
 
 
 
 

Robustification and Optimization in Repetitive Control  

For  

Minimum Phase and Non-Minimum Phase Systems 

 
Pitcha Prasitmeeboon 

 
 
 
 
 
 
 

Submitted in partial fulfillment of the  
requirements for the degree 

of Doctor of Philosophy 
in the Graduate School of Arts and Sciences 

 
 

 
 

COLUMBIA UNIVERSITY 
2017 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2017 
Pitcha Prasitmeeboon 

All rights reserved 

 



ABSTRACT 

Robustification and Optimization in Repetitive Control  
For  

Minimum Phase and Non-Minimum Phase Systems 
 

Pitcha Prasitmeeboon 

 
Repetitive control (RC) is a control method that specifically aims to converge to zero 

tracking error of a control systems that execute a periodic command or have periodic disturbances 

of known period. It uses the error of one period back to adjust the command in the present period. 

In theory, RC can completely eliminate periodic disturbance effects. RC has applications in many 

fields such as high-precision manufacturing in robotics, computer disk drives, and active vibration 

isolation in spacecraft.  

The first topic treated in this dissertation develops several simple RC design methods that 

are somewhat analogous to PID controller design in classical control. From the early days of digital 

control, emulation methods were developed based on a Forward Rule, a Backward Rule, Tustin’s 

Formula, a modification using prewarping, and a pole-zero mapping method. These allowed one 

to convert a candidate controller design to discrete time in a simple way. We investigate to what 

extent they can be used to simplify RC design. A particular design is developed from modification 

of the pole-zero mapping rules, which is simple and sheds light on the robustness of repetitive 

control designs.   

RC convergence requires less than 90 degree model phase error at all frequencies up to 

Nyquist. A zero-phase cutoff filter is normally used to robustify to high frequency model error 

when this limit is exceeded. The result is stabilization at the expense of failure to cancel errors 



above the cutoff. The second topic investigates a series of methods to use data to make real time 

updates of the frequency response model, allowing one to increase or eliminate the frequency 

cutoff. These include the use of a moving window employing a recursive discrete Fourier 

transform (DFT), and use of a real time projection algorithm from adaptive control for each 

frequency. The results can be used directly to make repetitive control corrections that cancel each 

error frequency, or they can be used to update a repetitive control FIR compensator. The aim is to 

reduce the final error level by using real time frequency response model updates to successively 

increase the cutoff frequency, each time creating the improved model needed to produce 

convergence zero error up to the higher cutoff.    

Non-minimum phase systems present a difficult design challenge to the sister field of 

Iterative Learning Control. The third topic investigates to what extent the same challenges appear 

in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time 

is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. 

The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max 

cost function over the learning rate is presented. The Min-Max can be reformulated as a 

Quadratically Constrained Linear Programming problem. This approach is shown to be an RC 

design approach that addresses the main challenge of non-minimum phase systems to have a 

reasonable learning rate at DC.  

Although it was illustrated that using the Min-Max objective improves learning at DC and 

low frequencies compared to other designs, the method requires model accuracy at high 

frequencies. In the real world, models usually have error at high frequencies. The fourth topic 

addresses how one can merge the quadratic penalty to the Min-Max cost function to increase 

robustness at high frequencies. The topic also considers limiting the Min-Max optimization to 



some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for 

frequencies above that interval.  
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Chapter 1 

Introduction 

 

1.1! Background 

Repetitive Control (RC) is a relatively new field in control that aims to converge to zero 

error for systems that execute a periodic command, or have a periodic disturbance, or both with 

the same period. RC is specifically designed to take advantage of the information that there is a 

known period of the periodic command and periodic disturbance. The repetitive control law can 

be implemented as an extra loop around an existing feedback control system. Each time step, it 

examines the error in the previous period and uses this information to update the command to the 

feedback control system. It aims to converge to that command that eliminates the error produced 

by the disturbance, or that command that produces the desired output. Unlike other methods that 

do not specifically use knowledge of the period in such applications, it is theoretically possible for 

repetitive control to completely eliminate the effects of a periodic disturbance, and a deterministic 

tracking error in following a periodic command. Repetitive control was initially developed to 

eliminate residual 60Hz related errors in physics particle accelerators [1-2]. Other early works in 

the field are References [3-10]. Reference [11] gives an overview of the methods for designing 

repetitive control systems recommended by the control research group at Columbia University and 

Reference [12] presents various earlier design methods.  
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The simplest form of RC uses the following thinking. If at some point during the last period, 

the output was 2 units too small, then add 2 units (or 2 units times a repetitive control gain) to the 

command at the appropriate point during the current period. A particularly simple RC design 

method (and a similar iterative learning control method) is generated in Reference [12]. An 

analogy is made with PID control design in classical control systems where one tunes three gains, 

and one can do the tuning in hardware without involving a model. The approach in Reference [12], 

again involves tuning only three parameters, and again they can be tuned in hardware. A linear 

phase lead is used as a compensator for the phase lag of the system. The amount of phase lead is 

one parameter, and the overall gain is a second parameter. A smaller gain allows a higher cutoff 

frequency. Experimentally observing the frequency content of the error signals as iterations or 

periods progress allows one to tune these two parameters to produce convergence to the highest 

possible frequency for this compensator, and then one uses a zero-phase low-pass filter to cut off 

the learning above this point. This simple design process usually allows one to substantially 

improve the performance of exciting feedback control systems that repetitively perform the same 

task. The simplicity makes it possible to create a self tuning version as discussed in References 

[13-14].  

If the transfer function of the feedback control system from command to output were unity, 

then the simplest RC law discussed above could immediately eliminate the error in the second 

period in a deadbeat fashion (or it can eliminate a given fraction of the error if the gain is not 

unity). This suggests the use of a compensator that is the inverse of the feedback control system 

transfer function. However, this is nearly always impossible to use in practice because the inverse 

of a discrete time transfer function is nearly always unstable. Instead, what is done in Reference 

[15] is to design a compensator whose frequency response aims to be the same as the inverse of 
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the frequency response of the feedback control system. In this way cancellation of the system 

dynamics is accomplished after transients have become negligible. The recommended design 

method is based on a cost function fit of the frequency response using a finite impulse response 

filter (FIR) as presented in Reference [15]. This filter can also be thought of as a compensator that 

the RC designer must create. 

For stability one needs reasonably good knowledge of the system dynamics, and to mimic 

this inverse of the frequency response of the dynamics with the compensator, up to Nyquist 

frequency. In practice, one also includes a zero-phase low-pass filter to cut off the learning at high 

frequencies, when the model and/or the compensator becomes too inaccurate for the learning 

process to converge [16-17]. The cutoff must be adjusted in the real world application, after 

observing the hardware performance and the frequency content of the error signals with time, 

because one does not know what is wrong with one’s model. 

1.2! Thesis Outline 

This dissertation presents methods to simplify and robustify RC designs. The content of 

this dissertation contains four topics. The first two Chapters give approaches for application in 

minimum phase systems. Chapters 4 and 5 specifically shed light on the challenges of RC designs 

for non-minimum phase systems.  

Chapter 2 investigates to what extent the emulation methods can be used for RC design. 

The emulation methods that are considered here are a Forward Rule, a Backward Rule, Tustin’s 

Formula, a modification using prewarping, and a pole-zero mapping method. Reference [18] 

presents the emulation methods. It is shown that the first two methods are simple and can work 

when using an appropriate cutoff of the learning process, but the methods similar to PID in 

Reference [12] would be preferable. The other methods fail in this application. However, making 
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use of knowledge obtained in RC compensator design, the pole-zero mapping rules can be 

modified to produce a particularly simple and effective RC design method.  

Chapter 3 proposes methods that address the problem when systems have unmodeled high 

frequency dynamics, often described as parasitic poles or residual modes. As a result, the real 

world model and the system model might be sufficiently different to create instability requiring a 

cutoff. This chapter develops several approaches that have an adaptive process to improve the 

performance while the system is running. The new methods perform real time updates of 

magnitude and phase in the RC law proposed by References [19-20], allowing higher cutoff 

frequency or an elimination of the cutoff. 

The vast majority of repetitive control methods are designed for minimum phase systems. 

Non-minimum phase systems have unusual characteristic that complicates the feedback design for 

such systems. Chapter 4 investigates how effective the existing RC methods from References [15, 

21, 22], perform on non-minimum phase systems and aims to find effective methods for non-

minimum phase systems. The improved design of Taylor series approach originally developed by 

Reference [22] is proposed. However, the method requires that the information of pole and zero 

locations is known. A new method is proposed that minimizes the maximum of the error over all 

frequencies to Nyquist. This method can deal with the problem of slow learning rate at DC and 

low frequencies in non-minimum phase systems and only requires knowledge of system steady 

state frequency response. 

Although the Min-Max approach addresses the most fundamental difficulty for RC of non-

minimum phase systems, it introduces some extra difficulties. The purpose of Chapter 5 is to 

improve the performance of the design method and increase robustness to model errors. It proposes 

a new design that includes the optimization of quadratic cost into the Min-Max design to increase 
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robustness at high frequencies where models usually have error. Another solution to the problem 

that this dissertation considers is to optimize the Min-Max design up to some frequencies and apply 

the FIR zero-phase low-pass filter from References [16-17] to stop learning after cutoff. These two 

approaches can improve learning at low frequencies and become more robust at high frequencies. 

The materials presented in Chapters 2, 3, 4, and 5 also appear in References [23], [24], [25], and 

[26], respectively.  

Finally, Chapter 6 presents the conclusions of the dissertation.   
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Chapter 2 

Investigation of Discrete Time Emulation 
Techniques to Simplify Repetitive Control 
 

2.1 Introduction 

Historically, in the 1950’s and 1960’s, classical control system designers have developed 

considerable expertise in the design of continuous time systems, and as discrete time digital control 

became a practical approach, people wanted some simple method of converting a design based on 

continuous time thinking to discrete time. Reference [1] presents a set of such simple conversion 

methods which we examine for use in the RC problem. The purpose of this chapter is to examine 

whether discrete time control emulation methods can be helpful in producing particularly simple 

design methods, i.e. can these methods be used to design the compensator needed in RC. Reference 

[1] has a particularly good treatment of emulation methods.  

2.2 Repetitive Control Background 

A repetitive control system can have the block diagram structure as shown in Figure 2-1. 

Generally, the feedback control system can be considered to be totally digital and given by the z-

transfer function !(#). The repetitive controller %(#) adjusts the command &(#) given to the 

feedback controller. The '((#) is the desired output, which is either a constant or is periodic with 

period p time steps. The )(*) is any periodic disturbance considered to have a period measured in 

time steps equal to integer p steps. Reference [2] indicates what to do when the period is not an 



 9 

integer number of steps. The purpose of the repetitive controller is to eliminate the influence of 

this disturbance, and/or eliminate error in following a command of the same period. Of course, the 

command could be a constant. The actual periodic disturbance can occur anywhere around the 

closed loop of the feedback control system, but it results in a periodic disturbance to the output, 

and we write it in terms of this equivalent disturbance. The discrete time equations only need the 

disturbance at the sample times and this sequence has z-transform )(#).  

 

 

 

 
 

 
 

 
 

 
 

 

 

 

Figure 2-1. Block diagrams of a repetitive control system where the repetitive controller 
modifies the command to a feedback control system in continuous time and equivalent 

block diagram in discrete time. 
   

!(#)!%(#)!Σ! Σ!
'((#)! ,(#)! &(#)! '(#)!

)(#)!

+!
−!

+!+!
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The simplest form of repetitive control adjusts the command u(kT) in the time domain 

according to 

 / 01 = / 0 − 3 1 + 45 0 − 3 + 1 1  (2-1) 

where 4 is a repetitive control gain, k is the time step, T is the sample time interval, and p is the 

number of time steps in a period. The command in the current period are adjusted based on error 

of one period back, adjusted for the assumed one-time step delay through the system. In the 

transform domain of (2-1) becomes & # = 4#/ #8 − 1 ,(#).  

The general repetitive control law has the form 

 % # = 9 # :(#)
#8 − :(#) (2-2) 

 & # = #;8:(#) & # + 9 # ,(#)  (2-3) 

In words, this says that the command used at the current time step is the command used in the 

previous period plus the error observed in the previous period after it has gone through the 

compensator 9(#). The :(#) is a finite impulse response zero-phase low-pass filter designed to 

minimize a cost summed over a discrete set of frequencies between zero and Nyquist  

 : # = <=
>

=?;>
#= (2-4) 

 @A = B 1 − : 5CDEF 1 − : 5CDEF ∗
HI

H?J
+ : 5CDEF : 5CDEF ∗

K;L

H?HM
 (2-5) 

The first term in the sum tries to make the FIR filter output look like unity for frequencies in the 

passband, and the second term tries to make it look like zero for frequencies in the stopband. See 

References [2-4], and note the possible subtleties discussed in References [2], [5], [6]. The low-

pass filters considered in this dissertation is developed by Reference [4], and include an inequality 

constraint to prevent any amplification in the passband, which allows a higher cutoff. 
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From the block diagram one can write the difference equation governing the performance 

of the repetitive control system  

 #8 − :(#) + 4:(#)9 # ! # , # = #8 − :(#) ['( # − ) # ] (2-6) 

Note that if there is no frequency cutoff, then the right hand side is zero since the desired trajectory 

and the disturbance are periodic with period p time steps. In any case, stability is determined by 

the homogeneous difference equation which can be written as  

 #8, # = : # 1 − 49 # ! # ,(#)  (2-7) 

This form suggests that the expression in the curly brackets is a transfer function from one period 

to the next. Convert this to a frequency transfer function by setting # = 5CDF, and this suggests 

that if the magnitude of this frequency response function is less than unity for all frequencies from 

zero to Nyquist, then every frequency component of the error decays from one period to the next, 

and the error decays either to zero, or to the particular solution created by the forcing function 

when there is a cutoff frequency. This thinking is not rigorous, but one can rigorously prove that 

the conclusion of convergence is correct [2]. The repetitive control system of Figure 2-1 is 

asymptotically stable for all possible initial periods p, if and only if  

 : 5CDF [1 − 49 5CDF ! 5CDF ] < 1QQQQQQQQ∀S  (2-8) 

The aim is to find 9(#) whose frequency response is close to the reciprocal of the frequency 

response of !(#) for all frequencies, making the square bracket term near zero. For high 

frequencies when our model error in the !(#) used for design is too large, or our design of 9(#) 

is not accurate enough, the cutoff filter :(#) is employed to satisfy this stability condition. 

2.3 Emulation Methods 

For simplicity of understanding, we now consider that the feedback control system !(#) is 

a continuous time control system !(*) fed by a zero order hold. As before the periodic disturbance 
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somewhere in this continuous time feedback loop can be converted to an equivalent periodic 

disturbance )(#) to the output of the feedback control system at the sample times. Then our design 

objective is to use emulation methods to find a simple discrete time transfer function that emulates 

the continuous time behavior, and then invert it for the design of the RC compensator. We consider 

the following emulation methods from Reference [1]. 

(i)! The Forward Rule: Replace s in the Laplace transfer function by * = (# − 1)/1 to produce 

a discrete time z-transfer function. Let T be the sample time interval. The relationships are 

 * = # − 1
1 QQQQQQQQQQQ# = 1 + 1* (2-9) 

(ii)   The Backward Rule: 

 * = # − 1
1# QQQQQQQQQQQ# = 1

1 − 1* (2-10) 

(iii)   The Trapezoidal Rule, also known as Tustin’s formula, or the w-plane (an example 

of a bilinear transformation): 

 * = 2
1
# − 1
# + 1 QQQQQQQQQQQ# =

1 + 1*/2
1 − 1*/2 (2-11) 

This rule is sometimes modified by prewarping in order to place the half-power point at frequency 

SL by modifying the formula for s to be 

 * = SL
tan SL1/2 Q

# − 1
# + 1 (2-12) 

The conclusions made below will be the same with or without the use of prewarping. 

 (iv)  Pole-Zero Mapping 

(1) Given the Laplace transfer function, find the zeros and the poles (assumed to have more 

poles than zeros).  
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(2) For every factor * − *= of the denominator of !(*), create a corresponding factor # −

#= in the denominator of !(#), where #= = expQ(*=1). 

(3) Do the same for every factor in the numerator. 

(4) Introduce as many factors # + 1 into the numerator as needed, such that the highest 

power of z in the numerator is one less than the highest power in the denominator. 

(5) Find the DC gain of !(*) by setting * = 0. Find the current corresponding gain of the 

z-transfer function by setting # = 1. Then introduce the reciprocal of this gain as a 

constant multiplying the z-transfer function so that its DC gain now matches that of the 

original !(*). 

We will find that the first two methods, (i) and (ii), can be used provided that one has a 

sufficiently low cutoff frequency in the zero-phase low-pass filter. The third and fourth methods, 

(iii) and (iv), create a compensator that if infinite at Nyquist frequency. To make (iii) work, we 

create a new cutoff filter with the property that its output is zero at Nyquist frequency. But in 

implementation one might have difficulties ensuring that the filter zero times the compensator 

infinity produces zero or something smaller than unity. Hence, the approach is not recommended.  

The pole zero mapping approach above from Reference [1] also produces an infinite 

compensator response at Nyquist, but we examine the pole-zero mapping rules in light of insight 

gained in RC design. From this we are able to create a new pole-zero mapping procedure that is 

simple to use and will produce a simple RC design that will nearly always be a stable design 

relative to the given model. The cutoff filter can stabilize in the presence of model error as always. 

These results are also of importance in that they shed light on the stability robustness properties 

associated with different aspects of RC compensator designs.  
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2.4 Pole-Zero Mapping by Emulation Method (iv) 

First we examine the pole-zero mapping emulation method (iv) to examine its behavior. 

Then we will create a new related pole-zero mapping method to fix the difficulties. Throughout 

this chapter we consider a third order system  

 ! * = \
* + \

S]̂
*^ + 2_S]* + S]̂ QQQQ (2-13) 

where \ is equal to 8.8, S] is 37, and _ is 0.5. We will also consider other transfer function, a 2nd 

order system that eliminates the one real root above, a 4th order system that squares the complex 

conjugate pair term, and a 5th order transfer function formed by squaring the second factor on the 

right including the real root. Directly applying the pole-zero emulation method (iv) above to the 

third order model produces the magnitude 1 − 9 5CDF ! 5CDF   shown in Figure 2-2. Because 

rule (4) places two zeros at -1, the compensator 9 5CDF  goes to infinity as S goes to infinity, 

which guarantees that the system is unstable (for all periods p). The plot is truncated before 

reaching Nyquist frequency of 50 Hz. To make a RC system stable for all periods requires an :(#) 

designed to cut off the learning process before this curve reaches unit, a bit above 30Hz. In other 

applications of emulations methods this issue might not arise, but having this plot tend to infinity 

is fatal in RC unless the cutoff filter can bring the infinity to below +1. Hence, the cutoff filter 

needs to have two zeros at -1 in order to be a candidate for design, and this constraint may adversely 

influence performance in the passband and stopband. This chapter develops a new pole-zero 

mapping method that avoids this issue, making use of more complete knowledge about the zeros 

introduced by discretization. 
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Figure 2-2. The magnitude ` − a bcde f bcde  using the pole-zero mapping (iv). 

2.5 Precise Conversion — Continuous to Discrete 

2.5.1 Converting Homogeneous Equations 

The denominator of a Laplace transfer function is the characteristic polynomial of the 

associated differential equation. Similarly, the denominator of a z-transfer function is the 

characteristic polynomial of the associated scalar difference equation. The roots of these 

polynomials determine the solutions of the associated homogeneous equations.  

