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Abstract

Hereditary hypertrichoses are a group of hair overgrowth syndromes that are extremely rare in humans. We have previously
demonstrated that a position effect on TRPS1 is associated with hypertrichosis in humans and mice. To gain insight into the
functional role of Trps1, we analyzed the late morphogenesis vibrissae phenotype of Trps1Dgt mutant mice, which is
characterized by follicle degeneration after peg downgrowth has been initiated. We found that Trps1 directly represses
expression of the hair follicle stem cell regulator Sox9 to control proliferation of the follicle epithelium. Furthermore, we
identified a copy number variation upstream of SOX9 in a family with hypertrichosis that significantly decreases expression
of the gene in the hair follicle, providing new insights into the long-range regulation of SOX9. Our findings uncover a novel
transcriptional hierarchy that regulates epithelial proliferation in the developing hair follicle and contributes to the
pathology of hypertrichosis.
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Introduction

Hypertrichosis is defined as excessive hair growth for a particular

site of the body or age of a patient that is not hormone-dependent.

Hypertrichoses are characterized on the basis of multiple criteria:

cause (genetic or acquired), age of onset, extent of hair distribution

(universal or localized) and affected sites. Hereditary hypertrichoses

are very rare in humans, affecting as few as one in one billion

individuals [1]. Whereas many additional anomalies are associated

with hypertrichosis, only a subset of disorders with congenital

hypertrichosis present with excessive hair as the primary clinical

feature. These include hypertrichosis universalis (OMIM 145700)

[2], Ambras type (OMIM 145701) [3], X-linked hypertrichosis

(OMIM 307150) [4] and generalized hypertrichosis terminalis with

or without gingival hyperplasia (OMIM 135400) [5].

We previously demonstrated that a position effect on the zinc-

finger transcription factor TRPS1 is associated with two hypertri-

chosis models, Ambras syndrome (AS) in humans and the Koala

phenotype in mice [6]. Consistent with a causative role for Trps1

in hypertrichosis, the protein is expressed in the nuclei of

mesenchyme-derived dermal papilla cells and the proliferative

epithelial cells of human and mouse hair follicles [7].

Heterozygous germline mutations in TRPS1 on chromosome 8q23

in humans result in autosomal dominant inheritance of trichorhino-

phalangeal syndrome types I and III (TRPS1 I, OMIM 190350;

TRPS III, OMIM 190351) [8,9], which are characterized by sparse

and slow-growing scalp hair, as well as craniofacial and skeletal

abnormalities [10]. Correspondingly, homozygous mutant mice in

which the GATA-type zinc-finger domain of Trps1 was deleted

(Trps1Dgt/Dgt) were reported to have a number of hair follicle,

craniofacial and skeletal defects that mirror the phenotypic charac-

teristics of human TRPS patients [11]. Trps1Dgt/Dgt mice die within six

hours of birth due to respiratory failure stemming from thoracic

skeletal defects. Homozygous mutant mice were reported to

completely lack vibrissae follicles during late gestation. In addition,

neonatal Trps1Dgt/Dgt mice had an approximately 50 percent reduction

in dorsal pelage follicle density compared to their wild-type littermates,

whereas heterozygous mice had an intermediate pelage phenotype

[11]. Trps12/2 null mice were subsequently generated and were

similarly reported to display severe hair follicle abnormalities [12].

We recently performed a detailed histological analysis of early

vibrissa follicle morphogenesis in Trps1Dgt/Dgt embryos from E12.5–

E13.5 [13]. We found that the mutant vibrissae were reduced in

number, irregularly spaced and developmentally delayed when

compared to their wild-type counterparts [13]. Additional analyses

revealed that these defects were likely due to disruption of Wnt

signaling and the misexpression of several transcription factors and

extracellular matrix proteins regulated by Trps1 in the mutant

whisker pads [13]. While these studies collectively revealed a

requirement for Trps1 during early vibrissa follicle formation, they

did not address the mechanism(s) underlying the follicle degener-

ation observed later in these embryos.

Hypertrichosis had previously been reported in a case of partial

trisomy 17q22-qter associated with a de novo unbalanced translo-

cation [14], suggesting that the distal portion of human

chromosome 17q may contain dosage-sensitive genes that
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contribute to excessive hair growth. Recently, a series of micro-

deletions were reported on chromosome 17q24.2–q24.3 in three

cases of familial congenital generalized hypertrichosis terminalis

with gingival hyperplasia (CGHT), as well as a de novo micro-

duplication within this same region in a case of sporadic CGHT

[15]. The minimal region common to each of these cases lies

2.5 Mb upstream of SOX9, a gene previously shown to be required

for the specification and maintenance of hair follicle stem cells in

mice [16,17].

Here, we uncover a novel transcriptional hierarchy in the hair

follicle in which Trps1 regulates Sox9 to control epithelial

proliferation in the developing vibrissa follicle in mice. Further-

more, we identify a copy number variation less than 1 Mb

upstream of SOX9 in a family with CGHT that significantly

decreases expression of the gene in the hair follicle, providing

significant insight into the pathology of human hypertrichosis.

Results

Late morphogenesis vibrissa follicle abnormalities in
Trps1Dgt/Dgt mutant embryos

We began by performing a thorough histological analysis of

vibrissa follicle morphogenesis during late gestation in Trps1Dgt/Dgt

embryos. Similar to the defects observed during early morpho-

genesis in these embryos [13], the mutant vibrissae follicles that

were present at E16.5 were reduced in number, irregularly spaced

and smaller than wild-type vibrissae, with evidence of both an

epithelial peg and dermal condensate (Figure 1A–1E). However,

the development of these mutant vibrissae follicles was subse-

quently arrested, and they degenerated after peg downgrowth had

been initiated so that they were rarely visible at birth (Figure 1F–

1J). Interestingly, heterozygous Trps1+/Dgt embryos displayed an

intermediate vibrissae phenotype (Figure 1D and 1G), with

vibrissae follicles that were slightly larger, more advanced in

development and greater in number than those detected in

Trps1Dgt/Dgt mutant embryos (Figure 1E and 1H), indicating a

dose-dependent requirement for Trps1 in multiple hair types. We

additionally confirmed the reduction in pelage follicle density

reported in homozygous mutant animals [11] (Figure 1K and 1L).

