
Article

Spatial Variation in Tree Density and Estimated
Aboveground Carbon Stocks in Southern Africa

Lulseged Tamene 1,*,†, Powell Mponela 1,†, Gudeta W. Sileshi 2,†, Jiehua Chen 3

and Jérôme E. Tondoh 4

1 International Center for Tropical Agriculture (CIAT), Chitedze Agricultural Research Station, P.O. Box 158,
Lilongwe 00265, Malawi; p.mponela@cgiar.org

2 5600 Lukanga Rd, Kalundu, Lusaka 10101, Zambia; sileshigw@gmail.com
3 Columbia University, Lamont Campus, 61 Route9W, Lamont Hall, 2G, P.O. Box 1000, Palisades, NY 10964,

USA; jc3288@columbia.edu
4 ICRAF West and Central Africa, Sahel Node, BPE 5118 Bamako, Mali; j.e.tondoh@cgiar.org
* Correspondence: lt.desta@cgiar.org; Tel.: +265-999-223-784
† These authors contributed equally to this work.

Academic Editors: Sune Linder and Timothy A. Martin
Received: 15 December 2015; Accepted: 16 February 2016; Published: 4 March 2016

Abstract: Variability in woody plant species, vegetation assemblages and anthropogenic activities
derails the efforts to have common approaches for estimating biomass and carbon stocks in Africa. In
order to suggest management options, it is important to understand the vegetation dynamics and the
major drivers governing the observed conditions. This study uses data from 29 sentinel landscapes
(4640 plots) across the southern Africa. We used T-Square distance method to sample trees. Allometric
models were used to estimate aboveground tree biomass from which aboveground biomass carbon
stock (AGBCS) was derived for each site. Results show average tree density of 502 trees¨ha´1 with
semi-arid areas having the highest (682 trees¨ha´1) and arid regions the lowest (393 trees¨ha´1). The
overall AGBCS was 56.4 Mg¨ha´1. However, significant site to site variability existed across the region.
Over 60 fold differences were noted between the lowest AGBCS (2.2 Mg¨ha´1) in the Musungwa
plains of Zambia and the highest (138.1 Mg¨ha´1) in the scrublands of Kenilworth in Zimbabwe.
Semi-arid and humid sites had higher carbon stocks than sites in sub-humid and arid regions.
Anthropogenic activities also influenced the observed carbon stocks. Repeated measurements would
reveal future trends in tree cover and carbon stocks across different systems.

Keywords: biomass; allometry; anthropogenic disturbance; sentinel landscapes; carbon stock;
southern Africa

1. Introduction

Woody plants in forests, croplands and rangelands of southern Africa play crucial socio-economic
and ecological functions [1,2]. In addition to being a larger pool of terrestrial carbon sink, biomass is the
chief source of energy for more than 80% of the population and replenishes soil fertility in traditional
farming systems [3]. However, the functions of tree and plants are challenged due to various natural
and anthropogenic disturbances. In addition to ecological limits, woody biomass stocks vary across
landscapes as a result of land cover and land use changes associated with anthropogenic activities [4,5].
In order to suggest management options, it is important to understand the biomass and carbon stock
dynamics and the major drivers governing the observed condition.

Different approaches have been used to estimate carbon stock and understand drivers of biomass
distribution and extraction [6–8]. The T-square method, as used in ecological surveys and lately
in health, is more robust in estimating populations [9,10]. The errors associated with sample
size and topographic differences can be resolved by estimating distribution and density at larger
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landscape/stand level [6]. The recent approach of using sentinel sites, which are representative
landscapes geo-referenced for spatial and temporal change detection facilitate baseline analysis
and monitoring [11,12]. Sentinel landscapes are designed to have hierarchical organization so that
variability within and between different spatial scales can be assessed [12,13].

The appropriate approach to estimate aboveground biomass and derive associated aboveground
biomass carbon stock (AGBCS) is through on-site destructive sampling, which is not only time-
consuming but also not suitable for diverse tropical systems and wide geographical areas [14].
In situations where destructive sampling is not feasible, it may be possible to use allometric equations
developed for similar site and environmental conditions to estimate AGBCS [7,14,15]. At present,
there are several equations developed using data from similar/same ecoregions at stand, forest,
national, eco-regional and global levels. The use of inventory data at national and regional scale is,
however, challenging due to unjustified selection of appropriate biomass estimation or allometric
equations [6]. It is thus paramount to select equations that are developed for and based on similar
ecological conditions and tree stands. Through the use of Akaike information criteria (AIC) and Root
Mean Square Error (RMSE), it will be possible to evaluate the explanatory power of the equations
selected and decide whether they can be a good approximation to the area of interest [15].

The objective of this study was therefore to build an approach and construct a baseline for
estimating tree density and carbon stocks across different sites and eco-zones of Southern Africa.
The specific objectives are to (1) adapt distance methods for unbiased estimation of tree density
at landscape level, (2) estimate aboveground biomass and carbon stocks for plots and sentinel
sites using models selected by information criteria, and (3) determine variability in tree density,
measured height and diameter, and estimated biomass carbon stocks within and across sentinel sites.
Understanding spatial variability of carbon stock across land use and eco-zones can play a crucial role
in the design of management strategies. This can also facilitate “carbon-saving” credit schemes and
provide necessary incentives.

2. Materials and Methods

2.1. Description of the Study Area

The study covered 29 sentinel sites located in Angola, Botswana, Malawi, Mozambique, Zambia,
and Zimbabwe covering four eco-zones; i.e., arid, semi-arid, and sub-humid to humid climate
(Figure 1a,b and Table 1). The eco-zones defined by the quotient between yearly positive precipitation
and yearly positive temperature were used as primary clustering units as they show the bio-climatic
gradient [16].Forests 2016, 7, 57  3 of 20 
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Figure 1. (a) Location of the sampling sites in Southern Africa and (b) description of areas with respect 

to miombo, pantoropical and ecozones. 

Table 1 Distribution of the sites, vegetation types and ecological zones with corresponding Koppen–

Geiger (R) and pan‐tropical (PT) climatic zones. 

