
Statistical Machine Learning Methods for
High-dimensional Neural Population Data

Analysis

Yuanjun Gao

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017

c© 2017

Yuanjun Gao

All Rights Reserved

ABSTRACT

Statistical Machine Learning Methods for High-dimensional Neural

Population Data Analysis

Yuanjun Gao

Advances in techniques have been producing increasingly complex neural record-

ings, posing significant challenges for data analysis. This thesis discusses novel sta-

tistical methods for analyzing high-dimensional neural data. Part one discusses two

extensions of state space models tailored to neural data analysis. First, we propose

using a flexible count data distribution family in the observation model to faithfully

capture over-dispersion and under-dispersion of the neural observations. Second, we

incorporate nonlinear observation models into state space models to improve the flex-

ibility of the model and get a more concise representation of the data. For both

extensions, novel variational inference techniques are developed for model fitting, and

simulated and real experiments show the advantages of our extensions. Part two dis-

cusses a fast region of interest (ROI) detection method for large-scale calcium imaging

data based on structured matrix factorization. Part three discusses a method for sam-

pling from a maximum entropy distribution with complicated constraints, which is

useful for hypothesis testing for neural data analysis and many other applications

related to maximum entropy formulation. We conclude the thesis with discussions

and future works.

Table of Contents

List of Figures iv

List of Tables viii

1 Introduction 1

1.1 Neuroscience and statistics . 2

1.2 Dimensionality reduction for neural data 3

1.3 Latent variable models and state space models 5

1.4 Statistical inference for latent variable models 7

1.5 Overview of the thesis . 14

I Neural Population Data Analysis with Latent Variable

Models 16

2 Generalized Count Linear Dynamical System 17

2.1 Introduction . 18

2.2 Generalized count distributions . 20

2.3 Generalized count linear dynamical system model formulation 23

2.4 Inference and learning in GCLDS . 25

2.4.1 E-step: variational inference with dual optimization 26

i

2.4.2 M-step: analytical form . 28

2.4.3 Practical concerns . 29

2.4.4 Dual optimization for E-step 30

2.5 Model evaluation by leave-one-neuron-out error 34

2.6 Experiments . 35

2.6.1 Simulation examples . 35

2.6.2 Real data analysis . 36

2.7 Discussion . 41

3 Linear Dynamical Neural Population Models Through Nonlinear

Embeddings 43

3.1 Introduction . 44

3.2 Notation and overview of neural data 45

3.3 Latent LDS neural population models with a linear rate function . . . 46

3.4 Nonlinear latent variable models for neural populations 48

3.5 Inference by Auto-encoding variational Bayes 49

3.6 Experiments . 53

3.6.1 Simulation examples . 54

3.6.2 Real data analysis . 57

3.7 Discussion . 62

II Region of Interest Detection for Calcium Imaging Data 64

4 Region of Interest Detection for Calcium Imaging Data 65

4.1 Introduction . 66

4.2 Algorithm . 68

4.2.1 Problem formulation . 68

ii

4.2.2 Greedy algorithm . 70

4.2.3 Shape fine-tuning . 72

4.2.4 Other details . 74

4.3 Experiments . 75

4.3.1 Simulation examples . 75

4.3.2 Real data analysis . 76

4.4 Discussion . 80

III Maximum Entropy Flow Networks 81

5 Maximum Entropy Flow Network 82

5.1 Introduction . 83

5.2 Background . 86

5.2.1 Maximum entropy modeling and Gibbs distribution 86

5.2.2 Normalizing flows . 87

5.3 Maximum entropy flow network (MEFN) algorithm 88

5.3.1 Formulation . 88

5.3.2 Algorithm . 89

5.4 Experiments . 91

5.4.1 A maximum entropy problem with known solution 91

5.4.2 Risk-neutral asset pricing . 94

5.4.3 Modeling images of textures 97

5.5 Discussion . 102

6 Conclusion and discussion 104

Bibliography 107

iii

List of Figures

1.1 Graphical model representation of state space model 6

2.1 Left panel : mean firing rate and variance of neurons in primate mo-

tor cortex during the peri-movement period of a reaching experiment

(see §2.6.2). The data exhibit under-dispersion, especially for high

firing-rate neurons. The two marked neurons will be analyzed in detail

in Figure 2.2. Right panel : the expectation and variance of the GC

distribution with different choices of the function g 22

2.2 Examples of fitting result for selected high-firing neurons. Each row

corresponds to one neuron as marked in left panel of Figure 2.1 – left

column: fitted g(·) using GCLDS and PLDS; middle and right column:

fitted mean and variance of PLDS and GCLDS. See text for details. . 38

2.3 Goodness-of-fit for monkey data during the reaching period – left panel :

percentage reduction of mean-squared-error (MSE) compared to the

baseline (homogeneous Poisson process); middle panel : percentage re-

duction of predictive negative log likelihood (NLL) compared to the

baseline; right panel : fitted variance of PLDS and GCLDS for all neu-

rons compared to the observed data. Each point gives the observed

and fitted variance of a single neuron, averaged across time. 39

iv

2.4 Goodness-of-fit for monkey data during the preparatory period – Left

panel: Temporal cross-covariance averaged over all 81 units during the

preparatory period, compared to the fitted cross-covariance by PLDS

and GCLDS-full. Right panel : fitted variance of PLDS and GCLDS-

full for all neurons compared to the observed data (averaged across

time). 41

3.1 Sample simulation result with “grid cell” type response. Left panel:

Fitted latent variable compared to true latent variable; Upper right

panel: Fitted rate compared to the true rate for 4 sample neurons;

Bottom right panel: Inferred trace of the latent variable compared to

true latent trace. Note that the latent trajectory for a 1-dimensional

latent variable is identifiable up to multiplicative constant, here we

scale the latent variables to lie between 0 and 1. 57

3.2 Results for fits to Macaque V1 data (single orientation) (a) Compar-

ing true firing rate (black line) with fitted rate from PLDS (blue) and

PfLDS (red) with 2 dimensional latent space for selected neurons (ori-

entation 0◦, averaged across all 120 training trials); (b)(c) 2D latent-

space embeddings of 10 sample training trials, color denotes phase of

the grating stimulus (orientation 0◦); (d)(e) Predictive mean square

error (MSE) and predictive negative log likelihood (NLL) reduction

with one-step-ahead prediction, compared to a baseline model (homo-

geneous Poisson process). Results are averaged across 12 orientations.

. 59

v

3.3 Macaque V1 data fitting result (full data) (a)(b) Predictive MSE and

NLL reduction. (c) 3D embedding of the mean latent trajectory of

the neuron activity during 300ms to 500ms after stimulus onset across

grating orientations 0◦, 5◦, ..., 175◦, here we use PfLDS with 4 latent

dimensions and then project the result on the first 3 principal compo-

nents. 60

3.4 Macaque center-out reaching data analysis: (a) 5 sample reaching tra-

jectory for each of the 14 target locations. Directions are coded by

different color, and distances are coded by different marker size; (b)(c)

2D embeddings of neuron activity extracted by PLDS and PfLDS,

circles represent 50ms before movement onset and triangles represent

340ms after movement onset. Here 5 training reaches for each tar-

get location are plotted; (d) Predictive negative log likelihood (NLL)

reduction with one-step-ahead prediction. 61

4.1 Simulated calcium data. 77

4.2 Real calcium data. 78

4.3 ROI detection for the full Misha data, each sub-figure represents a z-slice. 79

vi

5.1 Example results from the ME problem with known Dirichlet ground

truth. Left panel : The normal density p0 (purple) and iid samples from

p0 (red points). Middle panel : The MEFN transforms p0 to the desired

maximum entropy distribution pφ∗ on the simplex (calculated density

pφ∗ in purple). Truly iid samples are easily drawn from pφ∗ (red points)

by drawing from p0 and mapping those points through fφ∗ . Shown in

the middle panel are the same points in the top left panel mapped

through fφ∗ . Samples corresponding to training the same network as

MEFN to simply match the specified moments (ignoring entropy) are

also shown (dark green points; see text). Right panel : The ground

truth (in this example, known to be Dirichlet) distribution in purple,

and iid samples from it in red. 93

5.2 Constructing risk-neutral measure from observed option price. Left

panel : fitted risk-neutral measure by Gibbs and MEFN method. Mid-

dle panel : Q-Q plot for the quantiles from the distributions on the left

panel. Right panel : observed and fitted option price for different strikes. 96

5.3 Analysis of texture synthesis experiment. See text for description. . . 99

5.4 Random samples (first 5 columns) and the mean image of 20 random

samples (last column) from texture net (upper row) and MEFN (bot-

tom row) for the stone example. 100

5.5 Brick example result. First row gives the raw input. The bottom 3

rows give 5 random samples (first 5 columns) and the mean image of

20 random samples (last column) from texture net (row 2) and MEFN

with large initial texture cost penalty (row 3) and smaller initial texture

cost penalty (bottom row) for the brick example. 101

vii

List of Tables

2.1 Special cases of GCGLM. For all models, the GCGLM parametrization

for θ is only associated with the slope θ(x) = βx, and the intercept

α is absorbed into the g(·) function. In all cases we have g(k) = −∞

outside the stated support of the distribution. Whenever unspecified,

the support of the distribution and the domain of the g(·) function are

non-negative integers N. 24

2.2 Simulation result for PLDS and GCLDS. Showing the leave-one-neuron-

out mean square error (MSE) and negative log likelihood (NLL) for

PLDS and GCLDS, as well as the improvement of GCLDS over PLDS.

Results are averaged across 50 independent repeats with standard error

showing in parentheses. 37

3.1 Simulation results with a linear observation model: Each column con-

tains results for a distinct experiment. For each generative model and

inference algorithm (one per row), we report the one-step-ahead pre-

dictive log likelihood (PLL) and computation time (in minutes) of the

model fit to each dataset. 56

5.1 Quantitative measure of image diversity using 20 randomly sampled

images . 100

viii

Acknowledgments

Five years ago, when I first arrived at New York, I expected that the following few

years can be tough. What I did not expect is how this five years would expand my

mind so much and make me such a different person. This thesis would be impossible

without the support and help of many people from Columbia statistics department,

my friends and my family.

First I would like to thank my committee members. My academic advisor Dr.

John Cunningham, who is organized, energetic, supportive and caring, provided me

with valuable guidance and insights. It is his constant encouragement that makes me

productive enough to finish several nice projects during my Ph.D. study. Dr. Liam

Paninski aroused my interest in computational neuroscience by showing fascinating

animations of decoding the primate motor cortex in a student seminar. I explored

many interesting projects with him and was constantly amazed by his knowledge and

depth of thinking. Dr. Tian Zheng was my mentor in my first year of PhD study.

She gave me confidence in studying and researching, developed my interest in applied

statistics and introduced me to many interesting research areas. I would also like to

thank Drs. John Paisley and Mark Churchland for being in my committee and for

careful reading of my thesis manuscript.

During my study in Columbia, I had the opportunity to participate a few other

interesting research projects which I was not able to put in this thesis. I thank Drs.

Andrew Gelman, Rahul Mazumder, Matthew Connelly, Shawn Simpson and Lauren

ix

Hannah for bringing me with nice projects that expanded my horizon and developed

my skills significantly.

I was very lucky to be in an active research group. I would like to thank Evan

Archer, Daniel Soudry, Josh Merel, Eftychios Pnevmatikakis, Ari Pakman, Uygar

Sumbul, Gabriel Loaiza-Ganem, Lars Buesing, Xuexin Wei, Christian Andersson

Naesseth, Scott Linderman and David Pfau, among others, for the helpful discus-

sion and collaboration. I appreciate the opportunities to learn from them.

I would like to thank many researchers for providing data for the the research.

Krishna V. Shenoy, Byron Yu, Gopal Santhanam and Stephen Ryu provided the

macaque motor cortical data. Arnulf Graf, Adam Kohn, Tony Movshon, and Mehrdad

Jazayeri provided the macaque V1 data. Misha Ahrens provided the zebrafish data.

I would like to thank my friends Shuaiwen Wang, Haolei Weng, Yuting Ma, Lu

Meng, Jingjing Zou, Lisha Qiu, Yixin Wang, Yilong Zhang, Qiao Feng, Tianchen

Qian, Guohui Guan, Tiantian Nie, Liang Liang, Mingsi Long, Xufei Wang, Shiman

Ding and Yinting Hu, among others, for cheering me up when I was down, and for

the helpful and enlightening discussions about both research and life.

Finally I would like to thank my parents, Ying Li and Zhi Gao, who made me a

smart and hard-working kid and constantly supported me during my Ph.D. study. I

owe so much to them for their love and support.

x

To My Parents

xi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Until recently, neural data analysis techniques focused primarily on the analysis of

single neurons and small populations. However, new experimental techniques have

enabled the simultaneous recording of ever-larger neural populations [Robinson et al.,

2012; Ahrens and Keller, 2013; Prevedel et al., 2014]. The abundance of data provides

both opportunities and challenges for neural data analysis, and has spurred a search

for new statistical methods [Stevenson and Kording, 2011; Cunningham and Yu, 2014;

Gao and Ganguli, 2015] . Indeed, statistical models have provided principled ways

to performing signal processing, exploratory analysis, statistical modeling, scientific

hypothesis testing, etc. This thesis introduces a set of methods related to high-

dimensional neural data analysis.

The rest of this chapter provides high level motivation and background for the

thesis, and provides an overview for the rest of the thesis.

CHAPTER 1. INTRODUCTION 2

1.1 Neuroscience and statistics

Neurons communicate by generating temporally fast (∼ 1ms) electrical signals called

action potentials, or “spikes”. The temporal sequence of action potentials generated

by a single neuron is called its “spike train”, which can be represented by a one-

dimensional point process. The spike trains encode external stimuli and intentions,

allowing humans or animals to understand complex environments and perform com-

plicated tasks. Understanding how the billions of neurons in the brain respond to

external stimulus, process and transmit information, and control the behavior is an

important question. And statistics has been playing a significant role in the neu-

roscience community in many aspects [Kass et al., 2005; Paninski et al., 2007]. We

give a brief overview for the main contributions of statistical methods in neuroscience

below.

To begin with, converting noisy observations from various neural recording tech-

niques into clean signal requires specific statistical models. For electrophysiological

data, clustering, mixture models and factor analysis techniques have been extensively

applied to the detection and classification of spikes from recorded voltage signals,

also known as “spike sorting”. See Lewicki [1998] for a review. For calcium imaging

data, many statistical methods exist for region of interest detection and calcium de-

convolution [Mukamel et al., 2009; Vogelstein et al., 2009; Pnevmatikakis et al., 2016;

Friedrich and Paninski, 2016].

Many statistical methods are also highly needed for exploring and understanding

the structure of the neural data. Early attempts include using summary statistics

such as peristimulus time histogram (PSTH) [Gerstein and Kiang, 1960] and spike

triggered average [de Boer and Kuyper, 1968; Theunissen et al., 2001] to visualize

single neuron activities given certain stimuli. Supervised learning techniques such as

CHAPTER 1. INTRODUCTION 3

generalized linear models (GLM) [Paninski, 2004; Truccolo et al., 2005; Stevenson et

al., 2008] provide statistical formulations that link the spiking data to stimuli, spik-

ing history and interneuron interactions. Unsupervised learning techniques such as

principle component analysis (PCA) [Churchland et al., 2012] and state space models

[Lawhern et al., 2010; Macke et al., 2011] provide useful data tools for visualizing and

understanding high-dimensional neural data.

Scientific hypotheses of neural data are formulated and tested under statistical

frameworks, providing better understanding of the neural data structure [Olshausen

and Field, 1997; Schneidman et al., 2006; Churchland et al., 2012]. Applications

such as neural prosthetics [Shenoy et al., 2011; Gilja et al., 2012] and optimal exper-

iment design [Nelken et al., 1994; Lewi et al., 2011] have also benefited greatly from

statistical methods.

Recent developments in technology enabled simultaneous recordings of neuron

populations, which can be represented as a high-dimensional time series. Statistical

methods that capturing the key structure of the high-dimensional neural activities

allow better understanding of the underlying mechanism of neural activities and are

becoming more important in computational neuroscience [Cunningham and Yu, 2014].

Below we introduce dimensionality reduction techniques.

1.2 Dimensionality reduction for neural data

Many studies and theories in neuroscience posit that high-dimensional neural spike

trains are a noisy observation of some underlying, low-dimensional, and time-varying

signal of interest. A line of research has focused on developing dimensionality re-

duction techniques for neural data that captures the key structure of the data. As

discussed in Cunningham and Yu [2014], dimensionality reduction techniques enable

CHAPTER 1. INTRODUCTION 4

better data visualization for the neural activity, facilitate single trial data analysis,

and shed light on the structure of neural population response.

Denote X ∈ RT×n as the n-dimensional data with T observations. Dimensionality

reduction methods aim to identify a reduced version of the data Z ∈ RT×m (m� n)

that captures the key features of the data. Linear dimensionality reduction methods,

such as principal component analysis (PCA) and factor analysis (FA), in general takes

the form of matrix factorization, where we aim at approximating the data by a low

rank matrix

X ≈ Z · C, (1.1)

where C ∈ Rm×n links the reduced data to the full data. Nonlinear dimensionality

reduction methods usually try to identify a nonlinear mapping that relates the reduced

data Z with the full dataX [Roweis and Saul, 2000; Tenenbaum et al., 2000; Lawrence,

2004].

In the spike train setting, X represents (maybe a transformed or smoothed version

of) the spike counts of n neurons in T time bins. Matrix Z represents a learnt low-

dimensional latent intensity that captures the main variability of the data and can be

used to provide visualization for neuron activities. Matrix C describes how the low-

dimensional intensity is linked to the observation and can be used to summarize the

behavior of each neuron. In calcium imaging setting, X represents the n-dimensional

vectorized image recorded in T time bins, which can be decomposed as a product of

spatial components Z representing shape of neurons (or other regions of interest) and

temporal components C representing the activity of each neuron.

Building low-dimensional models for neural spike train data setting is complicated

by the discrete observation and the temporal structure. The spike count data does

not conform to the commonly used Gaussian assumption and requires count distribu-

CHAPTER 1. INTRODUCTION 5

tion families (Poisson distribution, for example) to describe its distribution [Paninski,

2004; Truccolo et al., 2005; Macke et al., 2011; Pfau et al., 2013]. The spike train

also exhibits rich temporal dynamics, and incorporating the temporal structure in the

model can help de-noise the data and more faithfully capture the structure [Yu et al.,

2009; Macke et al., 2011]. Among the various formulations for dimensionality reduc-

tion, state space models, or more generally latent variable models, provide a popular

framework for neural data modeling due to its generative nature and flexibility. We

briefly introduce the main idea of this framework in the next section.

1.3 Latent variable models and state space models

Latent variable models are a class of probabilistic models that models the generative

process of the observation by hidden variables that are linked to the observation. La-

tent variable modeling provides a natural and principled way of modeling the structure

of the data that are affected by unseen hidden variables, and is useful for summarizing

the data, handling missing data, making predictions and so on.

Formally, latent variable models assume that the observation x is affected by

unobserved variables z and propose a probability distribution family pθ(x, z) param-

eterized by parameter θ. Model fitting involves identifying optimal model parameters

θ as well as the latent variables z, both of which are of interest in data analysis.

Latent variable modeling is natural in neural data analysis since the observed neu-

ral activities are highly coupled with unobserved neurons, intention, behavior and

external stimuli [Sahani, 1999; Kulkarni and Paninski, 2007; Macke et al., 2011].

State space model is a class of latent variable models that models time series

data x = {x1, ...,xT} (xt ∈ Rn for t = 1, ..., T) by assuming a hidden time series

z = {z1, ..., zT} (zt ∈ Rm for t = 1, ..., T) with a Markovian structure that are

CHAPTER 1. INTRODUCTION 6

zt−1 zt zt+1

xt−1 xt xt+1

· · · · · ·

Figure 1.1: Graphical model representation of state space model

coupled with the observation. The generative model is specified by

• initial latent state distribution: p(z1),

• dynamic model specifying the evolution of the latent states: p(zt+1|zt) for t =

1, ..., T − 1,

• observation model p(xt|zt) for t = 1, ..., T .

Figure 1.1 gives the graphical model representation of state space models. The joint

distribution is therefore of the form

p(x, z) = p(z1)
T−1∏
t=1

p(zt+1|zt)
T∏
t=1

p(xt|zt). (1.2)

The latent variables encode a rich dependency structure through both the dynamic

model and the observation model. And the Markovian structure of the latent variable

helps make the model interpretable and the inference tractable (in certain cases).

Those advantages lead to natural applications of state space model in neural data

[Brown et al., 2001; Paninski et al., 2010; Macke et al., 2011]. The model is especially

related to the dynamical view of the motor cortex, which states that neural activities

in motor system reflect both the outputs to drive the motion and the internal processes

that helps to generate motion but is poorly described by the motion [Churchland et

al., 2012; Shenoy et al., 2013]. This dynamical system view has been essential for

CHAPTER 1. INTRODUCTION 7

building robust algorithms for neural prosthetics [Shenoy et al., 2011; Gilja et al.,

2012; Kao et al., 2015]

The most commonly used state space model assumes a linear Gaussian structure,

p(z1) ∼N (µ1, Q1), (1.3)

p(zt+1|zt) ∼N (Azt, Q), (1.4)

p(xt|zt) ∼N (Czt,Σ), (1.5)

where µ1 ∈ Rm and Q1 ∈ Rm×m give the expectation and covariance of the initial

states, A ∈ Rm×m models the relation of the states of two nearby time points, and Q ∈

Rm×m is the noise covariance for the latent states. C ∈ Rn×m links the observation

with the states and Σ is the covariance of the observation noise. Under the linear

Gaussian assumption, inference is fairly easy since both the posterior p(z|x) and the

likelihood
´
p(x, z)dz are analytical. However, in real data analysis both the linearity

assumption and the Gaussian assumption can break, which calls for more general

assumptions that lose the tractability. Below we discuss the inference techniques for

latent variable models.

1.4 Statistical inference for latent variable models

A common model fitting procedure for statistical models is maximum likelihood es-

timation (MLE), which optimizes the log likelihood function

θ̂ = arg max l(θ), (1.6)

CHAPTER 1. INTRODUCTION 8

where the log likelihood function l(θ) is the marginal log density of observation x

given parameter θ

l(θ) = log pθ(x) = log

ˆ
pθ(x, z)dz. (1.7)

Then the latent variable can be estimated by the posterior distribution of z given

observations and model parameters

pθ̂(z|x) = pθ̂(x, z)/

ˆ
pθ̂(x, z)dz. (1.8)

A key challenge in model fitting for latent variable models is that in most cases com-

puting the log likelihood function (Equation (1.7)) and posterior (Equation (1.8))

involves an intractable integration. The difficulty hinders the application of compli-

cated latent variable models that represent the data more faithfully.

The classic and powerful way of fitting latent variable models is Expectation-

Maximization (EM) algorithm proposed in Dempster et al. [1977]. EM algorithm

tries to get the (local) maximum likelihood estimator by iteratively optimizing the

posterior distribution (E-step) and the model parameters (M-step). Specifically, for

iteration k, given the current parameter estimator θ(k), EM algorithm proceeds by

• E-step: getting the posterior distribution given the current parameter estima-

tion qk(z) = pθ(k)(z|x) and compute the expected value of log-likelihood given

the posterior distribution

Q(θ|θ(k)) = Eqk(z) log pθ(x, z); (1.9)

• M-step: maximizing this conditional expectation

θ(k+1) = arg max
θ
Q(θ|θ(k)). (1.10)

CHAPTER 1. INTRODUCTION 9

And stop until certain convergence criteria are met.

