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Abstract

In this paper, we propose a depth propagation scheme based on optical flow field rectification towards more accurate
depth reconstruction. In depth reconstruction, the occlusions and low-textural regions easily result in optical flow field
errors, which lead ambiguous depth value or holes without depth in the obtained depth map. In this work, a scheme is
proposed to improve the precision of depth propagation and the quality of depth reconstruction for dynamic scene. The
proposed scheme first adaptively detects the occlusive or low-textural regions, and the obtained vectors in optical flow field
are rectified properly. Subsequently, we process the occluded and ambiguous vectors for more precise depth propagation.
We further leverage the boundary enhancement filters as a post-processing to sharpen the object boundaries in obtained
depth maps for better quality. Quantitative evaluations show that the proposed scheme can reconstruct depth map with
higher accuracy and better quality compared with the state-of-the-art methods.
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Introduction

Depth maps are crucial for three-dimensional (3D) imaging [1]

and displaying, and have been widely used in digital holography

image processing [2,3], object reconstruction in integral imaging

[4,5], 3D object retrieval [6–10] and tomographic phase

microscopy [11]. Practically, high fidelity depth maps of a

dynamic scene are calculated or captured in a temporal discrete

manner due to the intensive computational complexity of depth

reconstruction. For example, the widely used RGB-D [12,13] (e.g.,

Kinect) and ToF [14,15] camera can capture the depth map in

video-rate but with low resolution (e.g., 320|240 pixels). The

devices have challenges to capture depth maps for dynamic scene

in video-rate with higher resolution (e.g., standard definition or

even higher). In many 3D applications, it is noted that higher

capture-rate depth map sequence with higher resolution is

required to better represent a dynamic scene [13,15–18].

In order to solve the problem, depth propagation algorithms

[19–21] have been investigated to compensate the capture-rate to

video-rate of depth maps in recent years. In these algorithms, it is

assumed that the variation for a given dynamic scene is identical

for both the depth and the color information of one viewpoint.

Specifically, objects keep static in consequent color frames will not

arouse depth value variation for these objects, and the depth value

for the region containing static object also keeps static in depth

map. On the other hand, motions in consequent color frames

correspond to depth value variation in the same region. Therefore,

the status (i.e., static or motive) of object in consequent color

frames can be used to describe the depth value variation in depth

map. Motion vector is widely applied to describe the motion status

of objects, and it can be obtained with pixel-, block- or region-wise

and with different accuracy. For the case of depth propagation, the

pixel-wise motion vectors (PMVs) in consequent color frames with

high accuracy can be mapped to depth maps also with high

accuracy. Based on the assumption, low capture-rate depth maps

can be compensated to video-rate. In this case, the captured and

high resolution depth maps can be treated as key frames, and the

depth information in to-be-reconstructed depth maps is propagat-

ed from the key frame by the obtained PMVs.

The main problem for depth propagation is that it is very

challenging to obtain accurate PMVs for the occlusive or low

textural regions, although PMV can have high accuracy in other

regions. Inaccurate PMVs in these regions may lead to ambiguities

and holes in the reconstructed depth maps, which decrease the

reconstruction quality significantly. Variety of methods were

proposed to improve the quality of reconstructed depth maps.

For example, manual marking from users on potential problem

regions can improve the quality of reconstructed depth maps

significantly [20], but this method is not applicable in many

automatic processing systems. Some filters have been applied in

post-processing of reconstructed depth map, such as bilateral filter

[19,21], discontinuity analysis and interpolation [22] and in-

painting [23]. These filters usually result in inevitable and

undesired blurs for depth maps, and these artifacts are unfavorable

for 3D dynamic scene representation. In order to solve this
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problem, we propose to rectify the optical flow field before

propagation rather than rectify the depth results after propagation.

The quality of the reconstructed depth is improved by PMVs

rectification since global filtering has been avoided in this method.

Furthermore, a boundary enhancement filter is proposed to refine

the edges of the reconstructed depth maps. The main contribu-

tions of our work are three-fold: (1) propose a depth propagation

scheme based on optical flow field rectification, in which high

accurate PMVs can be obtained to improve the precision of

propagation and the quality of reconstructed depth map, (2)

propose an adaptive occlusive and low textural regions detection

and rectification method for PMVs, and (3) propose a boundary

enhancement filter to refine the reconstructed depth map.

Materials and Methods

Overview of the Proposed Rectification Method
In this work, we reconstruct depth maps for dynamic 3D scene

in video-rate by propagation. The PMVs among consequent color

images describe the temporal correlations in pixel-wise, and can be

applied in propagation from the key depth map to the consequent

vacant depth maps. Therefore, the quality of reconstructed vacant

depth map highly depends on the precision of obtained PMV.

