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Abstract: Vulnerability mapping reveals areas that are likely to be at greater risk of  

climate-related disasters in the future. Through integration of climate, biophysical, and 

socioeconomic data in an overall vulnerability framework, so-called “hotspots” of 

vulnerability can be identified. These maps can be used as an aid to targeting adaptation and 

disaster risk management interventions. This paper reviews vulnerability mapping efforts in 

West Africa conducted under the USAID-funded African and Latin American Resilience to 

Climate Change (ARCC) project. The focus is on the integration of remotely sensed and 

socioeconomic data. Data inputs included a range of sensor data (e.g., MODIS NDVI, 

Landsat, SRTM elevation, DMSP-OLS night-time lights) as well as high-resolution poverty, 

conflict, and infrastructure data. Two basic methods were used, one in which each layer was 

transformed into standardized indicators in an additive approach, and another in which 

remote sensing data were used to contextualize the results of composite indicators. We assess 

the benefits and challenges of data integration, and the lessons learned from these  

mapping exercises. 
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1. Introduction 

A large body of evidence going back more than two decades shows that exposure alone is not sufficient 

for understanding trends in disaster losses, and that social and economic vulnerability are critical 

ingredients [1,2]. West Africa has been identified as one of the regions that is most vulnerable to climate 

change both in terms of exposure to climate hazards [3,4] and social vulnerability [5,6]. Tools such as 

spatial vulnerability assessment are useful for understanding patterns of vulnerability and risk to climate 

change at multiple scales and have been applied in Africa perhaps more than any other region [5–7]. The 

demand for vulnerability maps among development agencies and governments is increasing as greater 

emphasis is placed on scientifically sound methods for targeting adaptation assistance [8]. 

Mapping is useful because climate variability and extremes, the sensitivity of populations and systems 

to climatic stressors, and adaptive capacities are all spatially differentiated. The interplay of these factors 

produces different patterns of vulnerability. Typically, spatial vulnerability assessment involves data 

integration in which geo-referenced socio-economic and biophysical data, including those derived from 

remote sensing, are combined with climate data to understand patterns of vulnerability and, in turn, inform 

where adaptation may be required. Maps have proven to be useful boundary objects in multi-stakeholder 

discussions, providing a common basis for discussion and for deliberations over adaptation  

planning [9,10]. Maps can help to ground discussions on a solid evidence base, especially in developing 

country contexts where geographic information may not be easily accessible for all stakeholders. 

Spatial data integration and spatial analysis have become standard tools in the toolkit of climate 

change vulnerability assessments. The United Nations Environment Programme (UNEP) Programme of 

Research on Climate Change Vulnerability, Impacts and Adaptation (PROVIA) Research Priorities on 

Vulnerability, Impacts and Adaptation [11] highlights “measuring and mapping vulnerability” as a first 

priority for supporting adaptation decision-making. In many cases vulnerability assessment (VA) is 

synonymous with spatial vulnerability assessment, owing in part to an understanding that vulnerability and 

its constituent components exhibit high degrees of spatial and temporal heterogeneity [10]. The purposes 

vary according to the specific study, but spatial VAs are generally intended to identify areas at potentially 

high risk of climate impacts—so-called climate change “hotspots” [12]—and to better understand the 

determinants of vulnerability in order to identify planning and capacity building needs. 

Because of their wall-to-wall coverage, remote sensing data have the potential to fill important data 

gaps in data-poor developing country contexts. The goal of this paper is to illustrate the utility of remote 

sensing data in combination with other data sources, both climatic and socioeconomic, in illuminating 

regions that are vulnerable to climate change. This paper briefly describes the frameworks, data, methods, 

and results for two mapping efforts, one for Mali and the other for Coastal West Africa. Detailed 

presentation of methods, results and uncertainties are provided elsewhere [13,14] (see 

http://community.eldis.org/.5bf8c6aa and http://community.eldis.org/.5c1ec83b); the focus here is on the 

remote sensing data products and the approaches used for data integration. We conclude with a 

discussion on the potential and shortcomings of using remote sensing data as surrogates for other  
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data sources, the benefits and challenges of data integration, and the lessons learned from these  

mapping exercises. 

Vulnerability mapping and the quantification of vulnerability is not without shortcomings, and more 

critical perspectives are provided in a number of other publications [8,10,12,15]. Readers desiring a more 

in depth look at the challenges of vulnerability mapping, including issues around uncertainty, are advised 

to read these publications. We address the limitations of the methods described in this paper in Section 4. 

Despite these caveats, the spatial vulnerability index construction methods described here are widely used 

in the literature and have been found to be useful to policy audiences seeking to better understand the 

factors contributing to vulnerability [5,7,9,10,16]. 