Location  Site Name  Major Woody Vegetation Composition R  PT

Angola 

Bimbe  Re‐growth fallow; sparse remnant trees on farmland  Sub‐humid  Dry 

Luimbale 
Re‐growth fallow, sparse remnant trees on farmland and 

old‐growth on hill tops 
Sub‐humid  Dry 

Mucope 
Regrowth Mopane woodland with open canopy used 

chiefly for grazing 
Semi‐arid  Dry 

Sanza‐pombo  Tall grass (>1.5 m) with scattered trees  Humid  Moist

Botswana 

Gumare  Old‐growth Terminalia spp  Arid  Dry 

Paje  Old‐growth Terminalia; mopane and Acacia  Arid  Dry 

Shoshong 
Re‐growth fallow; remnant trees on farmland; and old‐

growth along valleys and hilltops 
Arid  Dry 

Malawi 

Golomoti 

Miombo remnant trees on escarpment and re‐growth on 

farmland and old‐growth; mopane & acacia re‐growth & 

remnants on cropland in the plain 

Semi‐arid  Dry 

Kandeau 
Remnant trees, exotic fruit and firewood trees on 

farmland and homesteads 
Sub‐humid  Dry 

Linthipe 
Remnant native trees, exotic fruit and firewood trees on 

farmland and homesteads 
Sub‐humid  Dry 

Nambuma 
Remnant native trees, exotic fruit and firewood trees on 

farmland and homesteads 
Sub‐humid  Dry 

Figure 1. Cont.
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Figure 1. (a) Location of the sampling sites in Southern Africa and (b) description of areas with respect
to miombo, pantoropical and ecozones.

Table 1. Distribution of the sites, vegetation types and ecological zones with corresponding
Koppen–Geiger (R) and pan-tropical (PT) climatic zones.

Location Site Name Major Woody Vegetation Composition R PT

Angola

Bimbe Re-growth fallow; sparse remnant trees on farmland Sub-humid Dry

Luimbale Re-growth fallow, sparse remnant trees on farmland
and old-growth on hill tops Sub-humid Dry

Mucope Regrowth Mopane woodland with open canopy
used chiefly for grazing Semi-arid Dry

Sanza-pombo Tall grass (>1.5 m) with scattered trees Humid Moist

Botswana

Gumare Old-growth Terminalia spp. Arid Dry

Paje Old-growth Terminalia; mopane and Acacia Arid Dry

Shoshong Re-growth fallow; remnant trees on farmland;
and old-growth along valleys and hilltops Arid Dry

Malawi

Golomoti
Miombo remnant trees on escarpment and re-growth
on farmland and old-growth; mopane & acacia
re-growth & remnants on cropland in the plain

Semi-arid Dry

Kandeau Remnant trees, exotic fruit and firewood trees on
farmland and homesteads Sub-humid Dry

Linthipe Remnant native trees, exotic fruit and firewood trees
on farmland and homesteads Sub-humid Dry

Nambuma Remnant native trees, exotic fruit and firewood trees
on farmland and homesteads Sub-humid Dry

Nkhata Bay Rubber plantation; old and re-growth miombo and
fruit trees Humid Moist

Nsipe Remnant trees on farmland, fallow and old-growth
on hills Sub-humid Dry

Thuchila Exotic fruit and firewood trees on homesteads and
along streams and roads Sub-humid Dry

Mozambique

Chica Re-growth fallows, remnant trees and cashewnut
on farmland Sub-humid Dry

Chiculecule Thorny thickets on west and miombo on east
(mainly re-growth fallow and remnants on farmland) Arid Dry

Furanungo Old-growth on cluster 4; re-growth fallow;
and remnants on farmland Sub-humid Dry

Ihansunghe Dense old-growth mangrove lowland;
coconut & mangoes on farmland Humid Moist

Macasangila Heavily cut coppice shoots; with intact woodland in
cluster 4 Sub-humid Dry

Martinho A few patches of re-growth woodland; and
treeless farmland Semi-arid Dry

Massuque Old-growth miombo closed canopy Semi-arid Dry
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Table 1. Cont.

Location Site Name Major Woody Vegetation Composition R PT

Zambia

Budula Remnant trees on cropland; and old-growth untilled
areas and hills Sub-humid Dry

Chilende Old-growth miombo Sub-humid Dry

Fisenge Patches of old-growth miombo; remnant trees
on farmland Sub-humid Dry

Monga Old-growth miombo on steep slopes; re-growth and
remnant trees on farmland Sub-humid Dry

Musungwa Palm and mango trees on southern tip; greater part
is flood plain and grassland Sub-humid Dry

Zimbabwe

Chikumbakwe Scattered trees and shrubs on farmland;
re-growth miombo; waterlogged grasslands Semi-arid Dry

Gambissa Old-growth D. cinerea thickets; miombo and mopane Semi-arid Dry

Kenilworth Miombo old-growth; D. cinerea thickets re-growth
fallow and remnant trees on farmland Semi-arid Dry

The sampled areas fall within the Zambezian phytochoria in Southern Africa [17] with
dominant woody vegetation assemblages including not only the miombo, Burkea/Terminalia/Combretum,
Mopane woodlands (Plates 1a,b,f respectively), and Acacia/Combretum, but also the transition to the
Guinea-Congolia in the west and Zanzibar-Inhambane to the east. Areas under cultivated and left fallow
contained a mixture or predominance of exotic fruit and firewood species. Cocoa and palm trees
were found along water fringes of Inhambane in Mozambique (Plate 1g) and Musungwa in Zambia
(Plate 1h) sites, respectively (Table 1). A few sampling points in Nkhatabay, Malawi, were within a
plantation of rubber trees, Hevea brasiliensis.Forests 2016, 7, 57  5 of 20 
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Plate 1. Tree and stand structure in varied land cover and use types (a) Miombo woodland at Massuque
in Mozambique; (b) Terminalia woodland in arid zone at Gumare in Botswana; (c) trees on farm
(scattered trees in intensively cropped areas at Linthipe in Malawi; (d) burnt and respouting trees with
intensively grazed dry grass at Paje in Botswana; (e) intensively cultivated plains and forested hills
at Luimbale in Angola; (f) intact mopane woodlands in semi-arid zone at Kenilworth in Zimbabwe;
(g) mangroves with salt pans in depressions and trees on raised areas at Inhassunge in Mozambique;
and (h) Dauwn palm on edge of Kafue river flood plain at Musungwa in Zambia.

2.2. Sampling Strategy and Data Collection

This study applied the Africa Soil Information Service (AfSIS) sampling protocol where the
sub-Saharan African continent is stratified according to the Koppen-Geiger climatic zones [18,19].
Additional sites of the CGAIR Drylands (CRP1.1) and the Africa Research in Sustainable Intensification
for the Next Generation (Africa RISING) Programs were also included following similar sampling
framework. Extensive data were collected from 4640 plots in the 29 sentinel sites (Table 1) covering a
total area of 290,000 ha.