Author Summary

The various ectodermal appendages found in nature have
evolved over time to allow organisms to better adapt to
their environment. These include hair, feathers, scales,
nails, teeth, beaks, horns, and a wide array of eccrine
glands. The hair follicle is an ectodermal appendage
unique to mammals that serves a wide array of functions,
including thermoregulation, sensation, and communica-
tion. Hair follicle formation begins during embryogenesis
through a series of interactions between adjacent epithe-
lial and mesenchymal tissues. The mechanisms by which
the diverse cells types of the hair follicle arise and the
contribution of progenitor cells to the processes of growth
and differentiation are not completely understood. Here,
we have identified the transcription factor Trps1 as a novel
regulator of epithelial proliferation in the developing hair
follicle, through its control of Sox9, a gene known to
regulate hair follicle stem cells. Moreover, we demonstrate
that duplicated genetic material upstream of SOX9, which
alters expression of the gene, results in a rare form of
hereditary hair overgrowth syndrome in humans.

Figure 1. Late morphogenesis vibrissa follicle abnormalities in Trps1Dgt/Dgt embryos. (A) Trps1+/+ and Trps1Dgt/Dgt embryos at E16.5. Note
the reduced number of vibrissae follicles and decreased size of the maxillary region (white brackets) in mutant embryos. (B) Trps1+/+ embryos have
five rows of vibrissae (rows A–E), whereas Trps1Dgt/Dgt embryos have four rows due to a convergence of rows C and D. (C–H) Hematoxylin and eosin
staining of transverse Trps1+/+, Trps1+/Dgt and Trps1Dgt/Dgt whisker pad sections at E16.5–E18.5 revealed small and irregularly spaced vibrissae follicles
in heterozygous and homozygous mutant embryos. (I–L) Hematoxylin and eosin staining of sagittal Trps1+/+ and Trps1Dgt/Dgt head and dorsal skin
sections at P0. Note the absence of hair follicles in the upper and lower jaws (black arrows) (I,J) and reduction in pelage follicle density (K,L) in mutant
mice. Peg, epithelial peg; DC, dermal condensate. Scale bars, 100 mm.
doi:10.1371/journal.pgen.1003002.g001

Trps1 Regulates Sox9 in the Hair Follicle
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Trps1Dgt/Dgt mutant vibrissae follicles exhibit increased
levels of proliferation

To assess the mechanisms underlying vibrissa follicle degener-

ation in Trps1Dgt/Dgt mutant embryos, we examined the levels of

proliferation and apoptosis in these follicles, as well as the

expression of numerous cell-type specific markers at embryonic

day 16.5 (E16.5). Immunofluorescence analyses revealed consis-

tent keratin 14 (K14) expression in the epithelial compartments of

wild-type and mutant vibrissae follicles (Figure 2A and 2B), and

alkaline phosphatase staining displayed an intact dermal papilla,

but a considerably smaller and less dense collage capsule

surrounding Trps1Dgt/Dgt mutant vibrissae (Figure 2C and 2D).

Collagen type I expression was comparable in the glassy

(basement) membranes of wild-type and Trps1Dgt/Dgt vibrissae

follicles (Figure 2E and 2F). Immunofluorescence analyses of Ki67

expression revealed a marked increase in proliferation throughout

the developing Trps1Dgt/Dgt vibrissa follicle (Figure 2G and 2H),

while the TUNEL assay indicated similar levels of apoptosis

between the two follicle types (Figure 2I and 2J). Of note,

expression of the Wnt effector Lef1 was consistent in the dermal

papillae and matrix cells of Trps1+/+ and Trps1Dgt/Dgt vibrissae

follicles at this timepoint (Figure 2K and 2L), indicating that the

deregulation of the canonical Wnt pathway detected in Trps1Dgt/Dgt

vibrissae placodes at E12.5 [13] is no longer observed during later

morphogenesis.

Trps1 directly represses the expression of Sox9 in the
vibrissa follicle

Having previously demonstrated that Trps1 directly regulates

the expression of the bulge stem cell compartment markers Lhx2

and Tnc in the murine whisker pad [13], we next asked whether

Trps1 might also regulate Sox9 in the hair follicle. As mentioned

above, Sox9 crucially regulates several aspects of hair follicle stem

cell activity in mice [16,17] and lies near the minimal region

common to several cases of CGHT [15]. We began by performing

immunofluorescence analysis examining the expression of Sox9

Figure 2. Trps1Dgt/Dgt vibrissae follicles exhibit increased levels of proliferation. (A,B) Keratin 14 staining (red) was consistent in the
epithelial compartment of Trps1+/+ and Trps1Dgt/Dgt vibrissae follicles at E16.5. (C,D) Alkaline phosphatase staining (purple) revealed an intact dermal
papilla and reduced collagen capsule surrounding Trps1Dgt/Dgt mutant vibrissae. (E,F) Collagen type I staining (red) was consistent in the glassy
membrane of Trps1+/+ and Trps1Dgt/Dgt vibrissae follicles. (G,H) Ki67 staining (red) revealed a marked increase in proliferation throughout Trps1Dgt/Dgt

mutant vibrissae follicles. (I,J) TUNEL staining (red) indicated similar levels of apoptosis between Trps1+/+ and Trps1Dgt/Dgt vibrissae. (K,L) Lef1 staining
(red) was consistent in the dermal papillae and matrix cells of Trps1+/+ and Trps1Dgt/Dgt vibrissae follicles. Nuclei were stained with DAPI (blue). Scale
bars, 100 mm.
doi:10.1371/journal.pgen.1003002.g002

Trps1 Regulates Sox9 in the Hair Follicle
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during vibrissa follicle morphogenesis. At E12.5, Sox9 was

expressed throughout the whisker pad epidermis, with increased

expression in the suprabasal layers of the epithelial placode (Figure

S1A). By the peg stage at E14.5, Sox9 was expressed throughout

the epithelial compartment of the downgrowing follicle, with the

exception of the matrix cells (Figure S1B). From E16.5–E18.5,

Sox9 continued to be expressed throughout the follicle epithelium,

with increased expression in the matrix, inner root sheath and

outer root sheath layers (Figure S1C and S1D). By P0 however,

Sox9 expression became noticeably restricted to the outer root

sheath cells extending along the length of the follicle (Figure S1E

and S1E9). Interestingly, faint Sox9 expression was also detected in

the dermal papilla as early as E14.5 (Figure S1B, S1C9, S1D9 and

S1E0), as well as in the dermal cells of the collagen capsule

surrounding the developing vibrissae follicles (Figure S1B–S1E).

With few exceptions, this pattern of Sox9 staining in the vibrissa

follicle is consistent with that reported for the developing pelage

follicle [16,17], and also with the expression pattern of Trps1 in

developing vibrissae [6].

