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Abstract

In Indonesia, drought driven fires occur typically during the warm phase of the El Nino
Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-
long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas

emissions.

Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In
this work, we investigated the impact of temperature on fires and found that when the
July—October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest.
In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is
anomalously warm. This describes a regime in which an active fire season is not limited to
drought years. Greater susceptibility to fires in response to a warmer environment finds support
in the high evapotranspiration rates observed in normal-to-wet and warm conditions in
Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to
temperature were not for the added effect of recent positive trends. Near-term regional climate
projections reveal that, despite negligible changes in precipitation, a continuing warming trend
will heighten fire probability over the next few decades especially in non-drought years. Mild fire
seasons currently observed in association with wet conditions and cool temperatures will become

rare events in Indonesia.

1. Introduction

Large areas of tropical humid forests are being altered
by human activities such as clearing and logging (FAO
2015), making these landscapes more vulnerable to
drought-driven fires (Brando et al 2014, Ceccato et al
2010, Chen et al 2011, Fernandes et al 2011,
Murdiyarso and Adiningsih 2007, van der Werf et al
2008a, Van Der Werf et al 2008b) and to the
interactions of human activities and land cover with
the climate (Aiken 2004, Aldersley et al 2011, Aragao
et al 2008, Field et al 2009, Gutiérrez-Vélez et al 2014,
Schwartz et al 2015, Siegert et al 2001, Stolle et al 2003,

Uriarte et al 2012). In Indonesia fires are typically lit
during the July to October (JASO) dry season to clear
land for planting (Murdiyarso and Adiningsih 2007).
While fire ignition is related to human activities, the
interannual variability of fire spread and frequency
responds to large-scale climate fluctuations (Ceccato
etal 2010, Chen et al 2016, Murdiyarso and Adiningsih
2007, Siegert et al 2001, van der Werf et al 2008a).
During the 1997 El Nino drought, disastrous fires in
Indonesia resulted in months-long hazardous atmo-
spheric pollution levels (Marlier et al2013) and carbon
emissions estimated at between 4% (Levine 1999) and
13% (Page et al 2002) of global annual carbon

© 2017 The Author(s). Published by IOP Publishing Ltd
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emissions from fossil fuels (Boden et al 2016). Large
fires were observed again during the 2015/2016 El
Nino and fire-related greenhouse gases (GHG)
emissions were second only to those of 1997 (Huijnen
et al 2016). Despite the clear impact droughts have on
fire occurrence in Indonesia, anomalously active fire
seasons have recently been observed during non-
drought years (Gaveau et al 2014), raising the question
of whether climate and fire dynamics are any different
in the absence of seasonal droughts. In non-tropical
regions, temperature plays an important role in
determining fire risk, often interacting with precipita-
tion according to whether it is dry or wet (Aldersley
et al 2011, Westerling and Bryant 2008). We investigate
whether this is the case in Indonesia, as the current
role of temperature in fire dynamics is not well
understood and its future impact on fires, though not
uniformly distributed globally (Moritz et al 2012), is
projected to increase (Pechony and Shindell 2010).
The atmosphere’s water vapor demand increases with
temperature and with it evapotranspiration rates
(Breshears et al 2013). As a consequence, faster soil
and vegetation water depletion (Williams et al 2013,
Zhao and Running 2010) and greater susceptibility to
fires (Abatzoglou and Williams 2016, Brando et al
2014) are observed. This has important implications
for future fire activity assessments in Indonesia, as
studies tend to focus on how projected changes in
precipitation regimes will impact fire occurrence
(Corlett 2016, Herawati and Santoso 2011, Lestari
et al 2014) and less attention is given to potential
compounding effects of temperature. Here, we
investigate fires sensitivity to precipitation and
temperature using a statistical model built from over
two decades of remotely sensed fire observations and
meteorological stations data. Then, we explore the role
of evapotranspiration rates variability as a mechanism
linking the empirically estimated fire probabilities to
the climate predictors. Lastly, the fire probability
model is driven by near-term precipitation and
temperature projections with the goal of assessing
future changes in fire activity in Indonesia.