Originally, PMVs can be calculated by traditional optical flow

algorithms or motion estimation methods. However, the precision

of obtained PMV decreases in several regions, for example, the

occlusive or low textural regions. In these regions, less information

is available to the matching procedure in determining PMV, and

thus errors in obtained PMV are inevitable. These errors will

result in unreliable PMVs for depth reconstruction. In order to

improve the quality of reconstructed depth maps, the obtained

PMVs are rectified before propagation and reconstruction in our

work.

Figure 1 shows the schematic overview of our proposed scheme.

As we mentioned above, a rectification on PMVs is performed

after PMVs have been obtained by optical flow algorithm. The

rectification is performed to solve the problem caused by the

occlusive and low textural regions. After that, depth information in

key depth map is propagated to vacant depth maps through the

rectified PMVs for depth map reconstruction. Finally, a depth

map filtering will be performed finally to improve the quality of

reconstructed depth. The details of each step of our proposed

scheme will be given in following subsections.

Optical Flow Field Rectification
The unreliable PMVs usually occur in occlusive or low textural

regions as aforementioned. Therefore, these regions should be

detected properly at first.

The texture complication is an important clue for the goal of

detection. Usually, the texture complication keeps consistency with

the variation of pixel value, so that it can be represented by

standard deviation of pixel values. The Heaviside step function is a

unit step function, and it can be denoted by

y~ lim
k??

1=2z1=p tan{1 kxð Þ
� �

ð1Þ

This function is always applied in the mathematics of control

theory and signal processing. This function is a discontinuous

function whose value is 0 for negative argument and 1 for positive

argument. As shown by Figure 2, the function represents a signal

that switches on at a specified time (usually triggered by a

threshold) and stays switched on indefinitely. In order to

differentiate the pixel X~(x,y) in color image, we propose a

binary decision function f(VX) in form of the Heaviside step

function to determine whether a region VX is the low textural

region by

Figure 1. The schematic overview of our method.
doi:10.1371/journal.pone.0047041.g001

Figure 2. Heaviside step function.
doi:10.1371/journal.pone.0047041.g002
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f(VX)~ lim
k??

1=2z1=p tan{1 k s IVY[VX
{IX

� �
{eV

� �� �
ð2Þ

where VX is the neighboring pixel set centered at X, Y is a pixel in

VX, IX is the gray value for X, s(:) is standard deviation operator

for a set, and eV is a threshold for texture. According to the

definition of Heaviside step function, the value of f(VX)
corresponds to a binary decision for textural region detection.

f(VX)~0 indicates the pixel X is surrounded by textures, but in

low textural region when f(VX)~1.

Similarly, we also propose a binary decision function r(v) to

determine whether a pixel X is occluded

r(v)~ lim
k??

1=2z 1=p tan{1 k IXzv{IXð Þ2{eI

� �� �
ð3Þ

where v is the PMV on X, eI is a threshold for occlusions. r(v)~1
is for the occluded pixel X, and r(v)~0 is for the visible one. In

determining the occlusive or low textural regions, a smaller

threshold is related to accurate decisions and stable performances

on different test materials, while increase the computation

complexity and unfavorable for implementations. On the other

hand, larger threshold is benefit for implementations, but decrease

the accuracy of decision and have unstable performances. We will

discuss the parameter settings for thresholds eV and eI in the

section of experiments in details.

Based on f(VX) and r(v), we can know the status of pixel X and

its surroundings, and make appropriate rectifications and opera-

tions on them. There are several cases for different combinations

of decisions caused by the binary value of f(VX) and r(v). For the

first case, when the pixel X is occluded by other objects (i.e.,

r(v)~1), the vector v for X is an error PMV since actually no

corresponding pixel can be found for X, no matter X is

surrounded by textures or not. In this case, it is not an easy way

to predict a proper value for v directly from neighboring vectors.

Therefore, we mark X with a label label(v), treat v as unreliable

and process the depth value for X after the depth map has been

reconstructed. Then for the second case, the pixel X is visible and

surrounded by textures (i.e., r(v)~0 and f(VX)~0). Texture

information is benefit for accurate optical flow calculation, and

thus the vector v can be treated as reliable and accurate. Finally,

the pixel X is visible but in a low textural region (i.e., r(v)~0 and

f(VX)~1). Low textural region can cause pixel-wise ambiguous

vectors in optical flow calculation. These unreliable PMVs of

ambiguous are usually odd when comparing with neighboring

vectors, as can be found in Figure 3(a). In this case, the unreliable

odd vectors can be processed by an average filtering with the

neighboring vectors. We summarize the above processing as a

condition function

Y(v)~

label(v) r(v)~1

v r(v)~0&f VXð Þ~0

avg v
v[VXX

� �
r(v)~0&f VXð Þ~1

8>>><
>>>:

ð4Þ

where label(v) is a mark on X that v is reserved for the next step

processing, avg(:) is an average operator on a set.