We next performed qRT-PCR analysis comparing the expres-

sion of Sox9 in wild-type versus Trps1Dgt/Dgt whisker pad samples at

E12.5, when the vibrissae placodes are initially discernible and

Sox9 expression is first observed. We found that Sox9 was

upregulated 1.80-fold (60.05; p,0.001) in the mutant samples

compared to wild-type expression levels (Figure 3A). Furthermore,

immunofluorescence analyses at E16.5 demonstrated continued,

increased Sox9 protein expression throughout the epithelial

compartment and surrounding collagen capsule of Trps1Dgt/Dgt

vibrissae follicles (Figure 3B and 3C).

To further dissect the relationship between Trps1 and Sox9, we

performed endogenous chromatin immunoprecipitation experi-

ments in HEK 293T cells to determine whether Trps1 can directly

bind the SOX9 promoter. TRPS1 has previously been shown to

specifically bind the consensus GATA sequence (WGATAR) in

DNA [18,19]. Upon identifying seven consensus GATA-binding

sites within 3 kb of the transcriptional start site of SOX9 (Figure 3E),

we found that Trps1 bound up to five of these sites in the SOX9

promoter (Figure 3D). We next performed luciferase reporter

promoter assays in HEK 293T cells and demonstrated that Trps1

represses SOX9 transcription (31.1165.44%; p = 0.118) in a dose-

dependent manner (Figure 3F). This repression was alleviated

upon mutation of each of the Trps1-binding sites from WGATAR

to WGATCR (p,0.01; Figure 3F).

A Shh null allele can rescue the vibrissae phenotype of
Trps1+/Dgt embryos

Decreased Sox9 expression was previously observed in both

Shh2/2 and Gli22/2 mutant hair germs [17], indicating that Shh

signaling may also regulate Sox9 expression in the hair follicle.

This relationship is supported by numerous reports that implicate

SHH activation of Sox9 expression during chondrogenesis in chick

[20], mouse [21,22] and humans [23]. To determine whether

Trps1 colocalizes with cells expressing Shh in the vibrissa follicle,

we performed immunofluorescence analyses on serial sections of

Figure 3. Trps1 directly represses the expression of Sox9 in the vibrissa follicle. (A) Bar graph depicting quantitative RT-PCR values
revealing increased expression of Sox9 in E12.5 Trps1Dgt/Dgt whisker pad samples as compared to wild-type expression levels. Data are represented as
mean 6 standard deviation. *** = p,0.001. (B,C) Immunofluorescence analyses revealed increased Sox9 expression (red) throughout the epithelial
compartment of Trps1Dgt/Dgt vibrissae follicles and surrounding collagen capsule at E16.5. Nuclei were stained with DAPI (blue). Scale bars, 100 mm.
(D) Trps1 bound up to five sites in the SOX9 promoter in endogenous chromatin immunoprecipitation experiments in HEK 293T cells. No binding was
observed in a coding sequence negative control region. (E) Identification of canonical GATA-binding sites within 3 kb of the transcriptional start site
of SOX9. Green asterisks represent sites to which Trps1 was shown to bind. (F) Bar graph depicting relative luciferase units in luciferase reporter
promoter assays demonstrating dose-dependent repression of SOX9 transcription by Trps1. Mutation of each of the Trps1-binding sites from
WGATAR to WGATCR (*) alleviated Trps1-mediated repression of SOX9. ** = p,0.01; *** = p,0.001.
doi:10.1371/journal.pgen.1003002.g003

Trps1 Regulates Sox9 in the Hair Follicle
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adult ShhIres-nLacZ vibrissae follicles, wherein nuclear b-galactosidase

staining is observed in cells expressing Shh. We demonstrated that

Trps1 colocalizes with b-galactosidase in cells of the matrix and

inner root sheath layers, indicating coexpression of Trps1 and Shh

in these proliferative cells at the base of the follicle (Figure S2).

Postulating that Shh signaling and Trps1 expression would have

opposing effects on Sox9 expression in the hair follicle, we next

asked whether introduction of a Shh null allele could rescue the

vibrissae phenotype of Trps1+/Dgt embryos. We generated Trps1+/

Dgt;Shh+/GFP-cre compound heterozygous mice and performed

detailed histological examinations of their vibrissae follicles at

multiple timepoints throughout embryogenesis. Transverse whis-

ker pad sections revealed that Trps1+/+;Shh+/GFP-cre vibrissae

(Figure 4C, 4G, 4K and 4O) developed similarly to wild-type

follicles from E12.5–E18.5 (Figure 4A, 4E, 4I and 4M). As

expected, Trps1+/Dgt;Shh+/+ embryos exhibited a reduction in

vibrissae placode number at E12.5 (Figure 4B), and displayed

follicles that were reduced in number, irregularly spaced and

slightly smaller than wild-type vibrissae throughout the remainder

of embryogenesis (Figure 4F, 4J and 4N). However, this phenotype

was completely rescued at all timepoints in Trps1+/Dgt;Shh+/GFP-cre

compound heterozygous mice (Figure 4D, 4H, 4L and 4P).

Importantly, the expression of Sox9 transcripts returned to wild-

type levels in compound heterozygous whisker pads (Figure 4Q)

and Sox9 protein expression was restored to wild-type levels

throughout the epithelial compartment of the vibrissae follicles in

Trps1+/Dgt;Shh+/GFP-cre embryos (Figure 4R and 4S).

Copy number variations upstream of SOX9 associated
with hypertrichosis

We previously demonstrated that a position effect on TRPS1 is

associated with cases of hypertrichosis in both humans and mice

[6]. Here, we report a family in which the father (patient I-1) and

son (patient II-2) exhibited CGHT with mild gingival hyperplasia

(Figure 5A). The father is of French and African descent, while the

mother is of German descent. The affected patients presented with

striking generalized hypertrichosis, which was most prominent on

the face, ears and upper trunk. Both father and son displayed

bushy eyebrows with synophrys and elongated eyelashes, as well as

downslanted fissures and epicanthic folds. The hair covering the

face and body was often coarse, straight and black. The parents

reported that the son developed progressive hypertrichosis shortly

after birth. Both patients additionally exhibited bulbous nasal tips,

thick nasal wings, a long, prominent philtrum with a deep groove

and mild thoracic kyphoscoliosis. No lip swelling or eversion was

observed. Endocrine and metabolic assessments were unremark-

able for both patients.