2. Study area

Our domain of study is comprised of Sumatra and
Kalimantan; the later is the Indonesian part of the
island of Borneo. Fires in Kalimantan and Sumatra
are typically lit during the dry season, defined here as
the months from July to October (JASO), to clear land
for planting (Murdiyarso and Adiningsih 2007).

3. Data and methods

We model burned area anomalies as a function of
precipitation and temperature anomalies for the
period 1995-2015. We propose a physical mechanism
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to explain the modeled burned area anomalies
response to the climate predictors by evaluating
how evapotranspiration rates respond to contrasting
climate conditions. Then, we used projections of
regional temperature and precipitation to anticipate
the likely response of fires to future climate in
Indonesia.

3.1. Fire probability as a function of climate

3.1.1. Global fire emission database

We use the burned area (BA) product from the fourth
generation of the Global Fire Emission Database
(GFED4) (Giglio et al 2013) covering a period of 21 yr,
including the two major fire events of 1997 and 2015 in
Indonesia. GFED4 provides global monthly BA, in
hectares, at 0.25° spatial resolution from 1995 to 2015.
Interannual variability is evaluated by spatially
averaging JASO BA over the entire study area then
subtracting the 1995-2015 climatology and dividing
by its standard deviation (StdBA). Anomalous BA is
also calculated locally (at each grid cell) for the
July—October season by removing the local 1995-2015
climatology. Because fire ignition in Indonesia is
human-induced (Murdiyarso and Adiningsih 2007,
Stolle et al 2003), pixels with BA equal to zero hectare
were masked out, as we assume that an absence of fires
over the entire JASO season is related to an absence of
fire-related activities, not climate.

3.1.2. Precipitation and temperature data

The gridded Global Precipitation Climatology Centre
(GPCC) rain-gauge only dataset is used at monthly
time-steps from 1966 to 2015 (Schamm et al 2014,
Schneider et al 2014). Precipitation is linearly re-
gridded to 0.25° resolution to match the GFED4
burned area dataset. Domain averaged time series of
standardized precipitation (StdPr) is calculated by
spatially averaging the 1966-2015 JASO precipitation
over the entire study area then subtracting the baseline
climatology and dividing by its standard deviation.
JASO StdPr is also calculated for every grid cell within
the domain and the 1995-2015 period. The length
of StdPr domain averaged time series is longer than
the anomalies calculated at the grid cell level but
the baseline climatology is the same (1995-2015).
The individual grid cell StdPr was used to model fire
(GFED4-BA) probability while the whole study area
StdPr was used to model near future variability and
change.

Near surface air temperature is provided by the
National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC). This
dataset results from two large meteorological station
networks that are combined and interpolated globally
to a 0.5° degree spatial resolution grid and monthly
time-steps (Fan and Van den Dool 2008). Temperature
anomalies (TempAn) for JASO 1966-2015 were
calculated for the whole study area by spatially
averaging JASO temperature and removing the
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Table 1. Logistic regression coefficients (), standardized errors (SE), and statistical significance (P) for regression predictors of above
average burned area anomalies. Bayesian information criterion (BIC) and Akaike information criterion (AIC) for single variable
models (TempAn and StdPr) and the multi-variable model with an interaction term (StdPr:TempAn). Lower BIC and AIC values
indicate better fit. Variance Inflation Factor (VIF) for the variables included in the model. VIF > 5 are indicative of multicollinearity.

Predictor B SE P BIC AIC VIF
Intercept —1.21 0.03 <0.01

TempAn 2.1 0.1 <0.01 15346 15331 1.4
StdPr —0.83 0.02 <0.01 14074 14059 1.24
StdPr:TempAn 1.14 0.08 <0.01 13631 13601 1.17

baseline period (1995-2015) climatology. This time
series is used model near future variability and change.
TempAn is also calculated locally by subtracting each
grid cell’s 1995-2015 JASO climatology and it is used
to model fire (GFED4-BA) probability.