Based on the above occlusive and low textural region detection

and rectification, a part of the obtained unreliable (i.e., odd) PMVs

Table 1. Challenges in dynamic 3D scene materials.

Sequence Name Challenge

Dancer Full tiny but orderless textures: miss-matches in motion estimation.

Balloon Illumination variation and focus-light rotation: non-zero MV for static region.

Lovebird1 Zooming out movement: overlap of neighboring MVs.

doi:10.1371/journal.pone.0047041.t001

Figure 3. Result of rectification on optical flow field. (a) The
almost static scene. (b) The obtained optical flow field without
rectification. (c) The rectified optical flow field.
doi:10.1371/journal.pone.0047041.g003
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can be rectified effectively, and the error PMVs from occlusive

regions are reserved for later processing. Therefore, the accuracy

of PMVs is improved.

Depth Map Reconstruction
Figure 3 provides the results of occlusive and low textural region

detection and rectification. The results are obtained from two

consequent color images in ‘‘Lovebird1’’ from MPEG [24]. The

optical flow filed is obtained between It?Itz1 (i.e., from the

previous image to the current one), and errors will occur in low

textural regions in background and occlusions around object

boundaries. Figure 3(a) shows the static scene with occlusive and

low textural regions, and Figure 3(b) is the obtained optical flow

field based on the given static scene of Figure 3(a) where many

unreliable PMVs can be found. Figure 3(c) shows the result that

Figure 3(b) processed by the operator in Equation 4. It can be

found that most of the odd PMVs have been rectified.

After that, the vacant depth map (Dtz1)n|m at time tz1 can be

propagated and reconstructed via the obtained optical flow field

Y(v)n|m from the previous depth map as

(Dt
XzY(v))n|m?(Dtz1

X )n|m ð5Þ

A depth map sequence that synchronized with the color frames

can be reconstructed by Equation 5. This depth map sequence is

with high resolution in video-rate. The depth information in

vacant time slot is propagated from the key depth map, where the

depth information is reliable. However, the processing on the

reconstructed depth maps is not finish yet. As denoted by Equation

4, the PMVs for occlusive region is labeled and reserved for post-

processing, and the regions that reserved will be a hole without

depth information in the reconstructed depth map. On the other

hand, ambiguous PMVs is inevitable in optical flow algorithms.

These PMVs also can result in holes. Therefore, a depth map

filtering for post-processing is necessary to improve the quality of

reconstructed depth maps.

Depth Map Filtering
As mentioned above, the reconstructed depth maps may

contain holes due to the labeling operation in Equation 4, and

ambiguous PMVs. For the ambiguous PMVs on pixel X, the

missing depth value dX is very close to its spatial neighbors

VX5(Dtz1)n|m, so that a median filter is applied. The operation

can be denoted by

dX~medianfdYDY[VXg ð6Þ

For the hole caused occlusions and marked in Equation 4, the

pixel X is marked by label(v). In this case, the missing depth value

dX~dlabel on pixel X can be joint predicted by the depth value

around the hole and the region where the PMV pointing to. We

propose a depth value predictor as

dlabel~ad(Vlabel)z(1{a)d(Vlabelzv) ð7Þ

where a[½0,1� is normalized by the norm of v, d(:) is an in-painting

operator [25].

However, in-painting on depth map will bring noticeable blur

effect, especially when the hole crosses the boundaries of high

contrast edges. Usually, depth map with blurred boundaries results

in a failure on foreground-background separation [26]. Therefore,

an object boundary enhancement filter (BEF) is further proposed

Figure 4. Texture analysis for color image for different s(IVY[VX
{IX).

doi:10.1371/journal.pone.0047041.g004
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h(D(X))~k{1
d (D(X))

ð?
{?

ð?
{?

f(j)c(j,D(X))dj ð8Þ

where

D Xð Þ~ arg
Y[VX

max freq D(Y)ð Þ ð9Þ

is the depth value that most frequent appearing in VX, h(:) is a

bilateral filter defined in [27]. freq(:) is a statistical function that

count the appearing frequency of each element in a data set. For

example, suppose we have a data set A~fa,a,bg, the result of

freq(A) will be ffa,2g,fb,1gg. Therefore, we can further have

argA max freq(A)~a.

