism. If X is furthermore projective and thus satisfies

the resolution property, then by splitting principle one can check that

c̃h(V ∨) = c̃h
†
(V )

:= ch∨(ρ(π∗V )),

where ch∨ means the usual dual of Chern character, and the bar over it means the conjugate with

respect to the natural real structure K(IX )⊗Z R ⊂ K(IX )⊗Z C.

Now for a 3-dimensional smooth projective Deligne-Mumford stack W over C, we can define the

Donaldson-Thomas invariants. Again letM = HilbPW , with P fixed as above. Consider p :M×W →

M, q :M×W →W , the universal family Z ⊂M×W and the universal ideal sheaf I ⊂ OM×W .

M×W is projective, thus I admits locally free resolutions of finite length, and the Chern character

ch(I) ∈ A∗(M×W ) in the operational cohomology. Similarly, on inertia stacks we have the modified

Chern character c̃h(I) ∈ A∗(M× IW ).
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Consider the orbifold or Chen-Ruan cohomology A∗orb as in [AGV2008,Tse2010], defined as

A∗orb(W ) :=
⊕
i

A∗−agei(Wi),

where agei is the degree shift number, and Wi is a connected component of IW . Then we can define

an orbifold version of the Chern character operator

c̃h
orb

(I) ∈ A∗orb(M×W )

just by shifting the degrees.

Given γ ∈ Alorb(W ), define the operator

c̃h
orb

k+2(γ) : A∗(M)→ A∗−k+1−l(M)

as

c̃h
orb

k+2(γ)(ξ) := p∗

(
c̃h

orb

k+2(I) · ι∗q∗γ ∩ p∗ξ
)
,

where p and q here are the projections on M× IW , and ι : IW → IW is the canonical involution

map. Note that the orbifold degrees match well thanks to the identity

agei + ageι(i) = codim(Wi,W ).

Definition 6.7. For γi ∈ A∗orb(W ), 1 ≤ i ≤ r, define the Donaldson–Thomas invariants with descen-

dants as 〈
r∏
i=1

τki(γi)

〉P
W

:= deg

[
r∏
i=1

c̃h
orb

ki+2(γi) · [M]vir

]
0

∈ C.

If the dimensions don’t match, we simply define the invariant to be 0.

Note that when r = 0, i.e. there are no insertions, the invariants are integers.
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Chapter 7

Degeneration formula – cycle

version

In this section we consider the Donaldson–Thomas theory on Hilbert stacks of the moduli’s of simple

degenerations and relative pairs. This will lead to a degeneration formula.

7.1 Modified versions of the stacks and decomposition of cen-

tral fibers

Let π : X → C be a locally simple degeneration, where X is a finite-type separated Deligne–Mumford

stack over C, with central fiber X0 = Y− ∪D Y+. Recall that we have the stacks C parameterizing

expanded degenerations, X the universal family, and A and Y in the relative case. There is π : X→ C,

where the stacks are defined as the limits of [X(k)/R∼,X(k)] and [Ak+1/R∼,Ak+1 ].

We define a stack X†0 as follows. Let Hi ⊂ Ak+1 be the hyperplane defined by ti = 0. Recall that

we have p : X(k)→ Ak+1 and by Proposition 2.18,

X(k)|Hi ∼= (Y−(i)× Ak−i) ∪Ai×D×Ak−i (Ai × Y+(k − i)◦). (7.1)

The equivalence relation restricts naturally to Hi and X(k)|Hi . Consider the stacks

C†0 := lim−→

[
k∐
i=0

Hi

/
R∼,

∐
Hi

]
,
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X†0 := lim−→

[
k∐
i=0

X(k)|Hi

/
R∼,

∐
X(k)|Hi

]
.

Remark 7.1. The stack X†0 parameterizes all families of expanded degenerations with singular fibers,

with one distinguished nodal divisor Di . More precisely, for any A1-map S → Hi ⊂ Ak+1, the

associated family XS has a decomposition YS,− ∪DS YS,+.

To keep track of the Hilbert homomorphisms of the fibers, we need to introduce the weighted

version of the classifying stacks.

Definition 7.2 (Definition 2.14 of [LW2015]). Let Λ := Hom(K(X),Z). Consider X0[k] = ∪k+1
i=0 ∆i,

where ∆0 = Y− and ∆k+1 = Y+.

1) A weight assignment on X0[k] is a function

w : {∆0, · · · ,∆k+1, D1, · · · , Dk} → Λ,

such that w(∆i) 6= 0, ∀i ∈ Λ.