3.1.3. Statistical analysis of fire probability
Fire probability, measured as the probability of
positive BA anomalies, is modeled as a function of
temperature anomalies (TempAn) and precipitation
standardized anomalies (StdPr). The JASO BA
anomalies are calculated with respect to the 1995-2015
baseline period at each grid cell and categorized as 1
for positive (active fire season) and 0 for negative
(mild fire season) values. Every grid cell that registered
JASO BA different from zero (and corresponding
TempAn and StdPr) is retained, totaling a sample of
13848 in length.

Fire was modeled using logistic regression and
expressed as:

| P (BA =1 ) _

n<m> —a+B X1+ +B,X, (1)
where P(BA = 1) is the probability of an active fire
season (BA = 1) modeled as a linear combination of
predictors X, (StdPr and TempAn) with slopes §,, and
an intercept .

The logistic regression model was fit using
Matlab’s fitglm function (Mathworks 2015b) for a
binomial distribution. We used the variance inflation
factor (VIF) test for multicollinearity (Belsley 1991).
The best model was selected by evaluating values of the
Akaike and Bayesian Information Criteria (AIC, BIC)
for each individual covariate and an interaction term
between StdPr and TempAn (table 1). AIC and BIC are
standard statistical measures for model selection and
the lowest values indicate the best fit (Burnham and
Anderson 1998, Raftery 1995). To test fires sensitivity
to potential trends in the predictors, a model was fitted
to de-trended TempAn and StdPr (table S1 available at
stacks.iop.org/ERL/12/054002/mmedia).

3.2. MODIS evapotranspiration (MOD16)

Evapotranspiration (ET) rates, which is a function of
temperature and moisture availability, accelerate in an
anomalously warm environment resulting in fast soil
and vegetation water depletion (Breshears et al 2013,
Zhao and Running 2010) and greater susceptibility to

fires (Abatzoglou and Williams 2016, Brando et al
2014). With the goal of establishing a physical
mechanism explaining fire behavior, we investigate
how ET rates respond to interactions between
temperature and precipitation and how it relates to
fire probability as estimated by our statistical model.
We use MODIS global evapotranspiration product
(MOD16), obtained at a 0.5° spatial resolution and
monthly time step available for the period January
2000 to December 2014 (Mu et al 2011, Zhao et al
2006). Seasonal JASO standardized ET (StdET) is
calculated by subtracting the climatology in each grid
cell and dividing it by its standard deviation. The final
product is re-gridded linearly to 0.25° resolution to
match the spatial resolution of the GFED4-BA
product.

3.3. Near-term precipitation and temperature
projections

Using the fire probability model (section 3.1.3) and
selected near-term simulations of TempAn and StdPr,
we assess future fire risk in Indonesia. The fire
probability predictors, observed temperature and
precipitation, are normally anti-correlated over
equatorial land areas, but this feature is not
consistently represented in General Circulation
Models (GCMs). This is attributed to various soil
moisture, cloud and precipitation parameterizations
(Berg et al 2015, Koster et al 2009, Trenberth and
Shea 2005, Wu et al 2013) in the models. Therefore,
GCMs direct temperature and precipitation outputs
are not adequate to assess these variables’ co-
variability in Indonesia. This dependence between
precipitation and temperature requires they are
modeled jointly and a multivariate modeling scheme
is used here (Greene et al 2012). The method consists
of creating synthetic climate sequences that retain the
statistical properties of the original series. The
simulations are based on annual time steps of JASO
StdPr and TempAn for the study area and period
1966-2015. The time series are first de-trended by
removing the variables’ local response to anthropo-
genic climate forcings (Greene et al 2011). The 50 yr
(1966-2015) de-trended JASO StdPr and TempAn
(henceforth referred to as DetTempAn and DetStdPr)
retain oscillations on the scale of years to decades.
Multiyear and decadal oscillations can result
from periodic predictable components explained by

3


http://stacks.iop.org/ERL/12/054002/mmedia

I0P Publishing

Environ. Res. Lett. 12 (2017) 054002

W Letters

5°N

00

n
fo . =
! ! I | " | ! -
100°E 105°E 110°E 115°E 120°E
0 500 1000 1500 2000 2500 3000

Figure 1. JASO 1995-2015 climatological burned area (GFED4), in hectares per month.

