
Tensor Analysis and the Dynamics

of Motor Cortex

Jeffrey S. Seely

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017

i

Abstract

Tensor Analysis and the Dynamics of Motor Cortex

by Jeffrey S. Seely

Neural data often span multiple indices, such as neuron, experimental condi-

tion, trial, and time, resulting in a tensor or multidimensional array. Standard

approaches to neural data analysis often rely on matrix factorization tech-

niques, such as principal component analysis or nonnegative matrix factor-

ization. Any inherent tensor structure in the data is lost when flattened into

a matrix. Here, we analyze datasets from primary motor cortex from the per-

spective of tensor analysis, and develop a theory for how tensor structure re-

lates to certain computational properties of the underlying system. Applied

to the motor cortex datasets, we reveal that neural activity is best described

by condition-independent dynamics as opposed to condition-dependent re-

lations to external movement variables. Motivated by this result, we pur-

sue one further tensor-related analysis, and two further dynamical systems-

related analyses. First, we show how tensor decompositions can be used to

denoise neural signals. Second, we apply system identification to the cortex-

to-muscle transformation to reveal the intermediate spinal dynamics. Third,

we fit recurrent neural networks to muscle activations and show that the geo-

metric properties observed in motor cortex are naturally recapitulated in the

network model. Taken together, these results emphasize (on the data analy-

sis side) the role of tensor structure in data and (on the theoretical side) the

role of motor cortex as a dynamical system.

ii

Copyright 2017

Jeffrey Seely

All rights reserved

iii

Contents

Abstract i

Acknowledgements vi

1 Introduction and Mathematical Preliminaries 1

1.1 Tensors . 2

1.1.1 Intuition and definitions 2

1.1.2 Common occurances of tensors 4

1.1.3 Tensor notation . 5

1.1.4 Tensor operations . 6

1.1.5 Neuron by condition by time tensors 7

1.1.6 Tensor decompositions and tensor rank 10

1.2 Linear Dynamical Systems . 14

1.2.1 Overview . 14

1.2.2 Implications for identification 19

2 Tensor Analysis Reveals Distinct Population Structure that Parallels

the Different Computational Roles of Areas M1 and V1 22

3 Denoising Neural Signals with Tensor Decompositions 81

3.1 Introduction . 81

3.2 Tensor denoising method . 83

3.2.1 Higher-Order SVD . 85

3.2.2 Alternating least squares 85

3.2.3 Cross-validation . 85

iv

3.2.4 Experimental data . 87

3.2.5 Simulated data . 88

3.2.6 Pre-processing . 88

3.3 Results . 89

3.4 Tensor denoising on spike train data 93

3.4.1 Tensor rank minimization via ADMM 94

3.5 Applications of the ADMM approach 95

4 Mapping Motor Cortex to Muscles with Dynamic Transformations 97

4.1 Introduction . 97

4.2 Subspace identification . 98

4.3 Other system identification methods 102

4.4 Comparing dynamic with static 105

4.5 Results . 106

4.6 Future work . 108

5 A Network Model for Motor Cortex 110

5.0.1 Data . 112

5.0.2 Model . 114

5.0.3 Geometric analyses . 115

Curvature . 116

Tangling . 118

Robustness . 119

Simulations . 120

5.0.4 Results . 120

5.1 Discussion . 122

Bibliography 126

v

List of Figures

1.1 N ⇥ C ⇥ T tensor . 9

1.2 Tensor slices . 10

1.3 Truncated higher-order SVD . 13

3.1 Denoising schematic . 84

3.2 Denoising task design . 87

3.3 Denoised PSTHs . 90

3.4 Denoising: Error vs. trial count 91

3.5 Denoising: Rank vs. trial count 92

4.1 Subspace identification schematic 102

4.2 Hand trajectories . 106

4.3 Dynamics vs. static EMG fits 107

5.1 Cycling task . 112

5.2 Cycling task: Kinematic and EMG data 113

5.3 Cycling task: Neural data . 113

5.4 Curvature schematic . 117

5.5 RNN and M1 principal components 121

5.6 EMG principal components . 121

5.7 RNN hyperparameters . 123

5.8 RNN robustness . 124

vi

Acknowledgements
First and foremost, I would like to thank my parents, Scott and Katherine

Seely, and my brother, Zachary Seely, for their love and support throughout

graduate school.

Thanks to my undergraduate mentors, Patrick Crotty, Dan Saracino, and

Vic Mansfield. Thanks to Professor Crotty for introducing me to computa-

tional neuroscience. Without him, I would not have taken this path. Pro-

fessor Saracino deserves several pages worth of acknowledgment, but the

following will have to suffice. He set a high bar, and few, if any, I have en-

countered in the research world have matched his effortless genius and his

clarity in mathematical thinking. For every scientific problem I have worked

on, my approach has been influenced by his example. A special thanks to

Vic Mansfield. He has been a distinct example, a role model, in how head

and heart need not be disconnected in a scientific career. I also have him, in

part, to thank for deciding to go to graduate school; through him, I met the

Dalai Lama, who in a conversation talked nonstop about the importance of

scientific pursuits. I figured it was a sign, and Vic agreed. It seems fitting,

then, to dedicate this thesis to the memory of professor Mansfield.

Thanks to my mentor Carson Chow, for his willingness to take me as a

student, and providing the opportunities to do research before applying to

graduate school.

Thanks to all of my friends and colleagues I met through the Church-

land lab and the theory center. Yashar Ahmadian, Conor Dempsey, Brian

DePasquale, Gamal Elsayed, Sean Escola, Hagai Lalazar, Kyo Iigaya, Pa-

trik Kaifosh, Saul Kato, Antonio Lara, Grace Lindsay, Najja Marshall, Raoul-

Martin Memmesheimer, Josh Merel, Andrew Miri, David Pfau, Abby Russo,

Merav Stern, and Greg Wayne.

vii

Thanks to the theory center alumni for being part of a network of col-

leagues to visit, no matter where I am in the world. Anthony Decostanzo,

David Sussillo, and Taro Toyoizumi.

Thanks to my thesis committee members. Thanks to Ken Miller for his

guitar performance at music night, and for keeping seminar speakers honest

and clear through insightful questions. Thanks to John Cunningham for pro-

viding clarifying feedback in our collaborations. Thanks to Liam Paninski for

creating an army of smart statisticians that I can rely on for advice. Thanks

to Jonathan Pillow for being the superior tennis player in our doubles match

in Okinawa.

Thanks to my advisors. Thanks to Mark Churchland for years of guidance

and support, for giving me the opportunity to pursue interesting projects

on some of the most interesting neuroscience datasets currently available.

Thanks to Mark for always staying closely involved in this thesis work, in

each stage of analysis and writing, to a degree that I appreciate to be excep-

tionally rare. Thanks to Larry Abbott for being the ultimate feedback control

mechanism for finding the right questions to ask, and for finding the right

approaches to solving them. Through his feedback, my scientific thinking

has become a little less chaotic, and a little more coherent.

viii

To Professor Vic Mansfield

1

Chapter 1

Introduction and Mathematical

Preliminaries

In systems neuroscience, new experimental techniques are driving the collec-

tion of increasingly rich, high-dimensional datasets, requiring the develop-

ment of new data analysis techniques as well as new theoretical paradigms

for framing hypotheses.

Making sense of complex neural data will follow from the interaction be-

tween both efforts: data analysis techniques driven by theoretical paradigms

and vice versa. This work contributes progress on both fronts. On the data

analysis side, we borrow from the tensor decomposition literature and show

how the tensor structure of certain neural datasets contain important infor-

mation that is lost in matricization. On the theoretical side, we pursue a

dynamical systems perspective for interpreting time-varying neural activity.

Tensor decompositions are utilized in a simple denoising applications in

Chapter 3. The dynamical systems perspective is explored in the context of

motor control in Chapters 4 and 5. The main contribution of this work re-

sides at the intersection: Chapter 2 shows how the tensor structure of neural

data can reveal whether time-varying neural activity is generated by internal

dynamics or is driven by external inputs. We apply this theoretical result to

data from motor and visual cortex. We show that time-varying activity in

the motor cortex data is explained by internal dynamics, while time-varying

Chapter 1. Introduction and Mathematical Preliminaries 2

activity in the visual cortex data is explained by external inputs.

In this chapter, we lay mathematical foundations. A review of tensor

analysis is presented first, followed by a review of linear dynamical systems.

Their relationship becomes clear in Chapter 2.

1.1 Tensors

1.1.1 Intuition and definitions

Tensors are typically defined in one of two ways: as n-dimensional arrays or

as multilinear functions. In data analysis, we may prefer to view tensors as

n-dimensional arrays, but we can nevertheless borrow from the the theory

of multilinear functions to build intuition. Therfore, we outline the relation

between the two viewpoints.

A tensor is an n-dimensional array. Tensors are higher-order generaliza-

tions of vectors and matrices. A scalar is a zeroth order tensor, a vector is a

first-order tensor, and a matrix is a second-order tensor. The order of a tensor

is number of indices required to access an element of the array.

Alternativley, a tensor is a multilinear function, which can always be rep-

resented by an n-dimensional array. A function f : V1 ⇥ · · · ⇥ V
n

! W is

multilinear if it is linear in each of its arguments separately, where each V
i

and W are vector spaces. That is, f is multilinear if and only if

f(v1, . . . ,↵(vi + v0
i

), . . . , v
n

) = ↵f(v
i

, . . . , v
i

, . . . , v
n

) + ↵f(v1, . . . , v
0
i

, . . . , v
n

)

(1.1)

for all i. The corresponding array representation of f depends on a choice of

bases in the vector spaces V1, . . . , Vn

and W . The array is sometimes called a

“hypermatrix” to distinguish it from its associated tensor (multilinear func-

tion) [23]. To extract the array representation of f , consider the following

Chapter 1. Introduction and Mathematical Preliminaries 3

examples, where each Ri is given the canonical basis,

Function Array representation

Linear functional: f : Rn ! R 1⇥ n row vector

Linear function: f : Rn ! Rp p⇥ n matrix

Bilinear functional: f : Rm ⇥ Rn ! R m⇥ n matrix

Bilinear function: f : Rm ⇥ Rn ! Rp p⇥m⇥ n array

Trilinear functional: f : Rl ⇥ Rm ⇥ Rn ! R l ⇥m⇥ n array

From the definition of multilinearity, it follows that (see [23]) a bilinear

functional f : Rn ⇥ Rm ! R can be written as f(u, v) =

P
i,j

a
ij

u
i

v
j

, i.e.

f(u, v) = u>Av, with u 2 Rm, v 2 Rn, and A 2 Rm⇥n. The matrix A is thus a

collection of coefficients for the terms u
i

v
j

. An extension to multiple outputs,

f : Rm ⇥ Rn ! Rp, is thought of as a collection of p single-output functions,

thus the corresponding 3-dimensional array is a collection of p matrices of

size m⇥ n. Examples of bilinear functions include matrix multiplication, the

matrix determinant, inner products, and cross products. Bilinear functions

are ubiquitious in mathematics, and it is worth stating their importance to

help motivate why one might wish to consider multilinear functions more

generally (i.e. why stop at order two?).

Trilinear functionals f : Rl ⇥ Rm ⇥ Rm ! R satisfying multilinearity

(Eq. 1.1) can be written as f(u, v, w) =
P

i,j,k

a
ijk

u
i

v
j

w
k

. Here, the coefficients

can be collected into a l⇥m⇥n array, denoted A. Unlike in the bilinear case,

there is no way to write f succinctly using matrix-vector notation, since we

need a more general notion of the transpose operation.

Thus, tensors can be viewed as either a multilinear function f , or as the

collection of coefficients of the terms of f formatted in an array. From a

data analysis standpoint, it is tempting to consider tensors as “just” arrays

Chapter 1. Introduction and Mathematical Preliminaries 4

of numbers. Yet even data arrays have an underlying corresponding func-

tion. For example, an N ⇥ T (neuron by time) matrix might be thought of

as T samples of N -dimensional data vectors, but the matrix also represents a

linear function f : RT ! RN . This function takes any T -dimensional vector

(a neural response over time) and outputs an N -dimensional vector whose

components are the dot products of each actual neuron’s response and the

putative input response. Thus, the N ⇥T data matrix has an associated func-

tion f that computes the similarity of all possible neural responses (vectors

in RT) with each of the observed responses. Similarly, the notion of matrix

rank can be interpreted in the “data” viewpoint as the span of the data vec-

tors; equivalently, in the “function” viewpoint, the rank is the dimension of

the range of the function f . In all cases, the “data” viewpoint and “func-

tion” viewpoint coincide. The idea is that while we may perfer to stick with

the data viewpoint, we can borrow from the theory of multilinear functions

when discussing n-dimensional arrays of data.

1.1.2 Common occurances of tensors

Tensors arise most frequently in practice whenever data span multiple in-

dices, such as neuron, time, stimulus, subject, and trial [9]. In this work, we

will focus on these types of data tensors.

Tensors arise naturally in statistics as well. One can take outer products

of a data matrix to form arrays containing higher-order statistics. Such a

construction is often useful as the following example illustrates. For ran-

dom variables x, y, and z, their third-order moment tensor M is defined as

M
ijk

= E(x
i

y
j

z
k

). Cumulant tensors are defined similarly. Random vari-

ables are independent if and only if their cumulant tensor is diagonal [10]—

A
ijk

= 0 whenever i 6= j, i 6= k, or j 6= k. This observation has immediate

Chapter 1. Introduction and Mathematical Preliminaries 5

applications for “blind” problems, such as blind source separation or inde-

pendent component analysis. A natural method for independent component

analysis involves a decomposition of cumulant tensors [12]. More generally,

tensor decompositions provide a general framework for learning latent vari-

able models [3].

Tensors arise in even more familiar settings. For a multivariable scalar

function f : Rn ! R, we can store the partial derivatives of order d in a d-th

order tensor. The Jacobian is a first-order tensor a
i

=

@f

@xi
which we denote

as a row vector. The Hessian is a second order tensor A
ij

=

@

2
f

@xixj
. The third

order tensor, A
ijk

=

@

3
f

@xixjxk
, and so on. The Taylor expansion of a function

f : Rn ! R is f(x) = f0 + f1(x) + f2(x, x) + f3(x, x, x) + . . . where each f
i

is a

ith order multilinear function represented by arrays, a0, a1, A2,A3, Thus,

tensors naturally arise even in the simplest settings—as terms in the Taylor

expansion of a function.

1.1.3 Tensor notation

Scalars and vectors will be denoted by lowercase letters, e.g. a. Matrices will

be denoted by uppercase letters, e.g. A. Higher-order tensors will be denoted

by script letters, e.g. A. We denote the (i, j, k) entry of the third-order tensor

A by A
ijk

.

Subtensors are denoted using colon notation. The ith row of matrix A is

denoted by A
i:, while the jth column is denoted by A:j .

The vector subtensors of higher-order tensors are sometimes called fibers:

A:ij , A
i:j and A

ij: refer to mode-1, mode-2, and mode-3 fibers, respectively.

Matrix subtensors are called slices, e.g. A::i, A:i: and A
i::.

Chapter 1. Introduction and Mathematical Preliminaries 6

1.1.4 Tensor operations

Many tensor operations can be understood in terms of matricization or flat-

tening. A tensor X 2 RN⇥C⇥T has three mode-n matricizations

X(1) 2 RN⇥CT (1.2)

X(2) 2 RC⇥NT (1.3)

X(3) 2 RT⇥NC (1.4)

The mode-1 matricization, X(1), consists of all N -dimensional fibers of X
(all CT of them) arranged side-by-side to create a N ⇥ CT matrix. The order

of the vectors is inconsequential, but by convention ordering is lexicographic.

Consistent ordering is necessary to define the inverse operation, tensoriza-

tion.

The n-mode product of a tensor X with a matrix U , denoted X ⇥
n

U ,

defines multipliplication by a matrix “along” the nth mode of a tensor. For

instance, the 1-mode product of X 2 RN⇥C⇥T with U 2 RK⇥N is

(X ⇥1 U)

k,c,t

=

X

i

X
i,c,t

U
k,i

(1.5)

with 2-mode and 3-mode products defined similarly. Another approach to

defining the n-mode product is to note the following one-to-one correspon-

dence [22]:

Y = X ⇥
n

U () Y(n) = UX(n) (1.6)

That is, X ⇥
n

U amounts to performing the mode-n unfolding of X , multi-

plying on the left by U , then reshaping the result back into a tensor.

Since matrices are second order tensors, we can recast familar matrix op-

erations using the above notation. For example, we can rewrite the matrix

Chapter 1. Introduction and Mathematical Preliminaries 7

SVD, A = USV > as A = S ⇥1 U ⇥2 V . We can write the bilinear form x>Ax

as A⇥1 x⇥2 x. Note that for a matrix A, A(1) = A and A(2) = A>.

1.1.5 Neuron by condition by time tensors

Our primary object of study is a tensor indexed by neuron, experimental

condition, and time. We let N , C, and T correspond to the total number of

neurons, conditions, and time points, respectively.

Throughout the systems neuroscience literature, datasets are often recorded

across many neurons, conditions, and times [24, 7, 15]. Recording from mul-

tiple neurons is motivated by the idea that information is represented at the

population level—a vector in Rn—as opposed to the single-neuron level.

Capturing response variation across time, as opposed to looking at static

responses or time-averaged firing rates, is necessary for inferring dynamic

properties of computation. Recording responses across multiple experimen-

tal conditions captures important relationships between stimuli/behaviors

and neural responses.

Thus, to capture these three goals simultaneously, one must record data

across each of the three indices. Yet in many classic studies, it is not un-

common to conceptually fix at least one of the indices while only studying

variation across the remaining indices. For example, classic studies of visual

cortex revealed that a neuron’s response depends on the angle of contrast ori-

entation within that neuron’s (“classical”) receptive field [17]. Other studies

of visual cortex might focus primarily on response dynamics [32, 31]. Other

approaches might focus on responses across neurons and conditions, but not

time, as in studies of the topographic organization of preferred directions

[38].

Many datasets are simplified by averaging across time, or even averaging

across neurons, to create simpler objects to study—e.g. N ⇥ C matrices as

Chapter 1. Introduction and Mathematical Preliminaries 8

in the analysis of population vectors in motor cortex [15]. In other cases,

datasets may include multiple neurons, conditions, and times, but analyses

focus on one of the three matrix unfoldings, ignoring relationships among

the others indices. For example, it is common to matricize an N ⇥ C ⇥ T

tensor into an N ⇥ CT matrix to perform principal component analysis or

other dimensionality reduction techniques [11].

By studying variation across one index at a time, there is no doubt that

neuroscience has made substantial progress. Yet here we will demonstrate

the strength of data analysis techniques that consider the structure across all

three indices simultaneously. Recent studies that take advantage of variation

across all indices include demixed principal component analysis [6, 21] and

various tensor decomposition work in neuroimaging [9].

Not all data are naturally formatted as third-order arrays. Datasets where

different neurons/conditions correspond to different time-lengths have no

natural N⇥C⇥T format. Each individual neural response across time is in a

vector space RTn,c of different dimension, rendering tensor analyses inappli-

cable. Often, this situation can be rectified: lock the data to an experimental

cue (stimulus onset, behavioral onset, etc.) and consider a fixed number of

time points before and after the cue. More sophisticated methods can also be

used, such as dynamic time warping [27] to ensure equal time lengths.

For a dataset X 2 RN⇥C⇥T , we can interpret the meaning of each of the

three vector spaces RN , RC , and RT , as well as each of the three spaces corre-

sponding to the matrix slices, RC⇥T , RN⇥T , and RC⇥T .

Vectors in RN correspond to population response patterns—the response

of an entire neural population at a particular condition and particular time

point. Vectors in RC are tuning functions—how a particular neuron and a

particular time depends on experimental condition, which could be labeled

Chapter 1. Introduction and Mathematical Preliminaries 9

condition
population responses tuning responses temporal responses

ne
ur

on

tim
e

FIGURE 1.1: Neuron by condition by time tensor and its vector
fibers.

simply as c1, c2, . . . , or by experimental parameters associated with that con-

dition, such as ✓1, ✓2, Vectors in RT are response patterns over time, usu-

ally called a peri-stimulus time histogram (PSTH). Each of these three vector

spaces thus have an natural interpretation familiar to the neuroscience com-

munity.

Slices of X include X
n::—the response of one neuron n across all condi-

tions and times—X:c:—the response of all neurons and times for a particular

condition c—and X::t—a snapshot of all neurons and conditions for a partic-

ular time t.

For a third-order tensor, vector fibers and matrix slices are linked by the

row-column “duality” of matrices in the following sense. The columns of

X(1) are vectors in RN , while the rows are vectors in RCT , which can be re-

shaped to matrices of size C ⇥ T—the slices X
n::. The span of both the rows

and columns of X(1) have the same dimension and are in some sense differ-

ent views of the same data. Yet, the vector spaces RN , RC , and RT are not

linked by this duality. In other words, the matrices X(1), X(2), X(3) can each

have different ranks for a given tensor. This is a fundamental difference be-

tween matrices and tensors. From the standpoint of analyses based on SVD,

matrices (2nd order tensors) have one story to tell, while 3rd order tensors

have three.

Chapter 1. Introduction and Mathematical Preliminaries 10

condition

ne
ur
on

tim
e

FIGURE 1.2: Matrix slices of N ⇥ C ⇥ T tensors.

1.1.6 Tensor decompositions and tensor rank

The main tools of tensor-based data analysis are tensor decompositions. Like

matrix decompositions, tensor decompositions decompose a dataset into sim-

pler, potentially more interpretable parts. Tensor decompositions are also

used to reveal the tensor rank of a dataset—a succinct numerical summary

of the complexity of the tensor as a whole or across different modes. One

only needs to look toward the ubiquity and utility of matrix decompositions

to motivate tensor decompositions. However, generalizing decompositions

from second order to higher order arrays introduces numerous subtleties.

As stated above, there is no single generalization of the matrix SVD—the

canonical matrix decomposition—leading to different notions of tensor rank,

and introducing more choices to any data analysis procedure. Yet, surpris-

ingly, some higher-order tensor decompositions enjoy uniquness properties

not available to second order arrays.

Recall the matrix singular value decomposition:

A = USV >
=

X

r

s
r

u
r

v>
r

(1.7)

where UU>
= I , V V >

= I , S = diag(s) for a vector of singular values s.

The vectors u
r

and v
r

are the rth columns of U and V , respectively. The

matrix SVD says that any linear transformation can be decomposed into an

Chapter 1. Introduction and Mathematical Preliminaries 11

orthonormal transformation (V), followed by a scaling of coordinates (S), fol-

lowed by an orthonormal transformation (U). Equivalently, any linear trans-

formation can be decomposed into the sum of mutually orthogonal rank-1

transformations.

It is straighforward to generalize the ‘sum of rank-1 components’ notion

to higher order tensors:

X =

RX

r

u
r

� v
r

� w
r

(1.8)

where � denotes the outer product, i.e. u
r

� v
r

� w
r

forms a third-order array

for u 2 RN , v 2 RC , and w 2 RT (to follow our neuron-by-condition-by-time

example). The rank of X is the smallest R for which the above decompo-

sition holds. This decomposition is known as the canonical polyadic (CP)

decomposition. Typically, one uses this decomposition when the rank-1 com-

ponents are expected to be interpretable in some way. For third order tensors

(and higher), a CP decomposition cannot be performed in general while si-

multaneously requiring that UU>
= I , V V >

= I , and WW>
= I . Thus, there

is no single generalization of the matrix SVD.

In terms of matricization, we can write the CP decomposition as follows:

X(1) = U(W � V)

> (1.9)

X(2) = V (W � U)

> (1.10)

X(3) = W (V � U)

> (1.11)

where � denotes the Khatri-Rao product (see [22]). The matricized versions

of tensor decompositions allow for straightforward numerical implementa-

tions.

Chapter 1. Introduction and Mathematical Preliminaries 12

The second generalization of the matrix SVD is known as the Tucker de-

composition:

X =

X

p

X

q

X

r

S
pqr

u
p

� v
q

� w
r

(1.12)

X = S ⇥1 U ⇥2 V ⇥3 W (1.13)

In terms of matricization, the Tucker decomposition can be written as:

X(1) = US(1)(W ⌦ V)

> (1.14)

X(2) = V S(2)(W ⌦ U)

> (1.15)

X(3) = WS(3)(V ⌦ U)

> (1.16)

We can further require that U , V , and W are orthonormal.

A simple procedure for performing a Tucker decomposition is known as

higher-order SVD (HOSVD): obtain U , V , and W as the left singular vectors

of X(1), X(2), and X(3), respectively. Then, obtain S as S = X ⇥1 U
> ⇥2 V

> ⇥3

W>. The truncated HOVSD is obtained as,

X ⇡ S1:p,1:q,1:r ⇥1 U:,1:p ⇥2 V:,1:q,⇥3W:,1:r (1.17)

for a rank-(p, q, r) approximation of X . The tuple (p, q, r) is the multilin-

ear rank of X when the approximation is exact. The multilinear rank is the

second generalization of tensor rank after the CP rank (or just rank) defined

above. More simply, the multilinear rank of X is defined as the tuple of ranks

of each of its unfoldings.

One distinguishes between HOSVD and Tucker decompositions in the

following sense. For a given choices of (p, q, r), the choices of S, U, V,W in

Chapter 1. Introduction and Mathematical Preliminaries 13

⇡ ⇥1 ⇥2 ⇥3

k1 ⇥ k2 ⇥ k3 N ⇥ k1 C ⇥ k2 T ⇥ k3

X ⇡ S ⇥1 U1 ⇥2 U2 ⇥3 U3

condition

ne
ur
on

tim
e

FIGURE 1.3: Truncated higher-order SVD.

the minimization problem

minimize

S,U,V,W
kX � S ⇥1 U ⇥2 V ⇥2 Wk2

F

subject to U>U = I,

V >V = I,

W>W = I

(1.18)

are not given by HOSVD, unlike in the matrix case. The Tucker decompo-

sition emphasizes that any choices of S, U, V,W can be made—perhaps one

that approximates X more closely than that obtained by HOSVD.

The literature on tensor decompositions is rich and this overview only

scratches the surface. There is significant emphasis placed on the constraints

of the factor matrices U, V,W—either in the CP or Tucker setting—leading

to, for example, nonnegative tensor decompositions [8]. One can mix and

match constraints [33]; e.g. a nonnegative constraint on U , an orthonormal

constraint on V , and a sparsity constraint on W . Implementing structure such

as diagonal, Toeplitz, Hankel, etc. on the factor matrices offer even further

flexibility. A block-Hankel structure on the temporal factor matrix, for ex-

ample, can be used in the context of linear system identification [29]. Fac-

tor matrices can also be shared across different datasets/tensors, leading to

what is known as data fusion [33]. There is also extensive literature on ten-

sor train decompositions, which allow for efficient decompositions of tensors

with very high order [28].

Chapter 1. Introduction and Mathematical Preliminaries 14

1.2 Linear Dynamical Systems

The subject of dynamical systems is central in the following chapters. In par-

ticular, we will study dynamical systems as observed across multiple condi-

tions, resulting in data objects that can be formatted into N ⇥ C ⇥ T tensors.

In particular, we will ask whether a linear dynamical system that is primar-

ily input-drive or primarily autonomous best account for data. Further, we

will show that this distinction essentially depends on the multilinear rank of

the N ⇥ C ⇥ T data. With this motivation, let us review the subject of linear

dynamical systems.

1.2.1 Overview

Often, one associates a discrete-time linear dynamical system with the fol-

lowing pair of equations,

x(t+ 1) = Ax(t) + Bu(t) (1.19)

y(t) = Cx(t) +Du(t) (1.20)

where u 2 Rm is the input, y 2 Rp is the output, and x 2 Rn is the state, and

all matrices are of appropriate dimension.

Since the system is in discrete time, the solution amounts to simple alge-

bra:

y(t) = CAtx(0) +
t�1X

⌧=0

CAt�(⌧+1)Bu(t) +Du(t), t > 0 (1.21)

The output y(t) includes an autonomous term, a (discrete) convolution term,

and a feedthrough term. The above two sets of equations imply that we can

think of linear dynamical systems as state-space models or as input-output

Chapter 1. Introduction and Mathematical Preliminaries 15

models. The latter is more general and provides the proper definition of a

linear dynamical system.

We can define a dynamical system as a function that maps input signals,

U = {u | u : Z ! Rm} to output signals, Y = {y | y : Z ! Rp}. Here

U denotes the set of all functions from Z to Rm. A linear dynamical system

thus defined as D : U ! Y where D is linear. For a given D, we have a

corresponding set of matrices H(i, j) such that

y(i) =
X

j

H(i, j)u(j), i, j 2 Z (1.22)

Familiar properties are defined as follows. The system D is causal if H(i, j) =

0 for i  j. The system D is time-invariant if H(i, j) = H
i�j

, where H
i�j

is

just notation for a particular matrix in Rp⇥m. In other words, time-invariance

is the property that H(i, j) = H(k, l) whenever i� j = k � l.

Time-invariance implies that we can write D as a discrete convolution (a

sum):

y(t) = (H ⇤ u)(t) =
1X

⌧=�1
H

t�⌧

u(⌧) (1.23)

Time-invariance and causality imply a way to write the impulse response

description of a linear dynamical system,

y(t) = H0u(t) +H1u(t� 1) +H2u(t� 2) + · · · (1.24)

Chapter 1. Introduction and Mathematical Preliminaries 16

Suppose we started with the state-space model Eq. 1.19. We can write the

corresponding impulse response parameters in terms of state space matrices:

H
t

=

8
>>>>>><

>>>>>>:

CAt�1B t > 0

D t = 0

0 t < 0

(1.25)

corresponding to our derivation in Eq. 1.21 under the assumption that x(0) =

0. The sequence H
t

itself is referred to as the impulse response of the system.

The kth column of H
t

is the response of y(t) when an impuse was applied at

time zero in the kth component of the input, i.e. u
k

(0) = 1 while u
i

(t) = 0 for

all other i and t.

From the impulse response to transfer function representations of D. A

useful property of linear dynamical systems is that they admit a description

in the Laplace domain. For discrete-time analog of the Laplace transform

is the z-transform. A z-domain description of D can be obtained by simply

taking the z-transform of the impulse response,

ˆH(z) = D + C(zI � A)�1B (1.26)

which is known as the transfer function. The corresponding z-domain rep-

resentation of D is

ŷ(z) = ˆH(z)û(z) (1.27)

A transfer function is a p ⇥ m complex matrix that maps the z-transform of

an input signal to the z-transform of an output signal.