To search for chromosomal anomalies in these patients,

genomic DNA was isolated from peripheral blood samples

collected from the family members and genotyped using the

Affymetrix Cytogenetics Whole-Genome 2.7 M Array and

Affymetrix Genome-Wide Human SNP Array 6.0 for Cytogenet-

ics. The resulting data were analyzed with the Affymetrix

Chromosome Analysis Suite Version 1.0.1 software. We obtained

consistent results with both arrays, identifying a series of four novel

Figure 4. A Shh null allele can rescue the vibrissae phenotype of Trps1+/Dgt embryos. (A–P) Hematoxylin and eosin staining of transverse
Trps1+/+;Shh+/+, Trps1+/Dgt;Shh+/+, Trps1+/+;Shh+/GFP-cre, and Trps1+/Dgt;Shh+/GFP-cre whisker pad sections at E12.5–E18.5 revealed that Trps1+/+;Shh+/GFP-cre

vibrissae (C,G,K,O) developed similarly to wild-type follicles (A,E,I,M), while Trps1+/Dgt;Shh+/+ embryos exhibited a reduction in vibrissae placode
number at E12.5 (B) and displayed follicles that were reduced in number, irregularly spaced and slightly smaller than wild-type vibrissae throughout
the remainder of embryogenesis (F,J,N). The vibrissae phenotype of Trps1+/Dgt;Shh+/+ embryos was completely rescued at all timepoints in Trps1+/Dgt;
Shh+/GFP-cre compound heterozygous mice (D,H,L,P). (Q) Bar graph depicting quantitative RT-PCR values revealing increased expression of Sox9 in
E16.5 Trps1+/Dgt;Shh+/+ whisker pad samples as compared to wild-type expression levels. Sox9 expression was recovered to wild-type levels in Trps1+/Dgt;
Shh+/GFP-cre whisker pad samples. Data are represented as mean 6 standard deviation. * = p,0.05. (R,S) Sox9 expression (red) was recovered to wild-type
levels throughout the epithelial compartment of the vibrissae follicles in Trps1+/Dgt;Shh+/GFP-cre embryos as detected by immunofluorescence analyses.
Nuclei were stained with DAPI (blue). Scale bars, 100 mm.
doi:10.1371/journal.pgen.1003002.g004

Trps1 Regulates Sox9 in the Hair Follicle
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duplications with sizes of 391 kb, 66 kb, 1.2 Mb and 35 kb,

respectively, within a 2.4 Mb region in chromosome 17q24.2–

q24.3 in both affected patients. The telomeric end of this region

lies 975 kb upstream of the Trps1 target gene SOX9 (Figure 5B).

While eight duplications with a combined size of 487 kb are

reported in this region in the public Database of Genomic

Variants, our findings uncover approximately 1.2 Mb of novel

duplicated chromosomal material within this region. Furthermore,

the duplicated region encompasses the 1.4 Mb duplication

identified in a sporadic case of CGHT reported by Sun et al.

[15], and extends 86 kb beyond the centromeric border and

917 kb beyond the telomeric border of that region (Figure 5B).

To confirm the duplications, we performed quantitative PCR

analysis using the DNA of patient II-2, the proband, as well as that

of an unaffected control individual, to examine the relative copy

number of amplicons across the region. Patient II-2 had a 2.24-

fold increase (60.12; p,0.001) in relative copy number of one

amplicon within the region (amplicon 2), and a 1.54-fold increase

(60.18; p,0.05) of a second amplicon within the duplication

region (amplicon 3) as compared to an unaffected control

individual. There were no significant changes in relative copy

number of two amplicons (amplicons 1 and 4) on either side of the

duplication region in patient II-2 (Figure 5C).

We next performed fluorescent in situ hybridization (FISH)

analysis to determine the orientation of the large 1.2 Mb

duplication within our candidate region. Interphase chromosome

spreads prepared from the blood of patient II-2 were hybridized

with green 5-Fluorescein dUTP labeled probe RP11 clone 164B17

and orange 5-TAMRA dUTP labeled probe RP11 clone 831L20,

which span chromosome 17q base pairs 65,334,626–65,500,838

and 66,328,117–66,543,177, respectively. FISH analysis revealed

one wild-type chromosome with a single hybridization signal for

each probe in the patient cells, as well as one chromosome

containing duplicated genetic material with two hybridization

signals for each probe (Figure S3). The pattern of probe

hybridization in the rearranged chromosome (green-orange-

orange-green) demonstrated that the 1.2 Mb duplication in patient

II-2 was an inverted duplication (Figure S3).

To determine the effect of the duplications in the proband on

SOX9 expression in the skin and hair follicle, we performed

immunofluorescence analyses on a biopsy taken from the posterior

neck of patient II-2 and a sample taken from the lower scalp of an

unaffected control individual. Patient II-2 had a striking decrease

in SOX9 protein expression throughout the follicle epithelium as

compared to normal expression levels, primarily in the prolifer-

ative epithelial cells at the base of the follicle (Figure 6A and 6B).

Histological analyses demonstrated that the patient follicles were

more highly pigmented than those of the unaffected control

individual, and larger in diameter, particularly in the medulla

layer in the center of the hair shaft (Figure 6C and 6D). TRPS1

expression was similar within the follicles of patient II-2 and the

control individual (Figure 6E and 6F), consistent with its role

upstream of SOX9 expression. In conclusion, these results

demonstrate that a large 2.4 Mb duplication 975 kb upstream of

SOX9 significantly decreases the expression of the gene in the hair

follicle, consistent with a position effect on SOX9.

Discussion

While human hypertrichoses have been described in literature

dating back to the 16th century, the genetic determinants and

molecular mechanisms underlying these conditions have remained

elusive. We have previously demonstrated that a position effect on

TRPS1 is associated with hypertrichosis in both humans and mice

[6], providing the first evidence for a position effect associated with

abnormalities in hair follicle development. Here, we establish that

Figure 5. Copy number variations upstream of SOX9 associated with hypertrichosis. (A) Pedigree of family in which the father (patient I-1)
and proband (patient II-2) exhibited CGHT. (B) Map of human chromosome 17q spanning base pairs 64,220,821–67,740,709 according to build hg18.
Copy number variations (CNV) detected in our analyses are represented by dark blue boxes. The telomeric end of the duplication region identified
here lies 975 kb upstream of SOX9. Duplications present in the Database of Genomic Variations (DGV) or previously identified by Sun et al. [15] are
represented by lighter blue boxes. The locations of amplicons used in quantitative PCR analysis are represented by green lines. Scale bar, 0.1 Mb. (C)
Bar graph depicting quantitative PCR values revealing significant increases in relative copy number of two amplicons in the proband within the
duplication region identified here as compared to an unaffected control individual. Data are represented as mean 6 standard deviation. * = p,0.05;
*** = p,0.001.
doi:10.1371/journal.pgen.1003002.g005

Trps1 Regulates Sox9 in the Hair Follicle
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a position effect on the Trps1 target gene SOX9 is likely involved in

the pathology of human hypertrichosis. Our findings provide the

first instance of direct upstream regulation of the hair follicle stem

cell specification gene Sox9, revealing its role in regulating

epithelial proliferation downstream of both Trps1 and the Shh

pathway in the developing follicle.