2) For any 0 ≤ a ≤ b ≤ k + 1, the total weight of the segment ∪bi=a∆i is defined as

w(∪bi=a∆i) :=

b∑
i=a

w(∆i)−
b∑

i=a+1

w(Di).

3) For a family of expanded degeneration π : XS → S, a continuous weight assignment on X(k) is to

assign a weight function on each fiber that is continuous over S.

More precisely, if for some curve C ⊂ S and s0, s ∈ C, the general fiber Xs ∼= X0[m] specializes to

the special fiber Xs0 ∼= X0[n], with m ≤ n, in which ∆i ⊂ Xs specializes to ∪bj=a∆j ⊂ Xs0 , then

one must have ws(∆i) = ws0(∪bj=a∆j).

Remark 7.3. An alternative definition is as follows. Firstly, for a standard family X(k)→ Ak+1, one

specifies the weight assignment on the central fiber X0[k]. Then for any s ∈ Li, define

ws(∆j) =


w0(∆i) + w0(∆i+1)− w0(Di), j = i,

w0(∆j), j 6= i.

For s in lower strata, one can choose a slice in the base and define inductively. For a general family

XS → S, just take the map S → Ak+1 for some k and pull back the weight assignment on the standard

family X(k).
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Let P ∈ Λ be fixed. We define CP to be the stack parameterizing weighted families of expanded

degenerations, with total weight P , and XP to be the universal family. More precisely, let (Ak+1)P be

the disjoint union of all Ak+1 indexed by all possible continuous weight assignments, and X(k)P be

the universal family. Let RP∼,Ak+1 be the equivalence relation generated by the original relations on

each copy of Ak+1 and identifications between different copies respecting weight assignments. Then

we can define

CP := lim−→
[
(Ak+1)P

/
RP∼,Ak+1

]
,

XP := lim−→
[
X(k)P

/
RP∼,X(k)

]
.

Similarly we can define X†,P0 → C†,P0 , the weighted version of X†0 → C†0.

Let ΛsplP be the set of splitting data

ΛsplP := {θ = (θ−, θ+, θ0) | θ±, θ0 ∈ Λ, θ− + θ+ − θ0 = P}.

Given θ ∈ ΛsplP , let C†,θ0 ⊂ C†,P0 be the open and closed substack parameterizing those families whose

Hilbert homomorphism splits of the type θ on the fiber decompositions YS,− ∪DS YS,+.

Similarly in the relative case, given a smooth pair (Y,D) and P ∈ Hom(K(Y ),Z), We also have

the stacks AP and YP . Given (P, P ′) with P ′ ≺ P , one can also define the substack AP,P
′

and

YP,P ′ , parameterizing those families whose Hilbert homomorphism on each fiber is P and on the

distinguished divisor of each fiber is P ′. The following splitting result follows from (7.1).

Proposition 7.4 (Proposition 2.20 of [LW2015]). Given θ ∈ ΛsplP , we have the following isomor-

phisms,

(Y
θ−,θ0
− × Aθ+,θ0) ∪Aθ−,θ0×D×Aθ+,θ0 (Aθ−,θ0 × (Y◦+)θ+,θ0)

∼= //

��

X†,θ0

��
Aθ−,θ0 × Aθ+,θ0

∼= // C†,θ0 .

The next proposition describes the relationship between these stacks.

Proposition 7.5 (Proposition 2.19 of [LW2015]). Given θ ∈ ΛsplP , there is a pair (Lθ, sθ), with Lθ a

line bundles on CP , and sθ a section of Lθ, such that

1) ⊗
θ∈ΛsplP

Lθ ∼= OCP ,
∏

θ∈ΛsplP

sθ = π∗t,

where π : CP → A1 = SpecC[t] is the canonical map;
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2) C†,θ0 is the closed substack in CP defined by (sθ = 0).

Proof. CP has an étale covering consisting of Uk := [(Ak+1)P /RP∼,Ak+1 ]. It suffices to specify Lθ on

each chart.

Connected components of (Ak+1)P are indexed by various copies of Ak+1 equipped with different

continuous weight assignments w whose total weight is P . We denote such a copy by (Ak+1, w).

Restricted to Hi ⊂ Ak+1, the family X(k) is of the form

Y−,i ∪Di Y+,i := (Y−(i)× Ak−i) ∪Ai×D×Ak−i (Ai × Y+(k − i)◦).

On each Y±,i, for any s ∈ Hi, the weight assignment w gives a splitting datum

θi,± := ws(Y±,i), θi,0 := ws(Di),

which is locally constant in s. They satisfy θi,− + θi,+ − θi,0 = ws(X(k)) = P , i.e. (θi,±, θi,0) ∈ ΛsplP .

Moreover, one can easily check that (θi,±, θi,0) 6= (θj,±, θj,0) for i 6= j.