From state-space to transfer function representations: The transfer func-

tion can be derived directly from the state-space description, which depends

on a key property of z-transforms: Z(f(t+1)) = z ˆf(t)� zf(0). This property

Chapter 1. Introduction and Mathematical Preliminaries 17

alone indicates why z-transforms (Laplace transforms) are a powerful way

to solve difference (differential) equations: they turn calculus into algebra.

Thus, we can take the z-transform of the state-space equation

Z(x(t+ 1)) =Z(Ax(t) + Bu(t)) (1.28)

zx̂(z)� zx(0) =Ax̂(z) + Bû(z) (1.29)

x̂(z) =(zI � A)�1zx(0) + (zI � A)�1Bû(z) (1.30)

Thus,

ŷ(z) = C(zI � A)�1zx(0) +
⇥
C(zI � A)�1B +D

⇤
û(z) (1.31)

When x(0) = 0 we recover the above equality: ŷ(z) = ˆH(z)û(z).

From state-space to ARX representations. In signal processing, autore-

gressive (AR) models are frequently used for modeling time series. Here,

we show that ARX (AR with eXogeneous inputs) models are equivalent to

transfer function descriptions of linear dynamical systems. To proceed, let’s

suppose we can replace the complex variable z with the shift operator q:

qf(t) = f(t + 1). This substitution is feasible whenever f(0) = 0. Thus

(following [37]), we have

qx(t) = Ax(t) + Bu(t) (1.32)

x(t) = (qI � A)�1Bu(t) (1.33)

and

y(t) =
�
C(qI � A)�1B +D

�
u(t) = H(q)u(t) (1.34)

Chapter 1. Introduction and Mathematical Preliminaries 18

Using an explicit formula for (qI � A)�1, we can write H(q) as

H(q) =
C adj(qI � A)B +D det(qI � A)

det(qI � A)
(1.35)

Although not terribly useful in practice, Eq. 1.35 emphasizes that H(q) is just

a matrix of rational functions—quotients of two polynomials. This observa-

tion follows from the fact that both adj and det specify polynomials in the

shift operator q. Thus, each entry of the matrix H(q) can be written as a ra-

tional function as follows,

H
ij

(q) =
R

ij

(q)

S(q)
) (1.36)

For some polynomials R
ij

and S. The zeros of S are the poles of the system

and correspond to the eigenvalues of A in the corresponding state-space de-

scription. The zeros of R
ij

are the zeros of D, where each input-output pair

u
j

, y
i

has a distinct set of zeros.

Now, we can write the components of y as a function of u:

y
i

(t) =
mX

j

R
ij

(q)

S(q)
u
j

(t) (1.37)

To make the following notation concise, suppose we set m = p = 1. Multiply

y by S and apply the shift operator:

nX

k

s
k

y(t+ k) =

nX

k

r
k

u(t+ k) (1.38)

where r
i

and s
j

are the coefficients of the polynomials R and s.

Chapter 1. Introduction and Mathematical Preliminaries 19

Finally, set s
n

= 1 by convention (divide all terms by s
n

if is not 1). Then

we have the following autoregressive with exogenous inputs (ARX) model:

y(t) =r
n

u(t) + r
n�1u(t� 1) + · · · + r0u(t� n) (1.39)

s
n�1y(t� 1) + s

n�2y(t� 2) + · · · + s0y(t� n) (1.40)

where we shifted y(t + n) to y(t) on the left hand side to state the following

more explicity: ARX models define linear dynamical systems by specifying

the current output y(t) as a weighted sum of the past n inputs (including

the current input) and of the past n � 1 outputs (not including the currount

output).

From ARX to impulse response. To tie things up, note how we can take

the Laurent expansion of H(z) (or H(q)) to recover the impulse response se-

quence H
t

.

1.2.2 Implications for identification

The system identification problem states, given sequences u(t) and y(t), de-

termine D. This is, of course, a frequently encountered problem in practice,

and one we explore in Chapter 4. The previous section emphasizes that there

are multiple ways to approach identification, given that there are multiple

parameterizations (representations) of a dynamical system D.

A generic linear dynamical system D can be any linear mapping from

inputs to outputs, but we often constrain the model to be causal and time-

invariant. As developed above, the state-space, impulse-response, and ARX

models incorporate these constraints naturally, which are generally desired

from an identification standpoint. Nevertheless, these constraints can be

easily relaxed. Time-varying dynamical systems can be specified by time-

varying parameters in any description. Acausal descriptions can be obtained

in the obvious way by allowing (in external descriptions) H(i, j) to be nonzero

Chapter 1. Introduction and Mathematical Preliminaries 20

for all i, j. For state-space models, it’s easy to see that acausality requires

feedback: replace u with

u Ky

�>
for some feedback matrix K. The corre-

sponding input-output relationship is acasual. (As an aside, “acasual” pro-

cessing is ubiquitous in the brain, e.g. as in predictive coding [30], and sim-

ply by studying linear dynamical systems we can convince ourselves of the

necessary role that feedback must play in such processing.)

A state-space model specifies a multi-input multi-output (m > 1, p > 1)

system where the poles of every input-output pair are shared, since a sin-

gle matrix A is responsible for the intervening transformation between u
i

and y
j

. This is otherwise evident from the denominator of Eq. 1.35. A state-

space model is overparameterized—more parameters than degrees of free-

dom. This can be noted from the fact that any change of basis in the state-

space Rn yields equivalent input-output transformations, though yield dif-

ferent values of A,B and C. Intuitively, the eigenvalues of A determine the

dynamics of the system thus A is determined by only n degrees of freedom

(when the state-space description is minimal—A has full rank).

The impulse-response model is attractive from a model-fitting perspec-

tive. Simply regress outputs against past inputs. Formally, however, the im-

pulse response is an infinite set of parameters with finite degrees of freedom.

By only regressing against l past inputs we obtain a finite impulse response

model.

The ARX representation is also attractive for identification purposes. Whereas

the impulse response contains an infinite number of parameters with finite

degrees of freedom, the ARX model simply parameterizes those degrees of

freedom explicitly. This is accomplished by regressing outputs against past

inputs and outputs. The corresponding coefficients translate exactly to the

coefficients of a transfer function, which have an immediate interpretation as

polynomial coefficients for the poles and zeros of the system.

Chapter 1. Introduction and Mathematical Preliminaries 21

However, neither the impulse-response or ARX models are capable of nat-

urally capturing shared dynamics (shared poles) without explicit constraints.

By fitting an ARX model to data where p > 1,m > 1, we are essentially fit-

ting a distinct dynamical system (a distinct set of poles/zeros) to each input-

output pair. This is true, but less explicitly, for impulse-response fitting as

well. From a model-fitting perspective, this may be irrelevant. From a sci-

entific perspective, this distinction bears consequences. In chapter X, we fit

muscle activity from motor cortex activity, modeling the transformation as

a linear dynamical system. We wish to model the “spinal dynamics” as the

state variable x, with the constraint that a shared spinal circuit responsible

for all input-output transformations, regardless of the input M1 neuron and

output muscle. The state-space description captures this constraint naturally.

The overparameterization of state-space models has been studied in the

context of recent machine learning results [16]. The study showed that gra-

dient descent on state-space models converge to global optimizers, despite

a nonconvex loss function for state-space parameterizations (this result de-

pends on the state-space overparameterization).

22

Chapter 2

Tensor Analysis Reveals Distinct

Population Structure that Parallels

the Different Computational Roles

of Areas M1 and V1

Abstract

Cortical firing rates frequently display elaborate and heterogeneous tem-

poral structure. One often wishes to compute quantitative summaries of such

structure—a basic example is the frequency spectrum—and compare with

model-based predictions. The advent of large-scale population recordings

affords the opportunity to do so in new ways, with the hope of distinguish-

ing between potential explanations for why responses vary with time. We

introduce a method that assesses a basic but previously unexplored form

of population-level structure: when data contain responses across multiple

neurons, conditions, and times, they are naturally expressed as a third-order

tensor. We examined tensor structure for multiple datasets from primary

visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘sim-

plest’ (there were relatively few degrees of freedom) along the neuron mode,

Chapter 2. Tensor Analysis Reveals Distinct Population Structure that

Parallels the Different Computational Roles of Areas M1 and V1
23

while all M1 datasets were simplest along the condition mode. These dif-

ferences could not be inferred from surface-level response features. Formal

considerations suggest why tensor structure might differ across modes. For

idealized linear models, structure is simplest across the neuron mode when

responses reflect external variables, and simplest across the condition mode

when responses reflect population dynamics. This same pattern was present

for existing models that seek to explain motor cortex responses. Critically,

only dynamical models displayed tensor structure that agreed with the em-

pirical M1 data. These results illustrate that tensor structure is a basic feature

of the data. For M1 the tensor structure was compatible with only a subset of

existing models.

	 24	

Introduction	
Cortical	neurons	often	display	temporally	complex	firing	rate	patterns	

(e.g.,		[1,2]).	Such	temporal	structure	may	have	at	least	two	non-exclusive	

sources.	First,	temporal	structure	may	reflect	external	variables	that	drive	or	are	

being	encoded	by	the	population;	e.g.,	a	time-varying	stimulus	or	a	time-varying	

parameter	represented	by	the	population	[3,4].	Second,	temporal	structure	may	

reflect	internal	population-level	dynamics.	For	example,	oscillatory	responses	

are	observed	in	isolated	spinal	populations	[5],	and	even	sensory	areas	exhibit	

response	transients	due	to	cellular	and	network	dynamics	[6].	One	often	wishes	

to	disentangle	the	contributions	of	external	variables	and	internal	dynamics.	Yet	

without	full	knowledge	of	the	relevant	external	variables,	response	patterns	can	

in	principle	originate	from	either	source	[7].	For	example,	a	sinusoidal	response	

might	reflect	a	sinusoidal	external	variable,	oscillatory	population	dynamics,	or	

both.	

Motor	cortex	(M1)	presents	a	paradigmatic	example	where	temporal	

response	complexity	[1,8-10]	has	fed	a	long-standing	debate	[11-21].	Guided	by	

one	viewpoint,	many	studies	have	focused	on	the	possibility	that	M1	responses	

reflect	specific	external	behavioral	variables,	and	have	sought	to	determine	their	

identity	(reach	direction,	velocity,	joint	torques,	muscle	forces,	etc.	[21])	and	

reference	frame	[22-28].	Guided	by	another	viewpoint,	recent	studies	suggest	

that	the	temporal	structure	of	M1	responses	may	largely	reflect	the	evolution	of	

internal	population	dynamics	[29-33].	This	second	viewpoint	is	embodied	in	

recurrent	network	models	of	pattern	generation	[34-36],	and	is	broadly	

compatible	with	control-theory	models	[37-39]	where	dynamics	may	involve	

both	internal	recurrence	and	feedback.		

While	not	necessarily	opposed,	the	first	and	second	viewpoints	often	

make	different	predictions	even	when	starting	with	shared	assumptions.	

Suppose	one	began	with	the	assumption	that,	during	reaching,	motor	cortex	

controls	muscle	activity	more-or-less	directly	[14].	The	first	viewpoint	predicts	

that	neural	responses	will	be	a	function	of	(will	‘encode’)	the	patterns	of	muscle	

activity.	The	first	viewpoint	does	not	predict	that	neural	responses	should	obey	

dynamics:	the	future	neural	state	would	not	be	a	consistent	function	of	the	

present	neural	state.	While	muscle	activity	is	‘dynamic’	in	the	sense	that	it	is	

	 25	

time-varying,	it	is	not	typically	true	that	the	set	of	muscle	activations	obeys	a	

single	dynamical	system	(i.e.	a	fixed	flow	field)	across	different	reaches.	The	

second	viewpoint,	in	contrast,	predicts	that	the	motor	cortex	population	

response	should	obey	consistent	dynamics.	The	second	viewpoint,	like	the	first,	

predicts	that	muscle	activity	will	be	a	function	of	neural	responses	[40,41].	Yet	

because	that	function	is	presumably	non-invertible,	neural	responses	will	not	be	

a	function	of	muscle	activity,	in	opposition	to	the	first	viewpoint.		

The	hypothesis	that	neural	responses	reflect	external	variables	(e.g.,	

muscle	activity	itself)	and	the	hypothesis	that	neural	responses	reflect	internal	

dynamics	(e.g.,	the	dynamics	that	produce	muscle	activity)	could	be	readily	

distinguished	were	it	known	that	muscle	activity	was	the	relevant	external	

variable.	However,	that	assumption	is	itself	the	subject	of	controversy	

[8,14,15,17,27,40,42-45].	It	therefore	remains	debated	whether	M1	response	

structure	originates	from	a	representation	of	external	movement	variables	or	

the	unfolding	of	internal	dynamics.	Recent	experimental	studies	[30,46]	and	

reviews	[19,32]	have	advanced	both	positions.		

Motor	cortex	thus	illustrates	a	general	need:	the	ability	to	infer	the	

predominant	origin	of	time-varying	responses.	We	report	here	that	a	basic	but	

previously	unmeasured	feature	of	neural	population	data	is	surprisingly	

informative	to	this	need.	We	considered	the	population	response	as	a	third-order	

tensor	(a	three-dimensional	array)	indexed	by	neuron,	condition	and	time.	We	

were	motivated	by	the	idea	that	tuning	for	external	variables	constrains	

structure	across	neurons;	if	there	are	ten	relevant	external	variables,	responses	

are	limited	to	ten	degrees	of	freedom	across	neurons.	We	refer	to	this	setting	as	

‘neuron-preferred.’	Conversely,	internal	dynamics	constrain	structure	across	

conditions;	if	a	population	obeys	the	same	dynamics	across	conditions,	

responses	will	have	limited	degrees	of	freedom	across	conditions.	We	refer	to	

this	situation	as	‘condition-preferred.’	Neuron-preferred	or	condition-preferred	

structure	is	hidden	at	both	the	single-neuron	level	and	in	standard	population-

level	analyses—i.e.	this	structure	is	hidden	if	the	data	is	viewed	only	as	a	matrix.		

	 26	

Intuitions	regarding	neuron-preferred	versus	condition-preferred	

structure	can	be	gained	by	considering	linear	models.	For	example,	the	input-

driven	system	

	 ! ", $ = 	'(", $,	 (1)	

and	the	autonomous	dynamical	system	

	 ! ", $ + 1 = 	+! ", $,	 (2)	

can	be	viewed	as	two	different	generators	of	a	data	tensor	, ∈ ℝ/×1×2	,	with	

! ", $ ∈ ℝ/	the	vector	of	3	neural	responses	at	time	$	for	condition	",	((", $) ∈

ℝ6 	the	vector	of	7	input	variables,	' ∈ ℝ/×6 ,	and	+ ∈ ℝ/×/ .	Time-varying	

structure	of	,	generated	by	the	first	equation	is	inherited	from	the	time-varying	

structure	of	((", $),	while	for	the	second	it	is	inherited	from	the	time-varying	

structure	of	+8 ,	since	equation	(2)	can	be	expressed	as	! ", $ = 	+8! ", 0 .	As	

will	be	formalized	later,	neuron-preferred	tensor	structure	follows	naturally	

from	equation	(1):	each	:×;	‘slice’	of	the	data	tensor	,	(i.e.,	the	data	for	a	given	

neuron	across	all	conditions	and	times)	is	a	linear	combination	of	a	bounded	

number	of	basis	elements,	each	of	size	:×;.	Condition-preferred	structure	

follows	naturally	from	equation	(2):	each	3×;	‘slice’	of	the	data	tensor	,	(i.e.,	

the	data	for	a	given	condition	across	all	neurons	and	times)	is	a	linear	

combination	of	a	bounded	number	of	basis	elements,	each	of	size	3×;.	We	

choose	the	term	‘neuron-preferred’	to	describe	the	case	where	there	are	fewer	

degrees	of	freedom	across	neurons,	and	the	term	‘condition-preferred’	to	

describe	the	case	where	there	are	fewer	degrees	of	freedom	across	conditions.	

Thus,	the	‘preferred	mode’	is	the	mode	(neuron	or	condition)	from	which	the	

data	tensor	can	be	most	accurately	reconstructed	using	the	smallest	number	of	

basis	elements.		

Our	investigation	of	the	preferred	mode	was	guided	by	a	three-part	

hypothesis.	First,	we	hypothesized	that	empirical	population	responses	may	

often	have	a	clear	preferred	mode.	Second,	we	hypothesized	that	the	preferred	

mode	likely	differs	between	brain	areas.	To	address	these	hypotheses,	we	

assessed	the	preferred	mode	for	three	neural	datasets	recorded	from	primary	

visual	cortex	(V1)	and	four	neural	datasets	recorded	from	M1.	V1	datasets	were	

	 27	

strongly	neuron-preferred,	while	M1	datasets	were	strongly	condition-preferred.	

Third,	we	hypothesized	that	the	preferred	mode	might	be	informative	regarding	

the	origin	of	population	responses.	We	concentrated	on	models	of	M1,	and	found	

that	existing	models	based	on	tuning	for	external	variables	were	neuron-

preferred,	in	opposition	to	the	M1	data.	However,	existing	models	with	strong	

internal	dynamics	were	condition-preferred,	in	agreement	with	the	data.	Model	

success	or	failure	depended	not	on	parameter	choice	or	fit	quality,	but	on	model	

class.	We	conclude	that	tensor	structure	is	informative	regarding	the	

predominant	origin	of	time-varying	activity,	and	can	be	used	to	test	specific	

hypotheses.	In	the	present	case,	the	tensor	structure	of	M1	datasets	is	consistent	

with	only	a	subset	of	existing	models.	 	

	 28	

Results	

Time-varying	response	structure	

We	analyzed	nine	physiological	datasets:	three	recorded	from	V1	during	

presentation	of	visual	stimuli,	four	recorded	from	M1	during	reaching	tasks,	and	

two	recorded	from	muscle	populations	during	the	same	reaching	tasks.	Each	

dataset	employed	multiple	conditions:	different	stimuli/reaches.	Each	neuron’s	

response	was	averaged	across	trials	within	a	condition	and	smoothed	to	produce	

a	firing	rate	as	a	function	of	time.	Some	recordings	were	simultaneous	and	some	

were	sequential,	but	in	all	cases	the	same	set	of	conditions	was	employed	for	

every	neuron.	Stimuli	were	never	tailored	to	individual	neurons	(e.g.,	to	their	

preferred	direction	or	receptive	field).	This	allows	for	analysis	of	the	true	

population	response,	indexed	by	neuron,	condition,	and	time.	For	the	muscle	

populations,	electromyographic	(EMG)	voltages	were	converted	to	a	smooth	

function	of	intensity	versus	time	via	standard	rectification	and	filtering.	Muscle	

populations	were	then	analyzed	in	the	same	way	as	neural	populations,	but	

individual	elements	were	muscles	rather	than	neurons.	We	analyzed	ten	further	

datasets	simulated	using	existing	models	of	M1.	

We	first	focus	on	two	datasets:	one	from	V1	(Fig	1a)	and	one	from	M1	

(Fig	1b).	The	V1	dataset	was	recorded	using	a	96-electrode	array	from	an	

anesthetized	monkey	viewing	one-second	movies	of	natural	scenes	(25	movies,	

50	trials	each).	The	M1	dataset	was	recorded	using	a	pair	of	implanted	96-

electrode	arrays,	spanning	the	arm	representation	of	primary	motor	cortex	and	

the	immediately	adjacent	region	of	dorsal	premotor	cortex	(all	results	were	

similar	if	primary	motor	and	premotor	cortex	were	treated	separately).	Neural	

responses	were	recorded	during	a	delayed	reach	task:	the	monkey	touched	a	

central	spot	on	a	screen,	was	presented	with	a	target,	then	executed	a	reach	

following	a	go	cue.	We	analyzed	data	for	72	conditions	(Fig	1b,	insets),	each	

involving	a	different	reach	distance	and	curvature	(average	of	28	trials	per	

condition)	[30].	

	

	 29	

	

Fig	1.	Illustration	of	the	stimuli/task	and	neural	responses	for	one	

V1	dataset	and	one	M1	dataset.	(a)	Responses	of	four	example	neurons	for	a	

V1	dataset	recorded	via	an	implanted	electrode	array	during	presentation	of	

movies	of	natural	scenes.	Each	colored	trace	plots	the	trial-averaged	firing	rate	

for	one	condition	(one	of	25	movies).	For	visualization,	traces	are	colored	red	to	

blue	based	on	the	firing	rate	early	in	the	stimulus.	(b)	Responses	of	four	example	

neurons	for	an	M1	dataset	recorded	via	two	implanted	electrode	arrays	during	a	

delayed-reach	task	(monkey	J).	Example	neurons	were	chosen	to	illustrate	the	

variety	of	observed	responses.	Each	colored	trace	plots	the	trial-averaged	firing	

rate	for	one	condition;	i.e.,	one	of	72	straight	and	curved	reach	trajectories.	For	

visualization,	traces	are	colored	based	on	the	firing	rate	during	the	delay	period	

between	target	onset	and	the	go	cue.	Insets	show	the	reach	trajectories	(which	

are	the	same	for	each	neuron)	using	the	color-coding	for	that	neuron.	M1	

responses	were	time-locked	separately	to	the	three	key	events:	target	onset,	the	

go	cue,	and	reach	onset.	For	presentation,	the	resulting	average	traces	were	

spliced	together	to	create	a	continuous	firing	rate	as	a	function	of	time.	However,	

the	analysis	window	included	primarily	movement-related	activity.	Gray	boxes	

	 30	

indicate	the	analysis	windows	(for	V1,	; = 91	time	points	spanning	910	ms;	for	

M1,	; = 71	time	points	spanning	710	ms).	Horizontal	bars:	200	ms;	vertical	bars:	

20	spikes	per	second.	

Both	V1	and	M1	neurons	displayed	temporally	complex	response	

patterns	(Fig	1).	Each	colored	trace	plots	the	trial-averaged	firing	rate	over	time	

for	one	condition:	a	particular	movie	(Fig	1a)	or	reach	(Fig	1b).	V1	neurons	

exhibited	multiphasic	responses	throughout	the	stimulus.	M1	neurons	exhibited	

multiphasic	activity	over	a	~700	ms	period	that	began	shortly	after	the	go	cue.	

Tight	standard	error	bars	(not	displayed)	confirmed	that	temporal	response	

structure	was	statistically	reliable	rather	than	the	result	of	sampling	noise.	In	M1	

it	has	been	debated	whether	such	structure	primarily	reflects	external	factors	

such	as	reach	kinematics	or	primarily	reflects	internal	dynamics.	Both	

hypotheses	can	claim	support	from	surface-level	features	of	the	data.	Responses	

vary	strongly	with	reach	kinematics	(insets	show	reach	trajectories	color-coded	

according	to	the	response	properties	of	the	neuron	in	that	panel)	as	proposed	by	

the	first	hypothesis.	On	the	other	hand,	responses	show	some	quasi-oscillatory	

features	that	could	reflect	underlying	dynamics.	Might	a	comparison	with	V1—

where	responses	are	known	to	be	largely	externally	driven—be	illuminating	

regarding	the	source	of	temporal	response	structure	in	M1?	

V1	and	M1	responses	differed	in	a	number	of	straightforward	ways	

including	frequency	content	and	the	overall	response	envelope.	Such	differences	

are	expected	given	the	different	pacing	of	the	task	and	stimuli.	We	wondered	

whether	V1	and	M1	datasets	might	also	differ	in	deeper	ways	that	are	hidden	at	

the	level	of	the	single	neuron	but	clear	at	the	level	of	the	population.	In	general,	a	

population	response	can	differ	across	neurons,	conditions,	and	time.	While	

structure	across	time	can	be	partially	appreciated	via	inspection	of	single	

neurons	(as	in	Fig	1),	the	joint	structure	across	neurons	and	conditions	is	less	

patent.	Are	some	datasets	more	constrained	across	neurons	(‘neuron	preferred’)	

and	others	more	constrained	across	conditions	(‘condition	preferred’)?	If	so,	

might	that	carry	implications?		

	

Preferred-mode	analysis	of	V1	and	M1	

	 31	

Neural	population	data	is	often	analyzed	in	matrix	form,	allowing	a	

number	of	standard	analyses.	Such	analyses	include	assessing	covariance	

structure	and	applying	principal	component	analysis	to	extract	the	most	

prevalent	response	patterns	[47].	One	can	then	quantify,	for	a	given	number	of	

extracted	response	patterns,	how	well	they	reconstruct	the	original	data.	This	

can	provide	a	rough	estimate	of	the	number	of	degrees	of	freedom	in	the	data	

[48].		

However,	when	recordings	span	multiple	neurons,	conditions	and	times,	

the	data	are	naturally	formulated	not	as	a	matrix	but	as	a	third-order	tensor	of	

size	3×:×;,	where	3	is	the	number	of	neurons,	:	is	the	number	of	conditions,	

and	;	is	the	number	of	times.	Each	of	these	three	indices	is	referred	to	as	a	

‘mode’	[49].	One	can	consider	an	3×:×;	tensor	as	a	collection	of	3	matrices,	

each	of	size	:×;	(one	per	neuron),	or	as	a	collection	of	:	matrices,	each	of	size	

3×;	(one	per	condition)	(Fig	2a).	One	can	then	reconstruct	the	population	

tensor	in	two	ways.	First,	one	can	reconstruct	the	responses	of	each	neuron	as	a	

linear	combination	of	a	small	collection	of	‘basis-neurons,’	each	of	size	:×;	(Fig	

2b,	red	matrices).	Second,	one	can	reconstruct	each	condition	as	a	linear	

combination	of	a	small	collection	of	‘basis-conditions,’	each	of	size	3×;	(Fig	2b,	

blue	matrices).	Unlike	in	the	matrix	case,	for	tensors	a	‘preferred	mode’	can	exist.	

	

Fig	2.	Schematic	illustration	of	population	tensor	and	results	of	a	

simplified	preferred-mode	analysis	for	two	datasets.	(a)	The	population	

	 32	

response	can	be	represented	as	firing	rate	values	arranged	in	an	3×:×;	array,	

i.e.	a	third-order	tensor	indexed	by	neuron,	condition,	and	time.	That	population	

tensor	(left)	can	be	thought	of	as	a	collection	of	:×;	matrices	(one	for	each	

neuron,	middle)	or	a	collection	of	3×;	matrices	(one	for	each	condition,	right).	

(b)	The	population	tensor	may	be	approximately	reconstructed	(via	linear	

combinations)	from	a	set	of	‘basis-neurons’	(:×;	matrices,	red)	or	from	a	set	of	

‘basis-conditions’	(3×;	matrices,	blue).		Depending	on	the	nature	of	the	data,	the	

basis-neurons	or	the	basis-conditions	may	provide	the	better	reconstruction.	(c)	

Normalized	reconstruction	error	of	the	population	tensors	for	the	V1	and	M1	

datasets	shown	in	Fig	1	when	reconstructed	using	basis	neurons	(red)	or	basis	

conditions	(blue).	Error	bars	show	the	standard	errors	across	conditions	

(Methods).	The	number	of	basis	elements	(12	for	V1	and	25	for	M1)	was	the	

same	for	the	neuron	and	condition	modes	and	was	chosen	algorithmically	

(Methods).	Robustness	of	the	preferred	mode	with	respect	to	the	number	of	

basis	elements	is	shown	in	subsequent	analyses.	

To	assess	the	preferred	mode	we	applied	the	singular	value	

decomposition	(SVD)	to	the	neuron	and	condition	modes	of	the	population	

tensor	(Methods),	yielding	a	set	of	basis-neurons	and	a	set	of	basis-conditions.	

Performing	SVD	along	a	mode	of	a	tensor,	, ∈ ℝ/×1×2	,		equates	to	performing	

SVD	on	one	of	the	tensor’s	matrix	‘unfoldings.’	We	define	the	‘mode-1’	and	

‘mode-2’	unfolding	of	,	as	

	
> ? ∶= A 1 A 2 ⋯ A ; ∈ ℝ/×12 ,	

> D ∶= A 1 E A 2 E ⋯ A ; E ∈ ℝ1×/2 ,	
(3)	

where	A($) ∈ ℝ/×1 	is	the	3×:	matrix	slice	of	,	at	time	$.	Each	row	of	>(?)	

corresponds	to	one	neuron,	and	each	row	of	>(D)	corresponds	to	one	condition.	

The	top	F	right	singular	vectors	of	> ? 	are	of	dimension	:;,	thus	can	be	

reshaped	to	:×;	matrices,	corresponding	to	F	basis-neurons.	Similarly,	the	top	F	

right	singular	vectors	of	> D 	are	of	dimension	3;	and	can	be	reshaped	to	3×;	

matrices,	corresponding	to	F	basis-conditions.	In	this	way	each	neuron	(i.e.,	each	

row	of		> ? 	and	the	corresponding	:×;	slice	of	,)	can	be	approximately	

reconstructed	as	a	linear	combination	of	k	basis-neurons.	Similarly,	each	

	 33	

condition	(i.e.,	each	row	of		>(D)	and	the	corresponding	3×;	slice	of	,)	can	be	

approximately	reconstructed	as	a	linear	combination	of	k	basis-conditions.	

To	assess	the	preferred	mode	we	reconstructed	each	population	tensor	

twice:	once	using	a	fixed	number	(F)	of	basis-neurons,	and	once	using	the	same	

fixed	number	(F)	of	basis-conditions.	Reconstruction	error	was	the	normalized	

squared	error	between	the	reconstructed	tensor	and	the	original	data	tensor.	If	

basis-neurons	provided	the	better	reconstruction,	the	neuron	mode	was	

considered	preferred.	If	basis-conditions	provided	the	better	reconstruction,	the	

condition	mode	was	considered	preferred.	(We	explain	later	the	algorithm	for	

choosing	the	number	of	basis	elements	F,	and	explore	robustness	with	respect	to	

that	choice).	

The	above	procedure	is	related	to	several	tensor	decomposition	

techniques,	and	the	preferred	mode	is	related	to	the	tensor’s	approximate	

multilinear	rank	[49].	Here,	instead	of	decomposing	a	tensor	across	all	modes	we	

simply	perform	independent	mode-1	and	mode-2	decompositions	and	compare	

the	quality	of	their	corresponding	reconstructions.		