Our data indicate that Trps1 expression and Shh signaling

balance the regulation of Sox9 expression in proliferative hair

follicle epithelial cells, with Shh and its downstream effector(s)

acting as positive regulators of Sox9 expression and Trps1

repressing Sox9 transcription. Gli2 is the main mediator of Shh

signaling in the skin and hair follicle [24] and ectopic overexpres-

sion of a constitutively active form of Gli2, DNGli2, in the basal

layer of the skin is sufficient to induce Sox9 expression, suggestive

of direct activation of Sox9 expression by Gli2 [17]. We did not

identify either of the reported consensus GLI binding sites [25,26]

within the 3 kb SOX9 promoter that we analyzed, indicating that

Trps1 may regulate SOX9 expression at distinct sites from Gli

proteins. Consistent with our model, we demonstrated that a Shh

null allele is able to completely rescue the vibrissae phenotype of

Trps1+/Dgt embryos in compound heterozygous mice and restore

Sox9 expression to wild-type levels.

Consistent with a downstream convergence of Trps1 and Shh

pathway signaling in the hair follicle, Trps1Dgt/Dgt follicles share a

number of phenotypic similarities with Shh2/2 and Gli22/2

mutant follicles, most notably a reduction in follicle number and

follicle arrest shortly after induction [24,27,28]. While Shh2/2

embryos were reported to develop vibrissae follicles despite their

extensive craniofacial defects, Gli22/2 mice had fewer and under-

developed vibrissae [24]. Furthermore, the number of pelage

follicles in Shh2/2 and Gli22/2 mutant mice is reduced by 25 to 60

percent. The pelage follicles that do form have small hair germs

that arrest shortly after induction, with evidence of both epithelial

invasion of the dermis and dermal condensation of the mesen-

chyme at the base of the germ [24,27], similar to the phenotype

observed in Trps1Dgt/Dgt mutant embryos. When grafted onto

immunocompromised nude mice, whole embryonic dorsal Shh2/2

skin exhibited increased proliferation in the follicle epithelium

[27,28], comparable to the increased proliferation observed

throughout Trps1Dgt/Dgt vibrissae follicles.

Conditional ablation of Sox9 in the epidermal compartment of

the skin and hair follicle during embryogenesis (K14-Cre;Sox9fl/fl)

resulted in an 80 percent reduction in vibrissae follicle number at

birth and the absence of an external pelage hair coat as early as P6

[16], akin to the sparse vibrissae and pelage observed in Trps1Dgt/

Dgt mice. Similarly, postnatal ablation of Sox9 in the skin epithelia

(Y10-Cre;Sox9fl/fl) resulted in small, atrophic pelage hairs in the

caudal region of the body, many of which degenerated after the

first hair cycle [17], pointing to a requirement for Sox9 in

maintenance of the hair follicle after early development. Further-

more, both homozygous mutant Y10-Cre;Sox9fl/fl and K14-

Cre;Sox9fl/fl mice exhibited a decrease in the number of prolifer-

ative matrix cells [16,17]. As our results indicate that Trps1

represses Sox9 expression, this reduced proliferation is analogous to

Figure 6. Expression and histological analyses of CGHT follicles. (A,B) SOX9 expression (red) was decreased in the hair follicle of the proband
(B) as compared to an unaffected control follicle (A), particularly in the proliferative epithelial cells at the base of the follicle, as detected by
immunofluorescence analyses. Nuclei were stained with DAPI (blue). (C,D) Hematoxylin and eosin staining of hair follicles from an unaffected control
individual (C) and patient II-2 (D), revealing increased pigmentation and diameter in the CGHT follicle, particularly in the medulla layer (arrowheads) at
the center of the hair shaft. (E,F) Consistent TRPS1 expression (green) between control (E) and CGHT follicles (F). Nuclei were stained with DAPI (blue).
Scale bars, 100 mm.
doi:10.1371/journal.pgen.1003002.g006
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the opposite phenotype of increased proliferation throughout

Trps1Dgt/Dgt vibrissae.

Shh is a morphogen that plays a key role in regulating the

proliferation and downgrowth of the follicular epithelium during

late morphogenesis [27–29], and in promoting anagen initiation

during postnatal hair follicle cycling [30,31]. Transient, ectopic

expression of Shh in the dorsal skin can initiate anagen in resting

telogen follicles and accelerate hair growth [30]. Notably,

excessive activation of the Shh signaling pathway is a common

feature of many hair follicle tumors, including basal cell

carcinomas (BCC) [32–34]. Overexpression of Shh, Gli1, Gli2 or

an activated mutant allele of Smo in the murine epidermis was

sufficient to induce BCC formation [32,34–36], further supporting

a role for the Shh pathway in regulating cell proliferation in the

epithelia of the hair follicle. Sox9 expression is upregulated in both

mouse and human BCC tumors [17] and was later shown to be a

general marker of human BCC and additional hair follicle-derived

tumors [37], consistent with its activation downstream of Shh

signaling.

We found that Trps1 colocalizes with cells expressing Shh in the

matrix and inner root sheath layers of the vibrissa follicle, and

furthermore, that Sox9 is also expressed in these cells beginning at

mid-morphogenesis. The highly proliferative matrix epithelial cells

at the base of the follicle give rise to the various differentiating

layers of the inner root sheath during hair follicle morphogenesis

[38]. Postnatally, interactions between the mesenchyme-derived

dermal papilla and the epithelial matrix cells similarly result in

growth of the hair shaft during anagen [39]. The coexpression of

Trps1, Shh and Sox9 in the matrix cells and their inner root

sheath derivatives suggests a role for Trps1 in regulating vibrissa

follicle proliferation during epithelial growth through its direct

regulation of Sox9.

Sox9 has previously been shown to be required for specification

of hair follicle stem cells [16]. Furthermore, genetic marking

techniques have demonstrated that Sox9-derived progeny give rise

to all the epithelial cells of the hair follicle [16]. We propose that

the dysregulation of Sox9 in the absence of Trps1 would result in a

defect in progenitor cell activity in the hair follicle. Upon increased

Sox9 expression in Trps1Dgt/Dgt mutant vibrissae, additional hair

follicle progenitor cells would be specified. However, in the

absence of Sox9 repression by Trps1, these cells would proliferate

prematurely, thereby depleting the follicle of slow-cycling progen-

itor cells with long-term proliferative potential. Consistent with this

hypothesis, Trps1Dgt/Dgt embryos exhibit increased proliferation

throughout vibrissae follicles prior to their degeneration. In the

absence of progenitor cells to fuel the epithelial proliferation

necessary to complete morphogenesis, these Trps1Dgt/Dgt follicles

arrest. Lending support to this notion, conditional ablation of Smo

in the hair follicle epithelium (K14-Cre;Smofl/fl) resulted in

decreased Shh signaling and Sox9 expression in these cells.