We define the line bundles as follows.

Given a fixed θ ∈ ΛsplP , on the connected component (Ak+1, w), if (θi,±, θi,0) 6= θ for any i, then

let Lθ|(Ak+1,w) := OAk+1 and sθ|(Ak+1,w) := 1.

Otherwise if (θi,±, θi,0) = θ for some i, then let Lθ|(Ak+1,w) := OAk+1(Hi) and sθ|(Ak+1,w) be the

image of 1 under the canonical map O → O(Hi).

It’s clear that this defines an RP∼,Ak+1-invariant line bundle on Ak+1 and thus a line bundle on Uk.

One can check that these data actually define line bundles with sections (Lθ, sθ) on CP satisfying the

properties stated in the proposition. Note that O(Hi) is trivial as a line bundle on Ak+1. But written

in this way, it is clear how one can glue those data together to form a global line bundle.

Now we assume furthermore that π : X → A1 is a family of projective Deligne–Mumford stacks,

with c : X → X the coarse moduli space, and E , H a fixed polarization. Let P : K(X) → Z be a

group homomorphism such that the associated Hilbert polynomial P (H⊗v) has degree ≤ 1. Let V be

a vector bundle of finite rank on X.

In previous sections we have defined the Quot-stack QuotV,PX/C parameterizing stable quotients on

the universal family X→ C, with Hilbert homomorphism P . This is a proper Deligne–Mumford stack

over A1 by results of Section 5. One has the map to the base QuotV,PX/C → CP , defined by the usual

map to the base and the weight assignments induced by the stable quotients.
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Similarly, we have the proper Deligne–Mumford stack QuotV,P
X†0/C

†
0

. Given θ ∈ ΛsplP , let

QuotV,θ
X†0/C

†
0

⊂ QuotV,P
X†0/C

†
0

be the open and closed substack parameterizing those stable quotients whose Hilbert homomorphism

splits in the type θ on the fiber decomposition.

In the relative case, given a smooth pair (Y,D), we also have the proper Deligne–Mumford stack

QuotV,PY/A. Given (P, P ′) with P ′ � P , one can also define the substack QuotV,P,P
′

Y/A , parameterizing

those stable quotients whose Hilbert homomorphism on each fiber is P and on the distinguished divisor

of each fiber is P ′.

Now the splitting results naturally lead to a morphism

Quot
V,θ−,θ0
Y−/A

×
Quot

V,θ0
D

Quot
V,θ+,θ0
Y+/A

Φθ //

��

QuotV,θ
X†0/C

†
0

��
Aθ−,θ0 × Aθ+,θ0

∼= // C†,θ0 ,

where we just glue two families of expanded pairs by (7.1) to obtain an object in X†0, and the stable

quotients also glue together since the sheaves are admissible. One can easily see that,

Proposition 7.6. Φθ is an isomorphism.

We have the following results, whose proof is essentially the same as before.

Proposition 7.7 (Theorem 5.27 of [LW2015]). For θ ∈ ΛsplP , let (Lθ, sθ) be the line bundle and section

on C defined earlier. Consider the map F : QuotV,PX/C → CP . We have

1) ⊗
θ∈ΛsplP

F ∗Lθ ∼= OQuotV,P
X/C

,
∏

θ∈ΛsplP

F ∗sθ = F ∗π∗t,

where π : CP → A1 = SpecC[t] is the canonical map;

2) QuotV,θ
X†0/C

†
0

is the closed substack in QuotV,PX/C defined by (F ∗sθ = 0).
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7.2 Perfect obstruction theory on Hilbert stacks

From now on we make the further assumption that π : X → A1 is of relative dimension 3, and take

V = OX . Then we have the Hilbert stack

MP := QuotOX ,PX/C .

Similarly we denote

Mθ := QuotOX ,θ
X†0/C

†
0

, N θ±,θ0
± := Quot

OX ,θ±,θ0
Y±/A

.

We look for a virtual fundamental class on MP . Let p :MP ×CP XP →MP , q :MP ×CP XP →

XP be the projections. Let Z ⊂ MP ×CP XP be the universal family of the Hilbert stack, and

I ⊂ OXP×CPMP be the universal ideal sheaf. In the derived category we have maps Id : OMP×CP XP →

RHom(I, I) and tr : RHom(I, I)→ OMP×CP XP which give a splitting of RHom(I, I).

Let L•MP×CP XP /CP be the cotangent complex ofMP ×CP XP → CP , which is of Deligne–Mumford

type. Consider the Atiyah class

AtMP×CP XP /CP (I) : I→ I⊗ L•MP×CP XP /CP [1].