For	the	V1	dataset	illustrated	in	Fig	1	the	neuron	mode	was	preferred;	it	

provided	the	least	reconstruction	error	(Fig	2c,	left).	In	contrast,	for	the	M1	

dataset	illustrated	in	Fig	1	the	condition	mode	was	preferred	(Fig	2c,	right).	This	

analysis	considered	all	time	points	in	the	shaded	regions	of	Fig	1.	Keeping	in	

mind	that	reconstruction	along	either	mode	is	expected	to	perform	reasonably	

well	(data	points	are	rarely	uncorrelated	along	any	mode)	the	disparity	between	

V1	and	M1	is	large:	for	V1	the	basis-neuron	reconstruction	performed	33%	

better	than	the	basis-condition	reconstruction,	while	for	M1	it	performed	68%	

worse.		

	

The	preferred	mode	emerges	as	more	times	are	considered	

A	preferred	mode	exists	because	the	population	tensor	spans	multiple	

neurons,	conditions,	and	times.	Consider	the	population	response	at	a	single	

time,	yielding	an	3×:×1	subtensor	(a	matrix).	For	this	case	neither	mode	is	

preferred—the	row	rank	(neuron	mode)	of	a	matrix	equals	the	column	rank	

	 34	

(condition	mode).	How	does	the	preferred	mode	emerge	as	more	times	are	

considered?	We	assessed	reconstruction	error	as	a	function	of	timespan	(Fig	3)	

beginning	with	a	single	time-point,	halfway	through	the	response.	Using	this	

time	we	chose	bases	of	F	elements	such	that	there	was	a	5%	reconstruction	

error	of	the	3×:×1	matrix	(this	determined	the	choice	of	F = 12	and	25	for	the	

V1	and	M1	datasets).	Keeping	F	fixed,	we	increased	the	tensor	size,	adding	both	

an	earlier	and	a	later	time	point	(we	considered	time	points	sampled	every	10	

ms).	Thus,	reconstruction	error	was	measured	for	subtensors	of	size	3×:×;H 	

where	;H = 1,3,5, … , ;.	

	

Fig	3.	Illustration	of	the	full	preferred-mode	analysis.	Reconstruction	

error	is	measured	as	a	function	of	the	number	of	times	included	in	the	

population	tensor.	(a)	Schematic	of	the	method.	A	fixed	number	(three	in	this	

	 35	

simple	illustration)	of	basis-neurons	(red)	and	basis-conditions	(blue)	is	used	to	

reconstruct	the	population	tensor.	This	operation	is	repeated	for	different	

subsets	of	time	(i.e.,	different	sizes	of	the	population	tensor)	three	of	which	are	

illustrated.	Longer	green	brackets	indicate	longer	timespans.	(b)	The	firing	rate	

(black)	of	one	example	V1	neuron	for	one	condition,	and	its	reconstruction	using	

basis-neurons	(red)	and	basis-conditions	(blue).	Short	red/blue	traces	show	

reconstructions	when	the	population	tensor	included	short	timespans.	Longer	

red/blue	traces	show	reconstructions	when	the	population	tensor	was	expanded	

to	include	longer	timespans.	Dark	red/blue	traces	show	reconstructions	when	

the	population	tensor	included	all	times.	For	illustration,	data	are	shown	for	one	

example	neuron	and	condition,	after	the	analysis	was	applied	to	a	population	

tensor	that	included	all	neurons	and	conditions	(same	V1	dataset	as	in	Fig	1a	

and	2c).	The	dashed	box	indicates	the	longest	analyzed	timespan.	Responses	of	

the	example	neuron	for	other	conditions	are	shown	in	the	background	for	

context.	Vertical	bars:	10	spikes	per	second.	(c)	Plot	of	normalized	

reconstruction	error	(averaged	across	all	neurons	and	conditions)	for	the	V1	

dataset	analyzed	in	b.	Red	and	blue	traces	respectively	show	reconstruction	

error	when	using	12	basis	neurons	and	12	basis	conditions.	The	horizontal	axis	

corresponds	to	the	duration	of	the	timespan	being	analyzed.	Green	arrows	

indicate	timespans	corresponding	to	the	green	brackets	in	b.	Shaded	regions	

show	error	bars	(Methods).	(d)	As	in	b	but	illustrating	the	reconstruction	error	

for	one	M1	neuron,	drawn	from	the	population	analyzed	in	Fig	1b	and	2c.	(e)	As	

in	c	but	for	the	M1	dataset,	using	25	basis	neurons	and	25	basis	conditions.	The	

right-most	values	in	c	and	e	plot	the	reconstruction	error	when	all	times	are	

used,	and	thus	correspond	exactly	to	the	bar	plots	in	Fig	2c.	

The	emergence	of	the	preferred	mode	was	often	readily	apparent	even	

when	reconstructing	single-neuron	responses	(note	that	the	entire	tensor	was	

always	reconstructed,	but	each	neuron	can	nevertheless	be	viewed	individually).	

Fig	3b	shows	the	response	of	one	V1	neuron	for	one	condition	(black	trace)	with	

reconstructions	provided	by	the	neuron	basis	(red)	and	condition	basis	(blue).	

Each	of	the	(shortened)	light	red	and	light	blue	traces	show	reconstructions	for	a	

particular	timespan	(;H).	Dark	red	and	dark	blue	traces	show	reconstructions	for	

the	full	timespan	(;H = ;).	Unsurprisingly,	for	short	timespans	(short	traces	near	

	 36	

the	middle	of	the	plot)	the	two	reconstructions	performed	similarly:	blue	and	

red	traces	both	approximated	the	black	trace	fairly	well.	However,	for	longer	

timespans	the	condition-mode	reconstruction	became	inaccurate;	the	longest	

blue	trace	provides	a	poor	approximation	of	the	black	trace.	In	contrast,	the	

neuron-mode	reconstruction	remained	accurate	across	the	full	range	of	times;	

short	and	long	red	traces	overlap	to	the	point	of	being	indistinguishable.	Thus,	

the	reason	why	the	V1	data	were	neuron-preferred	(Fig	2c)	is	that	the	neuron	

basis,	but	not	the	condition	basis,	continued	to	provide	good	reconstructions	

across	long	timespans.	

For	the	M1	dataset	we	observed	the	opposite	effect	(Fig	3d).	For	very	

short	timespans	both	the	neuron	and	condition	bases	provided	adequate	

approximations	to	the	black	trace.	However,	for	longer	timespans	the	neuron-

mode	reconstruction	(red)	was	unable	to	provide	an	accurate	approximation.	In	

contrast,	the	condition	mode	reconstruction	remained	accurate	across	all	times;	

short	and	long	blue	traces	overlap	to	the	point	of	being	indistinguishable.		

The	disparity	in	reconstruction	error	between	the	preferred	and	non-

preferred	mode	was	often	clear	at	the	single-neuron	level,	and	was	very	clear	at	

the	population	level.	We	computed	overall	reconstruction	error	for	the	

population	tensor	as	a	function	of	timespan	;H 	(Fig	3c,e).	The	profile	of	each	

trace	reflects	reconstruction	‘stability.’	Reconstructions	were	never	perfectly	

stable;	error	inevitably	grew	as	more	data	had	to	be	accounted	for.	However,	

stability	was	considerably	better	for	the	preferred	mode:	the	neuron	mode	for	

V1	and	the	condition	mode	for	M1.	As	can	be	inferred	from	the	standard	errors	

of	the	mean	(shaded	regions)	reconstruction	error	in	V1	was	significantly	lower	

for	the	neuron	mode	for	all	but	the	shortest	windows	(K = 0.007	for	the	longest	

window).	Conversely,	reconstruction	error	in	M1	was	significantly	lower	for	the	

condition	mode	for	all	but	the	shortest	windows	(K < 10N?O	for	the	longest	

window).		

When	a	particular	reconstruction	fares	poorly—e.g.,	the	failure	of	the	

condition	mode	to	accurately	capture	the	firing	rate	of	the	V1	neuron	in	Fig	3b—

it	is	not	trivial	to	interpret	the	exact	manner	in	which	reconstruction	failed.	

However,	the	underlying	reason	for	poor	reconstruction	is	simple:	the	data	have	

	 37	

more	degrees	of	freedom	along	that	mode	than	can	be	accounted	for	by	the	

corresponding	basis	set.	For	V1,	the	data	have	more	degrees	of	freedom	across	

conditions	than	across	neurons,	while	the	opposite	was	true	for	M1.				

Thus,	different	datasets	can	have	strongly	differing	preferred	modes,	

potentially	suggesting	difference	sources	of	temporal	response	structure.	Before	

considering	this	possibility,	we	ask	whether	the	difference	in	preferred	mode	

between	V1	and	M1	is	robust,	both	in	the	sense	of	being	reliable	across	datasets	

and	in	the	sense	of	not	being	a	trivial	consequence	of	surface-level	features	of	the	

data,	such	as	frequency	content,	that	differ	between	V1	and	M1	recordings.	

	

Preferred-mode	analysis	of	multiple	datasets	

To	assess	robustness	we	analyzed	two	additional	V1	datasets	recorded	

from	cat	V1	using	96-electrode	arrays	during	presentation	of	high-contrast	

grating	sequences[4,50]	(Fig	4b;	top,	50	different	sequences;	bottom	90	

different	sequences;	panel	a	reproduces	the	analysis	from	Fig	3c	for	

comparison).	For	all	V1	datasets	the	neuron	mode	was	preferred:	reconstruction	

error	grew	less	quickly	with	time	when	using	basis-neurons	(red	below	blue).	

We	analyzed	three	additional	M1	datasets	(Fig	4c-d;	the	top	of	panel	c	

reproduces	the	analysis	from	Fig	3e	for	comparison),	recorded	from	two	

monkeys	performing	variants	of	the	delayed	reach	task.	For	all	M1	datasets	the	

condition	mode	was	preferred:	reconstruction	error	grew	less	quickly	with	time	

when	using	basis-conditions	(blue	below	red).	

	

	 38	

	

Fig	4.	Preferred-mode	analysis	across	neural	populations.	Each	panel	

corresponds	to	a	dataset	type,	and	plots	normalized	reconstruction	error	as	a	

function	of	timespan	(as	in	Fig	3c,e).	Excepting	panel	a,	two	datasets	

corresponding	to	two	animals	were	analyzed,	yielding	two	plots	per	panel.	Insets	

at	top	indicate	the	dataset	type	and	show	the	response	of	an	example	neuron.	(a)	

Analysis	for	the	V1	population	from	Fig	1a,	recorded	from	a	monkey	viewing	

movies	of	natural	scenes.	Data	are	the	same	as	in	Fig	3c	and	are	reproduced	here	

for	comparison	with	other	datasets.	(b)	Analysis	of	two	V1	populations	recorded	

from	two	cats	using	grating	sequences.	(c)	Analysis	of	two	M1	populations	

(monkeys	J	and	N)	recorded	using	implanted	electrode	arrays.	The	top	panel	

corresponds	to	the	dataset	illustrated	in	Fig	1b	and	reproduces	the	analysis	

from	Fig	3e.	(d)	Analysis	of	two	additional	M1	populations	from	the	same	two	

monkeys	but	for	a	different	set	of	reaches,	with	neural	populations	recorded	

sequentially	using	single	electrodes.	

Most	datasets	involved	simultaneous	recordings	(the	three	V1	datasets	in	

Fig	4a,b	and	the	two	M1	datasets	in	Fig	4c).	However,	the	preferred	mode	could	

also	be	readily	inferred	from	populations	built	from	sequential	recordings	(the	

two	M1	datasets	in	Fig	4d).	Critically,	we	note	that	sequential	recordings	

employed	the	same	stimuli	for	every	neuron	(stimuli	were	not	tailored	to	

	 39	

individual	neurons)	and	behavior	was	stable	and	repeatable	across	the	time-

period	over	which	recordings	were	made.			

To	avoid	that	possibility	that	the	preferred	mode	might	be	influenced	by	

the	relative	number	of	recorded	neurons	versus	conditions,	all	analyses	were	

performed	after	down-selecting	the	data	so	that	neuron	count	and	condition	

count	were	matched	(Methods).	Typically,	there	were	more	neurons	than	

conditions.	We	thus	down-selected	the	former	to	match	the	latter.	The	preferred	

mode	was,	within	the	sizeable	range	we	explored,	invariant	with	respect	to	

condition	count.	The	three	V1	datasets	employed	a	different	number	of	

conditions	(25,	90,	and	50)	yet	all	showed	a	neuron	mode	preference.	The	four	

M1	datasets	employed	a	similarly	broad	range	(72,	72,	18,	and	18	conditions)	yet	

all	showed	a	condition	mode	preference.	We	further	explored	the	potential	

impact	of	condition	count	by	taking	the	72-condition	datasets	in	panel	c	and	

restricting	the	number	of	analyzed	conditions.	The	preferred	mode	was	robust	to	

this	manipulation	(see	Methods)	across	the	range	tested	(10-72	conditions).	We	

also	performed	this	analysis	for	all	V1	datasets,	and	again	found	that	the	

preferred	mode	was	robust	(not	shown).	Thus,	even	a	modest	number	of	

conditions	is	sufficient	to	produce	a	clear	preferred	mode.	That	preferred	mode	

then	remains	consistent	as	more	conditions	are	added.		

	

The	preferred	mode	is	not	related	to	surface-level	features	

Might	the	differing	preferred	modes	in	V1	and	M1	be	in	some	way	due	to	

differing	surface-level	features	such	as	frequency	content?	A	priori	this	is	

unlikely:	properties	such	as	frequency	content	may	have	an	overall	impact	on	the	

number	of	basis-set	elements	required	to	achieve	a	given	accuracy,	but	there	is	

no	reason	they	should	create	a	bias	towards	a	particular	preferred	mode.	Such	a	

bias	is	also	unlikely	for	three	empirical	reasons.	First,	as	will	be	shown	below,	

some	existing	models	of	M1	yield	a	condition-mode	preference	while	others	

yield	a	neuron-mode	preference.	This	occurs	despite	the	fact	that	the	surface-

level	structure	produced	by	all	such	models	resembles	that	of	the	M1	data.	

Second,	the	preferred	mode	remained	unchanged	when	surface-level	features	

were	altered	via	temporal	filtering	(see	Methods).	In	particular,	V1	datasets	

	 40	

remained	neuron-preferred	even	when	filtering	yielded	responses	with	lower	

frequency	content	than	M1	responses.	Third,	it	can	be	readily	shown	via	

construction	that	data	with	the	surface-level	features	of	V1	(or	of	M1)	can	have	

either	preferred	mode.	

To	illustrate	this	last	point	we	constructed	data	with	the	surface-level	of	

features	of	V1	but	with	a	condition-mode	preference.	We	began	with	the	V1	

dataset	analyzed	in	Fig	4a	and	extracted	a	set	of	‘basis-conditions’	that	captured	

most	of	the	data	variance.	This	was	necessarily	a	large	set	of	basis	conditions	

(24)	given	the	true	neuron-mode	preference	of	the	data.	We	artificially	reduced	

that	number	of	basis	conditions	by	summing	random	sets	of	the	original	basis	

conditions.	For	example,	the	new	first	basis	condition	might	be	a	sum	of	the	

original	basis	conditions	1,	7,	12	and	23.		Thus,	the	same	patterns	were	present	

in	the	data	(no	basis	conditions	were	removed)	but	the	degrees	of	freedom	were	

greatly	reduced.	We	then	constructed	an	artificial	population	response	by	

replacing	the	original	response	of	each	neuron	with	the	linear	combination	of	

modified	basis	conditions	that	best	approximated	the	original	response.	This	

manipulation	resulted	in	a	control	dataset	with	responses	that	are	intentionally	

altered	yet	retain	the	surface-level	features	of	the	original	data	(Fig	5a,	original	

data;	Fig	5b,	control	data).	The	manipulated	V1	data	had	a	strong	condition-

mode	preference,	(blue	lower	than	red)	in	opposition	to	the	true	neuron-mode	

preference	of	the	original	data.	Using	the	same	procedure	(but	reducing	degrees	

of	freedom	within	the	neuron	basis)	we	constructed	control	M1	datasets	where	

surface-level	features	were	preserved	but	where	the	neuron	mode	became	

preferred	(Fig	5d,	red	lower	than	blue)	in	opposition	to	the	original	data	(Fig	5c,	

top,	blue	lower	than	red).	Thus,	the	preferred	mode	is	not	a	consequence	of	

surface-level	features.		

	 41	

	

Fig	5.	Preferred	mode	analysis	of	two	control	datasets.	The	preferred	

mode	is	not	determined	by	surface-level	features.	(a)	Analysis	for	the	empirical	

V1	dataset	from	Fig	3c	and	Fig	4a.	Shown	are	three	example	neurons	(left	

panels)	and	reconstruction	error	versus	timespan	(right	panel,	reproduced	from	

Fig	3c).	(b)	Same	as	in	a	but	the	V1	dataset	was	intentionally	manipulated	to	

have	structure	that	was	simplest	across	conditions.	(c)	Analysis	for	the	empirical	

M1	dataset	from	Fig	3e.	Shown	are	three	example	neurons	(left	panels)	and	

reconstruction	error	versus	timespan	(right	panel,	reproduced	from	Fig	3e).	(d)	

Same	as	in	c	but	the	M1	dataset	was	intentionally	manipulated	to	have	structure	

that	was	simplest	across	conditions.	

	

The	preferred	mode	of	simulated	M1	populations	reflects	model	class	

We	were	interested	in	the	possibility	that	the	origin	of	temporal	structure	

might	influence	the	preferred	mode.	Specifically,	tuning	for	external	variables	

	 42	

might	constrain	structure	across	neurons;	if	responses	reflect	a	fixed	number	of	

external	variables	then	neurons	would	be	limited	to	that	many	degrees	of	

freedom.	Conversely,	internal	dynamics	might	constrain	structure	across	

conditions;	if	each	condition	evolves	according	to	the	same	dynamics,	conditions	

could	differ	along	limited	degrees	of	freedom.		

The	above	intuition	agrees	with	the	neuron-preferred	tensor	structure	of	

the	V1	datasets,	for	which	the	trial-averaged	response	is	expected	to	be	

dominated	by	the	stimulus-driven	component.	Does	this	intuition	extend	to,	and	

perhaps	help	differentiate,	models	of	M1?	Many	prior	studies	have	modeled	M1	

responses	in	terms	of	tuning	for	of	movement	parameters	(target	direction,	

reach	kinematics,	joint	torques,	etc.).	Although	the	causality	is	assumed	to	be	

reversed	relative	to	V1	(with	the	M1	representation	producing	the	downstream	

kinematics),	such	models	formally	treat	neural	responses	as	functions	of	time-

varying	external	variables;	in	particular,	responses	differ	across	neurons	

because	different	neurons	have	different	tuning	for	those	external	variables.	M1	

‘tuning-based	models’	are	thus	fundamentally	similar	to	tuning	models	of	V1.	On	

the	other	hand,	some	recent	studies	have	modeled	M1	responses	as	the	outcome	

of	internal	population	level	dynamics	that	are	similar	across	conditions.	In	such	

models,	downstream	quantities	such	as	muscle	activity	are	assumed	to	be	a	

function	of	cortical	activity	but	cortical	activity	is	not	a	function	of	downstream	

quantities	(due	to	non-invertibility).	These	M1	‘dynamics-based	models’	are	thus	

fundamentally	dissimilar	from	tuning	models	of	V1.			

We	analyzed	simulated	data	from	five	published	models	of	M1,	including	

two	models	based	on	tuning	for	kinematic	variables	[30]	and	three	models	that	

assumed	strong	population-level	dynamics	subserving	the	production	of	muscle	

activity	[30,34,36].	All	M1	models	displayed	surface-level	features	that	

resembled	those	of	the	recorded	M1	responses,	including	a	burst	of	multiphasic	

responses.	Each	simulated	dataset	had	neuron	and	condition	counts	matched	

with	a	corresponding	neural	population.	Each	model	was	simulated	twice	(top	

and	bottom	of	the	relevant	panels	in	Fig	6a,b,d,e,f)	with	each	instance	being	

based	on	the	empirical	kinematics	or	muscle	activity	for	one	of	the	neural	

datasets.		

	 43	

	

Fig	6.	Preferred-mode	analysis	for	non-neural	data.	Analysis	is	shown	

for	ten	simulated	datasets	and	two	muscle	populations.	Presentation	as	in	Fig	4.	

(a)	Analysis	of	simulated	M1	populations	from	the	simple	tuning	model.	Two	

simulated	populations	(top	and	bottom)	were	based	on	recorded	kinematic	

parameters	of	two	animals	(J	and	N),	acquired	during	the	same	experimental	

sessions	for	which	the	neural	populations	are	analyzed	in	Fig	4c.	(b)	As	in	a,	but	

M1	populations	were	simulated	based	on	a	more	complex	tuning	model.	(c)	

Analysis	of	populations	of	muscle	responses	(monkeys	J	and	N,	top	and	bottom)	

recorded	using	the	same	task/conditions	as	in	Fig	4d.	(d)	Analysis	of	two	

simulated	M1	populations	from	the	dynamical	‘generator	model’	that	was	

trained	to	reproduce	patterns	of	muscle	activity.	The	model	was	trained	to	

produce	the	patterns	of	deltoid	activity	from	the	muscle	populations	in	panel	c.	

(e)	Analysis	of	two	simulated	M1	populations	from	a	neural	network	model	

trained	to	produce	the	patterns	of	muscle	activity	shown	in	panel	c.	(j)	Analysis	

of	two	simulated	M1	populations	from	a	‘non-normal’	neural	network	model.		

The	neuron	mode	was	preferred	for	the	two	models	that	were	based	on	

tuning	for	kinematics	(Fig	6a,b	red	below	blue).	For	the	first	tuning-based	model	

(Fig	6a),	the	relevant	kinematic	variables	were	hand	velocity	and	speed	(the	

magnitude	of	velocity)	as	in	[51].	For	the	second	tuning-based	model	(Fig	6b),	

the	kinematic	variables	also	included	hand	position	and	acceleration	[52].	Thus,	

the	second	tuning-based	model	reflects	the	possibility	that	neural	responses	are	

complex	due	to	tuning	for	multiple	movement-related	parameters—a	position	

which	has	recently	been	argued	for	based	on	the	ability	to	decode	such	

parameters	[46].	

	 44	

The	condition	mode	was	preferred	for	the	three	models	(Fig	6d,e,f)	that	

employed	strong	population-level	dynamics.	The	model	in	Fig	6d	was	based	on	a	

pair	of	simple	oscillations	that	followed	approximately	linear	dynamics	and	

provided	a	basis	for	fitting	empirical	patterns	of	muscle	activity	[30].	The	model	

in	Fig	6e	was	a	nonlinear	recurrent	neural	network	(RNN)	trained	to	produce	

the	empirical	muscle	activity	patterns	[34].	The	model	in	Fig	6f	was	an	RNN	with	

‘non-normal’	dynamics	realized	via	separate	excitatory	and	inhibitory	

populations[36].	Critically,	these	three	dynamics-based	models	were	not	fit	to	

neural	responses;	their	responses	reflect	the	dynamics	necessary	to	produce	the	

desired	outputs.	Each	has	been	recently	proposed	as	a	possible	model	of	M1	

activity	during	reaches.	Despite	their	substantial	architectural	differences,	all	

dynamics-based	models	displayed	a	condition-mode	preference	(blue	below	

red).	

In	a	subsequent	section	we	employ	a	formal	approach	to	explore	why	

different	model	classes	produce	different	preferred	modes.	Presently,	we	simply	

stress	that	the	preferred	mode	can	be	used	to	test	model	predictions.	In	

particular,	the	tuning-based	models	displayed	neuron-preferred	tensor	structure	

in	opposition	to	the	data.	In	contrast,	the	dynamics-based	models	displayed	

condition-preferred	tensor	structure	in	agreement	with	the	data.	Thus,	although	

all	models	of	M1	reproduced	(to	some	reasonable	degree)	the	basic	surface-level	

features	of	M1	responses,	only	the	dynamics-based	models	predicted	the	true	

condition-mode	preference	of	the	M1	population	data.	

We	also	analyzed	the	tensor	structure	of	populations	of	recorded	muscles.		

Because	muscle	activity	is	in	some	sense	an	external	movement	parameter,	one	

might	expect	the	muscle	population	to	be	neuron-preferred,	in	agreement	with	

the	tuning-based	models	above.	On	the	other	hand,	the	dynamics-based	models	

were	trained	so	that	a	linear	projection	of	the	model	population	response	

replicated	the	empirical	muscle	population	response.	Given	this	tight	link	one	

might	expect	the	muscle	population	be	condition-preferred.	Empirically,	the	

muscle	populations	had	no	clear	preferred	mode:	reconstruction	error	was	

similar	and	in	some	cases	overlapping	for	the	neuron	and	condition	modes.	

There	was	an	overall	tendency	for	the	muscle	data	to	be	neuron-preferred	(the	

	 45	

blue	trace	tended	to	be	above	the	red	trace	at	many	points)	but	this	was	not	

statistically	compelling	(K = 0.37	and	K = 0.80).	

This	analysis	of	muscle	populations	again	highlights	that	the	preferred	

mode	cannot	be	inferred	from	surface-level	features.	Muscle	responses	and	

neural	responses	share	many	similar	features	yet	do	not	show	the	same	tensor	

structure.	The	muscle	data	also	highlight	that	a	clear	preferred	mode	need	not	

exist	for	all	datasets.	Furthermore,	the	tensor	structure	of	a	system’s	outputs	

need	not	reflect	the	tensor	structure	of	the	system	itself.	Dynamics-based	models	

built	to	produce	muscle	activity	showed	robust	condition-mode	preferences	(Fig	

6d,e,f).	Yet	the	muscle	populations	themselves	did	not	show	a	condition	mode	

preference	(if	anything	they	were	weakly	neuron-preferred).	We	return	later	to	

the	point	that	the	output	of	a	dynamical	system	need	not	share	the	same	

preferred	mode	as	the	system	itself.	

As	a	side	note,	a	natural	desire	is	to	examine	the	bases	themselves,	which	

might	be	informative	regarding	the	underlying	model.	For	example,	the	first	

basis	neuron	is	essentially	the	projection	of	the	data	onto	the	first	principle	

component	of	the	3×3	covariance	matrix	that	captures	covariance	between	

neurons.	The	first	basis	condition	is	the	same,	but	for	a	:×:	covariance	matrix	

that	captures	covariance	between	conditions.	It	is	indeed	possible	to	make	

inferences	from	both	such	projections	[29,30],	yet	this	typically	requires	specific	

hypotheses	and	tailored	analysis	methods.	The	fundamental	hurdle	is	that,	for	

any	given	basis	set,	there	are	infinitely	many	rotations	of	that	basis	set	that	

provide	equally	good	reconstruction.	Thus,	the	details	of	any	given	projection	

can	be	difficult	to	interpret	without	bringing	additional	information	to	bear.	We	

therefore	focus	in	this	study	on	the	quality	of	the	reconstruction,	rather	than	the	

features	of	the	basis	set.	

	

The	preferred	mode	is	robust	to	the	number	of	basis	elements		

We	assessed	whether	the	preferred	mode	analysis	is	robust	to	a	key	

parameter:	the	number	of	basis-elements	used	when	quantifying	reconstruction	

error.	This	is	important	because	it	is	not	possible	to	directly	measure	the	degrees	

	 46	

of	freedom	(i.e.,	the	number	of	basis	elements	that	produces	zero	reconstruction	

error)	for	each	mode,	given	measurement	noise	and	other	practical	

considerations.	For	this	reason,	the	analyses	above	compared	not	degrees	of	

freedom	per	se,	but	rather	the	reconstruction	error	for	a	fixed	number	of	degrees	

of	freedom.	Before	concluding	that	data	have	fewer	degrees	of	freedom	across	

one	mode	versus	another,	one	should	assess	whether	the	preferred	mode	is	

robust	with	respect	to	the	choice	of	that	fixed	number.	

To	assess	robustness	we	focused	on	the	difference	in	error	between	the	

condition-mode	reconstruction	and	the	neuron-mode	reconstruction	for	the	

longest	time	window	(;H = ;).	We	swept	the	number	of	basis	elements	and	

plotted	the	normalized	difference	in	reconstruction	errors	(Fig	7).	Positive	

values	indicate	a	neuron-mode	preference	and	negative	values	indicate	a	

condition-mode	preference.	We	considered	from	1-20	basis	elements,	stopping	

earlier	if	the	dataset	contained	fewer	than	20	total	degrees	of	freedom	(e.g.,	the	

M1	single-electrode	data	had	18	conditions	and	the	muscle	populations	

contained	8	and	12	recordings	respectively).	All	datasets	displayed	a	preferred	

mode	that	was	consistent	despite	differences	in	the	number	of	basis-elements	

chosen.	In	most	cases	the	preferred	mode	was	clearest	when	a	modest	number	

of	basis	elements	was	used.	Indeed,	there	was	often	a	peak	(for	neuron-preferred	

datasets;	data	lying	in	the	red	shaded	area)	or	trough	(for	condition-preferred	

datasets;	data	lying	in	the	blue	shaded	area).	Unsurprisingly,	the	difference	in	

reconstruction	error	trended	towards	zero	as	the	number	of	basis	elements	

became	large	(the	difference	is	necessarily	zero	if	the	number	of	basis	elements	

is	equal	to	the	number	of	neurons	/	conditions	in	the	data	itself).			

	 47	

	

Fig	7.	Reconstruction	error	as	a	function	of	the	number	of	basis	

elements.	Each	panel	plots	the	difference	in	reconstruction	errors	

(reconstruction	error	using	F	basis-conditions	minus	reconstruction	error	using	

F	basis-neurons).	The	full	timespan	is	considered.	Positive	values	indicate	

neuron-preferred	structure	while	negative	values	indicate	condition-preferred	

structure	(colored	backgrounds	for	reference).	All	values	in	each	panel	are	

normalized	by	a	constant,	chosen	as	the	smaller	of	the	two	reconstruction	errors	

(for	the	full	timespan)	plotted	in	corresponding	panels	of	Figs	4	and	6.	For	most	

datasets	we	considered	k	from	1-20	(mode	preference	did	not	flip	for	higher	k	in	

any	dataset).	For	datasets	with	fewer	than	20	neurons	(or	muscles)	values	are	

plotted	up	to	the	maximum	possible	k:	the	number	of	neurons	(or	muscles)	in	

the	dataset.	