Consider a differential equation and its characteristic equation in factored form 

 

g^h
gi^ + <L

gh
gi + <^h = 0 

*^ + <L* + <^ = * − *L * − *L = 0 

(2-14) 

 

 

Then the general solution can be written in terms of continuous time t and at sample times 01 as 

 h i = jL5klm + j^5knm      h 01 = jL 5klF = + j^ 5knF = (2-15) 

We can find a difference equation  

 h 0 + 2 1 + \Lh 0 + 1 1 + \^h 01 = 0 (2-16) 

whose solution is the same at the sample times, by making the coefficients from the following 

polynomial 
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 #^ + \L# + \^ = # − 5klF # − 5knF = 0  (2-17) 

Thus the conversion from s to z for poles of Laplace and z-transfer functions satisfies the rule #H =

5kEF. 

2.5.2 Exact Conversion for Systems Fed by a Zero Order Hold 

When there is a forcing function, one must know what the input is doing between sample 

times. If the input is held constant, then one can convert transfer functions according to  

 ! # = 1 − #;L o !(*)/*  (2-18) 

where the large Z indicates taking the z-transform of the samples of the time function specified by 

the argument, which is the unit step response of the continuous time system. In this formula it is 

specified by its Laplace transfer function.  

Another approach to the conversion is to convert the scalar differential equation to state 

space form, and then convert the state space differential equation to the equivalent state space 

difference equation 

 

p i = qrp i Q+ sr/ i QQQQQQQQQQ; QQQQh i = jp(i)  

p 0 + 1 1 = qup 01 + su/ 01 QQQQQQ; QQQh 01 = jp(01)QQQQ 

qu = 5vwFQQQQ; QQQQsu = 5vwFgx
F

J
sr = qu − y qr;Lsr 

(2-19) 

Taking the z-transform of this state space difference equation produces the transfer function and 

the scalar difference equation in the forms 

 
' # = j #y − qu ;Lsu & #  

#y − qu ' # = j<gz #y − qu qu − y qr;Lsr& #  

(2-20) 

 

The adj indicates the adjoint matrix. When using state space equations, it is not obvious how to 

observe the zeros of the transfer function. In controllable canonical form or observable canonical 
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form, the coefficients of the zero polynomial can be found in the input or output matrices, B and 

C.  However, the last equation above is an expression for the numerator polynomial of the z-

transfer function, and it is clear that there is dependence on the poles of the transfer function, i.e. 

the eigenvalues of the A matrix, both discrete and continuous. Hence, the zeros do not have the 

same simple mapping that the poles had. 

2.5.3 Locations of Zeros and Poles of G(z)  

Reference [7] developed the following understanding of the locations of the zeros and poles 

of the discrete time transfer function !(#) for a transfer function with more poles than zeros 

(Reference [8] gives an alternative proof of the asymptotic zero locations):  

(1) The poles of !(*) transform to the poles of !(#) according to #H = 5kEF. 

(2) Any finite zeros of !(*) transform to zeros of !(#) approximately according to #H = 5kEF. The 

actual location of each zero matches the Taylor series expansion of this exponential up through 

powers of T equal to the number of poles in the system.  

(3) The pole excess of !(*) is the number of poles minus the number of zeros. Additional zeros 

are introduced in !(#) to create a pole excess of one, i.e. the number of zeros is one less than the 

number of poles. These new zeros are on the negative real axis. The asymptotic locations as T 

tends to zero for the zeros outside and on the unit circle are given in Table 1. There are additional 

zeros, for each zero outside the unit circle there is a corresponding zero inside the unit circle at the 

reciprocal position.  
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Table 2-1. Asymptotic zero locations for zeros outside and on the unit circle as a function of 
the pole excess of f {  

 
2.6 Continuous Time and Discrete Time Frequency 

Response 
 

To find the frequency response of a Laplace transfer function, one substitutes * = |S into 

the transfer function and computes the magnitude which represents the amplitude response. The 

phase change through the system is given by angle this complex number makes with the positive 

real axis. To find the frequency response of a z-transfer function, one substitutes # = 5CDF, and 

again finds the magnitude and phase in the same way. The contribution to the overall phase from 

a zero inside the unit circle and a zero outside the unit circle, can be visualized from Figure 2-3. 

At Nyquist frequency, i.e. when # = −1, a zero inside contributes +180 deg, e.g. }L, and a zero 

outside contributes 0 deg, e.g. }^. Similarly, a pole inside contributes -180 deg, and we consider 

only stable feedback control systems !(*) so there cannot be any poles outside the unit circle. 
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Figure 2-3. The phase angle contribution of a zero inside and a zero outside the unit circle. 

2.7 A New Simple Pole Zero Mapping Design Method 

In this section we modify emulation method (iv), in particular we modify step (4) making 

use of the understanding above of the zero locations introduced by the discretization process. We 

divide the mapping into 4 different cases, depending on whether there are zeros in !(*), and 

whether the pole excess is odd or even. The subsections below treat these different cases. 

2.7.1 f({) Has Odd Pole Excess, More Poles than Zeros, All Zeros in 
Left Half Plane 

 
(1) For every pole *H of stable transfer function !(*) introduce a zero in 9(#)  at the location #H =

5kEF. Introduce a pole in 9(#) for each zero inside the unit circle using the same formula.  

(2) Introduce a number of poles at the origin equal to 3~ − 1 /2 where 3~ is the pole excess.  

(3) Determine the reciprocal of the DC gain of !(*) by setting * = 0. Then adjust a gain in 9(#) 

so that 9(1) matches this reciprocal. 

The main objective is to create an 9(#) that cancels the phase change through !(#) so that 

the product !(#)9(#) is real and positive. Then the stability condition is satisfied (unless one 

decides to use a gain greater than 2). The approach cancels the poles of !(#). But the zeros 
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introduced in the discretization remain. Asymptotically there are an equal number of zeros outside 

the unit circle as inside, and they are reciprocals of each other.  

Consider a pair of zeros, one at −<, and the other at the reciprocal location −1/<, for < 

positive, i.e. a zero on the negative real axis. For each such pair, Step (2) puts a zero at the origin. 

Then the transfer function and its zero phase frequency response obtained by setting # = 5CDF are 

given by 

 # + < # + 1/<
# = < + 1/< + 2�Ä*S1 (2-21) 

This magnitude response is always positive and bounded, so that one can keep it less than 2 for 

stability. For future reference, note that if the zero is on the positive real axis, one must introduce 

a minus sign in the equation for stability. Since this is a positive quantity up to Nyquist, the 

placement of a pole at the origin has accomplished the desired phase cancellation. Reference [9] 

makes deliberate use of this concept to cancel the phase influence of zeros outside the unit circle. 

Here we rely on nature to supply zeros at approximately reciprocal locations, so that all we have 

to do is supply to pole at the origin. This pole at the origin can be thought of in a different way, it 

simply represents adjusting the number of time steps delay through the system. Hence, the 

adjustment of this delay is all that one needs to do to stabilize the influence of zeros outside the 

unit circle, provided the zeros are sufficiently close to being reciprocals. We will see that they 

usually are. The gain adjustment is not critical.   

Asymptotically as same time T goes to zero, the zeros are reciprocals of each other 

cancelling phase perfectly, but as the sample time interval increases they need not stay perfect 

reciprocals. Figure 2-4 presents this for the third order model, giving the two zero locations as a 

function of the sample rate, and compares the location of the zero inside the unit circle to the 
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reciprocal of the zero located outside the unit circle. We can watch these two curves converge to 

the same curve. They are reasonably close for all but very low sample rates.  

 

Figure 2-4. Locations of zeros introduced by discretization for third order model as a 
function of sample rate. 

 
Note that the phase of any factors in the numerator of a transfer function are additive, and 

the phase of any factors in the denominator subtract to form the overall phase of a transfer function. 

In the case of a third order system considered here, we have the zero inside, the zero outside, and 

the pole at the origin. The other poles and zeros are essentially cancelled. Figure 2-5 gives the 

corresponding phase for sample rates from 25 Hz to 300 Hz. The zeros are not quite reciprocals so 

that there are phase contribution from these terms, but the maximum contribution observed for the 

slow sample rate is about 18 degrees, and this sample rate is about as slow as one would be willing 

to use for this system. The stability condition, when the repetitive control gain gets small, is able 

to tolerate a maximum of plus or minus 90 degrees phase in the product !(#)9(#). We see that 

the phase from this term in the 3rd order case is well within such a tolerance. The 5th order system 

has two pairs of zeros, and for particularly slow sample rates can produce more that 40 degree 

error. This is still within the convergence limit. The magnitude plots are an indication of the 

learning rate, i.e. the decay per period for each frequency, as suggested by the form of the 

homogeneous difference equation give previously, and made rigorous in References [2] and [8]. 
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The learning rate is similar to that produced by the compensator design method of Reference [9], 

the learning becomes slower at high frequencies. The design method of Reference [10] nominally 

creates a learning rate that is more uniformly at all frequencies. This is a price that we pay for 

using the simple design technique. 

2.7.2 f({) Modification of 2.7.1 for Even Pole Excess 

The extra consideration associated with even pole excess is that there is an odd number of 

zeros introduced, all but one is paired at reciprocal location, and the remaining zero asymptotically 

approaches # = −1. This approach is normally from inside the unit circle. From Figure 2-3 we 

know that a zero near −1Qwill produce a fast phase change near Nyquist frequency. When the 

frequency puts z straight above the zero, the phase contribution is 90 degrees, and it becomes 180 

degrees when reaching Nyquist. One can take several approaches to deal in a simple way with the 

phase contribution of this zero. 

  It is possible that the phase error from this zero remains small enough for convergence up 

to a relatively high frequency. And then one may be quite willing to use the zero-phase low-pass 

FIR filter to cut off the learning when the phase becomes too large. This cutoff can be tuned in 

hardware. One may want the cutoff for other reasons related to energy consumption, actuator 

limits, etc. Figure 2-6 studies the phase contribution for different sample rates for a second order 

system obtained by deleting the first order factor in the third order model. It also gives results for 

a 4th order system that is just the square of the quadratic factor. We observe again that the phase 

error can be tolerable, but is perhaps larger than one would like. 
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Figure 2-5. Phase deviation from zero and corresponding magnitude |1- FG |as the sample 
time is changed for the 3rd order system (left) and the 5th order system (right). 

 
Another very simple thing that one can do is simply place a pole near -1 to nullify the 

effects of the zero without particular concern for the actual zero location.  Figure 2-7 considers the 

4th order system, and simply places a pole at -0.9 as a way to nullify much of the phase contribution. 

Of course, one could aim to put the pole underneath the zero, but the design process we are 

developing designs the digital RC directly from the continuous time transfer function without 

finding the actual zero location.  This location is -0.541, -0.741, -0.862, and -0.952 for 25, 50, 100, 

and 300 Hz, respectively. Remember that 25 Hz and even 50 Hz are rather slow sample rates to 

use for this system. The numbers are very similar for the second order system. The design produced 

by this process is stable and converges to zero error. 
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Figure 2-6. Phase contribution and the corresponding magnitude of |1- FG | from the zero 
that tends to Å = −` for the second order (left) and the 4th order (right) systems. 

 

 

Figure 2-7. Phase contribution and the corresponding magnitude of |1- FG | from the zero 
that tends to Å = −` for the 4th order system when a pole is placed at -0.9. 

 
2.7.3 f({) Has a Zero or Zeros in the Left Half Plane 

If there is a zero *H of  !(*), then one can place a pole at #H = 5kEQF. Technically, this is an 

approximate cancellation because the actual zero location is also a function of the pole locations 
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as described above. However, this approximate mapping is good through powers of T in the Taylor 

series expansion equal to the order of the system. A third order system sampled at 100Hz will start 

with in the 1Ç term in the Taylor series where 1Ç = 10;É. Thus, this approximation will be quite 

accurate in most applications.  

2.7.4 f({) Has a Zero or Zeros in the Right Half Plane 

When we have a non minimum phase system, we should know that it has this property. 

Knowing the zero location in the right half of the s plane, we can pick from three approaches. 

Figure 2-8 considers a system !(#) consisting of a single zero outside the unit circle on the positive 

real axis at 1.1. It is interesting to note that if we pick 9(#) as -1 times a normalizing gain that 

makes the maximum value of the positive product 9(#)!(#) equal to unity, then we get curves a 

in Figure 2-8. The left plot shows that the phase of 9(#)!(#) stays less than 30 degrees, and the 

right plot shows that the resulting RC system is stable. The second method makes use of the 

technique discussed above that eliminates phase for zeros introduced by discretization that are 

outside the unit circle on the negative real axis. Again, take the reciprocal of the zero and supply 

a pole at the origin. Because the zero is on the positive real axis we need to multiply by -1. Then 

we find the maximum value, this time at Nyquist instead of at DC, and introduce a normalization 

to unity of the product 9(#)!(#) at this frequency. This is plot b in Figure 2-8. it does a perfect 

job of cancelling the phase, but does not produce a reasonably uniform learning rate at all 

frequencies. In fact, the right hand side of the plot indicates that the learning rate goes to zero at 

DC.  The third approach following Reference [11] imitates the zero in multiple locations evenly 

spaced around a circle of the radius of the zero image in the z plane. Again one needs to multiply 

by -1, and then normalize. One finds the maximum magnitude over all frequencies for the product 

with !(#), and introduces a normalization so that the maximum value of 9(#)!(#) becomes unity. 
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Figure 2-8 considers three cases of repeating the zero so that there is a total number of zeros equal 

to 4, 8, and 16 (plots c, d, e in Figure 2-8 respectively). The more times the zero is repeated, the 

closer the phase stays to zero phase. The right plot shows the magnitude plots. Each plot goes to 

zero at a frequency that could be used for the normalization. The advantage of this approach is that 

the magnitude plot gives a more uniform learning at all frequencies, and the more zeros used the 

closer the plot stays to the ideal zero value of learning as fast as possible. The first approach is the 

simples, but the last approach can give the best result over all frequencies. To use this thinking on 

more general systems, note that the phase of the zero term considered here is additive in 9(#)!(#) 

with any other factors, and the gain of 9(#)!(#) is multiplicative. Chapter 4 and 5 further study 

non-minimum phase systems. In Chapter 4, we investigate how methods proposed here and other 

existing methods perform on several non-minimum phase systems. The solutions in plots a, c, d, 

and e, are equivalent to Approach 4, and the method in plot b is the same as Approach 6 in Chapter 

4. Chapters 4 and 5 propose methods to deal with slow learning at low frequencies which perform 

well even when the image of the zero location gets closer to the unit circle than the example studied 

in this section. 

 

Figure 2-8. Canceling the phase contribution of a non minimum phase zero at z = 1.1. 
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2.8 Comments on Other Emulation Methods 

2.8.1 Relationship to Å = b{e 

Recall that the mapping of poles and zeros from continuous time to discrete time follow 

the exponential formula  

 # = 5kFQQQQQ* = 1
1 ln # 

(2-22) 

 

The second expression is not one that could be substituted into a Laplace transfer function to 

produce a z-transfer function of a difference equation. The emulation methods need this property, 

and note that the first 3 methods are all approximations of this exponential.  

The Taylor series expansion of this exponential is 

 # = 1 + *1 + 1
2! (*1)

^ + 1
3! (*1)

á+. .. 
(2-23) 

 

Emulation method (i) is just the first two terms in this expansion. Using the Taylor series expansion 

result 1 − p ;L = 1 + p + p^ + pá+. ..  on emulation method (ii) produces  

 # = 1 + *1 + (*1)^ + (*1)á+. .. 
(2-24) 

 

For method (ii), again the first two terms match, but later terms do not. Then using the same 

expansion for the denominator of emulation method (iii) and multiplying produces the following  

 # = 1 + *1 + 12 (*1)
^ + 16 (*1)

á + 1
24 (*1)

Ç+. ..Q (2-25) 

For emulation method (iii), the first 3 terms match. However, we comment that these relationships 

go from s to z for all s, which is different than mapping just poles and zeros using the exponential 

relationship, and the Taylor series expansion properties only establish a close approximation for 
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sufficiently small sample time T.  We need an approximation that is good to Nyquist frequency in 

terms of phase, or otherwise we cut off the learning. 

2.8.2 Stability 

It is very desirable that the emulation method produces a stable discrete time system if it is 

emulating a stable continuous time system. This means we would like the left half of the s-plane 

to map inside the unit circle in the z-plane. Figure 2-9 shows the image of the left half s-plane in 

the z-plane using the emulations methods (i), (ii), and (iii). The forward emulation can easily 

produce instability in discrete time. The backward guarantees stability but seriously constrains the 

possible dynamics. And the trapezoidal rule which coincides with the w-transformation does what 

this transformation is designed to do. It maps the closed left half plane onto the closed unit circle. 

In this respect the trapezoidal rule appears far superior.  

 

Figure 2-9. The image of the left half s-plane in the z-plane for Forward, Backward, and 
Trapezoidal emulation methods. 

2.8.3 Time Delay Issues 

When a continuous time transfer function !(*) is fed by a zero order hold and the output 

sampled, generically there will be a one time step delay from the time step at which the input is 

changed to the time step at which the sampled output first changes. This means that the correct 
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!(#) must have one more pole than zero. Our RC applications need a zero order hold input to the 

physical world, so our compensator which tries to be the inverse of this system, will need to have 

a one-time step phase lead. 

Examining emulation method (i) we observe that the number of time steps delay in the 

resulting digital system is equal to the pole excess in !(*), i.e. it is equal to the number of poles 

minus the number of zeros. Unless this pole excess is unity, there will be fatal phase errors 

approaching Nyquist. At Nyquist frequency there are two samples per period of oscillation. An 

extra time step delay at this frequency corresponds to an extra phase lag of 180 degrees. According 

to the stability condition, a 180 degree phase difference between !(#) and 9;L(#) will definitely 

violate the stability condition, unless :(#) is able to cut off the learning process at higher 

frequencies to stabilize the RC system at the expense of not addressing the error components above 

the cutoff.    

Examining emulations methods (ii) and (iii) we find that the number of zeros in the 

resulting !(#) is equal to the number of poles. Thus, the resulting discrete time transfer function 

has no time delay in it. The same comments apply again here, that we know that we will not be 

able to have a stable design all the way to Nyquist frequency without the use of a cutoff. 

2.8.4 Performance of Emulation Methods (i) and (ii)  

Consider the third order system and apply emulation method (i), the forward rectangular 

rule. The plot of  1 − 9 # ! #  for # on the unit circle from zero to Nyquist is shown on the left 

in Figure 2-10 and we see that it goes above unity somewhere between 15 and 20 Hz. We can 

design a cutoff filter :(#) to stabilize this design, resulting in the plot of : # [(1 − 9 # ! # ]  

on the right of the figure, which will result in zero error for error frequency components roughly 

up to this cutoff (there are subtleties related to the effective cutoff [5]. It is reasonably likely that 



 30 

eliminating errors up to this cutoff would eliminate the majority of the error, making this design a 

simple and effective design. 

 

Figure 2-10. The stability condition for emulation method (i) applied to the 3rd order 
system. Without cutoff (left), and with stabilizing cutoff (right). 

 
The corresponding figures for emulations method (ii), the backward rectangular rule, are 

given in Figure 2-11. Similar comments apply, but note that this time the cutoff frequency must 

be considerably lower, making the design less effective.   

 

Figure 2-11. Plots corresponding to Figure 2-10 for emulation method (ii). 