Importantly, these changes were accompanied by reduced

proliferation in the matrix and depletion of the hair follicle stem

cell niche [40].

A number of mutations in and around the human SOX9 gene

result in diseases with phenotypic similarities to TRPS types I and

III. Notably, the two patients with CGHT reported here share

many phenotypic similarities with AS patients, including hyper-

trichosis of the face, ears and upper trunk, a bulbous tip of the

nose, thick nasal wings and a long, prominent philtrum with a

deep groove [3], providing further evidence that SOX9 and

TRPS1 function in the same developmental pathway.

Position effects have previously been described for a number of

Trps1 target genes, including SOX9 [41,42], which lead to rare

genetic skeletal disorders. Taken together, our data implicate that

position effects on TRPS1 as well as its target gene SOX9 may play

a causative role in human hypertrichoses. Thus, while intragenic

mutations or deletions of each of these genes result in hair and

bone abnormalities, they are also subject to long-range regulation

that, upon disruption, can generate unique phenotypes at sites of

the body where these genes are expressed.

Materials and Methods

Ethics statement
Upon obtaining informed consent, peripheral blood samples

were collected from family members under approval of the

Institutional Review Board of Columbia University and in

adherence to the Declaration of Helsinki Principles. All mouse

experiments were performed under approval of the Institutional

Animal Care and Use Committee of Columbia University.

Mice
Trps1+/tm1Shiv mice [11], referred to in the text as Trps1+/Dgt,

were a generous gift of Dr. Ramesh Shivdasani, Dana-Farber

Cancer Institute, Harvard Medical School. Shh+/tm4Amc mice

[43,44], referred to in the text as Shh+/Ires-nLacZ, were a generous

gift of Dr. Ed Laufer, Columbia University. Shh+/tm1(EGFP/cre)Cjt

mice [45], referred to in the text as Shh+/GFP-cre, were obtained

from The Jackson Laboratory. Heterozygous Shh+/tm1(EGFP/cre)Cjt

males were bred to heterozygous Trps1+/tm1Shiv females to generate

compound heterozygous mice.

Histology
Whole mouse muzzle skin and/or whole mouse dorsal skin was

dissected at multiple timepoints from E12.5 (12.5 days post coitus,

day of plug considered 0.5 days) through P0 (postnatal day 0) in

16phosphate-buffered saline (PBS), fixed in 10% formalin for up

to 72 hrs, washed through an ethanol series and embedded in

paraffin. After deparaffinization and rehydration, 8 mm sections

were stained with hematoxylin and eosin and permanently

mounted with Permount (Thermo Fisher Scientific, Inc., Wal-

tham, MA, USA) for observation under a light microscope.

Sections were photographed using an HRC Axiocam fitted onto

an Axioplan2 fluorescence microscope (Carl Zeiss, Inc., Thorn-

wood, NY, USA). Sections of patient skin biopsies mounted in

O.C.T. compound (Sakura Finetek USA, Inc., Torrance, CA,

USA) and frozen in liquid nitrogen were similarly stained and

photographed.

Immunofluorescence analysis
Sections of whole mouse muzzle skin or patient skin biopsies

mounted in O.C.T. compound (Sakura Finetek USA, Inc.) and

frozen in liquid nitrogen were fixed in 4% paraformaldehyde

(PFA)/0.1% Triton-X for 10 min at room temperature or in

methanol for 15 min at 220uC followed by acetone for 2 min at

220uC and washed in PBS. The sections were then blocked for

1 hr in 10% heat-inactivated goat serum in PBS and incubated

overnight at 4uC in primary antibody diluted in 1% serum in PBS.

Primary antibodies and dilutions were as follows: anti-keratin 14

(1:5,000; gift of Dr. Jurgen Schweizer, German Cancer Research

Center); anti-Collagen type I (1:500; Developmental Studies

Hybridoma Bank); anti-Ki67 (1:1,000; Abcam Inc., Cambridge,

MA, USA); anti-Lef1 (1:25; Santa Cruz Biotechnology, Santa

Cruz, CA, USA); anti-Sox9 (1:1,000; Santa Cruz Biotechnology);

anti-Trps1 (1:5,000; gift of Dr. Ramesh Shivdasani, Dana-Farber

Cancer Institute, Harvard Medical School; [18]); anti-b-galacto-

sidase (1:1,000; MP Biomedicals, Solon, OH, USA). After washing

in PBS, the sections were incubated in either an Alexa Fluor 594
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goat anti-rabbit IgG or Alexa Fluor 488 goat anti-rabbit IgG

(Molecular Probes, Invitrogen, Carlsbad, CA, USA) secondary

antibody (1:500) diluted in 1% serum in PBS for 1 hr. Sections

were mounted in VECTASHIELD mounting medium with DAPI

(Vector Laboratories, Burlingame, CA, USA) and photographed

using an HRC Axiocam fitted onto an Axioplan2 fluorescence

microscope (Carl Zeiss, Inc.) or an LSM 5 laser scanning Axio

Observer Z1 confocal microscope (Carl Zeiss, Inc.).

Detection of alkaline phosphatase activity
Alkaline phosphatase activity was detected based on a

previously published protocol [46]. Briefly, 8 mm sections of

E16.5 whole mouse muzzle skin mounted in O.C.T. compound

(Sakura Finetek USA, Inc.) and frozen in liquid nitrogen were

fixed in acetone at 220uC for 5 min and washed in PBS for 5 min

at room temperature. The sections were then washed in buffer

containing 0.1 M Tris-HCl pH 9.5 and 0.1 M NaCl for 5 min at

room temperature and incubated in substrate containing 250 mg/

mL 4-Nitro blue tetrazolium chloride (NBT; Roche Applied

Science, Indianapolis, IN, USA) and 125 mg/mL 4-toluidine salt

(BCIP; Roche Applied Science) diluted in the above buffer for

12 min in the dark. After a 5 min wash in PBS, sections were

mounted in VECTASHIELD mounting medium for fluorescence

(Vector Laboratories) and photographed using an HRC Axiocam

fitted onto an Axioplan2 fluorescence microscope (Carl Zeiss,

Inc.).