The	analysis	in	Fig	7	supports	the	results	in	Fig	4,6.	All	V1	datasets	and	

all	M1	tuning-model	datasets	were	consistently	neuron-preferred.	All	M1	

datasets	and	all	dynamical	M1	models	were	consistently	condition-preferred.	

The	muscle	populations,	which	had	trended	weakly	towards	being	neuron-

preferred	in	the	analysis	in	Fig	6,	trended	more	strongly	in	that	direction	when	

	 48	

examined	across	reconstructions	based	on	different	numbers	of	basis	elements	

(Fig	7e).	Thus,	if	a	dataset	had	a	clear	preference	for	our	original	choice	of	basis	

elements	(the	number	necessary	to	provide	a	reconstruction	error	<5%	when	

using	a	single	time-point)	then	that	preference	was	maintained	across	different	

choices,	and	could	even	become	stronger.	The	analysis	in	Fig	7	also	underscores	

the	very	different	tensor	structure	displayed	by	different	models	of	M1.	

Dynamics-based	models	(panels	h,i,j)	exhibited	negative	peaks	(in	agreement	

with	the	empirical	M1	data)	while	tuning-based	models	(panels	c,d)	and	muscle	

activity	itself	(panel	e)	exhibited	positive	peaks.		

	

Possible	sources	of	tensor	structure	

Why	did	tuning-based	models	display	a	neuron-mode	preference	while	

dynamics-based	models	displayed	a	condition-mode	preference?	Is	there	formal	

justification	for	the	motivating	intuition	that	the	origin	of	temporal	response	

structure	influences	the	preferred	mode?	This	issue	is	difficult	to	address	in	full	

generality:	the	space	of	relevant	models	is	large	and	includes	models	that	contain	

mixtures	of	tuning	and	dynamic	elements.	Nevertheless,	given	reasonable	

assumptions—in	particular	that	the	relevant	external	variables	do	not	

themselves	obey	a	single	dynamical	system	across	conditions—we	prove	that	

the	population	response	will	indeed	be	neuron-preferred	for	models	of	the	form:				

	 ! $, " = '($, " ,	 (4)	

where	! ∈ ℝ/	is	the	response	of	a	population	of	3	neurons,	(∈ ℝ6 	is	a	vector	of	

7	external	variables,	and	' ∈ ℝ/×6 	defines	the	mapping	from	external	variables	

to	neural	responses.	The	Qth	row	of	'	describes	the	dependence	of	neuron	Q	on	

the	external	variables	(.	Thus,	the	rows	of	'	are	the	tuning	functions	or	receptive	

fields	of	each	neuron.	Both	!	and	(may	vary	with	time	$	and	experimental	

condition	".		

A	formal	proof,	along	with	sufficient	conditions,	is	given	in	Methods.	

Briefly,	under	equation	(4),	neurons	are	different	views	of	the	same	underlying	

7	external	variables.	That	is,	each	(R $, " 	is	a	pattern	of	activity	(across	times	

and	conditions)	and	each	!S $, " 	is	a	linear	combination	of	those	patterns.	The	

	 49	

population	tensor	generated	by	equation	(4)	can	thus	be	built	from	a	linear	

combination	of	7	basis-neurons.	Critically,	this	fact	does	not	change	as	time	is	

added	to	the	population	tensor.	Equation	(4)	imposes	no	similar	constraints	

across	conditions;	e.g.,	(: , "? 	need	not	bear	any	particular	relationship	to	

((: , "D).	Thus,	a	large	number	of	basis-conditions	may	be	required	to	

approximate	the	population	tensor.	Furthermore,	the	number	of	basis-

conditions	required	will	typically	increase	with	time;	when	more	times	are	

considered	there	are	more	ways	in	which	conditions	can	differ.	A	linear	tuning	

model	therefore	implies	a	neuron-mode	reconstruction	that	is	stable	with	time	

and	a	condition-mode	reconstruction	that	is	less	accurate	and	less	stable.			

	 Conversely,	the	population	response	will	not	be	neuron-preferred	(and	

will	typically	be	condition-preferred)	for	models	of	the	form:	

	 !($ + 1, ") = +!($, "),	 (5)	

Where	+ ∈ ℝ/×/	defines	the	linear	dynamics.	This	equation	admits	the	solution	

!($, ") = +8N?!(1, ").	Thus,	the	matrix	+	and	the	initial	state	!(1, ")	fully	

determine	the	firing	rate	of	all	3	neurons	for	all	;	times.	In	particular,	the	linear	

dynamics	captured	by	+	define	a	set	of	3×;	population-level	patterns	(basis-

conditions)	from	which	the	response	for	any	condition	can	be	built	via	linear	

combination.	Critically,	this	fact	does	not	change	as	different	timespans	(;H)	are	

considered.	Although	the	size	of	each	3×;H 	basis-condition	increases	as	;H 	

increases,	the	number	of	basis-conditions	does	not.	In	contrast,	the	number	of	

necessary	basis-neurons	may	grow	with	time;	neural	activity	evolves	in	some	

subspace	of	ℝ/	and	as	time	increases	activity	may	more	thoroughly	explore	this	

space.	Thus,	a	linear	dynamical	model	implies	a	condition-mode	reconstruction	

that	is	stable	with	time,	and	a	neuron-mode	reconstruction	that	is	less	accurate	

and	less	stable	(for	proof	see	Methods).		

	 The	above	considerations	likely	explain	why	we	found	that	tuning-based	

models	were	always	neuron-preferred	and	dynamics-based	models	were	always	

condition-preferred.		While	none	of	the	tested	models	were	linear	and	some	

included	noise,	their	tensor	structure	was	nevertheless	shaped	by	the	same	

factors	that	shape	the	tensor	structure	of	more	idealized	models.		

	 50	

	

The	preferred	mode	in	simple	models		

Tuning-based	models	and	dynamics-based	models	are	extremes	of	a	

continuum:	most	real	neural	populations	likely	contain	some	contribution	from	

both	external	variables	and	internal	dynamics.	We	therefore	explored	the	

behavior	of	the	preferred	mode	in	simple	linear	models	where	responses	were	

either	fully	determined	by	inputs,	were	fully	determined	by	population	

dynamics,	or	were	determined	by	a	combination	of	the	two	according	to:	

	 ! $ + 1, " = +! $, " + '(($, ").	 (6)	

The	case	where	responses	are	fully	determined	by	inputs	is	formally	

identical	to	a	tuning	model;	inputs	can	be	thought	of	either	as	sensory,	or	as	

higher-level	variables	that	are	being	represented	by	the	population.	When	+	was	

set	to	0	and	responses	were	fully	determined	by	inputs	(Fig	8a)	the	neuron	

mode	was	preferred	as	expected	given	the	formal	considerations	discussed	

above.	Indeed,	because	the	model	is	linear,	neuron-mode	reconstruction	error	

was	perfectly	stable	as	times	were	added	(the	red	trace	remains	flat).	When	'	

was	set	to	zero	and	responses	were	fully	determined	by	internal	dynamics	acting	

on	an	initial	state,	the	condition	mode	was	preferred	and	condition-mode	

reconstruction	error	was	perfectly	stable	(Fig	8d),	consistent	with	formal	

considerations.			

	

	 51	

Fig	8.	The	preferred-mode	analysis	applied	to	simulated	linear	

dynamical	systems.	Left	column	of	each	panel:	graphical	models	corresponding	

to	the	different	systems.	Middle	column	of	each	panel:	response	of	neuron	1	in	

each	simulated	dataset.	Colored	traces	correspond	to	different	conditions.	Right	

column	of	each	panel:	preferred-mode	analysis	applied	to	simulated	data	from	

that	system.	Analysis	is	performed	on	the	data	!	in	panels	a-d,	while	analysis	is	

performed	on	the	data	U	in	panels	e-h.	(a)	A	system	where	inputs	(are	strong	

and	there	are	no	internal	dynamics	(i.e.,	there	is	no	influence	of	!8	on	!8V?.	(b)	A	

system	with	strong	inputs	and	weak	dynamics.	(c)	A	system	with	weak	inputs	

and	strong	dynamics.	(d)	A	system	with	strong	dynamics	and	no	inputs	other	

than	an	input	(O	at	time	zero	that	sets	the	initial	state.	(e)	A	system	with	20-

dimensional	linear	dynamics	at	the	level	of	the	state	!,	but	where	the	observed	

neural	responses	U	reflect	only	3	of	those	dimensions.	I.e.,	the	linear	function	

from	the	state	!	to	the	neural	recordings	U	is	rank	3.	(f)	A	system	with	20-

dimensional	dynamics	and	4	observed	dimensions.	(g)	A	system	with	20-

dimensional	dynamics	and	8	observed	dimensions.	(h)	A	system	with	20-

dimensional	dynamics	where	all	20	dimensions	are	observed	(formally	

equivalent	to	the	case	in	panel	d).	

For	models	where	tuning	for	inputs	was	strong	relative	to	dynamics,	the	

neuron	mode	was	preferred	(Fig	8b).	However,	because	dynamics	exerted	a	

modest	influence,	neuron-mode	reconstruction	error	was	not	perfectly	stable.	

When	dynamics	were	strong	relative	to	inputs,	the	condition	mode	was	

preferred	(Fig	8c).	However,	because	inputs	exerted	a	modest	influence,	

condition-mode	reconstruction	error	was	not	perfectly	stable.	Thus,	simple	

simulations	confirm	the	expected	behavior.	A	neuron-mode	preference	is	

produced	when	temporal	response	structure	is	dominated	by	tuning	for	inputs,	

even	if	dynamics	exert	some	influence.	A	condition-mode	preference	is	produced	

when	temporal	response	structure	is	dominated	by	dynamics,	even	if	inputs	

exert	some	influence.	Thus,	the	preferred-mode	analysis	can	reveal	the	dominant	

source	of	structure,	but	does	not	rule	out	other	contributions.		

A	potentially	confusing	point	of	interpretation	is	that	all	neurons	

necessarily	respond	to	inputs;	each	neuron	is	driven	by	the	inputs	it	receives.	

	 52	

How	then	can	there	be	a	difference	in	tensor	structure	between	a	population	that	

is	tuned	for	inputs	versus	a	population	that	reflects	dynamics?	The	answer	lies	in	

how	fully	the	population	reflects	dynamics.	In	the	case	of	tuning	for	external	

variables,	those	variables	typically	do	not	fully	reflect	dynamics.	Although	the	

local	environment	is	in	some	sense	‘dynamic,’	those	dynamics	are	incompletely	

observed	via	the	sensory	information	available	to	the	nervous	system.	

Conversely,	if	dynamics	are	produced	by	the	local	population	they	may	be	fully	

observed	provided	that	sufficient	neurons	are	recorded.	

To	illustrate	this	point	we	repeated	the	simulations	with	the	model	

population	either	partially	(Fig	8e)	or	completely	(Fig	8h)	reflecting	an	identical	

set	of	underlying	dynamics.	As	expected,	the	case	where	dynamics	are	partially	

observed	behaved	like	the	case	when	the	system	is	input	driven:	the	neuron	

mode	was	preferred.	As	dynamics	became	more	fully	reflected,	the	population	

switched	to	being	condition-preferred.	Thus,	condition-preferred	structure	

results	from	a	very	particular	circumstance:	the	neural	population	obeys	

dynamics	that	are	consistent	across	conditions	and	are	close	to	fully	reflected	in	

the	neural	population	itself.	In	contrast,	neuron-preferred	structure	is	observed	

when	the	temporal	structure	is	inherited	from	outside	the	system:	from	sensory	

inputs	or	from	dynamics	that	may	be	unfolding	elsewhere	in	the	nervous	system.	

This	explains	why	there	is	no	paradox	in	the	fact	that	the	muscle	populations	

tended	to	show	neuron-preferred	structure	(Fig	6c,	Fig	7e)	even	though	

dynamical	models	that	produce	muscle	activity	show	condition-preferred	

structure	(Fig	6d-f,	Fig	7h-j)	as	does	M1	itself.	More	generally,	these	simulations	

illustrate	that	one	may	often	expect	a	difference	in	preferred	mode	between	a	

system	that	produces	a	motor	output	and	a	system	that	‘listens’	to	that	output	

(e.g.,	a	sensory	system	that	provides	feedback	during	movement).	

A	key	point	illustrated	by	the	simulations	in	Fig	8a-d	is	that	the	preferred	

mode	is	independent	of	smoothness	in	the	temporal	domain.	For	example,	the	

idealized	models	in	Fig	8a	and	8d	have	responses	with	closely	matched	

temporal	smoothness,	yet	yield	opposing	preferred	modes.	This	can	be	

understood	via	reference	to	the	derivation	in	the	Methods,	where	assumptions	

regarding	temporal	smoothness	play	no	role.	For	example,	a	condition-mode	

	 53	

preference	will	be	observed	even	if	dynamics	cause	rapid	fluctuations	in	the	

neural	state,	and	indeed	even	if	the	dynamics	are	themselves	rapidly	time-

varying.	It	is	the	‘smoothness’	across	conditions	versus	neurons	that	determines	

the	preferred	mode,	not	the	smoothness	across	time.	This	fact	is	also	illustrated	

in	Fig	5,	where	control	manipulations	alter	the	preferred	mode	while	leaving	

temporal	smoothness	unchanged.	

For	the	simulations	in	Fig	8	and	the	models	in	Fig	6	the	preferred	mode	

always	reflected	the	dominant	source	of	temporal	structure.	Yet	with	the	

exception	of	some	idealized	models,	reconstruction	error	was	rarely	perfectly	

stable	even	for	the	preferred	mode.	The	lack	of	perfectly	stability	arises	from	

multiple	sources	including	nonlinearities,	simulated	noise	in	the	firing	rate,	and	

contributions	by	the	non-dominant	source	of	structure.	We	therefore	stress	that	

it	is	difficult,	for	a	given	empirical	dataset,	to	ascertain	why	the	preferred	mode	

shows	some	instability	in	reconstruction	error.	For	example,	in	the	case	of	M1	it	

is	likely	that	the	modest	rise	in	condition-mode	reconstruction	error	with	

timespan	(e.g.,	Fig	4c,d)	reflects	all	the	above	factors.	

	 54	

Discussion	

Our	analyses	were	motivated	by	three	hypotheses:	first,	that	population	

responses	will	show	tensor	structure	that	deviates	strongly	from	random,	being	

simpler	across	one	mode	than	another;	second,	that	the	‘preferred	mode’	will	

likely	differ	across	datasets;	and	third,	that	the	underlying	source	of	temporal	

response	structure	influences	the	preferred	mode.	The	empirical	data	did	indeed	

deviate	strongly	from	random.	V1	datasets	were	consistently	neuron-preferred:	

the	population	response	was	most	accurately	reconstructed	using	basis-neurons.	

M1	datasets	were	consistently	condition-preferred:	the	population	response	was	

most	accurately	reconstructed	using	basis-conditions.	This	difference	was	

invisible	at	the	single-neuron	level	and	could	not	be	inferred	from	surface-level	

features	of	the	data.	Simulations	and	formal	considerations	revealed	that	

neuron-preferred	structure	arises	preferentially	in	models	where	responses	

reflect	stimuli	or	experimental	variables.	Condition-preferred	tensor	structure	

arises	preferentially	in	models	where	responses	reflect	population-level	

dynamics.			

	

Implications	for	models	of	motor	cortex	responses	

Given	the	relationship	between	model	class	and	preferred	mode,	the	

neuron-preferred	structure	in	V1	is	entirely	expected:	all	V1	datasets	were	

recorded	in	the	presence	of	strong	visual	inputs	that	are	expected	to	drive	the	

observed	response	structure	[53].	In	contrast,	the	condition-preferred	structure	

of	the	M1	population	response	could	not	be	anticipated	from	first	principles	

because	there	is	little	agreement	regarding	the	source	of	temporal	response	

structure	in	M1.	Several	existing	M1	models	assume	that	time-varying	responses	

are	a	function	of	time-varying	movement	variables	such	as	reach	direction,	

velocity,	and	joint	torques	(for	a	review	see	[21]).	These	variables	may	be	

‘dynamic’	in	the	loose	sense	(they	change	with	time	and	some	may	be	derivatives	

of	the	others)	but	their	values	typically	do	not	follow	a	single	dynamical	rule	that	

is	consistent	across	conditions.	Other	recent	models	are	explicitly	dynamics-

based:	the	future	population	state	is	a	function	of	the	present	population	state,	

with	external	inputs	serving	primarily	to	set	the	initial	state	of	the	dynamics	

	 55	

[30,34,36].	Tuning-based	and	dynamics-based	models	lie	on	a	continuum,	but	

occupy	opposing	ends	and	thus	make	different	predictions	regarding	the	tensor	

structure	of	the	population	response.	Existing	dynamics-based	models	predict	

condition-preferred	tensor	structure,	in	agreement	with	the	M1	data.	Existing	

tuning-based	models	predict	neuron-preferred	structure,	in	opposition	to	the	M1	

data.	

Our	results	thus	place	strong	constraints	on	models	of	M1:	to	be	plausible	

a	model	must	replicate	the	condition-preferred	structure	of	the	empirical	

population	response.	Our	exploration	of	current	models	indicates	that	this	

happens	naturally	for	models	that	include	strong	dynamics	within	the	recorded	

population.	It	does	not	occur	naturally	for	tuning-based	models.	We	cannot	rule	

out	the	possibility	that	future	elaborations	of	tuning-based	models	might	be	able	

to	replicate	the	empirical	condition-preferred	structure,	but	the	practical	

possibility	of	such	elaborations	remains	unclear.	There	also	exist	a	number	of	M1	

models	that	we	did	not	examine	[35,37,54,55].	It	remains	an	empirical	question	

whether	the	tensor	structure	of	such	models	is	compatible	with	the	data.		

We	stress	that	all	current	M1	models	(including	those	that	successfully	

predict	the	empirical	preferred	mode)	are	incomplete	in	key	ways	and	will	need	

to	be	elaborated	or	unified	in	the	future.	For	example,	the	dynamics-based	

models	we	examined	do	not	yet	capture	the	influence	of	external,	sensory-based	

feedback	which	is	known	to	be	a	driver	of	M1	responses	[38,39,56].	Conversely,	

a	recent	model	of	feedback	control	(not	tested	here)	captures	only	the	dynamics	

of	external	feedback	loops;	the	M1	population	was	modeled	as	a	feedforward	

network	[37].	As	future	models	are	developed	that	incorporate	both	internal	

recurrence	and	sensory	feedback,	tensor	structure	provides	a	simple	test	

regarding	whether	those	models	produce	realistic	population-level	responses.	

Tensor	structure	is	a	basic	feature	of	data,	much	as	the	frequency	

spectrum	or	the	eigenvalue	spectrum	of	the	neural	covariance	matrix	are	basic	

features	of	data.	(Indeed,	tensor	structure	is	a	simple	extension	to	a	three-mode	

array	of	the	standard	method	of	applying	principal	component	analysis	to	a	two-

mode	array.)		Thus,	any	model	that	attempts	to	explain	data	should	succeed	in	

replicating	the	preferred	mode.	This	requirement	is	particularly	important	

	 56	

because,	while	models	can	often	be	easily	modified	to	produce	obvious	surface-

level	features,	it	is	more	challenging	to	also	reproduce	the	underlying	tensor	

structure.	Just	as	importantly,	the	preferred	mode	of	recorded	data	can	be	

informative	regarding	how	an	appropriate	model	should	be	constructed.	For	

every	model	tested	we	found	that	tensor	structure	is	condition-preferred	only	

when	the	measured	population	reflects	most	of	the	state	variables	in	a	dynamical	

system.	In	the	context	of	M1,	this	suggests	that	successful	models	will	be	those	

where	a	large	percentage	of	the	relevant	state	variables	(sensory	feedback,	

muscle	commands	and	the	dynamics	that	link	them)	are	observable	in	the	M1	

population	response.	

It	should	be	stressed	the	preferred	mode	is	likely	not	a	feature	of	a	brain	

area	per	se,	but	rather	of	a	neural	population	in	the	context	of	the	computation	

being	performed	by	that	population.	For	example,	M1	has	strong	responses	to	

sensory	stimuli,	especially	stretching	of	the	tendons	and	muscles	[56].	In	an	

experiment	where	responses	are	driven	primarily	by	externally	imposed	

perturbations	of	the	arm	[57,58]	it	seems	likely	that	M1	would	exhibit	a	neuron-

mode	structure	like	that	of	V1	in	the	present	study.	If	so,	then	it	would	be	natural	

to	apply	a	model	in	which	responses	are	largely	externally	driven.	If	not,	then	

one	would	be	motivated	to	consider	models	in	which	external	events	set	in	

motion	internal	dynamics.	In	either	case,	knowing	the	preferred	mode	would	be	

valuable	because	it	would	constrain	the	set	of	plausible	models.				

	

Interpretational	caveats	

	 Interpretation	of	the	preferred	mode	is	most	straightforward	when	there	

exists	one	or	more	models	that	seek	to	explain	the	data.	Any	model	(or	model	

class)	that	does	not	replicate	the	empirical	preferred	mode	must	be	modified	or	

discarded.	Can	similarly	strong	inferences	be	drawn	directly	from	the	preferred	

mode	of	the	data,	without	comparison	with	models?	In	short	they	cannot:	while	a	

robust	preferred	mode	may	suggest	a	particular	class	of	model,	caveats	apply.	As	

shown	in	the	derivation	(Methods)	idealized	models	produce	neuron-preferred	

structure	when	responses	are	driven	by	unconstrained	external	variables,	and	

condition-preferred	structure	when	responses	are	shaped	by	internal	dynamics.	

	 57	

We	found	that	this	pattern	was	robust	under	less-idealized	circumstances:	all	of	

the	models	we	examined	exhibited	a	preferred	mode	consistent	with	the	

idealized	pattern,	even	though	they	departed	from	idealized	assumptions	(in	

particular	they	were	not	linear).	Such	robustness	is	largely	expected.	For	

example,	non-linear	dynamical	systems	can	often	be	well	approximated	by	time-

varying	linear	systems,	which	is	all	that	is	required	to	produce	the	idealized	

pattern.	Similarly,	a	non-linear	dependency	on	external	variables	can	often	be	

reconceived	as	a	linear	dependency	via	a	change	in	variables.		

That	said,	there	will	be	limits	to	the	observed	robustness.	It	is	possible	

that	a	model	of	one	class	(e.g.,	a	dynamical	systems	model)	can	produce	a	

paradoxical	preferred	mode	(e.g.,	a	neuron-mode	preference)	under	certain	

circumstances.	This	might,	for	example,	occur	for	a	neural	circuit	with	strongly	

nonlinear	dynamics	that	produces	long	motor	sequences.	Such	a	system	might	be	

poorly	approximated	by	time-varying	linear	dynamics,	which	would	result	in	

compromised	condition-mode	reconstructions.	In	the	case	where	responses	are	

driven	by	external	variables,	an	unclear	or	even	paradoxical	preferred	mode	

could	occur	if	there	is	something	‘ill-conditioned’	about	the	input.	For	example,	

the	input	could	be	highly	redundant	across	conditions,	resulting	in	responses	

that	lack	enough	structure	to	allow	meaningful	comparison	of	reconstruction	

quality	for	the	neuron	mode	versus	the	condition	mode.	Along	similar	lines,	it	

would	be	difficult	to	interpret	the	preferred	mode	in	the	case	where	there	is	little	

variation	in	the	motor	output	that	can	be	captured	across	conditions.	

	 	An	attractive	feature	of	the	preferred	mode	analysis	is	that	it	can	be	

applied	without	knowledge	of	the	inputs	to	a	system,	and	provides	constraints	

on	potential	hypotheses	without	requiring	fully	mature	models	that	are	ready	to	

be	fit	directly	to	data.	These	advantages	are	large	but,	as	discussed	above,	not	

absolute.	First,	although	potential	inputs	need	not	be	known,	one	must	have	

reasonable	confidence	that	the	task	evokes	a	range	of	reasonably	rich	responses,	

such	that	a	clear	preferred	mode	can	emerge.		Second,	interpretation	of	the	

preferred	mode	will	always	be	most	certain	in	the	case	where	the	preferred	

mode	of	the	data	can	be	compared	with	the	preferred	mode	displayed	by	

competing	models.	In	the	present	case,	the	preferred	mode	of	the	M1	datasets	

	 58	

consistently	disagreed	with	the	preferred	mode	of	models	where	time-varying	

responses	are	a	function	of	time-varying	movement	variables.	As	this	accords	

with	formal	expectations,	such	models	are	unlikely	to	provide	a	good	account	of	

the	data	without	major	modification.	

	

Future	applications	

It	is	likely	that	neural	populations	outside	of	areas	V1	and	M1	will	also	

display	clear	preferred	modes,	which	could	be	diagnostic	regarding	candidate	

models.	Applicable	datasets	are	those	that	are	sufficiently	rich:	the	experimental	

task	must	elicit	time-varying	responses	where	PSTHs	vary	across	neurons	and	

conditions.	Further,	there	must	be	sufficiently	many	neurons	and	conditions	

such	that	certain	low-rank	conditions	are	met	(an	explanation	of	these	

conditions	are	in	Methods	under	Low-rank	assumptions).		

As	a	potential	example,	some	models	of	decision-making	assume	that	

neural	responses	reflect	a	small	number	of	task	variables	(e.g.,	a	‘decision	

variable’	whose	value	codes	the	evolving	tendency	towards	a	given	choice	[59]).	

Other	models	include	internal	dynamics	that	implicitly	gate	when	information	is	

integrated	or	ignored	[60].	None	of	these	decision	models	sits	fully	at	an	

extreme—all	assume	both	sensory	inputs	and	some	form	of	integration—but	

they	possess	large	qualitative	differences	that	may	predict	different	tensor	

structure.	Given	the	ease	with	which	the	preferred	mode	can	be	computed	for	

both	real	and	simulated	data,	the	preferred-mode	analysis	provides	a	natural	

way	to	test	whether	a	given	model	matches	the	data	at	a	basic	structural	level.	 	

	 59	

Methods	

Ethics	

	 All	methods	were	approved	in	advance	by	the	respective	Institutional	

Animal	Care	and	Use	Committees	at	Albert	Einstein	College	of	Medicine	(protocol	

#20150303)	and	the	New	York	State	Psychiatric	Institute	(protocol	#1361).	To	

minimize	any	potential	suffering	non-survival	surgeries	were	performed	under	

deep	anesthesia	with	sufentanil	citrate,	adjusted	per	the	needs	of	each	animal.	

Survival	surgeries	were	performed	under	isoflurane	anesthesia	with	carefully	

monitored	post-operative	analgesia.		

Experimental	datasets	

We	analyzed	9	physiological	datasets.	Eight	have	been	analyzed	

previously	and	one	was	recorded	for	the	present	study.	All	datasets	were	based	

on	the	spiking	activity	of	a	neural	population	recorded	using	either	multi-

electrode	arrays	(the	datasets	analyzed	in	Fig	4a,b,c)	or	sequential	individual	

recordings	(the	neural	dataset	analyzed	Fig	4d	and	the	muscle	dataset	analyzed	

in	Fig	6c).	Datasets	are	available	from	the	Dryad	repository	

(http://dx.doi.org/10.5061/dryad.92h5d).	

One	V1	dataset	(analyzed	in	Figs	1,	2,	3,	4a,	and	7a)	was	collected	using	

natural-movie	stimuli	from	an	anaesthetized	adult	monkey	(Macaca	fascicularis)	

implanted	with	a	96-electrode	silicon	‘Utah’	array	(Blackrock	Microsystems,	Salt	

Lake	City,	UT)	in	left-hemisphere	V1.	These	data	were	recorded	in	the	laboratory	

of	Adam	Kohn	(Albert	Einstein	College	of	Medicine)	specifically	for	the	present	

study.	The	left	eye	was	covered.	Receptive	field	centers	(2-4	degrees	eccentric)	

were	determined	via	brief	presentations	of	small	drifting	gratings.	Stimuli,	which	

spanned	the	receptive	fields,	were	48	natural	movie	clips	(selected	from	

YouTube)	with	50	repeats	each.	The	frame	rate	was	95	Hz.		Each	stimulus	lasted	

2.63	s	(100	movie	frames	followed	by	150	blank	frames).	Spikes	from	the	array	

were	sorted	offline	using	MKsort	(available	at	https://github.com/ripple-

neuro/mksort/).	Single	units	and	stable	multi-unit	isolations	were	included.	

Some	neurons	showed	weak	responses	and	were	not	analyzed	further.		Similarly,	

some	stimuli	(e.g.,	those	where	the	region	within	the	receptive	fields	was	blank	

	 60	

or	relatively	unchanging)	evoked	weak	responses	overall.	Again,	these	were	not	

analyzed	further.	Finally,	to	ensure	we	were	analyzing	a	neural	population	that	

responds	to	a	shared	set	of	stimulus	features,	all	analyses	focused	on	the	subset	

of	units	with	strongly	overlapping	receptive	fields,	defined	as	the	25	units	with	

receptive	fields	closest	to	the	center	of	the	stimulus.	We	insisted	upon	this	

criterion	because	our	central	analyses	would	not	be	as	readily	interpretable	if	

applied	to	a	set	of	neurons	with	distant	receptive	fields,	as	they	would	effectively	

be	responding	to	different	stimuli.	