Composing with the projection and restricting to the traceless part we get

AtMP×CP XP /XP (I) : RHom(I, I)0 → p∗L•MP /CP [1].

By Serre duality of simple normal crossing families, we have the map

Φ : E• := Rp∗(RHom(I, I)0 ⊗ q∗ωXP /CP )[2]→ L•MP /CP ,

where ωXP /CP is the relative dualizing line bundle of XP → CP .

Theorem 7.8. The map Φ : E• → L•MP /CP is a perfect relative obstruction theory on MP over CP ,

in the sense of [BF1997].

Proof. The proof is almost the same as Theorem 6.2. Given a square-zero extension T ↪→ T of schemes

with ideal sheaf J , and a map g : T →MP , one has an element Φ∗ω(g) ∈ Ext1(g∗E•, J). To say that

Φ is an obstruction theory is the same as that Φ∗ω(g) is an obstruction to extending g from T to T .
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Φ∗ω(g) is the product of Atiyah class and Kodaira-Spencer map, which are

AtT×CP XP /XP (g∗I) : g∗E• = RpT∗(RHom(g∗I, g∗I)0 ⊗ q∗ωXP /CP )[2]→ g∗L•MP /CP → L•T/CP ,

and

κ(T/T/CP ) : L•T/CP → L•
T/T
→ τ≥−1L•

T/T
∼= J [1],

where pT is the projection T ×CP XP → T . In other words,

Φ∗ω(g) = p∗Tκ(T/T/CP ) ◦AtT×CP XP /XP (g∗I),

in the group

Ext−1
T (RpT ∗(RHom(g∗I, g∗I)0 ⊗ q∗ωXP /CP ), J) ∼= Ext2

T×CP XP (g∗I, g∗I⊗ p∗TJ)0.

Again we may assume that T is affine, and Proposition 3.1.8 of [Ill1971] says that Φ∗ω(g) is the

obstruction to extending g∗I from T to T with det I fixed.

By construction, a map g : T → MP can represented by a family of expanded degenerations

XT → T , with a closed substack ZT ⊂ XT , where ZT is the pull back of the universal family

Z ⊂ MP ×CP XP . But since Z and ZT are admissible, one can see that g∗I is just the ideal sheaf

of ZT ⊂ XT . Hence Φ∗ω(g) is also the obstruction to extending ZT , or equivalently g, from T to T ,

which proves that Φ is an obstruction theory.

The proof that Φ is perfect is also the same as in Theorem 6.2, with the following lemma in place

of Lemma 6.3.

Lemma 7.9. Let X → A1 be a simple degeneration of relative dimension 3. Consider X0[k] for some

k ≥ 0 and let Z ⊂ X0[k] be a 1-dimensional admissible closed substack, with ideal sheaf I. Then

ExtiX0[k](I, I)0 = 0, for all i 6= 1, 2.

Proof. We just prove for k = 0; the proof for general k is exactly the same. Let X0 = Y− ∪D Y+.

Since Z is admissible, the ideal sheaf I is also admissible, which fits in the exact sequence

0 // I // I|Y− ⊕ I|Y+
// I|D // 0.
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Applying Hom(I,−), we have

0 // Hom(I, I) // Hom(I|Y− , I|Y−)⊕Hom(I|Y+
, I|Y+

) // Hom(I|D, I|D).

Then Hom(I, I)0 = 0 follows from Hom(I|Y± , I|Y±)0 = 0, as the sequence respects the trace map.

Same arguments applied to the sequence tensored with the dualizing sheaf lead to the vanishing of

Ext3(I, I)0.

Corollary 7.10. There is a virtual fundamental class [MP ]vir ∈ A∗(MP ).

In the same way one can prove that there are perfect obstruction theories on N θ±,θ0
± → Aθ±,θ0 , for

a given θ ∈ ΛsplP . Again let p, q be the projections of N θ±,θ0
± ×Aθ±,θ0 Y

θ±,θ0
± to its two factors. The

obstruction theory is given by

Φ± : E•± := Rp∗

(
RHom(I±, I±)0 ⊗ q∗ωY

θ±,θ0
± /Aθ±,θ0

)
[2]→ L•

N
θ±,θ0
± /Aθ±,θ0

,

where I± is the corresponding universal ideal sheaf. We have the virtual fundamental classes [N θ±,θ0
± ]vir ∈

A∗(N θ±,θ0
± ).

Also on Mθ → C†,θ0 , the Cartesian diagram

Mθ //

��

MP

��
C†,θ0

ιθ // CP

and Proposition 7.2 of [BF1997] implies that the restriction of everything from MP → CP to the

θ-piece is a perfect obstruction theory, and [Mθ]vir = ι!θ[MP ]vir.