2.8.5 Effectiveness of a Frequency Cutoff Filter 

We expect to need to use a frequency cutoff in real world applications because it is hard to 

have a good system model at high frequencies, yet RC needs to know the model phase to within 

plus or minus 90 degrees to be able to guarantee stability. We also may want a cutoff to respect 
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the limitations of the hardware, correcting periodic errors far above the bandwidth of the system 

can ask for unreasonable actuator output. In cases when we want to obtain zero error up to the 

maximum possible frequency, we should use a sophisticated RC design as in References [2] and 

[12]. In this case we are forced to tune the cutoff filter :(#) in hardware since we do not know 

what is wrong with our model. We let the hardware tell us at what frequency the learning process 

no longer works.  

The above emulation methods could be convenient to use when we are not concerned to 

learn to the maximum possible frequency, and apply the emulation to design the compensator and 

then cut off the learning in hardware. This thinking applies to emulation methods (i) and (ii), but 

method (iii) has additional difficulties. The denominator of emulation method (iii) has the factor 

(# + 1) in the denominator of the expression for s. One sets # = expQ(|S1) in the resulting !(#) 

to find frequency response, and this term becomes zero when reaching Nyquist frequency where 

# = −1. Assuming there are more poles than zeros in !(*), when one clears the fractions in !(#), 

there will be a factor of (# + 1) to the power of the pole excess that multiplies the numerator. The 

compensator 9(#) uses the reciprocal of this transfer function, and therefore has a singularity at 

Nyquist frequency. Our FIR design for :(#) will not produce a zero at Nyquist. We could insist 

that this filter have the requisite number of zeros at Nyquist frequency to kill the singularity. To 

do so, we modify the design of :(#). The design currently is a simple least squares problem and 

requires only the solution of a linear set of equations to determine the gains. To impose the 

requirement that the FIR filter produce zero at Nyquist, i.e. when # = −1, we need to require that 

: −1 = 0. This means we require the following equality constraint be satisfied 

 <J − 2<L + 2<^−. . . +2 −1 ><> = 0 (2-26) 
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This eliminates one unknown coefficient in the design equations, again leaving a linear set of 

equations to solve. If one needs two zeros at Nyquist one can produce the corresponding equation 

g:(#)/g# ã?;L = 0. But this is perhaps not a robust process in real world applications, trying to 

kill something going to infinity with something that is going to zero. 

2.9 Conclusions 

When considering the use of emulations methods (i), (ii), and (iii) in the design of repetitive 

control compensators, a number of issues appear. None of the methods produces a model that is 

good all the way to Nyquist frequency, and hence to be used one must employ a frequency cutoff 

filter. This can be practical, but one might conclude that there is not enough benefit of simplicity 

of design to motivate one to use this approach. 

The original pole-zero emulation method also had related difficulties at Nyquist frequency. 

However, we are able to create a modified version that has considerable appeal. One simply 

cancels the continuous time images of poles inside the unit circle, and if present we do the same 

for any zeros inside in continuous time. Then we simply adjust the time delay through the system, 

and in many cases this will create a workable RC law. It is evaluated how effective this very simple 

approach is, and one sees that it can be very effective. Some special considerations are used for 

even pole excess. The evaluation of how well this design approach works, sheds light on the 

robustness properties of more general RC design methods. 
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Chapter 3 

Repetitive Control Using Real Time Frequency 
Response Updates for Robustness to Parasitic 
Poles 
 
 

3.1 Introduction 

Chapter 2 proposes a simple method to create repetitive controllers directly from the 

continuous time model. Reference [1] develops the mathematical theory saying that this approach 

will produce a repetitive control system that converges to zero error if the system model and the 

real world model do not differ too much. However, in the physical world, one always expects that 

there will be some unmodeled high frequency dynamics, sometimes described as parasitic poles, 

other times it represents residual modes. One missing pole at high frequency can potentially 

produce a model error approaching the 90 degree limit, and this makes RC subject to instabilities 

from missing high frequency dynamics. In practice, this is addressed by introducing a zero-phase 

low-pass filter to cut off the learning at frequencies where the model is not sufficiently accurate 

for convergence [2-3].  

If one wants the minimum possible tracking error, one wants to push this cutoff to as high 

a frequency as possible. Then one can aim for zero error at all harmonics below the cutoff, and 

must tolerate the remaining error. Note that one cannot design this cutoff frequency before building 

the hardware. The needed cutoff frequency is dictated by what is wrong with one’s model. If one 

knew what was wrong with one’s model, one would fix it. Hence, one must tune this part of the 



 35 

repetitive controller by observing the hardware behavior, and then one can observe how much 

error one is able to eliminate. 

If a frequency below the cutoff used happens to have too much phase lag, and produces 

instability, it is interesting to note that the instability is usually a very slow instability. At high 

frequencies the magnitude frequency response can be very low, so the error grows very slowly. 

Instability in feedback control systems very often is a sudden catastrophic growth in error, but in 

typical RC the instability is slow. This allows us to let the instability grow slowly, bringing error 

out of the noise level, and producing data that is precisely the data needed in order to know what 

is wrong with the phase information at that frequency. Reference [4] exploits this aspect of 

repetitive or learning control. It suggests use of RC to create an alternative to algorithms for 

optimal experiment design for purposes of identification. One intentionally uses a model putting 

one near the stability boundary of the nominal model. Errors in the model easily produce growing 

error data that can be used to correct the model.  

The purpose of this chapter is to develop several approaches to producing repetitive 

controllers that observe the input and the output histories while repetitive control is running, and 

develops the frequency response knowledge needed for convergence. If one applies the inverse of 

the system steady state frequency response as a compensator applied to the error history, one 

produces a convergent RC law. A series of different approaches are treated. 

(1) The first approach uses a moving window of one period of input-output data. One can 

perform a real time discrete Fourier transform (DFT) of this window, for each frequency one can 

see in the data, DC, the fundamental, and the harmonics. Applied to the input and the output, this 

allows one to find the frequency response or the inverse of the frequency response, provided the 

data is not changing fast. Then the DFT of the error tells us what signal to apply to cancel error. 
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This is a linear constant coefficient version of the repetitive control law created in Reference [5] 

for RC applied to linear systems with periodic coefficients. Such a moving window has been used 

in a number of RC approaches, including Reference [6]. Note that the DFT of a moving window 

can be performed easily in real time. For each frequency, one needs to add the newest input or 

output signal, delete the oldest signal, and multiply the remainder by a constant. Note that one can 

easily have a cutoff filter when using this approach, simply do not perform the DFT for frequencies 

that one does not want to address. This does not however eliminate the need for a cutoff filter on 

the signal applied to the control system, because leakage can produce frequencies above the cutoff 

that need to be eliminated from the input before it is applied. This approach is a direct way to 

produce the desired compensator that is the inverse of the frequency response of the system, and 

for sufficiently slow learning rate it should converge. At faster learning rates, there will be leakage 

effects due to the nonstationary nature of the signal. 

(2) An alternative method of finding the frequency response information makes use of the 

results obtained in Reference [7] for matched basis function repetitive control. This reference seeks 

to find input or output components on sine and cosine basis functions. Output basis functions are 

shifted relative to the input basis functions by the amplitude and phase change through the system. 

In place of the recursive DFT at each frequency, one finds the frequency components updated in 

real time from the projection algorithm of adaptive control, using one projection algorithm of each 

frequency of interest. This information defines the current magnitude and phase information for 

each frequency.  

Reference [7] creates the RC law that projects the error onto output basis functions, then 

replaces the basis functions with the corresponding input basis functions that have the magnitude 

and phase inverted. This creates the repetitive control update of the control action for that 
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frequency. The equations involved are linear, but make projections onto sines and cosines, and this 

produces periodic coefficients. Reference [7] shows by analytical manipulation in Mathematica, 

that the resulting equations can be written as constant coefficient linear equations with specific 

locations for poles and zeros based on the system amplitude and phase response at the frequency 

considered. To make the RC law by this approach one computes the frequency response at the 

frequencies of interest using the projection algorithm. The resulting amplitude and phase is 

inserted in the equation for the RC pole-zero compensator to obtain the error cancelling control 

action based on the most recent model. This RC design approach is good because it allows one to 

address any isolated frequency or set of frequencies independently. Experience shows that when 

applied to too large a number of frequencies, one may have to keep the overall learning gain low 

producing a slow learning rate.  

(3) The repetitive control law developed in Reference [8] develops an FIR filter to perform 

the compensator representing the inverse of the steady state frequency response. It is observed that 

only 12 gains in this compensator, corresponding to multiplying 12 time steps of error in the 

previous period, is sufficient to produce an inverse that is good to between 2 and 3 decimal digits 

on a third order example system. The 12 gains are obtained by minimizing the square of the 

difference between unity and the product of compensator times model, summed over the 

frequencies of interest. Hence, this RC law is very easy to apply. To move toward this type of RC 

law from that described in (1) above, once we have computed the current frequency response from 

the DFT results, one computes the FIR coefficients, as described in Reference [8] or [1].  

(4) Finally we consider what may be the real practical problem of interest. Suppose that we 

have an initial model from which we perform the simple and effective FIR compensator as in (3) 

above. When initially implemented in hardware, one normally will observe the frequency content 
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of the error, looking for any frequencies for which the error is growing due to unmodeled high 

frequency dynamics, then picks a cutoff filter to cut off the learning before reaching these 

frequencies. Suppose one has done this, but is a bit unsatisfied with the final error level, and wants 

to raise the cutoff frequency. Instead of trying to learn everything that is wrong with the model 

immediately, one learns to raise the cutoff gradually, stopping when satisfied with the error level 

reached.  

One raises the cutoff some chosen amount to include one or several extra harmonics. While 

using an FIR design that is aims to model the inverse of the frequency response, as in (2) above, 

one will observe growth of the error at the extra harmonics. By running a separate projection 

algorithm on the input and the output for each of these harmonics, one can determine the magnitude 

and phase relationships for these frequencies. And this information prescribes the corresponding 

pole-zero compensator to use on these frequencies. To do this the projection algorithm is finding 

the magnitude and phase difference from command input to the feedback control system, to the 

FIR compensated output, i.e. finding what is wrong with the compensated signal at the extra 

harmonics. And then one applies the pole-zero compensators for these harmonics to the already 

compensated signal. This approach allows one to raise the cutoff successively, quitting when one 

is satisfied with the error performance.  

This is a particularly attractive new ability. Previously, the performance of a repetitive 

control system was limited by the accuracy of the model used in designing it, and how much it 

was limited is only known when one applies the RC law to the real world and must pick a cutoff 

to stabilize. The result may be disappointing. Normally, to get better results one must work to find 

a better model, redesign, and try again. Here, we have an adaptive process that allows one to raise 

the cutoff, and improve the performance, while the repetitive control system is running. In the 
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following sections, the equations needed for these various approaches are developed, and examples 

are produced to examine their behavior and effectiveness.   

3.2 Approaches to Real Time Determination of Frequency 
Response from Repetitive Control Data 

 
3.2.1 Moving Window             

We wish to correct RC designs developed based on a feedback control system frequency 

response model, to account for high frequency model errors. One can estimate the steady state 

frequency response of the feedback control system using a moving window DFT containing p time 

steps, as utilized in various references, such as References [5-6]. One applies the DFT to both the 

input and the output, and from the ratio determines the frequency response. The way to propagate 

the frequency content to the next time step by using a shifting matrix is presented.  

The Vandermonde matrix for a p time step window is  

                                             (3-1)

 

and its complex conjugate )∗ is obtained by replacing the minus signs by plus signs in the 

exponents.  The frequency components from one period time history of input /(01) can be 

obtained as 
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&J(0)

&L(0)
⋮

&8;L(0)

= 1
3)

/ (0 − 3 + 1)1

/ (0 − 3 + 2)1
⋮

/(01)

 (3-2) 

The recursive form for computation in real time updates of the input frequency component n from 

time step k to time step k+1 can be propagated as  

 &> 0 + 1 = #]> &> 0 + 13 [/ 0 + 1 1 − / 0 − 3 + 1 1  (3-3) 

where #] = 5CDçF, S] = ^é
8F, and S> = èSJ. The recursive form of the frequency components of 

the output and the error can be computed in the same way. 

The magnitude response rn(k) is then given by  

 !=êL(5CDëF) = '=êL(è)
&=(è)  (3-4) 

and the phase response x>(0) of the identified system is 

 ∡!=êL 5CDëF = ∡'=êL è − ∡&= è  (3-5) 

If there is a periodic disturbance of period p time steps, then one needs to apply this approach to 

the change in input and change in output from one period back to the present period, in order to 

eliminates its influence.  

3.2.2 Projection Algorithm 

The moving window DFT can work well on a steady state signal to determine frequency 

content. When applied to a p time step window observing some decay of the error, the DFT will 

produce a set of sinusoids that repeat the signal each p time steps. If there is decay during the p 

steps, then a discontinuity is produced from one period to the next, resulting in some inaccuracy. 
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Reference [7] uses a projection algorithm for matched basis function repetitive control that projects 

the error onto sinusoids and applies the matched sinusoids to the system. Here we use the 

projection algorithm to determine the frequency components of the input and the output to compute 

the frequency response, i.e. to find the input basis functions that match the output basis functions. 

The projection algorithm does not use a window, but does offer a forgetting factor that one tunes. 

Hence, some of the difficulties of the moving window are avoided. We use one projection 

algorithm for each frequency of the given period, of for each harmonic frequency requiring 

adjustment in the model to obtain convergence.  

To find the frequency response at frequency 4> = S>1, find the components of input /(0) 

and of output h(0) on both sine and cosine of this frequency 

 :> 0 = cosQ(∅>0) sin(∅>0)  (3-6) 

The 4> = S>1 is the normalized addressed frequencies for n = 0,1 ,…, N and range from 0 to π, 

and T is the sample time interval of the digital control system. The coefficients of the output and 

input components on these sines and cosines at time step k and frequency n are ò> 0 = ò>r(0)
ò>k(0)  

and B> 0 = B>r(0)
B>k(0) , respectively. 

The frequency coefficients of the output are updated from time step k to step k+1 according 

to the projection algorithm 

ò> 0 + 1 = ò> 0 + <:>F(0 + 1)
� + :> 0 + 1 :F(0 + 1) h 0 + 1 − :>(0 + 1)ò>(0)

= y − <:>F(0 + 1)<:>(0 + 1) ò> 0 + <:>F(0 + 1)h(0 + 1) 
(3-7) 

The input components B> 0  are updated similarly. The magnitude response of the system for 

frequency n at time step k+1 assuming a one time-step delay through the system is  
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 ô> 0 + 1 = ò>r^ (0 + 1) + ò>k^ (0 + 1)
B>r̂(0) + B>k̂(0)  (3-8) 

Also, we know that the phase of output and input are equal to atan2(ò>k(0 + 1), ò>r(0 + 1)) and 

atan2(B>k(0), B>r(0)). The estimated phase of the frequency response of the system for frequency 

n is equal to  

 x>(0 + 1) = atan2 ò>k(0 + 1), ò>r(0 + 1) − atan2(B>k(0), B>r(0)) (3-9) 

3.3 Repetitive Control Laws Based on System Frequency 
Response 

!
Without a cutoff filter, Eq. (2-8) in Chapter 2 becomes 

 1 − 9 5CDF ! 5CDF < 1      ∀S (3-10) 

which suggests designing the compensator F(z) so that the left hand side of the equation is zero, 

i.e. the compensator should be the inverse of the steady state frequency response of the feedback 

control system.  

3.3.1 FIR Compensator RC Design 

Reference [8] creates a compensator in the form of an FIR filter that sums a number of 

errors in the previous period multiplied by gains  

9 # = <L#õ;L + <^#õ;^ + ⋯+ <õ#J + ⋯+ <Q>;L#;(>;õ;L) + <>#;(>;õ) (3-11) 

where the gains are chosen to minimize the left hand side of Eq. (3-10) summed over a suitably 

chosen set of frequencies from zero to Nyquist frequency 

@ = 1 − !(5CDEF)9(5CDEF) ùH 1 − !(5CDEF)9(5CDEF) ∗
K

H?J
 (3-12) 
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where the asterisk indicates complex conjugation. This FIR filter can be a surprisingly good 

approximation of the inverse frequency response with relatively few gains. Note that the cost 

function can choose to ignore high frequencies where the model is suspect. The zero-phase low-

pass cutoff filter is designed similarly as in Eq. (2-4) and (2-5) 

If one wants to use this approach, and incorporate updated frequency response information, 

one can be using the moving window DFT for fundamental and all harmonics and apply the 

optimization criterion summed over those frequencies. Alternatively, one can do the same when 

using projection algorithms for all frequencies. But both methods do not need to compute an FIR 

filter, and can go directly to computing the frequency updates needed in the control action.  

On the other hand, one can combine the approaches. For example, after increasing the 

cutoff frequency such that there is now a harmonic below the cutoff that has growing amplitude 

with repetition, one can use the projection algorithm to compute the frequency response of the 

product for this frequency component. Then use this information to make a pole-zero compensator 

forQ!(5CDEF)9(5CDEF) to apply to the error, that addresses this frequency, aiming to now converge 

to zero error for this previously unstable frequency.  

3.3.2 RC Design Directly from Moving Window Data               

Once one obtained the estimated model from methods presented in previous section, one 

can adjust input according to current magnitude and phase of the estimated frequency response of 

each frequency. In the model, we assume that we select />(0) to produce the desired h>(0 + 1) 

for n = 0, 1, …, p-1. For some systems, with negligible computation time one can modify the 

equations to use the e(k) and to produce u(k).  

Once one obtains ô>(0) and x>(0), one can compute the needed input by updating the 

frequency content of the input in the previous time step by using the LAW1 in Reference [5]  
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& 0 = ûü& 0 − 1 + Λ°,(0) 

/ 01 = )∗ K&(0) 
(3-13) 

where gain matrix Λ is a diagonal matrix with diagonal elements as ¢J, ¢L, ¢^, … , ¢8;L, )∗ K is 

the last row of the matrix )∗ and ûü is a time shifting matrix 

ûü = g|<§[#]J, #]L, … , #]8;L ]                                                (3-14) 

and diag indicate a diagonal matrix of the given elements. Given the frequency response of the 

system computed from the moving window for fundamental and each harmonic  

 • 0 = g|<§ ôJ 0 5J, ôL 0 5C¶l = , ô̂ 0 5C¶n = , … , ô8;L 0 5C¶Ißl =  (3-15) 

the repetitive control matrix representing the inverse of the frequency response is given as 

° 0 = g|<§ 1/ôJ 0 , 1/ôL 0 5;C¶l = , 1/ô̂ 0 5;C¶n = , … ,

1/ô8;L 0 5;C¶Ißl =  
(3-16) 

From one time step to the next, after obtaining error 5 0 + 1 1  one updates the error 

frequency components from the previous time step window to the time step k+1 window according 

to  

 

,> 0 + 1 = #]> ,> 01 − 1
® 5 0 − 3 + 1 1

+ #];>(8;L)
1
® 5 0 + 1 1  

(3-17) 

Above it is assumed that once the measurement of 5(01) is available, /(01) can be computed fast 

without losing a time step. If the system needs one step for computation, one would be required to 

compute /(01) based on , 0 − 1 . However, one can still use ûü to propagate one step forward 

 & 0 = ûü& 0 − 1 + Λ°ûü,(0 − 1) (3-18) 
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If one is using the moving window algorithm alone, without using the FIR compensator, as detailed 

here, it is obvious how to apply a cutoff of the update process. One simply does not compute the 

frequency components that are not being addressed in the RC law. Mathematically, one can write 

RC Law (3-18) with a diagonal matrix Φ that contains ones on the diagonal up to the cutoff 

frequency and zeros thereafter  

 & 0 = ûüΦ& 0 − 1 + Λ°Φ,(0) (3-19) 

3.3.3 RC Design Based on Matched Basis Functions and the 
Projection Algorithm 

!
Instead of a moving window, one can use a projection algorithm to compute in real time 

an estimate of the error projected onto the frequencies of interest, DC, fundamental, and harmonics 

of interest. The projection algorithm data for input and output gives the frequency response 

information, which defines the matched basis functions, for each frequency. Then one applies the 

matched basis function repetitive control theory developed in Reference [7] as the repetitive 

control law using these matched basis function. The output basis functions applied to the error 

signal to be corrected are sines and cosines at each frequency addressed, and the matched input 

basis functions contain the reciprocal of the amplitude change when the input goes through the 

system, and the negative of the phase change. As developed in Reference [7], the mathematical 

operations just described are equivalent to a time invariant pole-zero compensator for each 

frequency addressed. The transfer function to compute u(k) from e(k) is 

 ¢>1>(#)
K

>?J
 (3-20) 

where 
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1>(#) =
<>
ô>

�Ä* 4> − x> #^ − 2 cos x> # + cosQ 4> − x> #
#^ + <> − 2 cos 4> # + (1 − <>) #^ − 2 cos 4> # + 1  (3-21) 

is a compensator for each frequency n=1, 2, 3, …, N. The compensator contains 2 zeros and 4 

poles for every frequency addressed, and <> is gain picked in the projection algorithm. There is a 

4th order difference equation needed to be computed in real time. This method allows one to pick 

which frequencies one wants to correct based on the frequency content of the error. Only ô> and 

x>Qneed to be updated in 1> # Qfor each time step. 

