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Abstract: Genes that increase susceptibility to age-related macular degeneration (AMD) 

have been identified; however, since many individuals carrying these risk alleles do not 

develop disease, other contributors are involved. One additional factor, long implicated in 

the pathogenesis of AMD, is the lipofuscin of retinal pigment epithelium (RPE). The 

fluorophores that constitute RPE lipofuscin also serve as a source of autofluorescence (AF) 

that can be imaged by confocal laser ophthalmoscopy. The AF originating from lipofuscin 

is excited by the delivery of short wavelength (SW) light. A second autofluorescence is 

emitted from the melanin of RPE (and choroid) upon near-infrared (NIR-AF) excitation. 

SW-AF imaging is currently used in the clinical management of retinal disorders and the 

advantages of NIR-AF are increasingly recognized. Here we visit the damaging properties 

of RPE lipofuscin that could be significant when expressed on a background of genetic 

susceptibility. To advance interpretations of disease-related patterns of fundus AF in AMD, 

we also consider the photochemical and spectrophotometric features of the lipofuscin 

compounds responsible for generating the fluorescence emission.  
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1. Introduction 

Age-related macular degeneration (AMD) is a complex disorder that is influenced by genetic and 

environmental factors; heritability is estimated to account for 45% to 71% of cases [1,2]. Several (~20) 

AMD genetic susceptibility genes have been identified with two loci, complement factor H (CFH 

(1q32) and age-related maculopathy susceptibility 2/HtrA serine peptidase 1 (ARMS2/HTRA1) on 

10q26 accounting for 50% of AMD cases [3,4]. The CFH locus harbors many independent risk and 

protective haplotypes [5,6] while for ARMS2/HTRA1 a single major risk haplotype is associated with 

AMD [7]. Multiple studies have also demonstrated that haplotype-tagging single-nucleotide 

polymorphisms (SNPs) in CFH and ARMS2, are major determinants of AMD endophenotypes and 

disease progression [8]. Specifically, CFH-rs1061170 is associated with drusen and with both early and 

advanced AMD while ARMS2-rs10490924 is strongly associated with reticular pseudodrusen and 

rapid progression to late AMD [5,7–9]. Nevertheless, by various estimates, currently known genetic loci 

account for only 50%–75% of overall AMD risk. Interest in a role for retinal pigment epithelium (RPE) 

lipofuscin in AMD stems from the knowledge that it accumulates with age [10,11], is high in central 

retina [11], exhibits behaviors toxic to RPE [12–15] and exhibits a link to drusen formation [16].  

2. RPE Lipofuscin as the Source of Short-Wavelength (SW)-Fundus Autofluorescence 

Advances in non-invasive fundus imaging have facilitated the diagnosis and differentiation of 

retinal disease. In vivo imaging provides a window within which to view the natural course of retinal 

disease. Of the available imaging modalities, fundus autofluorescence (AF) has proven to be especially 

valuable, in large part because disease-related processes can alter the distribution of the AF signal. 

Accordingly, recognizable disease phenotypes are often produced.  

The natural autofluorescence of the fundus that is excited by SW light (488 nm excitation) (Figure 1) 

exhibits spectral features and an age-relationship that indicates a principle origin from the fluorescent 

pigments that accumulate in RPE cells as lipofuscin [17]. Unlike lipofuscin species that accumulate in 

other non-dividing cells, the pigments of RPE lipofuscin are produced in the membranes of photoreceptor 

outer segments from non-enzymatic reactions of vitamin A aldehyde [18–21]. This fluorescent material 

is transferred to RPE cells within phagocytosed outer segment disks [22,23] and becomes deposited in 

the lysosomal compartment of the cells. In the healthy retina, fundus autofluorescence increases 

linearly with age although subjects vary in terms of intensities [11]. The age-related increase levels off 

after age 70 perhaps because of a loss of photoreceptor or RPE cells [24] and/or changes in fluorescence 

emission due to extensive photooxidation/photodegradation of the bisretinoid compounds [25] 

(discussed below).  