In all of the 29 sites, we employed the Land Degradation Surveillance Framework (LDSF) in
which sample points are selected using hierarchical stratified random sampling [20]. The LDSF was
designed to have sentinel sites of 10,000 ha as sampling framework. The sentinel site was stratified
into 16 clusters of 100 ha. Within each cluster, 10 plots of 0.1 ha were randomly located (Figure 2a).
The plot was further divided into four subplots of 0.01 ha as sampling units (Figure 2b). Tree related
measurements were done at the sub-plot level.
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Figure 2. (a) Hierarchical sampling of plots (individual icons) in 16 clusters within the 10 by 10 km
sentinel site (b) sampling subplots layout and (c) the T-square method employed to measure tree
attributes for each subplot. NB: subplots c1 and c2 are non-vacant; c3 is vacant; and c1 could have tree
1 but no tree 2 within a 30 m radius (see Section 2.3 for details).

Global Positioning System was used to navigate to sentinel sites-clusters-plots-subplots. The
central position of the plot (referred as the central subplot, c) was marked (Figure 2a). From the
center-point of this subplot, a distance of 12.2 m was measured to the upper slope position using
measuring tape and the center of the next subplot was marked as subplot 2. Subplots 3 and 4 were
located by offsetting 120 and 240 degrees from subplot 2, respectively. The radius of each subplot was
5.64 m, which approximately gives 0.01 ha area.

Sampling of individual trees for measurement was done using the T-square method [21]. The
T-square has an advantage over other widely used distance or point-centered methods to estimate
density for populations where individuals (trees) are randomly distributed in a study area [21,22].
Using the T-square method, the “point to tree1” distance (xi) was measured from the center of a subplot
to the nearest tree. From the first tree observed (tree1), a “tree1 to tree2” distance (yi) was then measured
to the nearest neighbor in the direction away from and perpendicular to the line “point to tree1”
(Figure 2c). The angle of measurement was constrained to lie in the hemisphere with search diameter
of 30m, the average distance between nearest neighboring trees expected in randomly distributed tree
population in farmlands [23]. For tree2, diameter at 1.3 m height (D) and height (h) are measured using
a measuring tape and clinometer, respectively.

For biomass estimation, woody plants with height of 3 m or more were considered as they are
assumed to contain the greater portion of aboveground biomass carbon [5]. These tree stands also
escape fire die back and are generally conserved by farmers while those below than 3 m and herbaceous
plants are prone to destruction by fires and more likely cleared in cultivated areas [1].
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In each plot, the degree of disturbance due to agriculture, cutting trees, grazing, fire, erosion, alien
vegetation, etc. was assessed visually and through interviews with plot owners on a scale of 0 to 3
representing none to high impact following the procedures in the LDSF protocol [20]. The probability
of a plot experiencing a given form of disturbance was estimated for each site (based on 160 plots per
site) using a logistic regression model. For this purpose, estimates of the linear predictors (on the logit
scale) and odd ratios were obtained for sites within each eco-zone separately. Predicted probabilities of
each disturbance variable were then calculated from the odds ratios for each site within an eco-region.

2.3. Tree Density Estimation Using the T-Square Method

Most national forest inventories estimate tree density by counting the total number of trees and
adjusting for the size of the area considered [24]. However, in our study sites, as is the case in most
tropical grasslands, tree distribution is sporadic and sparse in agricultural areas and semiarid zones,
thereby having vacant subplots where no measurements were made. Estimating tree density by relating
the number of trees encountered with the area of plot/subplot could thus over or under-estimate tree
density and carbon stock. In order to avoid that, the search areas were not restricted to the small plot
area and adjustments were made to make sure that the calculated density was based on vacant and
non-vacant plots/subplots.

To deal with errors associated with plot sizes, we estimate density and biomass at cluster level to
increase the degrees of freedom (especially for sparsely populated areas), thereby having an unbiased
estimate [9]. In a cluster, the unbiased mean search area (assuming there are no vacant subplots)
occupied by nearest tree for the distance point to tree1 is:

Ax “
π

řm
1

řn
1 xij

2

n pnm´ 1q
, (1)

where m is the number of points (plots) in a cluster; i a particular plot; n is the number of subplots,
j being a subplot, xij is the distances as described in the previous section. The corresponding unbiased
estimate of density δ, as demonstrated by Mitchell [22] is the reciprocal of the search area given by:

δx “
n pnm´ 1q

π
řm

1
řn

1 xij
2 . (2)

Similarly, the search area for the next nearest tree to a neighbor in the semi-circle is calculated as:

1
2

Ay “
π

řm
1

řn
1 yij

2

2n pnm´ 1q
, (3)

where yij is the distance. Tree density within the corresponding search areas is given by:

δy “
2n pnm´ 1q

π
řm

1
řn

1 yij
2 . (4)

The combined density that is robust to non-random pattern is [21]:

δxy “
b

δxδy. (5)

The quations described above assume that all subplots contain trees but as discussed earlier,
the sampled areas have vacant subplots. The absolute density should thus be corrected for vacant
subplots for both the first and second trees. To achieve this, we first estimated the density of non-vacant
subplots using:

δxypmn´m0q
“

g

f

f

e

pnm´m0 ´ 1qx ˚ pnm´m0 ´ 1qy
pπ

řnm´m0
mn“1 xiq ˚ pπ

řnm´m0
mn“1 yiq

, (6)
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where mo denote number of vacant subplots. To correct for the bias, we employ the correction factor
(CF) following Warde and Petranka [25] and derived as:

δxyc “

g

f

f

e

pnm´m0qx pnm´m0qy

pπ
řnm´m0

mn“1 xiq pπ
řnm´m0

mn“1 yiq
CF. (7)

CF values were obtained from the CF table corresponding to proportion of vacant quarters
(VQ), using:

VQ “
mox ˚ moy

nmxnmy
. (8)

2.4. Estimating Variation in Tree Density, Height and Diameter

Variations in tree density, height and diameter were estimated using generalized linear mixed
model to account for the hierarchical nature of the sampling. The first step involved analysis of
variation across eco-zones (fixed effects). Here, a random intercept with site as the subject was
specified as the random effect. The random statement in the model specifies that the linear predictor
contains an intercept term that randomly varies at the level of the “study site” effect. The second step
involved analysis of site effects (entered as fixed effects) within each eco-zone. In this case, a random
intercept was introduced with clusters as a subject in the model in order to estimate the 95% confidence
intervals (95% CI) correctly. Statistical inference was based on the means and their 95% CI.

2.5. Estimation of Aboveground Biomass (AGB) and Carbon Stocks

Tree biomass was estimated using existing multispecies biomass estimation models developed
for each zone (Table 2). Some models such as the ones developed by Chave et al. [14] though robust for
pan-tropical vegetation; they use default values for wood specific gravity and could not be applied to
our dataset as it captured some species whose wood specific gravity are not yet determined. AGB was
predicted using measured diameter as an input variable in each model. The predictive performance of
each model was then compared and the best approximating model selected for each zone. Variations
in estimated AGB across sites in the same eco-zone were estimated using linear mixed model. For
each eco-zone, countries were entered as fixed effects and a random intercept with plots as subjects
were entered as random effects in the mixed effects model. The best model was considered the one
that gave the lowest AIC, narrow confidence intervals, and lower root mean square error (RMSE) [15].
Tree biomass was estimated using the best performed model. Stand biomass (per hectare) was then
estimated by aggregating cluster level data since density adjusted for vacant subplots was aggregated
at cluster level.