2. Methods and Data 

2.1. Mali Vulnerability Mapping 

As a framework for the Mali vulnerability map, the authors of the report [12] utilized the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) conceptual 

framework, which separates vulnerability to climate stressors into three components: exposure, 

sensitivity, and adaptive capacity [17]. This is a precursor to the more recent IPCC framework, more 

familiar to the natural hazards community, which conceptualizes risk as a function of hazard, exposure 

and (social) vulnerability [18] (see Section 2.3). The approach for Mali was to map the general 

vulnerability of the population rather than to develop separate vulnerability layers for individual systems 

(e.g., ecosystems); sectors (e.g., water or agriculture); or population sub-groups (e.g., pastoralists). 

However, given the high dependence of the majority of the population on subsistence-based agriculture, 

many of the indicators selected had this population in mind. 

We used a spatial index approach, in which raw data values are represented as percentiles. In other 

words, each data layer was transformed to an indicator with a range of 0–100 (with 100 representing 

most vulnerable). In a few cases we trimmed the tails of the distribution before converting to the 0–100 

score. Continuous indicators were assessed for skewness. A number of the indicators (especially climate 

variables) exhibited a long right-tail in the distribution, and hence we chose to winsorize (trim the tails) 

at inflection points in the data. We also removed from consideration the thinly settled far north regions, 

which tended to have more extreme values for climate and socioeconomic indicators. The goal was to 

seek a relatively good distribution of scores in the 0–100 range while grounding decisions in substantive 

considerations of what represents high and low levels of vulnerability.  For example, for market 

accessibility, we decided that any travel times over 36 hours represented an absolutely high level of 

vulnerability (i.e., a score of 100) such that travel times over that level were not incrementally worse. 

We inverted indicators where high values in the raw data were associated with low vulnerability (e.g., 

precipitation). Finally, we had to convert some ordinal indicators (e.g., Anthropogenic Biomes) to scores 

based on characteristics of the biomes. After normalization, the indicators were then averaged to produce 

sub-indices for exposure, sensitivity, and adaptive capacity, which were then averaged to produce the 

overall vulnerability index. We also used principal components analysis (PCA) as an alternative 

aggregation method, which produced broadly similar results. 
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The eighteen spatial indicators we utilized are found in Table 1. Selection of indicators was guided 

by the literature on factors known to contribute to each component of vulnerability, as well as by data 

availability and quality (see Annex IV of the Mali report for justifications related to each indicator). For 

climate exposure indicators we relied heavily on FEWSNET historical climate data [19] (4 of 6 

indictors), and for sensitivity and adaptive capacity indicators we relied extensively on spatially 

interpolated Demographic and Health Survey (DHS) data (3 of 12 indicators). Each data layer was 

justified based on its conceptual proximity to the three vulnerability components [15], and choices were 

consistent with the variables that have been found to be associated with harm from climate variability 

and change, including education levels [20], climate variability [21], and marginal (semi-arid and arid) 

environments and geographically remote areas in poor developing regions [12,22]. The guiding approach 

was to identify a limited number of high-quality spatial data sets that best represent the component of 

interest while avoiding the temptation to add low-quality data (data of high uncertainty or coarse spatial 

resolution), thereby “contaminating” the results. We had reasonably high confidence in the validity and 

reliability of each of the data sets included; data limitations are explored in Annex IV of the Mali report. 

Our processing involved the following steps. We converted all the original spatial data layers from 

their original formats (Table 1, Column 3) into grids at a common 30 arc-second (approximately 1 km2) 

resolution. We chose this cell size because it was the resolution of our highest-resolution data sets, and 

we felt that the interpolated surfaces for a number of our point-based data sets (e.g., the Demographic 

and Health Survey cluster-level data, conflict data, and health facilities data) could achieve a better 

representation of spatial variability at 1 km2. However, it is worth bearing in mind that the nominal  

1 km2 resolution of the outputs is based on inputs of varying resolutions, from 10 sq. km grids to 

subnational units (in Mali these are termed regions and cercles), depending on the parameter. This is an 

issue we return to in the discussion. 

Prior to normalization, grids were converted to tabular comma-separated values (CSV)-format files 

using a common grid referencing system. All data transformations and aggregations were performed in 

the R statistical package. All indicators were given equal weights except for the three indicators derived 

from Demographic and Health Survey (DHS) cluster-level data: household wealth, child stunting, and 

education level of the mother. The justification for this weighting was that these indicators were deemed 

to be closer to our interest in food and livelihood security, and because the data are at a higher spatial 

resolution than most of the other sensitivity and adaptive capacity indicators. After transformation and 

aggregation, the data were re-exported to ArcGIS to produce the final maps. A processing flow chart is 

shown in Figure 1; methods are further described in CIESIN [23]. 

Since the ranges of scores in the resulting component sub-indices (exposure, sensitivity, adaptive 

capacity) significantly varied based on the underlying distributions of indicator scores, we rescaled the 

resulting component scores so that they ranged from 0–100, and then averaged the three components 

together to create an overall vulnerability index. Climate projections were incorporated in an annex. 

