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The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic
Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H.
Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these
calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville
operator iS1 − S2 introduced in the formalism. When one considers the line coupling for isotropic
Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations
of off-diagonal elements do not require extra correlation functions of the Ŝ operator and their Fourier
transforms except for those used in deriving diagonal elements. In contrast, the derivations for in-
frared P and R lines become more difficult because they require a lot of new correlation functions
and their Fourier transforms. By introducing two dimensional correlation functions labeled by two
tensor ranks and making variable changes to become even functions, the derivations only require the
latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing
the averaged energy gap and the frequency detuning between the two coupled transitions. With the
coordinate representation, it is easy to accurately derive these two dimensional correlation functions.
Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional
Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been
overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Ra-
man Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values
derived from the RB formalism, new calculated values are significantly reduced and become closer
to measurements. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867417]

I. INTRODUCTION

Knowledge of molecular spectroscopy is essential for at-
mospheric sensing, combustion diagnostic, and other scien-
tific and engineering applications. Among all the spectro-
scopic parameters of transitions, to accurately determine the
pressure broadened half-width and the induced shift is the
most difficult problem and still remains as a big challenge
for experimentalists and theorists. Because the ambient at-
mospheric species, temperatures, and pressures are not al-
ways amenable to laboratory measurements, or because of
the large number of transitions possible, one often has to
rely on theoretical calculations based on different line shape
theories.1–5 Among them, the formalism developed by Robert
and Bonamy in 19795 is one of the most widely used meth-
ods, especially for complicated molecules. The main features
of this well known Robert-Bonamy (RB) formalism consist of
applying the linked cluster theorem6 to evaluate the Liouville
scattering Ŝ operator and introducing an atom-atom model to
represent short range interactions.

Mainly due to its importance in practice, a lot of ef-
forts have been made for years in order to improve the RB

formalism.7–10 Descriptions of these refinements and modi-
fications have been presented in our previous work,11 they
are not repeated here again. Despite all efforts to improve
the RB formalism such that with somehow adjustments of
potential parameters, the current RB formalism can yield
reasonably good agreements with measurements, a series of
recent papers12,13 have demonstrated that for simpler sys-
tems where results of the close coupling calculations4 with
more sophisticated potentials are available, the RB formal-
ism significantly overestimates the half-widths. Because there
is no room to make potential adjustments, the large differ-
ences clearly mean the RB formalism itself contains severe
weaknesses.

Recently, we have found that when Robert and Bonamy
applied the linked cluster theorem to remove the cutoff ap-
pearing in Anderson’s theory,1,2 they have assumed matrix
elements of an exponential function of the Liouville operator
iS1 − S2 can be replaced by values of an ordinary exponen-
tial function whose arguments are the matrix elements of this
operator.11 In other words, they have assumed a behavior of
an exponential of the operator looks like an ordinary func-
tion. With this replacement, effects from the non-diagonality
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nature of this operator are ignored. The validity criterion of
this approximation is that in comparison with its diagonal ma-
trix elements, the off-diagonal matrix elements of iS1− S2
are negligible. Usually, this simplification is referred to the
isolated line approximation, the same name of the approxi-
mation with which one ignores the off-diagonal matrix ele-
ments of the relaxation operator W in calculating the spectral
density F(ω).

In our previous work,11 we have scrutinized these two
simplifying practices in developing the RB formalism and
have pointed out intrinsic differences between them. Here, we
briefly outline the differences. These two practices deal with
different subjects: the non-diagonality (within the linespace)
of the operator exp(iS1 − S2) or of the relaxation operator W.
Since they cause different consequences, we have proposed
in Ref. 11 to name them differently. The line coupling results
from off-diagonal matrix elements of exp(iS1 − S2), whereas
the line mixing results from off-diagonal elements of the re-
laxation matrix W. To neglect the line coupling or to neglect
the line mixing has a completely different criterion, and the
former is more stringent than the latter. A failure to distin-
guish their different criteria by applying the less stringent one
in both the practices could cause large errors. In many cases
where the line mixing becomes negligible, effects on calcu-
lated half-widths and shifts from the line coupling still remain
important and they have been completely ignored.

In our previous work, we have developed a refined RB
formalism applicable for isotropic Raman Q lines of lin-
ear molecules with which one is able to consider effects on
calculated half-widths from the line coupling.11 In develop-
ing this formalism, a manipulating technique plays a crucial
role to simplify the expression for the off-diagonal matrix
elements of S2,middle such that there are no new correlation
functions and their Fourier transforms required here except
for those used in deriving the diagonal matrix elements of
S2,outer,i, S2,outer,f, and S2,middle. Because these correlations and
Fourier transforms are labeled by two tensor ranks,10 their
numbers are only a few. It is worth mentioning that the ma-
nipulation relies on a condition of ωi′i = ωf ′f which becomes
possible only for those coupled lines such that the energy dif-
ferences between their initial states and between their final
states are identical (i.e., Ei′ − Ei = Ef ′ − Ef). It is obvious
that for isotropic Raman Q lines of linear molecules, this con-
dition is exact within the rigid rotor limit and remains well
applicable when the vibration rotation coupling is taken into
account. Then, by using this simple expression, we have de-
rived the off-diagonal elements of S2,middle and subsequently,
we have successfully considered effects on calculated half-
widths of isotropic Raman Q lines for N2 broadened by N2

from the line coupling. The results have clearly demonstrated
the importance of the line coupling.11

Despite this success, there is a weakness remaining in
this previous study because the simpler expression is only ap-
plicable for isotropic Raman Q lines. For infrared P and R
lines where ωi′i ̸= ωf ′f, one has to use a general expression
in which there are a lot of new correlation functions and their
complex Fourier transforms introduced. Because these new
functions are not only labeled by the two tensor ranks, but
also by other parameters, their numbers increase significantly.

Furthermore, in modern half-width calculations where more
accurate potential models and the “exact” collisional trajec-
tory model7,8 are adopted, all of these functions have to be
numerically evaluated. As a result, one faces a challenge in
deriving off-diagonal matrix elements of S2,middle for P and R
lines from the general expression. The problem is such serious
that unless one finds a way to simplify this general expression,
it becomes very difficult to consider the line coupling for in-
frared P and R lines at all. Fortunately, we have found that by
fully exploiting the coordinate representation, one can intro-
duce two dimensional (2D) correlation functions labeled by
the same two tensor ranks. With properly changing variables,
one can make them as even functions for both their new vari-
ables. Besides, the number of these 2D symmetric functions
is very limited. Finally, in terms of the latters’ 2D Fourier
transforms, one is able to obtain a simpler expression for the
off-diagonal elements of S2,middle.