RPE lipofuscin consists of a complex mixture of fluorophores that have been identified in by 

chromatography and mass spectrometry and characterized structurally; all of the known bisretinoid 

lipofuscin pigments have been detected in human eyes [26] (Figure 2). These fluorophores include the 

pyridinium-containing molecules A2-glycerophosphoethanolamine (A2-GPE) [27], A2E and isomers 

of A2E [28–36], dimers of all-trans-retinal having a cyclohexadiene head group (all-trans-retinal 

dimer) [33,37] and the associated protonated Schiff base conjugate [37] and the uncharged A2-DHP-PE 

(A2-dihydropyridine-phosphatidylethanolamine) [38]. Higher molecular weight adducts also form 
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when aldehyde-bearing cleavage products of bisretinoid react with intact bisretinoid molecules [39]. 

Other molecular constituents of RPE lipofuscin are adducts of CEP (2-(ω-carboxyethyl)-pyrrole) [40], 

HNE (4-hydroxynonenal) and MDA (malondialdehyde) [41] that are derived from oxidative 

fragmentation of lipid. Products of lipid oxidation are generally non-fluorescent or blue-emitting 

fluorophores [42,43] and in this case could be generated by the photoreactivity of other lipofuscin 

fluorophores. Little or no protein is present in RPE lipofuscin [40]. Accumulation of bisretinoids in 

RPE cells is unlikely to depend on an inhibition of lysosomal enzyme activity, since this fluorescent 

material is amassed in all healthy eyes beginning at early ages [44]. 

Figure 1. Short-wavelength (SW-AF) and near-infrared (NIR-AF) fundus autofluorescence. 

Images were obtained with 488 nm (SW) and 787 nm (NIR) excitation. 

 

Figure 2. Structures and absorbance maxima (λmax) of some bisretinoid fluorophores  

in retinal pigment epithelium (RPE) lipofuscin. Absorbance maxima can be assigned to 

each of the side-arms of the molecules.  
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The various bisretinoids of RPE lipofuscin have some common structural features (Figure 2). They 

present with a central six-carbon ring from which extend two polyene arms terminating in β ionone 

rings. Each of these arms is derived from a molecule of retinaldehyde and constitutes a separate  

light-absorbing chromophore, one arm absorbing in the ultraviolet range and the other in the visible 

(Figure 2). The numbers of alternating carbon-carbon double and single bonds that form the 

conjugation systems of the arms determine the wavelength of absorbance; the longer conjugation 

system in each molecule confers absorbance in the visible range. Absorbances in the visible spectrum 

are significant since these wavelengths reach the retina. Since these adducts of retinaldehyde are held 

together by covalent bonds, bisretinoids do not provide stores of retinoid for the visual cycle, as has 

been suggested [45]. 

3. Spectral Signatures of SW-Fundus AF and RPE Lipofuscin 

In clinical settings, SW-fundus AF is excited by wavelengths ranging from 488 nm, the excitation 

employed with a confocal scanning laser ophthalmoscope (cSLO), to the 535–580 nm range utilized  

by a modified fundus camera [46] and the 568 nm light used with fluorescence adaptive optics 

ophthalmoscopy [17,47,48]. Fundus autofluorescence measured in vivo by spectrophotometry has a 

broad excitation spectrum that peaks between 490–510 nm. The fluorescence emission is also broad 

and centered at approximately 600 nm [11,17]. RPE lipofuscin ex vivo exhibits an excitation spectrum 

that peaks between 450–490 nm; the fluorescence emission is maximal at ~600 nm [49] (Figure 3). 

Moreover, just as with fundus autofluorescence, the emission spectrum recorded from whole lipofuscin 

exhibits red-shifts when excited by progressively longer wavelengths [49] (Figure 3). Thus the spectral 

characteristics of fundus autofluorescence are consistent with that of RPE lipofuscin [43,50–52] and 

chiefly with an origin from the bisretinoid fluorescent pigments that are known constituents of  

RPE lipofuscin. The bisretinoids that have been characterized have absorbance maxima varying from 

440 nm to 510 nm and they emit with an orange fluorescence that peaks at ~600 nm [26]. The 

bisretinoid A2E can emit fluorescence at longer wavelength excitations such as 545 nm (Figure 3B). 