  



ISPRS Int. J. Geo-Inf. 2015, 4 2565 

 

 

Table 1. Indicators used for the Mali climate vulnerability mapping exercise. 

Component Data Layer Original Data Format 

Exposure 

Average annual precipitation (1950–2009) Raster (with point inputs) 

Inter-annual coefficient of variation (CV) in precipitation (1950–2009) Raster (with point inputs) 

Percent of precipitation variance explained by decadal component (1950–2009) Raster 

CV of the Normalized Difference Vegetation Index (NDVI) (1981–2006) * Raster 

Long-term trend in temperature in July–August–September (1950–2009) Raster (with point inputs) 

Flood frequency (1999–2007) * Raster 

Sensitivity 

Household wealth (2006) Point 

Child stunting (2006) Point 

Infant mortality rate (IMR) (2006) Polygon 

Poverty index by commune (2008) Polygon 

Conflict events/political violence (1997–2012) Point 

Soil organic carbon/soil quality (1950–2005) * Raster (with point inputs) 

Malaria stability index Raster 

Adaptive 

Capacity 

Education level of mother (2006) Point 

Market accessibility (travel time to major cities) 
Raster (with polyline 

inputs) 

Health infrastructure index (2012) Point 

Anthropogenic biomes (2000) * Raster 

Irrigated areas (area equipped for irrigation) (1990–2000) Raster 

* Remote sensing derived. 

 

Figure 1. Vulnerability mapping processing flow chart. 

2.2. Mali Vulnerability Mapping Data Integration 

Remote sensing data were used for each of the indicators in Table 1 that have an asterisk (*).  

Figures 2–5 show the raw and transformed versions of these indicators. Note that the right panels of each 

figure show no data above 17.2°N latitude. We excluded from consideration all areas north of that 

latitude, a region that is very sparsely populated, because USAID was primarily interested in 
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programming in more densely populated regions to the south, and because climate variability and change 

may have less of an impact due to already harsh conditions. The information included and the rationale 

for incorporating these indicators is described in this section. 

The climate exposure indicators sought to measure average conditions and trends for temperature and 

precipitation, as well as variation in precipitation and, at the extreme, flood events. As mentioned, the 

FEWSNET climate data were of reasonably high spatial resolution, but are based on in situ monitoring 

networks that are relatively sparse given the size of Mali’s territory, so they are gap filled with satellite 

data. The satellite data used to fill spatial gaps in the in situ monitoring networks include MODIS Land 

Surface Temperature (LST) and Multisatellite rainfall estimates (RFE2) from NOAA CPC [24]. The 

Coefficient of Variation of Normalized Difference Vegetation Index (NDVI) (1981–2006) (Figure 2) 

indicator supplements the Interannual Coefficient of Variation in Precipitation (July–August–September) 

indicator by providing higher spatial resolution data, based on satellite observations of greenness for the 

month of August for a 25-year period. August was selected since this is typically a month of peak rainfall 

for the growing season. This indicator can be interpreted as the reliability of rainfall in a given year for 

crop production or livestock grazing. 

The flood frequency layer was generated as part of the Global Assessment Report on Risk Reduction [25] 

(Figure 3). It is based on three sources: (1) A GIS modeling using a statistical estimation of peak-flow 

magnitude and a hydrological model using HydroSHEDS dataset and the Manning equation [26] to 

estimate river stage for the calculated discharge value; (2) observed flood from 1999 to 2007, obtained 

from the Dartmouth Flood Observatory (DFO); and (3) frequency from UNEP/GRID-Europe PREVIEW 

flood dataset [27]. The unit of measurement is the expected average number of events per 100 years. 

The observed flood data are produced by the Dartmouth Flood Observatory from MODIS 250 m data. 

Because the observed flood data does not have comprehensive global coverage, they are used to validate 

and calibrate the model. Since there are few river gauge networks in Africa, these data are among the few 

available to assess flood risk. The flood risk equates to higher exposure to climate extremes in low lying 

and riparian areas. 

Soil carbon (Figure 4) was mapped by the International Soil Resources Information Centre (ISRIC) 

using MODIS data. The data represent an approximation of the soil organic carbon in top soil, which is 

0–20 cm. The authors make clear that the true accuracy of the resulting maps depends on the quality of 

the input data and the interpolation method used. The correlation with MODIS imagery was based on 

12,000 profiles for the whole of Africa, which means that each soil profile represents on average 1500 

pixels. Interpolations over large distances occur because the data locations are clustered with large gaps 

for some parts of Africa. These data were included because soil carbon is an important predictor of crop 

yields. Higher soil organic carbon would also indicate lower sensitivity to climate variability, since soil 

water retention is associated with organic carbon [28]. 