Equations 8 and 9 can smooth the depth map, and the object

boundary can be sharper.

Dynamic 3D Scenes Materials
Dynamic 3D scenes contain a video-rate color image sequence

that record the motion, color and texture information of this scene.

Furthermore, a high resolution depth map sequence is also

captured to record the 3D space information for all visible objects.

As we have mentioned above, high resolution depth map cannot

be captured by RGB-D or ToF cameras in video-rate that

synchronically with the color image sequence so far. Recently,

MPEG released their standard test sequences for dynamic 3D

scenes with high resolution (more than standard definition) and

high frame-rate, including color images and depth maps [24]. The

color images were captured by cameras, but the depth maps were

not captured but calculated by stereo matching and even manual

labeling. The quality of depth map obtained through this way was

assumed with the best quality to be obtained.

The dynamic 3D scene materials named as Undo Dancer,

Lovebird1, and Balloon will be used to testify our proposed

algorithm. The captured color images and calculated depth maps

Figure 5. Parameter analysis for eV and eI . (a) The Bad Point Ratio
with different eI selection when eV is fixed as 4. (b) The Bad Point Ratio
with different eV selection when eI is fixed as 9.
doi:10.1371/journal.pone.0047041.g005

Figure 6. Subjective results on depth images for different
filters. (a) Original depth map to be reconstructed. (b) Result of
method in [19]. (c) Obtained depth map with hole-filling but without
boundary enhancement filter. (d) Result of the proposed method.
doi:10.1371/journal.pone.0047041.g006

Figure 7. Objective results of our method. (a) Reconstructed
quality for 9 consequent depth maps of left and right views for
Lovebird1. (b) Quality for 9 synthesized correspondent virtual view
images.
doi:10.1371/journal.pone.0047041.g007

Dynamic 3D Scene Depth Reconstruction
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of these materials are selected from [24]. These materials are with

different challenges in depth reconstruction, as listed in Table 1.

Results and Discussion

Experiment Arrangements
Experiments are arranged in four parts, including a discussion

on thresholds in Equations 2 and 3, subjective and objective

quality comparisons on depth reconstruction between our

algorithm and the benchmark state-of-the-art method in [19],

and finally an objective quality comparison on the dynamic 3D

scene representation. In [19], the PMVs between consequent color

images are not processed before propagation. Instead, a bilateral

filter was applied for propagation, and errors in reconstructed

depth were processed by motion compensation.

In our experiment, the depth map at t~0 is selected from the

given depth map sequence and treated as key depth map. The

consequent depth maps in material are treated as vacant, and they

will be propagated and reconstructed by our proposed algorithm

and the benchmark method with the help of the key depth map.

The consequent depth maps in material will be used as anchor for

the reconstructed depth in objective quality evaluation.

On the Parameters eV and eI

From Equations 2 and 3 we can see that there are two

thresholds eV and eI in our formulation. They modulate the

number of the pixels of occluded or low textural, and thus the final

quality of output propagated depth maps. These parameters (i.e.,

thresholds) are usually used in pixel classification. For parameter

eV, it is a real number varies in ½0,?), and it determines the

number of low textural pixels. If eV tends to be infinite, all pixels in

image will be determined as low textural ones no matter how

many textures around them. According to our proposed scheme,

spatial filter (i.e., average filtering in Equation 4) is applied on the

low textural pixels. Depth information for textural pixels can then

be erased by this filter, and thus the accuracy of obtained depth

map will be degraded. For parameter eI , it is also a real number

varies in ½0,?), and it determines the number of occluded pixels.

Furthermore, Equation 3 is performed on two corresponding

pixels that related by vector v. The accuracy of v can be

represented by the deference of IXzv{IX and checked by eI .

Figure 4 demonstrates a texture analysis of VX on one color

image in test material Lovebird1 when s(IVY[VX
{IX) is changing.

Texture in image can be treated as wave variation in signal.

According to the definition of information entropy, more

information is contained in VX when the signal varying sharply.

When considering the matching operation in optical flow

calculation, more information in VX is helpful to obtain higher

accurate and reliable v. Therefore, the parameter of eV is also a

threshold to distinguish reliable and unreliable v. Figure 4 shows

that the region VX can be clearly classified to low textural region

when s(IVY[VX
{IX)v6, or otherwise, apparent textures are

visible in VX.

Based on the texture analysis in Figure 4, the parameter settings

for eV and eI can be solved. Figure 5 demonstrate the performance

curves (i.e., Bad Point Ratio) with respect to the variation of eV

and eI . In Figure 5 (a), we fix eV to be 4 and vary eI from 1 to 20.