Figure 3. Fluorescence emission spectra of human RPE lipofuscin and A2E (in PBS with 

2% DMSO). Emission was recorded at excitation wavelengths 436, 480 and 545 nm as 

published [49]. Emission maxima are indicated.  
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4. Photoreactive Properties of RPE Lipofuscin and the Implications for Fundus AF  

While there exists no evidence that bisretinoids of RPE lipofuscin can undergo lysosomal 

degradation, loss of this material due to photodegradation has been demonstrated. Thus studies of RPE 

lipofuscin [53–55] and individual bisretinoid lipofuscin fluorophores such as A2-GPE, all-trans-retinal 

dimer and A2E have revealed that these compounds are photoinducible generators of reactive oxygen 

species such as singlet oxygen and superoxide anion. Singlet oxygen in turn reacts with the conjugated 

double bond systems comprising the arms of the bisretinoid molecules [56–61] leading to the 

fragmentation of the parent molecules and release of aldehyde-bearing cleavage products such as 

methylgloxal and glyoxal [60] that can react with and inactivate proteins. These small dicarbonyls also 

provoke the formation of advanced glycation end products (AGE) that deposit extracellularly [16,62].  

AGEs incite inflammatory processes and since they are detected in drusen [63,64], they reflect a 

link between RPE bisretinoid lipofuscin and the formation of sub-RPE deposits. Photooxidation of 

A2E and all-trans-retinal dimer has also been shown to incite complement activation [65,66]. 

Photooxidation is clearly an ongoing process in the eye since photooxidized forms of A2E and  

all-trans-retinal dimer have been detected in isolated human and mouse RPE [25,57]. These processes 

likely contribute to Bruch’s membrane thickening [67] and photoreceptor cell degeneration [68,69] in 

Abca4 mutant mice and are a cause of the increased vulnerability of albino Abca4−/− mice to retinal 

light damage [70]. 

The propensity for bisretinoids to undergo photooxidative and photodegradative processes may 

underlie the decline in RPE lipofuscin fluorescence emission (photobleaching) that has been  

observed in non-human primates during in vivo fluorescence imaging by adaptive optics scanning laser 

ophthalmoscopy [48,71], with cell culture models [72] and in non-cellular assays (Figure 4). 

Lipofuscin photobleaching may also explain why after surgical repair of some cases of retinal 

detachment, hyperautofluorescent lines coursing parallel to retinal blood vessels can be visible in 

fundus AF images [73,74] (Figure 5). The hyperautofluorescent imprint has been interpreted as 

indicating a change in the position of the vessel relative to the underlying retinal tissue and is  

visible because of contrasting levels of AF brightness. At any given time, the intensity of fundus AF is 

likely the difference between fluorophore synthesis on the one hand, and lipofuscin photoxidation/ 

photodegradation in RPE, on the other. Under the shadow of a blood vessel, the formation of 

bisretinoid from retinaldehyde (with 11-cis being converted to all-trans-retinal) would likely continue 

unabated [20,30,75–77] but lipofuscin photooxidation and photobleaching would be substantially 

reduced. As a result, a vessel imprint of more intense AF would be revealed upon retinal translocation. 
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Figure 4. A2E photobleaching by irradiation at 480 nm for 4 and 8 min. Fluorescence 

intensity decreases with irradiation and the emission maximum undergoes a hypsochromic 

shift. Emission peak wavelengths (nm) are indicated adjacent to each trace.  

 

Figure 5. Fundus autofluorescence image of an individual following retinal detachment 

repair. Hyperautofluorescent lines follow a course that parallels the retinal vessels below.  

 

5. Topographic Distribution of SW-AF in Healthy Eyes 

When RPE lipofuscin is assayed by recording fluorescence in histological sections of human retina, 

the signal is found to increase from central fovea to perifovea and after peaking at an eccentricity  

of ~8°, it decreases towards the periphery [10,78]. A similar pattern has been observed with quantitative 

fundus autofluorescence (qAF) (Figure 6); at an eccentricity of 10°, qAF is approximately 95% of that 
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measured centrally [79]. Reduced foveal fundus autofluorescence is due in large part to absorption of 

the exciting light by macular pigment and to the higher optical density of melanin in central RPE [17]. 

By fundus spectrophotometry, qAF and fluorescence photomicroscopy [45], the highest levels of RPE 

lipofucin in healthy eyes have been observed perifoveally in superior-temporal retina (Figure 6) [44]. 