Kalimantan

large-scale physical mechanisms and/or random
components that exhibit temporal autocorrelation
(memory). In Indonesia, there is no clear evidence of
periodic multi-year or decadal oscillations in the
climate (Malhi and Wright 2004) in contrast to the
other large rainforest regions of the Amazon and
Congo (Fernandes et al 2015, Labat et al 2005, Malhi
and Wright 2004, Todd and Washington 2004).
Nonetheless, we find statistically significant lag-1
JASO DetTempAn autocorrelation (R=0.36, P < 0.05)
as well as correlation between JASO DetTempAn
and DetStdPr (R = —0.39, P < 0.05). This supports
the use of a Vector Auto-Regressive (VAR) model
(Greene et al 2012, Wilks 2011). VAR, which is a
multivariate generalization of an Auto-Regressive (AR)
model, is appropriate for simulating multiple co-
varying variables that exhibit serial autocorrelation
(Wilks 2011).

Alag-1 or first order VAR (1) model can be written
as:

yt:AJ’t—l +ut (2)

where y is the climate vector (DetStdPr and
DetTempAn) at time ¢ and —1. The time steps are
years as the variables have one JASO entry per year. A
is a matrix of coefficients and u, is a stationary white
noise (serially uncorrelated) vector. The VAR(1) was
fitted to the 1966—2015 JASO regional series using
Matlab’s Econometric Toolbox VAR model functions
(Mathworks 2015a).

The VAR (1) model is then used to generate a
collection of 20162050 DetTempAn and DetStdPr
(supplementary material). The trends corresponding
to the regional variables’ response to the estimated
2016-2050 anthropogenic atmospheric GHG forcing
are added back to the series (Greene et al 2011, Greene
et al 2012).

4. Results

4.1. Characterization of JASO burned area

Fires in Sumatra and Kalimantan, shown as burned
area, are located mostly in the southern parts of the
islands during the JASO season (figure 1). Over the
study area domain, TempAn has shown a clear positive
trend since 1966, while StdPr has remained unchanged
(figure 2). The three most intense fire seasons since
1995 occurred in 1997, 2006 and 2015 (figure 2) and
were related to negative StdPr typical of an El Nifo
year (NOAA 2016). We found a highly significant
correlation between StdPr and StdBA (R = —0.91,
P < 0.05), suggesting that the intensity of StdPr is a
very good indicator of the intensity of burned area
anomalies. This shows that over 80% of BA variance is
explained by StdPr meaning that, for prediction
purposes, the effect of any other variable on fires seems
to be of secondary importance. Nonetheless, we test
whether moisture availability, assessed as precipitation
anomalies, impacts fire response to temperature by
correlating StdBA and climate variables for two sub-
samples: one comprised of dry JASOs (StdPr < 0) and
one of wet JASOs (StdPr>0) taken from the
1995-2015 record (figure 2). For the 9 dry JASOs,
the correlation between StdBA and StdPr reproduces
that of the entire sample and the correlation between
StdBA and TempAn is not significant (R = —0.19,
P> 0.6) showing in fact the opposite behavior
expected of a warm environment leading to more
fires. For the remaining 12 wet JASOs, the correlation
between StdPr and StdBA is also statistically significant
(R=—0.59, P < 0.05), but in contrast to dry JASOs,
TempAn becomes a much more important variable
with a significant positive correlation to StdBA
(R = 0.62, P < 0.05). These results show that StdPr
is the best indicator of StdBA anomalies under dry
conditions, but that TempAn correlates more strongly
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Figure 2. JASO time series of Kalimantan and Sumatra domain anomalies. Standardized burned area (StdBA), standardized
precipitation (StdPr) and temperature anomalies (TempAn) in degrees Celsius. Baseline period for climatologies: 1995-2015.

with StdBA in a wetter dry season. This indicates that
burned area response to temperature is controlled by
the precipitation regime.