By decomposing the complicated likelihood term in Equation (1.7) into two eas-

ier steps, EM algorithm facilitates the inference for a large class of latent variable

models. However, the tractability of EM algorithm depends on the tractability of

Q(θ|θ̂). When model lacks conjugacy, it is usually hard to compute both the pos-

terior distribution pθ(k)(z|x) and Q(θ|θ(k)). Extensions of EM algorithm have been

proposed that approximates E-step by Laplace approximation [Shun and McCullage,

1995] or Markov chain Monte Carlo (MCMC) algorithms [Wei and Tanner, 1990].

Laplace approximation approximates the posterior by a multivariate Gaussian dis-

tribution with mean as the mode of the log likelihood and variance as the inverse

Hessian of the log density at mode, which can be inaccurate when true posterior is

skewed or has a heavy tail. Also, integrating the log likelihood with respect to a

Gaussian distribution can still be hard for complicated models. MCMC algorithms

construct Markov chains whose stationary distribution is the posterior distribution,

and use a Monte Carlo estimator to estimate Q(θ|θ̂). The method is generic but can

be computationally intensive when latent variable is of high dimension or evaluating

log likelihood is hard. It is also hard to diagnose the mixing of the chain.

Variational inference is a flexible inference framework that alleviates these issues

[Wainwright et al., 2008]. The idea is to approximate the posterior distribution by

a tractable distribution family q(z) ∈ Q called variational distribution family, and

optimize an objective function that is a lower bound of the log-likelihood called evi-

dence lower bound (ELBO), which is a function of both the variational distribution

q and the model parameter θ. The vanilla variational inference tries to maximize the

following ELBO,

ELBO(q, θ) = Eq[log p(x, z)−log q(z)] = log pθ(x)−KL(q(z)||pθ(z|x)) ≤ l(θ), (1.11)

CHAPTER 1. INTRODUCTION 10

where KL(q(z)||pθ(z|x)) = Eq(z)[log q(z) − log pθ(z|x)], the KL-divergence between

q(z) and pθ(z|x), is the gap between ELBO and the log likelihood. If we allow Q to

be any arbitrary distribution, then the optimum will coincide with the true posterior,

in which case maximizing ELBO is equivalent to maximizing the likelihood.

One way of optimizing the ELBO is by (block) coordinate ascent, where q and

θ are optimized iteratively, leading to Variational Bayes Expectation Maximization

(VBEM) algorithm. Given the current parameter estimator θ(k) and posterior ap-

proximation q(k), VBEM algorithm proceeds by

• E-step: optimizing the ELBO with respect to q

q(k+1) = arg max
q∈Q

ELBO(q, θ(k)); (1.12)

• M-step: optimizing the ELBO with respect to θ

θ(k+1) = arg max
θ

ELBO(q(k+1), θ). (1.13)

Note that when Q is assumed to be all the distributions, we recover the classic EM al-

gorithm. Clever choice of Q is important for conducting variational inference. Larger

set of Q would allow for a more accurate approximation of the posterior, usually at

the expense of more computational burden. A common choice is to approximate pos-

terior by the family of all independent distributions, which is also called mean-field

approximation. For certain conjugate models, mean-field approximation can have

analytical solution [Wainwright et al., 2008]. Another common approximation is mul-

tivariate Gaussian distribution. An application and extension of VBEM is discussed

in chapter 2

The flexibility of variational inference has spurred a huge amount of interest in

CHAPTER 1. INTRODUCTION 11

the past few years. Efforts have been made to allow variational inference to handle

nonconjugacy [Emtiyaz Khan et al., 2013; Blei et al., 2012], scale to large dataset

by incorporating stochastic optimization ideas [Hoffman et al., 2013; Kingma and

Welling, 2013], allow for richer class of variational distribution family [Rezende and

Mohamed, 2015; Kingma et al., 2016], and explore variants of the ELBO formula-

tion [Burda et al., 2015; Li and Turner, 2016]. Here we introduce Auto-encoding

variational inference (AEVB) framework [Kingma and Welling, 2013; Rezende et al.,

2014; Titsias and Lázaro-Gredilla, 2014], a recently proposed variational inference

technique that is flexible and scalable.

Auto-encoding variational inference uses both a generative model (or the prob-

abilistic decoder) pθ(x, z) parameterized by θ, which models the generative process

of the data through latent variables, and a recognition model qφ(z|x) (or the proba-

bilistic encoder) parameterized by φ, which maps the observation to an approximate

posterior distribution of the latent variables. The inference procedure involves jointly

optimizing the parameters θ and φ by optimizing the ELBO.

max
θ,φ

ELBO(φ, θ), (1.14)

where

ELBO(φ, θ) = max
θ,φ

Eqφ(z|x) [log pθ(x, z)− log qφ(z|x)] . (1.15)

Two ideas makes AEVB attractive for large-scale data analysis with complicated

models. The first idea is amortized inference enabled by stochastic optimization.

Considering an example where the dataset x = {x(i) ∈ Rn}Ni=1 consists of N i.i.d.

continuous observation, we assume that each of the x(i) are related to a continuous

latent variable z(i) ∈ Rm following a prior distribution pθ(z(i)) with conditional dis-

CHAPTER 1. INTRODUCTION 12

tribution pθ(x
(i)|z(i)) (both pθ(z

(i)) and pθ(x
(i)|z(i)) are shared across i). The joint

distribution has the form

log pθ(x, z) =
N∑
i=1

log pθ(x
(i), z(i)) =

N∑
i=1

[
log pθ(z

(i)) + log pθ(x
(i)|z(i))

]
. (1.16)

AEVB parameterizes the posterior pθ(z(i)|x(i)) by mapping x(i) to a distribution of

z(i), resulting in a recognition model qφ(z(i)|x(i)). An example for the recognition

model would be a multivariate Gaussian distribution whose mean and variance are

functions of the observation x(i),

qφ(z(i)|x(i)) = N (µφ(x(i)),Σφ(x(i))). (1.17)

where µφ : Rn → Rm and Σφ : Rn → Rm×m can be neural networks with parameter

φ. In this case the ELBO can be decomposed into a summation of the ELBO for each

observation,

ELBO(φ, θ) =
N∑
i=1

ELBOi(φ, θ), (1.18)

where

ELBOi(φ, θ) = Eqφ(z(i)|x(i))

[
log pθ(x

(i), z(i))− log qφ(z(i)|x(i))
]
. (1.19)

This leads naturally to an unbiased approximation of the full ELBO using a sub-

sample of the data

ELBO(φ, θ) ≈ N

M

M∑
j=1

ELBOij(φ, θ), (1.20)

Where i1, ..., iM ∈ {1, ..., N} is a set of randomly selected index. Therefore, a gradient

of the sub-sampled version of the ELBO would also be an unbiased estimator of

CHAPTER 1. INTRODUCTION 13

the gradient of the full ELBO, leading naturally to the application of stochastic

optimization [Robbins and Monro, 1951; Zeiler, 2012; Kingma and Ba, 2014].

The second idea is the “reparameterization trick”, a generic way of getting an

unbiased gradient of ELBO. For all but the simplest cases, computing the gradient

of ELBO, which involves integrating over qφ, is intractable. While there exists a

large area of research on getting a low-variance Monte Carlo estimate of the gradient

[Burda et al., 2015; Ranganath et al., 2013], the reparameterization trick has been

popular due to its good empirical performance and ease of implementation. The

idea is to write z(i) as the transformation of an easy to sample distribution ε(i) ∼ qε

parameterized by φ and x(i), z(i) = gφ(ε(i);x(i)). Now ELBOi can be written as an

expectation over ε(i), which is independent of φ,

ELBOi = Eε(i)∼qε
[
log pθ(x

(i), gφ(ε(i);x(i)))− log qφ(gφ(ε(i);x(i))|x(i))
]

(1.21)

When optimizing ELBO with gradient methods, equation (1.21) allows an unbiased

estimator of the gradient by a Monte Carlo sample

∇ELBOi ≈
1

L

L∑
l=1

[
∇ log pθ(x

(i), gφ(ε(i,l);x(i)))−∇ log qφ(gφ(ε(i,l);x(i))|x(i))
]
, (1.22)

where ε(i,l) for l = 1, ..., L are samples from qε. When z is assumed to be multivari-

ate Gaussian (Equation (1.17)), a commonly used parameterization is gφ(ε;x(i)) =

µφ(x(i)) + Σ
1/2
φ (x(i))ε(i) where ε(i) follows an m-dimensional standard Gaussian, µφ :

Rn → Rm and Σ
1/2
φ : Rn → Rm×m are functions parameterized by φ. This gives

z(i) ∼ N
(
µφ,Σ

1/2
φ · (Σ

1/2
φ)T

)
.

Combining the reparameterization trick and the amortized inference idea, AEVB

provides a fast and scalable inference scheme. An application and extension of the

CHAPTER 1. INTRODUCTION 14

AEVB framework is discussed in chapter 3.

1.5 Overview of the thesis

After providing the general background and an introduction of the key models and

techniques, here we give an overview of the subsequent chapters of the thesis.

Chapter 2 incorporates a flexible count distribution family in state space models

that gives a more faithful representation of the data. The default distribution used for

modeling neural spike counts is Poisson distribution, which is simple but assumes the

strong assumption that the mean and variance of the counts are the same. Neural

data usually violates this assumption due to refractoriness, burstiness and so on.

We propose a general count distribution family for neural spike count modeling and

proposes variational Bayes expectation maximization method for model fitting. Our

model is able to capture both the under-dispersion and the over-dispersion of the the

spike counts and outperforms state space models with Poisson assumption.

Chapter 3 investigates the effect of nonlinear observation model in state space

models. Most of the existing dimension reduction techniques for neural data use

linear models or a limited form of nonlinearities, with the underlying assumption that

neural data lie in a low-dimensional linear sub-space. We show that the complicated

neural activities may be more concisely represented with nonlinear models. We extend

recently proposed auto-encoding variational Bayes method to develop scalable and

flexible inference method. Simulated and real data experiments are shown to illustrate

the applicability of the methods in neural data analysis.

Chapter 4 introduces a fast method for region-of-interest (ROI) detection for cal-

cium imaging data, a neuroimaging technique that enables whole brain recording on

the cellular level. We formulate the ROI detection problem as a structured matrix

CHAPTER 1. INTRODUCTION 15

factorization problem. The data is represented as a matrix, where each column repre-

sents an image at a specific time. The goal is to decompose the matrix into a product

of spatial components and temporal components. Each spatial component represents

the shape and location of a neuron, and each temporal component represents the

neural activity. We incorporate prior knowledge of neuron shape as constraints and

regularizations in the matrix factorization and develop a greedy method for matrix

factorization which provides fast result for ROI detection.

Chapter 5 develops a method for sampling from a complicated maximum entropy

distribution. Maximum entropy principle states that given our partial knowledge

of the data, represented as a set of expectation constraints, the distribution with

maximum entropy that satisfies the constraints is the least biased distribution that

represents our knowledge. The framework provides principled ways for formulating

statistical models and creating null distribution for hypothesis testing. Given com-

plicated constraints and high-dimensional space, it is highly non-trivial to obtain the

maximum entropy distribution. Here we propose approximating maximum entropy

distribution on continuous spaces by learning a smooth and invertible transformation

that transforms a simple distribution to the desired maximum entropy distribution.

We formulate the problem as a constrained optimization problem and propose stochas-

tic optimization methods for solving the problem. We illustrate the flexibility and

applicability of our method on simulated and real data examples.

Chapter 6 discuss methods proposed in the preceding chapters and the future

work of modern neural data analysis.

16

Part I

Neural Population Data Analysis

with Latent Variable Models

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 17

Chapter 2

Generalized Count Linear Dynamical

System

Latent factor models have been widely used to analyze simultaneous recordings of

spike trains from large, heterogeneous neural populations. These models assume

the signal of interest in the population is a low-dimensional latent intensity that

evolves over time, which is observed in high dimension via noisy point-process obser-

vations. These techniques have been well used to capture neural correlations across

a population and to provide a smooth, denoised, and concise representation of high-

dimensional spiking data. One limitation of many current models is that the obser-

vation model is assumed to be Poisson, which lacks the flexibility to capture under-

and over-dispersion that is common in recorded neural data, thereby introducing bias

into estimates of covariance. Here we develop the generalized count linear dynamical

system, which relaxes the Poisson assumption by using a more general exponential

family for count data. In addition to containing Poisson, Bernoulli, negative binomial,

and other common count distributions as special cases, we show that this model can

be tractably learned by extending recent advances in variational inference techniques.

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 18

We apply our model to data from primate motor cortex and demonstrate performance

improvements over state-of-the-art methods, both in capturing the variance structure

of the data and in held-out prediction.

This work, which was published as Gao et al. [2015], was jointly done with Lars

Buesing, John Cunningham and Krishna Shenoy. Code can be found at https:

//bitbucket.org/mackelab/pop_spike_dyn.

2.1 Introduction

Many studies and theories in neuroscience posit that high-dimensional populations

of neural spike trains are a noisy observation of some underlying, low-dimensional,

and time-varying signal of interest. As such, over the last decade researchers have

developed and used a number of methods for jointly analyzing populations of simul-

taneously recorded spike trains, and these techniques have become a critical part

of the neural data analysis toolkit [Cunningham and Yu, 2014]. In the supervised

setting, generalized linear models (GLM) have used stimuli and spiking history as

covariates driving the spiking of the neural population [Paninski, 2004; Truccolo et

al., 2005; Pillow et al., 2008; Stevenson et al., 2008; Vidne et al., 2012]. In the un-

supervised setting, latent variable models have been used to extract low-dimensional

hidden structure that captures the variability of the recorded data, both temporally

and across the population of neurons [Kulkarni and Paninski, 2007; Yu et al., 2009;

Macke et al., 2011; Petreska et al., 2011; Pfau et al., 2013; Buesing et al., 2014].

In both these settings, however, a limitation is that spike trains are typically

assumed to be conditionally Poisson, given the shared signal [Macke et al., 2011;

Pfau et al., 2013; Buesing et al., 2014]. The Poisson assumption, while offering al-

gorithmic conveniences in many cases, implies the property of equal dispersion: the

https://bitbucket.org/mackelab/pop_spike_dyn
https://bitbucket.org/mackelab/pop_spike_dyn

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 19

conditional mean and variance are equal. This well-known property is particularly

troublesome in the analysis of neural spike trains, which are commonly observed to be

either over-dispersed or under-dispersed (variance greater than or less than the mean)

[Churchland et al., 2010b]. No doubly stochastic process with a Poisson observation

can capture under-dispersion, and while such a model can capture over-dispersion, it

must do so at the cost of erroneously attributing variance to the latent signal, rather

than the observation process.

To allow for deviation from the Poisson assumption, some previous work has

instead modeled the data as Gaussian [Yu et al., 2009] or using more general renewal

process models [Cunningham et al., 2007; Adams et al., 2009; Koyama, 2015]; the

former of which does not match the count nature of the data and has been found

inferior [Macke et al., 2011], and the latter of which requires costly inference that

has not been extended to the population setting. More general distributions like the

negative binomial have been proposed [Goris et al., 2014; Scott and Pillow, 2012;

Linderman et al., 2015], but again these families do not generalize to cases of under-

dispersion. Furthermore, these more general distributions have not yet been applied

to the important setting of latent variable models.

Here we employ a count-valued exponential family distribution that addresses

these needs and includes much previous work as special cases. We call this distribution

the generalized count (GC) distribution [del Castillo and Pérez-Casany, 2005], and we

offer here four main contributions: (i) we introduce the GC distribution and derive

a variety of commonly used distributions that are special cases, using the GLM as a

motivating example (§2.2); (ii) we combine this observation likelihood with a latent

linear dynamical systems prior to form a GC linear dynamical system (GCLDS; §2.3);

(iii) we develop a variational learning algorithm by extending the current state-of-

the-art methods from Emtiyaz Khan et al. [2013] to the GCLDS setting (§2.4); and

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 20

(iv) we show in data from the primate motor cortex that the GCLDS model provides

superior predictive performance and in particular captures data covariance better

than Poisson models (§2.6.2).

2.2 Generalized count distributions

We define the generalized count distribution as the family of count-valued probability

distributions:

pGC(k; θ, g(·)) =
exp(θk + g(k))

k!M(θ, g(·))
, k ∈ N (2.1)

where θ ∈ R and the function g : N → R parameterizes the distribution, and

M(θ, g(·)) =
∑∞

k=0
exp(θk+g(k))

k!
is the normalizing constant. The primary virtue of the

GC family is that it recovers all common count-valued distributions as special cases

and naturally parameterizes many common supervised and unsupervised models (as

will be shown); for example, the function g(k) = 0 implies a Poisson distribution with

rate parameter λ = exp{θ}. Generalizations of the Poisson distribution have been

of interest since at least Rao [1965], and the paper del Castillo and Pérez-Casany

[2005] introduced the GC family and proved two additional properties: first, that the

expectation of any GC distribution is monotonically increasing in θ, for a fixed g(k);

and second – and perhaps most relevant to this study – concave (convex) functions

g(·) imply under-dispersed (over-dispersed) GC distributions. Furthermore, often de-

sired features like zero truncation or zero inflation [Lambert, 1992; Singh, 1978] can

also be naturally incorporated by modifying the g(0) value. Thus, with θ controlling

the (log) rate of the distribution and g(·) controlling the “shape” of the distribu-

tion, the GC family provides a rich model class for capturing the spiking statistics

of neural data. Other discrete distribution families do exist, such as the Conway-

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 21

Maxwell-Poisson distribution [Sellers and Shmueli, 2010] and ordered logistic/probit

regression [Ananth and Kleinbaum, 1997], but the GC family offers a rich exponential

family, which makes computation somewhat easier and allows the g(·) functions to

be interpretable.

Figure 2.1 demonstrates the relevance of modeling dispersion in neural data anal-

ysis. The left panel shows a scatterplot where each point is an individual neuron in a

recorded population of neurons from primate motor cortex (experimental details will

be described in §2.6.2). Plotted are the mean and variance of spiking activity of each

neuron; activity is considered in 20ms bins. For reference, the equi-dispersion line

implied by a homogeneous Poisson process is plotted in red, and note further that all

doubly stochastic Poisson models would have an implied dispersion above this Poisson

line. These data clearly demonstrate meaningful under-dispersion, underscoring the

need for the present advance. The right panel demonstrates the appropriateness of

the GC model class, showing that a convex/linear/concave function g(k) will produce

the expected over/equal/under-dispersion. Given the left panel, we expect under-

dispersed GC distributions to be most relevant, but indeed many neural datasets

also demonstrate over and equi-dispersion [Churchland et al., 2010b], highlighting

the need for a flexible observation family.

To illustrate the generality of the GC family and to lay the foundation for our

unsupervised learning approach, we consider briefly the case of supervised learning

of neural spike train data, where generalized linear models (GLM) have been used

extensively [Pillow et al., 2008; Paninski et al., 2007; Scott and Pillow, 2012]. We

define GCGLM as that which models a single neuron with count data xi ∈ N, and

associated covariates zi ∈ Rp(i = 1, ..., n) as

xi ∼ GC(θ(zi), g(·)), where θ(zi) = ziβ. (2.2)

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 22

0 0.5 1 1.5 2
0

0.5

1

1.5

2

neuron 1

neuron 2

Mean firing rate per time bin (20ms)

V
ar

ia
nc

e

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

Expectation

V
ar

ia
nc

e

Convex g
Linear g
Concave g

Figure 2.1: Left panel : mean firing rate and variance of neurons in primate motor
cortex during the peri-movement period of a reaching experiment (see §2.6.2). The
data exhibit under-dispersion, especially for high firing-rate neurons. The two marked
neurons will be analyzed in detail in Figure 2.2. Right panel : the expectation and
variance of the GC distribution with different choices of the function g

Here GC(θ, g(·)) denotes a random variable distributed according to (2.1), β ∈ Rp

are the regression coefficients. This GCGLM model is highly general. Table 1 shows

that many of the commonly used count-data models are special cases of GCGLM,

by restricting the g(·) function to have certain parametric form. In addition to this

convenient generality, one benefit of our parametrization of the GC model is that the

curvature of g(·) directly measures the extent to which the data deviate from the

Poisson assumption, allowing us to meaningfully interrogate the form of g(·). Note

that (2.2) has no intercept term because it can be absorbed in the g(·) function as a

linear term αk (see Table 2.1).

Unlike previous GC work del Castillo and Pérez-Casany [2005], our parameteri-

zation implies that maximum likelihood parameter estimation (MLE) is a tractable

convex program, which can be seen by considering:

(β̂, ĝ(·)) = arg max
(β,g(·))

n∑
i=1

log p(xi) = arg max
(β,g(·))

n∑
i=1

[(ziβ)xi + g(xi)− logM(ziβ, g(·))] .

(2.3)

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 23

First note that, although we have to optimize over a function g(·) that is defined on

all non-negative integers, we can exploit the empirical support of the distribution to

produce a finite optimization problem. Namely, for any k∗ that is not achieved by

any data point xi (i.e., the count #{i|xi = k∗} = 0), the MLE for g(k∗) must be −∞,

and thus we only need to optimize g(k) for k that have empirical support in the data.

Thus g(k) is a finite dimensional vector. To avoid the potential overfitting caused by

truncation of gi(·) beyond the empirical support of the data, we can enforce a large

(finite) support and impose a quadratic penalty on the second difference of g(.), to

encourage linearity in g(·) (which corresponds to a Poisson distribution). Second, note

that we can fix g(0) = 0 without loss of generality, which ensures model identifiability.

With these constraints, the remaining g(k) values can be fit as free parameters or as

convex-constrained (a set of linear inequalities on g(k); similarly for concave case).

Finally, problem convexity is ensured as all terms are either linear or linear within

the log-sum-exp function M(·), leading to fast optimization algorithms [Boyd and

Vandenberghe, 2009].

2.3 Generalized count linear dynamical system model

formulation

With the GC distribution in hand, we now turn to the unsupervised setting, namely

coupling the GC observation model with a latent, low-dimensional dynamical system.

Our model is a generalization of linear dynamical systems with Poisson likelihoods

(PLDS), which have been extensively used for analysis of populations of neural spike

trains [Macke et al., 2011; Buesing et al., 2014, 2012, 2015]. Denoting xrti as the

observed spike-count of neuron i ∈ {1, ..., N} at time t ∈ {1, ..., T} on experimental

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 24

Table 2.1: Special cases of GCGLM. For all models, the GCGLM parametrization for
θ is only associated with the slope θ(x) = βx, and the intercept α is absorbed into
the g(·) function. In all cases we have g(k) = −∞ outside the stated support of the
distribution. Whenever unspecified, the support of the distribution and the domain
of the g(·) function are non-negative integers N.

Model Name Typical Parameterization GCGLM Parametrization
Logistic regression (e.g.
Ananth and Kleinbaum
[1997])

P (x = k) =
exp (k(α+ zβ))

1 + exp(α+ xβ)
g(k) = αk; k = 0, 1

Poisson regression (e.g., Pil-
low et al. [2008]; Paninski et
al. [2007])

P (x = k) =
λk

k!
exp(−λ);

λ =exp(α+ zβ)

g(k) = αk

Adjacent category regression
(e.g., Ananth and Kleinbaum
[1997])

P (x = k + 1)

P (x = k)
= exp(αk + zβ)

g(k) =

k∑
i=1

(αi−1 + log i);

k =0, 1, ...,K

Negative binomial regression
(e.g., Scott and Pillow [2012];
Linderman et al. [2015])

P (x = k) =
(k + r − 1)!

k!(r − 1)!
(1− p)rpk

p =exp(α+ zβ)

g(k) =αk + log (k + r − 1)!