	 We	analyzed	two	further	V1	datasets	(Fig	4b)	recorded	from	cat	V1	as	

described	in	[4,50]	using	Utah	arrays	implanted	so	as	to	overlap	areas	17	and	18	

(collectively,	cat	area	V1).	Stimuli	were	large	stationary	gratings,	~30	deg	in	

diameter,	and	thus	spanned	the	receptive	fields	of	all	neurons.	Gratings	were	

presented	in	a	rapid	sequence—one	every	32	ms—each	with	one	of	4	spatial	

phases	and	one	of	12	orientations.	One	dataset	had	five	sequences	of	~12	s	in	

length.		The	other	dataset	had	nine	such	sequences.	We	wished	to	segment	these	

long-duration	stimuli	into	‘conditions’	with	a	timescale	comparable	to	that	of	the	

other	V1	and	M1	datasets	analyzed	here.	To	do	so,	we	divided	the	first	10	s	of	

each	sequence	into	10	one-second	segments,	which	we	treated	as	separate	

conditions	(the	stimuli	in	each	second	were	unrelated	to	the	stimuli	in	the	last	

second,	and	are	thus	effectively	different	conditions).	The	two	datasets	(Fig	4b,	

top,	bottom)	thus	yielded	a	total	of	50	and	90	conditions,	respectively.	Each	

condition	was	observed	across	multiple	(~10)	trials.	Each	dataset	consisted	of	

96	well-tuned	multiunit	recordings	(see	[4,50]	for	details),	which	were	down-

selected	to	match	condition	counts	(50	and	90)	of	the	datasets.	

Four	M1	datasets	were	recorded	from	two	male	macaque	monkeys	

(Macaca	mulatta)	trained	to	perform	a	delayed	reach	task.	These	datasets	have	

been	described	and	analyzed	previously	[29,30].	Briefly,	reaches	were	

performed	on	a	fronto-parallel	screen	for	juice	reward.		To	begin	each	trial	the	

monkey	touched	a	central	spot.		After	a	>400	ms	hold	period,	a	reach	target	and	

up	to	nine	‘barriers’	appeared	(see	Fig	1	of	[29]).	The	monkey	was	required	to	

hold	its	position	for	a	0-1000	ms	delay	until	a	‘go	cue’,	and	to	then	briskly	reach	

to	the	target	while	avoiding	the	barriers.	A	juice	reward	was	delivered	after	a	

	 61	

450	ms	hold	period.		This	task	evoked	a	large	variety	of	conditions:	each	

corresponding	to	a	particular	target	and	arrangement	of	barriers.	For	a	given	

condition,	reach	trajectories	were	highly	stereotyped	across	trials	(there	was	

only	one	allowable	route	through	the	barriers)	allowing	a	meaningful	

computation	of	the	average	across-trial	firing	rate.	Only	trials	with	delays	>450	

ms	were	analyzed	(5-40	trials	per	condition,	depending	on	the	dataset);	shorter	

delays	simply	provided	incentive	to	prepare	their	movement	during	the	delay.	

For	present	purposes,	the	primary	value	of	the	barriers	was	that	they	increased	

the	variety	of	reach	conditions,	thus	increasing	the	size	of	the	tensor	that	could	

be	analyzed.	In	the	original	dataset	some	conditions	included	‘distractor’	targets	

that	the	monkey	had	to	ignore	while	preparing	the	reach.	The	purpose	of	those	

conditions	was	incidental	to	the	present	study	and	they	were	not	included	in	the	

analysis	(results	were	virtually	identical	if	they	were	included).	Neural	

responses	were	recorded	from	M1	and	the	adjacent	region	of	caudal	PMd.	Single-

electrode	and	array	datasets	employed	18	and	72	conditions	respectively.	Single-

electrode	datasets	consisted	of	ideally	isolated	single	neurons.	Array	datasets	

included	both	ideal	isolations	and	good	multi-unit	isolations	(e.g.,	two	clear	units	

that	could	not	be	separated	from	one	another).	Unit	counts	for	the	four	datasets	

were	170,	218,	55,	and	118	(corresponding,	respectively,	to	panels	c-d	in	Fig	4),	

which	were	down-selected	to	72,	72,	18,	and	18	to	match	condition	counts.		

Two	datasets	of	the	responses	of	muscle	populations	(analyzed	in	Fig	6c)	

were	recorded	using	the	same	monkeys	and	task	as	for	the	M1	datasets.	Muscle	

datasets	used	the	same	18	conditions	as	the	single-electrode	datasets.	EMG	

responses	were	recorded	percutaneously	using	electrodes	inserted	for	the	

duration	of	the	recording	session.	Recordings	were	made	from	six	muscle	

groups:	deltoid,	biceps	brachii,	triceps	brachii,	trapezius,	latissimus	dorsi	and	

pectoralis.	Multiple	recordings	were	often	made	from	a	given	muscle	(e.g.,	from	

the	anterior,	lateral	and	posterior	deltoid).	For	monkey	J	the	triceps	was	

minimally	active	and	was	not	recorded.	Muscles	were	recorded	sequentially	and	

then	analyzed	as	a	population	(just	as	were	the	single-electrode	datasets).	For	

the	two	monkeys	the	resulting	populations	consisted	of	8	and	12	recordings.		

	

	 62	

Model	datasets	

We	analyzed	multiple	datasets	produced	via	simulation	of	published	

models.	The	velocity	model	from	[30]	was	analyzed	in	Fig	6a	(here,	referred	to	

as	the	simple	tuning	model).	The	complex-kinematic	model	from	[30]	was	

analyzed	in	Fig	6b	(here	referred	to	as	the	complex	tuning	model).	The	

generator	model	from	[30]	is	analyzed	in	Fig	6d.	The	network	model	of	Sussillo	

et	al.	[34]	is	analyzed	in	Fig	6e.	The	network	model	of	Hennequin	et	al.	[36]	is	

analyzed	in	Fig	6f.	Both	network	models	are	instantiations	of	a	recurrent	neural	

network	(RNN):	

	

W!($, ")
W$ = −! $, " + +Y $, " + '($, " 	

Y $, " = Z ! $, " 	

U $, " = [Y $, " ,	

(7)	

where	! ∈ ℝ/	is	the	network	state,	(∈ ℝ6 	is	the	vector	of	inputs,	U ∈ ℝ\	is	the	

vector	of	outputs.	The	function	Z	is	an	element-wise	nonlinear	function,	Y ∈ ℝ/	

is	interpreted	as	a	firing	rate,	and	the	matrices	+,	',	and	[are	of	appropriate	

dimensions.	The	output	y	is	interpreted	as	muscle	activity.	

All	datasets	were	from	the	original	simulations	analyzed	in	those	

publications,	with	the	exception	of	the	RNN	model	of	[36].	We	re-simulated	that	

model	based	on	similar	procedures	described	in	[36].	After	stabilizing	the	

network	using	their	procedure,	we	needed	to	specify	each	of	the	72	initial	states	

!(1, ")	(one	for	each	condition).	We	first	computed	the	controllability	Gramian	of	

the	linearized	network	(the	matrix]	in	[36]).	The	orthonormal	columns	of]	

correspond	to	potential	choices	of	initial	states;	the	first	column	is	an	initial	state	

that	evokes	the	‘strongest’	response	(in	terms	of	the	total	energy	of	the	

corresponding	signals	Y);	the	second	column	gives	the	next	strongest,	and	so	

forth.	We	selected	the	initial	state	for	each	condition	to	roughly	match	the	

temporal	pattern	of	total	energy	(summed	across	all	neurons)	of	the	empirical	

neural	data.	Namely,	we	first	considered	the	instantaneous	power	^ $ ≔

Y $ EY $.	Next,	for	a	given	column	of]	(a	possible	choice	of	initial	state),	we	

simulated	the	network	and	measured	the	correlation	across	times	between	^($)	

of	the	simulated	data	and	^($)	of	the	empirical	data	for	a	given	condition.	After	

	 63	

determining	the	5	columns	of]	that	yielded	the	highest	correlations,	we	chose	

each	!(1, ")	to	be	the	weighted	sum	of	those	5	columns	that	best	matched	^($)	

for	that	condition.	The	net	effect	of	this	procedure	was	to	produce	a	rich	set	of	

dynamics,	flowing	from	72	initial	states,	that	provided	a	possible	basis	set	for	

producing	patterns	of	EMG	for	the	72	conditions.	We	confirmed	the	network	did	

indeed	provide	such	a	basis	set	(e.g.,	that	the	EMG	could	be	fit	as	a	weighted	sum	

of	the	responses	in	the	network).		

	

Data	preprocessing	

For	all	experimental	neural	data,	spike	trains	were	smoothed	with	a	

Gaussian	kernel	(20	ms	standard	deviation)	and	sampled	every	10	ms.	Firing	

rate	values	were	averaged	across	trials	resulting	in	a	population	tensor	of	size	

3×:×;.	Each	element	of	this	tensor	is	simply	the	firing	rate	for	the	

corresponding	neuron,	condition	and	time.	To	ensure	that	analysis	was	not	

dominated	by	a	few	high-rate	neurons,	we	normalized	firing	rates.	Because	

normalization	can	occasionally	lead	to	an	undesirable	expansion	of	sampling	

noise	for	low-rate	neurons,	we	employed	a	‘soft-normalization’	procedure	(this	

same	normalization	is	used	in	[30]).	Each	neuron	was	normalized	according	to:	

	 !S ", $ ← 	
!S ", $

5	 +	rangea,8 !S ", $
,	 (8)	

where	b = 1,… ,3.		The	function	rangea,8(⋅)	returns	the	difference	between	the	

maximum	and	minimum	firing	rates	across	all	conditions	and	times	for	a	given	

neuron.	The	soft	normalization	constant	5	mapped	high	firing	rate	neurons	(e.g.,	

100	Hz)	to	a	new	range	close	to	one.	Low	firing	rate	neurons	were	mapped	to	a	

range	somewhat	less	than	one	(e.g.,	a	neuron	with	a	range	of	5	spikes/s	would	be	

mapped	to	a	new	range	of	0.5).	This	preprocessing	allows	neurons	to	contribute	

roughly	equally	regardless	of	their	firing	rate	range.	This	is	especially	desirable	

when	analyses	involve	the	mean	squared	error.	For	example,	without	

normalization	the	same	relative	error	will	be	25	times	greater	for	a	neuron	with	

a	0-100	Hz	firing	rate	range	relative	to	a	neuron	with	a	0-20	Hz	firing	rate	range.	

	 64	

That	said,	we	emphasize	that	our	results	(e.g.,	the	preferred	mode	of	a	given	

dataset)	did	not	depend	on	the	choice	of	soft	normalization	constant.	

We	wished	to	analyze	temporal	response	structure	that	was	different	

across	conditions.	We	therefore	removed	the	‘cross-condition	mean’	from	the	

entire	population	tensor.	We	averaged	the	tensor	across	conditions	resulting	in	

an	3×;	matrix	that	we	subtracted	from	every	3×;	matrix	of	data.	This	is	related	

to	the	standard	PCA	step	of	first	removing	the	mean	value	of	each	variable,	and	

ensured	that	the	analysis	did	not	consider	response	structure	that	was	identical	

across	conditions,	such	as	an	elevation	of	firing	rates	for	all	visual	stimuli	or	all	

reach	directions.	

All	datasets	naturally	had	an	unequal	number	of	neurons	(3)	and	

conditions	(:).	To	ensure	that	basis-neuron	and	basis-condition	reconstructions	

were	compared	on	similar	footing,	we	removed	excess	neurons	or	conditions	in	

each	dataset	so	that	3 = :.	In	most	datasets	there	were	more	neurons	than	

conditions.	In	such	cases	we	kept	the	3 = :	neurons	with	the	highest	ratio	of	

signal	to	noise.	In	the	V1	dataset	of	Fig	1a	there	were	more	conditions	than	

neurons.	In	this	case	we	retained	the	3 = :	conditions	that	elicited	the	most	

temporal	complexity	in	the	population	response	(assessed	via	the	standard	

deviation	of	the	firing	rate	across	all	neurons	and	times).	The	specific	

preprocessing	choices	(filter	length,	normalization,	equalizing	3	and	:)	were	

made	to	minimize	any	potential	bias	toward	basis-neurons	or	basis-conditions.	

Still,	none	of	these	choices	were	found	the	affect	the	outcome	of	the	analyses.			

	

Preferred-mode	analysis	

For	each	population	tensor	, ∈ ℝ/×1×2 	we	quantified	how	well	it	could	

be	reconstructed	from	a	small	set	of	F	basis-neurons	or	F	basis-conditions	(the	

method	for	choosing	k	is	described	later).	To	illustrate,	we	first	consider	the	case	

of	basis-neurons	(the	case	of	basis-conditions	is	entirely	parallel).	Each	of	the	

recorded	neurons	is	a	set	of	;	datapoints	(one	per	time)	for	:	conditions	and	

thus	forms	a	:×;	matrix.	Each	basis	neuron	is	also	a	:×;	matrix.	The	data	for	

each	of	the	3	neurons	(each	:×;	matrix	within	the	full	population	tensor)	was	

	 65	

approximated	as	a	weighted	sum	of	F	basis-neuron	matrices.	Weights	and	basis	

neurons	were	chosen	to	provide	the	reconstruction	with	the	lowest	error.			

To	find	those	weights	and	basis	neurons	we	applied	SVD	along	the	neuron	

mode	of	the	population	tensor.	This	procedure	amounts	to	‘unfolding’	(or	

reshaping)	the	tensor	into	a	matrix,	>(?) ∈ ℝ/×12 ,	where	the	subscript	in	

parentheses	indicates	which	mode	appears	as	the	row	index	in	the	matrix	(see	

[49]).	The	order	in	which	the	columns	appear	in	the	matrix	does	not	affect	our	

analysis.	We	applied	the	SVD	to	>(?).	The	right	singular	vectors	of	>(?)	

correspond	to	vectors	of	dimension	:;,	which	can	be	reshaped	into	:×;	

matrices	corresponding	to	‘basis-neurons.’	The	singular	values	(squared)	of	>(?)	

indicate	how	much	variance	is	explained	by	each	basis-neuron.	The	approach	to	

finding	basis-conditions	is	parallel	to	the	above	and	involves	the	SVD	of	>(D) ∈

ℝ1×/2 .	For	both	reconstructions	we	assessed	the	mean	squared	error	between	

the	elements	of	the	original	tensor	and	those	of	the	reconstructed	tensor.	The	

reconstructed	tensor	was	produced	by	multiplying	the	matrices	produced	by	the	

SVD	after	appropriately	limiting	the	inner	dimensions	based	on	the	number	of	

basis	elements	F.	For	example,	if	> ? = defE,	then	> ?
rec = d:,?:ge?:g,?:gf?:g,:E .	We	

note	that	for	practical	convenience	reconstruction	error	can	also	be	readily	

computed	from	the	first	F	singular	values.	For	visualization	we	express	

reconstruction	error	in	normalized	form,	relative	to	the	total	variance	of	the	

data.		

We	extended	the	above	analysis	to	quantify	reconstruction	error	as	a	

function	of	the	number	of	time-points	included	in	the	tensor	(Figs.	3,4,6).	We	

began	by	considering	a	single	time-point	halfway	through	the	response:	$half =

round(;/2).		We	used	this	time	to	ask	how	many	basis	elements	(basis-neurons	

and	basis-conditions)	were	necessary	to	achieve	low	reconstruction	error.	As	

above	we	applied	the	SVD,	in	this	case	to	the	matrix	,:,:,8half ∈ ℝ
/×1×?.	We	chose	

the	smallest	number	F	such	that	normalized	reconstruction	error	using	the	first	

F	basis	elements	was	less	than	5%.	Because	,:,:,8halfis	a	matrix,	the	value	of	F	is	

the	same	for	basis-neurons	and	basis-conditions.	We	then	analyzed	

,:,:,8halfN?:8halfV? ∈ ℝ
/×1×i	and	quantified	reconstruction	error	when	using	F	basis-

neurons	versus	F	basis-conditions	(i.e.,	the	standard	procedure	described	above	

	 66	

was	applied,	but	to	a	tensor	that	contained	three	times	rather	than	all	times).	We	

repeated	this	for	,:,:,8halfND:8halfVD ∈ ℝ
/×1×j	and	so	forth	until	the	full	3×:×;	

tensor	was	analyzed.	

To	assess	statistical	reliability,	we	computed	reconstruction	error	

independently	for	each	condition.	This	yielded	a	distribution	of	errors	with	a	

given	mean	and	standard	error.	It	is	that	mean	and	standard	error	that	are	

plotted	in	Figs	2c,	3c,e,	4,	6,	and	the	right	columns	of	Fig	8.	We	chose	to	

compute	the	standard	error	across	conditions	rather	than	across	both	neurons	

and	conditions	to	be	conservative	(the	latter	would	have	yielded	even	smaller	

error	bars).			

	

Control	datasets	and	analyses	

	 We	performed	a	three	control	analyses	to	assess	the	robustness	of	the	

central	method.	The	outcome	of	the	first	of	these	is	shown	in	the	Results;	the	

outcome	of	the	other	two	are	shown	here.	First,	we	analyzed	two	control	

datasets	intentionally	constructed	to	have	surface-level	features	similar	to	the	

original	empirical	datasets.	To	generate	the	manipulated	V1	dataset,	we	first	

extracted	the	top	24	basis-conditions	(out	of	25)	from	the	original	dataset	using	

SVD.	We	randomly	partitioned	the	basis	set	into	6	partitions	(4	elements	each),	

and	summed	the	elements	within	a	partition	to	create	a	single	basis-condition,	

resulting	in	6	total	basis-conditions.	We	then	reconstructed	the	manipulated	

dataset	neuron-by-neuron:	each	new	neuron	was	a	least-squares	fit	to	the	

original	neuron,	but	using	the	6	basis-conditions	derived	above.	This	ensured	

that	the	manipulated	V1	data	had	relatively	few	degrees	of	freedom	across	

conditions,	yet	resembled	the	original	V1	neurons	in	terms	of	basic	response	

properties.	The	manipulated	M1	dataset	was	constructed	analogously,	but	using	

6	basis-neurons	derived	from	the	original	72.	The	outcome	of	this	analysis	is	

shown	in	Fig	5.	

	 Second,	to	assess	robustness	of	the	central	method	with	respect	to	the	

number	of	recorded	conditions,	we	repeated	the	analysis	for	one	M1	dataset	(the	

dataset	from	Fig	3e)	that	originally	contained	72	conditions.	We	down-sampled	

	 67	

the	data	by	selecting	10,	20,	and	30	conditions.	Conditions	were	selected	

randomly,	but	via	a	procedure	that	also	ensured	that	the	selected	conditions	

were	sufficiently	different	(e.g.,	that	they	were	not	all	rightwards	reaches).	The	

preferred	mode	was	indeed	robust	even	when	the	number	of	conditions	was	

reduced	(Fig	9).	

	

	

Fig	9.	Preferred-mode	analysis	using	a	variable	number	of	

conditions.	(a)	Responses	of	one	example	neuron	illustrating	an	instance	of	

randomly	selected	sets	of	10	(top),	20	(middle),	and	30	(bottom)	conditions.	

Horizontal	and	vertical	calibration	bars	correspond	to	200	ms	and	20	spikes/s.	

(b)	Reconstruction	error	as	a	function	of	timespan	for	sets	of	10	(top),	20	

(middle),	and	30	(bottom)	conditions.	Multiple	traces	are	shown:	one	each	for	10	

draws	of	random	conditions.	Dark	traces	show	the	neuron-mode	(red)	and	

condition-mode	(blue)	reconstruction	error	for	the	particular	sets	of	conditions	

	 68	

illustrated	in	a.	Even	for	small	numbers	of	conditions	(as	few	as	10)	there	was	a	

consistent	preferred	mode.	In	fact,	the	preferred	mode	was	even	more	consistent	

than	it	appears,	as	the	comparisons	are	naturally	paired:	every	red	trace	has	a	

corresponding	blue	trace.	These	tended	to	move	upwards	and	downwards	

together	(as	in	the	example	illustrated	with	the	dark	traces)	with	a	reasonably	

consistent	difference	between	them.	

	 Finally,	we	analyzed	the	effect	of	spike	filter	widths	on	the	preferred	

mode	for	the	V1	and	M1	datasets	(Fig	10).	This	analysis	served	two	purposes.	

First,	spike	filtering	is	a	standard	preprocessing	step	and	we	wanted	to	ensure	

that	results	were	not	dependent	on	the	particular	choice	of	filter	width.	Second,	

the	analysis	reveals	that	the	preferred	mode	is	not	in	some	way	to	due	to	the	

smoothness	or	frequency	content	of	neural	signals—a	potential	concern	when	

comparing	brain	areas	whose	neurons	have	fundamentally	different	response	

properties,	as	is	the	case	with	V1	and	M1.	

	

Fig	10.	Effect	of	spike	filtering	width	on	the	preferred	mode.	Spike	

trains	from	V1	and	M1	datasets	were	filtered	with	a	Gaussian	kernel	of	varying	

widths	(width	corresponds	to	the	standard	deviation	of	the	Gaussian).	(a)	

Response	of	one	example	V1	neuron	for	filter	widths	of	10	ms,	20	ms	(the	default	

value	used	for	all	other	analyses	in	this	study),	and	100	ms.	(b)	Response	of	one	

example	M1	neuron	for	the	same	three	filter	widths.	Horizontal	and	vertical	

calibration	bars	correspond	to	200	ms	and	20	spikes/s.	(c)	Difference	in	

reconstruction	error	between	the	condition	mode	and	the	neuron	mode	

	 69	

(computed	as	in	Fig	7)	as	a	function	of	filter	width,	for	the	V1	dataset	from	panel	

a.	Differences	are	positive,	indicating	that	the	neuron	mode	incurred	less	error	

and	is	preferred.	Green	arrows	indicate	filter	widths	of	10,	20,	and	100,	

corresponding	to	the	examples	shown	in	a.	(d)	Difference	in	reconstruction	

error	for	the	M1	dataset	from	panel	b.	Differences	are	negative,	indicating	that	

the	condition	mode	incurred	less	error	and	is	preferred.	Thus,	the	preferred	

mode	is	robust	to	filter	width,	despite	the	wide	range	of	frequencies	highlighted	

or	suppressed	by	filter	width	choices.	

	

Linear	Models	

In	Fig	8	we	illustrated	some	basic	properties	of	the	preferred	mode	using	

simulations	of	linear	dynamical	systems	(equation	(6)).	These	simple	

simulations	were	separate	from	the	simulations	of	published	models	described	

above.	For	these	simple	simulations	we	chose	3 = : = 20,	and	; = 300.	We	set	

7 = 10	(i.e.	the	input	(was	ten-dimensional).	We	first	generated	the	matrices	+	

and	'	with	orthonormal	columns;	for	+,	eigenvalues	were	random	but	were	

clustered	near	1	to	ensure	smooth	trajectories	for	our	choice	of	;	(this	was	not	a	

necessary	step,	but	yielded	roughly	comparable	oscillation	frequencies	to	those	

observed	in	the	datasets	of	Fig	4).	Each	input	(R	was	composed	of	a	randomly	

weighted	sum	of	20	sinusoids.	Sinusoid	frequency	was	determined	by	the	same	

procedure	that	generated	the	eigenvalues	of	+.	Thus,	inputs	had	the	same	

frequency	components	as	the	dynamics,	ensuring	similar	single-neuron	response	

properties	across	simulations.	Initial	states	across	conditions	were	chosen	

randomly	and	were	constrained	to	span	10	dimensions.	With	these	parameters	

fixed,	we	simulated	the	system	!($ + 1, ") = k+!($, ") + l'(($, "),	where	k ∈

[0,1]	and	l ∈ [0,1]	determined	the	strength	of	dynamics	and	inputs,	respectively.	

In	Fig	8a-d,	values	of	k	were	0,	0.98,	0.99,	and	1	(Note	that	values	of	k	even	

slightly	lower	than	unity	lead	to	rapidly	decaying	‘weak’	dynamics).	Values	of	l	

were	1,	0.05,	0.03,	and	0	(note	that	inputs	need	to	be	quite	weak	before	they	

cease	to	have	a	strong	effect	on	a	system	with	persistent	dynamics).	Each	panel	

in	Fig	8	involved	the	same	choices	of	+	and	',	and	the	same	initial	states.		

	 Data	in	Fig	8e-h	were	simulated	as	above,	with	k = 1	and	l = 0.	

	 70	

However,	the	‘data’	for	which	the	preferred	mode	was	computed	consisted	not	of	

the	values	of	the	dynamic	variable	!,	but	rather	of	the	values	of	an	observation	

variable	U.	We	treated	U	as	the	neural	population	being	driven	by	‘observing’	the	

dynamic	state	variable	!,	with	U(", $) = :!(", $).	The	observation	matrix	:	had	

different	ranks	depending	on	how	fully	U	reflected	!.	Specifically,	:	was	diagonal	

with	1s	on	the	first	3,	4,	8,	and	20	diagonal	entries	for	Fig	8	panels	e,f,g,h,	

respectively	(and	0s	elsewhere).	

	

Derivation	of	the	preferred	mode	for	idealized	models	

Here	we	show	that	neuron-preferred	structure	is	expected	when	

responses	are	driven	by	unconstrained	external	variables,	while	condition-

preferred	structure	is	expected	when	neural	responses	are	shaped	by	internal	

dynamics.	We	consider	a	dataset	, ∈ ℝ/×1×2 ,	where	3,	:	and	;	are	the	number	

of	recorded	neurons,	experimental	conditions,	and	times.	We	also	consider	a	set	

of	external	signals,	or	inputs,	o ∈ ℝ6×1×2 ,	where	7	is	the	number	of	external	

variables.	The	column	vector	!($, ") ∈ ℝ/	is	the	firing	rate	of	every	neuron	at	

time	$ ∈ {1, … , ;}	for	condition	" ∈ {1, … , :}.	An	3×:	matrix	‘slice’	of	,	is	

denoted	A($) ∈ ℝ/×1 ,	and	is	the	population	state	across	all	conditions	for	time	$.	

We	define	the	‘mode-1’	and	‘mode-2’	matrix	unfoldings	of	,:	

	
> ? ∶= A 1 A 2 ⋯ A ; ∈ ℝ/×12 ,	

> D ∶= A 1 E A 2 E ⋯ A ; E ∈ ℝ1×/2 .	
(9)	

Each	row	of	>(?)	corresponds	to	one	neuron,	and	each	row	of	>(D)	corresponds	

to	one	condition.	Importantly,	rank(> ?)	is	the	number	of	basis-neurons	needed	

to	reconstruct	,.	Similarly,	rank(> D)	is	the	number	of	basis-conditions	needed	

to	reconstruct	,.			

Definition:	A	dataset	, ∈ ℝ/×1×2 	is	called	neuron-preferred	(condition-

preferred)	when	the	rank	of	the	matrix	unfolding	>(?)	(>(D))	of	its	sub-tensors	

,2r ∈ 	ℝ
/×1×2r 	does	not	increase	with	;H ,	while	the	rank	of	>(D)	(>(?))	does	

increase	with	;H .	

	 71	

We	evaluate	the	rank	of	each	unfolding	in	datasets	,	generated	by	the	

following	model	classes:		

	 ! $, " = '($, " ,	 (10)	

and	

	 !($ + 1, ") = +!($, ").	 (11)	

We	term	equation	(10)	the	tuning	model	class	(' ∈ ℝ/×6 	defines	each	neuron’s	

tuning	for	external	variables),	and	equation	(11)	the	dynamical	model	class	(+ ∈

ℝ/×/	specifies	linear	dynamics).		

Claim:	Models	of	the	form	equation	(10)	(equation	(11))	generate	

datasets	having	neuron-preferred	(condition-preferred)	structure.	

Part	1:	The	tuning	model	class	implies	neuron-preferred	structure.	

To	begin,	note	that	equation	(10)	can	be	written	as	a	matrix	equation,	

	 A $ = 'd $.	 (12)	

For	any	;H ∈ {1, … , ;},	equation	(12)	implies,	

	 A 1 A 2 ⋯ A ;H = ' d 1 d 2 ⋯ d ;H ,	 (13)	

or,	more	compactly,		>(?) = 's ? .	For	the	mode-2	unfolding,	given	equation	

(12)	we	can	also	write,		

	

A 1
A 2
⋮

A ;H

=

' 0 ⋯ 0
0 ' ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ '

d 1
d 2
⋮

d ;H

,	 (14)	

i.e.,	> D = s D (v2r ⊗ 'E)	where	v2r 	is	the	;H×;H 	identity	matrix	and	⊗	denotes	

the	Kronecker	product.	Thus,	

	
! $, " = '($, " ⟺ > ? = 's ?

⟺ > D = s D v2r ⊗ 'E .	
(15)	

We	can	take	without	loss	of	generality	rank ' = 7.	Thus,	rank > ? =

rank 's ? = min 7, rank s ? ≤ 7.	On	the	other	hand	rank > D =

rank(s D) ≤ min :,7;H 	.	(To	see	this	note	that	s D 	is	size	:×7;H 	and	

v2r ⊗ 'E 	is	size	7;H×3;H 	and	full	rank).	Thus,	the	rank	of	the	mode-1	

	 72	

unfolding	is	strictly	bounded	by	7	(which	is	fixed	by	the	model)	while	the	rank	

of	the	mode-2	unfolding	can	grow	arbitrarily	with	:	and	;H 	(which	can	be	

increased	by	the	experimenter).	Thus,	datasets	generated	by	the	tuning	model	

class	are	neuron-preferred	when	the	inputs	are	unconstrained,	i.e.	when	

rank(s D)	grows	beyond	7	with	increasing	;H .	This	shows	part	1	of	the	claim.	

Part	2:	The	dynamical	model	class	implies	condition-preferred	

structure.	Equation	(11)	can	be	written	A($ + 1) = +A($),	which	admits	the	

solution	

	 A($) = +8N?A(1),	 (16)	

where	the	matrix	+8N?	maps	initial	states	to	the	state	at	time	$.	We	define	the	

tensor	Ä ∈ ℝ/×/×2 	to	be	the	collection	of	all	matrices	+8N?	for	$ = 1,… , ;	(from	

here,	the	definitions	of	Å ? 	and	Å D 	follow).	We	can	now	write	

	

A 1
A 2
⋮

A ;H 	

=

v/
+
⋮

+2rN?
A 1 .	 (17)	

More	compactly:	> D = A 1 EÅ D .	To	find	>(?),	given	equation	(16)	we	can	

write	

	

A 1 A 2 ⋯ A ;H =

v/ + ⋯ +2rN?	