Besides obtaining the simpler expression, one enjoys
other benefits by easily discovering some hiding features of
the off-diagonal elements. For example, because the 2D cor-
relation functions are even functions, their 2D Fourier trans-
forms become real. Then, it becomes obvious that the off-
diagonal matrix elements of S2,middle are real too. In addition,
the averaged energy gap and the frequency detuning between
the two coupled lines appear as the two modulation frequen-
cies of these 2D Fourier transforms in the new expression.
Based on this feature, one can conclude that it is these two
quantities that characterize the coupling strength between the
two coupled lines. Armed with this knowledge, to predict
whether the coupling between the two coupled lines is im-
portant or not becomes easier and more accurate.

Of course, the success in applying the simpler expres-
sion relies on how to effectively and accurately evaluate these
2D Fourier transforms in practical calculations. In our pre-
vious works, based on the sampling theory we have devel-
oped effective tools to derive one dimensional Fourier trans-
forms from one dimensional correlation functions. By com-
bining the techniques with other approaches available in the
signal theory,14 we are able to successfully derive these 2D
Fourier transforms. After the latter are available, there are no
more obstacles left in considering the line coupling for P and
R lines. Numerical calculations of the half-widths for the in-
frared P and R lines of C2H2 broadened by N2 based a new
potential model15 together with those for the isotropic Raman
Q lines have been carried out. The calculated results clearly
demonstrate that effects from the line coupling are important
in both these cases. In comparison with values derived from
the RB formalism, new calculated values are significantly re-
duced and become closer to measurements.16

In Sec. II, we show how to introduce the 2D correlation
functions and to change them to become even functions. By
exploiting the latters’ symmetry properties, a simpler expres-
sion for the off-diagonal matrix elements of S2,middle can be
obtained in terms of their 2D Fourier transforms. With this ex-
pression, to calculate the off-diagonal matrix elements for P
and R lines becomes more tractable in practical calculations.
In Sec. III, we apply the new formula to the C2H2–N2 sys-
tem and present calculated half-widths of the infrared R lines.
In Sec. IV, we present discussions and conclusions. With

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.183.2.214 On: Wed, 12 Mar 2014 13:34:29



104304-3 Ma, Boulet, and Tipping J. Chem. Phys. 140, 104304 (2014)

detailed formula derivations and numerical sample demon-
strations presented in Secs. II and III, we believe our refine-
ment of the RB formalism makes another progress in the right
direction.

II. THEORY

A. Matrices of S2,outer,i, S2,outer,f, and S2,middle
in the coordinate representation

It has been known for years, when one calculates ma-
trices of S2,outer,i, S2,outer,f, and S2,middle based on potentials
containing site-site model components, one could encounter
convergence problems.17 As demonstrated in our previous

work,10 a solution is to use the coordinate representation by
choosing the orientations of the pair of molecules as the basis
set in Hilbert space; i.e., |δ.(#a − #aα)⟩ ⊗ |.δ(#b − #bα)⟩,
where #aα and #bα represent orientations of the absorber and
bath molecules specified by α, respectively. In contrast, with
the standard representation, the basis set is constructed from
|.imi⟩ ⊗ |.i2m2⟩, the product of the states of two interacting
molecules. The advantage in choosing the coordinate repre-
sentation results from a fact that with this representation, the
potential becomes a diagonal operator and its matrix elements
become multi-dimensional integrations whose angular parts
can be evaluated analytically.

With the coordinate representation, one is able to write
the matrix elements of S2,outer,i as11

S
i ′f ′,if
2,outer,i(rc) =

1
¯2

∞∫

−∞

dt

t∫

−∞

dt ′ ≪ i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ≫outer,i

=
δj ′

i ji
δf ′f

¯2(2ji + 1)

∫ ∞

−∞
dt

∫ t

−∞
dt ′

∑

i2m2

ρi2

∑

mi

∑

i ′′m′′
i

∑

i ′2m
′
2

e
i(ωi′′ i′+ωi2 i

′
2
)t
e
−i(ωii′′+ωi2 i

′
2
)t ′

×
∫

d#α

∫
d#β⟨i ′mii2m2|α⟩Vα(R(t))⟨α|i ′′m′′

i i
′
2m

′
2⟩

× ⟨i ′′m′′
i i

′
2m

′
2|β⟩Vβ(R(t ′))⟨β|imii2m2⟩, (1)

where ωii′ ′ = [E(a)(i) − E(a)(i′′)]/¯, ωi2i
′′
2
= [E(b)(i2) − E(b)(i ′′2 )]/¯, and |α⟩ is a short notation for |δ(#a − #aα)⟩ ⊗ |δ(#b

− #bα)⟩ and Vα(R(t)) represents the potential evaluated at this specified orientation labeled by α. Similarly, one is able to obtain
the expression for Si ′f ′,if

2,outer,f (rc) which is the same as Eq. (1) except for making exchanges between the quantum numbers i and

f′, between i′ and f, and making switches between t and t′. Meanwhile, one can obtain an expression for Si ′f ′,if
2,middle(rc) as

11

S
i ′f ′,if
2,middle(rc) =

1
¯2

∞∫

−∞

dt

t∫

−∞

dt ′ ≪ i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ≫middle

= − 1
¯2(2ji + 1)

∞∫

−∞

dt

∞∫

−∞

dt ′
∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

e
i(ωi′ i+ωi′2 i2

)t
e
i(ωff ′+ωi2 i

′
2
)t ′

× (−1)jf −mf+j ′
f −m′

f C(i ′f ′J,m′
i − m′

fMJ )C(if J,mi − mfMJ )

×
∫

d#α

∫
d#β⟨i ′m′

i i
′
2m

′
2|α⟩Vα(R⃗(t))⟨α|imii2m2⟩

× ⟨fmf i2m2|β⟩Vβ (R⃗(t ′))⟨β|f ′m′
f i

′
2m

′
2⟩. (2)

It is worth mentioning that as one considers the line coupling
occurring among lines within the same bands, expressions for
the matrix elements of S2,outer,i and S2,outer,f can be simpli-
fied further. It is obvious that among lines within the same
bands, both their initial and final vibrational quantum num-
bers are identical. This implies that one can replace δj ′

i ji
by

δi′i in the expression for Si ′f ′,if
2,outer,i(rc) and replace δjf j ′

f
by δff′

in S
i ′f ′,if
2,outer,f (rc). As a result, the matrices of both these two

terms are diagonal. But, this simplicity does not apply for the
matrix of S2,middle which remains as an off-diagonal matrix
even within the same bands.