Table 2. Selected equations used to estimate aboveground biomass (AGB (kg¨ tree´1)) in the study area.

Source Equation Eco-Region Rainfall
(mm/Year)

Arid and Semi-Arid
Mugasha et al. [26] a AGB = exp(´2.2453 + 2.4735ln(D) Dry miombo Tanzania 6–1000 (9)

Chidumayo [27] a AGB = 0.0446D2.765 Dry miombo Zambia 850–940 (10)
Chidumayo [27] b AGB = 2.5553ln(D) ´ 2.5265 Dry miombo Zambia 850–940 (11)

Ryan et al. [28] lnAGB = 2.601log(D) ´ 3.62 Dry miombo Mozambique 520–1120 (12)

Sub-Humid

Kuyah et al. [29] AGB = 0.0905D2.4718 Savanah: Markhamia,
Eucalyptus, Acacia 1000–1300 (13)

Brown et al. [30] a AGB = 34.4703 ´ 8.0671D + 0.6589D2 Tropical dry <1500 (14)
Mugasha et al. [26] b AGB = exp(´1.6557 + 2.3427ln(D) Wet miombo Tanzania 1000–1400 (15)

Humid
Mugasha et al. [26] b AGB = exp(´1.6557 + 2.3427ln(D) Wet miombo Tanzania 1000–1400 (16)

Brown et al. [28] b AGB = exp(´2.4090 + 0.9522ln(D2hρ)) Tropical moist >1500 (17)

Subscript letters (a, b) denote different models by the same author the same year.
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Aboveground biomass carbon stocks (AGBCS) were estimated from AGB using the equation [31]:

AGBCS “ AGB ˚ 0.47 (18)

Several studies have shown that the carbon fraction approximates between 0.47 and 0.50 of the
total biomass [31–34]. Although Clark and Kellner [6] suggest to use species/stand specific values, it is
a daunting task considering the varied species combinations encountered in the tropics [7]. Moreover,
the aggregated range at stand level will not be very different from current widely used values obtained
from meta-analyses of species specific values in the regions. In this study, we used 0.47, which is
considered standard and is widely used to estimate AGBCS from AGB data for carbon trade in the
tropics [31,32].

To assess the overall validity of the approach and thus show the level of confidence in both
accuracy and precision of the results, we compared the estimates against biomass and carbon stock
values obtained using destructive sampling in the region.

3. Results

3.1. Tree Density, Height and Diameter

Of the total 18,560 sampled subplots, 49.6% had at least a tree within 5.64 m radius while the
search for the next tree within the 30 m radius hemisphere captured 47.4% of the trees (Table 3). The
proportion of vacant subplots was 52.6%. Chilende in Zambia had the highest presence of trees (with
93.4% of the subplots having trees) whereas Musungwa (Zambia) had the least (0.03%). In most
sites, there was high likelihood of finding the second tree from the first, except for Malawian sites of
Golomoti, Kandeau, Linthipe and Nsipe where trees were more scattered.

Table 3. Summary of presence of trees, distribution (search area, SA) in the study area.

Subplot (Number) SA (m2)

Eco-Zone Country Sentinel Site Tree1 Tree2 Tree1 SD Tree2 SD

Grand-average 324 313 34.2 87.3 66.7 116.5

Semi-arid

Sub-average 299 292 54.7 276.2 80.3 136.2
Botswana Gumare 456 451 31.3 24.3 44.8 67.0
Botswana Paje 179 162 40.9 28.6 115.4 189.4
Botswana Shoshog 156 152 124.1 1027.7 106.7 167.6

Mozambique Chiculecule 404 402 22.4 24.2 54.2 120.7

Semi-arid

Sub-average 399 387 26.9 23.7 53.1 104.3
Angola Mucope 517 516 25.9 24.3 38.3 88.2
Malawi Golomoti 232 161 29.9 25.3 79.2 178.0

Mozambique Martinho 283 277 34.8 25.8 99.3 161.4
Mozambique Massugue 532 531 24.6 22.2 34.2 54.3

Zimbabwe Chikumbakwa 174 170 29.7 26.4 67.9 146.6
Zimbabwe Gambissa 502 500 19.5 20.1 22.8 43.8
Zimbabwe Kenilworth 553 552 23.5 21.7 29.9 58.1

Sub-humid

Sub-average 286 266 31.0 24.8 85.5 140.9
Angola Bimbe 299 289 32.8 27.2 78.1 141.8
Angola Luimbale 402 400 25.6 24.6 43.6 100.9
Malawi Kandeau 162 97 35.8 23.3 187.9 280.0
Malawi Linthipe 117 55 41.2 27.1 125.0 169.4
Malawi Nambuma 152 139 46.9 27.2 221.1 274.9
Malawi Nsipe 226 138 36.8 27.7 85.0 165.3
Malawi Thuchila 92 79 33.1 26.6 108.4 189.0

Mozambique Chica_b 420 416 21.8 23.0 43.7 100.5
Mozambique Furancungo 268 249 28.3 25.9 43.9 87.1
Mozambique Macssangila 293 290 25.7 25.1 62.0 124.7

Zambia Budula Silya 395 392 22.1 21.9 34.8 81.0
Zambia Chilende 599 599 22.7 21.3 27.1 32.8
Zambia Fisenge 305 299 23.2 23.3 49.9 121.2
Zambia Monga 534 533 23.9 21.9 33.5 66.2
Zambia Musungwa 20 17 45.1 26.3 138.1 179.0

Humid

Sub-average 314 309 24.3 24.7 48.1 84.5
Angola Sanza Pombo 425 421 23.4 23.6 41.7 85.5
Malawi Nkhata Bay 266 256 24.2 24.9 37.5 67.1

Mozambique Ihassunge 251 249 25.3 25.6 65.0 100.8
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Average search area from center to tree1 was 34.2 ˘ 87.2 m2 and from tree1 to tree2 was
66.7 ˘ 116.5 m2 (Table 3). The search area between the first and the second trees was wider (indicating
sparse tree populations) in arid areas compared to the humid zones. Nambuma, Kandeu, and Linthipe
in Malawi (Plate 1c), Musungwa in Zambia (Plate 1h), and Paje in Botswana had sparse populations.
Woodlands at Gambisa in Zimbabwe, Chilende in Zambia, Kenilworth in Zimbabwe, Massuque in
Mozambique, Mucope in Angola and Gumare in Botswana had clustered tree distributions as indicated
by almost similar search areas for tree1 and tree2.