3.4 Adjusting the Learning Gain vs. Frequency and 
Producing a Frequency Cutoff 
The methods proposed above also provide an option to introduce different learning gain 

for each frequency. For the moving window method, we can adjust gain \> for each frequency in 

a diagonal matrix °. The new form of matrix L becomes 

             
(3-22)

 

It is necessary that each \> gain be the same for both terms in the complex conjugate factors that 

relate to the same frequency. For the projection algorithm, we can adjust gain similarly.  

       Three are various choices for these gains. One could learn each frequency at the same rate, 

in which case one can make all gains equal. And picking them equal to unity means one is applying 

the inverse of the steady state frequency response or one can use a different constant. The unit 

circle condition discussed in Reference [1] indicates that decreasing the learning rate makes 

repetitive control more robust to model error, in particular to phase error. As the learning rate 

approaches zero, the stability tolerance approaches plus or minus 90 degrees. Since model 

uncertainty gets larger at high frequencies, one can choose to use a small gain as the frequencies 

L(k) = diag α 0

r0 (k)
α1

r1(k)
e− iτ1(k ) α 2

r2 (k)
e− iτ 2 (k ) !

α p−1

rp−1(k)
e− iτ p−1(k )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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go up. One choice according to this objective, is to make a learning law that only cancels the phase 

of the system 

                               
(3-23)

   

or a constant times this. Because the frequency response of physical systems attenuates as the 

frequency goes up, this choice is learning more slowly at high frequencies. This choice in ILC 

corresponds to the partial isometry law. When using the projection algorithm to generate the 

frequency components, and then applying the pole-zero transfer functions of Equations (3-20) and 

(3-21), this becomes  

 1>(#) = <>
�Ä* 4> − x> #^ − 2 cos x> # + cosQ 4> − x> #

#^ + <> − 2 cos 4> # + (1 − <>) #^ − 2 cos 4> # + 1  (3-24) 

In normal applications of repetitive control, it is usually necessary to use a cutoff filter to 

prevent updating frequencies for which the model is too inaccurate. Even one unmodeled parasitic 

pole at high frequency can be enough to produce instability and error growth at such frequencies. 

Many approaches require the design and application of a zero-phase low-pass cutoff filter in the 

form of an FIR filter. Observe that here we can avoid this task. For the moving window algorithm, 

one simply sets the alpha gains to zero for all frequencies above the desired cutoff. For the 

projection algorithm, on simply sets the associated ¢>Qto zeros in Equation (3-20), i.e. one does 

not compute any pole-zero compensator in Equation (3-21) for such frequencies.  

3.5 Raising the Cutoff Frequency in a Repetitive Control 
Systems Using an FIR Compensator Based on Nominal 
Model  
The methods discussed above so far consider that one designs the RC law based on 

frequency response for all frequencies, or all frequencies up to a cutoff. One can create methods 

L(k) = diag 1 e− iτ1(k ) e− iτ 2 (k ) ! e− iτ p−1(k )⎡
⎣

⎤
⎦
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to observe the frequency content of the input and the output in real time and use this to update the 

frequency response information for each frequency, or for frequencies that require correction to 

have error convergence. The expected situation is that the nominal model gives sufficiently good 

frequency response information for convergence for frequencies up to some value. Often at high 

frequencies there are parasitic poles or residual modes, i.e. dynamics not present in the model, 

dynamics that might be hidden in the noise when using data to identify the nominal model. The 

cutoff frequency required for stability in the real world is then determined by what is wrong with 

one’s model, and hence must be tuned in hardware after applying the RC design to the hardware.  

Using the methods discussed above, one can adaptively update the frequency response gain 

and phase in real time or periodically, watching all frequencies, using either the moving window 

or the projection algorithm data being collected in real time. One needs decision criteria to know 

when the data for a frequency is sufficient to warrant use in correcting the model.  

Another likely scenario, is to have a repetitive controller running, designed from the 

nominal model, that uses an FIR filter to mimic its frequency response inverse [8]. One might use 

frequency response data in real time to redesign the FIR filter, but this perhaps a bit awkward in 

real time. Then it is natural to ask, can we have an incremental raise in the cutoff, observe some 

frequency above the original cutoff growing slowly, use the data to design an update by the 

projection method or moving window method, and simply apply a correction to the exiting 

repetitive control system? For example, using the moving window to determine frequency 

response of 9 # !(#). On has data for the input to the real world G(z), observes the output, then 

processes this output through the filter F(z), and determines what frequency responses need to be 

corrected. The product F(z)G(z) when using the nominal model, aimed to have zero phase and gain 

of unity. for frequency of interest. The value of coefficient ™>, the element in diagonal matrix L 
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corresponding to frequency n, estimates how much the compensator F(z) should to be corrected. 

For the moving window method, the needed changes in the input, ∆/(01), can be computed as 

 ∆/ 01 = 1
3)8,>

∗ ™>)>5 0 + 13)8,>∗
∗ ™>∗)>∗5(0) (3-25) 

whereQ™> = L
ë̈≠ë

5;C(∡ ë̈;∡≠ë), and è∗ is a frequency corresponding to the conjugate frequency of 

frequency n , and )8,>∗  is the element at pth row and nth column of the matrix V*. For the projection 

algorithm, one can compute the value of ô> and x> to be the magnitude and phase response of 9>!> 

at frequency n. 

3.6 Some Numerical Experience 

Some computations were performed for a system having a residual mode. The actual 

system is fifth order with a second order underdamped factor with undamped natural frequency of 

30Hz and damping ration of 0.5 system that has three poles and a pair of parasitic pole at 30 Hz 

 ! * = <
(* + <)

SL̂
*^ + 2_SL + SL̂

S^̂
*^ + 2_S^ + S^̂

 (3-26) 

where <=20, SL=2Æ5.8 and S^=2Æ30. We consider that the model used to design a repetitive 

controller fails to include this 30Hz mode. The window size p is 100, the sample frequency is 100 

Hz, and the desired trajectory is a 10Hz sine wave.  

Figure 3-1 shows the discrete time frequency response plots for the system model and for 

the full system. If one incorporates an overall repetitive control gain times the inverse of the 

frequency response of the model as the RC law, then as this gain approaches zero, one can obtain 

zero tracking error in the limit for all frequencies where the difference between the 3rd order model 

and the 5th order system is less than 90 degrees. Figure 3 shows what happens when one applies 

the RC designed for the 3rd order system to the real world. The error initial decays substantially, 
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corresponding to eliminating low frequency error, but after some time, the slow growing and 

initially smaller high frequency error starts to take over.  

 

Figure 3-1. Left is the phase plot of the 5th order system, and of the 3rd order model. Right 
is the RMS error per period versus period when applying the 3rd order RC design to the 5th 

order system. 

 

Figure 3-2. Left plot is RMS error per period vs. period when using the moving window 
method to update phase for all frequencies. Right plot uses the pole-zero compensator for 

10Hz applied knowing the matched basis functions for this frequency. 
 

There are various considerations to address when applying the moving window and the 

projection algorithm methods to update the frequency response model for the chosen frequencies. 

Concerning the moving window there are extra frequencies that appear that disturb the results. 

One issue is that the moving window is applied while the RC is running and therefore modifying 

the frequency content. The moving window with the right period will not have leakage effects on 

a steady signal, but the time variation introduced what appear to be errors at additional frequencies 

that are not relevant. Looked at another way, the DFT of a signal that is decaying due to learning, 
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determines a set of sinusoids to fit the signal in the window. If these sinusoids are extended beyond 

the present time, there is a step discontinuity (for the continuous time case) at the end of the current 

window to the start of the next period. Hence, the sinusoids are expecting the start of the next 

period to be the same as the earlier start, as if no decay of the error has appeared. For continuous 

time one also expect to see the Gibbs phenomenon. These issues go away as the learning proceeds, 

but they confuse the issue of whether the error at a given frequency might be growing due to a 

wrong model, or whether the error is just appeared to grow at the moment due to these effects. As 

a result, one needs to make a decision of how long to watch the growth of error at a given 

frequency, and how much growth is needed before one is justified in updating the frequency model. 

Concerning the projection algorithm approach, there is no window involved, so the 

nonstationary nature is not as important, but the algorithm needs to be delivering reasonably 

current estimates of frequency content.  One may need a forgetting factor so that the current 

estimate of a chosen frequency component of the error is reasonably current, but still allow enough 

time to be averaging through the noise. In addition, if one makes a periodic update of the repetitive 

control process, and is modeling the frequency response error in the product of the compensator 

times real world response, then one likely needs to restart the projection algorithm. Also, 

experience with the matched basis function RC method developed in Reference [7] indicates that 

when one is trying to use the approach on many frequencies, the gain may have to small producing 

slow convergence.  

3.7 Conclusion 

Repetitive control initially aims for zero error following a periodic command, or in the 

presence of a periodic disturbance. But this asks for zero error all the way to Nyquist frequency, 



 52 

and one rarely has a good model at high frequencies. If the model phase error is below 90 degrees 

at all frequencies, the RC can converge to zero error for sufficiently small learning rates. But one 

unmodeled high frequency mode can produce exponential growth at the associated frequency. 

Behavior at this frequency may be buried in the noise level of the data when developing the model 

for RC design. When the model is wrong enough for error growth, then the RC action can start 

amplifying the error at these frequencies. Normally, RC must use a zero-phase low-pass filter to 

stop the learning process at such frequencies. The result is zero error only up to the cutoff needed 

for stabilization. The cutoff frequency needed is determined by what is wrong with one’s model. 

One does not know in advance of trying to use the RC in hardware what the cutoff must be. The 

original aim was zero error, and one is disappointed in the final error, and unable to predict it 

during the design process.  

The amplification is slow at high frequencies, because the frequency response of the system 

is small, but the RC grows the error and eventually it is clearly visible above the noise level, and 

has produced data ideal for finding out what is wrong with one’s model. The objective of this 

chapter is to investigate methods of using the data developed by this process to modify the model 

in real time, reducing the model error successively, allowing one to raise the cutoff frequency. 

This makes what one might call adaptive repetitive control. But normally indirect adaptive control 

is trying to update a general input-output model. Here we only need to improve the model of the 

frequency response, and only at whatever frequency or frequencies are causing convergence 

difficulties. This is a very focused objective, and the slow instabilities at high frequencies in RC 

are ideally suited to this objective.  

We consider trying to update the frequency response model at all frequencies, and present 

methods to do this. But perhaps the most practical version of the material presented here uses the 
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following scenario. One designs an RC law based on the reciprocal of the steady state frequency 

response of one’s model. Then apply the law in hardware and analyze what frequencies are 

decaying and what frequencies are growing as time progresses. One then can make a cutoff filter 

that stabilizes the learning process, and results in essentially zero error up to the cutoff. Then one 

can move the cutoff up, going above some harmonic or harmonics that exhibit growth. Fix the 

phase and maybe amplitude information in the control action, and then repeat, moving the cutoff 

still higher. Learning all the way to Nyquist all at once is maybe not reasonable in many situations, 

so this progressively learning at higher and higher frequencies is a natural approach, which can be 

terminated whenever one wants. Experience with a robot control system illustrates this point. The 

bandwidth of the feedback controllers was 1.4Hz but Nyquist frequency was 200Hz. There was no 

way that one could obtain frequency response information anywhere near Nyquist frequency, even 

if RC were amplifying errors at these frequencies. So one still wants a cutoff to ensure that when 

RC is operated for a long period it will not be going unstable.   
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Chapter 4 

Using Quadratically Constrained Quadratic 
Programming to Design Repetitive Controllers: 
Application to Non-Minimum Phase Systems 
 

4.1 Introduction 

The previous two chapters develop design methods which are simple and robust to model 

error at high frequencies. The design methods typically perform well in general RC minimum 

phase systems, but have difficulty learning at low frequencies in non-minimum phase systems. 

Chapters 4 and 5 study RC designs for non-minimum phase systems and aim for methods that can 

address this problem.    

 Non-minimum phase systems in continuous time have Laplace transfer functions with one 

or more Laplace transfer function zeros in the right half plane. Such systems have the unusual 

property that they move the wrong direction first and then the right direction in response to a unit 

step input. In aerospace engineering, the dynamics of airplane control systems can easily exhibit 

this behavior. The dynamics of a rocket can do so as well. And in a spacecraft, if one wants to 

position the tip of an appendage by rotating a spacecraft hub, it can easily be non-minimum phase. 

Hence, a sensor at the end of a flexible element whose pointing is controlled by rotating the base 

of the element can be a non-minimum phase problem. The sensitivity transfer function from 

command to error, or from output disturbance to error is non-minimum phase when one is 

controlling an unstable system. 
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Iterative learning control (ILC) is a sister field within control, that aims for zero tracking 

error of a finite time command that is repeated, each time starting from the same initial condition. 

The most important difference is that ILC asks for zero tracking error during the transients of a 

finite time trajectory, while RC asks for zero tracking error asymptotically for a periodic trajectory 

or disturbance. Considerable research in ILC has studied the application to non-minimum phase 

systems, References [1-6]. These references characterize the difficulty of the problem, which 

results from the fact that the inverse of the continuous time transfer function is unstable. Very slow 

learning at DC (zero frequency) and low frequencies is observed. Generally, one makes a 

compromise with the requirement of converging to zero tracking error as the iterations progress.  

The purpose of this chapter is to investigate the application of RC to non-minimum phase 

systems, determining to what extent there is a problem related to that encountered by ILC, studying 

how the various RC design approaches perform on such problems, and then determining how to 

address the difficulties that arise. Reference [7] also considers RC of non-minimum phase systems. 

In RC there can be two kinds of non-minimum phase systems: (1) Ones that have a zero outside 

the unit circle in the z-plane produced as the image of a zero in the right half of the Laplace 

transform plane, (2) And zeros on the negative real axis of the z-plane that are introduced by the 

process of converting from continuous time system fed by a zero order hold, to discrete time 

equivalent. Standard RC approaches handle the second type of zeros outside the unit circle. It is 

the purpose of chapters 4 and 5 to address problems of the first kind, i.e. ones which are non-

minimum phase in continuous time before discretizing. 

Six general RC design approaches are studied and evaluated for their usefulness in handling 

these non-minimum phase systems. In the process, an improved design method is created that 

generalizes the existing Taylor series approach. An important contribution is the development of 
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effective methods of using a Min-Max cost function for design optimization. The resulting design 

approach is evaluated, establishing that while the approach is not to be preferred for minimum 

phase systems, it is likely the preferred method to obtain effective RC performance in non-

minimum phase systems. 

4.2 Non-Minimum Phase Systems 

 

Figure 4-1. Pole-zero locations and resulting unit step responses of minimum and non-
minimum phase systems. 

 

Figure 4-1 presents some of the properties of non-minimum phase systems. Each system 

is given initially as a Laplace transfer function, and it is fed by a zero order hold running at 25Hz, 

which allows one to convert to a discrete time difference equation model represented as a z-transfer 

function. Then the unit step response of each system is shown.  

The first system has 3 poles at * = −1,−2,−3. These map exactly to poles 0.96, 0.92, and 

0.88 in the z-plane at exp −1 , exp −21 , exp(−31), and two zeros are introduced by the 

discretization, one inside the unit circle at -0.25, and one outside at -3.51 on the negative real axis. 
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Hence, this system is minimum phase in continuous time, but some might want to call it non-

minimum phase in discrete time. In spite of a zero outside the unit circle in the z-plane, the unit 

step response does not first go negative and then decide to head towards the commanded unity 

value, i.e. the behavior is that of a minimum phase system. Reference [8] gives the asymptotic 

locations of the zeros outside the unit circle introduced by discretization, in the limit as the sample 

time interval T tends to zero. When the pole excess of the Laplace transfer function is 3 and 4 

(number of poles minus the number of zeros), then one zero is introduced asymptotically located 

at -3.732 and at -9.899, respectively. For a pole excess of 5, two zeros are introduced outside at -

23.322 and -2.322. For reasonable sample rates, these zeros have not reached these asymptotic 

values, but they are nevertheless rather far outside the unit circle.     

The second system in Figure 4-1 removes the pole at * = −1 and instead places a zero 

there. Hence it is minimum phase both in continuous time and discrete time, and the unit step 

response is the expected response, and the zero near the origin has introduced some overshoot. The 

third system moves the zero from * = −1 to * = +1 making it non-minimum phase. The 

magnitude frequency response is unaltered, but the phase response is changed. And the unit step 

response shown, has the unsual property of going negative before going positive in response to a 

positive constant command. Note that for small T, the zero at * = +1 will map approximately to 

# ≈ expQ(+1).  

We comment that the “true” non-minimum phase zeros in the z-plane, that are images of a 

non-minimum phase zero in the s-plane, will generally be very much closer to the unit circle than 

the zeros introduced by discretization described above. This property is one source of difficulty in 

the design of RC for non-minimum phase systems. It is the purpose of this chapter to study the 
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ability of RC design methods to handle non-minimum phase systems like this third system in the 

figure. 

As an interesting phenomenon, one can analytically compute the zero location for a system 

such as the 3rd one in the figure, ! * = (* − <L)/ * − ≤L * − ≤^ , using the standard formula 

for zero order hold conversion ! # = (1 − #;L)o !(*)/* . The resulting image of the zero in 

the z-plane is given as  

 #L =
q5≥nF + s5≥lF + j5 ≥lê≥n F

q(1 − 5≥nF) + s(1 − 5≥lF) + j(5≥lF + 5≥nF) 
(4-1) 

 

 q = −≤L + <L
−≤^ + ≤L −≤L QQQQQs = −≤^ + <L

−≤L + ≤^ −≤^ QQQQQQj = −<L
≤L≤^QQQQ

(4-2) 

 

For fast sample rate the zero location is #L ≈ expQ(<L1), but for slow sample rates the 

location is a function of the pole locations. Figure 4-2 shows the zero location as the sample rate 

is varied, and we observe that as the sample rate is reduced, the zero location reaches positive 

infinity for a finite value, between 1.157 and 1.158Hz, and then the image of the zero starts coming 

in toward the origin from negative infinity on the negative real axis. 