We can see that Bad Point Ratio drops to minimum point when eI

is 9. After that, in Figure 5 (b), we fix eI to be 9 and vary eV from 1

to 7. It can be found that Bad Point Ratio varies slightly for the

parameter eV, but the curve is increasing when eV becomes larger.

Therefore, we select eV to be 3 to obtain a relative smaller Bad

Point Ratio, indicating higher accuracy of depth map.

Subjective Results for Depth Reconstruction
Figure 6 gives comparison results of subjective experiments.

Each subfigure provides an enlarged part, and details the

difference between our algorithm and the method in [19].

Figure 6(a) is the original depth map that selected in materials,

and it serves as benchmark and is treated as absent in depth

reconstruction. Figure 6(b) marked by ‘‘BL+MC’’ is obtained by

method in [19], and it shows definite geometric distortion around

the regions of moving object boundary. The phenomenon is a

result of temporal bilateral-filtering. On the contrary, our

algorithm detects the occlusive and low textural region, and

processes these regions according to their types before depth

propagation and reconstruction. Figure 6(c) marked by ‘‘HF’’ is

the reconstructed depth map by using the optical flow field

Y(v)n|m in Figure 3(c) with Equations 5, 6 and 7. As we

mentioned above, the blurring effect is occurred around object

boundaries. Figure 6(d) marked by ‘‘BEF’’ is the result obtained by

our proposed method. The operation difference between

Figures 3(c) and (d) is the BEF, which is processed by Equation

8 and 9. It can be found that the blurring effect is removed and the

boundary around object is sharper.

Objective Results for Depth Reconstruction
The objective quality comparison is measured by the peak

signal-noise ratio (PSNR) from the reconstructed and correspond-

ing existing depth maps from test materials. In the comparisons,

higher PSNR indicates higher accuracy and better performance.

Figure 7 and Table 2 provide the quantitative results. We can see

that high precision of depth propagation is benefit in high quality

of depth reconstruction, and the quality of reconstructed depth

map of our method (labeled with ‘‘P’’) is more than 8 dB better

than the benchmark (labeled with ‘‘B’’). However, errors (e.g.

Table 2. Comparisons on Quality of Reconstructed Depth Maps and Synthesized Virtual Views (dB).

Test Scheme Left Right Virtual Gain in Gain in Gain in

Sequence View View View Left View Right View Virtual View

Dancer Proposed 31.7396 31.7792 37.8609 5.7873 5.7809 0.7355

[19] 25.9523 25.9983 37.1254

Lovebird1 Proposed 39.2648 38.6206 41.8520 10.5336 9.6364 3.9791

[19] 28.7312 28.9842 37.8729

Balloon Proposed 32.4155 31.0498 42.5151 8.6305 7.9726 4.5184

[19] 23.7850 23.0772 37.9967

doi:10.1371/journal.pone.0047041.t002
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distortions around boundary) will also be propagated as shown in

Figure 6(b). Therefore, the quality of reconstructed depth map will

drop down along with longer distance propagation. As for the

results given in Figure 7(a), we reconstruct 9 consequent depth

maps for Lovebird1 for both left and right views respectively.

Figure 7(a) shows that the quality of the 1st depth map

reconstructed by the benchmark is comparable with that of the

9th by our method, indicates the higher quality of our method. On

the other hand, Table 2 lists the average quality results on 9

reconstructed depth maps for three test sequences. It is obvious

that our method has at least 5 dB gains on depth reconstruction,

which is due to the rectification on optical flow field. On the other

hand, BEF is used to eliminate the blur effect around boundary,

and it will also benefit the quality.

Results in Dynamic 3D Scene Representation
Dynamic 3D scene representation is measured by the objective

quality of virtual view synthesis. Virtual view is an important

application in 3D computer vision when color images and the

corresponding depth maps are both available for a dynamic 3D

scene [13,17]. Better quality of depth maps can yield high quality

of virtual view, and have better performance in dynamic 3D scene

representation.

We use the reconstructed depth map for synthesis by VSRS

software [28], which is a common test platform. The results are

also given in Figure 7(b) and Table 2. Our method achieves 0.7 to

4.5 dB gains on PSNR for all the test materials. On the other

hand, the accuracy of reconstructed depth map from the

benchmark will be greatly affected by filter-based propagation.

The distortion results in synthesis distortions.

Summary of Results
In sum of the above quantitative comparisons, the proposed

algorithm can achieve more accurate depth reconstruction on all

test sequences with different challenges, including global motion

and local motion, or dynamic scene that captured in natural

environment and generated by computer graphics.
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