Anthropogenic Biomes (Figure 5) is itself a composite data set generated with thee data layers: 

population density, land use (specifically crop, pasture, and irrigated lands), and land cover [29]. The 

latter is defined by percent trees and bare earth based on the Vegetation Continuous Fields MOD44B, 

2001 percent tree cover, collection 3 [30]. We included anthropogenic biomes in preference to 

FEWSNET livelihood zones because it is a higher spatial resolution data set, and it does a better job of 

pulling out the livelihood diversification of the inland delta of Mali. The inland delta represents a 

relatively unique area of flat topography through which the Niger River flows, which results in seasonal 
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flooding that enhances crop and pastureland production and irrigation potential. This results in higher 

adaptive capacity than the climate zone would suggest based on precipitation alone. Since the 

Anthropogenic Biomes are categorical data, we needed to use expert judgment to recode each biome 

into a 0–100 score, based on the number of livelihood options available in each region. 

These data were combined with data for exposure, sensitivity and adaptive capacity from non-satellite 

sources, including among other things distance to market derived from road infrastructure data, health 

infrastructure locations, conflict events, and DHS interpolated surfaces based on cluster points for 

household wealth, child stunting, and maternal education levels. The integration method, as described 

above, was to average the transformed scores across indicators first by component, and then to average 

the stretched component scores to come up with an overall vulnerability index. 

 

Figure 2. Interannual Coefficient of Variation in Greenness (NDVI)—Derived from 

GIMMS, raw data (left) and transformed (right). 

 

Figure 3. Flood Extent (events per 100 years)—Derived in part from MODIS flood extent 

data at the Dartmouth Flood Observatory, raw data (left) and transformed (right). 
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Figure 4. Soil Carbon Partly Derived from MODIS data raw data (left) and  

transformed (right). 

 

Figure 5. Anthropogenic Biomes raw data (left) and transformed (right). 

2.3. Coastal West Africa Exposure Mapping 

The Coastal West Africa mapping built on experience gained in the Mali mapping but took a slightly 

different approach. Because our focus was on climate stressors in the coastal zone (storm surge, flooding, 

and sea level rise) and the exposure of economic and social systems, we use the term exposure mapping 

as opposed to vulnerability mapping. Instead of the IPCC AR4 vulnerability framework, we used the 

IPCC Special Report on Climate Extremes (SREX) risk framework, later adopted by the IPCC fifth 

assessment report (AR5), which construes risk as emanating from the spatial intersection of exposure to 

extreme events and vulnerable systems [18]. This was because the focus was on exposure to seaward 

hazards rather than describing the complex human-environment system. A full description of methods 

and the rationale for the indicators used in the study is found in de Sherbinin et al. [14]. 
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For this study, we constructed two main indices, a Social Vulnerability Index (SVI) and an Economic 

Systems Index (ESI). The SVI measures a combination of population density and growth together with 

poverty, seeking to approximate the population size and susceptibility to coastal extremes (Table 2). The 

ESI sought to measure relative levels of economic activity that could be exposed to seaward hazards, 

including crop production, GDP, and urban service and industrial sector activities (using night-time 

lights as a proxy). These aggregate indices were constructed from raw data in a manner identical to the 

Mali vulnerability mapping; the main difference was that we faced greater constraints in the availability 

of consistent data covering all 10 coastal countries, and hence had to rely more on global and regional 

data sets. All indices were calculated for the coastal zone, defined as a 200 kilometer strip from the 

coastline inland. This covers somewhat larger areas than what might normally be construed as “coastal”, 

but we chose this larger area in recognition of the fact that the economic impacts of climate change in 

the coastal zone will not be confined to the coastline itself, but will affect activities further inland. 

Table 2. Indicators used in the social vulnerability index of the coastal study. 

Indicator Date or Date Range Original Data Format 

Population density 2010 Raster (derived from polygon) 

Population growth 2000–2010 Raster (derived from polygon) 

Subnational poverty and extreme poverty 2005 Polygon 

Maternal education levels circa 2008 Point 

Market accessibility (travel time to markets) circa 2000 Polyline 

Conflict data for political violence 1997–2013 Point 

2.4. Coastal West Africa Data Integration 

The low elevation coatal zone (LECZ) was mapped using the Altimeter Corrected Elevations 2 

(ACE2) data set to identify areas at potential risk of inundation from sea-level rise, surge, or river-bank 

flooding. In the absence of more detailed modeling studies of surge risk and likely future relative changes 

in sea level for coastal West Africa, we term the areas at risk of sea level rise and storm surge as being 

in LECZ bands of 0–5, 5–10, and 10–20 m above mean sea level. Although global mean sea-level rise 

by the end of this century is predicted to range from 0.3–1.2 meters depending on the rate of warming 

and the response of ice sheets [31], storm surge can greatly expand the area affected by seaward impacts. 