Tree density varied significantly across sites (Figure 3, Table 4) and eco-zones. The average tree
density (adjusted for vacant subplots) was 502 trees¨ha´1 with semi-arid regions having higher density
of 682 trees¨ha´1 followed by humid zone (584 trees¨ha´1) while the arid regions had the least with
393 trees¨ha´1. Musungwa in Zambia had the least tree density of 23 trees¨ha´1 while Kenilworth in
Zimbabwe had the highest of 1293 trees¨ha´1. Gambisa in Zimbabwe had more vacant subplots such
that the adjusted density was 1107 trees¨ha´1 (47% of the unadjusted). At Furancungo (Mozambique),
the adjusted density was 25% of the density for non-vacant subplots. The sparsely populated areas
include Musungwa (Zambia) with adjusted density of 80% and the four Malawian sites (Linthipe,
Nambuma, Thuchila and Kandeau) with adjusted density of less than 20% of the non-vacant density.Forests 2016, 7, 57  11 of 20 
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Figure 3. Variation in tree density (in ha´1) (top panel); total height (in m) and diameter at breast height
(D in cm) (bottom panel) across eco-zones and sites. Vertical bars represent 95% confidence intervals.

The average tree height significantly varied across sites and eco-zones (Figure 3, Table 4). Sites
in humid areas had taller trees (mean 7.7 m) while those in arid areas tend to be significantly shorter
(mean 4.6 m) than those in all other eco-zones. The average tree diameter also varied across sites
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and eco-zones (Figure 3, Table 4). Remnant trees in cultivated and drier areas had larger diameters
than dense re-growth saplings in semi-arid and arid areas. Generally larger tree diameters were
found in humid zones compared to the other eco-zones. However, the 95% CL does not indicate
significant differences between eco-zones. With fewer trees, Musungwa in Zambia had relatively large
diameter trees averaging 27.2˘ 18.0 cm. In this site, the trees are well preserved under co-management
arrangement between the local community and Zambia Wildlife Authority since it is within the
buffer zone of Kafue National Park. The arid areas, despite having shorter trees, tend to have larger
diameter trees. Most trees in the area were coppice re-growth of multiple stems from single stump.
The dominantly cultivated area of Nambuma (Malawi) had fewer and large diameter trees averaging
21.46˘ 20.6 cm. The sites with smallest diameter trees include Nsipe (Malawi), Gumare (Botswana) and
Furancungo (Mozambique) with average diameters of 12.01 cm, 12.88 cm and 13.67 cm, respectively.

Table 4. Tree density (unadjusted and adjusted for vacant subplots), total height and diameter at breast
height. Figures in parenthesis are 95% confidence intervals of means.

Eco-zone Country Sentinel Site Unadjusted
Density

Density Adjusted
for Vacant Height (m) Diameter1.3 (cm)

Arid

Botswana Shoshog 467 115 (9.7–220.4) 4.5 (4.2–4.7) 21.5 (18.2–24.9)
Botswana Paje 1026 153.2 (69–238) 3.9 (3.6–4.2) 21.2 (17.9–24.5)

Mozambique Chiculecule 1440 751 (424–1077) 5.4 (5.2–5.6) 17.8 (15.2–20.5)
Botswana Gumare 1123 551 (400–703) 4.3 (4.1–4.5) 12.8 (10.2–15.4)

Mean 1014 393 (240–545) 4.6 (4.4–4.9) 16.9 (15.9–17.9)

Semi-arid

Zimbabwe Chikumbakwa 905 181 (81–281) 5.5 (5.0–6.0) 17.4 (14.8–20.0)
Mozambique Massugue 1392 911 (550–1271) 7.4 (7.2–7.7) 18.4 (17.2–19.6)
Mozambique Martinho 691 215 (154–276) 5.3 (5.0–5.6) 18.6 (17.0–20.3)
Zimbabwe Kenilworth 1756 1293 (732–1854) 5.5 (5.2–5.7) 16.8 (15.6–18.0)

Malawi Golomoti 1348 268 (115–422) 6.1 (5.7–6.5) 19.2 (17.0–21.4)
Angola Mucope 1471 797 (480–1114) 5.3 (5.1–5.6) 16.4 (15.1–17.6)

Zimbabwe Gambissa 2374 1107 (557–1657) 5.6 (5.3–5.9) 15.0 (15.0–16.2)
Mean 1420 682 (566–797) 5.9 (5.7–6.1) 17.1 (16.4–17.8)

Sub-humid

Malawi Nambuma 355 56 (30–82) 5.5 (4.9–6.0) 22.2 (19.9–24.5)
Malawi Kandeau 734 75 (40–111) 7.0 (6.3–7.6) 22.8 (20.1–25.6)
Zambia Musungwa 282 7 (0–15) 7.4 (6.0–8.9) 26.4 (20.1–32.8)
Zambia Fisenge 1440 542 (248–836) 5.5 (5.1–5.9) 18.8 (17.2–20.4)
Malawi Thuchila 690 60 (31–89) 5.7 (5.0–6.4) 18.0 (15.0–21.0)
Malawi Linthipe 342 43 (´6–93) 5.2 (4.4–6.0) 17.5 (13.9–21.0)

Mozambique Chica_b 1394 762 (492–1033) 5.0 (4.7–5.4) 14.8 (13.4–16.2)
Malawi Nsipe 1045 201 (58–343) 5.6 (5.0–6.1) 15.2 (12.9–17.5)

Mozambique Furancungo 1667 404 (263–544) 6.4 (6.0–6.9) 17.8 (16.0–19.6)
Zambia Chilende 1638 1084 (767–1401) 8.6 (8.3–8.9) 19.0 (17.8–20.2)

Mozambique Macssangila 1039 397 (181–613) 7.1 (6.7–7.5) 15.5 (13.8–17.1)
Zambia Budula Silya 1541 726 (522–9310 6.0 (5.6–6.3) 13.9 (12.4–15.4)
Angola Luimbale 1369 743 (405–1081) 5.9 (5.6–6.3) 16.6 (15.1–18.0)
Zambia Monga 1502 1118 (881–1355) 5.6 (5.3–5.9) 15.3 (14.0–16.5)
Angola Bimbe 760 261 (182–340) 5.2 (4.8–5.6) 15.2 (13.5–16.9)

Mean 1053 432 (353–511) 6.2 (6.0–6.4) 16.8 (16.2–17.5)

Humid

Mozambique Ihassunge 1062 427 (90–764) 8.0 (6.7–9.4) 23.6 (20.7–26.4)
Malawi Nkhata Bay 1433 426 (90–764) 9.8 (8.5–11.2) 18.9 (16.1–21.7)
Angola Sanza Pombo 1370 900 (515–1285) 6.3 (5.1–7.6) 15.0 (12.4–17.5)