4.2. Fire probability model

The logistic regression model with the best fit (lower
AIC and BIC values) includes an interaction term
between StdPr and TempAn (table 1) and can be
rewritten from equation (1) and table 1 as:

P(BA = 1)
e
1+ g—1.2142.1TempAn — 0.83 StdPr + 1.14S tdPr«TempAn

3)

The presence of an interaction term in the model
demonstrates that the nature of positive BA anomalies
response to temperature varies according to the level
of the precipitation anomaly, consistent with the
correlation analysis presented in the previous section.
The interaction effect between the predictors is further
illustrated by plotting fire probability as a function of
TempAn and contrasting wet and dry conditions
(figure 3). We set in the model the values for dry
(StdPr = —0.67) and wet (StdPr = 0.67) to represent
the 25% drier and wetter tails of each grid cell
precipitation distribution. In dry conditions (solid red
line in figure 3) there is a nearly constant increase in
fire probability per unit increase in temperature
anomalies (9% to 14% per 0.5°C). In wetter than
normal JASOs (solid blue line), negative TempAn is
related to low fire probability, but the chances of
observing an active fire season increases sharply from
approximately 15% under normal temperature to

—1.2142.1TempAn — 0.83 StdPr + 1.14 StdPr+TempAn

above 40% at anomalies of 0.5°C. This behavior is
consistent for a range of positive StdPr (online
supplementary figure S2). The probability of an
anomalously active fire season is mainly determined
by whether it is dry or wet if TempAn is near or below
normal (solid lines in figure 3), but as TempAn becomes
positive, it turns into a much stronger driver especially
in wet conditions. In the case of the model fitted to the
de-trended variables, we find that fire probability is
always higher in dry than in wet environments (dotted
lines in figure 3), regardless of TempAn. This is
characteristic of a response in which the interaction
between the variables is negligible (online supplemen-
tary table S1). But more importantly, when it is wet, the
response of fire probability to TempAn is much weaker
than in the model fitted to the original variables (blue
lines in figure 3). This suggests that fires in non-drought
conditions would be less influenced by temperature
anomalies in any given year were not for the
compounding effect of increasing trends. In contrast,
fire probability responds very similarly to TempAn in
both models (red lines in figure 3) showing that
temperature trends have no particular enhancing effect
on fires under dry conditions.

4.3. The role of evapotranspiration rates (ET)

The role of temperature and moisture availability,
measured as precipitation anomalies, on ET rates is
evaluated by analyzing a sample comprised of JASO
MODIS StdET from every grid cell within our study
area and period 2000-2014 The StdET sample is
binned into four sub-samples, describing Wet &
TempAn > 0, Wet & TempAn < 0, Dry & TempAn > 0
and Dry & TempAn < 0 (figure 4). The StdET
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Figure 4. Cumulative probability of MODIS standardized ET rates (2000-2014) for the combined effect of wet (StdPr > 0) and
TempAn < 0 (dotted green line), wet and TempAn > 0 (solid green line), dry (StdPr < 0) and TempAn < 0 (dotted orange line) and

StdET

cumulative probability in wet conditions (StdPr > 0)
reveals that for most part anomalously low StdET rates
are related to TempAn <0 (dashed green line in
figure 4), whereas in cases of wet and TempAn >0
nearly 65% of the sampled StdET rate is anomalously
high (solid green line in figure 4). Thus, provided that
moisture is available, anomalously positive StdET rates
are consistently higher in warm than in cool
conditions. In dry (StdPr < 0) conditions the

distribution of StdET for both TempAn <0 and
Temp > 0 (orange lines in figure 4) is not as
contrasting, indicating that the evaporative regime in
this case is less dependent of temperature and
constrained instead by moisture availability. The
higher StdET rates associated to positive TempAn in
normal-to-wet conditions provides evidence consis-
tent with the heightened modeled fire probability
found for a warm and wet environment.
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4.4. Future fire probability