For systems consisting of two linear molecules, formulas
used to evaluate the diagonal matrix elements of the S2,outer,i,
S2,outer,f, and S2,middle terms are well known.10 With respect to
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expressions for the off-diagonal matrix elements of S2,middle, a
simpler formula applicable for isotropic Raman Q lines with
ωi′i = ωf ′f and a more general one applicable for lines in the
P and R branches with ωi′i ̸= ωf ′f are also available.11 How-
ever, the more general formula is somehow awkward in practi-
cal applications. It becomes desirable to find a more tractable
expression.

B. Expression for matrix elements of S2,middle
in the P and R lines

Usually, potential models are given in terms of a spherical
tensor expansion as10

V (R⃗(t)) =
∑

L1L2L

U (L1L2L;R(t))

×
∑

m1m2m

C(L1L2L,m1m2m)YL1m1 (#a)

×YL2m2 (#b)Y ∗
Lm(ω(t)). (3)

By inserting this expression for the potential into Eq. (2) and
analytically carrying out integrations over the orientations of
the two molecules and completing summations over the mag-
netic quantum numbers as more as possible, one is able to
obtain a new expression for the matrix elements of S2,middle

as

S
i ′f ′,if
2,middle(rc) = (−1)jf+j ′

f

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

1
16π2¯2(2L1 + 1)(2L2 + 1)

×
∑

L

(−1)L1+L2+L
∑

M

∞∫

−∞

dt

∞∫

−∞

dt ′e
i(ωi′ i+ωi′2 i2

)t
e
−i(ωf ′f+ωi′2 i2

)t ′

×U (L1L2L;R(t))U (L1L2L;R(t ′))Y ∗
LM (θα(t),φα(t))YLM (θβ(t ′),φβ(t ′)). (4)

Then, one can introduce 2D correlation functions defined by

GL1L2 (t, t
′) = 1

16π2¯2(2L1 + 1)(2L2 + 1)

∑

L

(−1)L1+L2+L

×U (L1L2L;R(t))U (L1L2L;R(t ′))
∑

M

Y ∗
LM (θα(t),φα(t))YLM (θβ(t ′),φβ(t ′))

= 1
(4π )3¯2(2L1 + 1)(2L2 + 1)

∑

L

(−1)L1+L2+L(2L+ 1)

×U (L1L2L;R(t))U (L1L2L;R(t ′))PL(cos*t,t ′ ), (5)

where

cos*t,t ′ = cos θα(t)cosθβ(t ′)+ sin θα(t)sinθβ(t ′). (6)

In deriving the above expression, we have assumed that collisional trajectories lie in a half part of the x and z plane with positive
x values. As a result, one can simply set φ(t) = φ(t′) = 0. Then, in terms of these 2D correlation functions, the off-diagonal
matrix elements of S2,middle can be expressed as

S
i ′f ′,if
2,middle(rc) = (−1)jf+j ′

f

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

×
∞∫

−∞

∞∫

−∞

dtdt ′e
i(ωi′ i+ωi′2 i2

)t−i(ωf ′f+ωi′2 i2
)t ′
GL1L2 (t, t

′). (7)

At this stage, unless ωi′i = ωf ′f, our previous manipulation technique10,11 used in deriving the diagonal matrix elements
of S2,outer,i, S2,outer,f, and S2,middle and also in deriving the off-diagonal matrix elements of S2,middle for isotropic Raman lines
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in the Q branch is not applicable. This implies that for lines in the P and R branches, one has to find other approaches.
Let us focus attention on the integration part of Eq. (7). By changing its integration variables t and t′ to the variables of τ

≡ t − t′ and τ ′ ≡ (1/2)(t + t′), it can be rewritten as
∞∫

−∞

∞∫

−∞

dtdt ′e
i(ωi′ i+ωi′2 i2

)t−i(ωf ′f+ωi′2 i2
)t ′
GL1L2 (t, t

′)

=
∞∫

−∞

∞∫

−∞

dτdτ ′e
i(ωi′ i+ωi′2 i2

)(τ ′+ τ
2 )−i(ωf ′f+ωi′2 i2

)(τ ′− τ
2 )GL1L2

(
τ ′ + τ

2
, τ ′ − τ

2

)

=
∞∫

−∞

∞∫

−∞

dτdτ ′e
i
( (ωi′ i+ωf ′f )

2 +ωi′2 i2

)
τ+i(ωf i−ωf ′ i′ )τ ′

GL1L2 (τ, τ
′), (8)

where we have introduced the new 2D symmetric correlation
functions defined by

GL1L2 (τ, τ
′) = GL1L2

(
τ ′ + τ

2
, τ ′ − τ

2

)
. (9)

It is worth mentioning that in terms of new variables τ and
τ ′, the original ones are given by t = τ ′ + (1/2)τ and t′ = τ ′

− (1/2)τ , respectively.

C. Symmetry properties of the 2D correlation
functions

It turns out that by exploiting symmetry properties of
these new 2D correlation functions, one is able to sim-
plify Eq. (8) further. With respect to the original correlation
functions GL1L2 (t, t

′), they have symmetries of GL1L2 (t, t
′)

= GL1L2 (t
′, t) and GL1L2 (t, t

′) = GL1L2 (−t,−t ′). The latter
represents the fact that collision processes are time-reversal
invariant. But, GL1L2 (t, t

′) are neither even functions of t nor
even functions of t′. Unfortunately, a failure in pertaining to
the evenness for both their two variables t and t′ would block
their usefulness.