COM-Poisson regression
(e.g., Sellers and Shmueli
[2010])

P (x = k) =
λk

(k!)ν
/

+∞∑
j=1

λj

(j!)ν

λ =exp(α+ zβ)

g(k) = αk + (1− ν) log k!

trial r ∈ {1, ..., R}, the PLDS assumes that the spike activity of neurons is a noisy

Poisson observation of an underlying low-dimensional latent state zrt ∈ Rp,(where

p� N), such that:

xrti|zrt ∼ Poisson
(
exp

{
c>i zrt + di

})
. (2.4)

Here C =

[
c1 ... cN

]>
∈ RN×p is the factor loading matrix mapping the latent

state zrt to a log rate, with time and trial invariant baseline log rate d ∈ RN . Thus

the vector Czrt + d denotes the vector of log rates for trial r and time t. Critically,

the latent state zrt can be interpreted as the underlying signal of interest that acts

as the “common input signal” to all neurons, which is modeled a priori as a linear

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 25

Gaussian dynamical system (to capture temporal correlations):

zr1 ∼ N (µ1, Q1)

zr(t+1)|zrt ∼ N (Azrt + bt, Q),

(2.5)

where µ1 ∈ Rp and Q1 ∈ Rp×p parameterize the initial state. The transition matrix

A ∈ Rp×p and innovations covariance Q ∈ Rp×p parameterize the dynamical state

update. The optional term bt ∈ Rp allows the model to capture a time-varying firing

rate that is fixed across experimental trials. The PLDS has been widely used and has

been shown to outperform other models in terms of predictive performance, including

in particular the simpler Gaussian linear dynamical system [Macke et al., 2011].

The PLDS model is naturally extended to what we term the generalized count

linear dynamical system (GCLDS) by modifying equation (2.4) using a GC likelihood:

xrti|zrt ∼ GC
(
c>i zrt, gi(·)

)
. (2.6)

Where gi(·) is the g(·) function in (2.1) that models the dispersion for neuron i.

Similar to the GLM, for identifiability, the baseline rate parameter d is dropped in

(2.6) and we can fix g(0) = 0. As with the GCGLM, one can recover preexisting

models, such as an LDS with a Bernoulli observation, as special cases of GCLDS (see

Table 2.1).

2.4 Inference and learning in GCLDS

As is common in LDS models, we use expectation-maximization to learn parameters

Θ = {A, {bt}t, Q,Q1, µ1, {gi(·)}i, C} . Because the required expectations do not

admit a closed form as in previous similar work [Macke et al., 2011; Lawhern et al.,

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 26

2010], we required an additional approximation step, which we implemented via a

variational lower bound. Below we detailed the VBEM algorithm we use for the

model

2.4.1 E-step: variational inference with dual optimization

First, each E-step requires calculating p(zr|xr,Θ) for each trial r ∈ {1, ..., R} (the

conditional distribution of the latent trajectories zr = {zrt}1≤t≤T , given observations

xr = {xrti}1≤t≤T,1≤i≤N and parameter Θ). For ease of notation below we drop the

trial index r. These posterior distributions are intractable, and in the usual way we

make a normal approximation p(z|x,Θ) ≈ q(z) = N (m, V).

One simple way to achieve this is by Laplace approximation, i.e. we approximate

posterior mean by the mode of the joint distribution m = arg maxz p(z|x,Θ) and

approximate posterior variance by the negative inverse Hessian of the log-likelihood

evaluated at the mode V = −(∇2 log p(z|x,Θ))−1|z=m. Laplace approximation is

simple and fast, but does not have a theoretical guarantee and can be inaccurate.

Here we identify the optimal (m, V) by maximizing a variational Bayesian lower

bound (the so-called evidence lower bound or “ELBO”) over the variational parameters

m, V as:

L(m, V) = Eq(z)

[
log

(
p(z|Θ)

q(z)

)]
+ Eq(z)[log p(x|z,Θ)] (2.7)

=
1

2

(
log |V | − tr[Σ−1V]− (m− µ)TΣ−1(m− µ)

)
+
∑
t,i

Eq(zt)[log p(xti|zt)] + const,

which is the usual form to be maximized in a variational Bayesian EM (VBEM)

algorithm [Buesing et al., 2014]. Here µ ∈ RpT and Σ ∈ RpT×pT are the expectation

and variance of z given by the LDS prior in (2.5). The first term of (2.7) is the

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 27

negative Kullback-Leibler divergence between the variational distribution and prior

distribution, encouraging the variational distribution to be close to the prior. The

second term involving the GC likelihood encourages the variational distribution to

explain the observations well. The integrations in the second term are intractable

(this is in contrast to the PLDS case, where all integrals can be calculated analytically

[Buesing et al., 2014]). Below we use the ideas of Emtiyaz Khan et al. [2013] to derive

a tractable, further lower bound. Here the term Eq(zt)[log p(xti|zt)] can be reduced

to:

Eq(zt)[log p(xti|zt)] = Eq(ηti) [log pGC(x|ηti, gi(·))]

= Eq(ηti)

[
xtiηti + gi(xti)− log xti!− log

K∑
k=0

1

k!
exp(kηti + gi(k))

]
,

(2.8)

where ηti = cTi zt. Denoting νtik = kηti + gi(k) − log(k!) = kcTi zt + gi(k) − log k!,

(2.8) is reduced to Eq(ν)[νtixti − log(
∑

0≤k≤K exp(νtik))]. Since νtik is a linear trans-

formation of zt, under the variational distribution νtik is also normally distributed

νtik ∼ N (htik, ρtik). We have htik = kcTi mt + gi(k) − log k!, ρtik = k2cTi Vtci, where

(mt, Vt) are the expectation and covariance matrix of zt under variational distribu-

tion. Now we can derive a lower bound for the expectation by Jensen’s inequality:

Eq(νti)

[
νtixti − log

∑
k

exp(νtik)

]
≥htixti − log

K∑
k=1

exp(htik + ρtik/2) =: fti(hti, ρti).

(2.9)

Combining (2.7) and (2.9), we get a tractable variational lower bound:

L(m, V) ≥ L∗(m, V) = Eq(z)

[
log

(
p(z|Θ)

q(z)

)]
+
∑
t,i

fti(hti, ρti). (2.10)

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 28

For computational efficiency, we complete the E-step by maximizing the new evi-

dence lower bound L∗ via its dual [Emtiyaz Khan et al., 2013]. Full details are derived

in section 2.4.4.

2.4.2 M-step: analytical form

The M-step then requires maximization of L∗ over Θ. We have two sets of parameters

to optimize in the M-step. One set is for the dynamical system (A, {bt}Tt=1, Q,Q1, µ1),

the other is for the observation (C, {gi(·)}i). Similar to the PLDS case, the set

of parameters involving the latent Gaussian dynamics (A, {bt}Tt=1, Q,Q1, µ1) can be

optimized analytically [Macke et al., 2011]. Then, the parameters involving the GC

likelihood (C, {gi}i) can be optimized efficiently via convex optimization techniques

[Boyd and Vandenberghe, 2009].

The part of the likelihood about the dynamical system has the form

L2(A,Q,Q1, µ1) =
R∑
r=1

Eq(zr)

[
− 1

2
(zr1 − µ1)

TQ−11 (zr1 − µ1)

− 1

2

T−1∑
t=1

(zr(t+1) − Azrt − bt)
TQ−1(zr(t+1) − Azrt − bt)

− 1

2
log |Q1| −

T − 1

2
log |Q|

]

Since everything is quadratic with respect to z, the expectation can be calculated

analytically. Moreover, all the parameters can be optimized analytically in close

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 29

form.

µ̂t =
1

R

R∑
r=1

E(zr1), t = 1, ..., T

Q̂0 =
1

R

R∑
r=1

[
E(zr1) + (E(zr1)− µ̂1)(E(zr1)− µ̂1)

T
]

ÂT ={
R∑
r=1

T−1∑
t=1

E
[
(zrt − µ̂t)(zrt − µ̂t)T

]
}−1

R∑
r=1

T−1∑
t=1

E
[
(zr(t+1) − µ̂t+1)(zrt − µ̂t)T

]
b̂t =µ̂t+1 − Âµ̂t, t = 1, ..., T − 1

Q̂ =
1

R(T − 1)

R∑
r=1

T−1∑
t=1

E[(zr(t+1) − Âzrt − b̂t)(zr(t+1) − Âzrt − b̂t)
T]

The part of the likelihood about the observation can be written as

L1(C, g) =
N∑
i=1

[∑
t=1,...,T
r=1,...,R

yrti(c
T
i mrt) + gi(yrti)

− log(1 +
K∑
k=1

1

k!
exp(k(cTi mrt) + gi(k) +

1

2
k2cTi Vrtci))

]

This part is concave and can be optimized efficiently using convex optimization tech-

niques.

2.4.3 Practical concerns

In practice we initialize our VBEM algorithm with a Laplace-EM algorithm, and we

initialize each E-step in VBEM with a Laplace approximation, which empirically gives

substantial runtime advantages, and always produces a sensible optimum. With the

above steps, we have a fully specified learning and inference algorithm, which we now

use to analyze real neural data.

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 30

2.4.4 Dual optimization for E-step

Below we detail the dual optimization we used in the E-step. This part is rather

technical and can be skipped for dis-interested readers.

We first introduce the “vectorized” notation for the GCLDS model. Note that in

the E-step the inference is separable across trials, so for ease of notation, we only

consider one single trial and drop the trial index r. We assume N neurons observed

during T time bins. Denote zt as the p-dimensional latent variable and and xt as the

N -dimensional observation, respectively.

z :=


z1
...

zT

 ,x :=


x1

...

xT


The prior can be summarized as a multi-variate Gaussian distribution:

p(z) = N (µ,Σ)

where

µ =



µ1

Aµ1 + b1
...

AT−1µ1 +
∑T−1

t=1 A
T−1−tbt


,

Σ−1 =


Q−10 + ATQ−1A ATQ−1

Q−1A Q−1 + ATQ−1A ATQ−1

.

 .

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 31

The likelihood has the form

p(x|z) =
∏
t,i

p(xti|ηti)

p(xti|ηti) =GC(xti|ηti, gi(·))

η :=Wz

W =blk-diag(C, ..., C),

where we stack all the ηti in η = (η11, ..., η1N ,, ηT1, ..., ηTN) ∈ RNT . The log

likelihood reads:

log p(z,x) ∝− 1

2
(z− µ)TΣ−1(z− µ) +

∑
t,i

[xtiηn + gi(xti)− log(
∑
k

1

k!
exp(kηti + gi(k)))]

−
∑
t,i

log(xti!)−
1

2
log |Σ|

In the E-step we make a Gaussian approximation to the posterior:

p(z|x) ≈ q(z) = N (z|m, V).

The variational lower bound reads:

L(m, V) =

ˆ
q(z) log

p(z,x)

q(z)
dz

=
1

2
(log |V | − tr[Σ−1V]− (m− µ)TΣ−1(m− µ))

+
∑
t,i

Eq(ηti)[log p(xti|ηti)]−
1

2
log |Σ|+ dT

2
.

Defining νtik = kηti + gi(k)− log k!, we know that νtik is also normally distributed

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 32

under the variational distribution

νtik ∼ N (htik, ρtik).

Therefore we can re-write the term Eq(x)[log p(xti|ηti)] and find a lower bound of the

term by

Eq(ηti) [log p(xti|ηti)]

=Eq(ηti)

[
xtiηti + gi(xti)− log(xti!)− log(

∑
k

1

k!
exp(kηti + gi(k)))

]

=Eq(νti)

[
νtixti − log(

K∑
k=0

exp(νtik))

]

≥htixti − log(
K∑
k=0

Eq(νti)(exp(νtik)))

=htixti − log(
K∑
k=0

exp(hnk + ρnk/2))

where νti = (νti1, ..., νtiK). We always have νti0 = ρti0 = 0. For the other variables

define

ν = (ν11, ν12, ..., ν1N , ..., νT1, ..., νTN)T ,

and define h and ρ similarly. We then have the constraints

h :=W̃m + d̃

ρ :=diag(W̃V W̃ T)

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 33

where

W̃ =W ⊗ (1, 2, ..., K)T

d̃ =1T×1 ⊗ (g1(1)− log 1!, ..., g1(K)− logK!,, gN(1)− log 1!, ..., gN(K)− logK!)T

where ⊗ is the Kronecker product. Applying this lower bound and setting νti0 =

ρti0 = 0, we get the evidence lower bound (ELBO)

L∗(m, V,h, ρ) =
1

2
(log |V | − tr[Σ−1V]− (m− µ)TΣ−1(m− µ))

+
∑
t,i

[
1{xti>0}htixti − log(1 +

K∑
k=1

exp(htik + ρtik/2))

]

the variational inference can now be cast as the optimization problem:

max
m,V,h,ρ

L∗(m, V,h, ρ)

subject to V � 0

h = W̃m + d̃

ρ = diag(W̃V W̃ T)

Following Emtiyaz Khan et al. [2013], we can solve the dual problem

min
α,λ

max
m,V,h,ρ

L(m, V,h, ρ) + αT (h− W̃m− d̃) +
1

2
λT (ρ− diag(W̃V W̃ T)),

where α, λ ∈ RTNK are the Lagrange multipliers. The unique maximizer with respect

to (m, V) is given by

m∗ =µ− ΣW̃ Tα

V ∗ =B−1λ := (Σ−1 + W̃ T (diagλ)W̃)−1

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 34

Maximization over (h, ρ) is also available in close form. Collecting the term containing

(h, ρ). for f ∗ to be finite, we need to enforce the constraint αtik = λtik − 1{xti=k}.

Therefore, we can express everything in terms of λ

f ∗ti(λti) =max
h,ρ

αTtihti + λTtiρti/2 +

[
1{xti>0}htixti − log(1 +

K∑
k=1

exp(htik + ρtik/2)

]

=
K∑
k=1

λtik log λtik + (1−
K∑
k=1

λtik) log(1−
K∑
k=1

λtik).

Denoting ỹti = (1{xti=1},1{xti=2}, ...,1{xti=K}) and ỹ = (ỹ11, ..., ỹ1N , ..., ỹT1, ..., ỹTN),

the dual problem is reduced to

min
λ

D(λ)

subject to λtik > 0

K∑
k=1

λtik < 1, t = 1, ..., T, n = 1, ..., N, k = 1, ..., K

where

D(λ) :=
1

2
(λ− ỹ)T W̃ΣW̃ T (λ− ỹ)− (W̃µ+ d̃)T (λ− ỹ)− 1

2
log |Bλ|+

∑
t,i

f ∗ti(λti)

and the gradient of the dual reads

D′(λ) = W̃ΣW̃ T (λ− ỹ)− W̃µ− d̃− 1

2
diag(WB−1λ W T)−

∑
n

f ∗ti
′(λti)

2.5 Model evaluation by leave-one-neuron-out error

To evaluate the goodness-of-fit of the LDS models, we use leave-one-neuron-out pre-

dictive error. The idea is to split the data into training trials and testing trials. We

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 35

first use training trials to learn the model parameter Θ. Then for test data, each

time we drop one neuron, use the other neurons to get the posterior distribution

of the latent variables, and then compute the posterior distribution of the left out

data. Specifically, denote xir = (xr1i, ..., xrT i) as the spike train of neuron i for trial

r, x−ir = (x1
r, ...,x

i−1
r ,xi+1

r ,,xnr) as the spike train for trial r with neuron i left out.

We compute the posterior distribution

p(xrti|x−ir) =

ˆ
p(xrti|zr)p(zr|x−ir)zr (2.11)

where p(zr|x−ir) is approximated with variational distribution and the integration can

be reduced to a one-dimensional numerical integration since xrti only depend on zr

through cTi zrt. We compute the mean square error of the predicted firing rate and

the predictive log likelihood of the predicted firing rate.

2.6 Experiments

2.6.1 Simulation examples

To demonstrate the generality of the GCLDS and verify our algorithmic implementa-

tion, we first simulated four sets of data with binary, (nearly) Poisson, under-dispersed

and over-dispersed observations by generating GCLDS model with 4 different g func-

tions for the GC distribution.

• Binary: g(k) = −1.9k for k=0,1;

• Nearly Poisson: g(k) = −1.9k for k =0,1...,10;

• Underdispersed: g(k) = −0.4k2 + 1.5k for k =0,...,5;

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 36

• Overdispersed: g(k) = 0.2k2 − 2.1k for k=0,...,5.

Here we set g(k) = −∞ when k is out of the scope of the definition, implying zero

probability of generating an observation of k. Those g functions are selected to

generate a small firing rate, which mimics the real neural data setting.

For each scenario we perform 50 independent experiments, each with 50 training

trials and 10 testing trials. We randomly generate the model parameters and make

sure that the latent signals are strong enough. For all simulations we use 30 neurons

with 3 latent dimensions. For each neuron, we perturb its own g function by a random

linear function to obtain a variable baseline rate. Here we compare the performance

of PLDS and GCLDS, both with 3 latent dimensions. For GCLDS we restrict the

gi(·) functions to be the same across all neurons up to a linear function.

Table 2.2 shows the leave-one-neuron-out performance. We observe that GCLDS

and PLDS has comparable MSE although GCLDS outperforms a little, which makes

sense since even though PLDS has model specification, it can still capture the mean

firing rate well as long as the data can be explained by low-dimensional subspace. In

terms of log likelihood, GCLDS significantly outperforms PLDS for all but the nearly

Poisson case.

2.6.2 Real data analysis

We analyze recordings of populations of neurons in the primate motor cortex during

a reaching experiment (G20040123), details of which have been described previously

[Yu et al., 2009; Macke et al., 2011]. In brief, a rhesus macaque monkey executed 56

cued reaches from a central target to 14 peripheral targets. Before the subject was

cued to move (the go cue), it was given a preparatory period to plan the upcoming

reach. Each trial was thus separated into two temporal epochs, each of which has been

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 37

Setting Binary Poisson Underdispersed Overdispersed

MSE

PLDS 0.124(0.001) 0.199(0.004) 0.156(0.001) 0.259(0.008)

GCLDS 0.123(0.001) 0.198(0.004) 0.156(0.001) 0.246(0.004)

Improve 0.001(0.000) 0.001(0.001) 0.000(0.000) 0.013(0.007)

NLL

PLDS 0.434(0.002) 0.481(0.003) 0.453(0.002) 0.517(0.003)

GCLDS 0.397(0.002) 0.481(0.003) 0.449(0.002) 0.512(0.003)

Improve 0.037(0.002) -0.000(0.000) 0.004(0.000) 0.005(0.000)

Table 2.2: Simulation result for PLDS and GCLDS. Showing the leave-one-neuron-out
mean square error (MSE) and negative log likelihood (NLL) for PLDS and GCLDS,
as well as the improvement of GCLDS over PLDS. Results are averaged across 50
independent repeats with standard error showing in parentheses.

suggested to have their own meaningful dynamical structure [Petreska et al., 2011;

Churchland et al., 2012]. We separately analyze these two periods: the preparatory

period (1200ms period preceding the go cue), and the reaching period (50ms before to

370ms after the movement onset). We analyzed data across all 14 reach targets, and

results were highly similar; in the following for simplicity we show results for a single

reaching target (one 56 trial dataset). Spike trains were simultaneously recorded

from 96 electrodes (using a Blackrock multi-electrode array). We bin neural activity

at 20ms. To include only units with robust activity, we remove all units with mean

rates less than 1 spike per second on average, resulting in 81 units for the preparatory

period, and 85 units for the reaching period. As we have already shown in Figure

2.1, the reaching period data are strongly under-dispersed, even absent conditioning

on the latent dynamics (implying further under-dispersion in the observation noise).

Data during the preparatory period are particularly interesting due to its clear cross-

correlation structure.

To fully assess the GCLDS model, we analyze four LDS models – (i) GCLDS-full:

a separate function gi(·) is fitted for each neuron i ∈ {1, ..., N}; (ii) GCLDS-simple:

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 38

a single function g(·) is shared across all neurons (up to a linear term modulating the

baseline firing rate); (iii) GCLDS-linear: a truncated linear function gi(·) is fitted,

which corresponds to truncated-Poisson observations; and (iv) PLDS: the Poisson

case is recovered when gi(·) is a linear function on all nonnegative integers. In all

cases we use the learning and inference of §2.4. We initialize the PLDS using nuclear

norm minimization [Pfau et al., 2013], and initialize the GCLDS models with the

fitted PLDS. For all models we vary the latent dimension p from 2 to 8.

Analysis of the reaching period. Figure 2.2 compares the fits of the two neural

units highlighted in Figure 2.1. These two neurons are particularly high-firing (during

the reaching period), and thus should be most indicative of the differences between

the PLDS and GCLDS models. The left column of Figure 2.2 shows the fitted g(·)

functions the for four LDS models being compared. It is apparent in both the GCLDS-

full and GCLDS-simple cases that the fitted g function is concave (though it was not

constrained to be so), agreeing with the under-dispersion observed in Figure 2.1.

0 5

−4

−2

0

k (spikes per bin)

g(
k)

neuron 1

0 100 200 300
1

1.5

2

2.5

3

Time after movement onset (ms)

M
ea

n

0 100 200 300
0.5

1

1.5

2

2.5

Time after movement onset (ms)

V
ar

ia
nc

e

0 5

−4

−2

0

k (spikes per bin)

g(
k)

neuron 2

0 100 200 300
0

0.5

1

1.5

Time after movement onset (ms)

M
ea

n

observed data
PLDS
GCLDS−full
GCLDS−simple
GCLDS−linear

0 100 200 300
0

0.5

1

1.5

Time after movement onset (ms)

V
ar

ia
nc

e

Figure 2.2: Examples of fitting result for selected high-firing neurons. Each row
corresponds to one neuron as marked in left panel of Figure 2.1 – left column: fitted
g(·) using GCLDS and PLDS; middle and right column: fitted mean and variance of
PLDS and GCLDS. See text for details.

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 39

The middle column of Figure 2.2 shows that all four cases produce models that

fit the mean activity of these two neurons very well. The black trace shows the

empirical mean of the observed data, and all four lines (highly overlapping and thus

not entirely visible) follow that empirical mean closely. This result is confirmatory

that the GCLDS matches the mean and the current state-of-the-art PLDS.

More importantly, we have noted the key feature of the GCLDS is matching the

dispersion of the data, and thus we expect it should outperform the PLDS in fitting

variance. The right column of Figure 2.2 shows this to be the case: the PLDS

significantly overestimates the variance of the data. The GCLDS-full model tracks

the empirical variance quite closely in both neurons. The GCLDS-linear result shows

that only adding truncation does not materially improve the estimate of variance

and dispersion: the dotted blue trace is quite far from the true data in black, and

indeed it is quite close to the Poisson case. The GCLDS-simple still outperforms the

PLDS case, but it does not model the dispersion as effectively as the GPLDS-full case

where each neuron has its own dispersion parameter (as Figure 2.1 suggests). The

2 4 6 8
Latent dimension

0

2

4

6

8

10

12

%
 M

S
E

 r
ed

uc
tio

n

PLDS
GCLDS-full
GCLDS-simple
GCLDS-linear

2 4 6 8
Latent dimension

0

2

4

6

8

%
 N

LL
 r

ed
uc

tio
n

0 1 2
0

0.5

1

1.5

2

Observed variance

F
itt

ed
 v

ar
ia

nc
e

PLDS
GCLDS−full

Figure 2.3: Goodness-of-fit for monkey data during the reaching period – left panel :
percentage reduction of mean-squared-error (MSE) compared to the baseline (homo-
geneous Poisson process); middle panel : percentage reduction of predictive negative
log likelihood (NLL) compared to the baseline; right panel : fitted variance of PLDS
and GCLDS for all neurons compared to the observed data. Each point gives the
observed and fitted variance of a single neuron, averaged across time.