Figure 5 shows the 100 realizations of modeled
TempAn and StdPr paired simulations for the period
2016-2050 (see details in the online supplementary
data). The forward estimates of TempAn and StdPr
result in a continuing positive trend in TempAn and
no significant change in StdPr through 2050. Around
the end of the period, StdPr shows a range of values
similar to currently observed, whereas TempAn
values fluctuate around 1.5°C anomalies (with
respect to baseline 1995-2015) in contrast to much
lower values observed currently (figure 2). We
evaluate how continuing warming may impact future
fire regimes in Indonesia by inputting the projected
TempAn into the fire probability model derived from
the current climate. The JASO TempAn and StdPr
used to fit the logistic model represent the local grid
cell value corresponding to the JASO BA anomalies,
while the 2016-2050 projected time series are based
on the study area domain averaged TempAn and
StdPr anomalies. Nonetheless, we find that the
1995-2015 gridded and domain averaged samples
of StdPr (and TempAn) come from the same
distribution (tested using a two-sample Kolmo-
gorov-Smirnov at alpha = 0.05 significance level)
and the logistic regression can adequately model fire
probability based on domain-averaged StdPr and
TempAn. We chose to test fire sensitivity using the
projected 2020-2029 TempAn simulations, as most
values in that decade (figure 5(a)) remains below the
upper limit (1.1 °C) of the observed TempAn sample
used to fit the fire probability model (figure 3). Fire

probability modeled for wet (StdPr = 0.67) con-
ditions and the 100 realizations of 2020-2029 JASO
TempAn point to higher fire probability in general,
but more importantly, low fire probability related to
the combined effect of negative TempAn and wet
conditions is much less likely in the 2020-2029
simulations (thin blue line in figure 6) than currently
observed (thick blue line in figure 6). Also, the
distribution of simulated TempAn in association with
the 2020-2029 normal-to-wet conditions (StdPr > 0)
shifts to mostly positive values in contrast to the
distribution used to fit the fire probability model
(histograms of figure 6). In other words, the chances
of observing wet and warm conditions in the next few
decades are much greater than in the current climate.
At the same time, wet accompanied by cool temper-
atures (TempAn < 0) will become nearly inexistent in
the near future, turning mild fire seasons into a rare
event in Indonesia. Fires are less sensitive to TempAn
in dry conditions and the 2020-2029 simulated fire
probabilities mostly overlap the function representing
current characteristics (not shown).

5. Discussion and conclusions

Drought related fire is a fairly well understood
phenomenon in Indonesia but the impacts of an
increasingly warm environment on fire dynamics has
been less explored. The lesser interest in temperature
and fire dynamics finds support in fire intensity
responding mostly to the severity of precipitation
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anomalies during the July—October dry season.
Indeed, in a dry environment the effect of tempera-
ture is modest and our model estimates a nearly
constant increase in fire probability per unit increase
in temperature anomalies (9% to 14% per 0.5°C).
However, this characteristic is not linear across
contrasting precipitation patterns and in wet con-
ditions temperature is a far more important variable
determining fire probability. A sharp increase in
modeled fire probability (15% to 40%) is found when
temperatures go from near normal to 0.5°C
anomalies. This is in part due to an observed
regional warming trend. In a wet environment, fires
are highly sensitive to anomalously positive temper-
atures only if trends are retained in the data used to
model fire probability. In other words, fires would be
less sensitive to any given year anomalous temper-
atures were not for compounding effect of the
multiyear trend. In dry conditions, fires are driven
mainly by the severity of precipitation deficit and the
added effect of temperature anomalies is similar
regardless of recent trends. Higher evapotranspira-
tion rates in wet and warm as opposed to wet and cool
conditions are consistent with increased fire proba-
bility. High temperature leads to high atmospheric
vapor pressure deficit and ET rates, and regardless of
changes in precipitation, a warming trend can induce
vegetation water stress and greater susceptibility to
fires. This has important implications for Indonesia,
as near-term climate simulations point to a continu-
ing increase in temperature, while precipitation
variability remains largely unchanged. Our findings
add yet another layer of complexity to fire manage-

ment, suggesting that fire prevention measures
should no longer be restricted to dry years. In
addition, further understanding of how human
activities and various land wuse interact with
increasingly higher temperature could help identify
effective interventions to prevent and mitigate fire
occurrence and spread in Indonesia. On longer
timescale, strategies to reduce GHG emission
through forest restoration and conservation should
take into account the effect of a warmer environment
on fires, as currently observed mild fire seasons
associated with wet and cool conditions will become
rare events in Indonesia.
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