On the other hand, one can conclude that the new cor-
relation functions GL1L2 (τ, τ

′) are invariable for an operation
of τ ↔ −τ , an operation of τ ′ ↔ −τ ′, and an operation for
both τ ↔ −τ and τ ′ ↔ −τ ′. The first two properties mean
they become even functions both over τ and τ ′. The last one
represents the fact that collisional processes are time-reversal
invariant. The above conclusions are based on the symmetry
properties of the functions of GL1L2 (τ

′ + τ
2 , τ

′ − τ
2 ),

GL1L2

(
τ ′ + τ

2
, τ ′ − τ

2

)

= GL1L2

(
τ ′ − τ

2
, τ ′ + τ

2

)

= GL1L2

(
−τ ′ + τ

2
,−τ ′ − τ

2

)

= GL1L2

(
−τ ′ − τ

2
,−τ ′ + τ

2

)
. (10)

Meanwhile, in contrast with GL1L2 (t, t
′), GL1L2 (τ, τ

′) do not
have a symmetry between τ and τ ′. In other words, they vary

differently as τ and τ ′ vary. It is worth mentioning that all
these 2D correlation functions are associated with specified
collisional trajectories. Usually, the latter are labeled by the
closest distance rc (or the impact parameter b). As a result,
they are also functions of rc. For simplicity, this dependence
may not explicitly be presented.

As example, we consider the C2H2–N2 pair in the present
study. If one assumes no bending modes of the C2H2 molecule
are excited and only considers its stretching bands, this
molecule remains linear. Thus, all the formulas developed
above are applicable for this system. Besides, a new potential
model containing 85 spherical components labeled by com-
binations of even values of the tensor ranks L1, L2, and L is
available recently in the literature.15 Based on this potential
model, one can calculate the original 2D correlation functions
GL1L2 (t, t

′) associated with a specified selection of L1 and L2

and the newly introduced ones GL1L2 (τ, τ
′). In practical cal-

culations, instead of t and t′ people prefer to use dimension-
less variables z ≡ νt/rc and z′ ≡ νt′/rc, where ν is the averaged
velocity for the “exact” trajectory model and is the “apparent”
velocity for the “parabolic” trajectory model.5 We follow this
common custom here.

Thus, there are two sets of variables used in the present
study. One set consists of variables with dimensions that ap-
pear in formulas and another set consists of dimensionless
variables which appear in plots. Within the first set, there are
original t and t′ and new introduced τ and τ ′. Within the di-
mensionless set, there are z and z′ corresponding to t and
t′, and there are u ≡ ντ /rc and v ≡ ντ ′/rc corresponding to
τ and τ ′. It is obvious that u = z − z′ and v = (z+ z′)/2.
For simplifying notations, we use the same function sym-
bol forGL1L2 (t, t

′) andGL1L2 (z, z
′), and the same symbol for

GL1L2 (τ, τ
′) and GL1L2 (u, v). In order to avoid confusion, we

list notations used in the present study in Table I.
In order to show profiles ofGL1L2 (z, z

′) andGL1L2 (u, v),
we consider their most important components associated with
L1 = 2 and L2 = 0 and present their three dimensional profiles
obtained at rc = 4.5 Å in Figs. 1 and 2, respectively. To choose
rc = 4.5 Å as an example mainly results from a fact that the
profiles at this region contain more structures and their profile
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TABLE I. Notations used in the present study.

Variables with dimension Dimensionless variables

Correlation functions Fourier transforms Correlation functions Fourier transforms

GL1L2 (t, t
′) GL1L2 (z, z

′)
GL1L2

(
τ, τ ′), where τ = t − t′ and τ ′ = (t + t′)/2 FL1L2

(
ω,ω′) GL1L2 (u, v), where u = z − z′ and ν = (z + z′)/2 FL1L2 (k, k

′)

differences can be more clearly exhibited. As shown in Fig. 1,
G20(z, z′) is neither even over z nor even over z′. In contrast,
G20(u, v) becomes an even function over both u and v.

D. The 2D Fourier transforms of the 2D correlation
functions

Because GL1L2 (τ, τ
′) become even functions of τ and τ ′,

their Fourier transforms are real. One can introduce their 2D

Fourier transforms defined by

FL1L2 (ω,ω′) = 1
2π

∞∫

−∞

∞∫

−∞

dτdτ ′eiωτ eiω
′τ ′
GL1L2 (τ, τ

′).

(11)

Then, in terms of these Fourier transforms, one is able to
rewrite Eq. (8) as

∞∫

−∞

∞∫

−∞

dτdτ ′e
i
( (ωi′ i+ωf ′f )

2 +ωi′2 i2

)
τ+i(ωf i−ωf ′ i′ )τ ′

GL1L2 (τ, τ
′)

= 1
2π

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′e

i
( (ωi′ i+ωf ′f )

2 +ωi′2 i2

)
τ+i(ωf i−ωf ′ i′ )τ ′

∫ ∞

−∞

∫ ∞

−∞
dωdω′e−iωτ e−iω′τ ′

FL1L2 (ω,ω′)

= 1
2π

∞∫

−∞

∞∫

−∞

dωdω′FL1L2 (ω,ω′)

∞∫

−∞

∞∫

−∞

dτdτ ′e
i
( (ωi′ i+ωf ′f )

2 +ωi′2 i2
−ω

)
τ+i(ωf i−ωf ′ i′ −ω′)τ ′

= 1
2π

∞∫

−∞

∞∫

−∞

dωdω′FL1L2 (ω,ω′)δ
(

ω − ωi ′i + ωf ′f

2
− ωi ′2i2

)
δ(ω′ − ωf i + ωf ′i ′)

= 2πFL1L2

(
ωi ′i + ωf ′f

2
+ ωi ′2i2

,ωf ′i ′ − ωf i

)
. (12)

Finally, in terms of these 2D Fourier transforms FL1L2 (ω,ω′), the off-diagonal matrix elements of S2,middle can be simplified as

S
i ′f ′,if
2,middle(rc) = 2π (−1)jf+j ′

f

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)FL1L2

(
ωi ′i + ωf ′f

2
+ ωi ′2i2

,ωf ′i ′ − ωf i

)
. (13)

In comparison with the general expression derived in our
previous study11 and other formulas available in literature,20

Eq. (13) has several advantages. First of all, this expression
is more concise. Besides, because the 2D Fourier transforms
FL1L2 (ω,ω′) are real, one can easily draw a conclusion that
the off-diagonal elements of S2,middle are real too. In con-
trast, with other formulas, to verify the above conclusion
is not such straightforward because in general, they contain
complex functions. However, the most advantage in usage of
Eq. (13) is that the number of functions FL1L2 (ω,ω′) is very
limited. As example, for the system of C2H2–N2, by using

Eq. (13) one only needs to evaluate six 2D Fourier trans-
forms labeled by L1 and L2 as (20), (22), (24), (40), (42),
and (44). In practical calculations, in order to simplify fur-
ther, one can omit three minor ones with (24), (42), and (44).
It is well known that as long as the “exact” trajectory model is
adopted in calculations, all the functions introduced such as
those resonance functions appearing in literature have to be
numerically evaluated. If one uses other formulas to calculate
the off-diagonal matrix elements of S2,middle, the number of
these functions would increase dramatically. In addition, they
are complex functions.
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FIG. 1. The 2D correlation function of G20(z, z′) (in ps−2) at T = 296 K and
rc = 4.5 Å for a molecular pair of C2H2–N2. The calculation is based on the
new potential model15 and the “exact” trajectory model.