Unexpectedly, this pattern was not replicated in another study relying on fluorescence measurements 

in flat-mounted human cadaver eyes [80].  

Figure 6. Quantitative fundus autofluorescence (qAF) in healthy human eyes.  

Short-wavelength fundus AF images (top row) and corresponding color-coded qAF images 

(bottom row) at the ages indicated. Lower qAF values are coded in blue and higher qAF 

values as orange (color scale). Fundus autofluorescence intensities increase with age and 

the highest levels occur in superior-temporal fundus.  

 

Based on the spatial distribution of mass peaks detected with matrix-assisted laser desorption-ionization 

imaging mass spectrometry (MALDI-MS) investigators have reported that A2E is detectable in central 

retina of mice [81], but not in the central human RPE [36]. Instead, the highest A2E levels were 

restricted to a small patch of RPE found exclusively in the far periphery of temporal retina [80]. This 

patch was not matched by similar A2E signal in in the periphery of superior, nasal or inferior retina. 

While A2E is well known to be fluorescent, surprisingly, this patch was almost devoid of fluorescence. 

Since the spectral features of RPE lipofuscin and fundus autofluorescence are best accounted for by 

the excitation and emission spectra of the bisretinoid constituents, the fluorescence originating in 

centrally situated RPE cells likely originates from some combination of these di-retinal adducts. 

Interestingly, the MALDI-MS findings could indicate that the various species of bisretinoid lipofuscin 

compounds exhibit spatial heterogeneity. Reduced levels of A2E in the macula could also be a 

consequence of greater lipofuscin photocleavage in central RPE; an explanation such as this could 
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account for the greater susceptibility of the macula to disease. Failure to detect A2E centrally, may 

even be attributable to the limitations of the methodology. MALDI-MS is a surface-based technique 

that depends on the extraction of analyte into a matrix applied to the surface of the tissue. Factors that 

could cause spatial differences in extraction efficiency are regional differences in RPE height and 

spatial differences in the compartmentalization of lipofuscin. For instance RPE cells are taller and 

narrower in the human macula [78] with melanin being uppermost and lipofuscin at greater depths in 

the cells. After age 50 complex organelles containing both melanin and lipofuscin (melanolipofuscin) 

predominate in the cells [78] with macular RPE containing more melanolipofuscin than RPE at the 

equator and periphery [82]. Lipofuscin is less extractable from the RPE of these older eyes [83]. Thus 

it is likely that the extraction from central RPE is less efficient because of the depths of lipofuscin in 

the cells and/or difficulty in accessing lipofuscin from complex melanolipofuscin-organelles. 

6. NIR-AF in the Healthy Eye 

The healthy fundus also exhibits a near-infrared autofluorescence (NIR-AF) (>800 nm) when 

excited at ~787 nm [84,85] (Figure 1). The intensity of the fundus NIR-AF is at least 60 times less than 

SW-AF [86]. Several lines of evidence indicate that RPE and choroidal melanin serve as a source of 

the NIR-AF signal. For instance, melanin is known to fluoresce under near-infrared light excitation [87]. 

Additionally, the high NIR-AF signal at the fovea corresponds [86] to the elevated optical density of 

melanin in this area [78]. Melanocytic choroidal nevi also fluoresce brightly with NIR-AF imaging. 

Conversely, NIR-AF emanating from a full-thickness macular hole is similar in brightness to 

surrounding retina [86].  

The more frequent use of SW-AF may be due, in part, to the introduction of the Heidelberg 

Spectralis having optical coherence tomography (OCT) capability (HRA + OCT) and to the 

subsequent decline in the popularity of the HRA2 and Spectralis HRA in retinal clinics. The OCT 

module in the Spectralis reduces NIR-AF signal intensity, thus compromising NIR-AF image quality 

as compared to cSLOs without OCT (e.g., HRA2 and Spectralis HRA). Nevertheless, NIR-AF has 

advantages over SW-AF. For instance, during image acquisition, patients are not disturbed by the  

NIR-AF light as they are with the SW-AF exciting light. This improves patient cooperation, especially 

in young children and photophobic patients.  