Mean 1288 584 (408–760) 7.7 (7.4–7.9) 17.8 (16.8–18.9)
Grand mean 1194 502 (445–559) 6.1 (6.0–6.2) 17.0 (16.7–17.3)

3.2. Tree Biomass and Carbon Stocks

Among the various set of models used (Table 2), models by Ryan et al. [28], Kuyah et al. [29]
and Mugasha et al. [26] best approximated aboveground biomass and carbon stock for the arid and
semi-arid; sub-humid; and humid eco-zones, respectively (Table 5). The results show that the region
contains considerable amount of aboveground biomass and carbon stocks at both tree and stand
levels (Table 4). Individual tree biomass averaged 329.6 kg¨ tree´1 with humid zone having trees
with more biomass (409.3 kg¨ tree´1) followed by arid zone. The sub-humid zone had the lowest
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biomass (238.4 kg¨ tree´1). The arid and semi-arid zones had the largest variability indicated by large
standard errors.

Trees with lower biomass were observed in newly cultivated areas of Bimbe in Angola,
Budula-Siliya in Zambia and at Gumare in the arid zone of Botswana. Sites with higher variability
in biomass carbon contents include Chikumbakwa and Chiculecule (Mozambique) and Gumare
(Botswana) while those with low variability include Musungwa (Zambia), Luimbale (Angola) and
Furancungo (Mozambique).

Table 5. Mean tree biomass estimates (kg¨ tree´1) with lower and upper 95% confidence limits (95%
CL). The best approximating model identified using Akaike Information Criterion (AIC) and Root
Mean Square Error (RMSE) are shaded. The mean estimate is the weighted average for a particular
model on individual tree basis.

Ecoregion Model Country Mean (kg¨ tree´1) 95% CL AIC RMSE

Arid and
semi-arid

Mugasha et al.
[26] a

Angola 253.1 109.7–396.4 59275 28.3
Botswana 270.6 150.4–390.9 22.2

Mozambique 545.5 381.5–709.5 15.0
Zambia 189.0 50.2–327.8 36.7

Zimbabwe 255.8 156.2–355.5 19.5

Chidumayo
[27] a

Angola 313.4 38.1–588.6 63620 43.9
Botswana 341.2 109.4–573.0 34.0

Mozambique 865.3 551.0–1179.7 18.2
Zambia 221.1 ´45.3–487.5 60.3

Zimbabwe 340.0 147.1–533.0 28.4

Chidumayo
[27] b linear

Angola 257.9 92.5–423.3 60218 32.1
Botswana 277.2 138.3–416.1 25.1

Mozambique 594.1 405.0–783.1 15.9
Zambia 189.6 29.5–349.6 42.3

Zimbabwe 265.0 149.7–380.3 21.8

Ryan et al. [28]

Angola 102.3 32.0–172.5 54428 34.4
Botswana 110.2 51.2–169.3 26.8

Mozambique 244.7 164.4–325.0 16.4
Zambia 74.5 6.5–142.5 45.7

Zimbabwe 106.2 57.1–155.3 23.1

Sub-humid

Kuyah et al.
[29]

Angola 126.7 80.7–172.6 69731 18.2
Malawi 271.6 224.3–319.0 8.7

Mozambique 202.3 173.7–230.9 7.1
Zambia 179.6 146.0–213.1 9.4

Zimbabwe 313.3 155.0–471.7 25.3

Brown [30] a

Angola 142.1 87.0–197.2 71344 19.4
Malawi 314.0 257.2–370.8 9.1

Mozambique 231.8 197.6–266.1 7.4
Zambia 204.2 164.0–244.5 9.9

Zimbabwe 361.2 171.4–550.9 26.3

Mugasha et al.
[26] b

Angola 215.6 129.5–301.8 75332 20.0
Malawi 483.2 394.4–572.0 9.2

Mozambique 355.4 301.7–409.0 7.6
Zambia 311.9 248.9–374.8 10.1

Zimbabwe 554.9 258.1–851.8 26.8

Humid

Mugasha et al.
[26] b

Angola 213.4 89.8–337.0 15562 28.7
Malawi 404.1 265.6–542.5 17.0

Mozambique 614.5 472.3–756.7 11.5

Brown [30] b

Angola 255.6 78.4–432.9 16226 34.3
Malawi 505.3 307.1–703.5 19.4

Mozambique 802.4 599.0–1005.7 12.6

Subscript letters (a, b) denote different models by the same author the same year.
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The stand AGB estimated using the individual tree and density adjusted for non-vacant subplots
was 119.9 Mg¨ha´1 constituting carbon stocks of 56.4 Mg¨ha´1 (Table 6). Semi-arid and humid zones
had higher carbon stocks (72 Mg¨ha´1) compared to sub-humid region (34.3 Mg¨ha´1). At site level,
higher carbon stocks were recorded in the semi-arid regions of Kenilworth and Gambisa (both in
Zimbabwe) and Massuque (in Mozambique), arid area of Chiculecule (Mozambique) and sub-humid
area of Chilende (Zambia). Sites in sub-humid regions of Linthipe, Thuchila, Nambuma, Kandeu and
Nsipe (all in Malawi), Musungwa (Zambia) and Bimbe (Angola) had relatively lower carbon stocks.

Table 6. Estimated aboveground tree biomass (Kg¨ tree´1) and stand biomass (Mg¨ ha´1) and their 95%
confidence limits (95% CL) and carbon stocks (Mg¨ ha´1) at the sites in southern Africa.

Zone Country Site Tree
Biomass 95% CL Stand

Biomass 95% CL Carbon
Stock

Arid

Mozambique Chiculecule 541.6 198.4–716.7 225.7 101.0–289.3 106.1
Botswana Gumare 153.3 108.2–176.3 79.9 47.6–96.4 37.6
Botswana Shoshog 406.9 282.4–470.4 45.6 18.5–59.4 21.4
Botswana Paje 468.0 318.8–544.1 42.9 25.1–52.0 20.1

Mean 392.4 227.0–476.8 98.5 47.9–124.3 46.3

Semi-arid

Zimbabwe Kenilworth 240.9 190.9–266.4 293.8 210.3–336.4 138.1
Mozambique Massugue 220.8 165.7–248.9 228.6 159.8–263.7 107.5

Zimbabwe Gambissa 180.3 138.0–201.9 227 148.4–267.1 106.7
Angola Mucope 252.6 198.1–280.4 172.8 130.8–194.2 81.2

Zimbabwe Chikumbakwa 553.4 ´7.6–839.6 66 12.7–93.2 32.0
Malawi Golomoti 252.0 135.2–311.6 48.8 10.2–68.5 23.0