Basic data on coastal topography are available through publicly accessible global data sets such as the 

National Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) 

global digital elevation model (DEM) (90 m resolution); the European Space Agency ACE2 data set 

(which merges SRTM with Satellite Radar Altimetry) (90 m resolution) [32]; and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 

(GDEM) (15 m resolution). It should be emphasized that all global DEMs contain inaccuracies [33]. In 

our assessment, ACE2 had the advantage over SRTM and ASTER GDEM of accurately returning ground 

values in areas of dense forest cover such as mangroves; for this reason and based on evaluations against 

SRTM that showed that ACE2 consistently returned slightly lower elevations (Figure 6), we chose to 

use this data set. Note that we did explore the use of the Dynamic Interactive Vulnerability Assessment 

(DIVA) model, but were unable to obtain the data. We examined data from Dasgupta et al. [34], which 
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incorporate the DIVA results, but because they rely heavily on SRTM data we found that they under 

estimate the areas at low elevations. 

We used night-time light imagery from the defense meteorological satellite program/operational 

linescan system (DMSP/OLS) nighttime stable light (NTL) to map the urban areas in 2010. When proper 

thresholds are applied, this data set has the advantage of providing a consistent metric of urban extent 

when compared to the semi-automated classification of optical imagery. Figure 7 shows different classes 

of urban density—high, medium, and low—based on different luminosity thresholds from the nighttime 

lights, superimposed on the 0–5 and 5–10 m LECZ. Lagos, Nigeria, and Cotonou, Benin, were found to 

be highly exposed to sea level rise and storm surge. Indeed, Cotonou is already experiencing alarming 

degrees of coastal erosion. 

 

Figure 6. Comparison of SRTM with ACE2 in Coastal Benin. 
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Figure 7. Urban areas of Cotonou, Benin and Lagos, Nigeria in comparison to the LECZ. 

 

Figure 8. Mangroves and the LECZ. 
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Figure 9. Landsat-scale deforestation data aggregated to one square kilometer pixels. 

Because of USAID’s interest in biodiversity and natural systems in the coastal zone for their potential 

buffering capacity and concerns over their loss, we also mapped mangrove systems and forest loss. These 

two layers were also derived from remote sensing imagery. Giri et al. [35] mapped mangroves globally 

using 30 m Landsat imagery. The coastal zone of West Africa has mangroves throughout, but the 

mangroves are especially concentrated in Guinea Bissau and the Niger Delta (Figure 8). Sea level rise 

will certainly have impacts on the viability of these ecosystems, but by the same token they represent an 

important form of natural coastal defense. 

The deforestation data for West Africa were derived from Hansen et al. [36] which was the first ever 

global assessment of forest loss and gain using Landsat 30 m imagery. We aggregated the 30 m imagery 

to 30 arc-second (~1 km) pixels that indicated the percent of the pixel that had experienced deforestation 

from 2000 to 2012 (Figure 9). This was intended to provide a quick picture of the hotspots of 

deforestation, especially those near the coastal zone. 

A key difference from the Mali vulnerability mapping is that none of the remote sensing derived 

indicators were actually integrated into the synthetic indices we created. For the coastal mapping, we 
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simply overlaid the indices (SVI and EVI) and mangrove and deforestation areas onto the LECZ to 

visualize the degree of exposure and the potential for harm. 

3. Results 

Before addressing the results for Mali, it is important to emphasize that the maps depict relative 

vulnerability within the country, not an absolute level of vulnerability that is comparable to other 

countries. Mali is a poor, landlocked country with a largely agrarian economy, and, as such, exhibits 

high levels of climate vulnerability when compared to many other countries (see, for example, the Notre 

Dame Global Adaptation Index). 

 

Figure 10. Mali vulnerability mapping: Components of vulnerability rolled up into an 

overall vulnerability index. Note: Northern portions of Mali were excluded owing to low 

population densities. 

Figure 10 shows how the three components for the Mali vulnerability mapping are rolled up into an 

overall vulnerability index (VI). The exposure map depicts the generally south to north gradient of 

exposure indicators, with lower rainfall, higher temperatures, and higher rainfall variability in the north 

when compared to the south. The sensitivity map shows highest sensitivity in the densely settled 

southeast of the country, and the adaptive capacity component generally shows highest adaptive capacity 

near the capital and close to the Niger river (adaptive capacity is represented as “lack of adaptive” 

capacity, consistent with high values representing higher vulnerability in the other components), with 

adaptive capacity declining as distance from those features increases. The overall vulnerability map is 
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strongly influenced by the south-north gradient of the climate exposure indicators, though there is a 

pocket of relatively lower vulnerability in Timbuctoo and Gao (northeast Mali), roughly corresponding 

to the arc of the Niger River. Broadly, areas of highest vulnerability are just north of the 500 mm isohyet 

for rainfall, making the northern limit of rainfed agriculture. 