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 40

natural next question is whether this outperformance is simply in these two illustrative

neurons, or if it is a population effect. Figure 2.3 shows that indeed the population

is much better modeled by the GCLDS model than by competing alternatives. The

left and middle panels of Figure 2.3 show leave-one-neuron-out prediction error of the

LDS models. For each reaching target we use 4-fold cross-validation and the results

are averaged across all 14 reaching targets. Critically, these predictions are made for

all neurons in the population. To give informative performance metrics, we defined

baseline performance as a straightforward, homogeneous Poisson process for each

neuron, and compare the LDS models with the baseline using percentage reduction of

mean-squared-error and negative log likelihood (thus higher error reduction numbers

imply better performance). The mean-squared-error (MSE; left panel) shows that the

GCLDS offers a minor improvement (reduction in MSE) beyond what is achieved by

the PLDS. Though these standard error bars suggest an insignificant result, a paired

t-test is indeed significant (p < 10−8). Nonetheless this minor result agrees with the

middle column of Figure 2.2, since predictive MSE is essentially a measurement of

the mean.

In the middle panel of Figure 2.3, we see that the GCLDS-full significantly out-

performs alternatives in predictive log likelihood across the population (p < 10−10,

paired t-test). Again this largely agrees with the implication of Figure 2.2, as nega-

tive log likelihood measures both the accuracy of mean and variance. The right panel

of Figure 2.3 shows that the GCLDS fits the variance of the data exceptionally well

across the population, unlike the PLDS.

Analysis of the preparatory period. To augment the data analysis, we also

considered the preparatory period of neural activity. When we repeated the analyses

of Figure 2.3 on this dataset, the same results occurred: the GCLDS model produced

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 41

concave (or close to concave) g functions and outperformed the PLDS model both

in predictive MSE (minority) and negative log likelihood (significantly). For brevity

we do not show this analysis here. Instead, we here compare the temporal cross-

covariance, which is also a common analysis of interest in neural data analysis [Macke

et al., 2011; Goris et al., 2014; Cohen and Kohn, 2011] and, as noted, is particularly

salient in preparatory activity. Figure 2.4 shows that GCLDS model fits both the

temporal cross-covariance (left panel) and variance (right panel) considerably better

than PLDS, which overestimates both quantities.

−200 −100 0 100 200

0

2

4

6

8

10
x 10

−3

Time lag (ms)

C
ov

ar
ia

nc
e

recorded data
GCLDS−full
PLDS

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Observed variance

F
itt

ed
 v

ar
ia

nc
e

PLDS
GCLDS−full

Figure 2.4: Goodness-of-fit for monkey data during the preparatory period – Left
panel: Temporal cross-covariance averaged over all 81 units during the preparatory
period, compared to the fitted cross-covariance by PLDS and GCLDS-full. Right
panel : fitted variance of PLDS and GCLDS-full for all neurons compared to the
observed data (averaged across time).

2.7 Discussion

In this paper we showed that the GC family better captures the conditional variability

of neural spiking data, and further improves inference of key features of interest in

the data. We note that it is straightforward to incorporate external stimuli and

spike history in the model as covariates, as has been done previously in the Poisson

case [Macke et al., 2011]. Beyond the GCGLM and GCLDS, the GC family is also

CHAPTER 2. GENERALIZED COUNT LINEAR DYNAMICAL SYSTEM 42

extensible to other models that have been used in this setting, such as exponential

family PCA [Pfau et al., 2013] and subspace clustering [Buesing et al., 2014]. The

cost of this performance, compared to the PLDS, is an extra parameterization (the

gi(·) functions) and the corresponding algorithmic complexity. While we showed that

there seems to be no empirical sacrifice to doing so, it is likely that data with few

examples and reasonably Poisson dispersion may cause GCLDS to overfit.

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 43

Chapter 3

Linear Dynamical Neural Population

Models Through Nonlinear

Embeddings

A body of recent work in modeling neural activity focuses on recovering low-dimensional

latent features that capture the statistical structure of large-scale neural populations.

Most such approaches have focused on linear generative models, where inference is

computationally tractable. Here, we propose fLDS, a general class of nonlinear gener-

ative models that permits the firing rate of each neuron to vary as an arbitrary smooth

function of a latent, linear dynamical state. This extra flexibility allows the model

to capture a richer set of neural variability than a purely linear model, but retains

an easily visualizable low-dimensional latent space. To fit this class of non-conjugate

models we propose a variational inference scheme, along with a novel approximate

posterior capable of capturing rich temporal correlations across time. We show that

our techniques permit inference in a wide class of generative models.We also show

in application to two neural datasets that, compared to state-of-the-art neural pop-

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 44

ulation models, fLDS captures a much larger proportion of neural variability with

a small number of latent dimensions, providing superior predictive performance and

interpretability.

This work, which was published as Gao et al. [2016], was jointly done with Evan

Archer, Liam Paninski, and John Cunningham. A Python/Theano [Bastien et al.,

2012; Bergstra et al., 2010] implementation of our algorithms is available at http:

//github.com/earcher/vilds.

3.1 Introduction

Access to these high-dimensional neural data has spurred a search for new statistical

methods. One recent approach has focused on extracting latent, low-dimensional

dynamical trajectories that describe the activity of an entire population [Yu et al.,

2009; Macke et al., 2011; Pfau et al., 2013; Gao et al., 2015]. The resulting models

and techniques permit tractable analysis and visualization of high-dimensional neural

data. Further, applications to motor cortex [Sadtler et al., 2014; Churchland et al.,

2012, 2010a] and visual cortex [Goris et al., 2014; Okun et al., 2012; Ecker et al., 2014]

suggest that the latent trajectories recovered by these methods can provide insight

into underlying neural computations.

Previous work for inferring latent trajectories has considered models with a latent

linear dynamics that couple to observations either linearly, or through a restricted

nonlinearity [Macke et al., 2011; Gao et al., 2015; Archer et al., 2014]. When the true

data generating process is nonlinear (for example, when neurons respond nonlinearly

to a common, low-dimensional unobserved stimulus), the observation may lie in a

low-dimensional nonlinear subspace that can not be captured using a mismatched

observation model, hampering the ability of latent linear models to recover the low-

http://github.com/earcher/vilds
http://github.com/earcher/vilds

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 45

dimensional structure from the data. Here, we propose fLDS, a new approach to infer-

ring latent neural trajectories that generalizes several previously proposed methods.

As in previous methods, we model a latent dynamical state with a linear dynamical

system (LDS) prior. But, under our model, each neuron’s spike rate is permitted to

vary as an arbitrary smooth nonlinear function of the latent state. By permitting each

cell to express its own, private non-linear response properties, our approach seeks to

find a nonlinear embedding of a neural time series into a linear-dynamical state space.

To perform inference in this nonlinear model we adapt recent advances in varia-

tional inference [Kingma andWelling, 2013; Titsias and Lázaro-Gredilla, 2014; Rezende

et al., 2014]. Using a novel approximate posterior that is capable of capturing rich

correlation structure in time, our techniques can be applied to a large class of latent-

LDS models. We show that our variational inference approach, when applied to learn

generative models that predominate in the neural data analysis literature, perform

comparably to inference techniques designed for a specific model. More interestingly,

we show in both simulation and application to two neural datasets that our fLDS

modeling framework yields higher prediction performance with a more compact la-

tent representation, as compared to state-of-the-art neural population models. By

freeing the latent space from representing the nonlinear response properties of each

neuron, we are able to recover much cleaner and more structured representations of

neural dynamics.

3.2 Notation and overview of neural data

Neuronal signals take the form of temporally fast (∼ 1 ms) spikes that are typically

modeled as discrete events. Although the spiking response of individual neurons has

been the focus of intense research, modern experimental techniques make it possi-

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 46

ble to study the simultaneous activity of large numbers of neurons. In real data

analysis, we usually discretize time into small bins of duration ∆t and represent the

response of a population of n neurons at time t by a vector xt of length n, whose

ith entry represents number of spikes recorded from neuron i in time bin t, where

i ∈ {1, . . . , n}, t ∈ {1, . . . , T}. Additionally, because spike responses are variable

even under identical experimental conditions, it is commonplace to record many re-

peated trials, r ∈ {1, . . . , R}, of the same experiment.

Here, we denote xrt = (xrt1, ..., xrtn)> ∈ Nn as spike counts of n neurons for

time t and trial r. When the time index is suppressed, we refer to a data matrix

xr = (xr1, ...,xrT) ∈ NT×n. We also use x = (x1, ...,xR) ∈ NT×n×R to denote all the

observations. We use analogous notation for other temporal variables; for instance zr

and z.

3.3 Latent LDS neural population models with a lin-

ear rate function

Latent factor models are popular tools in neural data analysis, where they are used

to infer low-dimensional, time-evolving latent trajectories (or factors) zrt ∈ Rm,m�

n that capture a large proportion of the variability present in a neural population

recording. Many recent techniques follow this general approach, with distinct noise

models [Gao et al., 2015], different priors on the latent factors [Yu et al., 2009; Zhao

and Park, 2016], extra model structure [Buesing et al., 2014] and so on.

We focus upon one thread of this literature that takes its inspiration directly from

the classical Kalman filter. Under this approach, the dynamics of a population of n

neurons are modulated by an unobserved, linear dynamical system (LDS) with an

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 47

m-dimensional latent state zrt that evolves according to,

zr1 ∼ N (µ1, Q1) (3.1)

zr(t+1)|zrt ∼ N (Azrt, Q), (3.2)

where A is an m × m linear dynamics matrix, and the matrices Q1 and Q are the

covariances of the initial states and Gaussian innovation noise, respectively. The spike

count observation is then related to the latent state via an observation model,

xrti|zrt ∼ Pλ,` (λ = `([f(zrt)]i)) . (3.3)

where [f(zrt)]i is the ith element of a deterministic “rate” function f(zrt) : Rm → Rn,

and Pλ,`(λ) is a noise model with parameter λ and link function `. Each choice among

the ingredients f and Pλ,` leads to a model with distinct characteristics. When

Pλ,` is a Gaussian distribution with identity link and mean parameter λ, and f is

linear, the model reduces to the classical Kalman filter. All operations in the Kalman

filter are conjugate, and inference may be performed in closed form. However, any

non-Gaussian noise model Pλ,` or nonlinear rate function f breaks conjugacy and

necessitates the use of approximate inference techniques. This is generally the case

for neural models, where the discrete, positive nature of spikes suggests the use of

discrete noise models with positive link [Macke et al., 2011; Gao et al., 2015].

Examples of latent LDS models with a linear rate function: When Pλ,` is

chosen to be Poisson with exponential link and f(zrt) couples linearly to the latent

state, we recover the Poisson linear dynamical system model (PLDS) [Macke et al.,

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 48

2011],

xrti|zrt ∼ Poisson (λrti = exp(cizrt + di)) , (3.4)

where ci is the ith row of the n×m observation matrix C and di ∈ R is the baseline

firing rate of neuron i. With Pλ,` chosen to be a generalized count (GC) distribution,

identity link `, and linear rate f , the model is called the generalized count linear

dynamical system (GCLDS) [Gao et al., 2015],

xrti|zt ∼ GC (λrti = cizrt, gi(·)) . (3.5)

where GC(λ, g(·)) is a distribution family parameterized by λ ∈ R and a function

g(·) : N→ R, distributed as,

pGC(k;λ, g(·)) =
exp(λk + g(k))

k!M(λ, g(·))
. k ∈ N (3.6)

where M(λ, g(·)) =
∑∞

k=0
exp(λk+g(k))

k!
is the normalizing constant. The GC model can

flexibly capture under- and over-dispersed count distributions.

3.4 Nonlinear latent variable models for neural pop-

ulations

We relax the linear assumptions of the previous LDS-based neural population models

by incorporating a per-neuron rate function. We retain the latent LDS of Equation

(3.1) and Equation (3.2), but select an observation model such that each neuron has

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 49

a separate nonlinear dependence upon the latent variable,

xrti|zrt ∼ Pλ,` (λrti = `([fψ(zrt)]i)) , (3.7)

where Pλ,`(λ) is a noise model with parameter λ and link function `; fψ : Rm → Rn is

an arbitrary continuous function from the latent state into the spike rate; and [fψ(zrt)]i

is the ith element of fψ(zrt). In principle, the rate functions may be represented

using any technique for function approximation. Here, we represent fψ(·) through

a parametric neural network model. The parameters ψ then amount to the weights

and biases of all units across all layers. For the remainder of the text, we use θ to

denote all generative model parameters: θ = (µ1, Q1, A,Q, ψ). We refer to this class

of models as fLDS.

To refer to an fLDS with a given noise model Pλ,`, we append the noise model to the

acroynm. For the examples of fLDS we consider in the experiments, the link function `

may be absorbed into the rate function f ; we omit it from the subsequent discussion.

In the experiments, we will consider both PfLDS (taking Pλ,` to be Poisson) and

GCfLDS (taking Pλ,` to be a generalized count distribution).

3.5 Inference by Auto-encoding variational Bayes

Our goal is to learn the model parameters θ and to infer the posterior distribution

over the latent variables z. Ideally, we would perform maximum likelihood estimation

on the parameters, θ̂ = arg maxθ log pθ(x) = arg maxθ
∑R

r=1 log
´
pθ(xr, zr)dzr, and

compute the posterior pθ̂(z|x). However, under a fLDS neither the pθ(z|x) nor pθ(x)

are computationally tractable (both due to the noise model P and the nonlinear

observation model fψ(·)). As a result, we pursue a stochastic variational inference

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 50

approach to simultaneously learn parameters θ and infer the distribution of z.

The strategy of variational inference is to approximate the intractable posterior

distribution pθ(z|x) by a tractable distribution qφ(z|x), which carries its own param-

eters φ.1 With an approximate posterior2 in hand, we learn both pθ(z,x) and qφ(z|x)

simultanously by maximizing the evidence lower bound (ELBO) of the marginal log

likelihood:

log pθ(x) ≥ L(θ, φ;x) =
R∑
r=1

L(θ, φ;xr) =
R∑
r=1

Eqφ(zr|xr)
[
log

pθ(xr, zr)

qφ(zr|xr)

]
. (3.8)

We optimize L(θ, φ;x) by stochastic gradient ascent, using a Monte Carlo estimate

of the gradient ∇L. It is well-documented that Monte Carlo estimates of ∇L are

typically of very high variance, and strategies for variance reduction are an active

area of research [Blei et al., 2012; Ranganath et al., 2013; Burda et al., 2015].

Here, we take an auto-encoding variational Bayes (AEVB) approach [Kingma and

Welling, 2013; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014] to estimate

∇L. In AEVB, we choose an easy-to-sample random variable ε ∼ p(ε) and sample z

through a transformation of random sample ε parameterized by observations x and

parameters φ: z = hφ(x, ε) to get a rich set of variational distributions qφ(z|x). We

then use the unbiased gradient estimator on minibatches consisting of a randomly

selected single trials xr,

∇L(θ, φ;x) ≈ R∇L(θ, φ;xr) (3.9)

≈ R

[
1

L

L∑
l=1

∇ log pθ(xr, hφ(xr, ε
l))−∇Eqφ(zr|xr) [log qφ(zr|xr)]

]
, (3.10)

1Here, we consider a posterior qφ(z|x) that is conditioned explicitly upon x. However, this is not
necessary for variational inference.

2The approximate posterior is also sometimes called a “recognition model”.

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 51

where εl are iid samples from p(ε). In practice, we evaluate the gradient in Equation

(3.9) using a single sample from p(ε) (L = 1) and use ADADELTA for stochastic

optimization [Zeiler, 2012].

The AEVB approach to inference is appealing in its generality: it is well-defined

for a large class of generative models pθ(x, z) and approximate posteriors qφ(z|x). In

practice, however, the performance of the algorithm has a strong dependence upon the

particular structure of these models. In our case, we use an approximate posterior that

is designed explicitly to parameterize a temporally correlated approximate posterior

[Archer et al., 2015]. We use a Gaussian approximate posterior,

qφ(zr|xr) = N (µφ(xr),Σφ(xr)) , (3.11)

where µφ(xr) is a mT × 1 mean vector and Σφ(xr) is a mT ×mT covariance matrix.

Both µφ(xr) and Σφ(xr) are parameterized by observations x through a structured

neural network. We can sample from this approximate by setting p(ε) ∼ N (0, I) and

hφ(ε;xr) = µφ(xr) + Σ
1/2
φ (xr)ε , where Σ

1/2
φ is the Cholesky decomposition of Σφ.

This approach is similar to that of Kingma and Welling [2013], except that we

impose a block-tridiagonal structure upon the precision matrix Σφ
−1 (rather than a

diagonal covariance), which can express rich temporal correlations across time (es-

sential for the posterior to capture the smooth, correlated trajectories typical of LDS

posteriors), while remaining tractable with a computational complexity that scales

linearly with T , the length of a trial.

Below we detail the parameterization for the recognition model qφ(z|x) we used

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 52

in fitting fLDS. We construct qφ(z|x) as a product of factors across time,

qφ(zr|xr) ∝ qφ(zr1)
T−1∏
t=1

qφ(zrt|zr(t−1))
T∏
t=1

qφ(zrt|xrt). (3.12)

such that:

qφ(zr1) ∼ N (µ̃1, Q̃1), (3.13)

qφ(zrt|zr(t−1)) ∼ N (Ãzr(t−1), Q̃), (3.14)

qφ(zrt|xrt) ∼ N (mψ̃(xrt), cψ̃(xrt)). (3.15)

In our experiments we take µ̃1 = 0 although learning µ̃1 is also straightforward. The

parameters Ã, Q̃ and Q̃1 are m×m matrices that control the smoothness of the

posterior, and are analogous to the LDS parameters appearing in Equation (3.1) and

Equation (3.2). Functions mψ̃(·) : Rn → Rm and cψ̃(·) : Rn → Rm×m are nonlinear

functions of observations xt ∈ Rn, parameterized by ψ̃. To ensure non-negative

definiteness of cψ̃(xrt), we first map the observations xt to the square root of the

precision matrix. We parameterize a matrix-valued function rψ̃(·) : Rn → Rm×m by a

feed-forward neural network, and set cψ̃(xrt) =
(
rψ̃(xrt)rψ̃(xrt)

T
)−1. To summarize,

the recognition model is parameterized by φ = (µ̃1, Ã, Q̃, Q̃1, ψ̃).

This product of Gaussian factors also has a Gaussian functional form, with block-

tridiagonal inverse covariance. Normalizing recovers the multivariate Gaussian rep-

resentation of Equation (3.11), where

Σφ(xr) =
(
D−1 + C−1φ (xr)

)−1 (3.16)

µφ(xr) =
(
D−1 + C−1φ (xr)

)−1
C−1φ (xr)Mφ(xr). (3.17)

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 53

here D = (I − Ã)−TQ̃(I − Ã)
−1
, where

Q̃ =



Q̃1

Q̃

. . .

Q̃


, Ã =



0

Ã 0

Ã 0

.

Ã 0


, (3.18)

and

Cψ̃(xr) =



cψ̃(xr1)

cψ̃(xr2)

. . .

cψ̃(xrT)


, Mψ̃(x) =


mψ̃(xr1)

...

mψ̃(xrT)

 ∈ RmT (3.19)

3.6 Experiments

In all our experiments with PfLDS and GCfLDS, we parameterize fφ(·) : Rm →

Rn using a feed-forward neural network with 2 hidden layers, each containing 60

nodes using tanh nonlinearity. For PfLDS we transform the final output layer by an

exponential function to ensure the positivity of the rate.

For the approximate posterior described in section 3.5. We parameterize mφ(·) :

Rn → Rm and rφ(·) : Rn → Rm×m by a neural network with two hidden layers, each

containing 60 nodes using tanh nonlinearity. Here the hidden layers are shared for

mφ(·) and rφ(·).

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 54

3.6.1 Simulation examples

Linear dynamical system models with shared, fixed rate function: Our

AEVB approach in principle permits inference in any latent LDS model. To illus-

trate this flexibility, we simulate 3 datasets from several previously-proposed models

of neural responses. In our simulations, each data-generating model has a latent LDS

state of m = 2 dimensions, as described by Equation (3.1) and Equation (3.2). Fur-

ther, in all data-generating models, spike rates depend linearly on the latent state

variable through a fixed link function f that is common across neurons. Each data-

generating model has a distinct observation model (Equation (3.3)): Bernoulli, Pois-

son, or negative-binomial. We use the logistic link function for Bernoulli observations

and use exponential link functions for the Poisson and negative-binomial distribu-

tions.

We compare PLDS and GCLDS model fits to each of these three datasets, using

both our AEVB algorithm and two EM-based inference algorithms: LapEM (which

approximates the conditional distribution of latent variable p(z|x) with a multivariate

Gaussian by Laplace approximation in the E-step [Macke et al., 2011; Gao et al.,

2015]) and VBDual (which approximates p(z|x) with a multivariate Gaussian by

variational inference, through optimization in the dual space [Emtiyaz Khan et al.,

2013; Gao et al., 2015]). Additionally, we fit PfLDS and GCfLDS models with our

AEVB algorithm. On this linear simulated data we do not expect these nonlinear

techniques to outperform linear methods. In all simulation studies we generate 20

training trials and 20 testing trials, with 100 simulated neurons and 200 time bins for

each trial. In all our numerical experiments with PfLDS and GCfLDS, we use a neural

network with 2 hidden layers, each containing 60 nodes using tanh nonlinearity, to

parameterize fψ(·). Results are averaged across 10 independent repeats.

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 55

When training a model using the AEVB algorithm, we run 500 epochs before

stopping. For LapEM and VBDual, we initialize with nuclear norm minimization

[Pfau et al., 2013] and stop either after 200 iterations or when the ELBO (scaled by

number of time bins) increases by less than ε = 10−9 after one iteration.

We compare the predictive performance and running times of the algorithms in

Table 3.1. For both PLDS and GCLDS, our AEVB algorithm gives results compa-

rable to, though slightly worse than, the LapEM and VBEM algorithms. Although

PfLDS and GCfLDS assume a much more complicated generative model, both provide

comparable predictive performance and running time. We note that while LapEM is

competitive in running time in this relatively small-data setting, the AEVB algorithm

may be more desirable in a large data setting, where it can learn model parameters

even before seeing the full dataset. In constrast, both LapEM and VBDual require a

full pass through the data in the E-step before the M-step parameter updates.

Simulation with “grid cell” type response: A grid cell is a type of neuron that

is activated when an animal occupies any vertex of a grid spanning the environment

[Hafting et al., 2005]. When an animal moves along a one-dimensional line in the

space, grid cells exhibit oscillatory responses. Motivated by the response properties

of grid cells, we simulated a population of 100 spiking neurons with oscillatory link

functions and a shared, one-dimensional input xrt ∈ R given by,

xr1 = 0, (3.20)

xr(t+1) ∼ N (0.99xt, 0.01). (3.21)

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 56

Table 3.1: Simulation results with a linear observation model: Each column contains
results for a distinct experiment. For each generative model and inference algorithm
(one per row), we report the one-step-ahead predictive log likelihood (PLL) and
computation time (in minutes) of the model fit to each dataset.