Mozambique Martinho 249.2 168.4–290.4 47.3 5.4–68.7 22.1
Mean 278.5 141.3–348.5 154.9 96.9–184.5 72.8

Sub-humid

Zambia Chilende 187.7 158.7–202.5 248.2 178.4–283.8 116.6
Zambia Monga 173.6 141.3–190.1 190.4 146.3–212.9 89.5

Mozambique Chica_b 181.7 121.9–212.2 147.6 22.9–211.2 69.4
Zambia Fisenge 251.3 160.7–297.5 105.2 73.8–121.2 49.4
Angola Luimbale 138.1 115.0–149.9 92.9 54.5–112.5 43.7
Zambia Budula Silya 112.0 87.9–124.3 70.9 52.3–80.4 33.3

Mozambique Furancungo 176.1 135.5–196.8 60.1 35.8–72.5 28.3
Mozambique Macssangila 166.6 99.0–201.1 57.3 27.3–72.6 26.9

Angola Bimbe 110.6 85.9–123.2 29.7 16.6–36.4 14.0
Malawi Nsipe 183.5 96.5–227.9 27.4 11.5–35.5 12.9
Malawi Kandeau 330.8 204.4–395.3 21.8 ´16.6–41.4 10.2
Malawi Nambuma 398.4 110.1–545.5 18 6.0–24.1 8.5
Malawi Thuchila 292.7 151.6–364.7 14.1 4.9–18.8 6.6
Malawi Linthipe 196.7 65.4–263.7 7.7 2.0–10.6 3.6
Zambia Musungwa 675.9 188.6–924.5 4.8 ´23.0–19.0 2.2

Mean 238.4 128.2–294.6 73.1 39.6–90.2 34.3

Humid

Malawi Nkhata Bay 396.7 300.5–445.8 165.7 55.4–222.0 77.9
Angola Sanza Pombo 213.2 164.4–238.1 164.9 95.5–200.3 77.5

Mozambique Ihassunge 617.9 442.1–707.6 128.7 61.7–162.9 60.5
Mean 409.3 302.5–463.8 153.1 70.8–195.1 72.0

Overall mean 329.6 199.7–395.9 119.9 63.8–148.5 56.4

4. Discussion

This study has revealed high variability in tree density, biomass and carbon stocks across land
uses and eco-zones in southern Africa. Areas with high levels of anthropogenic disturbance (e.g., many
in Malawi) appear to have the lowest tree densities and biomass carbon while undisturbed woodlands
and some grazing areas showed dense tree cover and carbon stock (Table 7).
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Table 7. Ecological zones (according to Koppen–Geiger) of the study sites and major sources of
disturbance. The probability of a plot experiencing disturbance due to agricultural activities, cutting
trees, grazing, fire, erosion and alien species are shown under each category.

Eco-Zone Country Site Name Agriculture Cutting Grazing Fire Erosion Aliens

Arid Botswana Gumare 0.000 0.000 0.994 0.469 0.500 0.000
Paje 0.138 0.000 0.000 0.238 0.438 0.000

Shoshong 0.125 0.275 0.931 0.038 0.481 0.000
Mozambique Chiculecule 0.638 0.631 0.238 0.250 0.425 0.100

p value *** *** *** *** NS NA

Semi-arid
Mozambique Martinho 0.531 0.569 0.106 0.456 0.581 0.106

Massuque 0.025 0.000 0.650 0.437 0.506 0.000
Zimbabwe Chikumbakwe 0.250 0.450 0.863 0.431 0.381 0.013

Gambissa 0.213 0.188 0.963 0.469 0.688 0.000
Kenilworth 0.150 0.000 0.869 0.594 0.681 0.000

Angola Mucope 0.300 0.094 0.981 0.075 0.481 0.000
Malawi Golomoti 0.394 0.444 0.119 0.800 0.550 0.000

p value *** *** *** *** *** NA

Sub-humid Angola Bimbe 0.381 0.306 0.006 0.681 0.806 0.006
Luimbale 0.381 0.256 0.038 0.438 0.781 0.000

Malawi Kandeau 0.438 0.263 0.106 0.700 0.669 0.000
Linthipe 0.450 0.094 0.156 0.625 0.219 0.000

Nambuma 0.469 0.900 0.113 0.050 0.594 0.000
Nsipe 0.394 0.356 0.144 0.806 0.763 0.000

Thuchila 0.088 0.969 0.081 0.150 0.431 0.013
Mozambique Chica 0.606 0.500 0.013 0.400 0.756 0.125

Furanungo 0.413 0.281 0.013 0.825 0.750 0.000
Macasangila 0.706 0.481 0.000 0.538 0.656 0.050

Zambia Budula 0.518 0.388 0.394 0.431 0.831 0.000
Chilende 0.006 0.000 0.025 0.450 0.544 0.000
Fisenge 0.431 0.594 0.094 0.388 0.388 0.013
Monga 0.413 0.181 0.713 0.444 0.894 0.000

Musungwa 0.019 0.031 0.000 0.900 0.281 0.000
p value *** *** *** *** *** NA

Humid Angola Sanzapombo 0.125 0.113 0.081 0.800 0.756 0.000
Malawi NkhataBay 0.481 0.700 0.156 0.644 0.494 0.006

Mozambique Ihansunge 0.263 0.750 0.006 0.231 0.438 0.175
p value *** *** ** *** *** NA

p values show significance of differences between sites (** p = 0.05; *** p < 0.001 and NS p > 0.05). NA means
that maximum likelihood estimates do not exist due to lack of convergence.

Except few sites with higher estimates, the majority of the AGB values in this study are within
the range of estimates obtained in other studies from tropical dry to moist forests. A review by
Gibbs et al. [35] also established that sub-Saharan Africa’s open, closed and tropical seasonal forest
contains carbon stock ranging from 17 to 152 Mg¨ha´1. The wide variability in carbon stock could be a
reflection of differences in topography, climate and land use regimes across those different systems.

Generally, biomass carbon stocks in humid and sub-humid areas were affected by intense
cultivation and wood fuel extraction whereas bush fires destroy trees in semi-arid and arid zones.
Fire has a long history in the evolution of southern African savanna ecosystems and there exists some
degree of fire dependency for the growth, production, regeneration and coexistence of herbaceous
and woody savanna vegetation [17]. However, humans have altered the intensity and timing of fire
over time, and anthropogenic activity is one of the main causes of fires [36]. For example, the current
distribution of miombo woodland, the principal vegetation type in the Zambezian savanna zone,
is believed to reflect the history of anthropogenic fire utilization in the region [17].