 

Figure 4-2. Discrete time zero location vs. sample frequency.  
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4.3 Approaches to Creating RC Compensators 

Initially it appears as if picking 9 # = !;L(#) would be an ideal choice. It makes the left 

hand side of the stability condition zero. Also, the closed loop transfer function from the block 

diagram in Figure 2-1 is 1/#8 making the error difference equation deadbeat, converging to zero 

tracking error in one period. However, as noted previously, the process of converting a continuous 

time system fed by a zero order hold into an equivalent discrete time system introduces zeros 

outside the unit circle for systems with an original pole excess of 3 or more and a reasonable 

sample rate. In such cases, this choice of 9(#) produces an internal instability and cannot be used.  

A set of different approaches to develop compensators 9(#) that satisfy the stability 

condition are treated here, producing a compensator in the form of a finite impulse response filter 

(FIR) that does not introduce internal stability problems. (1) One approach continues to aim for 

the inverse by using Taylor series expansion of the inverse transfer function, !;L(#). (2) A second 

approach makes the FIR filter mimic the inverse of the steady state frequency response of the 

system  9 exp |S1 ≈ !;L exp |S1 . T is the sample time interval. If this is achieved the left 

hand side of the stability condition (8) is zero, and instead of achieving zero error in p time steps, 

zero error is achieved asymptotically as the response approaches steady state. (3) A third approach 

tries to make 9 exp |S1  minimize the left hand side of the stability condition Eq. (3-10) over 

frequencies from zero to Nyquist, previously presented in section 3.3.1. Based on References [9, 

10], this objective is trying to maximize the decrease in error from one period to the next, i.e. the 

optimization criterion is the learning speed. (4) A fourth approach is less ambitious, and simply 

asks that the 9(#) cancel the phase of !(#) at all frequencies.  

This chapter investigates the performance of 6 different design approaches, with some of 

the above having two different mathematical formulations. These approaches will be labeled 
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Approach 1 through Approach 6, and the mathematics for each is discussed in a separate section 

below. Note that the numbering for the Approaches is in a different order than the order in the 

listing above. 

Generally, the FIR filter has the form 

QQQQQQQQQQ9 # = <L#õ;L + <^#õ;^ + ⋯+ <õ#J + ⋯+ <>;L#;(>;õ;L) + <>#;(>;õ) 

QQQQQQQQQQQQQQQQQQQQ= Q <L#>;L + <^#>;^ + ⋯+ <õ#>;õ +⋯+ <>;L#L + <>#J /#(>;õ)               (4-3) 

which in practice simply asks to compute a linear combination of the errors possibly both forward 

and backward from the time step that is p steps in the past. The coefficients are computed based 

on one of the above objectives. The choice of n decides that there will be è − 1 zeros in the FIR 

filter, and the choice of ¥ dictates that there will be è −¥ poles at the origin. When è −¥ = 0 

there are no poles. We comment that if the design is dealing with poles and zeros inside the unit 

circle, designs will likely want to put zeros more or less on top of the poles, and one should allow 

enough zeros for this. And then the total number of zeros inside the unit circle must equal the total 

number of poles in order to satisfy Eq. (3-10), and this dictates the number of poles to request at 

the origin by choice of ¥. 

Often it is helpful to make an infinite impulse response filter (IIR), denoted 9̂ (#), that 

cancels all of the poles and zeros inside the unit circle, and then design an FIR compensator 9L(#) 

of the above form using one of the above objectives, addressing only the zeros that remain after 

applying the IIR filter, the zeros outside the unit circle that could not be cancelled. To illustrate, if  

 ! # = µ≠ # − #L # − #]
# − 3L # − 3^ # − 3á  (4-4) 

and #L is a zero inside the unit circle, and #] is a zero that cannot be cancelled outside the unit 

circle, then the IIR applied to data from the previous period has the form 
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 9̂ # = # − 3L # − 3^ # − 3á
µ≠ # − #L  

(4-5) 

 

Hence, the most general form of the compensator 9(#) considered here is 

 9 # = 49L(#)9̂ (#) (4-6) 

The 9̂ (#), if it is used, cancels poles and zeros inside the unit circle. The 9L(#) takes the FIR form 

given above. Applying the IIR filter to the system in Eq. (4-4), makes the product 9̂ # ! # =

(# − #]), and then one needs to design 9L(#) to satisfy the stability condition with the effective 

! #  composed of only the zero outside the unit circle 

 1 − 4 # − #] 9L # < 1QQQQQQQQQ∀5CDF (4-7) 

After designing 9L(#) and 9̂ (#), one can multiply the result by a gain 4. A reduced gain can be 

used to slow down the learning for improved robustness if desired. But a new use of this gain is 

presented, which improves the performance near DC of some RC designs for minimum phase 

systems without serious penalty at higher frequencies. 

4.4 Several System Models 

In order to investigate the effectiveness of the various approaches to designing repetitive 

control systems, and in particular, to evaluate how best to design repetitive controllers for non-

minimum phase systems, we consider a set of different models for the feedback control systems 

whose command inputs are adjusted by repetitive control. These feedback systems are given as 

continuous time system transfer functions that are fed by a zero order hold on the repetitive control 

command input, with the output sampled synchronously. Five systems are considered, which are 

later referred to as Systems 1 to 5: 



 63 

! * = −* + 3
* + 5 * + 1  

(System 1) 

 

! * = <
* + <

S]̂
*^ + 2_]S]* + S]̂ QQQQ< = 8.8, Q_] = 0.5, S] = 37QQQ 

(System 2) 

 

! * = −* + 3 −* + 4
* + 2 * + 3 + 4| * + 3 − 4|  

(System 3) 

 

! * = <
* + <

S]̂
*^ + 2_]S]* + S]̂

SL̂
*^ + 2_LSL* + SL̂

QQ Q_L = 0.5, SL = 37 
(System 4) 

 

! * = * + <
<

S]̂
*^ + 2_]S]* + S]̂

SL̂
*^ + 2_LSL* + SL̂

 
(System 5) 

 

As discussed above, we consider designing 9 #  based on the full resulting discrete time transfer 

function, and we also consider use of an IIR filter 9̂ (#) to cancel all poles and zeros inside the 

unit circle in the z-plane. In the latter case the design of the compensator is based on satisfying the 

stability condition with what remains of the above !(#) after cancellation, which is only its zeros 

outside the unit circle. Recall that we define a system to be non-minimum phase based on whether 

the continuous time transfer function has one or more zeros in the right half plane, which results 

in one or more zeros on the positive real axis beyond +1 in the z-plane (we consider real zeros 

only). When a minimum phase system fed by a zero order hold is discretized, zeros are introduced 

outside the unit circle in the z-plane if the original pole excess is 3 or more and the sample rate is 

not very slow, but they are on the negative real axis. We study the above 5 systems to illustrate the 

possibilities. 

System 1: Non-minimum phase with a zero at +1 in the s-plane. A slow sample rate of 50Hz is 

chosen to help make distinctions between different approaches more obvious in figures.  
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System 2: A minimum phase system. But when discretized there are two zeros on the negative 

real axis, one at -3.52 outside the unit circle. The other is inside at -0.253, and it might be cancelled 

by use of 9̂ (#) if desired. The sample rate is chosen as 200Hz partly to illustrate that repetitive 

control can easily handle systems that are minimum phase in continuous time, but have zeros 

outside the unit circle introduced by discretization. RC of this system is then to be compared to 

RC for non-minumum phase systems in continuous time, in order to see the difficulties introduced. 

System 3: A non-minimum phase system with two zeros outside the unit circle on the positive real 

axis, located at +1.18 and +1.12 in the z-plane. A sample rate of 25 Hz is used. As the sample rate 

increases the zeros get closer to +1, and the number of gains needed for good performance by 

various RC laws increases. 100Hz is also studied. 

System 4: A minimum phase system with two zeros introduced by discretization outside the unit 

circle on the negative real axis at -14.23 and 1.46 (and two introduced inside at -0.2997 and -

0.322). Sample rate is 50Hz.  

System 5: A non-minimum phase system with one zero on the positive real axis at # = 1.09, and 

one zero introduced by discretization outside on the negative real axis at -2.68 (also one introduced 

inside at -0.205). Sample rate is 100Hz. As previously suggested, the non-minimum phase zero 

from continuous time is near +1, while the introduced zero is far from the unit circle. 

4.5 Approaches Considered 

4.5.1 Approach 1: Optimizing the Learning Rate over Frequencies 
Using a Quadratic Penalty Function 

!
This is the approach to designing repetitive controllers that Reference [9] has advocated as 

the best approach. Previously discussed in section 3.3.1, the objective is to pick the gains of 9 #  
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to make the learning fast, i.e. to minimize the magnitude of 1 − !(5CDEF)9(5CDEF)  over all 

frequencies from zero to Nyquist. To do this we pick a quadratic penalty over a suitably dense set 

of frequencies SH in this range 

 @L = 1 − !(5CDEF)9(5CDEF) ùH 1 − !(5CDEF)9(5CDEF) ∗
K

H?J
 (4-8) 

The computations made here divide the interval from zero frequency to Nyquist frequency into 

180 discrete values, ® = 179. The asterisk indicates complex conjugate, and ùH is a weighting 

function usually set to unity for all frequencies, but available to be adjusted to emphasize chosen 

frequencies. If one employs 9̂ (#) to cancel everything inside the unit circle, then 

!(5CDEF)9(5CDEF) is replaced in the optimization criterion by  

 9̂ 5CDEF ! 5CDEF 9L 5CDEF = !(5CDEF)9L(5CDEF) (4-9) 

and 9L(#) is the FIR filer whose gains are being optimized. 

For the usual minimum phase systems, the magnitude of !(5CDEF) is large at low 

frequencies, and decays very substantially as the frequency gets high. It should be small 

approaching Nyquist frequency when using an appropriately chosen sample rate that has small 

aliasing. Hence, this cost function exhibits some extra emphasis on producing fast learning at lower 

frequencies. This is in fact quite desirable for most minimum phase systems, making this a good 

design approach.   

However, non-minimum phase systems with a zero #] outside the unit circle near +1, have 

small frequency response at DC and low frequency produced by the small factor in the numerator 

# − #] = 5p3 |S1 ∏#] , and the optimization de-emphasizes the learning rate near zero 

frequency, resulting in poor performance for non-minimum phase systems. One can adjust the 

weights ùH aiming to improve the performance at low frequency, but examples shown below 
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suggest this is not very effective. Note that this thinking about what frequencies are emphasized 

in the cost function changes when one cancels all dynamics inside the unit circle and designs 9L(#) 

for the zero(s) outside the unit circle.   

The optimal design for the gains in 9 #  (or in 9L(#)) are easily obtained for such a 

quadratic criterion. Let x be the column vector of the gains <L to <> in the FIR filter equation (4-

3). And write the system transfer function frequency response as !(5CDEF) =

•≠ SH exp |π≠(SH) . Then the cost function can be rewritten in the following form 

 

@L =
1
2 p

Fqp + ≤Fp + g 

q = qHKH?J  QQQQQ≤ = ≤HKH?J  QQQQQQg = gHKH?J             gH = ùH 
(4-10) 

 

qH = ùH•≠̂ SH
1

cosQ(SH1)
⋮

cosQ (è − 1)SH1
QQQQQQ

cosQ(SH1)
1
⋮

cosQ (è − 2)SH1
QQQQQQ

⋯
⋯⋱
⋯
QQQQQQ

cosQ (è − 1)SH1
cosQ (è − 2)SH1

⋮
1

 

≤H = ùH•≠ SH

cosQ (¥ − 1)SH1 + π≠ SH
cosQ (¥ − 2)SH1 + π≠ SH

⋮
cosQ (¥ − è)SH1 + π≠ SH

QQ  

 

 

The optimal gains are the solution of the linear equation in the n unknown gains qp = ≤. 

4.5.2 Approach 2: Matching the Inverse of the Frequency Response 
Using a Quadratic Penalty Function 

!
Reference [10] also examined another cost function aiming to make 9 #  match the inverse 

of the frequency response of the system 
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 @̂ = 9 5CDEF ∏!∏L 5CDEF
ª

º?J
ùH 9 5CDEF ∏!∏L 5CDEF ∗

 (4-11) 

In that reference, the cost function of Approach 1 was preferred for the minimum phase systems 

considered there. For minimum phase systems, the frequency response gets very small 

approaching Nyquist frequency, and hence !;L 5CDEF  can be very large. Then the cost function 

will pay particular attention to producing a good FIR design for high frequencies, perhaps at the 

expense of poor performance at low frequencies.  

Note that this cost function, and the cost function of Approach 1 are equivalent. If one 

picks the weights ùH in Approach 1 to equal ùH = !∏L(5CDEF)ùH!∏L(5∏CDEF), then the cost function 

becomes the cost function of Approach 2. In order to find the optimal FIR gains x for the Approach 

2 cost function, one could do a parallel development to that above, or simply use the weight 

function given here to obtain the solution from the above qp = ≤ equation using (4-10). 

4.5.3 Approach 3: Min-Max Optimization of the Learning Rate over 
Frequencies  

!
Approach 1 aims to minimize 1 − !(exp |S1) 9(exp(|S1))   in the stability condition, 

minimizing the sum of squares for each frequency. This aims for a good learning rate at all 

frequencies in a least squares sense. If there is difficulty satisfying the stability condition, i.e. 

making this less than unity for all frequencies from zero to Nyquist, it is very natural to think of 

picking the gains in x to minimize the maximum value over all frequencies, trying to get it less 

that unity everywhere. The cost used in Approach 1 is quadratic and finding the minimum is easy, 

one simply solves a linear equation qp = ≤. Minimizing the maximum value generally is a harder 

optimization problem and require more computation. This section also shows how one can solve 

this Min-Max problem. Now that an efficient method is available to minimize this logical cost 
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function, we evaluate whether this is a better design approach than Approach 1 – examining its 

performance for a range of systems. We discover that the answer is no, for minimum phase systems 

this new approach is not preferred, but yes for non-minimum phase systems it can address the 

important issues.  

The desired optimization is 

 @á = minæ maxH 1 − 9(5CDEF)!(5CDEF) )H  (4-12) 

where Vº is a weight function, and x is again the column vector of the gains aJ, aL, … , a¿ in the FIR 

filter.  This optimization problem is equivalent to the following 

 

Qminæ maxH QQQQQQQ 1 − 9 5CDEF ! 5CDEF ^ùH 

 = minæ maxQH QQQ 1 − 9(5CDEF)!(5CDEF) ùH 1 − 9(5CDEF)!(5CDEF) ∗
 

= minæ maxH QQQQQL^ pFqHp + ≤HFp + gH 

 

(4-13)  

 

where ùH = )Ĥ . Again we convert to another equivalent formulation  

Minimize: minp • (4-14) 

Subject to: L
^ pFqHp + ≤HFp + gH ≤ •QQQQQz = 0,1,2, … , ® (4-15) 

And finally another equivalent reformulation 

Minimize: minæ ¬Fp (4-16) 

Subject to: L
^ pFqHp + ≤HFp + gH ≤ 0QQQQQQQQQj = 0,1,2, … , N (4-17) 

where  

p = p
• QQ  ¬ = 0

1     qH = qH 0
0 0      ≤H = ≤H

∏1 QQ       gH =
L
^ 
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This final problem formulation is a special case of a Quadratically Constrained Quadratic 

Programming problem (QCQP) for which there are efficient algorithms. It is actually a 

quadratically constrained linear programming problem. Solutions are obtained here using the CVX 

programming package, References [11-13]. 

Of course one can apply Approach 3 when one uses 9̂ (#) to cancel all poles and zeros 

inside the unit circle. However, just as in Approach 1, one very attractive feature of this approach 

is that one can perform the optimization based on experimental frequency response data, without 

having to generate the transfer function model with the poles and zeros needed to design the IIR 

filter.  

This Approach 3 is seen to have some good properties for repetitive control of non-

minimum phase systems. The small feedback control system magnitude frequency response near 

DC produced by the zero near +1, creates slow learning, often impractically slow learning, at low 

frequencies in the cost function of Approach 1, corresponding to a maximum of the left hand side 

of (3-10). The Min-Max criterion pushes the maximum value down, improving the originally poor 

performance at low frequency. Of course, this is done at the expense of slower learning at higher 

frequencies. Some other methods can compete, but the other methods need to use 9̂ (#), and hence 

preclude designing directly from frequency response data. 

4.5.4 Approaches 4 and 5: Compensator Design Based on Taylor 
Series Approximation of Inverse Transfer Function  

!
The original approach to designing RC compensators by Taylor series, References [9, 14], 

do the Taylor expansions separately for the reciprocal of each zero outside the unit circle. It is not 

necessary to use an 9̂ (#) to cancel the poles and zeros inside the unit circle, but here we consider 
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that this is done, and one only needs to consider the factors that are the reciprocals of zeros outside 

the unit circle when designing 9L(#). Consider the Taylor series expansion 

 
1

1 + # = 1 − # + #^ − #á+. . . = # =
ª

=?J
≈ 1 − # + #^ − #á+. . . +#≈ (4-18) 

The series is convergent if # < 1. Consider the reciprocal of one zero outside the unit circle 

1/(# − <) using # = −#/<, then 

 
1

# − < =
1
<

1
1 + #  (4-19) 

and one can now apply the above expansion. If ô = 1, the design will place one compensator zero 

at the mirror image location to the existing zero. For higher values of ô, more zeros are place 

evenly spaced around a circle centered at the origin and going through the original zero. This 

behavior gave insight into the observed placement of zeros when applying Approach 1 to design 

compensators. Reference [14] suggests using the remainder term in the Taylor series expansion to 

help decide what value of ô to use. When there are two zeros outside, each one is treated 

independently with its own truncated Taylor series expansion, and the compensator is then 

obtained by multiplying the two expansions together. One can pick the value of ô independently 

for each zero to produce similar error levels for each, and this is in fact rather important. Note that 

the closer the zero is to the unit circle, the slower is the convergence of the above series, and hence, 

one needs more zeros introduced in the compensator to achieve the same level of performance. 

This observation is consistent with the observation that one needs more zeros in the compensators 

for non-minimum phase systems with zeros near +1 than for systems where zeros are introduced 

on the negative real axis by the discretization process, with locations usually much further from -

1. Hence, this is the source of some of the difficulty in achieving good RC performance for non-

minimum phase systems. 
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One of the contributions of this work is to improve on the above Taylor series expansion 

method when there are two or more zeros outside the unit circle, as in Systems 3, 4, and 5 above. 

Consider two zeros outside at <L and <^, and everything else is cancelled by 9̂ (#). Then 

9̂ # ! # ;L = 1
1 − <L 1 − <^ = 1

−<L −<^
1

1 − #
<L

1
1 − #

<^

= 1
<L<^ 1 + #

<L +
#
<L

^
+ ⋯ 1 + #

<^ +
#
<^

^
+ ⋯

= <L<^ ;L 1 + <L;L + <^;L # + <L;^ + <L;L<^;L + <^;^ #+. . .  

(4-20) 

 

Then 9L(#) is produced by truncating the last expression at the chosen number of terms. The roots 

of the resulting polynomial are not the same as the set of roots from the truncated series in each of 

the bracketed terms in the middle line of the equation, i.e. the zeros are not the same as those 

obtained by the original Taylor method above, treating each square bracket term separately. 

Treating them separately required choice of how many terms to use in each expansion, and there 

is guidance concerning how small the truncation error is for each choice. When using the combined 

method one does not need to make two separate choices. 

The term Approach 5 will be used for this improved Taylor method, while Approach 4 is 

used for the original Taylor method described above. Note that if there is only one zero outside the 

unit circle, Approaches 4 and 5 are identical. Approach 5 is an improvement over Approach 4 

when there are multiple zeros outside. 