7.3 Degeneration formula – cycle version

Now everything is ready for a cycle-version degeneration formula.
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By Proposition 7.6 we have the following Cartesian diagram

Mθ N θ−,θ0
− ×

Hilb
θ0
D

N θ+,θ0
+Φθ

∼=oo //

g

��

N θ−,θ0
− ×N θ+,θ0

+

��
Hilbθ0D ×C

†,θ
0

//

��

Hilbθ0D ×Hilbθ0D ×C
†,θ
0

��
Hilbθ0D

∆ // Hilbθ0D ×Hilbθ0D ,

(7.2)

with vertical arrows in the upper row given by the natural forgetful maps N θ±,θ0
± → HilbθD and

N θ±,θ0
± → Aθ±,θ0 .

For a family π : X → A1 and a point c ∈ A1, let ic : {c} ↪→ A1 be the inclusion. For c 6= 0, the

fiber Xc is smooth. The restriction to Xc gives a perfect obstruction theory, with virtual fundamental

class [HilbPXc ]
vir. One has the following two Cartesian diagrams,

HilbPXc
//

��

MP

��

Mθ �
� ιθ // QuotOX ,PX0/C0

� � //

��

MP

��
{c} �
� // A1, {0} �

� // A1,

where the map MP → A1 is the composition MP → CP → A1.

Theorem 7.11 ((Degeneration formula – cycle version)).

i!c[MP ]vir = [HilbPXc ]
vir, (7.3)

i!0[MP ]vir =
∑
θ∈ΛsplP

ιθ∗∆
!
(

[N θ−,θ0
− ]vir × [N θ+,θ0

+ ]vir
)
, (7.4)

where the classes in the second row are viewed in 0×A1 MP .

Proof. Let Zθ ⊂ Mθ ×C†,θ0
X†,θ0 , Z± ⊂ N θ±,θ0

± ×Aθ±,θ0 Y
θ±,θ0
± , and ZD ⊂ Hilbθ0D ×D be the universal

families of the classifying stacks. Let Iθ, I± and ID be the corresponding ideal sheaves. By admissibility

we have the gluing

Zθ ∼= (Z− × Aθ+,θ0) ∪Aθ−,θ0×D×Aθ+,θ0 (Aθ−,θ0 ×Z+),

and the exact sequence

0 // Iθ // I− � I+ // jD∗ ev∗θ ID // 0.
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in the total spaces

Mθ ×C†,θ0
X†,θ0

∼=Mθ ×C†,θ0

(
(Y

θ−,θ0
− × Aθ+,θ0) ∪Aθ−,θ0×D×Aθ+,θ0 (Aθ−,θ0 × (Y◦+)θ+,θ0)

)
.

Here I− � I+ means ∆∗(p∗−I− ⊕ p∗+I+), where p± stands for (base change to the total space of)

the projection N θ−,θ0
− × N θ+,θ0

+ → N θ±,θ0
± . evθ : Mθ → Hilbθ0D is the evaluation map and also

denotes its base change to the total space. jD is the inclusion of the universal distinguished divisor

Mθ ×D ⊂Mθ ×C†,θ0
X†,θ0 .

Now ∆∗p∗−I− is the universal ideal sheaf on Mθ ×C†,θ0
(Y

θ−,θ0
− × Aθ+,θ0) and similar for ∆∗p∗+I+;

∆∗(ev−× ev+)∗ID = ev∗θ ID is the ideal sheaf of Mθ ×D.

Let p denote the projections from the universal families to classifying stacksMθ×C†,θ0
X†,θ0 →Mθ,

N θ±,θ0
± ×Aθ±,θ0 Y

θ±,θ0
± → N θ±,θ0

± and Hilbθ0D ×D → Hilbθ0D . Then applying Rp∗RHom(−, Iθ), we get

the following diagram of distinguished triangles

Rp∗RHom(ID, ID)∨0 //

��

Rp∗RHom(I−, I−)∨0 �Rp∗RHom(I+, I+)∨0 //

��

Rπ∗RHom(Iθ, Iθ)∨0

��
L•
Mθ/N

θ−,θ0
− ×N

θ+,θ0
+

[−1] // L•
N
θ−,θ0
− /Aθ−,θ0

� L•
N
θ+,θ0
+ /Aθ+,θ0

// L•
Mθ/C†,θ0

,

where the upper row is obtained from the exact sequence of ideal sheaves, and the lower row is the

distinguished triangle for the map Mθ → N θ−,θ0
− ×N θ+,θ0

+ , relative to C†,θ0 .