A 1 0 ⋯ 0
0 A 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ A 1

.	
(18)	

More	compactly:	>(?) = Å ? (v2r ⊗ A 1).	Thus,	

	
! $ + 1, " = +! $, " ⟺ > ? = Å ? v2r ⊗ A 1

⟺ > D = A 1 EÅ D .	
(19)	

We	note	that	the	rank	of	the	mode-1	unfolding	can	grow	with	;H ,	

	
rank A 1 ≤ rank A 1 	+A 1 ≤

rank A 1 	+A 1 	+DA 1 ≤ ⋯,	
(20)	

and	can	eventually	reach	the	maximum	of	rank(+)	(due	to	the	Cayley-Hamilton	

theorem).	On	the	other	hand,	rank > D = rank(A 1),	where	equality	follows	

	 73	

because	A 1 E	is	a	submatrix	of	> D .	The	rank	of	the	mode-2	unfolding	thus	does	

not	grow	with	;H .	Therefore,	datasets	generated	by	the	dynamical	model	class	are	

condition-preferred	when	rank [A 1 	+A 1] > rank(A 1),	i.e.	whenever	the	

matrix	+	maps	the	initial	states	into	a	subspace	not	spanned	by	the	columns	of	

A(1).	This	completes	part	2	of	the	claim.	

	

Low-rank	assumptions	pertaining	to	the	above	derivation	

Given	the	above,	a	natural	expectation	is	that	A $ = 'd $ ⇒

rank > ? ≤ rank > D 	with	rank > D 	growing	as	more	times	are	considered.	

Similarly	one	expects	A($ + 1) = +A($) ⇒ rank > D ≤ rank > ? 	with	

rank > ? 	growing	as	more	times	are	considered.	These	expectations	will	

indeed	hold	given	reasonable	low-rank	assumptions.	The	first	inference	(that	

tuning	models	imply	a	neuron-mode	preference)	depends	upon	recording	more	

neurons	and	conditions	than	the	presumed	number	of	represented	variables,	i.e.,	

we	need	3 > 7	and	: > 7.		Otherwise	it	is	possible	for	min :,7;H 	(the	limit	on	

rank > D)	to	be	smaller	than	M	(the	limit	on	rank > ?).	In	practice,	the	

adequacy	of	the	data	can	be	evaluated	by	testing	whether	results	change	when	

more	neurons/conditions	are	added.	Importantly,	the	present	results	did	not	

depend	upon	neuron/condition	count.	For	example,	effects	are	equally	strong	in	

Fig	4f	and	Fig	4g	despite	a	threefold	difference	in	the	number	of	analyzed	

neurons	and	conditions.	Still,	the	possibility	of	data	being	neuron-	or	condition-

limited	is	a	real	one,	and	provides	strong	motivation	to	analyze	datasets	with	

many	neurons	and	many	diverse	conditions.	

		 The	second	inference	(dynamical	models	imply	a	condition-mode	

preference)	depends	upon	the	assumption	rank A 1 < rank(+).		In	other	

words,	the	set	of	initial	states	(one	per	condition)	must	occupy	a	proper	

subspace	of	all	states	visited	as	the	dynamics	governed	by	A	unfold.	Otherwise	

rank > ? = rank > D 	regardless	of	how	many	times	are	considered	(i.e.,	the	

red	and	blue	traces	in	Fig	4	would	be	equal	and	would	not	rise	with	time).	In	

practice	the	assumption	rank A 1 < rank(+)	is	reasonable,	both	because	we	

never	observed	the	above	signature	for	any	dataset	and	because	we	have	

	 74	

recently	shown	that	M1/PMd	preparatory	states	do	not	occupy	all	dimensions	

subsequently	explored	during	movement	[61].	

In	summary,	the	key	low-rank	assumptions	are	likely	to	be	valid	when	

considering	many	neurons	and	diverse	conditions.	Models	of	the	form	A $ =

'd $ 	will	thus	have	a	stable	rank > ? 	and	an	unstable	rank > D .	Models	of	

the	form	A($ + 1) = +A($)	will	have	a	stable	rank > D 	and	an	unstable	

rank > ? .	The	converse	inferences	will	also	hold.	If	rank > ? 	is	stable	as	

times	are	added	then	the	data	can	be	factored	as	in	equation	(13)	and	thus	

modeled	as	A $ = 'd $.	If	rank > D 	is	stable	then	the	data	can	be	factored	as	

in	equation	(17)	(possibly	requiring	a	time-varying	+)	and	thus	modeled	as	

A($ + 1) = +A($).	

			

Time-varying	dynamics	

	 Part	2	of	the	above	claim	extends	naturally	to	the	equation	A($ + 1) =

+($)A($),	a	time-varying	linear	dynamical	system.	As	long	as	the	dynamics—the	

(potentially	time-varying)	vector	fields—are	the	same	across	conditions	then	the	

above	arguments	hold.	Thus,	while	the	appearance	of	condition-preferred	

structure	depends	on	the	constraints	imposed	by	dynamics,	such	structure	does	

not	depend	on	time-invariant	dynamics.	Because	dynamical	systems	can	often	be	

approximated	as	time-varying	linear	systems	(especially	over	short	timescales),	

condition-preferred	structure	is	likely	to	be	common	whenever	population	

structure	is	shaped	by	strong	dynamics.	

	

Measuring	rank	

Empirical	neural	data	inevitably	include	sampling	noise	in	the	estimated	

firing	rates,	due	to	finite	trial-counts	from	spiking	neurons.	Similarly,	some	

degree	of	nonlinearity	is	always	present	in	the	form	of	spiking	thresholds	or	

deeper	nonlinearities	in	the	underling	representations	or	dynamics.	Thus,	the	

measured	> ? 	and	> D 	will	always	be	full	rank.	In	practice,	we	therefore	

evaluated	not	the	ranks	of	> ? 	and	> D 	per	se	but	the	success	of	rank-F	

	 75	

reconstructions	of	> ? 	and	> D .	In	simulations	we	found	that	this	approach	

works	well.	Reconstruction	error	is	increased	by	the	addition	of	noise	or	

nonlinearities,	but	this	occurs	approximately	equally	for	both	> ? 	and	> D .	

Thus,	the	preferred-mode	analysis	is	still	able	to	successfully	differentiate	

datasets	generated	by	static	nonlinear	tuning	models	from	autonomous	

nonlinear	dynamical	models	(e.g.,	Fig	4).	

	

Acknowledgements	

We	thank	A.	Kohn,	M.	Carandini,	and	A.	Benucci	for	providing	the	visual	cortex	

data	analyzed	in	this	paper.	We	thank	D.	Sussillo,	G.	Hennequin,	T.	Vogels,	W.	

Gerstner,	and	G.	Elsayed	for	providing	simulated	data.	We	thank	J.A.	Movshon,	N.	

Priebe,	S.	Lisberger,	M.	Smith,	S.	Chang,	and	L.	Snyder	for	providing	data	in	early	

development	of	this	work.	We	thank	L.	Abbott	for	advice.	

	 76	

References	

1.	 Churchland	MM,	Shenoy	KV.	Temporal	complexity	and	heterogeneity	of	
single-neuron	activity	in	premotor	and	motor	cortex.	J	Neurophysiol.	
2007;97:	4235–4257.	doi:10.1152/jn.00095.2007	

2.	 Raposo	D,	Kaufman	MT,	Churchland	AK.	A	category-free	neural	population	
supports	evolving	demands	during	decision-making.	Nat	Neurosci.	Nature	
Publishing	Group;	2014;17:	1784–1792.	doi:doi:10.1038/nn.3865	

3.	 Bair	W,	Koch	C.	Temporal	precision	of	spike	trains	in	extrastriate	cortex	of	
the	behaving	macaque	monkey.	Neural	Comput.	1996.		

4.	 Benucci	A,	Ringach	DL,	Carandini	M.	Coding	of	stimulus	sequences	by	
population	responses	in	visual	cortex.	Nat	Neurosci.	2009;12:	1317–1324.	
doi:10.1038/nn.2398	

5.	 Grillner	S.	Biological	pattern	generation:	the	cellular	and	computational	
logic	of	networks	in	motion.	Neuron.	2006;52:	751–766.	
doi:10.1016/j.neuron.2006.11.008	

6.	 Priebe	NJ,	Lisberger	SG.	Constraints	on	the	source	of	short-term	motion	
adaptation	in	macaque	area	MT.	II.	tuning	of	neural	circuit	mechanisms.	J	
Neurophysiol.	2002;88:	370–382.		

7.	 Tong	L,	Liu	RW,	Soon	VC,	Huang	YF.	Indeterminacy	and	identifiability	of	
blind	identification.	IEEE	Trans	Circuits	Syst.	1991;38:	499–509.	
doi:10.1109/31.76486	

8.	 Wu	W,	Hatsopoulos	N.	Evidence	against	a	single	coordinate	system	
representation	in	the	motor	cortex.	Exp	Brain	Res.	Springer-Verlag;	
2006;175:	197–210.	doi:10.1007/s00221-006-0556-x	

9.	 Hatsopoulos	NG,	Xu	Q,	Amit	Y.	Encoding	of	movement	fragments	in	the	
motor	cortex.	J	Neurosci.	2007;27:	5105–5114.	
doi:10.1523/JNEUROSCI.3570-06.2007	

10.	 Fu	QG,	Flament	D,	Coltz	JD,	Ebner	TJ.	Temporal	encoding	of	movement	
kinematics	in	the	discharge	of	primate	primary	motor	and	premotor	
neurons.	J	Neurophysiol.	1995;73:	836–854.		

11.	 Mussa-Ivaldi	FA.	Do	neurons	in	the	motor	cortex	encode	movement	
direction?	An	alternative	hypothesis.	Neurosci	Lett.	1988;91:	106–111.		

12.	 Fetz	EE.	Are	movement	parameters	recognizably	coded	in	the	activity	of	
single	neurons.	Behavioral	and	Brain	Sciences.	1992;15:	679–690.		

13.	 Sanger	TD.	Theoretical	Considerations	for	the	Analysis	of	Population	
Coding	in	Motor	Cortex.	Neural	Comput.	1994;6:	29–37.	
doi:10.1126/science.247.4945.978	

	 77	

14.	 Todorov	E.	Direct	cortical	control	of	muscle	activation	in	voluntary	arm	
movements:	a	model.	Nat	Neurosci.	2000;3:	391–398.	doi:10.1038/73964	

15.	 Reimer	J,	Hatsopoulos	NG.	The	problem	of	parametric	neural	coding	in	the	
motor	system.	Adv	Exp	Med	Biol.	Boston,	MA:	Springer	US;	2009;629:	
243–259.	doi:10.1007/978-0-387-77064-2_12	

16.	 Scott	SH.	Inconvenient	truths	about	neural	processing	in	primary	motor	
cortex.	J	Physiol.	2008;586:	1217–1224.	
doi:10.1113/jphysiol.2007.146068	

17.	 Scott	SH.	Population	vectors	and	motor	cortex:	neural	coding	or	
epiphenomenon?	Nature	Publishing	Group.	2000;3:	307–308.	
doi:10.1038/73859	

18.	 Graziano	MSA,	Aflalo	TN.	Mapping	behavioral	repertoire	onto	the	cortex.	
Neuron.	2007;56:	239–251.	doi:10.1016/j.neuron.2007.09.013	

19.	 Georgopoulos	AP,	Carpenter	AF.	Coding	of	movements	in	the	motor	cortex.	
Curr	Opin	Neurobiol.	2015;33C:	34–39.	doi:10.1016/j.conb.2015.01.012	

20.	 Chase	SM,	Schwartz	AB.	Inference	from	populations:	going	beyond	models.	
Prog	Brain	Res.	2011;192:	103–112.	doi:10.1016/B978-0-444-53355-
5.00007-5	

21.	 Kalaska	JF.	From	intention	to	action:	motor	cortex	and	the	control	of	
reaching	movements.	Adv	Exp	Med	Biol.	2009;629:	139–178.	
doi:10.1007/978-0-387-77064-2_8	

22.	 Scott	SH,	Kalaska	JF.	Reaching	movements	with	similar	hand	paths	but	
different	arm	orientations.	I.	Activity	of	individual	cells	in	motor	cortex.	J	
Neurophysiol.	1997;77:	826–852.		

23.	 Kakei	S,	Hoffman	DS,	Strick	PL.	Muscle	and	movement	representations	in	
the	primary	motor	cortex.	Science.	1999;285:	2136–2139.	
doi:10.1126/science.285.5436.2136	

24.	 Caminiti	R,	Johnson	PB,	Burnod	Y,	Galli	C.	Shift	of	preferred	directions	of	
premotor	cortical	cells	with	arm	movements	performed	across	the	
workspace.	Experimental	brain	….	1990.		

25.	 Ashe	J,	Georgopoulos	AP.	Movement	parameters	and	neural	activity	in	
motor	cortex	and	area	5.	Cereb	Cortex.	1994;4:	590–600.		

26.	 Ajemian	R,	Bullock	D,	Grossberg	S.	Kinematic	coordinates	in	which	motor	
cortical	cells	encode	movement	direction.	J	Neurophysiol.	2000;84:	2191–
2203.		

27.	 Ajemian	R,	Green	A,	Bullock	D,	Sergio	L,	Kalaska	J,	Grossberg	S.	Assessing	
the	Function	of	Motor	Cortex:	Single-Neuron	Models	of	How	Neural	
Response	Is	Modulated	by	Limb	Biomechanics.	Neuron.	2008;58:	414–

	 78	

428.	doi:10.1016/j.neuron.2008.02.033	

28.	 Sergio	LE,	Hamel-Pâquet	C,	Kalaska	JF.	Motor	cortex	neural	correlates	of	
output	kinematics	and	kinetics	during	isometric-force	and	arm-reaching	
tasks.	J	Neurophysiol.	2005;94:	2353–2378.	doi:10.1152/jn.00989.2004	

29.	 Churchland	MM,	Cunningham	JP,	Kaufman	MT,	Ryu	SI,	Shenoy	KV.	Cortical	
preparatory	activity:	representation	of	movement	or	first	cog	in	a	
dynamical	machine?	Neuron.	2010;68:	387–400.	
doi:10.1016/j.neuron.2010.09.015	

30.	 Churchland	MM,	Cunningham	JP,	Kaufman	MT,	Foster	JD,	Nuyujukian	P,	
Ryu	SI,	et	al.	Neural	population	dynamics	during	reaching.	Nature.	
2012;487:	51–56.	doi:10.1038/nature11129	

31.	 Shenoy	KV,	Sahani	M,	Churchland	MM.	Cortical	control	of	arm	movements:	
a	dynamical	systems	perspective.	Annu	Rev	Neurosci.	2013;36:	337–359.	
doi:10.1146/annurev-neuro-062111-150509	

32.	 Churchland	MM,	Cunningham	JP.	A	Dynamical	Basis	Set	for	Generating	
Reaches.	Cold	Spring	Harb	Symp	Quant	Biol.	2014;79:	67–80.	
doi:10.1101/sqb.2014.79.024703	

33.	 Vaidya	M,	Kording	K,	Saleh	M,	Takahashi	K,	Hatsopoulos	NG.	Neural	
coordination	during	reach-to-grasp.	J	Neurophysiol.	American	
Physiological	Society;	2015;114:	1827–1836.	doi:10.1152/jn.00349.2015	

34.	 Sussillo	D,	Churchland	MM,	Kaufman	MT,	Shenoy	KV.	A	neural	network	
that	finds	a	naturalistic	solution	for	the	production	of	muscle	activity.	Nat	
Neurosci.	2015;18:	1025–1033.	doi:10.1038/nn.4042	

35.	 Maier	MA,	Shupe	LE,	Fetz	EE.	Dynamic	Neural	Network	Models	of	the	
Premotoneuronal	Circuitry	Controlling	Wrist	Movements	in	Primates.	J	
Comput	Neurosci.	Kluwer	Academic	Publishers;	2005;19:	125–146.	
doi:10.1007/s10827-005-0899-5	

36.	 Hennequin	G,	Vogels	TP,	Gerstner	W.	Optimal	control	of	transient	
dynamics	in	balanced	networks	supports	generation	of	complex	
movements.	Neuron.	2014;82:	1394–1406.	
doi:10.1016/j.neuron.2014.04.045	

37.	 Lillicrap	TP,	Scott	SH.	Preference	distributions	of	primary	motor	cortex	
neurons	reflect	control	solutions	optimized	for	limb	biomechanics.	
Neuron.	2013;77:	168–179.	doi:10.1016/j.neuron.2012.10.041	

38.	 Scott	SH.	Optimal	feedback	control	and	the	neural	basis	of	volitional	motor	
control.	Nat	Rev	Neurosci.	2004;5:	532–546.	doi:10.1038/nrn1427	

39.	 Todorov	E,	Jordan	MI.	Optimal	feedback	control	as	a	theory	of	motor	
coordination.	Nature	Publishing	Group.	2002;5:	1226–1235.	
doi:10.1038/nn963	

	 79	

40.	 Schieber	MH,	Rivlis	G.	Partial	reconstruction	of	muscle	activity	from	a	
pruned	network	of	diverse	motor	cortex	neurons.	J	Neurophysiol.	
2007;97:	70–82.	doi:10.1152/jn.00544.2006	

41.	 Pohlmeyer	EA,	Solla	SA,	Perreault	EJ,	Miller	LE.	Prediction	of	upper	limb	
muscle	activity	from	motor	cortical	discharge	during	reaching.	Journal	of	
Neural	Engineering.	2007;4:	369–379.	doi:10.1088/1741-2560/4/4/003	

42.	 Hatsopoulos	NG.	Encoding	in	the	motor	cortex:	was	evarts	right	after	all?	
Focus	on	"motor	cortex	neural	correlates	of	output	kinematics	and	kinetics	
during	isometric-force	and	arm-reaching	tasks".	J	Neurophysiol.	2005;94:	
2261–2262.	doi:10.1152/jn.00533.2005	

43.	 Morrow	MM,	Pohlmeyer	EA,	Miller	LE.	Control	of	muscle	synergies	by	
cortical	ensembles.	Adv	Exp	Med	Biol.	Boston,	MA:	Springer	US;	2009;629:	
179–199.	doi:10.1007/978-0-387-77064-2_9	

44.	 Georgopoulos	AP,	Naselaris	T,	Merchant	H,	Amirikian	B.	Reply	to	Kurtzer	
and	Herter.	J	Neurophysiol.	American	Physiological	Society;	2007;97:	
4391–4392.	doi:10.1152/jn.00140.2007	

45.	 Moran	DW,	Schwartz	AB.	One	motor	cortex,	two	different	views.	Nature	
Publishing	Group.	2000;3:	963–author	reply	963–5.	doi:10.1038/79880	

46.	 Pearce	TM,	Moran	DW.	Strategy-dependent	encoding	of	planned	arm	
movements	in	the	dorsal	premotor	cortex.	Science.	2012;337:	984–988.	
doi:10.1126/science.1220642	

47.	 Cunningham	JP,	Yu	BM.	Dimensionality	reduction	for	large-scale	neural	
recordings.	Nat	Neurosci.	Nature	Publishing	Group;	2014;17:	1500–1509.	
doi:doi:10.1038/nn.3776	

48.	 Sadtler	PT,	Quick	KM,	Golub	MD,	Chase	SM,	Ryu	SI,	Tyler-Kabara	EC,	et	al.	
Neural	constraints	on	learning.	Nature.	Nature	Publishing	Group;	
2014;512:	423–426.	doi:doi:10.1038/nature13665	

49.	 Kolda	TG,	Bader	BW.	Tensor	Decompositions	and	Applications.	SIAM	Rev.	
2009;51:	455.	doi:10.1137/07070111X	

50.	 Benucci	A,	Saleem	AB,	Carandini	M.	Adaptation	maintains	population	
homeostasis	in	primary	visual	cortex.	Nat	Neurosci.	Nature	Publishing	
Group;	2013;16:	724–729.	doi:doi:10.1038/nn.3382	

51.	 Moran	DW,	Schwartz	AB.	Motor	cortical	representation	of	speed	and	
direction	during	reaching.	J	Neurophysiol.	1999;82:	2676–2692.		

52.	 Georgopoulos	AP,	Ashe	J.	One	motor	cortex,	two	different	views.	Nature	
Publishing	Group.	2000;3:	963–author	reply	964–5.	doi:10.1038/79882	

53.	 Hubel	DH,	Wiesel	TN.	Receptive	fields	of	single	neurones	in	the	cat's	
striate	cortex.	J	Physiol.	1959;587:	2721–2732.	

	 80	

doi:10.1113/jphysiol.2009.174151	

54.	 Rokni	U,	Sompolinsky	H.	How	the	brain	generates	movement.	Neural	
Comput.		MIT	Press	55	Hayward	Street,	Cambridge,	MA	02142-1315	email:	
journals-info@mit.edu;	2012;24:	289–331.	doi:10.1162/NECO_a_00223	

55.	 Tanaka	H,	Sejnowski	TJ.	Computing	reaching	dynamics	in	motor	cortex	
with	Cartesian	spatial	coordinates.	J	Neurophysiol.	2013;109:	1182–1201.	
doi:10.1152/jn.00279.2012	

56.	 Pruszynski	JA,	Scott	SH.	Optimal	feedback	control	and	the	long-latency	
stretch	response.	Exp	Brain	Res.	2012;218:	341–359.	
doi:10.1007/s00221-012-3041-8	

57.	 Suminski	AJ,	Tkach	DC,	Fagg	AH,	Hatsopoulos	NG.	Incorporating	feedback	
from	multiple	sensory	modalities	enhances	brain-machine	interface	
control.	J	Neurosci.	Society	for	Neuroscience;	2010;30:	16777–16787.	
doi:10.1523/JNEUROSCI.3967-10.2010	

58.	 London	BM,	Miller	LE.	Responses	of	somatosensory	area	2	neurons	to	
actively	and	passively	generated	limb	movements.	J	Neurophysiol.	
2013;109:	1505–1513.	doi:10.1152/jn.00372.2012	

59.	 Gold	JI,	Shadlen	MN.	The	neural	basis	of	decision	making.	Annu	Rev	
Neurosci.	2007;30:	535–574.	
doi:10.1146/annurev.neuro.29.051605.113038	

60.	 Mante	V,	Sussillo	D,	Shenoy	KV,	Newsome	WT.	Context-dependent	
computation	by	recurrent	dynamics	in	prefrontal	cortex.	Nature.	
2013;503:	78–84.	doi:10.1038/nature12742	

61.	 Kaufman	MT,	Churchland	MM,	Ryu	SI,	Shenoy	KV.	Cortical	activity	in	the	
null	space:	permitting	preparation	without	movement.	Nat	Neurosci.	
2014;17:	440–448.	doi:10.1038/nn.3643	

	

81

Chapter 3

Denoising Neural Signals with

Tensor Decompositions

3.1 Introduction

An immediate application of tensor decompositions is denoising. For a ma-

trix, truncated SVD can be performed to approximate the matrix with one of

lower rank, discarding small singular values that often correspond to noise.

When data are formatted as a tensor, even greater denoising performance can

be obtained by performing low multilinear rank approximations of the data.

Here, we will show how the Tucker decomposition, or higher-order SVD,

can be used to denoise neural data. Neural data is notoriously noisy, pre-

dominately due to the fact that datasets offer a very limited view of the high-

dimensional state of the brain. If all relevant variables were recorded—all

neurons, all synaptic potentials, all adaptation currents—then the appropri-

ate latent factors could be identified, and there is no reason these factors

themselves might be particularly ‘noisy’. Yet, with limited recording technol-

ogy, we can only sample an extremely small subset of the relevant variables,

leading to this deceptively noisy perspective of the brain.

Thus, experimentalists are stuck with the requirement of recording a large

number of repeats or trials for a given condition (for simultaneously recorded

Chapter 3. Denoising Neural Signals with Tensor Decompositions 82

neurons) or a given neuron-condition pair (for sequentially recorded neu-

rons). A large trial count comes at the cost of fewer conditions in the experi-

ment, or fewer recorded neurons.

Here, we will show how tensor decompositions can alleviate this trade-

off. Denoising spike train data with relatively few trial counts can reveal

‘trial-averaged’ neural responses that are on par with high trial count re-

sponses. This suggests two things. First, it suggests that neural spike trains

are not as noisy as they appear—the underlying signals are indeed present

in the data, even when just a few trials are recorded. Second, it suggests that

experimentalists can perform a much richer set of experiments, with signifi-

cantly more neurons and conditions than previously thought possible.

This is a timely result: neural data is growing rapidly in its richness and

complexity [11]. Recent datasets have included several thousands of neurons

imaged at once, often from the entire brain of the animal [18, 2]. Yet, this in-

crease in the number of neurons recorded does not necessarily coincide with

richer data: a neuron by time matrix can be heavily rank deficient if neural

responses are too simple across time, i.e. if the conditions of the experiment

are not sufficiently rich to evoke complex neural responses. A goal in exper-

imental design is not just to record more neurons, but also to record those

neurons across rich, diverse stimuli or behaviors [14].

Typically, there is a trade-off between condition count and trial count. We

might require n trails before a given PSTH is ‘usable’ or sufficiently denoised.

For a given amount of time available to perform an experiment in a given

day, we are thus limited in the number of different conditions that can be

performed by the subject. More conditions can only be obtained at the cost

of noisier PSTHs.

The key idea behind the matrix or tensor denoising techniques is as fol-

lows: We can ‘borrow’ trials from other neurons with similar response prop-

erties. Suppose we are recording neurons sequentially (not simultaneously).

Chapter 3. Denoising Neural Signals with Tensor Decompositions 83

Suppose we knew that neuron 2 always fired at twice the rate of neuron 1.

Instead of recording neuron 1 for n trials and neuron 2 for n trials, we could

get away with n/2 trials for each. To construct the trial averaged response of

neuron 1, we would average its n/2 trials, and combine that with the average

of neuron 2’s trial-averaged response multiplied by 0.5. In this example, we

have two neurons but one degree of freedom between them. The concept il-

lustrated by this example extends to more neurons. As long as the degrees of

freedom are less than the total number of neurons, we can find the right lin-

ear combination of responses to effectively borrow statistical strength from

other neurons in the population.

Fortunately, one does not need to know the linear relationships between

neurons. We can use the linear combinations obtained by SVD on the neural

data matrix.

When a neural population is observed over several conditions, each of

equal time length, we can format the data in a N ⇥ C ⇥ T tensor. This gives

us three choices for how to denoise using truncated SVD. We can perform

truncated SVD on the mode-1, mode-2, or mode-3 unfolding. Some of these

decompositions perform better than others, and it is not a priori clear which

will perform best for a given dataset.

More generally, we can apply low-rank tensor decompositions to denoise

across all three modes simultaneously, alleviating the choice of which mode

the data is most strongly correlated.

3.2 Tensor denoising method

Here we outline the basic approach in tensor denoising. In general one can

assume either a CP or Tucker model for the data. Here, we assume the latter.

Chapter 3. Denoising Neural Signals with Tensor Decompositions 84

3 trials 20 trials

3 trials + denoising

FIGURE 3.1: Top left: lightly filtered (10 ms) PSTH from one
neuron across two conditions (blue, orange) averaged across
3 trials. Top right: The same PSTH when averaged across 20
trials. Bottom right: the PSTH after applying tensor denoising
on the 3-trial data. Vertical bars: 10 Hz. Horizontal bars, 10ms.

Denoising thus amounts to solving the minimization problem,

minimize

S,U,V,W
kX � S ⇥1 U ⇥2 V ⇥2 Wk2

F

subject to U>U = I,

V >V = I,

W>W = I

(3.1)

where X 2 RN⇥C⇥T , S 2 RP⇥Q⇥R, U 2 RN⇥P , V 2 RC⇥Q, and W 2 RT⇥R.

Here, we say that X is approximated by a rank-(P,Q,R) tensor, where P 
N , Q  C, and R  T .

Like in SVD, the factor matrices are usually taken to be orthonormal.

When the factors are orthonormal, S is uniquely determined by the factors

U, V,W and does not require optimization:

S = X ⇥1 U
> ⇥2 V

> ⇥3 W
> (3.2)

Chapter 3. Denoising Neural Signals with Tensor Decompositions 85

3.2.1 Higher-Order SVD

The matrices U , V , and W can be obtained by higher-order SVD. Namely,

they are the left singular vectors of X(1), X(2), and X(3), respectively. It is

well known that this solution is not optimal for the optimization problem 3.1,

[22]—one of the key differences between matrices and tensors. The HOSVD

solution can be used as an initial estimate for other methods. In practice,

however, we found the HOSVD solution to be entirely satisfactory.

3.2.2 Alternating least squares

Nevertheless, if one wishes to obtain a better solution, there are a num-

ber of methods to do so [22]. The simplest extension to HOSVD involves

performing alternating least-squares: i.e. minimize with respect to U , V ,

then W sequentially, and repeating until convergence. This is, in spirit, just

“coordinate-descent” in the factor matrices. Due to the multilinearity of the

model, S⇥1U ⇥2 V ⇥2W , each step of alternating least-squares has a unique,

global minima and itself can be obtained by SVD.

3.2.3 Cross-validation

The model has three hyper-parameters: P , Q, and R. Matrix rank mini-

mization is known to be a difficult, discrete optimization problem [36], and

the tensor case is no different [22]. Nevertheless, with the relatively small

datasets involved in this study, it is not computationally prohibitive to do a

(possibly coarse) grid search over the tuple (P,Q,R).

For datasets of simultaneously recorded neurons, each condition observes

r
j

trials, with j = 1, . . . , C. For datasets of sequentially recorded neurons,

each neuron-condition pair observes r
i,j

trials, with i = 1, . . . , N and j =

1, . . . , C. We can use the sets of trials to perform cross-validation and select

the tensor with the rank that minimizes error on left out trials.

Chapter 3. Denoising Neural Signals with Tensor Decompositions 86

Here, we will proceed with leave-one-out cross-validation (LOOCV). This

choice enables us to consider the effect of increasing total trial count. We can

start with just r
i,j

= 2 for all i, j and note the ability of tensor denoising to

reconstruct the underlying PSTH. We wish to compare this effect to the case

when r
i,j

is larger, giving a sense of how many trials are truly needed in a

given experiment. LOOCV is a procedure that can apply to all choices of

trial count, even though for a particular choice of trial count, LOOCV might

be less preferable to K-fold cross validation for some value of K.

First, let rmax = max({r
i,j

| i = 1, . . . , N, j = 1, . . . , C}). Let us select a

choice of rtotal. We construct a dataset of size N ⇥ C ⇥ T ⇥ rtotal by randomly

resampling each entry of X
n,c,:,r from the actual set of trials recorded in the

experiment. This ensures that all data can be formatted into a tensor, and

ensures that each neuron-condition pair saw the same number of trials. We

sample with replacement. It is natural to consider rtotal � rmax, but this is not

necessary: in the present analysis we consider all possible choices of rtotal,

starting with rtotal = 2.