4.5.5 Approach 6: Compensator Design Based on Phase Cancellation 
(Tomizuka) 

!
This design approach is perhaps the best known design method for repetitive control, 

Reference [15]. It requires use of an IIR filter 9̂ (#) to cancel all poles and zeros inside the unit 
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circle. The design only attempts to cancel the phase produced by the zero or zeros outside the unit 

circle, and does not attempt to cancel the magnitude change. Each zero #Ä outside the unit circle is 

handled independently, by introducing a zero at the reciprocal location and a pole at the origin, 

followed by normalization. For a factor (# − #]) one makes 9L(#) create the term 

 j # − #] #] − #;L = j#] # − #] # − #];L /# (4-21) 

Set # = expQ(|}) to find the frequency response 

 j # − #] #;L − #] = j 1 − 2 cos } #] + #]̂  (4-22) 

When } = 0 this equalsQj #] − 1 ^, and when } = Æ or Nyquist frequency, it equals j #] + 1 ^. 

Both values are positive, and the derivative is monotonic betweens since the derivative with respect 

to } is equal to 2j sin } #]. If the zero is on the negative real axis outside the unit circle, then the 

maximum value is at } = 0 or DC, and one picks the normalization j to give DC gain of unity 

which produces fast learning at DC, but slow learning at high frequencies. However, if the zero is 

from a non-minimum phase continuous time system, and on the positive real axis in the z-plane, 

then the maximum is at Nyquist frequency and one picks j to make the gain unity at this frequency. 

This results in negligible learning near DC which makes this approach not work for typical non-

minimum phase systems. System (5) has a zero on the positive real axis and a zero on the negative 

real axis, and this situation requires one to use the product of one of the above factors normalized 

at DC and another normalized at Nyquist. 

4.6 Numerical Studies for Systems 1 Through 5 

This section numerically studies the performance of the 6 Approaches as applied to the 5 

Systems. Each is studied without cancelling the poles and zeros inside the unit circle, and then is 

studied with this cancellation with the IIR filter. In the first case, we consider only Approaches 1, 
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2, and 3. Approach 6 cannot be used without cancelling. And the Taylor series Approaches 4 and 

5 will at least cancel the poles inside the unit circle. They do offer the option of cancelling the 

effect of a zero inside by including more zeros inside instead of placing a pole underneath, but we 

do not consider this option. If the zeros and poles are cancelled, the titles of the figures given below 

indicates this, and then the plots present the performance for all 6 Approaches. 

System (1): Figure 4-3 shows Approaches 1, 2, 3 performance without canceling poles and zeros 

inside the unit circle. Approach 1 has rather fast learning at almost all frequencies, but learning at 

DC is very slow. Approaches 2 and 3 fix this with rather uniform learning rate at all frequencies. 

Figure 4-4 gives the associated phase of 9(#)! #  which has appreciable oscillations except for 

Approach 1, and Fig. 4-5 gives the corresponding polar frequency response. Figure 4-6 examines 

the possible benefit of turning down the overall gain 4 to 0.75. It does not help Approach 1, but 

on the average Approaches 2 and 3 improve. This can help somewhat with robustness to model 

error also. Note the number of gains being used in these designs. Figures 4-7 and 4-8 give results 

when one cancels the two poles inside the unit circle, and uses either 11 or 19 zeros instead of 29. 

All Approaches are plotted. We observe that Approach 6 cannot be used for non-minimum phase 

systems, and also Approach 2 is not working for 11 zeros. It appears that with enough gains, one 

can make Approach 1 work, with fast learning at nearly all frequencies, but slow near DC. 

Approach 3 minimizes the maximum error and improve performance at DC but one pays for it 

with slower learning everywhere except near DC. Approaches 3, 4, and 5 give similar results. 

Decreasing 4 in Fig. 4-9 helps Approaches 2, 3, and 4-5. Figure 4-10 gives the corresponding zero 

locations, with all but Approach 1 being nearly the same, and Approach 1 having the zeros further 

from the origin. The cost function for Approach 1 has weight factor ùz  that can give extra 

emphasis to minimizing at chosen frequencies. Figure 4-11 increases the weight by a factor of 100, 
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starting from zero up to 10%, 20%, and 50% Nyquist. We observe that this seems remarkably 

ineffective at reducing the plot near DC, and can cause trouble at higher frequencies. We conclude 

that it is not obvious how one can employ this design parameter to get good performance near DC. 

 

Figure 4-3. Magnitude frequency response of 1-F(z)G(z) of System (1) (n=30, m=30).  

 

Figure 4-4. Phase frequency response of F(z)G(z) System (1) (n=30, m=30). 

 

Figure 4-5. Polar plot corresponding to Figs. 4-3 and 4-4. 
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Figure 4-6. Fig. 4-3 with overall gainQ∆ = 0.75. 

 

Figure 4-7. Fig. 4-3 with cancelation poles and zero inside the unit circle (n=12, m=12). 

 

Figure 4-8. Fig. 4-7 with n=20 and m=20. 
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Figure 4-9. Fig. 4-7 with overall gain ∆= 0.75. 

 

Figure 4-11. Magnitude frequency response of 1-F(z)G(z) of System (1) using Approach 1 
with different weight. 

System (2): Figures 4-12 to 4-16 consider System 2 which is a minimum phase system included 

to show the difference in ease of designing a good RC for minimum phase compared to the non-

minimum phase experience with System (1) above. Figure 4-12 uses è = 5 allowing 4 zeros in the 

compensator. There are 3 poles inside, so the optimization might do something similar to 

cancelling these with 3 of the zeros, and this requires using one pole at the origin è −¥ = 1 so 

that the number of poles inside equals the number of zeros inside. Then there is one zero left over 

to try to handle the effect of the zero outside the unit circle at -3.52. Hence, this is a very simple 

compensator that requires just adding up 5 gains times 5 errors stored from the previous period, 



 77 

and its only action to handle the zero outside the unit circle is to place one zero outside to 

compensate. Figure 4-12 shows that Approaches 1, 2, and 3 all work well (note vertical axis scale), 

and Approach 1 works the best up until high frequencies. One usually employs a zero-phase filter 

cutoff that stops the learning at high frequencies because of model inaccuracy there. Also, slower 

learning usually makes convergence more robust to model error. Hence, Approach 1 is to be 

preferred.  

Figure 4-13 introduces the IIR filter to cancel poles and zeros inside. A fair comparison 

uses è = ¥ = 2 corresponding to two gains producing one zero outside, and the error levels are 

similar, but this time one can use Approach 6 that is better up to about 20 Hz, and then becomes 

much slower as the frequency goes up. Figure 4-14 investigates a new option. If one particularly 

wants to have fast learning at DC, we can normalize the gain 4 to produce zero error there, just as 

Approach 6 does. The result for Approach 1 comes rather near to matching Approach 6 for 

frequencies near DC, and is dramatically better than Approach 6 at all higher frequencies.  

Figure 4-15 considers the same problem as Figure 4-12, without cancelation inside, but 

allows the compensator to have 8 zeros. The plots no longer wiggle up and down, but the learning 

rate is roughly the same over the full frequency range, and the Min-Max criterion starts to look 

like a straight line. On the other hand, Fig. 4-16 presents the results using the IIR, with the 

appropriate number of gains for a fair comparison, è = ¥ = 6. It is clear that with just 5 zeros, 

and this minimum phase system, repetitive control using all Approaches 1 through 5 can give 

nearly perfect results, getting close to zero error in one iteration, while Approach 6 has much 

slower learning. 
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Figure 4-12. Magnitude frequency response of 1-F(z)G(z) of System (2) when n=5 and m=4. 

 

Figure 4-13. Magnitude frequency response of 1-F(z)G(z) of System (2) when poles and 
zeros inside are canceled (n=2, m=2). 

 

 

Figure 4-14. Fig. 4-13 but overall gain at DC is normalized. 
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Figure 4-15. Fig.12 with more gain (n=9, m=8). 

 

 

Figure 4-16. Fig. 4-13 with more gains (n=6, m=6). 

 

System (3): Figure 4-17 considers System (3) with 2 zeros on the positive real axis, and with a 

25Hz sample rate. Approach 2 does not make a stable system when using 19 zeros, Approaches 1 

and 3 do, with 3 substantially better near DC, and substantially worse at higher frequencies. Figure 

4-18 cancels the 3 poles inside the unit circle with an IIR, and then uses 16 zeros outside for the 

FIR design. Performance is similar for Approaches 1 and 3, and Approaches 2, 4 and 5 (which 

now give different results), and 6 produce unstable designs. Figure 4-19 increases the sample rate 

which one expects will accentuate the problem, making the zeros outside much closer to the unit 

circle. Only Min-Max works at all frequencies when using 30 gains. 
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Figure 4-17. Magnitude frequency response of 1-F(z)G(z) of System (3) (n=20, m=20).  

 

Figure 4-18. Magnitude frequency response of 1-F(z)G(z) of System (3) when cancel 
inside unit circle and using (n=17, m=17). 

 

 

Figure 4-19. Same as Fig. 4-18 with high sample rate at 100 Hz and more gains (n=30, 
m=30). 
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System (4): Figures 4-20 through 4-23 treat minimum phase System (4) with two zeros introduced 

on the negative real axis. Figure 4-20 shows the learning rate for Approaches 1, 2, and 3. There 

are 4 poles inside the unit circle and 2 zeros, so we let è −¥ = 2 to allow 4 zeros to approach 

cancelling the poles inside, and add two compensator poles inside to make the number of zeros 

and poles inside match.  One observes that all approaches work, note the vertical axis scale. But 

the approach advocated by the authors, Approach 1, works best except very near Nyquist 

frequency. 

Figure 4-21 compares learning rates for all Approaches. Approach 6 gives the fastest 

learning rate near DC, but all other approaches learning faster at somewhat higher frequencies. 

Again, among the other approaches, Approach 1 is the best for nearly all frequencies until near 

Nyquist. Figure 4-22 again investigates the new option for improving low frequency learning in 

minimum phase systems, normalizing the gain 4 to zero DC error, just as in Approach 6. The 

Approach 1 result nearly matches Approach 6 near DC, and is dramatically better than Approach 

6 at all higher frequencies. Figure 4-23 shows the locations of the 6 zeros of the compensator 

outside the unit circle, showing that the locations are nearly the same for Approaches 2, 3, and 5, 

while the zeros for Approach 1 are at a larger radial distance and not on a circle.  

 

Figure 4-20. Magnitude frequency response of 1-F(z)G(z) of System (4) (n=12, m=10). 
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Figure 4-21. Magnitude frequency response of 1-F(z)G(z) System (4) when cancel inside unit 

circle (n=7, m=7). 

 
Figure 4-22. Same as Fig. 4-21 but overall gain is normalized at DC. 

 
 

Figure 4-23. Zero location of compensators corresponding to Fig. 4-21 using Approaches 1, 
2, 3, and 5. 

 

System (5): This system has a zero outside the unit circle on both the positive and the negative real 

axis. Without cancelling, Fig. 4-24, one can use Approach 2 or the Min-Max of Approach 3 with 

6 zeros in the FIR. When the IIR filter is used, and the appropriate number of gains matched, the 
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results are shown in Fig. 4-25. Approach 6 of course does not learn at DC, but this time, learning 

is slow at high frequencies because of the 2 normalizations needed, one at Nyquist and one at DC. 

The two Taylor approaches are distinct, Approach 4 fails, and Approaches 5 and 2 are nearly 

equivalent and give relatively good designs. Note that these two are similar but outperform the 

Min-Max design at nearly all frequencies and only pay for this with slightly slower learning at DC. 

So this example shows that while the Min-Max Approach 3 seems generally effective for non-

minimum phase systems, allowing reasonably good learning rate at DC, the modified Taylor 

Approach 5 as well as the Approach 2 can be competitive, provided one uses the IIR to cancel. 

Figure 4-26 shows the compensator for Approach 5 simply does a mirror reflection of the 2 system 

zeros outside the unit circle. Figure 4-27 shows where the 2 zeros are placed using the other design 

approaches, which are totally different. Again Approach 1 places the zeros furthest from the origin. 

Figure 4-28 shows that with enough gains all approaches work except for Tomizuka, with similar 

comments to Figure 4-27. Figure 4-29 shows that the new Taylor method chooses to use 7 out of 

the 8 zeros to address the zero near +1, and only one zeros to address the zero at -2.68. Figure 4-

30 shows the corresponding zero locations of Figure 4-28. 

 

Figure 4-24. Magnitude frequency response of 1-F(z)G(z) of System (5) (n=7, m=6). 
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Figure 4-25. Magnitude frequency response of 1-F(z)G(z) of System (5) when cancel inside 
unit circle and using low number of gains (n=3, m=3). 

 

Figure 4-26. Zero location of compensator corresponding to Fig. 4-25 using Approach 4. 

 

 

Figure 4-27. Zero location of compensators corresponding to Fig. 4-25 using Approaches 1, 

2, 3, and 5. 
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Figure 4-28. Magnitude frequency response of 1-F(z)G(z) of System (5) when cancel inside 
unit circle and using larger number of gains (n=9, m=9). 

 

 

Figure 4-29. Zero location of compensator corresponding to Fig. 4-28 using Approach 4. 

 

Figure 4-30.  Zero location of compensators corresponding to Fig. 4-28 using Approaches 1, 
2, 3, and 5. 
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4.7 Conclusions 

 In repetitive control, non-minimum phase systems usually have a problem of slow 

learning at low frequencies due to a near pole zero cancellation at +1. In this chapter, five RC 

design methods are investigated to determine how well the methods perform in minimum phase 

and non-minimum phase systems that contain different locations of poles and zeros. Approach 1, 

optimizing the learning rate over frequencies using a quadratic penalty function on the difference 

from unity of the product of compensator times the system transfer function, performs well in 

minimum phase systems - learns fast at low frequencies and learns slowly at high frequencies, but 

has a problem of slow learning at frequencies near DC when applied to non-minimum phase 

systems. Approach 2, matching compensator with the inverse of the frequency response using a 

quadratic penalty function, can address some non-minimum phase problems but can fail in others. 

Approach 3, using a Min-Max optimization over all frequencies, normally provides a rather 

uniform learning rate through all frequencies. Thus, compared to Approach 1, the Min-Max design 

learns slower at low frequencies for minimum phase systems but improves performance of learning 

rate at DC and low frequencies for non-minimum phase systems. Approaches 4 and 5, consider 

compensator designs based on Taylor series approximations of the inverse transfer function, and 

can compete with the approach 3 in some cases. Approach 5 also behaves similar to Approach 2 

with learning gain adjusted. However, approaches 4 and 5 require extra IIR part of the compensator 

that requires knowledge of the zero locations inside the unit circle. Approach 6, the compensator 

design based on phase cancellation presented by Tomizuka, can learn well for minimum phase 

systems, but because of the normalization needed, there is almost no learning at DC for non-

minimum phase systems.   
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Among the design methods considered in this dissertation, the Min-Max method is the 

most effective method for non-minimum phase systems. The problem can be formulated in QCQP 

form and easily solved by using the CVX package. This method is further investigated in Chapter 

5 to address practical problems in applications.  
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Chapter 5 

Min-Max Merged with Quadratic Cost for 
Repetitive Control of Non-Minimum Phase 
Systems     
             
 
5.1 Introduction 

The previous chapter developed a method to directly address the main difficulty 

encountered in designing RC for non-minimum phase systems, namely the slow learning at low 

frequencies that is produced by a near pole-zero cancellation at DC. The amount of decrease of the 

error each period is approximately represented by 1 − 9 5CDF ! 5CDF  at each frequency S, 

and the optimization criterion is converted to minimizing the maximum value of this function over 

frequencies from zero to Nyquist, Reference [1]. The approach is reasonably effective at improving 

the learning near DC, but is perhaps not the ideal optimization criterion at higher frequencies. The 

purpose of the investigation in this chapter is to obtain the benefits of the Min-Max optimization 

criterion near DC, but improve the performance at higher frequencies, especially aiming for 

improved robustness. In order to give a detailed and complete understanding of the two approached 

developed in this chapter, the next section starts from the most basic considerations in the design 

of repetitive controllers, and develops the logic that leads to the approaches investigated here. This 

is done in the form of a series of Remarks which culminate in the candidate approaches.  
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5.2 The Big Picture and the Problems Addressed!
!
REMARK 1: Consider the general repetitive control system in the lower part of Figure 2-1 and 

consider using a repetitive control law %(#) = ∅!;L(#)/(#8 − 1) which uses the inverse of the 

discrete time closed loop system transfer function. The transform of the error ,(#) satisfies 

#8 − 1 + ∅!;L! , = #8 − 1 ['( − )]. This represents a homogeneous difference equation 

since the functions on the right hand side are periodic with p time steps. The associated 

characteristic polynomial is #8 = (1 − 4). The root locus starts with p roots evenly spaced on the 

unit circle when 4 = 0, and they move radially inward as 4 increases, all reaching the origin when 

4 = 1. We conclude that this RC law converges for unity gain had deadbeat convergence to zero 

tracking error in a finite number of time steps. Use of a repetitive control compensator 9 # =

!;L(#) appears to be the ideal design. This RC law performs as intended for some systems, but 

for pole excess of 3 or more in !(*) and reasonable sample rates, !(#) will have zeros outside the 

unit circle, making the repetitive control law unstable.  

 

REMARK 2: To address this stability problem Reference [2] adjusts the RC law to aim for the 

inverse of the steady state frequency response of !;L(5;CDF) where T is the sample time interval, 

instead of the inverse of the transfer function. The cost function is the @̂  

of Chapter 4  

 @̂ = !;L 5CDEF − 9(5CDEF) !;L 5CDEF − 9(5CDEF) ∗
K

H?J
Q (5-1) 

In order to create an implementable compensator 9(#), it is chosen in the form of an FIR filter in 

Equation (3-11) that sums a set of errors from the previous period each multiplied by a gain 
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9 # = <L#õ;L + <^#õ;^ + ⋯+ <õ#J + ⋯+ <>;L#;(>;õ;L) + <>#;(>;õ) 

=Q <L#>;L + <^#>;^ + ⋯+ <õ#>;õ +⋯+ <>;L#L + <>#J /#(>;õ)  
(5-2) 

chosen by the optimization. Since all poles are at the origin, this creates a stable RC compensator. 

As seen in the Chapter 4 this approach can work, but it has an implicit weighting on frequencies 

that might not be desirable. Consider the 3rd order minimum phase Laplace transfer function of 

Equation (2-13). The gain at DC is unity, but at 100 Hz it is 6×10;». The 9(#) tries to match the 

reciprocal of this at 100 Hz asking for a very large number. It is clear that for such systems, the 

compensator must put much more emphasis on matching the high frequency behavior than the low 

frequency behavior when minimizing the cost. 

 

REMARK 3: Reference [2] converts the cost function @̂  to cost function @L in Equation (4-11) in 

Chapter 4 and observes better behavior in various problems 

 @L = 1 − !(5CDEF)9(5CDEF) 1 − !(5CDEF)9(5CDEF) ∗
K

H?J
Q (5-3) 

Of course, both cost functions produce the same minimum of the inverse of the steady state 

frequency response if there is full freedom to make 9(5;CDEF) do whatever is needed at each 

frequency. But one would like to have a relatively small number of gains in the FIR filter in order 

to limit the number of computations made each time step. And this means that the cost functions 

produce different results. Experience with this cost function and the 3rd order system with pole 

excess of 3, indicates that using only 3 terms in 9(#) is sufficient to produce stability of the RC 

design. This relationship between number of terms needed and pole excess is fairly general. When 

12 gains are used the square bracket terms in Equation (5-3) are zero to a few decimal places, so 

the compensator can be very effective.  
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Observation 1: The optimization criterion @L can be rewritten as  

@L = !;L 5CDEF − 9(5CDEF) !(5CDEF)!(5CDEF)∗ !;L 5CDEF − 9(5CDEF) ∗
K

H?J
 (5-4) 

By comparison to @̂ , the weight function ! 5CDEF !(5CDEF)∗ has been introduced. For systems 

with small output at high frequencies, this squares the small number, and makes the optimization 

put much less emphasis on making 9(5;CDEF) look like !;L 5CDEF  at high frequencies. 