When targeting adaptation work, it is important to also take into account the relative size of the populations 

living in the highest vulnerability regions. In Mali, populations vary substantially for each of the five 

vulnerability classes (from low, 0–20, to very high, 80–100). Approximately 40% of Mali’s population 

resides in areas classified as medium vulnerability (VI of 40–60), and 32% reside in medium-high 

vulnerability (VI of 60–80). Only 6% reside in areas of highest vulnerability, and the population density 

in these mostly northern regions is only seven persons per sq. km, compared with a density of more than 

3600 persons per sq. km for the low vulnerability category. 

Partly as a result of this mapping effort, a major USAID-funded climate adaptation project was 

launched in the Mopti region, which is located along the Niger River in an area of moderate  

to moderately high vulnerability but relatively high population densities. The resulting vulnerability map 

also includes uncertainty maps for the most important indicators: The FEWSNET-derived  

climate exposure indicators and those derived from the DHS survey. Together, these made up seven of 

eighteen indicators. 

Figure 11 depicts the SVI in relation to the LECZ for coastal West Africa. Within the limitations of 

this kind of study (mapping scale, data gaps, and uncertainties), the map highlights a number of areas 

that have high vulnerability and are likely to be at substantial future risk. Taking these in turn, areas of 

high population and social and economic exposure in the LECZ include the Niger Delta, Lagos, and 

Cotonou. This has to do with the intense urban and economic development in these areas, high 

population density and rapid population growth. Population projections suggest a more than threefold 

increase in population in the 0–5 m LECZ band from 2010 to 2050, from 15.4 to 56.6 million people, 

with 73% of the total (41.5 million) in Nigeria [14]. In the Niger Delta patterns of high social and 

economic exposure are associated with oil and gas exploitation and high levels of poverty and conflict. 

Separate work [37] has identified the Niger Delta as a global hotspot of urban expansion and flood risk. 

Coast lines tend to rise more steeply in the western portions of the region, from Guinea to Liberia, 

resulting in lower levels of overall exposure. Côte d’Ivoire, Ghana, and Togo lie somewhere between 

these two extremes. Accra, for example, has the advantage of being largely outside the 20 m elevation 

LECZ. Guinea-Bissau is low-lying but is thinly populated with very little in the way of economic assets 

exposed. Overall, the combination of armed conflict, economic assets, population density (in Lagos, Benin 

City, Delta, and Port Harcourt), and projected population growth puts Nigeria at the top of the list of 

high exposure countries in West Africa. In terms of natural systems, the coastal mangroves,  

salt marshes, estuaries, and lagoons of West Africa are all highly vulnerable to seaward stressors while 

simultaneously providing a buffering capacity against storm surge. A mapping of the protected areas in 

the region that was part of this exercise found that these systems are currently under-protected. 

In terms of utility, this study was used as a reference document in the preparation of two major USAID 

calls for proposals: the West Africa Biodiversity and Climate Change (WA-BiCC) project,  

a portion of which seeks to build coastal resilience in areas experiencing mangrove loss, and the 

SERVIR/West Africa project, which seeks to use geospatial tools for decision making in West Africa. 

While this does not “prove” the validity of the methods (an issue we turn to in the limitations below),  
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it does show that in decision making contexts, such maps have proven valuable for programming and 

priority setting. 

 

Figure 11. SVI in relation to the West Africa LECZ. 

4. Limitations 

Here, we describe a number of limitations with vulnerability index construction that affect our results. 

While we do not feel these limitations invalidate the work, we do feel that it is important for users of the 

maps to be aware of these issues. 

Results of vulnerability index mapping are influenced by available data and the choice of indicators. 

While our choices were guided by theoretical considerations, it is clear that had data not been available 

for certain indicators, or had different choices been made, it would have would have influenced the 

results. We performed a sensitivity analysis on the Mali data to determine the change in vulnerability 

index resulting from the omission of individual indicators, and found that the index score changed by 

between −10 and +15 out of 100 points depending on location. We felt that this was within a tolerable 

level, but this remains in the eye of the beholder. Ultimately, the proof of the validity of a vulnerability 
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index should be in its predictive power. One would assume that damages from exposure to a given event 

(e.g., drought)—whether malnutrition, deaths, or economic losses—will be higher in areas of greater 

vulnerability. By examining outcomes in comparison to predicted vulnerability, one could adjust the 

indicators and the weighting to obtain a model with the best fit. This could inform index construction 

for countries facing similar natural hazards and with similar social vulnerability. While we did include 

some outcome measures (infant mortality and child malnutrition) in our index, they did not reflect 

outcomes of shocks but rather what could be termed background levels. A next step in this work would 

be to examine outcomes in relation to exposure to shocks. 