Bernoulli Poisson Negative-binomial

Model Inference PLL Time PLL Time PLL Time

PLDS

LapEM -0.446 3 -0.385 5 -0.359 5

VBDual -0.446 157 -0.385 170 -0.359 138

AEVB -0.445 50 -0.387 55 -0.363 53

PfLDS AEVB -0.445 56 -0.387 58 -0.362 50

GCLDS

LapEM -0.389 40 -0.385 97 -0.359 101

VBDual -0.389 131 -0.385 126 -0.359 127

AEVB -0.390 69 -0.386 75 -0.361 73

GCfLDS AEVB -0.390 72 -0.386 76 -0.361 68

The log firing rate of each neuron, indexed by i, is coupled to the latent variable xrt

through a sinusoid with a neuron-specific phase φi and frequency ωi

yrit ∼ Poisson (λrit = exp(2 sin(ωixrt + φi)− 2)) . (3.22)

We generated φi uniformly at random in the region [0, 2π] and set ωi = 1 for neurons

with index i ≤ 50 and ωi = 3 for neurons with index i > 50. We simulated 150 training

and 20 testing trials, each with T = 120 time bins. We repeated this simulated

experiment 10 times.

We compare performance of PLDS with PfLDS, both with 1-dimensional latent

variable. As shown in Figure 3.1, PLDS is not able to adapt to the nonlinear and non-

monotonic link function, and cannot recover the true latent variable (left panel and

bottom right panel) or spike rate (upper right panel). On the other hand the PfLDS

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 57

True latent variable

F
itt

ed
 la

te
nt

 v
ar

ia
bl

e

True

PLDS, R2=0.75

PfLDS, R2=0.98

-1 0 1
0

0.5

1

F
iri

ng
 r

at
e

Neuron #49

-1 0 1
True latent variable

0

0.5

1
Neuron #50

-1 0 1
0

0.5

1

1.5
Neuron #51

-1 0 1
0

0.5

1

1.5
Neuron #52

0 20 40 60 80 100 120
Time

La
te

nt
 v

ar
ia

bl
e

True
PLDS
PfLDS

Figure 3.1: Sample simulation result with “grid cell” type response. Left panel: Fit-
ted latent variable compared to true latent variable; Upper right panel: Fitted rate
compared to the true rate for 4 sample neurons; Bottom right panel: Inferred trace
of the latent variable compared to true latent trace. Note that the latent trajectory
for a 1-dimensional latent variable is identifiable up to multiplicative constant, here
we scale the latent variables to lie between 0 and 1.

model captures the nonlinearity well, recovering the true latent trajectory. The one-

step-ahead predictive log likelihood (PLL) on a held-out dataset for PLDS is -0.622

(se=0.006), for PfLDS is -0.581 (se=0.006). A paired t-test for PLL is significant

(p < 10−6).

3.6.2 Real data analysis

We analyze two multi-neuron spike-train datasets, recorded from primary visual cor-

tex and primary motor cortex of the Macaque brain, respectively. We find that fLDS

models outperform PLDS in terms of predictive performance on held out data. Fur-

ther, we find that the latent trajectories uncovered by fLDS are lower-dimensional

and more structured than those recovered by PLDS.

Macaque V1 with drifting grating stimulus with single orientation: The

dataset consists of 148 neurons simultaneously recorded from the primary visual cor-

tex (area V1) of an anesthetized macaque, as described in Graf et al. [2011] (array 5).

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 58

Data were recorded while the monkey watched a 1280ms movie of a sinusoidal grating

drifting in one of 72 orientations: (0◦, 5◦, 10◦,...). Each of the 72 orientations was

repeated R = 50 times. We analyze the spike activity from 300ms to 1200ms after

stimulus onset. We discretize the data at ∆t = 10ms, resulting in T = 90 timepoints

per trial. Following Graf et al. [2011], we consider the 63 neurons with well-behaved

tuning-curves. We performed both single-orientation and whole-dataset analysis.

We first use 12 equal spaced grating orientation (0◦, 30◦, 60◦,...) and analyze each

orientation separately. To increase sample size, for each orientation we pool data

from the 2 neighboring orientations (e.g. for orientation 0◦, we include data from

orientation 5◦and 355◦), thereby getting 150 trials for each dataset (we find similar,

but more variable, results when we do not include neighboring orientations). For

each orientation, we divide the data into 120 training trials and 30 testing trials.

For PfLDS we further divide the 120 training trials into 110 trials for fitting and 10

trials for validation (we use the ELBO on validation set to determine when to stop

training). We do not include a stimulus model, but rather perform unsupervised

learning to recover a low-dimensional representation that combines both internal and

stimulus-driven dynamics.

We take orientation 0◦as an example (the other orientations exhibit a similar

pattern) and compare the fitted result of PLDS and PfLDS with a 2-dimensional la-

tent space, which should in principle adequately capture the oscillatory pattern of the

neural responses. We find that PfLDS is able to capture the nonlinear response chara-

teristics of V1 complex cells (Figure 3.2(a), black line), while PLDS can only reliably

capture linear responses (Figure 3.2(a), blue line). In Figure 3.2(b)(c) we project all

trajectories onto the 2-dimensional latent manifold described by the PfLDS. We find

that both techniques recover a manifold that reveals the rotational structure of the

data; however, by offsetting the nonlinear features of the data into the observation

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 59

model, PfLDS recovers a much cleaner latent representation(Figure 3.2(c)).

We assess the model fitting quality by one-step-ahead prediction on a held-out

dataset; we compare both percentage mean squared error (MSE) reduction and neg-

ative predictive log likelihood (NLL) reduction. We find that PfLDS recovers more

compact representations than the PLDS, for the same performance in MSE and NLL.

We illustrate this in Figure 3.2(d)(e), where PLDS requires approximately 10 latent

dimensions to obtain the same predictive performance as an PfLDS with 3 latent

dimensions. This result makes intuitive sense: during the stimulus-driven portion of

the experiment, neural activity is driven primarily by a low-dimensional, oscillatory

stimulus drive (the drifting grating). We find that the highly nonlinear generative

models used by PfLDS lead to lower -dimensional and hencemore interpretable latent-

variable representations.

(a) (b) PLDS (c) PfLDS

0

50

100
Neuron #77

0

50

100

F
iri

ng
 r

at
e

(s
pi

ke
/s

)

Neuron #115
True
PLDS
PfLDS

300 600 900 1200
Time after stimulus onset (ms)

0

50

100
Neuron #145

300 600 900 1200
Time after stimulus onset (ms)

(d) (e)

2 4 6 8 10
Latent dimensionality

0

5

10

15

%
 M

S
E

 r
ed

uc
tio

n

2 4 6 8 10
Latent dimensionality

0

5

10

15

20

%
 N

LL
 r

ed
uc

tio
n

Figure 3.2: Results for fits to Macaque V1 data (single orientation) (a) Comparing
true firing rate (black line) with fitted rate from PLDS (blue) and PfLDS (red) with
2 dimensional latent space for selected neurons (orientation 0◦, averaged across all
120 training trials); (b)(c) 2D latent-space embeddings of 10 sample training trials,
color denotes phase of the grating stimulus (orientation 0◦); (d)(e) Predictive mean
square error (MSE) and predictive negative log likelihood (NLL) reduction with one-
step-ahead prediction, compared to a baseline model (homogeneous Poisson process).
Results are averaged across 12 orientations.

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 60

To compare the performance of PLDS and PfLDS on the whole dataset, we use

10 trials from each of the 72 grating orientations (720 trials in total) as a training

set, and 1 trial from each orientation as a test set. For PfLDS we further divide the

720 trials into 648 for fitting and 72 for validation. We observe in Figure 3.3(a)(b)

that PfLDS again provides much better predictive performance with a small number

of latent dimensions. We also find that for PfLDS with 4 latent dimensions, when

we projected the observation into the latent space and take the first 3 principal

components, the trajectory forms a torus (Figure 3.3(c)). Once again, this result

has an intuitive appeal: just as the sinusoidal stimuli (for a fixed orientation, across

time) are naturally embedded into a 2D ring, stimulus variation in orientation (at a

fixed time) also has a natural circular symmetry. Taken together, the stimulus has

a natural toroidal topology. We find that fLDS is capable of uncovering this latent

structure. A video for the 3D embedding can be found at https://www.dropbox.

com/s/cluev4fzfsob4q9/video_fLDS.mp4?dl=0

(a) (b) (c)

2 4 6 8 10
Latent dimensionality

0

5

10

15

%
 M

S
E

 r
ed

uc
tio

n

2 4 6 8 10
Latent dimensionality

0

5

10

15

20

%
 N

LL
 r

ed
uc

tio
n

PLDS
PfLDS

500ms after stimulus onset

0

50

100

150

G
ra

tin
g

or
ie

nt
at

io
n

(d
eg

re
e)

Figure 3.3: Macaque V1 data fitting result (full data) (a)(b) Predictive MSE and
NLL reduction. (c) 3D embedding of the mean latent trajectory of the neuron activity
during 300ms to 500ms after stimulus onset across grating orientations 0◦, 5◦, ..., 175◦,
here we use PfLDS with 4 latent dimensions and then project the result on the first
3 principal components.

Macaque center-out reaching data: We analyzed the neural population data

recorded from the Macaque motor cortex(G20040123), details of which can be found

https://www.dropbox.com/s/cluev4fzfsob4q9/video_fLDS.mp4?dl=0
https://www.dropbox.com/s/cluev4fzfsob4q9/video_fLDS.mp4?dl=0

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 61

in Yu et al. [2009]; Macke et al. [2011]. Briefly, the data consist of simultaneous

recordings of 105 neurons for 56 cued reaches from the center of a screen to 14

peripheral targets. We analyze the reaching period (50ms before and 370ms after

movement onset) for each trial. We discretize the data at ∆t = 20ms, resulting in

T = 21 timepoints per trial. For each target we use 50 training trials and 6 testing

trials and fit all the 14 reaching targets together (making 700 training trials and 84

testing trials). We use both Poisson and GC noise models, as GC has the flexibility

to capture the noted under-dispersion of the data [Gao et al., 2015]. We compare

both PLDS and PfLDS as well as GCLDS and GCfLDS fits. For both PfLDS and

GCfLDS we further divide the training trials into 630 for fitting and 70 for validation.

(a)Reaching trajectory (b) PLDS (c) PfLDS (d)

2 4 6 8
Latent dimensionality

4

6

8

10

12

%
 N

LL
 r

ed
uc

tio
n

PLDS
PfLDS
GCLDS
GCfLDS

Figure 3.4: Macaque center-out reaching data analysis: (a) 5 sample reaching trajec-
tory for each of the 14 target locations. Directions are coded by different color, and
distances are coded by different marker size; (b)(c) 2D embeddings of neuron activity
extracted by PLDS and PfLDS, circles represent 50ms before movement onset and
triangles represent 340ms after movement onset. Here 5 training reaches for each
target location are plotted; (d) Predictive negative log likelihood (NLL) reduction
with one-step-ahead prediction.

As is shown in figure Figure 3.4(d), PfLDS and GCfLDS with latent dimension 2

or 3 outperforms their linear counterparts with much larger latent dimensions. We

also find that GCLDS and GCfLDS models give much better predictive likelihood

than their Poisson counterparts.On figure Figure 3.4(b)(c) we project the neural ac-

tivities on the 2 dimensional latent space. We find that PfLDS (Figure 3.4(c)) clearly

separates the reaching trajectories and orders them in exact correspondence with the

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 62

true the spatial location of the targets.

3.7 Discussion

We have proposed fLDS, a modeling framework for high-dimensional neural pop-

ulation data that extends previous latent, low-dimensional linear dynamical system

models with a flexible, nonlinear observation model. Additionally, we described an ef-

ficient variational inference algorithm suitable for fitting a broad class of LDS models

– including several previously-proposed models.

We illustrate in both simulation and application to real data that, even when

a neural population is modulated by a low-dimensional linear dynamics, a latent

variable model with a linear rate function fails to capture the true low-dimensional

structure. In constrast, a fLDS can recover the low-dimensional structure, providing

better predictive performance more interpretable latent-variable representations.

Our approach is distinct from related manifold learning methods [Roweis and Saul,

2000; Tenenbaum et al., 2000].While most manifold learning techniques rely primarily

on the notion of nearest neighbors, we exploit the temporal structure of the data by

imposing strong prior assumption about the dynamics of our latent space. Further,

in contrast to most manifold learning approaches, our approach includes an explicit

generative model that lends itself naturally to inference and prediction, and allows

for count-valued observations that account for the discrete nature of neural data.

Further, while an arbitrary nonlinear rate provides great flexibility, our inference

approach also permits more structured generative models designed to account for

applications with more background knowledge on the data generating process. Future

work includes relaxing the latent linear dynamical system assumption to incorporate

more flexible latent dynamics (for example, by using a Gaussian process prior [Zhao

CHAPTER 3. LINEAR DYNAMICAL NEURAL POPULATION MODELS
THROUGH NONLINEAR EMBEDDINGS 63

and Park, 2016] or by incorporating a nonlinear dynamical phase space [Frigola et

al., 2014]). We also anticipate our approach may be useful in applications to neural

decoding and prosthetics: once trained, our approximate posterior may be evaluated

in close to real-time.

64

Part II

Region of Interest Detection for

Calcium Imaging Data

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 65

Chapter 4

Region of Interest Detection for

Calcium Imaging Data

The previous chapters aim at building statistical models to describe the structure

of neural activities based on given spike train data. In real data analysis, extracting

neural signal from noisy, indirect observations of the signal is an important and highly

non-trivial first step.

Calcium imaging data is an optical imaging method that enables simultaneous

recording of large neural populations at cellular resolution [Ahrens and Keller, 2013;

Prevedel et al., 2014]. The observation can be represented as (2D or 3D) movie data,

where the neuron activity of a single neuron is represented as a spatially-localized

fluorescent signal that varies across time. Manually identifying neurons from calcium

imaging data can be time-consuming when a large neural population is recorded

(currently on the scale of hundreds of thousands of neurons), and is also complicated

by the overlapping of neural signals. Therefore, a principled way of automatically

de-mixing neuron activities is highly desirable.

This chapter discusses a fast greedy method for detecting regions of interest (ROI)

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 66

from calcium imaging data based on structured matrix factorization formulation.

The method is fast and effective, and can serve both as a stand-alone ROI detection

method or as a good initialization of the more complicated method.

Part of the work described in this chapter is published as part of a larger joint

work [Pnevmatikakis et al., 2016] in collaboration with Eftychios A. Pnevmatikakis,

Daniel Soudry, Timothy A. Machado, Josh Merel, David Pfau, Thomas Reardon, Yu

Mu, Clay Lacefield, Weijian Yang, Misha Ahrens, Randy Bruno, Thomas M. Jessell,

Darcy S. Peterka, Rafael Yuste, Liam Paninski. Code for the joint work can be found

at https://github.com/epnev/ca_source_extraction

4.1 Introduction

The basic principle of calcium imaging is that the spiking activity of a neuron induce

a transient increase in calcium concentration, which can be indirectly observed by

recording the fluorescent properties of certain calcium indicators [Ahrens and Keller,

2013; Prevedel et al., 2014]. The technique allows simultaneous recording from hun-

dreds of thousands of neurons, providing crucial datasets for understanding the neural

population behavior.

Recovering spike trains from calcium imaging data involves two inter-linked steps:

ROI detection and calcium deconvolution. ROI detection refers to detecting the

regions from the image data that correspond to neurons, while calcium deconvolution

refers to recovering spike times from noisy calcium observation data. Here we focus

on ROI detection, and propose a method that decomposes the calcium imaging data

into neuron location and the corresponding calcium activity.

Due to the recent popularity of calcium imaging techniques, many methods have

been proposed for ROI detection. One line of research directly uses the fact that pixels

https://github.com/epnev/ca_source_extraction

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 67

belonging to the same neuron should have high temporal correlation, and identifies a

pixel to be in the region of interest (ROI) when it’s highly correlated with adjacent

pixels [Smith and Häusser, 2010; Portugues et al., 2014]. Intuitive and fast as this

approach is, further steps are usually needed to separate individual neurons in the

ROI. When the neurons are densely packed in the image, the identified ROI may

almost cover the whole image, which doesn’t provide much information.

Another line of research exploits the fact that neurons tend to have similar size

and shape. Pachitariu et al. [2013] proposes a generative model which assumes that

the shape of each neuron can be generated by a linear combination of several (local-

ized) basis functions. Neuron identification is then performed by alternating between

identifying location of the neurons by matching pursuit using given basis and tuning

the shape of the bases using K-SVD or gradient descent. Though successfully exploit-

ing the localized shape of neurons, the algorithm can only be used to analyze a single

image (the mean image of the calcium imaging data) instead of the whole video, and

therefore does not exploit the temporal structure of the data. When the neurons are

densely packed in the image, the performance of the algorithm will deteriorate. Also,

assuming a parametric form of the neuron shape can be too stringent.

Several attempts have been made for ROI detection using dictionary learning or

matrix factorization techniques. Denote X ∈ RN×T to be the calcium imaging movie,

where each column is a (vectorized) image with N pixels, the general idea is to de-

compose the matrix into X ≈ DAT , where each column of D ∈ RN×K contains the

shape of a neuron and each column of A ∈ RT×K is the calcium activity of the cor-

responding neuron. Mukamel et al. [2009] proposes the PCA-ICA pipeline, which

first uses principle component analysis (PCA) to de-noise the data and then uses

independent component analysis (ICA) (together with other ad-hoc post-processing)

to extract neuron locations. Diego et al. [2013] uses (online) matrix factorization

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 68

technique with sparsity penalties to learn the neuron shape and calcium activity.

Maruyama et al. [2014] uses non-negative matrix factorization technique. By exploit-

ing the fact that pixels belonging to the same neuron tend to fluoresce together, these

algorithms achieve a certain amount of success. One common problem with this kind

of approaches is that the extracted features are usually not localized. In real data,

correlated neurons that tends to fire together are prevalent, and as a result, each

dictionary element can contain several neurons, and one neuron may also appear in

several elements. Another problem is the ability to determine the number of neurons

automatically. Though certain heuristics have been proposed, the task is generally

hard.

In this chapter we propose a greedy algorithm that combines matching pursuit

with matrix factorization. In each iteration, we use the full temporal data to iden-

tify the region that has the most significant calcium activity over time. Then we

apply regularized matrix factorization to the small patch to fine-tune the shape of

the neuron. Experiments on simulated and real data show that the algorithm can

automatically infer the location of neurons.

4.2 Algorithm

4.2.1 Problem formulation

Recall that X is a N × T matrix representing calcium imaging video, where each

column is a (vectorized) frame that contains N pixels (when converted to the 2D

images, the column has dimension nx × ny). Assume there are K neurons in the

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 69

video, then we assume that the data can be decomposed into

X = DAT + ε,

where D ∈ RN×K represents the neuron shape, and A ∈ RT×K represents the calcium

activities. ε ∈ RN×T is the random noise. This leads to a natural optimization

problem based on matrix factorization:

min
D∈D,A∈A

‖X −DAT‖22 + fD(D) + fA(A).

Here ‖ · ‖2 is the Euclidean norm, D and A are the feasible sets for D and A that

enforce certain hard constraint to the neuron shape and calcium activity. For example,

Maruyama et al. [2014] restricts D and A to be non-negative, which reduces the

problem into the well-established non-negative matrix factorization technique [Lee

and Seung, 1999]. fD(·) and fA(·) are penalties that encourages certain structure in

neuron shape and calcium trace. For example, Diego et al. [2013] enforces sparsity

by adding Lasso penalty.

Natural and flexible as it is, current algorithms using matrix factorization usually

ignore that the shape of each neuron is localized and smooth. As a result, each learnt

dictionary element usually contains several neurons and post-processing is usually

needed to separate the neurons. To enforce localization in matrix factorization tech-

nique, one possible way would be to add certain penalty to each column of D, as

is proposed by Jenatton et al. [2009]. However, experiments shows that the learnt

elements are usually not sparse enough and the algorithm tends to be unstable.

Instead of using penalty terms to enforce localization, we want to directly constrain

the nonzero elements of each dictionary elements to be in a small region. Specifically,

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 70

denote D+
w ⊂ RN to be the set of all non-negative vectors whose nonzero elements

lie in some w×w square (when converted to the 2D image), where w are set to be a

little larger than the typical neuron diameter and are usually much smaller than the

full image size. Now we would like to solve the optimization problem,

minimize
D,A

‖X −DAT‖22 + fD(D),

subject to Dk ∈ D+
w ; k = 1, . . . , K,

‖Ak‖2 ≤ ck,

(4.1)

where Dk and Ak are the kth column of D and A, respectively. fD(·) are some smooth

penalty that will be discussed later in section 4.2.3. We restrict ‖Ak‖2 ≤ ck to avoid

degenerate solution of D. We can add more biological plausible constraints to A

following Pnevmatikakis and Paninski [2013], but here we do not consider those con-

straints because the data we are dealing with have low temporal resolution, which

makes the temporal structure less informative. Details of the constraints and regu-

larizations will be discussed in section 4.2.3.

4.2.2 Greedy algorithm

The formulation of Equation (4.1) is similar to best-subset selection, which aims to

choose the most significant covariates to do regression on dependent variable. Here

we aim to choose the most significant K neuron locations to explain the variability

of the whole movie. As is the case in best-subset selection, solving (4.1) exactly

is challenging because the constraint Dk ∈ D+
w , k = 1, . . . , K is highly non-convex.

Instead, we propose to approximate the solution using a greedy algorithm.

A description of the greedy algorithm is given in algorithm 1. For each pixel, we

construct a 2D Gaussian kernel centered at that pixel with a standard deviation τ

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 71

similar to the size of a neuron, and use the kernel to fit the residue from the last

iteration. Then pick the location that explains the most variance of the whole movie.

To refine the shape of the identified neuron, we extract the small patch of movie

centered at the identified location and do a regularized matrix factorization to be

discussed in section 4.2.3. Then we subtract the influence of the chosen neuron to

update the residue.

Algorithm 1 Greedy neuron identification (GreedyId)
Require: (Centered) data X ∈ RN×T ; number of neurons K; standard deviation for

Gaussian kernel τ ; window size w. Procedure GreedyId(Y , K, τ , w)

1: R = Y ;

2: for k = 1 : K do

3: Calculate variance explained by each Gaussian kernel: ρ = GTR, vp =∑T
t=1 ρ

2
pt, where G = G(τ, w) ∈ RN×N is the Gaussian blur matrix. i.e. G:p is

a 2D Gaussian kernel centered at pixel p with standard deviation τ and window

size w.

4: Identify neuron center: pk = arg maxp vp

5: Initialize Ak = G:pk , Dk = ρpk:

6: Fine tune the shape of the identified neuron to get a refined Dk and Ak (see

section 4.2.3)

7: R← R− AkCk;

8: end for

9: return A = [A1, ..., AK], D = [DT
1 , ..., D

T
K]T , P = {pk}Kk=1.

The greedy algorithm we use is reminiscent of the forward-selection procedure in

linear regression. Each time the basis that explains the most variance is identified.

The reason we use a Gaussian kernel here is that empirically the shape of a neuron re-

sembles a Gaussian kernel. However, other filters such as a constant two-dimensional

square (which makes ρpt a local average in a certain small region) can also be applied.