7. Comparison of SW- and NIR-AF in AMD: Altered Intensities and Aberrant Patterns  

In the presence of retinal disease such as AMD, patterns and intensities of fundus autofluorescence 

are notably altered [88–93]. At locations of RPE and photoreceptor cell demise (atrophy) both the  

SW-AF and NIR-AF signals become strikingly deficient or absent [94,95]. These areas of atrophy can 

take the form of discrete spots, isolated patches or large expanses (geographic atrophy, GA, USA). 

Loss of the RPE cell monolayer in GA has been confirmed by OCT [96]. While GA presents as areas 

of darkness in both SW and NIR-AF (Figure 7), the lesion size can sometimes appear larger with either 

the SW-AF or NIR-AF modality [84,97] (Figure 7). Nevertheless, the rate of increase in GA area is the 

same whether measured in SW- or NIR-AF images [98]. In exudative AMD, the developing 

neovascular lesion can be discerned in SW-AF images early on as a focal hyperautofluorescence [99]. 
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Later the SW-AF signal is reduced within the lesion [99,100]. In some cases the edge of the 

neovascular lesion exhibits increased SW-AF signal [100]. 

In the zone of retina immediately adjacent to geographic atrophy, there are often additional AF 

changes. These aberrant signals can present as intermittent foci or continuous bands of altered 

brightness in both SW-AF and NIR-AF images [101–103]. In these junctional zones areas of increased 

SW-AF can coincide with increased NIR-AF; increased SW-AF can overlap with reduced NIR-AF; or 

NIR-AF signal can be enhanced while SW-AF may appear normal [84,104] (Figure 7). Interestingly, a 

loss of photoreceptor function was found to be associated with both increased and decreased  

NIR-AF [97,105].  

Since both SW-AF and NIR-AF are considered to originate in RPE cells, it is puzzling that SW-AF 

can be increased at positions where NIR-AF is reduced or absent. This apparent incongruity has been 

attributed to abnormal RPE cells that have lost melanin while accumulating excessive levels of 

lipofuscin due to accelerated rates of outer segment phagocytosis [84,105]. However, lipofuscin 

production is not dependent on the rate of phagocytosis. The lipofuscin forms in photoreceptor cells 

prior to disc shedding and phagocytosis. As is evident from studies of the RCS rat, the fluorophores of 

lipofuscin form and accumulate in photoreceptor outer segment debris even in the absence of 

phagocytosis [106–108].  

Other observations indicate that photoreceptor cells are likely to be degenerating in these junctional 

zones of increased SW-AF. In particular, retinal sensitivity, measured by microperimetry, is commonly 

reduced at positions presenting with increased SW-AF as compared to normal SW-AF [105,109]. In 

addition, OCT findings in the zone of enhanced autofluorescence surrounding GA include thinning of 

the reflective band attributable to RPE/Bruch’s membrane and disruption of the reflectivity band 

corresponding to the ellipsoid zone of photoreceptor inner segments [96,110] Thus could it be that at 

positions of diminished NIR-AF, RPE cells are atrophied or lost and impaired photoreceptor cells 

become a source of accelerated lipofuscin formation and thus enhanced SW-AF? Mechanistically, 

mishandling of retinaldehyde, the precursor of lipofuscin, is known to lead to elevated bisretinoid 

formation in photoreceptor cells [111] and compromised photoreceptor cells may not be able to 

provide the energy needed for reduction of retinaldehyde to the non-reactive alcohol form. Similar 

mechanisms may explain the rapid onset of elevated fundus SW-AF that co-localizes with scotomas 

associated with acute macular neuroretinopathy (AMN) [93,112].  

The observation that NIR-AF signals increase in parallel with increases in SW-AF at the border of 

GA may also not be fully understand. Hyperautofluorescence foci at the junctional zone of GA, at least 

in some cases, can be attributed to abnormally superimposed RPE cells [113,114]. But whether this 

can account for more extensive bands of high NIR-AF [84] is not certain. It has been suggested that 

RPE lipofuscin may contribute to NIR-AF of the fundus [86]. However, albino rats do not exhibit 

NIR-AF despite the presence of lipofuscin [115] and as shown in Figure 8, we have not detected an 

NIR-AF signal from synthesized samples of A2E that otherwise emit fluorescence when excited at  