It is interesting to note that there is a simple relation be-
tween the 2D correlation functions and their one dimensional
(1D) partners introduced previously10 in calculating the diag-
onal matrix elements of S2,outer,i, S2,outer,f, and S2,middle. With
the current notations, the 1D correlation functions introduced
previously are defined as

GL1L2 (τ ) =
∞∫

−∞

dτ ′GL1L2 (τ, τ
′). (14)

Similarly, there is also a simple relation between the 2D
Fourier transforms FL1L2

(
ω,ω′) and the 1D Fourier trans-

forms FL1L2 (ω) which is defined by

FL1L2 (ω) =
1√
2π

∞∫

−∞

dτeiωτGL1L2 (τ ). (15)

Because ω corresponds to τ and the latter represents the gap
between t and t′, it becomes clear that it is how the original
2D correlation functionsGL1L2 (t, t

′) vary with t − t′ that mat-
ters at the last stage of calculations for the diagonal matrix
elements of S2,outer,i, S2,outer,f, and S2,middle.

Finally, it is easy to find out that

FL1L2 (ω, 0) = 1
2π

∞∫

−∞

dτeiωτ

∞∫

−∞

dτ ′GL1L2 (τ, τ
′)

= 1
2π

∞∫

−∞

dτeiωτGL1L2 (τ )

= 1√
2π

FL1L2 (ω) . (16)

As a result, it becomes obvious that the expression for the off-
diagonal matrix elements of S2,middle is also applicable for its
diagonal matrix elements.
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FIG. 2. The same as Fig. 1 except for the 2D correlation function of
G20 (u, v) .

E. Tools used in numerical calculations

In practice, the success in applying the new method to
calculate these off-diagonal matrix elements of S2,middle relies
on how to effectively and accurately evaluate these 2D Fourier
transforms. Thanks to our experiences in calculating pressure
broadened half-widths and induced shifts, we have accumu-
lated enough tools to overcome this challenge. First of all,
by introducing the coordinate representation, the main calcu-
lation task is reduced to calculate the 2D correlation func-
tions and their 2D Fourier transforms. As mentioned above,
the number of these functions is very limited. In addition, as
shown in Eq. (5), no matter how complicated the potential
model used would be, there is no any difficulty to evaluate
these 2D correlation functions accurately.

Second, in our previous studies we have developed an
effective approach to derive 1D Fourier transforms. This
method is based on the sampling theory.21 The basic idea is
by sampling, one converts a function of interest to a sequence
in the time domain, calculates its discrete Fourier transform
with the fast Fourier transforms (FFT),22 and then relates this
transformed sequence in the frequency domain to the Fourier
transform of the original function.

When we try to extend our study on the line coupling
from Raman Q lines into infrared P and R lines, we have faced
a challenge how to evaluate a 2D Fourier transform from a 2D
correlation function. Fortunately, in other scientific and engi-
neering fields such as the signal theory14 to deal with data pro-
cessing and analysis, to consider the 2D Fourier transforms of
the 2D functions is a familiar subject. There are many books
and papers in literature and there are several tools available
there with which one can compute the 2D Fourier transforms.
For example, it has been known that the 2D Fourier transform
is linearly separable: the Fourier transform of a 2D image
is the Fourier transform of the rows followed by the Fourier
transforms of the resulting columns (or vice versa). Based on
this fact, the 2D Fourier transform can be carried out by 1D
Fourier transforming all the rows of the 2D signal and then 1D
Fourier transforming all the columns of the resulting matrix.
In the present study, because we have very effective programs
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FIG. 3. The 2D Fourier transform F20(k, k′) (in ps−2) at T = 296 K for a
molecular pair of C2H2–N2. The calculation is based on the “exact” trajectory
model with rc = 4.0 Å.

to carry out the 1D Fourier transform, we have adopted this
straightforward way to compute the 2D Fourier transform and
have obtained satisfactory results.

Based on the new potential model,15 one can find the
minimum of the closest distance for the “exact” trajectories
at T = 296 K is rc,min = 3.7546 Å. Because nearly head-
on collisions play a dominant role in the line coupling, we
select a trajectory with rc = 4.0 Å as example. Among all
the components, we consider the most important one with L1

= 2 and L2 = 0. Again, we prefer to plot functions with di-
mensionless arguments used in our numerical calculations. In
this case, the function is F20(k, k′) which is the Fourier trans-
form of G20 (u, v) . Thus, we present the three dimensional

plot of F20(k, k′) obtained at rc = 4.0 Å in Fig. 3. This plot
provides a whole picture about how its magnitudes vary with
its two variables k and k′ at this specified trajectory.

In order to more clearly provide some numerical mea-
sures on magnitudes of F20(k, k′), we present another plot to
show its profiles as functions of k or k′ with three fixed k′ or
k values of 0.0, 8.0, and 16.0 in Fig. 4. By combining Figs. 3
and 4, one can find that in terms of the coordinates of k and
k′, there are four peaks with their heights at (0, 10), (0, −10),
(5, 0), and (−5, 0). The first two peaks are symmetrically
located at k′ axis and the last two are symmetrically at k
axis. In addition, the former’s height is almost identical to the
latter’s height. But, shapes of the peaks in different pairs are
quite different. In general, the peaks in the first pair distribute
more widely than those in the second pair. As shown in
Fig. 4, roughly speaking after k > 15, magnitudes of
F20(k, k′) would decrease more than one order from its
maximum. On the other hand, its magnitudes could still
remain significant or non-negligible as long as k′ < 30. We
will be back to this subject later.