Another set of limitations has to do with the functional form of the relationship among indicators or 

among the components that contribute to vulnerability [15]. For example, for the Mali vulnerability map 

we assume that the observed minimum and maximum values (or their winsorized equivalents) have the 

same meaning across input layers. For example, the method implies that a travel time of 36 hours to the 

nearest population center has the same impact on sensitivity and adaptive capacity as having an infant 

mortality rate (IMR) of 135 deaths per 1000 live births, since both have a transformed score of 100. 

However, it may be that an area with an IMR of 135 is significantly more vulnerable. Another simple 

factor that makes the extremes not comparable is that for some indicators, the values are based on an 

interpolated surface with high spatial precision, which generates more extreme values or “long tails” in 

the data distribution (e.g., market accessibility). Others (e.g., IMR and the poverty index by commune) 

are averaged within spatial units, which artificially reduce the extremes. Although we trimmed the tails 

of the continuous raster surfaces in such a way as to increase the vulnerability scores for lower values 

on the raw scale, we would once again need outcome measures to be able to benchmark any two 

indicators to any “absolute” vulnerability level. 

Following standard practice, another assumption we make is to assume a linear relationship between 

the input layers and the conceptual category being measured. However, the functional relationship might 

be very different. It might be a step function, or sigmoid, or asymptotic if there are critical thresholds 

involved, or it might be exponential if high values trigger cascading problems that do not show up at 

lower levels. We considered taking the natural logarithm of the raw data as part of the transformation 

process for some indicators but did not have a strong theoretical justification for doing so. The interaction 

among the components relates to this. Currently we use an additive approach, but the interaction might 

be multiplicative. For example, if capacity is high enough, it may not matter much if your sensitivity or 

exposure is very high. Another way to put this is that the assumption that the three components are 

fungible—that good levels in one component compensate for bad levels in another, across the whole 

range of values—might not be true. One possible solution is to take the geometric mean of the indicators, 

thereby ensuring that vulnerability does not decrease just because of improvements in other areas [16]. 

However, this requires just as much theoretical justification as the additive approach, and once again 

could only be fully tested with robust outcome measures. 

The PCA overcomes some of the shortcomings of the additive approach by not assuming any prior 

relationships among the indicators, but allowing those relationships to emerge from the analysis. When 

mapping socio-ecological vulnerability across large spatial extents (and therefore across diverse  

socio-ecological systems) it is likely that drivers of vulnerability will vary considerably across space [38]. 

For this reason, we provided the PCA as an alternative aggregation method in the Mali mapping exercise. 
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The overall results are similar to the additive approach, though indicators reflecting proximity to major 

settlements, market accessibility, and health infrastructure appear to be more influential. 

5. Discussion  

We conclude with a discussion on the potentials and shortcomings of using remote sensing data as 

surrogates for other data sources, the benefits and challenges of data integration, and the lessons learned 

from these mapping exercises. 

First, it is worth noting that we are certainly not the first to integrate satellite remote sensing data in 

the assessment of climate vulnerability. Other examples include Midgley et al. [7], who divided 

nighttime lights imagery by population to assess poverty (inspired by Noor et al. [39] and later developed 

by Ghosh et al. [40]) as well as Tsetse Fly habitat suitability partly derived from remote sensing data on 

vegetation, temperature, and moisture; and Hagenlocher et al. [41], who similarly to this study use 

climate and flood data that are partially remote sensing derived. Hagenlocher et al. [41] also used an 

object-based remote sensing software package, eCognition, to process and present the indicators in 

distinct geographical units called geons [42]. 

As mentioned earlier, remote sensing data have the benefit of providing wall-to-wall consistent 

coverage of a number of parameters of interest. This has both the advantage of providing consistent 

metrics across countries (as in the case of the ten countries of coastal West Africa) and filling in data 

gaps in the generally data poor context of sub-Saharan Africa. On the other hand, in order to be assured 

of their validity, ground trothing is important. A number of the data layers we used were modeled based 

on remote sensing and ground observations (e.g., the FEWSNET climate and soil carbon data sets). Yet 

in Africa, ground observations are often sparse, as noted in our discussion of the soil carbon data. For 

the FEWSNET climatic data we were able to map the uncertainty (standard errors) based on the 

meteorological station point data set, and this information was included in the final map (Figure 10). 

However, the soil carbon data did not have a similar input points data layers from which we could 

calculate an uncertainty map. 

There is further potential to derive information on socioeconomic characteristics of populations from 

remote sensing, though these methods are often either labor intensive or fraught with uncertainty (e.g., 

the nighttime lights poverty metrics). For example, slum mapping can be performed using remote 

sensing imagery [43], but the classification often involves manual interpretation. This can be performed 

for individual cities [44,45] but is unlikely to be practicable over larger areas. Housing types in rural 

area may also be predictive of socioeconomic status; indeed, one of the DHS variables that goes into a 

composite household wealth indicator is roofing material, which can be easily observable in high 

resolution remote sensing imagery. Here, cost of data acquisition is likely to be a barrier to use. 