It is easy to check that Ext2(I, I)0 = 0 for an ideal sheaf I on a 2-dimensional smooth Deligne–

Mumford stack. Thus we have

Rp∗RHom(ID, ID)∨0
∼= Ω

Hilb
θ0
D

∼= L•
Hilb

θ0
D /Hilb

θ0
D ×Hilb

θ0
D

[−1],

and the first column in the diagram is the same as the canonical map

g∗L•
Hilb

θ0
D /Hilb

θ0
D ×Hilb

θ0
D

→ L•
Mθ/N

θ−,θ0
− ×N

θ+,θ0
+

,

from Diagram (7.2).

In other words, the perfect obstruction theories onMθ and N θ−,θ0
− ×N θ+,θ−

+ form a compatibility

datum in the sense of [BF1997], relative to C†,θ0 . As a result,

[Mθ]vir = ∆!([N θ−,θ0
− ]vir × [N θ+,θ−

+ ]vir).
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Now the conclusion follows from the following splitting result by Proposition 7.7,

i!0[MP ]vir =
∑
θ∈ΛsplP

ιθ∗[Mθ]vir.
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Chapter 8

Degeneration formula – numerical

version

8.1 Relative orbifold Donaldson–Thomas theory

We defined the orbifold Donaldson–Thomas invariant for a 3-dimensional smooth projective Deligne–

Mumford stack in Section 6. Now we can define the relative Donaldson–Thomas invariant for a smooth

pair (Y,D), where Y is a 3-dimensional smooth projective Deligne–Mumford stack, and D ⊂ Y is a

smooth divisor. Fix a polarization (E , H) of Y and P as before.

Consider K(Y ) := K(Y )Q. The pairing χ : K(Y ) × K(Y ) → Z is nondegenerate because of

the projectivity. We can identify Hom(K(Y ),Q) with K(Y ) and view P ∈ K(Y ). The dimension

condition is that P ∈ F1K(Y ), where F• is the natural topological filtration. For thoseP represented

by addmissible sheaves, P0 = i!P lies in F0K(D) by admissibility, where i : D ↪→ X is the inclusion.

Consider the Hilbert stack NP,P0 := HilbP,P0

Y/A → AP,P0 parameterizing the stable quotients on the

classifying stacks of expanded pairs. As in Section 7, we have a perfect obstruction theory and thus

a virtual fundamental class [NP,P0 ]vir ∈ A∗(NP,P0).

Let p, q be the projection of NP,P0×AP,P0 Y
P,P0 to its two factors and I be the universal ideal sheaf.

Given γ ∈ Alorb(Y ), we still have the operator c̃h
orb

(γ) : A∗(NP,P0) → A∗−k+1−l(NP,P0) defined via
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the following diagram,

N ×A (IAY) //

��

IAY //

��

IY

��
N ×A Y

q //

p

��

Y //

��

Y

N // A,

where for simplicity we have omitted the superscripts P , P0, and IAY→ Y is the inertia stack of Y

over A. Let ev : NP,P0 → HilbP0(D) be the evaluation map.

Definition 8.1. Given γi ∈ A∗orb(Y ), 1 ≤ i ≤ r, and C ∈ A∗(HilbP0(D)), define the relative

Donaldson–Thomas invariant as

〈
r∏
i=1

τki(γi)

∣∣∣∣∣ C
〉P
X,D

:= deg

[
ev∗(C) ·

r∏
i=1

c̃h
orb

ki+2(γi) · [NP,P0 ]vir

]
0

8.2 Degeneration formula

Now let’s consider the case of a simple degeneration. Let π : X → A1 be a family of smooth projective

Deligne–Mumford stacks, which is a simple degeneration of relative dimension 3, with central fiber

X0 = Y− ∪D Y+. Take 0 6= c ∈ A1 and Xc = π−1(c). Fix P ∈ F1K(Xc). Let P0 = i!P ∈ F0K(D).

Let γ ∈ A∗orb(Xc) be in the image of the restriction from A∗orb(X), and γ±, γ0 be its restrictions

to Y±, D respectively. We abuse these notations to also denote their pushforwards to X; therefore

γ = γ− + γ+ − γ0. Let {Ck} be a basis of A∗(HilbP0(D)), with cup product

∫
HilbP0 (D)

Ck ∪ Cl = gkl.

Let (gkl) be the inverse matrix.

We have the numerical version of the degeneration formula in the following.