III. CALCULATIONS OF HALF-WIDTHS FOR C2H2
LINES BROADENED BY N2

A. Half-widths of isotropic Raman Q lines

First of all, we present our calculated half-widths for
isotropic Raman Q lines of C2H2 broadened by N2 obtained
from including the line coupling. The calculation is similar to
that reported in our previous work for N2 lines broadened by
N2.11 Here, we briefly outline some of main factors to deter-
mine effects from the line coupling. First of all, let us look
at the dashed-dotted black curve with k′ = 0 in Fig. 4. Af-
ter reaching its maximum at k = 5, magnitudes of this curve

FIG. 4. F20(k, k′) (in ps−2) at rc = 4.0 Å and T = 296 K with three fixed k′ values as functions of k, plotted by three dashed-dotted curves. Meanwhile,
F20(k, k′) as function of k′ with three fixed k values are plotted by three solid curves. The black, red, and green colors correspond to the three fixed values of
0.0, 8.0, and 16.0.
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FIG. 5. Comparison of calculated half-widths at 296 K for the isotropic Raman Q lines of C2H2 broadened by N2. Theoretically calculated results from the
modified RB formalism without and with the line coupling are plotted by + (red) and (green), respectively. Meanwhile, measured values at 298 K23 are
given by ×.

decrease as k increases, but still remain significant within a
range of k< 14. This curve represents the profile of F20 (k, 0)
and the latter is associated with F20 (ω, 0) (= 1√

2π
F20 (ω)). For

the specified conditions of the plot (i.e., rc = 4.0 Å and T
= 296 K), the value convert from ω (in cm−1) to k (dimen-
sionless) is k ≈ 0.11 × ω. Thus, we know that as long as
the first argument of F20

(
ωi ′i + ωi ′2i2

, 0
)
in Eq. (13) is less

than 127 cm−1, one has to consider the line coupling. On the
other hand, the rotational constant B of the C2H2 molecule is
only around 1.2 cm−1. This implies that for the most nearby
coupled lines, their initial (or final) energy gaps together with

ωi ′2i2
are well within this argument range to make contribu-

tions to the off-diagonal matrix elements of S2,middle.
Based on these facts, one can expect that effects on cal-

culated half-widths of C2H2 immersed in N2 bath would be
significant. In Figs. 5 and 6, we present our calculated values
by considering the line coupling at T= 296 K and T= 150 K,
respectively, together with those derived from the modified
RB formalism without taking into account the line coupling.
As comparisons, recent measured data23 at T = 298 K and
T = 150 K are also plotted in these figures. As shown in
Figs. 5 and 6, by taking into account the line coupling, the new

FIG. 6. The same as Fig. 5 except that calculations and measurements23 are carried out at 150 K.
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TABLE II. Energy and frequency values for coupled P and R lines.

Lines
P(j−2)

j − 3 ← j − 2
R(j−2)

j − 1 ← j − 2
P(j)

j − 1 ← j
R(j)

j +1 ← j
P(j+2)

j +1 ← j + 2
R(j + 2)

j + 3 ← j +2

Ef and Ei (in B) (j−3)(j−2),
(j−2)(j−1)

(j−1)j,
(j−2)(j−1)

(j−1)j,
j(j + 1)

(j + 1)(j + 2),
j(j + 1)

(j + 1)(j + 2),
(j + 2)(j + 3)

(j + 3)(j + 4),
(j + 2)(j + 3)

ωfi (in B) −2(j−2) 2(j−1) −2j 2(j + 1) −2(j + 2) 2(j + 3)

calculated values at 296 K and 150 K are reduced by about
13% and 14%, respectively, and they become closer to the
measured values. Thus, one can conclude that it is abso-
lutely necessary to consider the line coupling in calculating
N2 broadened half-widths of isotropic Raman Q lines of the
C2H2 molecule.

B. Half-widths of infrared P and R lines

In this section, by considering infrared P and R lines of
C2H2 immersed in the N2 bath, we present some things new.
We would like to mention that we have adjusted our practi-
cal calculations to match the potential model adopted.15 First
of all, we provide some facts. It has been known that for
lines within the same bands, the S2,outer,i and S2,outer,f terms
are diagonal and their diagonal matrix elements are complex.
Usually, ImS2,outer,i and ImS2,outer,f are one order smaller than
ReS2,outer,i and ReS2,outer,f. Meanwhile, the S2,middle term is al-
ways off-diagonal, but all its matrix elements are real. Finally,
the iS1 term is imaginary and it is the main component of ImS.
If the potential models do not have vibrational dependences,
iS1 becomes zero.

Because the current potential model15 does not have vi-
brational dependences, we are not able to properly evaluate
the iS1 term at all. This deficiency would cause a large un-
certainty in evaluating the whole ImS. Based on this and the
other fact mentioned above, we have decided to completely
ignore the whole ImS (=iS1 + ImS2,outer,i + ImS2,outer,f) in
our practical calculations.

Before presenting our final results, we would like to pro-
vide estimation of how important the effects from the line
coupling would be. The effects are mainly determined by that
in comparison with the whole diagonal matrix elements of
ReS2, whether the off-diagonal matrix elements of S2,middle

given by Eq. (13) are significant or not. By analyzing the pro-
files of 2D Fourier transforms FL1L2

(
ω,ω′) and considering

their two arguments of ωi′ i+ωf ′f
2 + ωi ′2i2

and ωf ′i′ − ωfi appear-
ing in Eq. (13), one can find the answer. First of all, because
there is no Q branch in stretching bands, one only needs to
consider P and R lines. Second, two coupled lines must share
the same parity for their initial angular quantum numbers. The
same conclusion is also true for their final quantum numbers.

Based on the evenness of the tensor rank L1, the whole line
space constructed by all the P and R lines can be divided
into two independent sub-spaces. One consists of R(0), P(2),
R(2), P(4), R(4), . . . and another consists of P(1), R(1), P(3),
P(3), and so on. Then, lines only in the same groups can be
coupled. We list general expressions for their initial and fi-
nal rotational energies together with their frequency exclud-
ing vibrational band center for lines in the same groups in
Table II. With Table II, one can find corresponding averaged
energy gaps (=ωi′ i+ωf ′f

2 ) and frequency gaps (=ωf ′i′ − ωfi)
between coupled lines. Besides, the general expressions for
these two quantities are presented in Table III.