TUNEL assay
TUNEL staining was performed on 8 mm sections of E16.5

whole mouse muzzle skin mounted in O.C.T. compound (Sakura

Finetek USA, Inc.) and frozen in liquid nitrogen. Sections were

fixed in 1% PFA/PBS for 10 min, washed in PBS and post-fixed

in 2:1 ethanol:acetic acid for 5 min at 220uC before being

fluorescently stained using the ApopTag Plus Fluorescein In Situ

Apoptosis Detection Kit (Millipore, Billerica, MA, USA) according

to the manufacturer’s instructions. Sections were mounted in

VECTASHIELD mounting medium with DAPI (Vector Labora-

tories) and photographed using an HRC Axiocam fitted onto an

Axioplan2 fluorescence microscope (Carl Zeiss, Inc.). All positive

signals were confirmed by DAPI staining.

Quantitative RT–PCR
Total RNA was isolated from whole mouse muzzle skin at

E12.5 or E16.5 using the RNeasy Mini Kit (Qiagen Inc., Valencia,

CA, USA) according to the manufacturer’s instructions. First-

strand cDNA was synthesized using a ratio of 2:1 random primers:

Oligo (dT) primer and SuperScript III RT (Invitrogen) according

to the manufacturer’s instructions. qRT-PCR was performed on

an ABI 7300 machine and analyzed with ABI Relative Quanti-

fication Study software (Applied Biosystems, Foster City, CA,

USA). Primers were designed according to ABI guidelines and all

reactions were performed using Power SYBR Green PCR Master

Mix (Applied Biosystems), 250 nM primers (Invitrogen) and

100 ng cDNA in a 20 mL reaction volume. The following PCR

protocol was used: step 1: 50uC for 2 min; step 2: 95uC for 10 min;

step 3: 95uC for 15 s; step 4: 60uC for 1 min; repeat steps 3 and 4

for 40 cycles. All samples were run in quadruplicate for three

independent runs and normalized against an endogenous internal

control, B2m. PCR products were electrophoresed on a 1%

agarose/TBE gel containing ethidium bromide and photographed

on a Kodak Electrophoresis Documentation and Analysis System

120 Camera (Kodak, Rochester, NY, USA) to confirm amplicon

size. The qRT-PCR primers used can be found in Table S1.

Chromatin immunoprecipitation
HEK 293T cells were seeded onto 10 cm dishes and cultured to

80–90% confluency in Dulbecco’s modified Eagle’s medium

(DMEM; GIBCO, Invitrogen) supplemented with 10% fetal

bovine serum (GIBCO), 100 IU/mL penicillin and 100 mg/mL

streptomycin. The cells were treated with 1% formaldehyde for

10 min at 37uC, washed twice with cold PBS containing protease

inhibitors and harvested. Chromatin immunoprecipitation was

carried out using the Chromatin Immunoprecipitation (ChIP)

Assay Kit (Millipore) according to the manufacturer’s instructions.

Cell lysates were precipitated with 3 mg of either an anti-Trps1

rabbit polyclonal antibody (gift of Dr. Ramesh Shivdasani, Dana-

Farber Cancer Institute, Harvard Medical School; [18]) or normal

rabbit IgG (Santa Cruz Biotechnology) as a negative control. After

elution, DNA was recovered using the Rapid PCR Purification

System (Marligen Biosciences, Inc., Ijamsville, MD, USA). PCR

reactions were performed using input, IgG-precipitated and

Trps1-precipitated DNA samples, Platinum PCR SuperMix

(Invitrogen) and 0.67 mM primers (Invitrogen) in a 30 mL reaction

volume. The primers used for the various promoter regions as well

as coding sequence negative controls can be found in Table S2.

The following PCR protocol was used: step 1: 94uC for 5 min; step

2: 94uC for 45 s; step 3: 55uC for 30 s; step 4: 72uC for 1 min;

repeat steps 2–4 for 36–40 cycles; step 5: 72uC for 10 min. PCR

products were electrophoresed on a 1% agarose/TBE gel

containing ethidium bromide and photographed on a Kodak

Electrophoresis Documentation and Analysis System 120 Camera

(Kodak). Positive immunoprecipitation results were confirmed in

at least two independent trials.

Promoter assays
To generate the mTrps1 expression plasmid, the open reading

frame of Trps1 was amplified by PCR and subcloned into the SacI

and KpnI sites of the mammalian expression vector pCXN2.1

[47]. The hSOX9 promoter (3145 bp) was amplified by PCR from

BAC clone RP11-727K24 using the following primers:

hSOX9p-F-MluI: 59-CAAACGCGTTTCTACCTGTGTCT-

GAGGTC-39

hSOX9p-R-HindIII: 59-GACAAGCTTAGGGGTCCAGGA-

GATTCATA-39

The amplified product was subcloned into the MluI and

HindIII sites of the luciferase reporter vector pGL3-Basic

(Promega, Madison, WI, USA). Mutated promoter reporter

plasmids were generated by introducing a point mutation in select

consensus GATA binding sites (WGATARRWGATCR) using

the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent

Technologies, Inc., Santa Clara, CA, USA) according to the

manufacturer’s instructions. Mutagenic primers were designed

using the web-based QuikChange Primer Design Program

(http://www.stratagene.com/qcprimerdesign) and can be found

in Table S3.

HEK 293T cells were seeded onto 6-well dishes 24 hr before

transfection. At 80% confluency, a hSOX9 promoter reporter

plasmid or pGL3 backbone vector (1 mg) were transfected into

each well in combination with the mTrps1 expression plasmid or

pCXN2.1 backbone vector (1 mg) using Lipofectamine 2000

(Invitrogen). A plasmid encoding a b-galactosidase reporter

(0.5 mg) was also transfected for normalization of transfection

efficiency. The cells were cultured for 24 hr after transfection in

Opti-MEM (GIBCO, Invitrogen), harvested and lysed. Luciferase

and b-galactosidase signals were measured using the Luciferase

Assay System (Promega) and b-Galactosidase Enzyme Assay

System with Reporter Lysis Buffer (Promega), respectively,
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according to the manufacturer’s instructions. All assays were

performed in triplicate for three independent trials.

Blood collection and DNA extraction
Peripheral blood samples were collected from family members

in EDTA-containing tubes. Genomic DNA was isolated using the

Gentra Puregene Blood Kit (Qiagen Inc.) according to the

manufacturer’s instructions.