Theorem 8.2 (Degeneration formula – numerical version). Given P ∈ F1K(Xc), assume that γi,±

are disjoint with D. We have

〈
r∏
i=1

τki(γi)

〉P
Xc

=
∑

θ−+θ+−P0=P,
S⊂{1,··· ,r},k,l

〈∏
i∈S

τki(γi,−)

∣∣∣∣∣Ck
〉θ−
Y−,D

gkl

〈∏
i 6∈S

τki(γi,+)

∣∣∣∣∣∣Cl
〉θ+
Y+,D

,

where θ± ∈ F1K(Y±) range over all configurations that satisfy θ− + θ+ − P0 = P .



79

Proof of Theorem 8.2. Use the cycle-version degeneration formula. Apply c̃h
orb

ki+2(γi) to (7.3) and take

the degree 0 part, one gets the LHS of the formula. For the RHS, we apply c̃h
orb

ki+2(γi) to (7.4). Let

p, q be the projections from Mθ ×C†,θ0
X†,θ0 to the two factors. Let Zθ be the universal family and Iθ

be the universal ideal sheaf. Consider the embedding Mθ ↪→ N θ−,θ0
− ×N θ+,θ0

+ .

Recall the sequence on Mθ ×C†,θ0
X†,θ0 ,

0 // Iθ // I− � I+ // jD∗ ev∗θ ID // 0,

where jD is the embedding Mθ ×D ⊂Mθ ×C†,θ0
X†,θ0 , and evθ :Mθ → Hilbθ0(D). Hence

c̃h
orb

k+2(γ) · i!0[MP ]vir =
∑
θ∈ΛsplP

p∗

(
q∗γ ∩ c̃h

orb

k+2(Iθ) · p∗ιθ∗∆!
(

[N θ−,θ0
− ]vir × [N θ+,θ0

+ ]vir
))

=
∑
θ∈ΛsplP

p∗ιθ∗∆
!

((
q∗γ− ∩ c̃h

orb

k+2(I−) · p∗[N θ−,θ0
− ]vir

)
× p∗[N θ+,θ0

+ ]vir

)

+
∑
θ∈ΛsplP

p∗ιθ∗∆
!

(
p∗[N θ−,θ0

− ]vir ×
(
q∗γ+ ∩ c̃h

orb

k+2(I+) · p∗[N θ+,θ0
+ ]vir

))

−
∑
θ∈ΛsplP

p∗

(
q∗γ ∩ c̃h

orb

k+2(jD∗ ev∗ ID) · p∗[Mθ]vir

)
.

Note that since γ is disjoint from D, the last term actually vanishes.

Therefore we have proved the identity

c̃h
orb

k+2(γ) · i!0[MP ]vir =
∑
θ∈ΛsplP

p∗

(
q∗γ ∩ p∗ιθ∗∆!

((
c̃h

orb

k+2(I−) · [N θ−,θ0
− ]vir

)
× [N θ+,θ0

+ ]vir

))

+
∑
θ∈ΛsplP

p∗

(
q∗γ ∩ p∗ιθ∗∆!

(
[N θ−,θ0
− ]vir ×

(
c̃h

orb

k+2(I+) · [N θ+,θ0
+ ]vir

)))
.

Take θ0 = P0 and the data θ ∈ ΛsplP can be identified with (θ−, θ+, P0) satisfying the condition in the

assumption.

For a basis {Ck} a A∗(Hilbm(D)), we have Kunneth decomposition of the diagonal

[∆] =
∑
k,l

gklCk ⊗ Cl.

Apply this to the equality and the degeneration formula follows.

We are particularly interested in a special type of curve classes. Let (Y,D) be a smooth pair.
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Definition 8.3. A class P ∈ K(Y ) is called multi-regular, if it can be represented by some coherent

sheaf, such that the associated representation of the stabilizer group at the generic point is a multiple

of the regular representation.

Denote by Fmr
1 K(Y ) ⊂ F1K(Y ) the subgroup generated by multi-regular classes. Let (β, ε) ∈

Fmr
1 K(Y )/F0K(Y ) ⊕ F0K(Y ) be the image of P in the associated graded K-group. One can check

that P is multi-regular if and only if β is a pull-back from a curve class in the coarse moduli space.

Let Fmr
0 K(D) be the subgroup generated by 0-dimensional substacks whose associated represen-

tations are multi-regular. Then Fmr
0 K(D) ∼= F0K(D) ∼= Z, where D is the coarse moduli space. Let

P ∈ Fmr
1 K(Y ) be represented by some admissible curve. Then P0 = i∗P ∈ Fmr

0 K(D) only depends

on β. Let m be the number such that β ·D = m[Ox], where x ∈ D is the preimage of a point in D.

Now for simple degeneration π : X → A1. Given classes (β1, ε1) ∈ Fmr
1 K(Y−)/F0K(Y−) ⊕

F0K(Y−), (β2, ε2) ∈ Fmr
1 K(Y+)/F0K(Y+)⊕F0K(Y+), they come from a splitting data if β1 +β2 = β,

ε1 + ε2 −m = ε.