As shown in Table III, the frequency gaps between two
coupled nearby R lines are constant (i.e.,±4.8 cm−1). In con-
trast, the frequency gaps between two coupled nearby P and
R lines are ±2(2j + 1) and ±2(2j + 3) which increase very
quickly as j increases. We note that after making the variable
exchange, this argument appears as k′ in the 2D Fourier trans-
forms FL1L2 (k, k

′). For the specified trajectory with rc = 4.0
Å, ω = 4.8 cm−1 corresponds to k = 0.53 which is pretty
small. Then, roughly speaking, contributions to the line cou-
pling between two nearby R lines are mainly determined by
profiles of FL1L2 (k, 0) . Among them, the profile of their ma-
jor component F20 (k, 0) is given by the dashed-dotted black
line in Fig. 4. In contrast, contributions to the line coupling
between two nearby P and R lines are from other FL1L2 (k, k

′)
with k′ > 0 whose magnitudes are smaller than FL1L2 (k, 0) .
The larger the j value is, the larger the k′ is and the smaller
the contributions are. Therefore, one can expect that in each
of these two sub-spaces, especially for lines with large j val-
ues, the line couplings mainly occur among lines within the
same branches. In other words, in comparison with the cou-
plings within the same branches, except for lines with small j
values, the line couplings between the P and R branches are
not important. Our numerical calculations shown later have
verified this expectation. This result was also previously ob-
tained from fully quantum calculations of line mixing effect
in CO–He.18

For each of selected 600 values of rc ranging from rc,min to
40.0 Å, we have calculated all the diagonal and off-diagonal
matrix elements of S2(rc) in the sub-space constructed by cou-
pled lines of R(0), P(2), R(2), . . . . , P(40), R(40), and P(42).
The size of these matrices is 42 × 42 which is large enough,

TABLE III. Averaged energy gaps and frequency gaps between coupled nearby lines.

Coupled lines R(j−2) ∼ R(j) P(j) ∼ R(j) P(j + 2) ∼ R(j) R(j + 2) ∼ R(j)

Energy gap (in B) ±4j ±(2j + 1) ±(2j + 3) ±4(j + 2)
Frequency gap (in B) ±4 ±2(2j + 1) ±2(2j + 3) ±4
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but remains tractable. Because we have set 4 as the upper limit
of L1, these S2(rc) become five diagonal matrices. In addi-
tion, they are real and asymmetric. With the same method de-
veloped in our previous work,11 we can find the matrices of
exp[−S2(rc)]. After the latter are available, by using the ex-
pression for matrix elements of the relaxation matrix W given
by

Wi ′f ′,if = nbν

2πc

+∞∫

rc,min

2π
(
b
db

drc

)
drc

× {δi ′iδf ′f− ≪ i ′f ′|e−S2(rc)|if ≫}, (17)

one can easily derive all the matrix elements of the relax-
ation operator W whose diagonal matrix elements correspond
to the calculated half-widths with including effects from the

line coupling. The results are presented in Matrix 1 where
due to lack of room to print all its contents, some rows and
columns are removed. As shown in Matrix 1, the W matrix
has large and positive diagonal elements representing the cor-
responding half-widths. With respect to its off-diagonal el-
ements, those corresponding to the line mixing within the
same branches (i.e., the P-P and R-R mixings) are negative
and that associated with the line mixing between two different
branches (i.e., the P-R and R-P mixings) are positive. In other
words, in comparison with the P-P and R-R mixing terms,
the P-R and R-P mixing terms have an opposite sign, as also
previously observed for CO–He.18 In addition, the former’s
magnitudes are significantly larger than the latter’s. This fea-
ture results from the fact that the line couplings within the
same branches are more important than that happening be-
tween different branches.

Matrix 1: A 42 × 42 matrix of the relaxation operator W in the P and R line space
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

122.064 7.265 −10.247 2.984 −3.739 2.072 −2.454 1.583 −1.790 . −0.003 0.001

7.216 115.901 4.528 −12.931 2.876 −5.121 2.213 −3.391 1.751 . 0.003 −0.002

−10.077 4.482 112.361 3.528 −13.935 2.645 −5.969 2.128 −3.987 . −0.005 0.002

2.896 −12.614 3.483 109.017 2.982 −14.047 2.404 −6.467 1.999 . 0.004 −0.004

−3.562 2.773 −13.452 2.941 105.603 2.607 −13.935 2.192 −6.762 . −0.008 0.002

1.951 −4.798 2.541 −13.362 2.570 102.418 2.323 −13.926 2.020 . 0.004 −0.006

−2.247 2.072 −5.488 2.306 −12.998 2.290 99.803 2.103 −14.191 . −0.011 0.003

1.443 −3.036 1.988 −5.816 2.102 −12.689 2.074 97.896 1.933 . 0.004 −0.008

−1.577 1.595 −3.486 1.870 −5.934 1.939 −12.606 1.907 96.603 . −0.016 0.003

. . . . . . . . . . . .

−0.001 0.001 −0.002 0.001 −0.003 0.001 −0.004 0.002 −0.005 . 46.968 0.037

0.000 −0.000 0.001 −0.001 0.001 −0.002 0.001 −0.003 0.001 . 0.034 44.758

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, we have calculated the matrix elements ofW in
the sub-space constructed by other coupled lines of P(1), R(1),
P(3), . . . , R(39), P(41), and R(41). It turns out that because the
vibrational dependences have not been taken into account, this
W matrix is identical to the previous one. As a result, one can
identify the half-widths not only for all the even R lines, but
also for all odd R lines from Matrix 1 alone because the half-
width of 2j ← 2j − 1 (i.e., R(2j − 1)) is the same as 2j − 1
← 2j (i.e., P(2j)) with the rigid rotor approximation.19

After all these values are available, we present the cal-
culated half-widths of the R lines obtained from considering
all possible line couplings within all P and R lines together
with those derived from the modified RB formalism without
the line coupling in Fig. 7. For comparison, some measured
values16 are also plotted. As shown in the figure, values ob-
tained from the RB formalism significantly overestimate the

half-widths of the R lines of C2H2 broadened by N2. This
demonstrates a known fact that the RB formalism predicts too
large amounts of the half-width for two linear molecular sys-
tems. Meanwhile, after considering the line coupling, the new
formalism can significantly reduce calculated half-widths by
amounts as large as 13%. Although, in comparison with mea-
surements, there are still large gaps existing, but the refine-
ment goes in the right direction. This conclusion has been
found in our previous study on the isotropic Raman Q lines
of N2 broadened by N2 and it is confirmed here again.