Copy number variation analysis
Genomic DNA was electrophoresed on a 1% agarose/TBE gel

containing ethidium bromide to ensure that approximately 90

percent of the sample was greater than 10 kb in size. Samples with

an OD 260/280 ratio between 1.8–2.0 and an OD 260/230 ratio

greater than 1.5 were considered pure. DNA was processed

according to the manufacturer’s instructions for the Affymetrix

Cytogenetics Whole-Genome 2.7 M Array and the Affymetrix

Genome-Wide Human SNP Array 6.0 for Cytogenetics (Affyme-

trix, Inc., Santa Clara, CA, USA). Briefly, approximately 100 ng

of genomic DNA was denatured and amplified during a 3 hr PCR

reaction. After purification, a Nanodrop spectrophotometer

(Thermo Fisher Scientific, Inc.) was used to ensure a DNA

concentration greater than 0.55 ng/mL and an OD 260/280 ratio

between 1.8–2.0. The DNA was then fragmented into 50–300 bp

fragments which were confirmed by agarose gel electrophoresis.

The samples were subsequently labeled before hybridization in an

Affymetrix GeneChip hybridization oven (Affymetrix). Washes

and staining of the arrays with streptavidin-phycoerythrin

conjugates were performed with an Affymetrix GeneChip Fluidics

Station 450 (Affymetrix), and images were obtained using an

Affymetrix GeneChip scanner 3000 (Affymetrix).

Quality assessments of the raw data and copy number analyses

were performed with Affymetrix Chromosome Analysis Suite

Version 1.0.1 software (Affymetrix). For quality control, the

Median Absolute Pairwise Difference (MAPD) metric was used to

estimate variability on a per-chip basis. If log2 ratios are

distributed normally with a constant standard deviation (SD),

MAPD/0.96 is equal to SD and MAPD*1.41 is equal to

interquartile range. With a constant log2 ratio SD of 0.3, MAPD

values less than 0.27 were considered acceptable for copy number

analysis. In accordance with the software baseline parameters, a

default diagonal weight of 0.995 was employed to minimize

frequent changes in copy number. Copy number variants greater

than 200 kb in length were considered significant. A pan-ethnic

control reference set derived from 24 males and 24 females

generated in our facility was incorporated into the analysis.

Quantitative PCR
qPCR was performed on an ABI 7300 machine and analyzed

with ABI Relative Quantification Study software (Applied

Biosystems). Primers were designed according to ABI guidelines

and all reactions were performed using Power SYBR Green PCR

Master Mix (Applied Biosystems), 500 nM primers (Invitrogen)

and 50 ng genomic DNA in a 20 mL reaction volume. The

following PCR protocol was used: step 1: 50uC for 2 min; step 2:

95uC for 10 min; step 3: 95uC for 15 s; step 4: 60uC for 1 min;

repeat steps 3 and 4 for 40 cycles. All samples were run in triplicate

for three independent runs and normalized against an internal

control, GAPDH. PCR products were electrophoresed on a 1%

agarose/TBE gel containing ethidium bromide and photographed

on a Kodak Electrophoresis Documentation and Analysis System

120 Camera (Kodak) to confirm amplicon size. The qPCR

primers used can be found in Table S4.

Fluorescent in situ hybridization
Lymphoblasts from peripheral patient blood samples were

cultured and harvested and interphase chromosome spreads were

prepared using standard cytogenetic protocols. Slides were dried at

room temperature overnight, then washed in 26 saline sodium

citrate (SSC) buffer at 73uC for 2 min and dehydrated through an

ethanol series. Fluorescent labeled probes (Empire Genomics,

Buffalo, NY, USA) were diluted to a final concentration of 40 ng/

mL in hybridization buffer (Empire Genomics) and denatured at

73uC for 2 min. After probe application, slides were covered with

glass coverslips and hybridized at 37uC for 16 hours in a StatSpin

ThermoBrite system (Iris Sample Processing, Inc., Westwood,

MA, USA). After removal of the glass coverslips, slides were placed

in buffer containing 0.46SSC and 0.3% NP-40 at 73uC for 10 s

with agitation, followed by a 2 min incubation without agitation.

Slides were then transferred to buffer containing 26 SSC and

0.1% NP-40 at room temperature for 1 min. Slides were dried in

the dark and 10% DAPI was applied to counterstain chromo-

somes. Hybridized interphase chromosomes were photographed

using a Nikon microscope fitted with a filter wheel and Cytovision

Applied Imaging software.

Supporting Information

Figure S1 Expression of Sox9 during vibrissa follicle morpho-

genesis. (A) Immunofluorescence analysis demonstrated increased

Sox9 expression (red) in the suprabasal layers of the epithelial

placode at E12.5. (B) Sox9 was expressed throughout the epithelial

compartment of the invaginating follicle at E14.5, with the

exception of the matrix. (C,D) Sox9 continued to be expressed

throughout the follicle epithelium from E16.5–E18.5, with

increased expression in the matrix, inner root sheath and outer

root sheath layers. (E, E9) By P0 Sox9 expression became restricted

to the outer root sheath cells extending along the length of the

follicle. (C9,D9,E0) Faint Sox9 expression was also detected in the

dermal papilla as early as E14.5 and in the dermal cells of the

collagen capsule surrounding the developing vibrissae follicles.

Nuclei were stained with DAPI (blue). Scale bars, 100 mm.

(TIF)

Figure S2 Colocalization of Trps1 and Shh in the vibrissa

follicle. Trps1 (green) (A) and b-galactosidase (red) (B) colocalize

(C) in the matrix and inner root sheath of adult ShhIres-nLacZ

vibrissae follicles as detected by immunofluorescence analyses on

serial sections. Nuclei were stained with DAPI (blue). Scale bars,

100 mm.

(TIF)

Figure S3 Fluorescent in situ hybridization (FISH) analysis of

chromosome 17q duplication orientation. Interphase chromosome

spreads prepared from patient II-2 were hybridized with

fluorescently-labeled probes RP11 clone 164B17 (green) and

RP11 clone 831L20 (orange), which span chromosome 17q base

pairs 65,334,626–65,500,838 and 66,328,117–66,543,177, respec-

tively, according to build hg18. FISH analysis revealed one wild-

type chromosome with a single hybridization signal for each probe

(arrowheads) in the patient cells and one chromosome containing

duplicated genetic material with two hybridization signals for each

probe (arrows). The pattern of probe hybridization in the

rearranged chromosome demonstrated that the 1.2 Mb duplica-

tion in patient II-2 was an inverted duplication.

(TIF)

Table S1 Primers used in qRT-PCR analyses.

(DOC)
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Table S2 Primers used in chromatin immunoprecipitation

experiments.

(DOC)

Table S3 Mutagenic primers used to generate plasmids for

promoter assays.

(DOC)

Table S4 Primers used in qPCR analyses.

(DOC)
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