In closed undisturbed forests, regional trends in rainfall and topography are the prime
determinants of woody biomass carbon stock [4,37]. Olson et al. [38] found carbon stocks of 120, 105,
and 72 Mg¨ha´1 for tropical rain, moist and dry forests, respectively. A similar gradient was captured
by Intergovernmental Panel on Climate Change (IPCC) [31] where Africa’s tropical wet forest had
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higher carbon stocks (145.7 Mg¨ha´1) followed by woodlands with short season (122.2 Mg¨ha´1),
woodlands with short dry season (57.81 Mg¨ha´1) and drier areas with 33.84 Mg¨ha´1.

At stand level, woody biomass follows a gradient along successions following disturbance [39].
Disturbance regimes including conversion of forests to agricultural production, fires, wood extraction
and grazing exert local to regional impact on tree biomass as reflected in the variability of
biomass/carbon stocks estimates within eco-zones and countries [27]. In this study, the intensively
cultivated sub-humid areas of Malawi had consistently lower biomass estimates compared to arid
areas under moderate cultivation and intense grazing in Botswana (Table 4). This could be linked
to disturbance probabilities (Table 1) where sites in Botswana have lower cutting and agricultural
incidence compared to those of Malawi. National carbon estimates reviewed by Gibbs et al. [35] based
on studies conducted between 1983 and 2007 shows varied carbon stocks among four countries as
follows: Angola (59.44 with range 28.53–94.39), Zambia (53.4 with range 19.64–92.86), Mozambique
(49.6 with range 24.16–65.39) and Malawi (2.86 with range 1.61–4.16), which generally agreed with the
estimates in this study.

The carbon stocks found in this study in undisturbed and disturbed woodlands and croplands
are within the ranges estimated previously in the region. Kuyah et al. [29] recorded carbon stocks of
0.8–22 Mg¨ha´1 in croplands and disturbed woodlands of Malawi. Ribeiro [40] found carbon stocks of
19 Mg¨ha´1 in undisturbed miombo woodland within Niassa Forest Reserve in northern Mozambique.
Several studies in miombo woodlands of eastern Arc Mountains and Kitulango Forest both in Tanzania
found carbon estimates within the rage of 15.5–80 Mg¨ha´1 [41–43]. The study by Chidumayo [27]
in miombo of Zambia found carbon gradients in spatial (adjacent re-growth and old-growth) and
temporal (1990–2012) scales. He established that the re-growth experienced minimal disturbance and
had increased carbon stock from 3.8 Mg¨ha´1 at eight years in 1990 to 16.0 Mg¨ha´1 in 2012. On the
other hand, an old-growth that experienced moderate disturbance had its carbon stock decreased from
47.0 to 35.3 Mg¨ha´1. These trends are primarily a result of woodland management and utilization
regimes by local communities and are supported by the observation by Chidumayo [44]. Chidumayo
noted that many interacting land use factors have shaped regeneration and regrowth of miombo
woodlands. In the arid areas, the woodlands are preserved because other vegetation types cannot be
supported by the little rains received [37].

Socio-cultural factors also influence biomass within ecological zones with Paje (Botswana) having
lower biomass due to scorching bush fires whereas woodlands of Shoshong (Botswana) are traditionally
protected. The mangroves of coastal Mozambique are also conserved by local communities without
formal institutions and contain considerable biomass stocks. The results from this study are consistent
with estimates by Fatoyinbo et al. [45] who found 67 Mg¨ha´1 carbon stocks in mangroves of
Inhambane along the central-southern coastlines of Mozambique. The Inhassunge site is generally
located below sea level, water floods the coastal lines and valleys form a network of rivers that flow
upland during lunar tide and towards the ocean when the water recedes. Woodlands have formed
natural bands and are conserved by local communities (Plate 1g). Other studies in the region show that
beliefs, taboos and tradition are among the driving forces shaping use and management of tree/forest
resources [46,47].

Overall, biomass carbon stocks followed the gradient in ecological and anthropogenic disturbance
regimes, hence the need for different management approaches specific to the zone or site(s). Being the
first regional study across a range of eco-zones and land cover/use types, the approach and estimates
can serve as a baseline and used for future monitoring of carbon stock and income generation through
“carbon trade”. This will add to the pool of information required to enhance negotiation capacity of
governments, private sector and communities involved REDD+ and voluntary carbon markets.

5. Conclusions

Tropical forests have great potential for mitigating global warming due to atmospheric CO2

emissions. The miombo dominated woodlands in Southern Africa are also major sources of livelihoods.
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However, their potential is impaired by deforestation and forest degradation, which contribute about
one fifth of total anthropogenic CO2 emissions. Restoring landscapes and proper management of
forest resources are necessary to tackle problems of climate change and global warming. Carbon
sequestration incentives require that initial carbon storage is established and the role of projects in
tackling atmospheric emission verified. Understanding spatial variability of carbon stock across land
use and eco-zones can play a crucial role in the design of management strategies. This can also facilitate
“carbon-saving” credit schemes and provide necessary incentives. However, developing countries face
measurement challenges due to diversity in vegetation species, inaccessibility and limited resources.

The paper reports the estimate of biomass and carbon stock from land degradation surveillance
of randomly selected 4640 plots across six countries of Southern Africa (Angola, Botswana, Malawi,
Mozambique, Zambia, and Zimbabwe). Generalised allometric equations for tree species in different
vegetation types and climate zones were used to estimate aboveground biomass based on which
carbon stock was estimated. The study estimated average aboveground tree density of 502 trees¨ha´1

and carbon stock of 56.4 Mg¨ha´1. There were however wide site to site variability in both biomass
and carbon stock due to a combination of natural and anthropogenic processes. Areas with high levels
of anthropogenic disturbance (e.g., many in Malawi) appear to have the lowest tree densities and
biomass carbon while undisturbed woodlands and some grazing areas showed dense tree cover and
carbon stock. Given the extent and variability of woody carbon stocks in the region, there is a huge
capacity for the ecosystem to store carbon if properly managed. Managing the carbon stock in this
extensive carbon rich ecosystem can also contribute to global initiatives in combating global warming.
Financial incentive designed to ensure proper management of the woodland and forest ecosystem
can contribute to the creation of considerable carbon sink contributing to the REDD+ initiatives in
developing regions.

The data for this study is based on large number of plots distributed across diverse ecological
and land use systems. Moreover, the study captured diverse ecosystem ranging from xeric shrublands
to dense humid forests along latitudinal and altitudinal gradients using consistent methods. The
estimated aboveground biomass and carbon stock can thus form a baseline against which future trends
can be compared for monitoring and impact assessment. Despite the fact that the estimates reported
in this study are based on allometric models that are suited to corresponding agro-ecological zones
and/or tree species, it will be necessary to test the results using measured biomass and carbon values.
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