Theorem 8.4 (Degeneration formula – numerical version for multi-regular case). Given β ∈ Fmr
1 K(Xc)/F0K(Xc),

assume that γi,± are disjoint with D. We have

〈
r∏
i=1

τki(γi)

〉β,ε
Xc

=
∑

β−+β+=β,
ε−+ε+=ε+m,
S⊂{1,··· ,r},k,l

〈∏
i∈S

τki(γi,−)

∣∣∣∣∣Ck
〉β−,ε−
Y−,D

gkl

〈∏
i 6∈S

τki(γi,+)

∣∣∣∣∣∣Cl
〉β+,ε+

Y+,D

,

where β− ∈ Fmr
1 K(Y−)/F0K(Y−), β+ ∈ Fmr

1 K(Y+)/F0K(Y+) range over all curve classes that coin-

cide on D and satisfy β− + β+ = β.

Define the descendent Donaldson-Thomas partition function of Xc as

Zβ

(
Xc; q

∣∣∣∣∣
r∏
i=1

τki(γi)

)
:=

∑
ε∈F0K(Xc)

〈
r∏
i=1

τki(γi)

〉β,ε
Xc

qε.

Similarly for a pair (Y,D), and C ∈ A∗(Hilb(β·D)[Ox](D)), define the relative Donaldson-Thomas

partition function as

Zβ,C

(
Y,D; q

∣∣∣∣∣
r∏
i=1

τki(γi)

)
:=

∑
ε∈F0K(Y )

〈
r∏
i=1

τki(γi)

∣∣∣∣∣ C
〉β,ε
Y,D

qε.
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Corollary 8.5. Given β ∈ Fmr
1 K(Xc)/F0K(Xc), assume that γi,± are disjoint with D. Then,

Zβ

(
Xc; q

∣∣∣∣∣
r∏
i=1

τki(γi)

)
=

∑
β−+β+=β

S⊂{1,··· ,r},k,l

gkl

qm
Zβ−,Ck

(
Y−, D; q

∣∣∣∣∣ ∏
i∈S

τki(γi,−)

)

·Zβ+,Cl

Y+, D; q

∣∣∣∣∣∣
∏
i 6∈S

τki(γi,+)

 .

Remark 8.6. In practice, one has to find a good basis {Ck} for the cohomology of the Hilbert scheme of

an orbifold surface. In the orbifold case, depending on the specific problem, there are usually natural

choices of such choices. For example, when a torus action is involved, to work in the equivariant

setting and take the fixed point basis is one such choice.

Another important case is that the orbifold surface D is of ADE type, i.e. [C2/Γ] where Γ is a

finite subgroup of SL(2,C). Then Hilb(D) has a structure of Nakajima’s quiver variety which provides

natural basis of its cohomology.



82

Bibliography

[ACFW2013] D. Abramovich, C. Cadman, B. Fantechi, and J. Wise, Expanded degenerations and pairs, Communi-

cations in Algebra 41 (2013), no. 6, 2346–2386. ↑5

[AF2016] D. Abramovich and B. Fantechi, Orbifold techniques in degeneration formulas, Annali della SNS XVI

XVI (2016), 519–579, available at math/1103.5132. ↑2, 7

[AGV2008] D. Abramovich, T. Graber, and A. Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer-

ican Journal of Mathematics 130 (2008), no. 5, 1337–1398, available at math/0603151. ↑2, 6, 37, 65

[AOV2008] D. Abramovich, M. Olsson, and A. Vistoli, Tame stacks in positive characteristic, Annales de l’Institut

Fourier 58 (2008), no. 4, 1057–1091, available at math/0703310. ↑34

[AV2002] D. Abramovich and A. Vistoli, Compactifying the space of stable maps, Journal of the American Math-

ematical Society 15 (2002), no. 1, 27–75, available at math/9908167. ↑19, 34

[BCY20121] J. Bryan, C. Cadman, and B. Young, The orbifold topological vertex, Advances in Mathematics 229

(20121), 531–595. ↑2

[BF1997] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. ↑60,

61, 62, 64, 71, 73, 75

[BG2009] J. Bryan and T. Graber, The crepant resolution conjecture, Algebraic Geometry—Seattle 2005, 2009,

pp. 23–42. ↑2

[BP20081] J. Bryan and R. Pandharipande, The local Gromov–Witten theory of curves, Journal of the American

Mathematical Society 21 (20081), no. 1, 101–136. ↑1

[CG1997] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, 1997. ↑42
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