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 72

By using fast Fourier transformation (FFT), the computation of ρ scales gracefully

with the dimension of the image. Also notice that after the first iteration, the update

of ρ can be done locally since only a local part of the residual is updated.

Instead of using a fixed Gaussian kernel, more elaborate searching scheme can

be used to adapt to the variable shape of the neurons. One possible improvements

would be to follow Pachitariu et al. [2013], which assumes that the shape of a neuron

can be written as a linear combination of several basis. Here we fine-tune the neuron

shape in each iteration to adapt to the variable shapes of the neurons. We discuss

our method in 4.2.3.

4.2.3 Shape fine-tuning

Since the shape of the neuron is similar to but not exactly the same as a Gaussian

kernel, after identifying the neuron center at each iteration, we want to refine the

neuron shape. Here we propose a regularized matrix factorization technique to de-

compose the small movie patch using a one-dimensional matrix factorization. Denote

Sk as the set of all the pixels that lie in the small square centered at pixel pk with

width = height = w, then at iteration k, we propose the optimization problem

minimize
Dk,Ak

‖R−DkA
T
k ‖2 +

3∑
i=1

λifi(Dk),

subject to Dkp ≥ 0, p ∈ Sk,

Dkp = 0, p /∈ Sk,

‖Ak‖2 ≤ ck,

(4.2)

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 73

where we propose the following three penalties to regularize Dk:

f1(Dk) =
∑
p

τ(p,pk)|Dkp|,

f2(Dk) =
∑
p

(Dkp −Gpk)
2,

f3(Dk) =
∑

p1 and p2 are neighbors

(Dkp1 −Dkp2)
2.

Here f1 is a Lasso penalty that serves to de-noise the margin of the neuron to enforce

sparsity. Note that we define τp so that different pixels get penalized differently. In

application, we can set τp,pk to be 0 when pixel p is close to the identified center pk,

and set a large τp,pk to be larger when p is far from pk. f2 encourages the neuron shape

to be similar to a Gaussian kernel, which is not necessarily desirable when neurons

have variable shapes. f3 is the fused ridge term that encourages the neuron shape to

be smooth, which is generally desirable.

The constraint ‖Ak‖2 ≤ ck is necessary since if we use unconstrained Ak, the

optimal solution will send Dk to 0 and Ak to infinity. Here we set ck to be the initial

norm of Ak (see Algorithm 1 for how Ak is initialized). This allows regularization to

be applied more or less uniformly across neurons. If we set ck to be the same across

neuron k, then the shape of the neurons with large signals will be penalized more,

which is unreasonable. In fact, we may even want to regularize neurons with large

signals less since we have more information, but we do not discuss the choices here.

Problem (4.2) can be (approximately) solved efficiently. Since we enforce the

nonzero elements of Dk to lie in Sk, when doing matrix factorization we only need

to use the data restricted at region Sk. We use block-coordinate descent to solve

(4.2) with Dk restricted in Sk. Specifically, we alternate between optimizing Dk and

optimizing Ak. When λ3 = 0, each block-coordinate descent step can be decomposed

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 74

into one-dimensional optimization subproblems that can be analytically solved. For

λ3 > 0, solving Dk for fixed Ak is trickier due to the interaction brought by the

penalty. In this case we do several coordinate descent iterations to each element of

Dk to approximate the optimization step.

Since the problem is bi-convex but not jointly convex, the algorithm may converge

into local-minimum. However, since we have a reasonable initializer (we use Gaussian

kernel as initializer for Dk), empirically we found that the algorithm gives reasonable

result. In fact, when the data is noisy and the regularization parameter is small,

we observed that doing too many coordinate descent adds noise to the learnt neuron

component. And we recommend just a finite small number of coordinate descent (3

for example), for both the computational speed and the quality of the neuron shape.

We note that while the penalties make intuitive sense, we need to be careful about

setting the regularization parameters λi. When we regularize too much, the identified

shape will shrink towards 0, leaving extra signals in the residue and causing one neuron

to be identified multiple times. When we have a large enough time domain, we may

want to use only a small amount of regularization.

4.2.4 Other details

Background elimination: In real data we usually have constant background calcium

activity. When the background is present, we pre-process the data by subtracting each

pixel with its temporal median. The rationale is that the neuron spikes rarely and

therefore most of the time the signal we observe is purely background with random

noise, and therefore taking median gives a robust estimate of the background. In

the more complicated cases we can have time-varying background activity, which

confounds with the single neuron activity. More advanced method for background

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 75

elimination has been proposed after this work was done [Pnevmatikakis et al., 2016;

Zhou et al., 2016].

Stopping rule: To complete our algorithm, we need a rule to decide when to stop.

One possible way would be to first manually estimate the number of neurons K, and

stop at the Kth iteration. Another way is to pre-specify a threshold for the minimum

explained variance vmin and stop when maxp vp < vmin. We observe empirically that

the latter stopping rule is robust and useful for parallel processing of calcium imaging

data.

Handling 3D imaging data: We also have 3-D movie dataset, where calcium activ-

ity at different sections of the brain are recorded simultaneously (or to be precise, with

very short time lag), therefore giving a 4-D data. Our algorithm can be easily adapted

to this case by using a 3D Gaussian kernel or analyzing each z-slice separately.

Recovering spike train from calcium observation: After identifying the neuron

shape, we can proceed to get the spike train of each neuron using existing de-

convolution methods [Vogelstein et al., 2009; Friedrich and Paninski, 2016].

4.3 Experiments

4.3.1 Simulation examples

We first tested our algorithm on simulated data. We tried two simulations, in both

settings, K = 20 locations are randomly chosen from the nx×ny = 200× 200 images

to be the center of neurons, and T = 200 time bins are generated. For each neuron,

the spike train are randomly generated using a Poisson process and the intensity of

each neuron is also varying. White noise is added to the signal such that the mean

image of the 200 frames are blurred. The only difference in the two simulations is

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 76

that in the first simulation, we set the shape of neurons to be Gaussian kernel with

standard deviation τ = 5 while in the second simulation we generate the shape of

neurons to be the difference of two (scaled) Gaussian densities with different variances

(τ1 = 5, τ2 = 3.5) at the same center, which gives a ring shape.

In both simulations, we use greedy algorithm to infer the neuron center. The

number of neurons are set to be the true value and the Gaussian kernel used for

greedy search is set to have standard deviation τ = 5 and window size w = 35. For

fine-tuning the shape of neurons, we only enforce positivity and drop all the other

regularization (λ1 = λ2 = λ3 = 0).

Figure 4.3.1 shows the simulation result for both the Gaussian kernel shaped data

(top row) and ring shaped data (bottom row). Left column compares the true neuron

location (blue ‘∗’) with the inferred location (numbers indicating the order by which

the neuron is added), plotted on the mean image of the simulated data. Right column

compares the true neuron shape (top left sub-figure) with the inferred neuron shape

(other sub-figures). We see that our algorithm is quite robust to neuron shapes and

is able to identify basically all the neuron locations very well. It also recovers the

neuron shape reasonably well. When neurons are fairly close (neuron 3, 8, 14), the

inferred shape gets distorted, showing the deficiency of the algorithm. Yet we note

that this can be solved by doing a global fine-tuning after the initialization, which is

elaborated in Pnevmatikakis et al. [2016].

4.3.2 Real data analysis

We apply our algorithm on a small patch of the 2-D movie from the brain of a

zebrafish [Ahrens and Keller, 2013]. The movie has 100 time bins and each image has

size 400-by-150. We apply two variants of our algorithm with different regularization

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 77

Gaussian kernel shape

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

TrueTrue 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

Ring shape

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

TrueTrue 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

Figure 4.1: Simulated calcium data.

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 78

to the data. For the “plain algorithm”, we simply enforce the neuron shape to be non-

negative. For the “smoothing algorithm”, we add penalty to enforce smoothness and

localization to the neuron shape (λ1 > 0, λ3 > 0). For both algorithms, we manually

set the number of neurons to be 30. For both algorithms we preprocess the data by

subtracting the median image (for each pixel taking the median across image).

Figure 4.2 shows the result for “plain algorithm” (top row) and “smoothing algo-

rithm” (bottom row). Left column plots the true neuron location inferred location

(numbers indicating the order by which the neuron is added) on the mean image of

the data. Right column plots the inferred neuron shape. The two algorithms infer

similar neuron locations while the “smoothing algorithm” provides more reasonable

neuron shapes.

Plain method

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16
17

18

19

20

21

22
23 24

25

26

27

28 29

30

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Smoothing method

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16
17

18

19

20

21

22
23 24

25

26

27

28

29

30

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Figure 4.2: Real calcium data.

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 79

We then tested our method on a big dataset of [Ahrens and Keller, 2013], which

contains the whole-brain data recordings for 1000 time frames. The image is of the

dimension 1472×2048×28. To facilitate computation, we split data into 400×400×1

patches, with a stride of (200, 200, 1). Here we use the “plain method” since we have

a fairly long time domain.

We perform ROI detection on each patch separately and then merge them. We

eliminate redundant neurons for overlapping patches when the identified neurons on

overlapping patches are spatially close and share similar traces. We plot the inferred

neuron locations in image 4.3. While more analysis should be done to measure the

quality of the detected neurons, the identified neurons agree well with the shape of

the brain of the zebra fish.

Figure 4.3: ROI detection for the full Misha data, each sub-figure represents a z-slice.

CHAPTER 4. REGION OF INTEREST DETECTION FOR CALCIUM
IMAGING DATA 80

4.4 Discussion

In this chapter we developed a new algorithm for automatic neuron identification in

calcium imaging data. By using a variant of matching pursuit for temporal-spatial

data, the algorithm encourages the neuron shape to be localized and have biologically

plausible shape. By doing matrix factorization locally, we further exploits the spatial-

temporal characteristic of neurons. The temporal structure of the data (smoothness

and calcium convolution) can be further exploited when the data has high temporal

resolution. The ability of the algorithm to handle densely packed regions can be

limited due to the greedy fashion of the method. For animals with unconstrained

behavior, more advanced motion correction or object tracking methods should be

applied as a first step.

After this work was done, several other works have been proposed for calcium

imaging processing. Pnevmatikakis et al. [2016] used our algorithm as an initialization

method and develops methods to refine the neuron shape, add and drop neurons,

and also recover spikes from calcium traces. Zhou et al. [2016] proposed methods

for eliminating noisy background by identifying background with locally low-rank

approximation and proposed a new greedy initialization algorithm. Pnevmatikakis

and Giovannucci [2017] proposed an online algorithm for calcium imaging processing

that also involves a non-rigid motion correction of the data.

81

Part III

Maximum Entropy Flow Networks

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 82

Chapter 5

Maximum Entropy Flow Network

This chapter discusses a method that is related to and motivated by formulating

scientific hypothesis testing in neural population data analysis, but can be used in a

much broader domain.

With the abundance of large scale neural population recordings, systematic neu-

roscientists have proposed many population-level analysis techniques and many hy-

potheses about the neural population structure. One important question to ask is

whether those newly identified population structures are meaningful or epiphenom-

enal? Are those population structures just a consequence of the simpler structures

that are already already known, such as the tuning of single neurons or the temporal

correlation? This question causes debate for the significance of population structures

and a hypothesis testing framework for epiphenomena is important for resolving the

debate.

A natural idea for this hypothesis testing framework is to generate a random fake

data that follow a null distribution which share the known, simple neural properties

with the true observation, and see whether the newly found population structures

also appear in fake data. One challenge here is to generate fake data that share the

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 83

simpler, known structures and are yet random enough. Maximum entropy modeling

is a flexible and popular framework for formulating statistical models given partial

knowledge [Jaynes, 1957]. The distribution with the maximum entropy that satisfies

certain constraints is regarded as the least biased distribution among all given the

constraints. Therefore maximum entropy distributions are often used, in neuroscience

or other areas, to build statistical models or for fomulating a null distribution for

hypothesis testing [Good, 1963; Schneidman et al., 2006; Tang et al., 2008].

This chapter discusses a way of sampling (approximately) from a continuous max-

imum entropy distribution given complicated constraint, a challenging computational

problem. Rather than the traditional method of optimizing over the continuous den-

sity directly, we learn a smooth and invertible transformation that maps a simple

distribution to the desired maximum entropy distribution. Doing so is nontrivial

in that the objective being maximized (entropy) is a function of the density itself.

By exploiting recent developments in normalizing flow networks, we cast the maxi-

mum entropy problem into a finite-dimensional constrained optimization, and solve

the problem by combining stochastic optimization with the augmented Lagrangian

method. Applications to finance and computer vision show the flexibility and accu-

racy of using maximum entropy flow networks.

This work, which was published as Loaiza-Ganem et al. [2017], was done with

Gabriel Loaiza-Ganem and John Cunningham. I was heavily involved with every

aspect of the paper.

5.1 Introduction

The maximum entropy (ME) principle [Jaynes, 1957] states that subject to some given

prior knowledge, typically some given list of moment constraints, the distribution that

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 84

makes minimal additional assumptions – and is therefore appropriate for a range of

applications from hypothesis testing to price forecasting to texture synthesis – is that

which has the largest entropy of any distribution obeying those constraints. First

introduced in statistical mechanics by Jaynes [1957], and considered both celebrated

and controversial, ME has been extensively applied in areas including natural lan-

guage processing [Berger et al., 1996], ecology [Phillips et al., 2006], finance [Buchen

and Kelly, 1996], computer vision [Zhu et al., 1998], and many more.

Continuous ME modeling problems typically include certain expectation con-

straints, and are usually solved by introducing Lagrange multipliers, which under

typical assumptions yields an exponential family distribution (also called Gibbs dis-

tribution) with natural parameters such that the expectation constraints are obeyed.

Unfortunately, fitting ME distributions in even modest dimensions poses significant

challenges. First, optimizing the Lagrangian for a Gibbs distribution requires evalu-

ating the normalizing constant, which is in general computationally very costly and

error prone. Secondly, in all but the rarest cases, there is no way to draw samples

independently and identically from this Gibbs distribution, even if one could derive it.

Third, unlike in the discrete case where a number of recent and exciting works have

addressed the problem of estimating entropy from discrete-valued data [Jiao et al.,

2015; Valiant and Valiant, 2013], estimating differential entropy from data samples

remains inefficient and typically biased. These shortcomings are critical and costly,

given the common use of ME distributions for generating reference data samples for

a null distribution of a test statistic. There is thus ample need for a method that can

both solve the ME problem and produce a solution that is easy and fast to sample.

In this paper we develop maximum entropy flow networks (MEFN), a stochastic-

optimization-based framework and algorithm for fitting continuous maximum entropy

models. Two key steps are required. First, conceptually, we replace the idea of max-

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 85

imizing entropy over a density directly with maximizing, over the parameter space

of an indexed function family, the entropy of the density induced by mapping a

simple distribution (a Gaussian) through that optimized function. Modern neural

networks, particularly in variational inference [Kingma and Welling, 2013; Rezende

and Mohamed, 2015], have successfully employed this same idea to generate complex

distributions, and we look to similar technologies. Secondly, unlike most other ob-

jectives in this network literature, the entropy objective itself requires evaluation of

the target density directly, which is unavailable in most traditional architectures. We

overcome this potential issue by learning a smooth, invertible transformation that

maps a simple distribution to an (approximate) ME distribution. Recent develop-

ments in normalizing flows [Rezende and Mohamed, 2015; Dinh et al., 2016] allow

us to avoid biased and computationally inefficient estimators of differential entropy

(such as the nearest-neighbor class of estimators like that of Kozachenko-Leonenko;

see Berrett et al. [2016]). Our approach avoids calculation of normalizing constants

by learning a map with an easy-to-compute Jacobian, yielding tractable probability

density computation. The resulting transformation also allows us to reliably generate

iid samples from the learned ME distribution. We demonstrate MEFN in detail in

examples where we can access ground truth, and then we demonstrate further the

ability of MEFN networks in equity option prices fitting and texture synthesis.

Primary contributions of this work include: (i) addressing the substantial need

for methods to sample ME distributions; (ii) introducing ME problems, and the

value of including entropy in a range of generative modeling problems, to the deep

learning community; (iii) the novel use of constrained optimization for a deep learning

application; and (iv) the application of MEFN to option pricing and texture synthesis,

where in the latter we show significant increase in the diversity of synthesized textures

(over current state of the art) by using MEFN.

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 86

5.2 Background

5.2.1 Maximum entropy modeling and Gibbs distribution

We consider a continuous random variable Z ∈ Z ⊆ Rd with density p, where p has

differential entropy H(p) = −
´
p(z) log p(z)dz and support supp(p). The goal of ME

modeling is to find, and then be able to easily sample from, the maximum entropy

distribution given a set of moment and support constraints, namely the solution to:

p∗ = maximize H(p) (5.1)

subject to EZ∼p[T (Z)] = 0

supp(p) = Z,

where T (z) = (T1(z), ..., Tm(z)) : Z → Rm is the vector of known (assumed

sufficient) statistics, and Z is the given support of the distribution. Under standard

regularity conditions, the optimization problem can be solved by Lagrange multipliers,

yielding an exponential family p∗ of the form:

p∗(z) ∝ eη
>T (z)

1(z ∈ Z) (5.2)

where η ∈ Rm is the choice of natural parameters of p∗ such that Ep∗ [T (Z)] = 0.

Despite this simple form, these distributions are only in rare cases tractable from the

standpoint of calculating η, calculating the normalizing constant of p∗, and sampling

from the resulting distribution. There is extensive literature on finding η numeri-

cally [Darroch and Ratcliff, 1972; Salakhutdinov et al., 2002; Della Pietra et al., 1997;

Dudik et al., 2004; Malouf, 2002; Collins et al., 2002], but doing so requires comput-

ing normalizing constants, which poses a challenge even for problems with modest

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 87

dimensions. Also, even if η is correctly found, it is still not trivial to sample from

p∗. Problem-specific sampling methods (such as importance sampling, MCMC, etc.)

have to be designed and used, which is in general challenging (burn-in, mixing time,

etc.) and computationally burdensome.

5.2.2 Normalizing flows

Following Rezende and Mohamed [2015], we define a normalizing flow as the trans-

formation of a probability density through a sequence of invertible mappings. Nor-

malizing flows provide an elegant way of generating a complicated distribution while

maintaining tractable density evaluation. Starting with a simple distribution Z0 ∈

Rd ∼ p0 (usually taken to be a standard multivariate Gaussian), and by applying

k invertible and smooth functions fi : Rd → Rd(i = 1, ..., k), the resulting variable

Zk = fk ◦ fk−1 ◦ · · · ◦ f1(Z0) has density:

pk(zk) = p0(f
−1
1 ◦ f−12 ◦ · · · ◦ f−1k (zk))

k∏
i=1

| det(Ji(zi−1))|−1, (5.3)

where Ji is the Jacobian of fi. If the determinant of Ji can be easily computed, pk

can be computed efficiently.

Rezende and Mohamed [2015] proposed two specific families of transformations

for variational inference, namely planar flows and radial flows, respectively:

fi(z) = z + uih(wT
i z + bi) and fi(z) = z + βih(αi, ri)(z− z′i), (5.4)

where bi ∈ R, ui,wi ∈ Rd and h is an activation function in the planar case, and

βi ∈ R, αi > 0, z′i ∈ Rd , h(α, r) = 1/(α+ r) and ri = ||z−z′i|| in the radial. Recently

Dinh et al. [2016] proposed a normalizing flow with convolutional, multiscale structure

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 88

that is suitable for image modeling and has shown promise in density estimation for

natural images.

5.3 Maximum entropy flow network (MEFN) algo-

rithm

5.3.1 Formulation

Instead of solving Equation 5.2, we propose solving Equation 5.1 directly by op-

timizing a transformation that maps a random variable Z0, with simple distribu-

tion p0, to the ME distribution. Given a parametric family of normalizing flows

F = {fφ, φ ∈ Rq}, we denote pφ(z) = p0(f
−1
φ (z))| det(Jφ(z))|−1 as the distribution of

the variable fφ(Z0), where Jφ is the Jacobian of fφ. We then rewrite the ME problem

as:

φ∗ = maximize H(pφ) (5.5)

subject to EZ0∼p0 [T (fφ(Z0))] = 0

supp(pφ) = Z.

When p0 is continuous and F is suitably general, the program in Equation 5.5

recovers the ME distribution pφ exactly. With a flexible transformation family, the

ME distribution can be well approximated. In experiments we found that taking p0 to

be a standard multivariate normal distribution achieves good empirical performance.

Taking p0 to be a bounded distribution (e.g. uniform distribution) is problematic

for learning transformations near the boundary, and heavy tailed distributions (e.g.

Cauchy distribution) caused similar trouble due to large numbers of outliers.

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 89

5.3.2 Algorithm

We solved Equation 5.5 using the augmented Lagrangian method. Denote R(φ) =

E(T (fφ(Z0))), the augmented Lagrangian method uses the following objective:

L(φ;λ, c) = −H(pφ) + λ>R(φ) +
c

2
||R(φ)||2 (5.6)

where λ ∈ Rm is the Lagrange multiplier and c > 0 is the penalty coefficient. We

minimize Equation 5.6 for a non-decreasing sequence of c and well-chosen λ. As a

technical note, the augmented Lagrangian method is guaranteed to converge under

some regularity conditions [Bertsekas, 2014]. As is usual in neural networks, a proof

of these conditions is challenging and not yet available, though intuitive arguments

suggest that most of them should hold. We omit a more thorough discussion about

them and rely instead on the empirical results of the algorithm to claim that it is

indeed solving the optimization problem.

For a fixed (λ, c) pair, we optimize L with stochastic gradient descent. Owing

to our choice of network and the resulting ability to efficiently calculate the den-

sity pφ(z(i)) for any sample point z(i) (which are easy-to-sample iid draws from the

multivariate normal p0), we compute the unbiased estimator of H(pφ) with:

H(pφ) ≈ − 1

n

n∑
i=1

log pφ(fφ(z(i))) (5.7)

R(φ) can also be estimated without bias by taking a sample average of z(i) draws.

The resulting optimization procedure is detailed in Algorithm 2, of which step 9

requires some detail: denoting φk as the resulting φ after imax SGD iterations at the

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 90

Algorithm 2 Training the MEFN
1: initialize φ = φ0, set c0 > 0 and λ0.

2: for Augmented Lagrangian iteration k = 1, ..., kmax do

3: for SGD iteration i = 1, ..., imax do

4: Sample z(1), ..., z(n) ∼ p0, get transformed variables z
(i)
φ = fφ(z(i)), i =

1, ..., n
5: Update φ by descending its stochastic gradient (using e.g. ADADELTA

[Zeiler, 2012]):

∇φL(φ;λk, ck) ≈
1

n

n∑
i=1

∇φ log pφ(z
(i)
φ) + λk ·

1

n

n∑
i=1

∇φT (z
(i)
φ) + ck

2

n

n
2∑
i=1

∇φT (z
(i)
φ) ·

2

n

n∑
i=n

2
+1

T (z
(i)
φ)

6: end for

7: Sample z(1), ..., z(ñ) ∼ p0, get transformed variables z(i)φ = fφ(z(i)), i = 1, ..., ñ

8: Update λk+1 = λk + ck
1
ñ

∑ñ
i=1 T (z

(i)
φ)

9: Update ck+1 ≥ ck (see text for detail)

10: end for

augmented Lagrangian iteration k, the usual update rule for c [Bertsekas, 2014] is:

ck+1 =


βck, if ||R(φk)|| > γ||R(φk−1)||

ck, otherwise
(5.8)

where γ ∈ (0, 1) and β > 1. What results is a robust and novel algorithm for

estimating maximum entropy distributions, while preserving the critical properties of

being both easy to calculate densities of particular points, and being trivially able to

produce truly iid samples.