Furthermore, in order to show the line coupling within
the same branches plays a dominant role in determining its
effects on calculated half-widths, we have also calculated the
W matrix without including the line coupling between the P
and R branches and present the calculated results in Fig. 7. As
shown in the figure, the differences between these two results
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FIG. 7. Comparison of calculated half-widths of the infrared R lines for C2H2 broadened by N2 derived from with and without taking into account effects from
the line coupling. They are represented by ! (blue) and + (red), respectively. Meanwhile, some measured data16 are plotted by ×. In addition, theoretically
calculated half-widths of the R lines by neglecting inter-branch coupling are plotted by (green).

are small. More specifically, all the differences are less than
2% and after j ≥ 8, they become less 1%. Therefore, one can
conclude that to ignore the line coupling between the P and R
branches is a good approximation for this system. To isolate
the R lines from the P lines would reduce the size of the S2
matrices by a half, but it can still yield good results. In the
present study, because the size of S2 (i.e., 42 × 42) remains
well tractable, one does not need to rely on this simplification.
But, it is worth to mention it here.

IV. DISCUSSIONS AND CONCLUSIONS

First of all, we would like to compare our new method
with approaches used by others. It is well known that
people have developed several formalisms to consider the
line coupling for different molecular systems. Among them,
Cherkasov has spent more than three decades to study this
subject20 and one of his papers appears recently.24 In our
previous study,11 we have provided a detailed comparison
of his method and ours. Meanwhile, there are two recent
papers by Starikov.25,26 In the first paper, the author has
introduced so called bi-resonance functions in the theory of
collisional broadening of the spectral lines of molecules to
consider the line interference. He has provided comprehen-
sive lists of the forms with which these bi-resonance functions
associated with the straight-line, the parabolic, and the “ex-
act” trajectories can be modeled. In the second one, with the
bi-resonance functions he has considered overlapping lines of
the ammonia molecule broadened by argon and helium.

It is worth mentioning that there is no essential difference
between Starikov’s bi-resonance functions defined as summa-
tions of products of resonance functions and their partners’
complex conjugates over the magnetic quantum numbers and
those resonance products appearing in Cherkasov’s formulas.

In addition, the two same arguments (i.e., the initial energy
gap and the final energy gap of the two coupled lines) serve
as the two modulation frequencies in both these resonance
forms. Of course, Cherkasov only considers simpler potential
and trajectory models and Starikov covers more models. With
respect to a more profound problem resulting from how to di-
agonalize matrices with a large size at each step in averaging
over the states of the bath molecule, Starikov has completely
followed the approach by Cherkasov. As explained in our pre-
vious work,11 by correctly applying the cumulant expansion,
one is able to dramatically reduce the size of matrices to be di-
agonalized. As a result, an extra approximation introduced by
Cherkasov to separate the relaxation operators into one diag-
onal part and another off-diagonal part becomes unnecessary.

Furthermore, by fully exploiting the coordinate represen-
tation, the 2D correlation functions can be introduced and by
making variable changes these functions become even. Then,
the latters’ 2D Fourier transforms are real and the complex-
ity resulting from involving complex functions in calculating
the off-diagonal matrix elements is completely obviated in
advance. In addition, in comparison with others’ formalism
given in terms of the bi-resonance functions and the products
of resonance functions, contributions from one specified 2D
Fourier transform FL1L2

(
ω,ω′) alone in our formalism corre-

spond to a combination of contributions from a whole group
of those resonance forms. The group categorized by the com-
mon rotational symmetry labels of L1 and L2 consists of a lot
of the resonance forms having different other indices, includ-
ing those used to distinguish different R dependences. This
implies that with our formalism, we are able to dramatically
reduce the number of these functions. In fact, we believe that
the number has been reduced to the minimum. Finally, the
two modulation frequencies of these 2D Fourier transforms
represent real intrinsic connections between two coupled
lines. All these features uniquely exist in our new formalism.
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Concerning with our numerically calculated half-widths
of both the isotropic Raman Q lines and the infrared P and
R lines for C2H2 broadened by N2, the conclusion is that ef-
fects from the line coupling are important. This conclusion
is well expected because the C2H2 molecule has a small ro-
tational constant. In general, in comparison with that derived
from the modified RB formalism, calculated half-widths with
the line coupling are reduced by 12%–14% and become closer
to measurements.

However, if one investigates the whole relaxation matrix
W further, one needs to verify the detailed balance principle
(which connects the elements ofWi ′f ′,if andWif,i ′f ′

) and the
sum rule27 (which connects the diagonal and off-diagonal el-
ements of W). For the isotropic Raman spectra of N2, these
properties were recently studied and the limits of a semi-
classical treatment were analyzed.28 A similar study for the
infrared spectra is under development.

Finally, we would like to mention some procedures that
have not been taken into account in the present study. Be-
cause the current potential model does not contain any vi-
brational dependence, we are not able to meaningfully cal-
culate the imaginary term iS1 which is a main component of
the imaginary part of iS1 + S2 for vibration-rotational spec-
tra. In addition, it is well known that the imaginary part of
iS1 + S2 is much smaller than the real part. As a result, we
have neglected this imaginary part in the present study. There
are no any problems to include the imaginary part in our fur-
ther calculations. More explicitly, we know how to derive the
matrix elements of ImS2,outer,i and ImS2,outer,f because we have
an effective tool at handy and have had experiences to carry
out these calculations.29 In fact, by introducing the 2D causal
correlation functions30 and by carrying out the corresponding
2D Fourier transforms, one is able to obtain the 2D Hilbert
transforms with which one can easily calculate these imagi-
nary matrix elements. Meanwhile, if the potential model con-
tains vibrational dependences, the correlation functions in-
troduced in our formalism would depend on the vibrational
quantum numbers as well. This implies that one may need
to have different sets of the correlation functions in calculat-
ing the matrix elements for each of the S2,outer,i, S2,outer,f, and
S2,middle terms. We expect that whether to distinguish these
different sets is necessary or not would depend on cases of
interest.

As a next research step, we will consider systems involv-
ing more complicated molecules. The target is to consider the
line coupling for the H2O–N2 system because a lot of values
of the half-width and shift of H2O lines listed in HITRAN
come from theoretically calculated results with the RB for-
malism. For this important system, we expect that the line
coupling would happen among lines belonging to different
branches and effects on calculated half-widths and shifts from
the line coupling could be significant. At present, after suc-
cessfully considering the line coupling for all three branches
of linear molecules, we stand on a more sound position to
pursue this difficult problem.
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