We start with a chocie of rtotal and a choice of (P,Q,R). We then iter-

ate riter = 1, ..., rtotal. At each iteration, we consider the data tensor X 2
RN⇥C⇥T⇥rtotal�1, and the left-out trial tensor of size X 2 RN⇥C⇥T⇥1, where

riter corresponds to the trial that was removed. Then, for a given iteration,

we average the data tensor across trials, then perform a rank-(P,Q,R) tensor

reconstruction using HOSVD. Finally, we measure the mean-squared error

between the reconstructed tensor and the left out trial. Averaging the errors

across all iterations of riter yields the error associated with the values rtotal, P ,

Q, and R.

Thus, for a given choice of rtotal, we can select the hyperparameter tuple

(P,Q,R) that minimizes cross-validation error.

In practice, one may wish to set one choice of rtotal � rmax, making use of

all trials available. In our analysis, we only iterate through different values

Chapter 3. Denoising Neural Signals with Tensor Decompositions 87

FIGURE 3.2: A: Task design. B: Hand trajectories (left) and
speed profiles (right). Figure from [13].

of rtotal to highlight our main point: a low trial count can recover underly-

ing PSTHs with tensor denoising, while a high trial count is required if one

applies standard trial-averaging.

Finally, one may also wish to iterate the above procedure K times, corre-

sponding to K different choices of trial resampling. This adds to the compu-

tational burden, and we found it unnecessary.

3.2.4 Experimental data

We used the tensor denoising technique on datasets of sequentially recorded

neurons from primary motor cortex (M1). Data were collected from primates

(Macaca mulatta) during a variant of the delayed reach task [13]. The two

datasets (monkey A and B) included N = 80 neurons, C = 24 conditions,

and T = 130.

Chapter 3. Denoising Neural Signals with Tensor Decompositions 88

3.2.5 Simulated data

For comparison, we also constructed simulated data. Simulated data in-

cluded a N⇥C⇥T tensor of PSTHs that were truly low-rank: rank-(5, 15, 15).

Spikes were simulated via a Poisson process, using the PSTH tensor as a rate

parameter for the Poisson model. We simulated up to 100 trials in this way.

We could have chosen the PSTH patterns in any number of ways. For sim-

plicity, we had them match the real neural datasets. To construct the PSTH

tensor, we performed truncated HOSVD on the trial-averaged firing rates of

the real data, and using a core tensor of size 5⇥15⇥15. We reconstructed the

full tensor from its HOSVD, yielding a low-rank version of the real data.

3.2.6 Pre-processing

We considered data spanning 500ms before movement onset until 800ms af-

ter movement onset. Spike trains were filtered with a Gaussian filter with a

10ms standard deviation. Data were then sampled every 10ms, correspond-

ing to a total of T = 130 time points.

Sampling the signals before performing a tensor decomposition is desir-

able. Otherwise our data tensor would be of size 80 ⇥ 24 ⇥ 1300, adding

significantly to the computational cost of the decomposition, which can be

prohibitive when this occurs within a grid search loop. Furthermore, it is

known that tensor rank can be notoriously difficult to estimate when the ten-

sor is highly lopsided [26]—i.e. when the dimensions of the modes differ by

a one or more orders of magnitude.

Filtering with a 10ms Gaussian filter is noteworthy. Filtering is itself a

denoising operation, and one might object that this conflicts with the claims

of our method. However, at least some filtering is necessary when subsam-

pling the time points. When the filter width is approximately the same as

the sampling period, then this procedure can be viewed as a better way to

Chapter 3. Denoising Neural Signals with Tensor Decompositions 89

bin spike counts when compared to the standard histogram spike binning

procedure. Second, filtering and tensor denoising are not in conflict at all:

filtering represents our belief of “local” smoothness, and tensor densoising

will perform global denoising (by finding the best subspace of RT that repre-

sents the set of signals in the data). There is no reason to not include both in

our denoising procedure. Indeed, one could include filter width as an extra

hyperparameter in the grid search. It is now worth noting that 10ms is highly

conservative: in practice a filter width of at minimum 20ms is used (e.g. [7]),

while many studies employ upwards 50 ms.

Finally, we sorted neurons by their variance (across all conditions, times,

and trials), and selected the first 80 neurons, resulting in a 80 ⇥ 24 ⇥ 130

tensor. Subselecting neurons was not entirely necessary, but ensured that

both datasets were represented by tensors of the same size, and slightly sped

up computation.

3.3 Results

We compared six denoising techniques. Tensor denoising is described above.

We also analyzed the performance of matrix denoising on the corresponding

mode-1, mode-2, and mode-3 unfoldings of the data. In the matrix denoising

case, the rank was determined by the same cross-validation procedure across

a brute search of ranks.

We also considered a heuristic technique that searched instead over a

range of threshold values. We determined the multilinear rank by the an-

alyzing the mode-1, mode-2, and mode-3 matrices individually. The rank

(P,Q,R) was determined by how many bases in the corresponding unfold-

ings are needed to reconstruct the data with a specified variance. This vari-

ance, or threshold, was varied and chosen by the same cross-validation pro-

cedure above. In practice, one may wish to use a threshold of 90 or 95 percent

Chapter 3. Denoising Neural Signals with Tensor Decompositions 90

variance accounted for, but this is certainly data-dependent.

neuron 23

neuron 37

neuron 87

neuron 97

neuron 99

FIGURE 3.3: Example PSTHs (left) and the
corresponding denoised PSTHs (right).

We compared these techniques

to the baseline technique of simply

averaging across trials. To assess

performance of each technique, we

specified a value for rtotal, and com-

pared the relative error of the de-

noised data with respect to some

“ground truth” data. In the analysis

of experimental datasets, the ground

truth data was the trial-averaged

tensor when considering all trials

recorded in the experiment. Here,

our rtotal thus corresponds not to the

total number of trials in the raw

data, but to the total number of tri-

als in the resampled data. Again, the

purpose here is to show the efficacy of tensor denoising when rtotal is small,

such as 2 or 3. In the simulated datasets, the ground truth data was the un-

derlying Poisson rate tensor. Figure 3.4 summarizes the results.

In all cases, the tensor denoising technique performed best. Notably, the

heuristic technique for estimating multilinear rank performed just as well,

suggesting that in practice, this heuristic can be used in place of a full grid

search. All three matrix denoising techniques outperformed simple trial-

averaging on the experimental datasets. In particular, denoising the mode-2

and mode-3 unfoldings of the N ⇥ C ⇥ T tensor performed almost as well

as the full tensor denoising approach, but were both generally better than

denoising the mode-1 unfolding. This emphasizes that, while matrix denois-

ing can perform almost just as well as the more computationally prohibitive

Chapter 3. Denoising Neural Signals with Tensor Decompositions 91

FIGURE 3.4: Error on PSTH reconstructions using a limited
number of trials. Each panel corresponds to a different dataset.
Top rows: Experimental datasets. Bottom rows: Simulated
datasets. Simulated datasets were based on the experimental
datasets, but had true multilinear ranks of (30, 15, 10), with
Poisson noise. Each line corresponds to one denoising tech-
nique, described in the main text. The horizontal axes corre-
spond to the value of rtotal, i.e. the total number of trials in
the resampled data. Error bars are the SEM across different it-
erations (each iteration corresponds to a different random re-
sample of the ground truth data). Error in reconstruction was
computed relative to the corresponding ground truth data, as

described in the text.

Chapter 3. Denoising Neural Signals with Tensor Decompositions 92

FIGURE 3.5: Average estimated ranks. Thick lines correspond
to the estimation of (P, Q, R), in blue, green, and red, respec-
tively. Thin lines correspond to the estimates of matrix ranks of

the mode-1, mode-2, and mode-3 unfoldings, respectively.

tensor denoising approach, it is not a priori clear which unfolding to use.

Furthermore, the computational cost of matrix denoising is no different than

the tensor heuristic approach, which we showed worked better than all three

matrix approaches.

The poor performance of the matrix denoising techniques on simulated

date for high trial counts, relative to the performance of simple trial-averaging,

is suggestive that leave one out cross-validation is overestimating the rank of

the data. In practice, when estimating rank from data, one should use a cross-

validation procedure that is compatible with the nature of the data, e.g. the

trial count. Here, we used LOOCV for consistency—we wished to compare

performance across a range of choices for rtotal, including rtotal = 2, 3, where

LOOCV is appropriate.

Finally, we show the average estimated ranks of the (full) tensor denois-

ing approach and the three matrix approaches (Figure 3.5).

Chapter 3. Denoising Neural Signals with Tensor Decompositions 93

3.4 Tensor denoising on spike train data

In the previous sections, we minimized mean-squared error over the tuple

(P,Q,R) via a grid search, implicitly assuming a Gaussian noise model. Ide-

ally, we wish to use a noise model more compatible with neural data, such

as Poisson. Extending to the Poisson case is not a trivial matter of just min-

imizing the negative log-likelihood, since this requires data in Z+, and in

the above preprocessing we were smoothing the spike trains with Gaussian

kernels. Thus, to extend to a Poisson noise model we must include a local

smoothness term in the cost function, meaning the HOSVD is no longer a

suitable minimization algorithm. In this section, we address the Poisson case

by turning to the alternating direction method of multipliers (ADMM) [5] as

a method for minimizing the cost function. In this approach, we will not

minimize over the tuple (P,Q,R), but instead apply a nuclear norm penalty

to each of the three unfoldings. In the tensor literature, this is known as the

sum of nuclear norms [35]. Since the nuclear norm is the tightest convex ap-

proximation of matrix rank, it is natural to suppose that the sum of nuclear

norms (of each of the tensor unfoldings) is a good approximation of tensor

multilinear rank.

Here, we outline an approach to solve the low multilinear rank denois-

ing problem with Poisson noise. We omit results, since this method achieved

similar results to the simpler method presented above. We present the method

nevertheless, as it may be applicable to datasets where firing rates are much

lower. We start with spike count data: Y 2 ZN⇥T⇥C⇥R

+ , with N neurons,

T time bins, C conditions, and R trials. The rate parameters are denoted

X 2 RN⇥T⇥C with bias terms b 2 RN . We assume that entries of Y are Pois-

son distributed with parameter f(X , b). We consider the element-wise firing

rate function f(X
n,t,c

, b
n

) := s log(1 + exp(

Xn,c,t+bn

s

)). The parameter s scales

the smoothness of the nonlinearity.

Chapter 3. Denoising Neural Signals with Tensor Decompositions 94

3.4.1 Tensor rank minimization via ADMM

We want an X of low multilinear rank. We use the sum of nuclear norms as

a convex approximation of multilinear rank. Thus, we have

minimize

X ,b

�
X

n,t,c,r

log p(Y|f(X , b)) + �
X

n,t,c

kX
t+1 � X

t

k2
F

+ �
X

k

kX(k)k⇤,

(3.3)

where k 2 {1, 2, 3}, corresponding to the different modes of X . The nuclear

norm kMk⇤ is the sum of singular values for a matrix M . The second term

ensures smooth signals.

Taking the ADMM approach, we obtain,

minimize
X ,b,Z

�
X

n,t,c,r

log p(Y|f(X , b)) + �
X

n,t,c

kX
t+1 � X

t

k2
F

+ �
X

k

kZ(k)k⇤

subject to X = Z,

(3.4)

with Z 2 RN⇥T⇥C .

The augmented Lagrangian is

L(X , b, {Z(k)}3
k=1, {A(k)}3

k=1) = �
X

n,t,c,r

log p(Y|f(X , b)) + �
X

n,t,c

kX
t+1 � X

t

k2
F

+�
X

k

kZ(k)k⇤ + ⌘
X

k

hA(k),X(k) � Z(k)i+
X

k

⌘

2

kX(k) � Z(k)k2
F

with Lagrange multiplier A 2 RN⇥T⇥C . The ADMM algorithm is,

{X (t+1), b(t+1)} = argmin
X ,b

L(X (t), b(t),Z(t),A(t)
),

Z(t+1)
(k) = argmin

Z(k)

L(X (t+1), b(t+1),Z(k),A(t)
) (k = 1, 2, 3),

A(t+1)
(k) = A(t)

(k) + (X(t+1)
(k) � Z(t+1)

(k)) (k = 1, 2, 3).

(3.5)

We update each of the 3 unfoldings of Z and A sequentially.

Chapter 3. Denoising Neural Signals with Tensor Decompositions 95

X step: This can be solved using Newton’s method. The Hessian is diago-

nal without the smoothness term. With the smoothness term it is tridiagonal,

so is still easily inverted.

Z step:

Z(t+1)
(k) = prox1/⌘(X

(t+1)
(k) +A(t)

(k)), (3.6)

where

prox
✓

(M) = Umax(S� ✓, 0)V> (3.7)

where M = USV> is the SVD of M.

This approach is outlined in [35], except we extend it with Poisson noise

and the smoothness term. These extensions are trivial since they contribute

to the X -step. As pointed out in several papers, including [35], the sum of nu-

clear norms is not necessarily the best convex approximation of multilinear

rank. Further, note that structure on X(2) is imposed both locally (smooth-

ness term) and globally (low rank term). Thus, there might be a concern with

respect to oversmoothing in time. However, the local smoothness term is

necessary when working with a Poisson noise model for spike train data.

3.5 Applications of the ADMM approach

As stated above, when applied to spike count M1 data the ADMM approach

achieved similar results to HOSVD on the filtered M1 data. Gaussian distri-

butions are limits of Poisson distributions as the number of events increases.

So, for datasets with high spike rates, the benefits of a Poisson noise model

are expected to be marginal. The M1 datasets had average firing rates of 22.7

and 25.9 spikes per second for monkeys A and B, respectively, corresponding

to over 0.2 spikes per bin on average. Empirically, then, this level of activity

is at least an upper bound for which the ADMM approach is likely to yield

Chapter 3. Denoising Neural Signals with Tensor Decompositions 96

marginal benefits. Many neural datasets, however, exhibit much sparser fir-

ing rate patterns and could benefit from the ADMM approach where the

Poisson noise model is particularly appropriate.

Additionally, note that in order for the HOSVD approach to be applica-

ble, the filtered spike trains from each trial must exhibit enough overlap so

that the method can exploit any low-rank structure in RT (above, we chose a

conservative 10 ms Guassian filter). For datasets with sparse firing patterns,

the requisite filter width may be too large for comfort, and we may wish to

have more explicit control over modeling temporal structure. The ADMM

approach offers this. In Eq. 3.3 our cost term penalizes the squared differ-

ence between nearby time points, corresponding to the assumption that X
is modeled by a Gaussian process. Yet more sophisticated methods can be

employed, such as modeling the temporal smoothness as a linear dynamical

system [25]. In such a case, the X -step would be more sophisticated, but one

could easily rely on gradient descent methods. The Z-step would remain

unchanged.

A final potential benefit of the ADMM approach is the choice of nuclear

norm in the cost function 3.3, which serves as a convex relaxation of matrix

rank. Algorithmically, this allows for a fast and straightforward Z-step via

the proximal operator. For the practictioner, the benefit is that the nuclear

norm alleviates the need to optimize over rank, replacing a costly hyperpa-

rameter grid search with a single choice of regularization parameter �. We

found that there was essentially no difference in choosing a single � versus

three separate �1,�2,�3 for each of the three unfoldings. A single � still cor-

rectly identified low-rank structure across the three unfoldings, even when

the ranks of these unfoldings differed.

97

Chapter 4

Mapping Motor Cortex to Muscles

with Dynamic Transformations

4.1 Introduction

The analysis of M1 data in Chapter 2 revealed that M1 activity contains

more “structure” than the corresponding EMG that M1 ultimately drives.

Although not emphasized in previous chapters it is indeed the case that the

dimensionality of M1 is higher than the dimensionality of EMG (across neu-

rons and muscles, respectively). The preferred-mode analysis of Chapter 2

simply took this observation a step further, indicating that the extra “struc-

ture” in M1 is consistent with an autonomous linear dynamical system. This

result provides a simple explanation for differences in dimensionality: in or-

der for M1 to produce muscle commands it requires more dimensions of neu-

ral activity than its corresponding outputs, due to the constraints imposed by

autonomous linear dynamical systems.

Nevertheless, the preferred mode analysis never related M1 and EMG

activity directly. The richness of the dataset—M1 recorded alongside EMG—

allows for analyses that relates the two signals, which is the focus of this

chapter. By relating the two sets of signals, we can get a further sense of just

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
98

how anatomically distributed the dynamics of the sensory-to-behavior trans-

formation are. In particular, we ask: do the intervening structures between

M1 and muscles themselves play a role in the dynamic transformation? Or,

is the relationship between M1 and muscles approximately static, suggesting

that the bulk of dynamics occur in M1?

Anatomically, both situations are defensible. Motor cortex sends direct

projections to spinal motorneurons. It is thus conceivable that the transfor-

mation from neural to muscle activity could be almost purely static. How-

ever, many cortico-spinal projections synapse on spinal interneurons, and it

seems likely that the local circuitry of the spinal cord could contribute sig-

nificant dynamics. In the same vein, many motor cortex neurons send pro-

jections to brainstem nuclei that may have their own internal dynamics, and

that in turn project to the spinal cord.

4.2 Subspace identification

In what follows, we consider the linear system

x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)

(4.1)

with u 2 Rm, x 2 Rn, y 2 Rp, and the system matrices A, B, C, D with

appropriate dimensions. In this case, we let u be the vector of motor cortex

activations (inputs) and y be the vector of EMG responses (outputs). Since

u and y are both known (recorded), the system identification problem is as

follows: For known sequences u(t) and y(t), determine the system matrices,

as well as the state sequence x(t).

To test the significance of dynamics in the M1-to-EMG transformation, we

compare two models. The dynamic model sets D = 0, while the static model

sets A,B, and C to 0.

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
99

There are numerous ways to fit equation 4.1, indicated by the extensive

literature on the problem (known as linear system identification) [37]. Even

recently, it was shown that simple gradient descent efficiently converges to

a solution [16], despite the fact that the problem is nonconvex and the state

space model is overparameterized. Here, we focus on a simple algebraic

approach known as subspace identification.

We proceed by deriving an algebraic relation between the input and out-

put sequence. First, it is easy to derive a form for the state sequence:

x(t) = Atx(0) +
t�1X

i=0

At�i�1Bu(i). (4.2)

We can consider a batch of data points, for t = 0 to t = s� 1:

2

66666666664

y(0)

y(1)

y(2)

...

y(s� 1)

3

77777777775

=

2

66666666664

C

CA

CA2

...

CAs�1

3

77777777775

| {z }
Os

x(0) +

2

66666666664

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D 0

...

CAs�2B CAs�3B · · · CB D

3

77777777775

| {z }
Ts

2

66666666664

u(0)

u(1)

u(2)

...

u(s� 1)

3

77777777775

This data equation can be easily derived from (4.2) and (4.1). Since the system

is time-invariant, then the above equation applies for a batch of data from

t = 1 to t = s, from t = 2 to t = s + 1, and so forth. Thus we can consider

multiple data batches at once using a block Hankel matrix for y,

Y0,s,N =

2

66666664

y(0) y(1) · · · y(N � 1)

y(1) y(2) · · · y(N)

...
...

y(s� 1) y(s) · · · y(N + s� 2)

3

77777775

,

with U0,s,N defined similarly. The subscript 0 indicates the top-left entry, s

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
100

is the number of block-rows, and N is the number of columns. We can now

compactly write our data equation as

Y0,s,N = O
s

X0,N + T
s

U0,s,N (4.3)

where

X0,N =


x(0) x(1) · · · x(N � 1)

�

In practice, s is a user parameter that is chosen to be larger than some

guess for n, which is at this point unknown. And N is chosen to be as large

as possible such that N+s�2 is the last recorded data point. Thus the Hankel

matrices Y0,s,N and U0,s,N have many more columns than rows.

The idea of subspace identification is to isolate the term O
s

X0,N in Eq. (4.3),

from which O
s

can be inferred from the column space (the “subspace”), and

subsequently we can identify the matrices A and C. To do so, we must re-

move the influence of input in Eq. (4.3). This can be accomplished by multi-

plying on the right by ⇧

?
U0,s,N

, a projection matrix that defines the orthogonal

projection onto the column space of U0,s,N . Since U0,s,N⇧
?
U0,s,N

= 0, we have

Y0,s,N⇧
?
U0,s,N

= O
s

X0,N⇧
?
U0,s,N

.

And finally, under general conditions, it can be shown that

range(Y0,s,N⇧
?
U0,s,N

) = range(O
s

)

(see [37] for a proof). We thus can determine O
s

by the column space of

Y0,s,N⇧
?
U0,s,N

by computing its SVD. The number of significant singular values

reveal the order of the system, n (i.e. the dimension of the state variable). The

corresponding first n left singular vectors, U
n

, then form our estimate for O
s

.

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
101

From here, C = U
n

(1 : p, :), and A is the unique solution to

U
n

(1 : (s� 1)p, :)A = U
n

(p+ 1 : sp, :).

Once A and C are known, the matrices B and D and the initial state x(0) must

be found. There are numerous methods for finding these, and they are all

equivalent in the noise-free case, but perhaps the most principled approach

is to notice the system is linear in the parameters B, D, and x(0) once A and

C are known, thus can be solved via least squares. The formulation of the

least squares problem is somewhat complicated and can be found in [37].

In practice, the orthogonal projection is computed by a QR decomposi-

tion, which is computationally efficient. This particular subspace method is

known as MOESP, or “Multivariable Output-Error State-sPace.” The MOESP

technique yields unbiased estimates of system parameters with white obser-

vation noise (i.e. a noise sequence added to y(t)). For colored output noise, or

white innovation noise (i.e. a noise sequence added to x(t)), the method must

be modified, which has led to the PO-MOESP technique. In PO-MOESP, we

construct four block Hankel matrices: U0,s,N , U
s,s,N

, Y0,s,N , and Y
s,s,N

. Here,

the oblique projection of Y
s,s,N

onto the row space of

2

64
U0,s,N

Y0,s,N

3

75 along the row

space of U
s,s,N

removes the influence of both the input and noise (this pro-

jection is also calculated by a QR decomposition). The theory behind this is

rather involved, and proofs that show this method yields unbiased estimates

of system parameters can be found in [37].

The method must also be modified to handle multiple conditions. We can-

not simply concatenate different conditions across time, as this would intro-

duce discontinuities in the signals. One option is to identify each condition

separately and then average. However, subspace identification techniques

perform very poorly with short time signals thus it is better to consider all

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
102

y(t)
y(t+ 1)

y(t+ 2)

FIGURE 4.1: Schematic of subspace identification. Here, p = 1
(single output), s = 3 and u = 0. Each point is a vector in
the block Hankel matrix Y0,s,N . The 2-dimenaional subspace
implies that Y0,s,N is rank 2, thus n = 2. The subspace itself
is sufficient to determine parameters A and C. Different 2-
dimensional subspaces would indicate different 2nd order sys-

tems. Figure replicated from [37]

data at once. We can simply concatenate the Hankel matrices from different

conditions and proceed as usual:

Y0,s,N =


Y

(1)
0,s,N | Y

(2)
0,s,N | · · · | Y

(c)
0,s,N

�
,

where Y
(i)
0,s,N is the Hankel matrix from the ith condition. We must also iden-

tify the initial states for each separate condition, adding to the number of free

parameters of the model, and this can be done via the least squares method

mentioned above.

4.3 Other system identification methods

As outlined in Chapter 1, the motivation for using a state-space representa-

tion of linear dynamical system is that it naturally captures shared-pole trans-

formations between multidimensional inputs and multidimensional outputs.

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
103

In BMI applications this constraint is probably not necessary—an impulse re-

sponse model, ARX model, or their nonlinear versions would be preferable.

But in terms of scientific interpretation we wish to understand M1 as a popu-

lation and its relationship with muscles as a “population.” Or, in engineering

parlance, we wish to model a MIMO (multi-input multi-output) dynamical

system and state-space models do this naturally.

Intuitively, it is tempting to further suggest that state-space models are

preferable since x gives us a proxy for actual neural activity (e.g. spinal)

from “hidden” neurons. This interpretation should be cautioned. First, any

change of basis of Rn corresponds to an equivalent dynamical system (up

to input-output behavior). Thus, the components of x do not admit special

interpretation. Second, impulse-response and ARX models contain (mostly)

the same information as state-space models, and one can fit an impulse re-

sponse and then realize a corresponding state-space description. Thus, there

is nothing notable about the introduction of latent variables x. They are just

the consequence of this particular parameterization of the dynamical system

D.

With that said, there is an interpretational advantage of state-space mod-

els that we do not exploit, but could be grounds for future work on the re-

lationship between M1 and EMG. Ideally, we wish not just to fit EMG from

M1 data, but to understand this transformation. In particular, the dynam-

ics are determined by the poles of transfer function H(z) (the eigenvalues of

A) but different input-output pairs u
i

, y
j

will exhibit distinct zeros (the ze-

ros of the numerator of H(z)), leading to distinct pole-zero cancellations or

near-cancellations. Meaning, one muscle group may wish to preferentially

utilize some modes over others (e.g. different frequency/phase preference),

and these modes may be driven by a distinct set of inputs. A state-space

formalism makes this relationship a bit more interpretable in the following

way. We have a state-space model fit from data. Next, we parameterize A in

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
104

modal form, e.g.:

Amodal =

2

66666666664

�1 !1 0 0 0

�!1 �1 0 0 0

0 0 �2 !2 0

0 0 �!2 �2 0

0 0 0 0 �3

3

77777777775

(4.4)

where the eigenvalues of A (in this example) are �1 ± i!1, �2 ± i!2 and �3 2 R.

Modal form is a representation of A like the diagonalization of A, but where

conjugate-pairs are expanded into 2 ⇥ 2 blocks (This can also be defined for

non-diagonalizable A in the obvious way via comparison to the Jordan nor-

mal form). The modal form is one of several parameterizations that are used

in making the system more interpretable, easier to train, etc. (the companion

form being the other main example).

We can put the system in modal form via a transformation of the state

variable x̃ = Px for a specific nonsingular P . The corresponding matrices

change via A 7! PAP�1, B 7! PB and C 7! CP�1.

The resulting system admits direct interpretation, since the state variable

x̂ has interpretable components. The columns of B specify the coefficients for

how much neuron i drives or “cares about” each of the modes of the system.

Since the data u come with meaningful labels (e.g. the location of the neuron

on the array, the depth of the electrode, the profile of its spikes), B might

have structure that relates to the labels in some way. The rows of C spec-

ify the coefficients for how much muscle j is driven by each of the modes of

the system. Since each output component is meaningfully labeled (trapezius,

deltoid, etc.), the matrix C is interpretable in the context of those labels. A

full understanding of the M1-to-EMG transformation would involve the un-

derstanding of how a particular subset of neurons drives a particular set of

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
105

dynamical modes, which drive a particular set of muscles.

4.4 Comparing dynamic with static

We wish to compare the efficacy of dynamic vs. static maps in the M1-to-

EMG transformation. As emphasized in other chapters, one of the defining

features of M1 as it relates to EMG is that it contains more structure—i.e. M1

is higher dimensional than EMG and the extra dimensions are not just noise.

This makes model comparison fundamentally difficult: fitting EMG is easy,

regardless of the model. This is because any model has a superset of patterns

in M1 to draw upon—all of which are “EMG-like.” Thus, both the static and

dynamic models are already overdetermined, given the structure of inputs u.

In recent work, Kaufman et al. [19] decomposed M1 into mutually or-

thogonal subspaces—an output-null space that does not map to muscles and

an output-potent spaces that does. More specifically, anything not in the

output-null subspace is mapped to muscles, and its orthogonal complement,

the output-potent subspace, defines the spaces where all variation is mapped

to muscle variation. All other M1 states are a combination of vectors from

the two. We could adopt their formalism and use data only from the output-

potent subspace. This would be somewhat circular since the spaces them-

selves were defined via regression.

We therefore adopted the following approach. We preprocessed the in-

puts by using the top m principal components of neural activity and varied

m as a measure of model complexity. Increasing m meant the system could

draw from a larger set of input patterns. Since the inputs were principal com-

ponents, each input was mutually orthogonal. Preprocessing inputs in this

fashion is in any case standard procedure in system identification [37]. With

m sufficiently large, both models should perform equally well. For smaller

m, one might perform better than the other.

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
106

FIGURE 4.2: Train set (left) and test set (right).

Thus, for a given choice of m, does the static or dynamic model perform

better? We fit the dynamic model via subspace identification outlined above

and the static model via regularized regression.

Naturally, since both models are qualitatively different and contain dif-

ferent numbers of parameters, we compare them by assessing performance

on test data. Data were trained on curved reaches. Test data included all

the straight reaches (Figure X). Data was too limited to perform model se-

lection over hyperparameters. We therefore confirmed that results held over

different choices of L2 regularization constant in the static model. Further,

we opted for a reasonable time shift of the inputs u to account for the trans-

mission delay between M1 and EMG, though this value can be optimized.

We did not apply a time shift to the inputs in the dynamical model.

4.5 Results

In monkey J we found that the dynamic model performed better than the

static model (0.045 vs 0.07 mean-squared error on the test set). In monkey

N, both models performed similarly well. The latter result may be due to

the EMG recordings of monkey N, which tended to be less oscillatory and

exhibited simple temporal structure. This could be a simple data limitation—

a different sampling of muscle sites may have revealed richer signals—as

opposed to particular behavioral patterns of that monkey.

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
107

FIGURE 4.3: Example, not necessarily representative fit traces.
Three trapezius muscles (columns 1, 2, 3) and three reach con-
ditions (rows 1, 2, 3), the (processed) EMG data (black), predic-
tion from the dynamic model (blue), and prediction from the
static model (red). The static model traces sometimes matched
the data reasonably well (e.g. in other muscle-condition exam-
ples not shown above), but were at times of the wrong phase
(middle row), poorly accentuated (middle column), or absent

of the main oscillatory frequency (four corners).

The dynamic models were of order n = 6, which roughly models a bot-

tleneck between the higher-dimensional inputs and outputs. The modes had

frequencies of 4 Hz, 2.3 Hz, and 0.6 Hz with corresponding time constants

of 0.28, 0.11, and 0.14, respectively. The 0.6 Hz mode acts primarily as an

exponential filter of the inputs, while the other two modes provided sup-

port for muscle oscillations not directly phase-aligned to the corresponding

oscillations present in the inputs.