The primary challenges of data integration have to do with the temporal and spatial resolution of the 

data sets. Temporal resolution (or scale) relates to the time frame of the assessment as well as the 

temporal frequency of the phenomena of interest, which is the generally the climate stressor to which 

the system is exposed [46]. It can also refer to the frequency of measurement, e.g., from hourly (for 

climate data) to weekly (for higher resolution remote sensing data) to decadal (for census data). 

Generally speaking, spatial VAs integrate data representing multiple time periods. Climate analyses may 

require historical data for 50–100 year periods in order to adequately capture trends or the frequency of 
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extreme events. Socioeconomic data may be limited to the dates of the most recent census or survey, 

and land cover data may be available for several points in time, and will often be more recent than the 

census or survey data. For local assessments, quite recent data may be collected by community members 

themselves or provided by local agencies. 

It is a good practice to clearly communicate the approximate time frame that the assessment 

represents, and to advise users of the incorporation of older data owing to data limitations. Remote 

sensing data have the advantage of being relatively up-to-date compared with socioeconomic data, but 

this can result in temporal mismatches. It is incumbent on map producers to clearly document the date 

of each data set and to communicate the impact of using spatially inconsistent data (e.g., a decade old 

survey with a land cover map that was produced a year ago), since these will obviously have effect the 

interpretation of what most users would assume is a picture of current vulnerability or risk. 

Turning to spatial resolution, Preston et al. [10] describe the common spatial resolutions of data sets 

used in vulnerability mapping. On the one end are biophysical data, often derived from remote sensing, 

that are at high spatial resolutions (~30 m to 1 km). On the other end are climate data, which can often 

be coarse (~50–100km). Sandwiched between are the socio-economic data from censuses and surveys 

that are often in heterogeneously sized units that are partly a function of population density. This is a 

generalized view, as there are obvious exceptions, such as coarser resolution satellite data (e.g., DMSP-OLS 

nighttime lights with a nominal 2.8 km resolution) or climate data from individual meteorological 

stations that represent highly localized areas. 

Integrating data at different spatial scales can result in artifacts in the maps that unintentionally draw 

attention to differences between areas that are not necessarily present on the ground. For example, abrupt 

discontinuities across borders may be an artifact of using administrative level adaptive capacity 

indicators, or it may reflect actual changes owing to different governance regimes. Apart from rigorous 

ground-level data collection it would be difficult to determine if these discontinuities actually reflect 

“real” changes in on-the-ground vulnerability. Maps that include continuous variables derived from 

remote sensing data (e.g., the soil carbon or deforestation data) may result in maps with pixelated results 

that may appear noisy; in these cases the use of a low-pass filter may help to reduce the noise and increase 

the communication value. This is one reason we sought to generalize the deforestation data, since the 30 

m Landsat data were very difficult to visually interpret. 

Further issues and approaches related to spatial level, bounding boxes, and units of analysis  

(i.e., subnational units, geons, or grid cells) are addressed further in de Sherbinin [8]. All of these issues 

are important to address and are affected by the combinations of data that are represented in different 

ways (grid cells, points, lines, and polygons) and derived from fundamentally different data gathering 

methods. For assessments that average remote sensing and socioeconomic parameters over 

administrative units, they will confront the modifiable areal unit problem (MAUP), which stipulates that 

the results of statistical analyses are fundamentally affected by the size of the units utilized. Smaller units 

will tend to have more widely varying values an smaller standard deviations than larger units. 

6. Conclusions  

It is clear that, regardless of its limitations, remote sensing will play a growing role in vulnerability 

mapping efforts. It is likely that we will see more near-real time updates of vulnerability indices as 
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remote sensing-derived biophysical factors are combined with socioeconomic parameters. This may 

include near-real time measurements of precipitation (e.g., Tropical Rainfall Measurement Mission 

(TRMM) and Global Precipitation Measurement (GPM)), soil moisture (Soil Moisture Active Passive 

(SMAP)), floods (MODIS flood products), vegetation response to drought (e.g., MODIS Enhanced 

Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI)) on the biophysical side. 

On the socioeconomic side, very high resolution imagery may be used in localized studies to understand 

housing types and socioeconomic characteristics of populations, and over wider areas, night time lights 

intensity may help to assess changes in wellbeing or presence of conflict [47]. As the demand for 

vulnerability maps grows, it is certain that there will be a corresponding demand for remote-sensing 

derived data products, especially in data poor regions. 

A key lesson learned from this work is that maps are very powerful for policy communication [9], 

and that when presented in policy-making contexts, they serve as important boundary objects that 

stimulate debate and discussion. However, with the power of maps also comes responsibility. The very 

power of maps, which is to simplify complex ground-based realities by abstracting information, may give 

them inordinate influence among policy audiences [10], even though they may lead to wrong 

conclusions. It is always important to ensure there is a clear articulation of the limitations and uncertainty 

embedded within the maps [8]. 
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