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 91

5.4 Experiments

§5.4.2 and §5.4.3 applies the MEFN to a financial data application (predicting equity

option values) and texture synthesis, respectively, to illustrate the flexibility and

practicality of our algorithm. For §5.4.2, We use 10 layers of planar flow with a final

transformation g (specified below) that transforms samples to the specified support,

and use with ADADELTA [Zeiler, 2012]. For §5.4.3 we use real NVP structure and use

ADAM [Kingma and Ba, 2014] with learning rate = 0.001. For all our experiments,

we use imax = 3000, β = 4, γ = 0.25. For §5.4.2 we use n = 300, ñ = 1000, kmax = 10;

For §5.4.3 we use n = ñ = 2, kmax = 8.

5.4.1 A maximum entropy problem with known solution

Following the setup of the typical ME problem, suppose we are given a specified

support S = {z = (z1, . . . , zd−1) : zi ≥ 0 and
∑d−1

k=1 zk ≤ 1} and a set of constraints

E[logZk] = κk(k = 1, ..., d), where Zd = 1 −
∑d−1

k=1 Zk. We then write the maximum

entropy program:

p∗ = maximize H(p) (5.9)

subject to EZ∼p[logZk − κk] = 0 ∀k = 1, ..., d

supp(p) = S.

This is a general ME problem that can be solved via the MEFN. Of course, we

have particularly chosen this example because, though it may not obviously appear

so, the solution has a standard and tractable form, namely the Dirichlet. This choice

allows us to consider a complicated optimization program that happens to have known

global optimum, providing a solid test bed for the MEFN (and for the Gibbs approach

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 92

against which we will compare). Specifically, given a parameter α ∈ Rd, the Dirichlet

has density:

p(z1, . . . , zd−1) =
1

B(α)

d∏
k=1

zαk−1k 1 ((z1, . . . , zd−1) ∈ S) (5.10)

where B(α) is the multivariate Beta function, and zd = 1−
∑d−1

k=1 zk. Note that this

Dirichlet is a distribution on S and not on the (d − 1)-dimensional simplex Sd−1 =

{(z1, . . . , zd) : zk ≥ 0 and
∑d

k=1 zk = 1} (an often ignored and seemingly unimportant

technicality that needs to be correct here to ensure the proper transformation of

measure). Connecting this familiar distribution to the ME problem above, we simply

have to choose α such that κk = ψ(αk)− ψ(α0) for k = 1, ..., d, where α0 =
∑d

k=1 αk

and ψ is the digamma function. We then can pose the above ME problem to the

MEFN and to the competitive Gibbs method, and compare performance against

ground truth. Before doing so, we must stipulate the transformation g that maps the

Euclidean space of the multivariate normal p0 to the desired support S. Any sensible

choice will work well (another point of flexibility for the MEFN); we use the standard

transformation g(z1, ..., zd−1) =
(
ez1/(

∑d−1
k=1 e

zk + 1), ..., ezd−1/(
∑d−1

k=1 e
zk + 1)

)
. Note

that the MEFN outputs vectors in Rd−1, and not Rd, because the Dirichlet is specified

as a distribution on S (and not on the simplex Sd−1). Accordingly, the Jacobian is

a square matrix and its determinant can be computed efficiently using the matrix

determinant lemma. Here, p0 is set to the (d− 1)-dimensional standard normal.

We proceed as follows: We choose α = (1, 2, 3) and compute the constraints

κ1, ..., κd. We run MEFN pretending we do not know α or the Dirichlet form. Figure

5.4.1 shows an example of the transformation from normal (left panel) to MEFN

(middle panel), and comparing that to the ground truth Dirichlet (right panel). The

MEFN and ground truth Dirichlet densities shown in purple match closely, and the

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 93

samples drawn (red) indeed appear to be iid draws from the same (maximum entropy)

distribution in both cases.

Additionally, the middle panel of Figure 5.4.1 shows an important cautionary

tale that foreshadows our texture synthesis results (§5.4.3). One might suppose that

satisfying the moment matching constraints is adequate to produce a distribution

which, if not technically the ME distribution, is still interestingly variable. The middle

panel shows the failure of this intuition: in dark green, we show a network trained to

simply match the moments specified above, and the resulting distribution quite poorly

expresses the variability available to a distribution with these constraints, leading to

samples that are needlessly similar. Given the substantial interest in using networks to

learn implicit generative models (e.g., Mohamed and Lakshminarayanan [2016]), this

concern is particularly relevant and highlights the importance of considering entropy.

Initial distribution p0 MEFN result pφ∗ Ground truth p∗p0 True

Figure 5.1: Example results from the ME problem with known Dirichlet ground
truth. Left panel : The normal density p0 (purple) and iid samples from p0 (red
points). Middle panel : The MEFN transforms p0 to the desired maximum entropy
distribution pφ∗ on the simplex (calculated density pφ∗ in purple). Truly iid samples
are easily drawn from pφ∗ (red points) by drawing from p0 and mapping those points
through fφ∗ . Shown in the middle panel are the same points in the top left panel
mapped through fφ∗ . Samples corresponding to training the same network as MEFN
to simply match the specified moments (ignoring entropy) are also shown (dark green
points; see text). Right panel : The ground truth (in this example, known to be
Dirichlet) distribution in purple, and iid samples from it in red.

We then take a random sample from the fitted distribution and a random sample

from the Dirichlet with parameter α, and compare the two samples using the maxi-

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 94

mum mean discrepancy (MMD) kernel two sample test [Gretton et al., 2012], which

assesses the fit quality. We take the sample size to be 300 for both distributions and

our samples pass the MMD test (p > 0.05).

5.4.2 Risk-neutral asset pricing

We apply our method for extracting the risk-neutral asset price probability distribu-

tion based on option prices, an active and interesting area for ME models. Here we

want to get a distribution on the price of an asset in the future time te, and the partial

information we have is the prices of options expiring at te, which are financial con-

tracts whose prices can be expressed as the expectation of the asset price distribution

at te. Given those expectation constraints, a natural guess of the distribution of the

asset price can be formulated as an ME problem. Below we discuss the mathematical

formulation of this problem, interested readers to see Buchen and Kelly [1996] for a

more detailed explanation.

Denoting St as the price of an asset at time t, the buyer of a European call

option for the stock that expires at time te with strike price K will receive a payoff of

CK = (Ste−K)+ = max(Ste−K, 0) at time te. Under the efficient market assumption,

the risk-neutral probability distribution for the stock price at time te satisfies:

CK = D(te)Eq[(Ste −K)+], (5.11)

where D(te) is the risk-free discount factor and q is the risk-neutral measure. We also

have that, under the risk-neutral measure, the current stock price S0 is the discounted

expected value of Ste :

S0 = D(te)Eq(Ste). (5.12)

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 95

When given m options that expire at time te with strikes K1, ..., Km and prices

CK1 , ..., CKm , we get m expectation constraints on q(Ste) from Equation 5.11, to-

gether with Equation 5.12, we have m+1 expectation constraints in total. With that

partial knowledge we can approximate q(Ste), which is helpful for understanding the

market expected volatility and identify mispricing in option markets, etc.

Inferring the risk-neutral density of asset price from a finite number of option prices

is an important question in finance and has been studied extensively [Buchen and

Kelly, 1996; Borwein et al., 2003; Bondarenko, 2003]. One popular method proposed

by Buchen and Kelly [1996] estimates the probability density as the maximum entropy

distribution satisfying the expectation constraints and a positivity support constraint

by fitting a Gibbs distribution, which results in a piece-wise linear log density:

p(z) ∝ exp

{
η0z +

m∑
i=1

ηi(z −Ki)+

}
1 (z ≥ 0) (5.13)

and optimize the distribution with numerical methods. Here we compare the per-

formance of the MEFN algorithm with the method proposed in Buchen and Kelly

[1996]. To enforce the positivity constraint we choose g(z) = eaz+b, where a and b are

additional parameters.

We collect the closing price of European call options on Nov. 1 2016 for the stock

AAPL (Apple inc.) that expires on te = Jun. 16 2017. We use m = 4 of the options

with highest trading volume as training data and the rest as testing data. On the

left panel of figure 5.2, we show the fitted risk-neutral density of Ste by MEFN (red

line) with that of the fitted Gibbs distribution result (blue line). We find that while

the distributions share similar location and variability, the distribution inferred by

MEFN is smoother and arguably more plausible. In the middle panel we show a

Q-Q plot of the quantiles of the MEFN and Gibbs distributions. We can see that

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 96

the quantile pairs match the identity closely, which should happen if both methods

recovered the exact same distribution. This highlights the effectiveness of MEFN.

There does exist a small mismatch in the tails: the distribution inferred by MEFN

has slightly heavier tails. This mismatch is difficult to interpret: given that both

the Gibbs and MEFN distributions are fit with option price data (and given that

one can observe at most one value from the distribution, namely the stock price at

expiration), it is fundamentally unclear which distribution is superior, in the sense

of better capturing the true ME distribution’s tails. On the right panel we show the

fitted option price for the two fitted distributions (for each strike price, we can recover

the fitted option price by Equation 5.11). We noted that the fitted option price and

strike price lines for both methods are very similar (they are mostly indiscernible on

the right panel of figure 5.2). We also compare the fitted performance on the test data

by computing the root mean square error for the fitted and test data. We observe

that the predictive performances for both methods are comparable.

0 50 100 150 200

Price (dollars)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
e
n
si

ty

Gibbs

MEFN

0 50 100 150 200 250

Gibbs Quantiles

0

50

100

150

200

250

300

M
E
FN

 Q
u
a
n
ti

le
s

identity

0 50 100 150

Strike price (dollars)

20

0

20

40

60

80

100

120

O
p
ti

o
n
 p

ri
ce

 (
d
o
lla

rs
)

Gibbs, RMSE=2.43

MEFN, RMSE=2.39

Training data

Testing data

Figure 5.2: Constructing risk-neutral measure from observed option price. Left panel :
fitted risk-neutral measure by Gibbs and MEFN method. Middle panel : Q-Q plot
for the quantiles from the distributions on the left panel. Right panel : observed and
fitted option price for different strikes.

We note that for this specific application, there are practical concerns such as the

microstructure noise in the data and inefficiency in the market, etc. Applying a pre-

processing procedure and incorporating prior assumptions can be helpful for getting

a more full-fledged method. Here we mainly focus on illustrating the ability of the

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 97

MEFN method to approximate the ME distribution for non-typical distributions.

Future work for this application includes fitting a risk-neutral distribution for multi-

dimensional assets by incorporating dependence structure on assets.

5.4.3 Modeling images of textures

Constructing generative models to generate random images with certain texture struc-

ture is an important task in computer vision. A line of texture synthesis research

proceeds by first extracting a set of features that characterizes the target texture and

then generate images that match the features. The seminal work of Zhu et al. [1998]

proposes constructing texture models under the ME framework, where features (or

filters) of the given texture image are adaptively added in the model and a Gibbs

distribution whose expected feature matches the target texture is learnt. One major

difficulty with the method is that both model learning and image generation involve

sampling from a complicated Gibbs distribution. More recent works exploit more

complicated features [Portilla and Simoncelli, 2000; Gatys et al., 2015; Ulyanov et

al., 2016]. Ulyanov et al. [2016] proposes the texture net, which uses a texture loss

function by using the Gram matrices of the outputs of some convolutional layers of a

pre-trained deep neural network for object recognition.

While the use of these complicated features does provide high-quality synthetic

texture images, that work focuses exclusively on generating images that match these

feature (moments). Importantly, this network focuses only on generating feature-

matching images without using the ME framework to promote the diversity of the

samples. Doing so can be deeply problematic: in Figure 5.4.1 (middle panel), we

showed the lack of diversity resulting from only moment matching in that Dirichlet

setting, and further we note that the extreme pathology would result in a point

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 98

mass on the training image – a global optimum for this objective, but obviously a

terrible generative model for synthesizing textures. Ideally, the MEFN will match the

moments and promote sample diversity.

We applied MEFN to texture synthesis with an RGB representation of the 224×

224 pixel images , z ∈ Z = [0, 1]d, where d = 224× 224× 3. We follow Ulyanov et al.

[2016] (we adapted https://github.com/ProofByConstruction/texture-networks)

to create a texture loss measure T (z) : [0, 1]d → R, and aim to sample a diverse

set of images with small moment violation. For the transformation family F we

use the real NVP network structure proposed in Dinh et al. [2016] (we adapted

https://github.com/taesung89/real-nvp). We use 3 residual blocks with 32 fea-

ture maps for each coupling layer and downscale 3 times. For fair comparison, we

use the same real NVP structure for both methods and implement both methods in

TensorFlow [Abadi et al., 2016]. Note that Ulyanov et al. [2016] used a quite different

generative network structure for texture network, which is not invertible and is there-

fore infeasible for entropy evaluation. In our experiments we replace their generative

network by the real NVP structure, which allows us to get an Monte Carlo estimate

of the entropy for both generative models (by computing a sample average of log

density) and ensures that the structure of the generative network does not affect the

comparison.

As is shown in top row of figure 5.3, both methods generate visually pleasing

images capturing the texture structure well. The bottom row of Figure 5.3 shows that

texture cost (left panel) is similar for both methods, while MEFN generate figures

with much larger entropy than the texture network formulation (middle panel), which

is desirable (as previously discussed). The bottom right panel of figure 5.3 compares

the marginal distribution of the RGB values sampled from the networks: we found

that MEFN generates a more variable distribution of RGB values than the texture

https://github.com/ProofByConstruction/texture-networks
https://github.com/taesung89/real-nvp

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 99

net.

Input Texture net [Ulyanov et al., 2016] MEFN (ours)

Texture cost Entropy RGB histogram

0 5000 10000150002000025000
Iteration

106

107

108

109

1010

T
e
x
tu

re
 c

o
st

Texture nets

MEFN

0 5000 10000150002000025000
Iteration

104

105

106

N
e
g
a
ti

v
e
 E

n
tr

o
p
y

0.0 0.2 0.4 0.6 0.8 1.0
RGB value

0.0

0.5

1.0

1.5

2.0

2.5

D
e
n
si

ty

Figure 5.3: Analysis of texture synthesis experiment. See text for description.

We compute in Table 5.1 the average pairwise Euclidean distance between ran-

domly sampled images (dL2 = meani 6=j‖zi−zj‖22), and MEFN gives higher dL2 , quan-

tifying diversity across images. We also consider an ANOVA-style analysis to measure

the diversity of the images, where we think of the RGB values for the same pixel across

multiple images as a group, and compute the within and between group variance.

Specifically, denoting z(i)k as the pixel value for a specific pixel k = 1, ..., d for an image

i = 1,, n. We partition the total sum of square SST =
∑

i,k(z
(i)
k − z̄)2 as the within

group error SSW =
∑

i,k(z
(i)
k − z̄k)2 and between group error SSB =

∑
k n(z̄k − z̄)2,

where z̄ and z̄k are the mean pixel values across all data and for a specific pixel k. Ide-

ally we want the samples to exhibit large variability across images (large SSW, within

a group/pixe) and no structure in the mean image (small SSB, across groups/pixels).

Indeed, the MEFN has a larger SSW, implying higher variability around the mean

image, a smaller SSB, implying the stationarity of the generated samples, and a larger

SST, implying larger total variability also. The MEFN produces images that are con-

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 100

clusively more variable without sacrificing the quality of the texture, implicating the

broad utility of ME.

Table 5.1: Quantitative measure of image diversity using 20 randomly sampled images

Method dL2 SST SSW SSB
Texture net 11534 128680 109577 19103
MEFN 17014 175604 161639 13964

While the quantitative measures imply more diversity in MEFN result, visual

examination for the samples generated by MEFN and texture network implies that

both methods exhibit diverse samples. As is shown in Figure 5.4, the samples from

both methods exhibit diversity and the mean images do not exhibit strong pattern.

Texture net

MEFN

Figure 5.4: Random samples (first 5 columns) and the mean image of 20 random
samples (last column) from texture net (upper row) and MEFN (bottom row) for the
stone example.

While the texture net method [Ulyanov et al., 2016] does exhibit a certain amount

of sample diversity in the stone experiments and a few other cases that we tried,

we expect that the performance to deteriorate when the image is more complicated

and the generative network structure is more complex. To further understand the

behavior, we tried another experiments with a brick texture. Here we used a more

complicated generative real-nvp network structure with 8 residual blocks with 64

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 101

feature maps for each coupling layer and downscale 4 times. While we again observe

higher entropy value for MEFN (not shown), from Figure 5.5 we find that that both

texture net and MEFN with a large texture penalty (large initial c value) give non-

diverse examples with mean image exhibiting strong patterns (last column of the

second and third rows). We then set the initial coefficient for the quadratic penalty

c0 to be smaller and are able to get a much more diverse example (last row). We

think that a small c0 would initialize the network such that it explores the full image

space, facilitating generating diverse images.

Input

Texture net

MEFN (large c0)

Texture net (small c0)

Figure 5.5: Brick example result. First row gives the raw input. The bottom 3 rows
give 5 random samples (first 5 columns) and the mean image of 20 random samples
(last column) from texture net (row 2) and MEFN with large initial texture cost
penalty (row 3) and smaller initial texture cost penalty (bottom row) for the brick
example.

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 102

We note that here large entropy does not necessarily imply more visual diversity.

The image space is a very high-dimensional space and the distribution of images

following a certain texture can be expected to lie close to a low-dimensional manifold,

making entropy very small (any distribution on a subspace of the image space would

have entropy to be negative infinity using our definition for continuous distribution

here) and also unstable to estimate. For such complicated distribution we do not

expect that our current method is able to sample from the real ME distribution but

the hope is that our method can give more desirable method to algorithms that do

not explicitly encourage sample diversity. Also our optimization methods may need

to be fine tuned to get desirable performance.

5.5 Discussion

In this chapter we propose a general framework for fitting ME models. This ap-

proach is novel and has three key features. First, by learning a transformation of a

simple distribution rather than the distribution itself, we are able to avoid explicitly

computing an intractable normalizing constant for the ME distribution. Second, by

combining stochastic optimization with the augmented Lagrangian method, we can fit

the model efficiently, allowing us to evaluate the ME density of any point simply and

accurately. Third, critically, this construction allows us to trivially sample iid from

a ME distribution, extending the utility and efficiency of the ME framework more

generally. Thus, accuracy equivalent to the classic Gibbs approach already would in

itself be a contribution (owing to these other features).

The structure of the normalizing flow is crucial for the success of the algorithm.

Ideally we want the network structure to be expressive while maintaining computa-

tional tractability and numerical stability. We would also hope that the normalizing

CHAPTER 5. MAXIMUM ENTROPY FLOW NETWORK 103

flow to be general and suitable for a wide range of applications. One possible di-

rection is to consider linear transformation with structured matrix that allows fast

matrix multiplication and Jacobian determinant computation (circulant matrix, for

example), followed by point-wise nonlinearity.

While we have shown empirical outperformance in generating distribution close

to maximum entropy distribution, it is easy to get trapped in local optimum when

faced with complicated, multi-modal distribution, as is the case in texture modeling.

How to improve our algorithm to get better distribution is an open question.

There are a few recent works encouraging sample diversity in the setting of tex-

ture modeling. Ulyanov et al. [2017] extended Ulyanov et al. [2016] by adding a

penalty term using the Kozachenko-Leonenko estimator Kozachenko and Leonenko

[1987] of entropy. Their generative network is an arbitrary deep neural network rather

than a normalizing flow, which is more flexible but cannot give the probability den-

sity of each sample easily so as to compute an unbiased estimator of the entropy.

Kozachenko-Leonenko is a biased estimator for entropy and requires a fairly large

number of samples to get good performance in high-dimensional settings, hindering

the scalability and accuracy of the method; indeed, our choice of normalizing flow

networks was driven by these practical issues with Kozachenko-Leonenko. Lu et al.

[2016] extended Zhu et al. [1998] by using a more flexible set of filters derived from a

pre-trained deep neural networks, and using parallel MCMC chains to learn and sam-

ple from the Gibbs distribution. Running parallel MCMC chains results in diverse

samples but can be computationally intensive for generating each new sample image.

Our MEFN framework enables truly iid sampling with the ease of a feed forward

network.

CHAPTER 6. CONCLUSION AND DISCUSSION 104

Chapter 6

Conclusion and discussion

Big data revolution in neuroscience has brought opportunities and challenges simi-

lar to those from many other areas. The ever complicated data requires advanced

technology for effective and scalable data processing, more flexible and interpretable

modeling, and more careful hypothesis checking and model validation. This chapter

gives a summary and discussion for the outlook for each of these steps, and put the

preceding chapters in context.

Extracting desirable signals from complicated and noisy observations is an impor-

tant first step for neural data analysis which requires a thorough understanding and

careful modeling of the generative process of data recording. As illustrated in chapter

4, exploiting the structure of the observation enables effective data processing signal

extraction. The huge amount of data available calls for methods that scale to large

datasets and can process data in an online fashion, while handling the complicated

generative process of the observations. Another key challenge for the task is devel-

oping systematic methods for judging the effectiveness of the methods, especially in

the case when ground truth data is unavailable (which is the case for many of the

complicated observation technique).

CHAPTER 6. CONCLUSION AND DISCUSSION 105

Even with the clean signal, building statistical models to capture the structure

of the large dataset is still challenging. While redundancy in neural data encourages

simplified structure and high signal-to-noise ratio, the complex behavior of organisms

implies that the brain activity is inherently complicated and highly non-stationary.

While dimensionality reduction techniques indicates to that neural activities in certain

brain areas tend to lie in low dimensional spaces for fairly simple behavior tasks, with

capabilities of whole-brain recordings during complicated behavior calls for much more

complicated model structures. Describing the complicated data imposes challenges

for not only modeling, but also model fitting and interpreting. Chapter 2 and 3

provides two attempts to more faithfully capture the properties of the signal with

flexible modeling. The auto-encoder variational inference discussed in chapter 3 set

an example for model fitting for complicated models with scalable inference, which

can be highly desirable in the big data regime. One extension of our models is to use

a hierarchical model to adapt to the non-stationarity and variability of the data for

complicated environments and tasks. It is also important to build more interpretable

and biologically plausible dynamical models that represent the underlying biological

processes.

While complicated models have shown promise in improving the fit and predictive

performance of the neural data, it is less obvious how to use those models to draw

scientific conclusions, due to several reasons. First, the growing complexity makes the

models hard to interpret. For example, the fLDS discussed in chapter 3 parameterize

the nonlinearity with a neural network, which helps with predictive performance

but can be hard to interpret. Secondly, the high-dimensional model parameters and

possibly non-convex optimization involved makes it hard to do exact inference and

understand the statistical error of the inference, making it challenging even to get

point estimation, letting alone getting confidence interval, hypothesis testing or model

CHAPTER 6. CONCLUSION AND DISCUSSION 106

checking. Therefore, exploiting advanced statistical and computational techniques for

scientific pursuit still poses challenges. Chapter 5 is an attempt to facilitate scientific

hypothesis testing by proposing a way that can be used to draw null distribution

from complicated hypothesis. Future work involves more theoretical understanding

of the statistical error of the models, as well as stronger connections between the

complicated statistical models and the biological hypotheses.

Despite significant challenges, the exciting interaction of richer neural datasets,

more advanced statistical modeling frameworks and computational capability pro-

vides promising new directions. And we expect and hope the proposed methods to

be inspiring for related research.