 

Observation 2: Following Remark 1, but with the !;L(#) replaced by 9(#), produced Equation 

(2-7) 

 #8,(#) = 1 − 49 # ! # ,(#) (5-5) 

If one makes a quasi-static assumption of the convergence process, then substituting # = 5;CDF 

into the square bracket creates a frequency transfer function from one period of p time steps to the 

next. Its magnitude for any S is the factor by which the amplitude at that frequency is multiplied 

from one period to the next. If all such magnitudes are less than one, it suggests that all error 

frequency components decay with periods. Reference [3] shows that this predicted decay for each 

frequency is in fact quite accurate for very fast error decay, in spite of the quasi-static assumption. 

This is the result of the usual relatively large value of p in practical problems. The conclusion is 

that cost function Equation (3) can be interpreted as a quadratic penalty over all frequencies to 

Nyquist aiming to produce the fastest learning speed, or convergence rate.  

 

Observation 3: Reference [3] proves that  

 1 − 49 5CDF ! 5CDF < 1QQQQQQQQ∀S  (5-6) 
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is a necessary and sufficient condition of stability for all possible periods p of RC using 

compensator 9(#) (see Equation (2-8)). And only for very small and usually not practical values 

of p, can the RC be stable without satisfying this inequality.   

 

Consider the implications of this condition. The design of F aims to cancel the magnitude 

change of G, and it aims to cancel the phase change made going through transfer function !(#). If 

the phase is right, then the magnitude of the product can be anywhere between zero and two, so 

magnitude errors are not normally very important in achieving stability. On the other hand, phase 

errors are very important. Suppose the magnitude of the product of F and G is unity at a given 

frequency, then the maximum phase error allowed before inequality in Equation (5-6) is violated, 

is ±45°. If one chooses to converge more slowly at that frequency, then as the gain of the product 

approaches zero, and the absolute value approaches unity, the maximum phase error approaches 

±90°. Thus, reducing the learning speed at any frequency improves the stability robustness to 

model error at that frequency. And since model inaccuracy increases when one goes to high 

frequency, we conclude we would like the design process to have slow learning at high frequency.   

 

REMARK 4: For any frequency S that violates the inequality in Equation (5-6), the absolute 

value indicates the increase in the amplitude of any error at that frequency from one period to the 

next according to Equation (5-5). In order to prevent error growth, we modify the learning law to 

use a low pass filter :(#) to cut off the learning process at such frequencies. The filter must be 

zero phase so that it does not disturb the phase of the compensator, as in Equations (2-4) and (2-

5). The learning law becomes & # = #;8:(#) & # + 9 # ,(#) , and the error propagation 

difference equation becomes  
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 #8 − :(#) + 4:(#)9 # ! # , # = #8 − :(#) ['( # − ) # ] (5-7) 

Frequencies above the cutoff mean that :(#) is not unity and the right hand side is no longer zero. 

This makes a nonhomogeneous equation and above the cutoff the right hand side is a forcing 

function producing nonzero error after convergence. Convergence is a property of the solution of 

the homogeneous equation, and its solution converges at all frequencies provided the cutoff 

satisfies : 5CDF [1 − 49 5CDF ! 5CDF ] < 1Q at all frequencies up to Nyquist. One must 

expect to need to use this cutoff for long term stability robustness. Having a good phase model all 

the way to Nyquist frequency is often not possible. The cutoff frequency must be tuned in hardware 

application by observing what frequencies grow, i.e. violate Equation (5-6), because one does not 

usually know what is wrong with one’s model. A somewhat extreme example, the 3rd order model 

in Equation (2-13) models the behavior of one link of a robot. It has a 1.4 Hz bandwidth to reduce 

excitation of the lowest frequency vibration mode produced by flexibility in the harmonic drives. 

Magnitude response at 100 Hz is 6×10;». It is clear that there is no way one can make a good 

model that far above the bandwidth of the system, and there will be a number of higher frequency 

vibration modes if one could identify them. However, if the phase is wrong RC will build the 

amplitude of the error and eventually bring the instability out of the noise level. Note that if 

approaching frequencies for which instability will occur, by using a slower learning rate one is 

able to have a higher frequency cutoff, and eliminate the tracking error up to a higher frequency. 

 

REMARK 5: Consider the typical behavior as a function of frequency of minimum and non-

minimum phase systems.  

Minimum Phase: One expects the transfer function G to have its largest magnitude response at 

DC, except if there is some resonant peak, or there is a compensator design involved that introduces 
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a phase lead. And as frequency gets large the magnitude response decays, for the continuous time 

model decays by 20 dB times the pole excess for every decade. With the weight factor in optimality 

criterion Equation (5-4), the design of F will put emphasis on matching magnitude response at low 

frequencies, and allow F to have slow convergence at high frequencies. From REMARK 3, this is 

a desirable property for robustness to model error. Figure 5-1 compares the performance of  

@LQversus the Min-Max on the minimum phase system in Equation 2-13. The Min-Max method 

learns more uniformly at all frequencies. The quadratic cost is preferred for robustness to model 

error at high frequencies and faster learning at low frequencies. 

Non-Minimum Phase: A zero #À  in transfer function !(*) fed by a zero order hold, maps to zero 

#( in the discrete time transfer function !(#) approximately according to #( = 5;ãÃF (the Taylor 

series expansion matches to the power equal to the number of poles). If the zero is a real zero on 

the positive real axes in the s plane, one expects that it is not too far from the origin, and it will 

map to the positive real axis in the z plane to a point relatively close to +1. The % #  has p poles 

around the unit circle and the first one is at +1. This indicates an approximate pole zero cancellation 

near +1, making a small gain from input to output for constant inputs, and for low frequency inputs. 

This produced slow learning from one period to the next according to Equation (5-5) for low 

frequencies, unless a large gain is used in F localized to low frequencies and the gain decays 

quickly as the frequency gets beyond this region. Otherwise, it will precipitate instability at higher 

frequencies. If the number of gains used in F is limited, the weight factor in cost function Equation 

(5-4) will choose to sacrifice the learning speed near DC. One needs a very large number of gains 

in F to fight this trend. We conclude that the near pole-zero cancellation is a challenge for RC 

design of non-minimum phase systems. 
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REMARK 6: The maximum value of the left hand side of Equation (5-6) occurs at some 

frequency, and represents is the slowest decay per period over all frequencies up to Nyquist. The 

Min-Max optimization criterion minimizes the maximum value over all frequencies, and hence 

must address this slow learning near DC.  Observation of the behavior of Min-Max solutions is 

that the design attempts to produce approximately the same learning rate at all frequencies. This 

behavior is undesirable if one is interested in having slow learning at high frequencies for stability 

robustness.  

 

REMARK 7: One advantage of the RC designs using cost functions based on frequency response, 

is that it is possible to design RC based only on frequency response test data, without having to 

create a differential or difference equation model. One applies a rich and long input signal and 

processes the input output data to determine frequency response directly. However, the results get 

more and more inaccurate at frequency goes up, and does so in a very noisy way, making the phase 

model from one frequency to the next jump around. This kind of noisy behavior is a serious 

difficulty when one is minimizing the maximum value. One needs to stop the Min-Max 

optimization before the data starts to exhibit such behavior, or one must use some smoothing 

process. This difficulty is much less serious when using the quadratic optimization criterion of 

Equation (5-3). One purpose of this chapter is to study how these issues affect the various possible 

RC designs.  

 

REMARK 8: From the above REMARKS, one concludes that the Min-Max optimization criterion 

is particularly good at handling non-minimum phase systems that have slow learning near DC 

(similar thinking applies if the non-minimum phase zeros are complex, and the slow learning 
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applies to some higher frequency). But the Min-Max will try to learn at similar rates at all 

frequencies, and this increased learning rate at high frequencies is undesirable for model error 

robustness. Figure 5-2 shows this behavior for repetitive control of the following 4th order non-

minimum phase system  

 ! * = 165.95(4 − *)
*Ç + 21.5*á + 170.28*^ + 2_S]* + S]̂  (5-8) 

This represents a rotary mechanical system of inertias, dampers, torsional springs, a timing belt, 

pulleys and gears, and comes from Reference [6]. The sample interval 1 is equal to 0.02, and è 

and ¥ in the quadratic cost compensator are equal to 20. Examining the learning at DC, the 

quadratic cost gives 0.8907, and the Min-Max design is able to reduce this to 0.7974. One main 

purpose of this chapter is to create an RC design method that transitions from Min-Max 

optimization for low frequencies to quadratic cost of the form of Equation (5-3) at high 

frequencies. The aim is to obtain the advantages of both designs simultaneously, without the 

disadvantages.  

 

REMARK 9: An alternative design process is also considered. We note that the difficulty under 

consideration is that the Min-Max approach is not desirable at high frequencies. Observing that 

we expect to need to cut off the learning process above some frequency anyway, perhaps one can 

simply use the Min-Max optimization applied only to frequencies from zero to some chosen 

frequency. This can improve the performance near DC. Above the chosen frequency the design is 

free to go wild, and we need to apply an effective zero-phase cutoff filter. Probably this approach 

is sacrificing performance at higher frequencies, but it represents a simple and perhaps effective 

design approach. We study the effectiveness of this approach with various numerical studies.  
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5.3 Formulation of Objective Function to Transition from 
Min-Max to Quadratic Cost as Frequency Increases  

 

In this section, we develop an optimality criterion that can emphasize the Min-Max at low 

frequencies and quadratic cost @L at high frequencies. The gains in 9(#) are chosen to optimize the 

objective function   

minæ QQQQQQQQ• + 1 − 9 5CDEF ! 5CDEF Q )H 1 − 9 5CDEF ! 5CDEF Q ∗
H

QQQQQQ∀z (5-9) 

Subject to    1 − 9 5CDEF ! 5CDEF Q ùH 1 − 9 5CDEF ! 5CDEF Q ∗ ≤ •QQQQQQQ∀zQ  

where p contains all compensator gains <L, <^, … , <>, the asterisk indicates complex conjugate, 

ùH’s are weighting factors for the Min-Max cost function chosen to be non-zero for DC and low 

frequencies, )H’s are weighting factors for the quadratic penalty chosen to be non-zero for high 

frequencies. 

The cost function of this new method contains two objectives. The first objective is to try 

to minimize the weighted maximum error on selected frequencies by finding feasible x that 

satisfies the weighted constraints • for every frequency z. This part is simply the Min-Max design 

from the Chapter 4 but with limited frequency range by using ùH’s. The other objective is the 

second term of the minimization that is the weighted sum of the quadratic penalty over high 

frequency range, aiming to increase robustness to high frequency.  

The objective function can be reformulated in the QCQP form as   

minæ pFµp + ¬FpQ (5-10) 

Subject to QL^ pFqHp + ≤HFp + gH ≤ •Q  

where  
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                   p = ùH p
• QQQQQQQQQQQQQQQqH = ùH qH 0

0 0                ≤H = ùH ≤H
∏1 Q       

                  gH = L
^ùH                   µ = )HqHKH?J 0

0 0          ¬ = ùH 2)H≤HKH?J
1  

 

which can be solved by using CVX programming package, References [4] and [5]. 

The MATLAB spline-based curve function that maps  

 

)H = Õ ∙

0,QQQQQQQQQQQQQQQQQQQQQQSH ≤ <œ
2 SH − <œ

≤ − <œ
^
,QQQQ< ≤ SH ≤

<œ + ≤œ
2 QQ

1 − 2 SH − <œ
≤œ − <œ

^
,QQQQ <œ + ≤œ2 ≤ SH ≤ ≤œ

1,QQQQQQQQQQQQQQQQQQQQQSH ≥ ≤œ

 (5-11) 

 

is used to define )H’s . Similarly, ùH’s are mapped according to  

ùH =

1,QQQQQQQQQQQQQQQQQQQQQQSH ≤ <—
1 − 2 SH − <—

≤— − <—
^
,QQQQ<— ≤ SH ≤

<— + ≤—
2 QQ

2 SH − <—
≤— − <—

^
,QQQQ <— + ≤—2 ≤ SH ≤ ≤—

0,QQQQQQQQQQQQQQQQQQQQQSH ≥ ≤—

 (5-12) 

For simplicity, in this work <— and <œ are set to be equal to <, and ≤— and ≤œ are set to be equal 

to ≤. The function allows the weighting functions Vº and Wº  to smoothly increase and decrease, 

respectively. There are three parameters that one can adjust in the cost function to tune the 

repetitive control for desired performance, a, b, and v.  

The <— represents the frequency, as a fraction of Nyquist frequency, at which the weighting 

function for the Min-Max cost function  ùH starts decreasing from unity. The ≤— controls how fast 
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the weight ùH decreases. Then the difference ≤— − <— represents the transition band, or the 

frequency interval to make the transition. On the other hand, <œ is where )H starts increasing from 

zero, i.e. where we start applying the quadratic penalty to the objective function. The ≤œ is where 

the penalty )H reaches its final value of Õ. By making <— and <œ both equal to a, and ≤— and ≤œ 

equal to b, one of the weights starts down at the same frequency that the other weight start up, and 

they both finish their transition at the same frequency.  The value of Õ is the quadratic penalty 

coefficient indicating the relative importance of the Min-Max cost in its frequency range versus 

the quadratic cost minimization in its frequency range. At high frequencies, slower decay from 

one period to another is desirable, the magnitude of the frequency transfer function from period to 

period being close to +1 is desirable. Hence, we need to adjust the value of Õ for this purpose, but 

ensure that the magnitude remains below unity all the way to Nyquist.  

5.4 Evaluating the Performance of the Merged Cost 
Function – Adjusting the Cost Function Parameters 

 
Figure 5-3 compares the learning rate for Min-Max, for quadratic cost, and for Min-Max 

merged with quadratic cost when applied to the following 4th order non-minimum phase system of 

Equation (5-8). The figure demonstrates that the Min-Max merged with quadratic penalty 

accomplishes the modifications of the learning rate as a function of frequency shifting in the 

desired direction.  There is in fact, faster learning rates at nearly all frequencies except for 

frequencies near Nyquist. The DC learning rate for Min-Max is 0.7974 while the merged cost 

function reduces this to 0.6134. Figures 5-4 and 5-5 show weighting factors ùH and  )H used for 

Figure 5-3, respectively, that are chosen to make a fast transition from the Min-Max cost function 

to the quadratic cost function. The ùH’s are equal to unity until 50 percent of Nyquist and the 

transition band is 10 percent of Nyquist, and then ùH’s are equal to zero from 60 percent of Nyquist 
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up to Nyquist. The Õ is equal to 0.007, and < and ≤ are equal to 50 and 60 percent of Nyquist, 

respectively.  

The design parameters to use in tuning the cost function are the frequencies for the start 

and the end of the transition zones <, ≤, as well as the transition frequency interval, or transition 

band, a – b, and the relative importance of the quadratic cost minimization versus the Min-Max, 

Õ. Figure 5-6 studies the behavior when the transition band is held constant at 10%, but the 

frequency at which the band starts, a, is varied 30%, 50%, and 70%, and compared to Min-Max 

alone. The DC values are 0.6134, 0.6481, 0.7002, and 0.7974, respectively. The number of gains 

è = ¥ = 20, and Õ is equal to 0.005. We conclude that reducing the frequency when the Min-

Max cost weight starts its descent to zero, improves the learning rate at DC and low frequencies, 

but the quadratic penalty takes over at a lower frequency resulting in the magnitude of 1 −

9(5CDEF)!(5CDEF) starting to grow at lower frequencies.  

Figure 5-7 fixes the value of b at 50% Nyquist, and adjusts the value of a. In other words, 

the figure examines the effect of varying the transition band width a – b values of 50%, 40%, 30%, 

20%, 10%, and 0%. Figures 5-8 and 5-9 give the corresponding ùH and  )H plots to Figure 5-7. The 

values at DC are 0.5672, 0.5797, 0.5963, 0.6129, 0.6275 which are all very close to the same 

values. When the transition band is longer, the weighting functions ùH start decreasing earlier. As 

a result, the magnitude of 1 − 9(5CDEF)!(5CDEF) starts growing at lower frequencies, but the lower 

and higher frequencies are remarkably similar for each transition band width. It appears that the 

transition band width is not very effective at modifying learning behavior.   

Figure 5-10 shows learning rates with different values of Õ. Figure 5-11 is the 

corresponding plot of Õ. The choice of the value of Õ adjusts how important it is to reduce the 

value of the quadratic penalty function at high frequencies. The lower the value of Õ is, the faster 



 102 

the learning at low frequencies and the slower learning rate at high frequencies. The lowest value 

of Õ that keeps the magnitude of 1 − 9(5CDEF)!(5CDEF) below unity for all frequencies up to 

Nyquist is 0.005, the lowest value for which the repetitive control system is asymptotically stable. 

Aiming to increase robustness at high frequencies, one needs a slower learning rate close to unity. 

One allows values approaching unity to improve robustness to expected model error at high 

frequencies. For v equal to 0.004, 0.005, 0.006, 0.007. 0.008, the DC values are 0.5989, 0.6481, 

0.6992, 0.7562, 0.8245 respectively. 

Figure 5-12 repeats Figure 5-3 using a faster sample rate of 100 Hz instead of 50 Hz, and 

also examines the influence of changing the number of gains in the compensator F(z). The faster 

sample rate makes it more difficult to learn fast at DC. With the same number of gains as before 

in Figure 5-3, Min-Max gave 0.7974 and with double the sample rate it is 0.9856. The 

corresponding merged cost function comparison goes from 0.6134 to 0.8132. Increasing the 

number of gains in F(z) improves learning at DC using the faster sample rate, the Min-Max value 

reduces to 0.8959 and the merged cost function value reduces to 0.7509.   

We conclude that the merged cost function can improve the learning rate substantially 

compared to Min-Max and at the same time produce the slower learning rate desired for robustness 

at high frequency. The numerical results suggest using a moderate value for a and b, learning 

slower at high frequency for robustness but adjusted to preventing instability at high frequency, 

and then this facilitates faster learning in the low frequency range. There appears to be no 

substantial benefit to have a large transition band a - b, so this value can be a moderate value as 

well. If one wants faster learning at low frequency, one can lower the frequency a at which the 

transition starts. And using a smaller value of v also can increase the learning rate at low 

frequencies, at the expense of slower learning at high frequencies.    
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5.5 Alternative Approach: Use Min-Max up to Chosen 
Frequency and Apply Zero-Phase Low-Pass Filter 
Cutoff 

!
We can consider a simpler alternative to the merged cost function approach. The Min-Max 

objective function normally would be applied to all frequencies to Nyquist. But perhaps one is 

really interested in improved learning rate for non-minimum phase systems at low frequencies, 

and is not concerned about learning at high frequency. Because of model error one might need to 

cut off the learning at high frequency and forgo the attempt to get enough robustness for 

convergence using a slow learning rate. This attempt is limited to producing stability for model 

phase error between plus and minus 90 degrees. When the model error exceeds this value one will 

still need to use a cutoff filter when applying the merged design, and in this case the benefit of the 

merged cost design is that the cutoff can be made at a higher frequency. References [7] and [8] 

present designs for zero phase low pass filters to use to cut off the learning above a chosen cutoff 

frequency.   