We emphasize: the frequency content of EMG signals is roughly the same

as the frequency content of the neural signals. There is thus no reason a

priori that a dynamic transformation is required. Why did the dynamic model

perform better? The likely explanation is that the models had to generate

outputs consistently across different conditions. A static model fit to each

condition separately performed well, similar to the dynamic model, but each

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
108

corresponding B
c

was different. When we insist that a single B is used for all

conditions, it presumably sacrifices fit quality for some subsets of conditions.

In other words, even though the frequency content of M1 data for condition

c is sufficient to fit EMG data for condition c via B
c

, the specified weights

do not generalize across conditions. Alternatively, the dynamic model did

not exhibit this problem. And this is the key result: the dynamical model

did not outperform the static model because it generated frequency content

not present in the inputs; it outperformed because a single set of parameters

A,B,C worked across all conditions. From a model-fitting perspective, we

might say the dynamic model was picking up the slack in some conditions

vs others. Scientifically, we would argue that this is evidence of nontrivial

dynamics in the M1-to-EMG transformation. This preliminary result was not

sufficiently verified due to limited data, which we explain below.

4.6 Future work

EMG data were limited and were matched to a limited set of neural record-

ings. The array recordings utilized in Chapter 2 had no corresponding mus-

cle datasets; only the smaller single-electrode datasets were recorded along-

side muscles. With limited data, a clear distinction between dynamic and

static transformations was difficult. Results were shown in only one mon-

key. Thus, the above results are not conclusive.

A simple continuation of this work might involve the following. We could

fit data using the dynamic, static, and full (A,B,C,D nonzero) model, noting

particular hyperparameter regimes where the full model relies more on the

feedthrough term D vs relying more on the dynamic pathway via A,B,C.

Further, we could opt for much more flexible models—e.g. nonlinear static

and dynamic models—and rely on a common gradient descent method for

fitting (as opposed to subspace identification, which only works for linear

Chapter 4. Mapping Motor Cortex to Muscles with Dynamic

Transformations
109

models). Clearly, the transformation between M1 and EMG is nonlinear, but

for brisk movements analyzed around a cross-condition mean a linear ap-

proximation is likely adequate and comes with the benefit of significantly

more interpretable results. Further emphasis could be placed on different

regularization techniques. More promising, however, would be a full inter-

pretable model that leads to true understanding of the M1-to-EMG trans-

formation. The (known) geometry of muscles and their relationships to each

other, as specified by a particular submanifold of Rp—the EMG configuration

space—should be related to specific aspects of the dynamic model. Perhaps

biomechanics impose that the deltoid and trapezius must coordinate in such

a fashion that they receive the same control signal but at a specified phase

offset. A dynamic model could potentially reveal such relationships and elu-

cidate the role of spinal circuits in the motor control system.

110

Chapter 5

A Network Model for Motor Cortex

Here, we will continue to explore M1 activity in terms of an autonomous

dynamical system, but through the use of nonlinear models. We focus on

a question similar to the one posed in Chapter 2: We wish to find analyses

that can identify whether signals are generated by a dynamical system or

are the output of one (i.e. are input-driven). We will train general nonlinear

dynamical systems—recurrent neural networks (RNNs)—to produce EMG

signals from a novel “cycling” task (described below). We wish to find anal-

yses that can correctly identify the RNN state trajectories as coming from an

autonomous dynamical system, while classifying the EMG signals as non-

dynamical. Applying such an analysis to M1 data could then validate the

hypotheses from previous chapters, but now within the context of nonlinear

systems.

Our approach is to focus on geometric properties of state trajectory curves

that are informative of the underlying vector fields for which the trajectories

are solutions. These trajectory properties include basic features from differ-

ential geometry, such as curvature and torsion, as well as “tangling,” a global

analog of curvature. The argument is that simple—in particular, smooth—

vector fields are naturally and easily realizable by dynamical systems and

necessarily produce trajectories of low curvature and low tangling. Trajecto-

ries with high curvature and high tangling could also be realized as solutions

to a vector field, but that vector field would be overly complex and likely not

Chapter 5. A Network Model for Motor Cortex 111

robust to noise. In this case a more plausible explanation is that the trajec-

tores are not solutions to a dynamical system but are driven by external or

upstream inputs. Indeed, empirically we find that M1 trajectories exhibit low

tangling/curvature while EMG trajectories exhibit high tangling/curvature.

Thus, we can already see that this story parallels that of Chatper 2 (compare

Figure 4 c,d to Figure 6 c).

Finding a precise mathematical relationship between vector field “com-

plexity,” the corresponding geometric properties of samples of trajectories

from that vector field, and M1 and EMG data, is beyond the scope of this

chapter, in part due to the inherent difficulty of this problem. We opt for a

slightly more empirical approach. We train a large family of RNNs param-

eterized by various regularization hyperparameters and instances of weight

initializations. For each RNN, we calculate the aforementioned summary

features of the state trajectories without strong assumptions of which will

match those of M1, if any. We find that the tangling of RNN state trajectories

very robustly match those of M1 but not EMG. Other properties like curva-

ture and torsion are meaningfully related to regularization hyperparameters

but not as robustly matched to M1.

RNNs are a reasonable proxy for biologically plausible parameterizations

of vector fields of Rn since they are written as linear terms (corresponding

to inputs from other neurons), followed by a bias vector input (correspond-

ing to thresholds for each neuron), followed by an element-wise nonlinearity

(corresponding to the activation nonlinearity of neurons). By constraining

this family of vector fields further to those that produce EMG data as outputs,

we obtain a family of RNNs that could reasonably model the putative vector

fields underlying the M1 data. By sweeping a range of regularization hy-

perparameters, we explore a space of vector fields across a range of different

geometric properties that nevertheless all produce EMG as output. It is thus

nontrivial that all such RNNs exhibited low tangling, quantitatively similar

Chapter 5. A Network Model for Motor Cortex 112

FIGURE 5.1: Cycling task. Visual cues indicate forward (left) or
backward (right) pedaling.

to the M1 data. Ultimately, this supports the claim that M1 data is reasonably

modeled as a dynamical system while EMG is modeled (and known to be)

an output of one. That we arrived at this conclusion with qualitatively differ-

ent datasets, through qualitatively different considerations—dimensionality

(Chapter 2) and geometry (here)—is compelling.

5.0.1 Data

In this study, two rhesus macaques (C and D) were trained to navigate a

virtual environment by grasping and cycling a hand pedal. Monkeys ped-

aled forward or backward to move forward in the environment. Visual cues

indicated whether forward or backward pedaling corresponded to forward

movement. The monkeys cycled for 7 revolutions before collecting a reward.

Other sets of revolutions were part of the dataset, but we analyzed the 7-

revolution data only. In addition to forward and backward pedaling, the

cycling movements either started at the top or bottom of the hand pedal ro-

tation, amounting to C = 4 conditions. The data consists of single neuron

recordings from motor cortex and dorsal premotor cortex (109/103 neurons

for monkey C/D). EMG recordings (29/35 recordings) were obtained from

muscles in the arm, shoulder, and chest.

Chapter 5. A Network Model for Motor Cortex 113

FIGURE 5.2: Example kinematic (top) and EMG (bottom) data.

FIGURE 5.3: Example neural data.

Chapter 5. A Network Model for Motor Cortex 114

5.0.2 Model

We use the nonlinear system,

x(t+ 1, c) = f(Ax(t, c) + Bu(t, c) + w(t, c)) (5.1)

ŷ(t, c) = Cx(t, c) (5.2)

where w ⇠ N(0, �
w

), f := tanh, and x 2 Rn. The conditions c 2 {1, 2, 3, 4}
correspond to “forward, top-start,” “forward, bottom-start,” “backward, top-

start,” and “backward, bottom-start,” respectively. We set y(t, c) to be the

recorded muscle activity. We model the input u 2 R2 as u(t, c) =
⇥
1 0

⇤> for

c = 1, 2 and u(t, c) =

⇥
0 1

⇤> for c = 3, 4 (for all t in both cases). It is worth

noting that the two different inputs correspond to two different vector fields

of Rn. Thus, the RNN trajectories taken across all conditions do not come

from a single autonomous dynamical system but rather two.

We fit the parameters, A, B, C, and x(0, c) by minimizing the loss function,

L =

X

t,c


1

2

kŷ(t, c)� y(t, c)k22
�
+

�
A

2

kAk2
F

+

�
C

2

kCk2
F

+

X

t,c


�
x

2

kx(t, c)k22
�

(5.3)

We analyze the effect of regularization on the RNN. Within a broad range of

different regularized RNNs, we found similar fit performance with signifi-

cantly different geometric properties of the state variable trajectories.

Penalizing the magnitude of the entries of A simplifies the linearized dy-

namics of the system by allowing only a few modes that do not strongly

decay. Penalizing the magnitude of the entries of C ensures that y(t, c) is not

dependent on weakly active neurons. Penalizing the neural activity x(t, c,)

ensures that neurons do not saturate the tanh nonlinearity. Despite these

descriptions, the full effects of these regularization terms are not entirely un-

derstood.

Chapter 5. A Network Model for Motor Cortex 115

The noise variance �
w

is also considered and varied as a hyperparameter

alongside each �
i

. Noise injection is a standard regularization technique in

the RNN literature.

There are a number of other standard and effective regularization tech-

niques in the RNN literature that we omit since their scientific interpretation

is not clear. These include dropout (on the output weights C) [34] and layer

normalization [4].

The data y(t, c) contains drift across the 7-cycle duration. We did not wish

to overfit to this drift. Knowing that the brain is capable of cycling indefi-

nitely (given an infinite supply of juice rewards), we wished to only study

RNNs capable of producing not only the data y(t, c), but also muscle activ-

ity of arbitrary cycling duration. We thus created 8 new conditions derived

from the data. We created two canonical cycles. The first was the average

of the middle 5 cycles. The second was the average of 4 cycles, half a phase

offset from the middle 5. These canonical cycles were then concatenated for

a total of 10 cycles each. A Butterworth filter was then applied to smooth the

discontinuities from concatenation. The augmented data contained a total of

12 conditions (4 real, and 8 from the two canonical cycles).

5.0.3 Geometric analyses

Curves are often used as an elementary case study for differential geometry

before one dives into the richer world of surfaces and its generalizations.

The differential geometry of curves are easy to handle and well-understood.

They key feature is curvature, which measures how much a curve deviates

from being a straight line. Curvature is often defined as the inverse of the

radius of the best-fit circle at a point on a curve. Generalized curvatures are

also considered: the torsion of a curve measures how much a curve deviates

locally from a plane. A curve in Rn with constant curvature and zero torsion

Chapter 5. A Network Model for Motor Cortex 116

is a circle confined to a 2-dimensional subspace. Nonzero torsion indicates

the curve must explore beyond a 2-dimensional subspace of Rn. We use these

geometric features to analyze RNN, M1, and EMG data.

Curvature

A curve is a vector-valued function:

� : I ! Rn (5.4)

where I is a nonempty interval of R, e.g. I = [0, T].

The Frenet frame is a set of orthonormal vectors, denoted e1(t), . . . , en(t).

The first vector e1 is tangent to the curve. The first and second define the

plane of curvature: the plane in which the best-fit circle—the osculating cir-

cle—resides. The third vector defines the direction of torsion, etc.

To construct the Frenet frame, we apply Gram-Schmidt orthogonalization

to the derivatives of �(t): �0
(t), �00

(t), . . . , �(n)
(t).

Explicitly, we can write this as:

e1(t) =
�0
(t)

k�0
(t)k (5.5)

e
i

(t) =
e
i

(t)

ke
i

(t)k (5.6)

where

e
i

(t) = �(i)
(t)�

i�1X

j=1

�
�(i)

(t)>e
j

(t)
�
e
j

(t) (5.7)

From here, we can calculate the generalized curvatures of �, denoted

�
i

(t):

�
i

(t) =
e0
i

(t)>e
i+1(t)

k�0
(t)k (5.8)

Chapter 5. A Network Model for Motor Cortex 117

FIGURE 5.4: To determine the curvature of a curve (green) in
Rn from noisy samples (blue dots) at a point, we select adjacent
points and fit a polynomial approximation (red). From here,
the Frenet frame (black) and osculating circle (blue) can be cal-

culated explicitly.

Where �1(t) is the curvature of � and �2(t) is the torsion of �.

How do we calculate e
i

and �
i

from discrete, possibly noisy samples of �?

Numerically, we can calculate the Frenet frame along with the generalized

curvatures by locally approximating the curve �(t) by an order d polynomial

at time t. Using N > d data points nearby and including the data point at

time t. From here, the values of �(t): �0
(t), �00

(t), . . . , �(n)
(t) can be calculated

symbolically using the derivatives of the polynomial (Figure 5.4).

To calculate e0
i

(t), we can make use of the identities:

d

dt

✓
f(t)

kf(t)k
◆

=

f 0
(t)p

f(t)>f(t)
+

�
f 0
(t)>f(t)

�
f(t)

q
(f(t)>f(t))3

(5.9)

d

dt

��
f(t)>g(t)

�
g(t)

�
=

�
f 0
(t)>g(t) + f(t)>g0(t)

�
g(t) +

�
f(t)>g(t)

�
g0(t)

(5.10)

And simply use our polynomial estimates of �0
(t), �00

(t), That is, in

Chapter 5. A Network Model for Motor Cortex 118

the above calculations of e
i

(t) and �
i

(t), we simply need our polynomial es-

timates of �(t) and its derivatives, leading to a simple numerical implemen-

tation of generalized curvature calculation.

Clearly, we can only estimate e
i

(t) and �
i

(t) up to the order of the poly-

nomial d. There is an apparent trade-off between our need for estimating

higher-order curvatures and the quality of those fits: a d too large would

overfit noisy data and vastly overestimate curvature.

Note that the above procedure reproduces the more familiar formula for

curvature in n dimensions:

�1(t) = (t) =

s
(�0>�0

)(�00>�00
)� (�0>�00

)

2

(�0>�0
)

3
(5.11)

Tangling

We observe, soon, that EMG trajectories exhibit higher curvature than M1

trajectories. A plausible explanation is as follows. M1 must generate pat-

terns that drive muscles, thus M1 activity is determined by two constraints.

The first is that the patterns must resemble muscle activity such that they

can be transformed to EMG via a downstream function. The second is that

the patterns must be those that can be generated by neural circuit dynamics.

A natural assumption is that the underlying vector field must be relatively

smooth and thus produce trajectories of relatively low curvature. Testing this

idea directly is impossible with current data given that we do not have access

to M1’s vector field, only to four trajectories, potentially all generated from a

single vector field (or two, corresponding to the forward and backward ex-

perimental conditions). We thus need other tools to get the most out of the

available data. This is the first motivation for the following analysis.

The second motivation is to note that curvature is local, and that this is

necessary but not sufficient for trajectories arising from a smooth dynamical

system. Curvature captures smoothness of an underlying vector field for a

Chapter 5. A Network Model for Motor Cortex 119

given trajectory (along the direction of the trajectory), but only at a given

point. A figure ‘8’ is locally smooth with low curvature everywhere locally,

but globally inconsistent with an underlying, 2-dimensional vector field due

to the intersection. We thus generalize curvature to not just compare nearby

time points but to compare a given time point to all other time points in the

set of trajectories. This naturally leads to the definition of tangling, denoted

as Q,

q(t, i) =
kẋ(t)� ẋ(i)k22

kx(t)� x(i)k22 + ↵ var(x(t))
(5.12)

Q(t) = max

i

(q(t, i)) (5.13)

where ẋ(t) is the is finite difference, ẋ(t) = (x(t + 1) � x(t))/�t, and the

trajectory x(t) 2 Rn is taken over all time points of a given condition c, or

as the concatenation of all conditions. The constant ↵ scales the degree to

which we weight nearby points versus distant points, and also ensures the

denominator does not go to 0. We set ↵ = 0.1. Intuitively, tangling at time

t is large if there exists another time point with similar state and dissimilar

derivative (or difference).

It is clear that tangling, not curvature, is the right metric for testing the

hypothesis above—whether a trajectory comes from a relatively smooth vec-

tor field. Both metrics reveal more information than either alone. The com-

parison of the two metrics reveals the degree to which tangling depends on

nonlocal points as opposed to nearby points.

Robustness

We calculated two measures of RNN robustness. We calculated structural

robustness by perturbing A by a random matrix: A
p

 A + ⌃, where ⌃

i,j

⇠
N(0, �

s

) for all i, j. We simulated the RNN using A
p

in place of A. For each

�
s

, we ran 5 trials with different random draws of ⌃ and took the mean R2.

Chapter 5. A Network Model for Motor Cortex 120

We increased �
s

until the error between y and ŷ dropped below R2
= 0.5.

Here, we set �
w

= 0 in Eq. 5.1 even if a positive �
w

was used during training.

Noise robustness was calculated similarly, except we increased �
w

in

Eq. 5.1, while keeping the original learned A.

Simulations

We trained multiple RNNs to the EMG data of both monkeys (C and D).

For each RNN, values of �
A

, �
C

, �
x

, and �
w

were drawn randomly from log

uniform distributions, �
A

2 [10

�4, 10�1
], �

C

2 [10

�6, 101], �
x

2 [10

�4, 101],

and �
w

2 [10

�4, 10�1
]. Each RNN included n = 100 neurons. Addition-

ally, each matrix of the RNN was initialized to a random orthonormal ma-

trix. RNNs were trained using Tensorflow’s Adam optimizer [1, 20]. We

discarded RNNs that failed training (R2 < 0.5). For each RNN, we then cal-

culated its tangling, mean curvature, mean torsion, Euclidean path length,

structural robustness, and noise robustness.

5.0.4 Results

Figure 5.5 shows the principal components of the activations of one example

RNN (left) and the M1 data. Qualitatively, both the RNN and M1 exhibit

similar behavior when compared with EMG (Figure 5.6)

Hyperparameter results are displayed in Figure 5.7. Notably, the tangling

of each RNN (top row) depended weakly on �
x

and �
A

, but clustered near

the tangling of M1, well below the tangling of EMG. Since the tangling metric

depends on both time and condition, we summarized tangling with a single

value by took the empirical cumulative distribution and evaluated the num-

ber of points larger than 0.9. The robustness of the networks most strongly

depended on �
x

and �
w

. Naturally, �
x

produced shorter trajectories in terms

of Euclidean path length. It is plausible that the corresponding decrease in

Chapter 5. A Network Model for Motor Cortex 121

FIGURE 5.5: RNN (left) and M1 data (right). Top 4 principal
components plotted against each other (off diagonals) and his-
tograms of the data projected onto each of the four principal

components (diagonals).

FIGURE 5.6: Top 4 principal components of EMG data.

Chapter 5. A Network Model for Motor Cortex 122

robustness is due to the smaller scale at large �
x

. I.e. the cutoff values for �
w

and �
s

could be lower at large �
x

not due to inherent lack of robustness, but

due to significantly different scaling of those values. Alternatively, it is plau-

sible that large �
x

imposes linear solutions, thus are incapable of producing

self-correcting limit cycles. Curvature appeared most strongly related to �
A

,

which is sensible since large �
A

encourages simpler solutions. Yet a large �
A

did not seem to be strongly related to tangling. Finally, we note that in Fig-

ure 5.8, robustness did not seem to be strongly related to tangling, despite

one of our initial hypotheses.

5.1 Discussion

Our primary result is that RNNs naturally recapitulate features of M1 data,

most notably tangling, when trained solely on EMG data. This result is ob-

served in the top row of Figure 5.7.

We initially predicted that tangling and robustness should be strongly

and negatively correlated. Intuitively, smoother vector fields are expected

to be less tangled, but this is not trivial to make precise. We suspect that

this lack of correlation may be in part due to the different scales of the RNN

activations. For example, large �
x

corresponds to lower firing rates of the

neurons which can be compensated by larger weights in C to fit EMG, but

require a different notion of scaling in �
w

for determining noise threshold in

the robustness calculation. Further work may investigate the robustness rela-

tive to the scaling of activation determined by, say, the variance of firing rate

across the population or even the path length of trajectories. Additionally,

both curvature and tangling still measure features of the trajectories them-

selves and not the vector fields that generated them. Thus, a highly tangled

trajectory can still be robust if at each point the Jacobian of the system at

Chapter 5. A Network Model for Motor Cortex 123

FIGURE 5.7: Influence of hyperparameters on various features
of the RNN state trajectories. Each dot (red) corresponds to a
particular choice of hyperparameters (columns). The green hor-
izontal line corresponds to the corresponding value of the M1
dataset. The blue line corresponds to the corresponding value
of the EMG dataset. Black lines are regression fits. Data is for

monkey C.

Chapter 5. A Network Model for Motor Cortex 124

FIGURE 5.8: Lines and dots as in Figure 5.7. RNN robustness
is not strongly correlated with tangling, but most RNNs cap-
tured the low tangling of M1. Robustness is negatively corre-
lated with mean curvature, but mean curvature did not cluster

near the empirical mean curvatures of M1 or EMG.

each point is strongly contracting, corresponding to a highly robust limit cy-

cle. Additionally, our intuition for tangling in 3-dimensional systems would

suggest a negative relationship between tangling and robustness, but this in-

tuition need not apply in R100. Further work could nevertheless explore this

relationship more carefully, controlling for features such as path length and

dimensionality.

Nevertheless, the data presented itself with an interesting mathematical

problem: investigate the degree to which a set of trajectories is likely gener-

ated by an underlying dynamical system, or is simply the output of one—

i.e. is input-driven and thus not constrained to obey a flow field. The em-

prical observation that M1 and EMG differed in basic geometric features

suggests a route to investigate this problem. One could almost always de-

scribe an externally-driven system with an underlying vector field (given

that there are no actual intersections in the trajectories)—but such a vector

field would be 1) overly complex and 2) not likely generalizable across con-

ditions. In Chapter 2, we focused on the dimensionality considerations of the

2nd constraint—not sufficiently generalizable across conditions implies the

Chapter 5. A Network Model for Motor Cortex 125

neuron-preferred structure of such systems. In this chapter, we are presented

with data with an insufficient number of conditions (4) to investigate this

structure, yet the geometric features of the data trajectories suggest a route

to tackle the problem by focusing on the first constraint: underlying vec-

tor fields for autonomous dynamical systems should be relatively simple, or

smooth, compared to those that one might try to fit to externally driven sys-

tems. Curvature is one such measure of smoothness, though we argued that

tangling is a more appropriate measure for the problem at hand. The empri-

cally lower tangling of M1 compared to EMG is suggestive of the result. The

fact that various RNNs—which as ground truth are dynamical systems—

recapitulated this result, while also matching, quantitatively, the tangling of

M1, strengthens it.

126

Bibliography

[1] Martín Abadi et al. “Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems”. In: arXiv preprint arXiv:1603.04467

(2016).

[2] Misha B Ahrens and Florian Engert. “Large-scale imaging in small brains”.

In: Current opinion in neurobiology 32 (2015), pp. 78–86.

[3] Animashree Anandkumar et al. “Tensor decompositions for learning

latent variable models.” In: Journal of Machine Learning Research 15.1

(2014), pp. 2773–2832.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer nor-

malization”. In: arXiv preprint arXiv:1607.06450 (2016).

[5] Stephen Boyd et al. “Distributed optimization and statistical learning

via the alternating direction method of multipliers”. In: Foundations and

Trends R� in Machine Learning 3.1 (2011), pp. 1–122.

[6] Wieland Brendel, Ranulfo Romo, and Christian K Machens. “Demixed

principal component analysis”. In: Advances in Neural Information Pro-

cessing Systems. 2011, pp. 2654–2662.

[7] Mark M Churchland et al. “Neural population dynamics during reach-

ing”. In: Nature 487.7405 (2012), pp. 51–56.

[8] Andrzej Cichocki et al. Nonnegative matrix and tensor factorizations: ap-

plications to exploratory multi-way data analysis and blind source separation.

John Wiley & Sons, 2009.

BIBLIOGRAPHY 127

[9] Andrzej Cichocki et al. “Tensor decompositions for signal processing

applications: From two-way to multiway component analysis”. In: IEEE

Signal Processing Magazine 32.2 (2015), pp. 145–163.

[10] Pierre Comon. “Tensors: a brief introduction”. In: IEEE Signal Process-

ing Magazine 31.3 (2014), pp. 44–53.

[11] John P Cunningham and M Yu Byron. “Dimensionality reduction for

large-scale neural recordings”. In: Nature neuroscience 17.11 (2014), pp. 1500–

1509.

[12] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “An intro-

duction to independent component analysis”. In: Journal of chemomet-

rics 14.3 (2000), pp. 123–149.

[13] Gamaleldin F Elsayed et al. “Reorganization between preparatory and

movement population responses in motor cortex”. In: Nature Commu-

nications 7 (2016).

[14] Peiran Gao and Surya Ganguli. “On simplicity and complexity in the

brave new world of large-scale neuroscience”. In: Current opinion in

neurobiology 32 (2015), pp. 148–155.

[15] Apostolos P Georgopoulos, Andrew B Schwartz, Ronald E Kettner, et

al. “Neuronal population coding of movement direction”. In: Science

233.4771 (1986), pp. 1416–1419.

[16] Moritz Hardt, Tengyu Ma, and Benjamin Recht. “Gradient Descent Learns

Linear Dynamical Systems”. In: arXiv preprint arXiv:1609.05191 (2016).

[17] David H Hubel and Torsten N Wiesel. “Receptive fields of single neu-

rones in the cat’s striate cortex”. In: The Journal of physiology 148.3 (1959),

pp. 574–591.

[18] Saul Kato et al. “Global brain dynamics embed the motor command

sequence of Caenorhabditis elegans”. In: Cell 163.3 (2015), pp. 656–669.

BIBLIOGRAPHY 128

[19] Matthew T Kaufman et al. “Cortical activity in the null space: per-

mitting preparation without movement”. In: Nature neuroscience 17.3

(2014), pp. 440–448.

[20] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic op-

timization”. In: arXiv preprint arXiv:1412.6980 (2014).

[21] Dmitry Kobak et al. “Demixed principal component analysis of neural

population data”. In: Elife 5 (2016), e10989.

[22] Tamara G Kolda and Brett W Bader. “Tensor decompositions and ap-

plications”. In: SIAM review 51.3 (2009), pp. 455–500.

[23] Lek-Heng Lim. “Tensors and hypermatrices”. In: Handbook of Linear Al-

gebra, 2nd Ed., CRC Press, Boca Raton, FL (2013), pp. 231–260.

[24] Christian K Machens, Ranulfo Romo, and Carlos D Brody. “Functional,

but not anatomical, separation of “what” and “when” in prefrontal cor-

tex”. In: Journal of Neuroscience 30.1 (2010), pp. 350–360.

[25] Jakob H Macke et al. “Empirical models of spiking in neural popula-

tions”. In: Advances in neural information processing systems. 2011, pp. 1350–

1358.

[26] Cun Mu et al. “Square deal: Lower bounds and improved convex re-

laxations for tensor recovery”. In: Journal of Machine Learning Research

1.1-48 (2014), p. 2.

[27] Meinard Müller. “Dynamic time warping”. In: Information retrieval for

music and motion (2007), pp. 69–84.

[28] Ivan V Oseledets. “Tensor-train decomposition”. In: SIAM Journal on

Scientific Computing 33.5 (2011), pp. 2295–2317.

[29] Liqun Qi. “Hankel tensors: Associated Hankel matrices and Vander-

monde decomposition”. In: arXiv preprint arXiv:1310.5470 (2013).

BIBLIOGRAPHY 129

[30] Rajesh PN Rao and Dana H Ballard. “Predictive coding in the visual

cortex: a functional interpretation of some extra-classical receptive-field

effects”. In: Nature neuroscience 2.1 (1999), pp. 79–87.

[31] Robert Shapley, Michael Hawken, and Dajun Xing. “The dynamics of

visual responses in the primary visual cortex”. In: Progress in brain re-

search 165 (2007), pp. 21–32.

[32] Matthew A Smith, Wyeth Bair, and J Anthony Movshon. “Dynamics

of suppression in macaque primary visual cortex”. In: Journal of Neuro-

science 26.18 (2006), pp. 4826–4834.

[33] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. “Structured

data fusion”. In: IEEE Journal of Selected Topics in Signal Processing 9.4

(2015), pp. 586–600.

[34] Nitish Srivastava et al. “Dropout: a simple way to prevent neural net-

works from overfitting.” In: Journal of Machine Learning Research 15.1

(2014), pp. 1929–1958.

[35] Ryota Tomioka and Taiji Suzuki. “Convex tensor decomposition via

structured Schatten norm regularization”. In: Advances in neural infor-

mation processing systems. 2013, pp. 1331–1339.

[36] Madeleine Udell et al. “Generalized low rank models”. In: Foundations

and Trends R� in Machine Learning 9.1 (2016), pp. 1–118.

[37] Michel Verhaegen and Vincent Verdult. Filtering and system identifica-

tion: a least squares approach. Cambridge university press, 2007.

[38] Brian A Wandell, Serge O Dumoulin, and Alyssa A Brewer. “Visual

field maps in human cortex”. In: Neuron 56.2 (2007), pp. 366–383.

	Abstract
	Acknowledgements
	Introduction and Mathematical Preliminaries
	Tensors
	Intuition and definitions
	Common occurances of tensors
	Tensor notation
	Tensor operations
	Neuron by condition by time tensors
	Tensor decompositions and tensor rank

	Linear Dynamical Systems
	Overview
	Implications for identification

	Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1
	Denoising Neural Signals with Tensor Decompositions
	Introduction
	Tensor denoising method
	Higher-Order SVD
	Alternating least squares
	Cross-validation
	Experimental data
	Simulated data
	Pre-processing

	Results
	Tensor denoising on spike train data
	Tensor rank minimization via ADMM

	Applications of the ADMM approach

	Mapping Motor Cortex to Muscles with Dynamic Transformations
	Introduction
	Subspace identification
	Other system identification methods
	Comparing dynamic with static
	Results
	Future work

	A Network Model for Motor Cortex
	Data
	Model
	Geometric analyses
	Curvature
	Tangling
	Robustness
	Simulations

	Results

	Discussion

	Bibliography