BIBLIOGRAPHY 107

Bibliography

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable nonparametric
bayesian inference in poisson processes with gaussian process intensities. In Pro-
ceedings of the 26th International Conference on Machine Learning, pages 9–16.
ACM, 2009.

Misha B Ahrens and Philipp J Keller. Whole-brain functional imaging at cellular
resolution using light-sheet microscopy. Nature Methods, 2013.

Cande V Ananth and David G Kleinbaum. Regression models for ordinal responses:
a review of methods and applications. International Journal of Epidemiology,
26(6):1323–1333, 1997.

Evan W Archer, Urs Koster, Jonathan W Pillow, and Jakob H Macke. Low-
dimensional models of neural population activity in sensory cortical circuits. In
Advances in Neural Information Processing Systems, pages 343–351, 2014.

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Panin-
ski. Black box variational inference for state space models. arXiv preprint
arXiv:1511.07367, 2015.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio.
Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590,
2012.

BIBLIOGRAPHY 108

Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A maxi-
mum entropy approach to natural language processing. Computational Linguistics,
22(1):39–71, 1996.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: a CPU and GPU math expression compiler. In Proceedings of the Python
for scientific computing conference (SciPy), volume 4, page 3. Austin, TX, 2010.

Thomas B Berrett, Richard J Samworth, and Ming Yuan. Efficient multi-
variate entropy estimation via k-nearest neighbour distances. arXiv preprint
arXiv:1606.00304, 2016.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic Press, 2014.

David M. Blei, Michael I. Jordan, and John W. Paisley. Variational bayesian inference
with stochastic search. In Proceedings of the 29th International Conference on
Machine Learning, pages 1367–1374. ACM, 2012.

Oleg Bondarenko. Estimation of risk-neutral densities using positive convolution
approximation. Journal of Econometrics, 116(1):85–112, 2003.

Jonathan Borwein, Rustum Choksi, and Pierre Maréchal. Probability distributions
of assets inferred from option prices via the principle of maximum entropy. SIAM
Journal on Optimization, 14(2):464–478, 2003.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university
press, 2009.

Emery N Brown, David P Nguyen, Loren M Frank, Matthew A Wilson, and Victor
Solo. An analysis of neural receptive field plasticity by point process adaptive
filtering. Proceedings of the National Academy of Sciences, 98(21):12261–12266,
2001.

Peter W Buchen and Michael Kelly. The maximum entropy distribution of an as-
set inferred from option prices. Journal of Financial and Quantitative Analysis,
31(01):143–159, 1996.

Lars Buesing, Jakob H Macke, and Maneesh Sahani. Learning stable, regularised
latent models of neural population dynamics. Network: Computation in Neural
Systems, 23(1-2):24–47, 2012.

BIBLIOGRAPHY 109

Lars Buesing, Timothy A Machado, John P Cunningham, and Liam Paninski. Clus-
tered factor analysis of multineuronal spike data. In Advances in Neural Informa-
tion Processing Systems, pages 3500–3508, 2014.

Lars Buesing, Jakob H Macke, and Maneesh Sahani. Estimating state and parameters
in state-space models of spike trains. In Advanced State Space Methods for Neural
and Clinical Data. Cambridge Univ Press., 2015.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-
coders. arXiv preprint arXiv:1509.00519, 2015.

Mark M Churchland, John P Cunningham, Matthew T Kaufman, Stephen I Ryu,
and Krishna V Shenoy. Cortical preparatory activity: representation of movement
or first cog in a dynamical machine? Neuron, 2010.

Mark M Churchland, Byron M Yu, John P Cunningham, Leo P Sugrue, Marlene R
Cohen, Greg S Corrado, William T Newsome, Andrew M Clark, Paymon Hosseini,
Benjamin B Scott, et al. Stimulus onset quenches neural variability: a widespread
cortical phenomenon. Nature Neuroscience, 13(3):369–378, 2010.

Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster,
Paul Nuyujukian, Stephen I Ryu, and Krishna V Shenoy. Neural population dy-
namics during reaching. Nature, 487(7405):51–56, 2012.

Marlene R Cohen and Adam Kohn. Measuring and interpreting neuronal correlations.
Nature Neuroscience, 14(7):811–819, 2011.

Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression, adaboost
and bregman distances. Machine Learning, 48(1-3):253–285, 2002.

John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural
recordings. Nature Neuroscience, 17(71):1500–1509, 2014.

John P Cunningham, Byron M Yu, Krishna V Shenoy, and Sahani Maneesh. Inferring
neural firing rates from spike trains using gaussian processes. In Advances in Neural
Information Processing Systems, pages 329–336, 2007.

John N Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear
models. The Annals of Mathematical Statistics, pages 1470–1480, 1972.

R de Boer and P Kuyper. Triggered correlation. IEEE Transactions on Bio-medical
Engineering, 15(3):169–179, 1968.

BIBLIOGRAPHY 110

Joan del Castillo and Marta Pérez-Casany. Overdispersed and underdispersed pois-
son generalizations. Journal of Statistical Planning and Inference, 134(2):486–500,
2005.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393, 1997.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38, 1977.

Ferran Diego, Susanne Reichinnek, Martin Both, and Fred A Hamprecht. Automated
identification of neuronal activity from calcium imaging by sparse dictionary learn-
ing. In Biomedical Imaging (ISBI), pages 1058–1061. IEEE, 2013.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real nvp. arXiv preprint arXiv:1605.08803, 2016.

Miroslav Dudik, Steven J Phillips, and Robert E Schapire. Performance guarantees
for regularized maximum entropy density estimation. In International Conference
on Computational Learning Theory, pages 472–486. Springer, 2004.

Alexander S Ecker, Philipp Berens, R James Cotton, Manivannan Subramaniyan,
George H Denfield, Cathryn R Cadwell, Stelios M Smirnakis, Matthias Bethge,
and Andreas S Tolias. State dependence of noise correlations in macaque primary
visual cortex. Neuron, 82(1):235–248, 2014.

Mohammad Emtiyaz Khan, Aleksandr Aravkin, Michael Friedlander, and Matthias
Seeger. Fast dual variational inference for non-conjugate latent gaussian models.
In Proceedings of The 30th International Conference on Machine Learning, pages
951–959, 2013.

Johannes Friedrich and Liam Paninski. Fast active set methods for online spike
inference from calcium imaging. In Advances In Neural Information Processing
Systems, pages 1984–1992, 2016.

Roger Frigola, Yutian Chen, and Carl Rasmussen. Variational gaussian process state-
space models. In Advances in Neural Information Processing Systems, pages 3680–
3688, 2014.

BIBLIOGRAPHY 111

Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new world
of large-scale neuroscience. Current Opinion in Neurobiology, 32:148–155, 2015.

Yuanjun Gao, Lars Busing, Krishna V Shenoy, and John P Cunningham. High-
dimensional neural spike train analysis with generalized count linear dynamical
systems. In Advances in Neural Information Processing Systems, pages 2035–2043,
2015.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear
dynamical neural population models through nonlinear embeddings. In Advances
in Neural Information Processing Systems, pages 163–171, 2016.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convo-
lutional neural networks. In Advances in Neural Information Processing Systems,
pages 262–270, 2015.

George L Gerstein and Nelson Y-S Kiang. An approach to the quantitative analysis
of electrophysiological data from single neurons. Biophysical Journal, 1(1):15–28,
1960.

Vikash Gilja, Paul Nuyujukian, Cindy A Chestek, John P Cunningham, M Yu By-
ron, Joline M Fan, Mark M Churchland, Matthew T Kaufman, Jonathan C Kao,
Stephen I Ryu, et al. A high-performance neural prosthesis enabled by control
algorithm design. Nature Neuroscience, 15(12):1752–1757, 2012.

Irving J Good. Maximum entropy for hypothesis formulation, especially for mul-
tidimensional contingency tables. The Annals of Mathematical Statistics, pages
911–934, 1963.

Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. Partitioning neuronal
variability. Nature Neuroscience, 17(6):858–865, 2014.

Arnulf BA Graf, Adam Kohn, Mehrdad Jazayeri, and J Anthony Movshon. Decoding
the activity of neuronal populations in macaque primary visual cortex. Nature
Neuroscience, 14(2):239–245, 2011.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. A kernel two-sample test. The Journal of Machine Learning
Research, 13(Mar):723–773, 2012.

BIBLIOGRAPHY 112

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I
Moser. Microstructure of a spatial map in the entorhinal cortex. Nature,
436(7052):801–806, 2005.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic
variational inference. The Journal of Machine Learning Research, 14(1):1303–1347,
2013.

Edwin T Jaynes. Information theory and statistical mechanics. Physical Review,
106(4):620, 1957.

Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse prin-
cipal component analysis. arXiv preprint arXiv:0909.1440, 2009.

Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. Minimax estimation
of functionals of discrete distributions. IEEE Transactions on Information Theory,
61(5):2835–2885, 2015.

Jonathan C. Kao, Paul Nuyujukian, Stephen I. Ryu, Mark M. Churchland, John P.
Cunningham, and Krishna V. Shenoy. Single-trial dynamics of motor cortex and
their applications to brain-machine interfaces. Nature Communications, 6:7759+,
July 2015.

Robert E Kass, Valérie Ventura, and Emery N Brown. Statistical issues in the analysis
of neuronal data. Journal of Neurophysiology, 94(1):8–25, 2005.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and MaxWelling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, and Max Welling. Improving variational inference
with inverse autoregressive flow. arXiv preprint arXiv:1606.04934, 2016.

Shinsuke Koyama. On the spike train variability characterized by variance-to-mean
power relationship. Neural Computation, 2015.

LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

BIBLIOGRAPHY 113

Jayant E Kulkarni and Liam Paninski. Common-input models for multiple neural
spike-train data. Network: Computation in Neural Systems, 18(4):375–407, 2007.

Diane Lambert. Zero-inflated poisson regression, with an application to defects in
manufacturing. Technometrics, 34(1):1–14, 1992.

Vernon Lawhern, Wei Wu, Nicholas Hatsopoulos, and Liam Paninski. Population
decoding of motor cortical activity using a generalized linear model with hidden
states. Journal of Neuroscience Methods, 189(2):267–280, 2010.

Neil D Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. Advances in Neural Information Processing Systems, 16(3):329–
336, 2004.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

Jeremy Lewi, David M Schneider, Sarah MN Woolley, and Liam Paninski. Automat-
ing the design of informative sequences of sensory stimuli. Journal of computational
neuroscience, 30(1):181–200, 2011.

Michael S Lewicki. A review of methods for spike sorting: the detection and clas-
sification of neural action potentials. Network: Computation in Neural Systems,
9(4):R53–R78, 1998.

Yingzhen Li and Richard E Turner. Rényi divergence variational inference. In Ad-
vances in Neural Information Processing Systems, pages 1073–1081, 2016.

Scott W. Linderman, Ryan Adams, and Jonathan Pillow. Inferring structured
connectivity from spike trains under negative-binomial generalized linear models.
COSYNE, 2015.

Gabriel Loaiza-Ganem, Yuanjun Gao, and John P Cunningham. Maximum entropy
flow networks. In International Conference of Learning Representations (ICLR),
2017.

Yang Lu, Song-chun Zhu, and Ying Nian Wu. Learning FRAME models using cnn
filters. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V Shenoy,
and Maneesh Sahani. Empirical models of spiking in neural populations. In Ad-
vances in Neural Information Processing Systems, pages 1350–1358, 2011.

BIBLIOGRAPHY 114

Robert Malouf. A comparison of algorithms for maximum entropy parameter estima-
tion. In Proceedings of the 6th Conference on Natural Language learning, volume 20,
pages 1–7. Association for Computational Linguistics, 2002.

Ryuichi Maruyama, Kazuma Maeda, Hajime Moroda, Ichiro Kato, Masashi Inoue,
Hiroyoshi Miyakawa, and Toru Aonishi. Detecting cells using non-negative matrix
factorization on calcium imaging data. Neural Networks, 55:11–19, 2014.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative mod-
els. arXiv preprint arXiv:1610.03483, 2016.

Eran A Mukamel, Axel Nimmerjahn, and Mark J Schnitzer. Automated analysis
of cellular signals from large-scale calcium imaging data. Neuron, 63(6):747–760,
2009.

I Nelken, Y Prut, E Vaadia, and M Abeles. In search of the best stimulus: an opti-
mization procedure for finding efficient stimuli in the cat auditory cortex. Hearing
Research, 72(1):237–253, 1994.

Michael Okun, Pierre Yger, Stephan L Marguet, Florian Gerard-Mercier, Andrea
Benucci, Steffen Katzner, Laura Busse, Matteo Carandini, and Kenneth D Harris.
Population rate dynamics and multineuron firing patterns in sensory cortex. The
Journal of Neuroscience, 32(48):17108–17119, 2012.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set:
A strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

Marius Pachitariu, Adam M Packer, Noah Pettit, Henry Dalgleish, Michael Hausser,
and Maneesh Sahani. Extracting regions of interest from biological images with
convolutional sparse block coding. In Advances in Neural Information Processing
Systems, pages 1745–1753, 2013.

Liam Paninski, Jonathan Pillow, and Jeremy Lewi. Statistical models for neural
encoding, decoding, and optimal stimulus design. Progress in Brain Research,
165:493–507, 2007.

Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama,
Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein, and Wei Wu. A new
look at state-space models for neural data. Journal of Computational Neuroscience,
29(1-2):107–126, 2010.

BIBLIOGRAPHY 115

Liam Paninski. Maximum likelihood estimation of cascade point-process neural en-
coding models. Network: Computation in Neural Systems, 15(4):243–262, 2004.

Biljana Petreska, Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen I
Ryu, Krishna V Shenoy, and Maneesh Sahani. Dynamical segmentation of single
trials from population neural data. In Advances in Neural Information Processing
Systems, pages 756–764, 2011.

David Pfau, Eftychios A Pnevmatikakis, and Liam Paninski. Robust learning of
low-dimensional dynamics from large neural ensembles. In Advances in Neural
Information Processing Systems, pages 2391–2399, 2013.

Steven J Phillips, Robert P Anderson, and Robert E Schapire. Maximum entropy
modeling of species geographic distributions. Ecological Modelling, 190(3):231–259,
2006.

Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke,
EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations and visual
signalling in a complete neuronal population. Nature, 454(7207):995–999, 2008.

Eftychios A Pnevmatikakis and Andrea Giovannucci. Normcorre: An online algorithm
for piecewise rigid motion correction of calcium imaging data. bioRxiv, page 108514,
2017.

Eftychios A Pnevmatikakis and Liam Paninski. Sparse nonnegative deconvolution for
compressive calcium imaging: algorithms and phase transitions. In Advances in
Neural Information Processing Systems, pages 1250–1258, 2013.

Eftychios A Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A Machado, Josh
Merel, David Pfau, Thomas Reardon, Yu Mu, Clay Lacefield, Weijian Yang, et al.
Simultaneous denoising, deconvolution, and demixing of calcium imaging data.
Neuron, 89(2):285–299, 2016.

Javier Portilla and Eero P Simoncelli. A parametric texture model based on joint
statistics of complex wavelet coefficients. International Journal of Computer Vision,
40(1):49–70, 2000.

Ruben Portugues, Claudia E Feierstein, Florian Engert, and Michael B Orger. Whole-
brain activity maps reveal stereotyped, distributed networks for visuomotor behav-
ior. Neuron, 81(6):1328–1343, 2014.

BIBLIOGRAPHY 116

Robert Prevedel, Young-Gyu Yoon, Maximilian Hoffmann, Nikita Pak, Gordon Wet-
zstein, Saul Kato, Tina Schrödel, Ramesh Raskar, Manuel Zimmer, Edward S Boy-
den, et al. Simultaneous whole-animal 3d imaging of neuronal activity using light-
field microscopy. Nature Methods, 11(7):727–730, 2014.

Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference.
arXiv preprint arXiv:1401.0118, 2013.

C Radhakrishna Rao. On discrete distributions arising out of methods of ascertain-
ment. Sankhya: The Indian Journal of Statistics, Series A, pages 311–324, 1965.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing
flows. arXiv preprint arXiv:1505.05770, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, pages 400–407, 1951.

Jacob T Robinson, Marsela Jorgolli, Alex K Shalek, Myung-Han Yoon, Rona S Gert-
ner, and Hongkun Park. Vertical nanowire electrode arrays as a scalable platform
for intracellular interfacing to neuronal circuits. Nature Nanotechnology, 7(3):180–
184, 2012.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323–2326, 2000.

Patrick T Sadtler, Kristin M Quick, Matthew D Golub, Steven M Chase, Stephen I
Ryu, Elizabeth C Tyler-Kabara, Byron M Yu, and Aaron P Batista. Neural con-
straints on learning. Nature, 512(7515):423–426, 2014.

Maneesh Sahani. Latent variable models for neural data analysis. PhD thesis, Cali-
fornia Institute of Technology, 1999.

Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. On the convergence
of bound optimization algorithms. In Proceedings of the Nineteenth conference on
Uncertainty in Artificial Intelligence, pages 509–516. Morgan Kaufmann Publishers
Inc., 2002.

BIBLIOGRAPHY 117

Elad Schneidman, Michael J Berry, Ronen Segev, and William Bialek. Weak pairwise
correlations imply strongly correlated network states in a neural population. Nature,
440(7087):1007–1012, 2006.

James Scott and Jonathan W Pillow. Fully bayesian inference for neural models with
negative-binomial spiking. In Advances in Neural Information Processing Systems,
pages 1898–1906, 2012.

Kimberly F Sellers and Galit Shmueli. A flexible regression model for count data.
The Annals of Applied Statistics, pages 943–961, 2010.

Krishna V Shenoy, Matthew T Kaufman, Maneesh Sahani, and Mark M Churchland.
A dynamical systems view of motor preparation: implications for neural prosthetic
system design. Progress in Brain Research, 192:33, 2011.

Krishna V Shenoy, Maneesh Sahani, and Mark M Churchland. Cortical control of
arm movements: a dynamical systems perspective. Annual Review of Neuroscience,
36:337–359, 2013.

Zhenming Shun and Peter McCullage. Laplace approximation of high dimensional
integrals. Journal of the Royal Statistical Society. Series B (Methodological), pages
749–760, 1995.

Jagbir Singh. A characterization of positive poisson distribution and its statistical
application. SIAM Journal on Applied Mathematics, 34(3):545–548, 1978.

Spencer L Smith and Michael Häusser. Parallel processing of visual space by neigh-
boring neurons in mouse visual cortex. Nature Neuroscience, 13(9):1144–1149,
2010.

Ian H Stevenson and Konrad P Kording. How advances in neural recording affect
data analysis. Nature Neuroscience, 14(2):139–142, 2011.

Ian H Stevenson, James M Rebesco, Lee E Miller, and Konrad P Körding. Infer-
ring functional connections between neurons. Current opinion in neurobiology,
18(6):582–588, 2008.

Aonan Tang, David Jackson, Jon Hobbs, Wei Chen, Jodi L Smith, Hema Patel, Anita
Prieto, Dumitru Petrusca, Matthew I Grivich, Alexander Sher, et al. A maximum
entropy model applied to spatial and temporal correlations from cortical networks
in vitro. Journal of Neuroscience, 28(2):505–518, 2008.

BIBLIOGRAPHY 118

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,
2000.

Frédéric E Theunissen, Stephen V David, Nandini C Singh, Anne Hsu, William E
Vinje, and Jack L Gallant. Estimating spatio-temporal receptive fields of auditory
and visual neurons from their responses to natural stimuli. Network: Computation
in Neural Systems, 12(3):289–316, 2001.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for
non-conjugate inference. In Proceedings of The 31st International Conference on
Machine Learning, pages 1971–1979, 2014.

Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N
Brown. A point process framework for relating neural spiking activity to spiking
history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology,
93(2):1074–1089, 2005.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. Texture
networks: Feed-forward synthesis of textures and stylized images. arXiv preprint
arXiv:1603.03417, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture synthesis.
arXiv preprint arXiv:1701.02096, 2017.

Paul Valiant and Gregory Valiant. Estimating the unseen: improved estimators for
entropy and other properties. In Advances in Neural Information Processing Sys-
tems, pages 2157–2165, 2013.

Michael Vidne, Yashar Ahmadian, Jonathon Shlens, Jonathan W Pillow, Jayant
Kulkarni, Alan M Litke, EJ Chichilnisky, Eero Simoncelli, and Liam Paninski.
Modeling the impact of common noise inputs on the network activity of retinal
ganglion cells. Journal of Computational Neuroscience, 33(1):97–121, 2012.

Joshua T Vogelstein, Adam M Packer, Tim A Machado, Tanya Sippy, Baktash
Babadi, Rafael Yuste, and Liam Paninski. Fast non-negative deconvolution for spike
train inference from population calcium imaging. arXiv preprint arXiv:0912.1637,
2009.

BIBLIOGRAPHY 119

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–
305, 2008.

Greg CG Wei and Martin A Tanner. A monte carlo implementation of the em algo-
rithm and the poor man’s data augmentation algorithms. Journal of the American
statistical Association, 85(411):699–704, 1990.

Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V
Shenoy, and Maneesh Sahani. Gaussian-process factor analysis for low-dimensional
single-trial analysis of neural population activity. Journal of Neurophysiology,
102(1):614–635, 2009.

Matthew D Zeiler. ADADELTA: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Yuan Zhao and Il Memming Park. Variational latent gaussian process for re-
covering single-trial dynamics from population spike trains. arXiv preprint
arXiv:1604.03053, 2016.

Pengcheng Zhou, Shanna L Resendez, Garret D Stuber, Robert E Kass, and Liam
Paninski. Efficient and accurate extraction of in vivo calcium signals from microen-
doscopic video data. arXiv preprint arXiv:1605.07266, 2016.

Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and
maximum entropy (FRAME): Towards a unified theory for texture modeling. In-
ternational Journal of Computer Vision, 27(2):107–126, 1998.

	List of Figures
	List of Tables
	Introduction
	Neuroscience and statistics
	Dimensionality reduction for neural data
	Latent variable models and state space models
	Statistical inference for latent variable models
	Overview of the thesis

	I Neural Population Data Analysis with Latent Variable Models
	Generalized Count Linear Dynamical System
	Introduction
	Generalized count distributions
	Generalized count linear dynamical system model formulation
	Inference and learning in GCLDS
	E-step: variational inference with dual optimization
	M-step: analytical form
	Practical concerns
	Dual optimization for E-step

	Model evaluation by leave-one-neuron-out error
	Experiments
	Simulation examples
	Real data analysis

	Discussion

	 Linear Dynamical Neural Population Models Through Nonlinear Embeddings
	Introduction
	Notation and overview of neural data
	Latent LDS neural population models with a linear rate function
	Nonlinear latent variable models for neural populations
	Inference by Auto-encoding variational Bayes
	Experiments
	Simulation examples
	Real data analysis

	Discussion

	II Region of Interest Detection for Calcium Imaging Data
	Region of Interest Detection for Calcium Imaging Data
	Introduction
	Algorithm
	Problem formulation
	Greedy algorithm
	Shape fine-tuning
	Other details

	Experiments
	Simulation examples
	Real data analysis

	Discussion

	III Maximum Entropy Flow Networks
	Maximum Entropy Flow Network
	Introduction
	Background
	Maximum entropy modeling and Gibbs distribution
	Normalizing flows

	Maximum entropy flow network (MEFN) algorithm
	Formulation
	Algorithm

	Experiments
	A maximum entropy problem with known solution
	Risk-neutral asset pricing
	Modeling images of textures

	Discussion

	 Conclusion and discussion
	Bibliography