To study this alternative, we can start with the Min-Max cost function of Equation (4-12) 

and set the weights Wj to zero above some value of j corresponding to the chosen frequency. There 

is an option of making use of Equation (5-11) to phase out the importance of frequencies 

approaching the zero cutoff, again having a transition band b – a.  

We investigate how the cutoff and transition band of weighting function ùH’s influence the 

learning rate when the low-pass filter is not applied. Figures 5-13 shows the learning rate using 

the Min-Max compensator with cutoff of the learning starting at 30%, 50% and 70% Nyquist, and 

using a 10% transition band, reaching weight zero at 40%, 60%, and 80%. Figure 5-14 presents a 

detailed view of this figure. Lowering the cutoff frequency produces faster learning rate at low 
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frequencies compared to using Min-Max to Nyquist. But note that the resulting learning rate at 

low frequencies seems to be nearly the same for all 3 cutoff values. Also, note that the magnitude 

of  1 − 9(5CDEF)!(5CDEF) sharply increases above unity right after the transition band, i.e. when 

ùH reache zero, at 40%, 60% and 80% Nyquist. Figures 5-15 and 5-16 present figures 

corresponding to 5-13 and 5-14, examining the influence of the size of the transition band. The 

value of b at which the weight ùH reaches zero is 70% for all plots in the figure, but the decay of 

the weight starts at a, which is 0, 30%, and 70% corresponding to no transition zone. In this setting, 

0% transition band performs best since the magnitude of  1 − 9(5CDEF)!(5CDEF) is the lowest at 

almost all frequencies. Note that the learning rate is very substantially improved by limiting the 

Min-Max to 70% of Nyquist, suggesting that this is an effective design method if one’s primary 

interest is learning at low frequencies, but its usefulness is predicated on one’s ability to have an 

effective cutoff filter to cancel the sharp growth above 70%.  

The ideal cutoff filter is equal to one in the passband and equal to zero in the stopband. For 

this application, the design of cutoff filter needs to be very effective in the stopband. The FIR zero-

phase low-pass filter design developed in Reference [8] allows one to put emphasis on the stopband 

by adjusting the value of B in Equation (2-5), but that is done at the expense of accuracy in the 

passband, and the accuracy of the repetitive control can only be as good as the filtered value of the 

error signal. Inaccuracy in the passband can be amplified when going from the forcing function in 

the difference Equation (2-6) to the resulting particular solution to the difference equation. The 

error response to all frequencies is obtained by getting the transfer function from disturbance to 

error, i.e. the sensitivity transfer function û #  in Equation (5-13), going from desired output '∗(#) 

and disturbance )(#) to the corresponding error ,(#)  
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 û # = , #
'∗ # − ) # = #8 − : #

#8 − : # 1 − 49 # ! #  (5-13) 

Aiming to accurately fix error in the passband, one should not put the weight of B to be too high. 

The cutoff frequency of the FIR low-pass filter should be equal or less than the learning cutoff 

where the errors start to grow rapidly.  

Figure 5-17 shows the resulting magnitude of :(#) 1 − 9 # !(#)  using different cutoff 

frequencies for weighting function ùH (Figure 5-18) and for FIR low-pass filter :(#) (Figure 5-

19). The weighting functions ùH’s use a = b, with cutoff at 30%, 50% and 70% of Nyquist. The 

FIR low-pass filters :(#) are designed with the passband starting 10% below the above cutoffs, 

and ending at the above cutoffs. The cutoff design uses 51 gains, and equal weighting of passband 

vs. stopband. It is clear that using a low frequency of the cutoff in the Min-Max cost function, 

makes the cutoff filter unable to produce small values above the cutoff, and the values at the higher 

frequencies produce a forcing function in the difference equation for the error that could result in 

large total error. On the other hand, one should not have the cutoff in the forcing function too high, 

for example, to avoid the noise in the frequency response model discussed in the next section. 

Again, we comment that the learning rate at the low frequencies seems to be rather independent of 

the percent Nyquist in the cutoff for 30%, 50%, and 70%.  

5.6 Evaluating Performance of Both Approaches when 
Designing from Noisy Frequency Response Data 

 
A very desirable property of the repetitive control design methods presented here, is that 

they do not require a mathematical model of the system, but instead can be designed based only 

on frequency response information that can be obtained experimentally. This section considers 
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designing from such data and addresses how one should adjust the parameters to address the 

influence of noise in the frequency response data.  
Consider computing the system frequency response from experiments using rich input data. A rich 

input containing all frequencies is applied to the system, the resulting output is recorded, and the 

two are used to compute frequency response. We use Welch’s average periodogram method, the 

TFE algorithm in MATLAB, Reference [9]. 

 When the data is noisy, the quality of the identification of magnitude and phase 

deteriorates as the frequency goes up and the signal to noise ratio gets small. We examine up to 

what frequency one can trust the computed frequency response and study implications for 

adjusting frequency range used for weighting function and penalty coefficients.  

The system in Equation (5-8) fed by a zero order hold is used as a model with 100 Hz 

sample rate. The input is generated using normally distributed pseudo-random numbers with unity 

standard deviation, generated for various data lengths.  A pseudo random noise is also generated 

normally distributed, unity standard deviation, is chosen and then scaled so that when added to the 

output it produces a signal to noise ratio of 100 producing noisy measurement data. 

Figure 5-20 and 5-21 show the estimated phase and true phase response of the system when 

1,000,000 and 10,000,000 time steps of data are used, respectively, in the TFE algorithm with 

default window size, and default overlap. Extra curves are shown for adding and subtracting 360 

degrees from the phase of the system. Phase error of ±90 degree or more in the phase cancellation 

in 9 # !(#) causes instability. Error in the gain is less critical. As the frequency increases, 

identified phase plots start to contain substantial influence from noise and no longer reflects the 

true behavior.  
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Figure 5-22 investigates how well the Min-Max merged with quadratic penalty works when 

frequencies response data is noisy using data in Figure 5-21. It is clear that the one does not want 

to use Min-Max all the way to Nyquist. The DC value is 0.9856. The solid curve for the merged 

cost uses a = 40 and b = 100 with v = 0.006. This is adjusted to get stability all the way to Nyquist. 

The third curve uses the merged cost function with a =50, b = 60, v = 0.008, and introduces a zero-

phase low-pass filter cutoff with passband to 50% and transition band of 10%. Having the cutoff 

means that one is no longer constrained to try to produce stability to Nyquist as in the solid curve, 

an better performance is obtained below the filter cutoff. The DC values for the merged cost is 

reduced to 0.8480, and when the cutoff filter is added the DC value is 0.3293, which is dramatically 

reduced.    

Figure 5-23 repeats Figure 5-14 but using the noisy frequency response data. This time the 

70% curve is much worse than before, and the learning rates for the other curves are not as similar 

as before.  Figure 5-24 examines the behavior when one introduces the zero-phase low-pass filter 

to stabilize the curves in Figure 5-23, presenting the magnitude frequency response of 

:(#) 1 − 9 # !(#) . The values of Wj correspond to cutoff starting at 20%, 40%, and 60% with 

10% transition to zero. The FIR low-pass filters are given in Figure 5-25. Due to phase error at 

high frequencies near Nyquist, the resulting magnitude of 1 − 9 # !(#) using the Min-Max 

approach all the way to Nyquist results in almost no learning approaching Nyquist as well as at 

DC. The results show that limiting learning cutoff in Wj can improve learning rates at low 

frequencies. As the learning cutoff decreases, the learning rate becomes faster at low frequencies 

at the expense of no learning above the cutoff. This learning cutoff should not exceed the frequency 

range where the phase identification is accurate enough to avoid instability from model error at 

high frequencies.  



 108 

Figures 5-26 and 5-27 correspond to Figures 5-16 and 5-15, respectively, which study the 

influence of transition band of the weighting function for the Min-Max optimization when all 

weighting functions become zero at 70% of Nyquist frequency. The cutoff of the FIR zero-phase 

low-pass filter is designed to be lower than 70% Nyquist. The plots show that longer transition 

band can improve learning rates at DC and low frequencies but might need a lower cutoff 

frequency for the low-pass filter. Otherwise, the magnitude of 1 − 9 # !(#) can grow above unity 

at low frequency and become unstable. The transition band of 70% Nyquist, which means the 

weight ùH that starts decreasing from unity at DC and completely equal to zero at 35 Hz, needs a 

cutoff frequency for low-pass filter before 25 Hz while the transition band of 40% Nyquist needs 

a cutoff frequency at 33Hz. The one with transition band 0% grows above unity at 39 Hz which is 

higher than the frequency range that we try to optimize. Figure 5-28 shows the magnitude plot of 

:(#) 1∏9 # !(#)  when the corresponding FIR low-pass filters in Figure 5-29 are applied.  

In the real world when data is noisy and phase frequency response at high frequencies 

becomes inaccurate due to noise, excessively long data sets can be required for accurate phase 

response identification at high frequencies. Min-Max design all the way to Nyquist is very 

sensitive to the noise at high frequencies. One might want to use some smoothing technique trying 

to smooth through the noise. The merged cost function allows one to decrease this influence very 

substantially. But it still may not be able to guarantee convergence to Nyquist because of the phase 

error in the computed frequency response. One may introduce a zero-phase low-pass filter to cut 

off the learning when the frequency response model becomes too highly influenced by noise. One 

can then consider the alternative design which does not try to learn to high frequencies, resulting 

in much better learning at low frequencies, but this time requiring an effective zero-phase low-

pass filter to produce stability. In practice, one might might tune this cutoff in hardware by picking 
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a desired trajectory that contains all frequencies and run for a number of periods to see which 

frequencies are growing from one period to the next period. This process is possible since the 

instability in RC grows slowly. But we comment that when using the alternative design, the slow 

instability may not apply. One might need to start with a cost function aiming for learning to 

Nyquist and reduce the frequency range gradually.  

 

5.7  Conclusions 

The combined optimization criterion presented here introduces significant design choices 

in generating repetitive controllers for non-minimum systems. When using the pure Min-Max 

criterion for all frequencies up to Nyquist, the speed of learning at DC is very much improved over 

the quadratic cost approach, but is still limited. And the performance at high frequencies can be 

asking for higher learning rates than one might want based on robustness to model error. When 

transitioning to a quadratic cost as the frequencies increase, the performance of Min-Max at low 

frequencies can be improved. If the quadratic cost is further de-emphasized relative to the Min-

Max using the weights, then one obtains further improvement in Min-Max low frequency 

performance, and can still maintain stability for the given model up to high frequencies. One can 

choose to go still further, and simply ask for Min-Max up to some chosen frequency and use a 

cutoff filter to ignore everything above this frequency. This can produce particularly good 

performance near DC for non-minimum phase systems, and is easy to design. But it sacrifices all 

attempt to learn at high frequencies. Thus, the methods presented represent a spectrum of choices 

for the designer. We conclude that in practice, instead of using the pure Min-Max approach to 

address non-minimum phase systems, one should prefer to use one of the two methods developed 

here when designing repetitive controllers.  
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Figure 5-1. ` − f(Å)a(Å)  of the 3rd 

order minimum phase system by using 
the quadratic penalty and the Min-

Max approaches. 

 
Figure 5-2. ` − f(Å)a(Å)  of the 4th 

order non-minimum phase system by 
using the quadratic penalty approach 

and the Min-Max approach. 

 
Figure 5-3. ` − f(Å)a(Å)  of the 

4th order non-minimum phase 
system by using the Min-Max 
approach and the Min-Max 

merged with quadratic penalty. 

Figure 5-4. Weighting factors for Min-
Max cost function ”‘ corresponding 

to Fig.5-3. 
 

 
Figure 5-5. Weighting factors for 

quadratic penalty ’‘ corresponding to 
Fig.5-3. 

 
Figure 5-6. ` − f(Å)a(Å)  of the 4th 

order non-minimum phase system by 
using the Min-Max merged with 
quadratic penalty with different 

learning cutoff percentage of Nyquist. 



 112 

Figure 5-7. ` − f(Å)a(Å)  of the 4th 
order non-minimum phase system by 

using the Min-Max merged with 
quadratic penalty with different 

transition band for weighting function  
”‘. 

 
Figure 5-8. Weighting factors for Min-
Max cost function ”‘ corresponding 

to Fig.5-6. 

Figure 5-9. Weighting factors for 
quadratic penalty ’‘ corresponding to 

Fig.5-6. 

 
Figure 5-10. ` − f(Å)a(Å)  of the 4th 
order non-minimum phase system by 

using the Min-Max merged with 
quadratic penalty with different 
weighting function for quadratic 

penalty  ’‘. 

 
Figure 5-11. Weighting ’‘on 

quadratic penalty corresponding to 
Fig. 5-6. 

 
Figure 5-12. Compared learning rate 

between Min-Max method and the 
Min-Max merged with quadratic 

penalty with different sample rate and 
number of gains. 
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Figure 5-13. ` − f(Å)a(Å)  of the 4th 
order non-minimum phase system by 
using the Min-Max with limited range 
of non-zero for ”‘ without low-pass 

cutoff filter. 

 
Figure 5-14. Detail of Fig. 5-13. 

 
 

 
Figure 5-15. ` − f(Å)a(Å)  when ”‘  

is completely zero at 70% Nyquist 
with different frequency range of 

transition band. 

 
Figure 5-16. Detail of Fig. 5-15. 

 
 
 

Figure 5-17. ÷(Å) ` − f(Å)a(Å)  of 
the 4th order non-minimum phase 
system by using the Min-Max with 
limited range of non-zero for ”‘. 

 
Figure 5-18. ”‘ corresponding to  

Fig. 5-17. 
 



 114 

 
Figure 5-19. ÷(Å)  corresponding to 

Fig. 5-17. 
 

 
Figure 5-20. Phase plot, SNR of 100, 
1,000,000 points, sample rate of 100 

Hz. 

 
Figure 5-21. Phase plot, SNR of 100, 
10,000,000 points, sample rate of 100 

Hz. 

!
Figure 5-22. Comparing learning rate 

using ÷(Å) ` − f(Å)a(Å)  
 

 
Figure 5-23. ` − f(Å)a(Å)  with 

different learning cutoff. 
 

 
Figure 5-24. ÷(Å) ` − f(Å)a(Å)  

when ”‘  is completely zero at 70% 
Nyquist with different frequency 

range of transition band. 
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Figure 5-25. Magnitude frequency 
response for FIR low-pass filters 

corresponding to Fig. 5-26. 

 
Figure 5-26. ` − f(Å)a(Å)  when ”‘  

is completely zero at 70% Nyquist 
with different frequency range of 

transition band. 

 
Figure 5-27. Same as Fig. 5-26. 

 
Figure 5-28. ÷(Å) ` − f(Å)a(Å)  

when applying low-pass FIR filter. 
 

Figure 5-29. Corresponding frequency 
magnitude respond of FIR low-pass 

filter to Fig. 5-28. 
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Chapter 6 

Conclusion 

 

Several methods have been developed in this dissertation to create repetitive control laws 

with improved performance and increased robustness for minimum phase systems and non-

minimum phase systems. In repetitive control, the command to be executed and the disturbance 

are periodic functions of time.  Typical feedback control has limited performances because it does 

not make use of knowledge!of the periodic nature of the command and disturbance. Repetitive 

controllers use error from the previous period to adjust the command in the present period. In 

theory, repetitive control can completely eliminate the effects of a periodic disturbance. This 

dissertation is separated into four major topics. Chapter 2 and 3 present solutions to general RC 

systems. Chapter 4 and 5 present optimization methods that specifically work well for non-

minimum phase systems but might not be preferred for minimum phase systems. 

The first topic in this dissertation studies to what extend the emulation methods can be used 

to implement RC compensators. The pole-zero mapping method is modified to create an effective 

RC approach using only the continuous time models. The new method uses the exact images of 

the pole locations, approximate images of any zero locations, and supplies poles at the origin to 

address the phase influence of the asymptotic zeros introduce by the discretization process. This 

method is simple and provides insight into stability robustness of RC compensator designs. The 

results of the methods will almost always be stable.  
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The ideal performance for a repetitive control system is to have zero tracking error. 

Because of model error at high frequencies from parasitic poles or residual modes, one normally 

requires a zero phase filter to cutoff the process above some frequency. This stabilizes the RC 

system at the expense of no longer addressing the error above the cutoff. The instability just above 

the needed cutoff frequency is normally slow, and this allows one to use real time data to correct 

the model error for such frequencies. This allows one to raise the cutoff, and perhaps eliminate the 

need for a cutoff entirely. Chapter 3 develops real time model update methods that adaptively 

update the frequency response model for the chosen frequencies allowing one to successively raise 

the cutoff frequency in real time. The methods considered to identify frequency response are the 

moving window approach and the projection algorithm. These methods allow one to compute and 

use the magnitude and phase response adjustments needed to the input command for each 

frequency independently while the systems are running.  

The later part of this dissertation focuses on designing RC compensators for non-minimum 

phase systems, having a zero or zeros in the right half of the complex plane for the continuous time 

system. Such systems exhibit unusual behavior in response to unit step inputs, with the output 

initially going in the opposite direction from the step before moving in the commanded direction. 

The zero is usually mapped to discrete time on positive real axis close to +1 creating behavior 

similar to pole-zero cancellation at DC and low frequencies. The behavior causes slow learning at 

DC and low frequencies for existing RC design methods. Chapter 4 investigates the performance 

of existing approaches on non-minimum phase systems and proposes the optimization criterion to 

minimize the maximum of the error over frequencies in order to push the maximum value down. 

The Min-Max design approach improves the originally poor performance at low frequencies at the 

expense of slower learning at higher frequencies. A Taylor series expansion design method can 
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sometimes compete, but it needs an extra IIR part to exactly cancel poles and zeros inside the unit 

circle. The Min-Max can be designed directly from frequency response data. The Min-Max method 

is not to be preferred for minimum phase systems, but it is effective in most non-minimum phase 

systems because it directly addresses the basic pole-zero cancellation difficulty. To design RC 

controllers for this cost function, the problem statement is reformulated as a QCQP problem and 

solved by using CVX package. 

The use of the Min-Max cost design method for non-minimum phase systems is furthered 

studied in Chapter 5. Although the method can effectively push down the maximum error, the 

method requires model accuracy up to high frequencies.  In real world applications, signals at high 

frequencies can be decaying into the noise level due to their low magnitude frequency response. 

When one designs using frequency response obtained directly from long data runs with a rich 

input, the influence of noise on the model at high frequency, creates unwanted sensitivity to noise 

at high frequencies with the Min-Max design. Normally, the quadratic cost criterion results in slow 

learning at high frequencies, and this improves the robustness to model error at high frequencies.  

This chapter develops two methods to address the poor behavior of Min-Max at high frequencies. 

The first uses the Min-Max objective at low frequencies and transitions to the  quadratic cost at 

high frequencies. This combination has the advantage of Min-Max that it addresses poor learning 

at low frequencies, and the advantage of the quadratic penalty function for improved robustness at 

high frequencies. A zero-phase low-pass filter to cutoff the learning at high frequencies can still 

be needed due to high frequency model error or actuator limitation. The other approach considered 

in Chapter 5 is to use the Min-Max objective up to some frequencies and apply a learning cutoff 

to frequencies above this frequency. Such an approach will not be able to address as large a 

frequency range, but it is seen to be simple and effective. The methods studied in Chapters 4 and 
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5 aimed specifically for good performance for non-minimum phase systems, are usually not to be 

preferred when designing RC for minimum phase systems.  