488 nm. NIR-AF emission from other bisretinoids is unlikely, given the small structural differences 

amongst these compounds (Figure 2). If melanogenesis is the basis for increased NIR-AF brightness at 

the border of GA, as has been suggested [84,105], one might expect that increased melanin concentrations 

would be visible as hyperpigmented spots and bands in color fundus photographs. In considering an 

optical effect as an explanation for increased NIR-AF signal it could be that RPE lipofuscin does not 
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fluoresce in the NIR range but can modify the NIR-AF emission from melanin. This could occur if 

lipofuscin secondary lysosomes intercalate amongst apically situated melanosomes [78,116] thereby 

reducing the NIR-AF quenching associated with secondary self-absorbance of the fluorescence 

emission. A mechanism such as this might also explain why hyperautofluorescent rings visible in the 

NIR-AF fundus images in retinitis pigmentosa exhibit spatial correspondence with high intensity rings 

observed in SW-AF images [117]. 

Figure 7. An area of geographic atrophy (GA) imaged with short-wavelength (SW) and 

near-infrared (NIR) autofluorescence (AF) imaging. GA appears dark with both modalities. 

The zone surrounding GA is hyperautofluorescent in the NIR-AF image while having 

relatively normal SW-AF signal. When vessel landmarks are used as a guide (arrows), total 

lesion size appears larger in the NIR-AF image. 

 

Figure 8. Synthesized A2E imaged with a confocal scanning laser ophthalmoscope 

(HRA2; Heidelberg Engineering, Heidelberg, Germany) using 488 nm (SW-AF) and 787 nm 

(NIR-AF) excitation. No signal was generated with the NIR excitation. 

 



J. Clin. Med. 2014, 3 1312 

 

 

8. Conclusions 

Interest in a role for RPE lipofuscin in AMD stems from its age-related increase [10,11], an 

accumulation that is more pronounced in central retina [11], a propensity for adverse effects on RPE 

and photoreceptor cells [12–15,68,70] and links to drusen formation [16,67]. Contributions to AMD 

susceptibility from RPE lipofuscin would exist within the context of background genetic risk. Thus 

extrapolation from aging eyes in the absence of disease may not be informative [45].  

Since the products of bisretinoid photodegradation can be damaging [16,60], it is worth considering 

whether lipofuscin lost by photooxidation/photodegradation is more significant than the lipofuscin 

remaining in the cells. At any given time, the lipofuscin in RPE that is recorded by SW-AF may 

consist of only some portion of the fluorescent material that has been accumulated over a life-time. 

SW-AF emitted from RPE bisretinoids is commonly regarded as a way to monitor the health of the 

RPE, with areas of high AF indicating increased lipofuscin levels and areas of low AF indicating RPE 

loss. However, as discussed here there is increasing evidence that interpretations of the SW-AF signal 

are complex. For instance, impaired photoreceptors may generate increased levels of bisretinoid 

fluorophores thus amplifying SW-AF signal. Ultimately, an understanding of patterns of fundus AF 

will impact the use of these images to assess therapeutic outcomes. 

While fundus autofluorescence provides en face spatial information, the spectral features of the 

fluorescence are not elucidated and the cellular origin of the fluorescence is not identified. Recently, 

however, methods have been developed for quantifying SW-AF. This approach has been shown to 

enable the differentiation of similar phenotypes having disparate genetic origins [44,118]. The qAF 

approach may eventually help to ascertain the role of lipofuscin in various retinal disorders including 

AMD. Because of more limited gradations of signal and thus greater contrast, diseased versus  

non-diseased areas of retina are easier to distinguish in NIR-AF images as compared to SW-AF 

images. Indeed, in recessive Stargardt disease (STGD1), SW-AF changes are often not obvious at 

fundus locations where abnormalities are detectable in NIR-AF images [119]. In addition, in many 

cases the low NIR-AF signal corresponds spatially to loss of the inner segment ellipsoid zone (EZ) in 

spectral domain (SD) OCT images [119]. This relationship is important since EZ integrity is essential 

for visual function [120]. While the origin of the NIR-AF signal may not be completely understood, 

the NIR-AF signal can provide a good estimate of the size of geographic atrophy and surrounding 

abnormalities. All of these issues favor the inclusion of NIR-AF in the management of retinal diseases 

such as AMD. 
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