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ABSTRACT

Random Walk Models, Preferential Attachment, and Sequential Monte Carlo

Methods for Analysis of Network Data

Benjamin Bloem-Reddy

Networks arise in nearly every branch of science, from biology and physics to sociology

and economics. A signature of many network datasets is strong local dependence, which

gives rise to phenomena such as sparsity, power law degree distributions, clustering, and

structural heterogeneity. Statistical models of networks require a careful balance of flexi-

bility to faithfully capture that dependence, and simplicity, to make analysis and inference

tractable. In this dissertation, we introduce a class of models that insert one network edge

at a time via a random walk, permitting the location of new edges to depend explicitly on

the structure of the existing network, while remaining probabilistically and computationally

tractable. Connections to graph kernels are made through the probability generating func-

tion of the random walk length distribution. The limiting degree distribution is shown to

exhibit power law behavior, and the properties of the limiting degree sequence are studied

analytically with martingale methods. In the second part of the dissertation, we develop

a class of particle Markov chain Monte Carlo algorithms to perform inference for a large

class of sequential random graph models, even when the observation consists only of a single

graph. Using these methods, we derive a particle Gibbs sampler for random walk models.

Fit to synthetic data, the sampler accurately recovers the model parameters; fit to real

data, the model offers insight into the typical length scale of dependence in the network,

and provides a new measure of vertex centrality.



The arrival times of new vertices are the key to obtaining results for both theory and

inference. In the third part, we undertake a careful study of the relationship between the

arrival times, sparsity, and heavy tailed degree distributions in preferential attachment-type

models of partitions and graphs. A number of constructive representations of the limiting

degrees are obtained, and connections are made to exchangeable Gibbs partitions as well

as to recent results on the limiting degrees of preferential attachment graphs.
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Chapter 1

Introduction

Network data consist of a set of entities and the interactions between them. They arise in

nearly every branch of science, from biology and physics to sociology and economics. Their

ubiquity has prompted an ever-growing body of literature; empirical studies and probability

models of random graphs date back to at least the first half of the 20th century, while the

mathematical foundations of graph theory date back to Euler in 1735 (Kolaczyk, 2009;

Goldenberg, Zheng, Fienberg, and Airoldi, 2010). Recent years have witnessed continued

growth throughout varied applied fields, and a rapid expansion of methodological research

in probability, statistics, and machine learning. As observed by Kolaczyk (2009), two of the

main forces behind this growth are

“(i) an increasing tendency towards a systems-level perspective in the sciences,

away from the reductionism that characterized much of the previous century,

and (ii) an accompanying facility for high-throughput data collection, storage,

and management.”
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The systems-level perspective is widespread throughout science, as is the proliferation of

data, and much of modern statistics and machine learning research focuses on addressing

the challenges that arise in these settings.

Network data in particular present a unique challenge to statisticians. In contrast to

many classical statistical problems, the patterns of the interactions are of primary interest

rather than a nuisance for which to control. Moreover, there is ample evidence that the

interactions are highly dependent. An oft-cited example is the high degree of transitivity in

social networks (e.g. Holland and Leinhardt, 1971; Newman, 2009): because Paul and Alfred

are friends, and Alfred and Edgar are friends, it is likely that Paul and Edgar are friends.

Other widely observed phenomena, discussed in more detail below, cannot occur with non-

negligible probability without a high degree of dependence between the interactions.

We consider a network to be represented as a sequence of growing graphs; a statistical

network model is a family of probability distributions P = {Pθ : θ ∈ T } on networks,

parameterized by θ. An observation consists of a single network and is explained as either a

network drawn from the model or a subset of such a network.1 When designing a statistical

network model, we are guided in part by the following objectives:

(i) Faithfulness to salient properties of real data. A model should aim to “establish

a link with any theoretical knowledge about the system and with previous experimen-

tal work,” and “[t]here should be consistency with known limiting behavior” (Cox and

Hinkley, 1974, p. 5). In other words, the family P should include distributions that as-

1We assume that observations are coherent with their larger counterparts. That is, the manner in which
they are generated, such as subsampling, respects the probabilistic structure of the data generating process.
This is not always the case, and is an important consideration. See Shalizi and Rinaldo (2013), Orbanz and
Roy (2015), Crane and Dempsey (2015a), and Veitch and Roy (2015).
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sign non-negligible probability to networks with the characteristics deemed important

by theory and experiment, and by reasoning about limiting properties.

What are the salient properties of networks that should be captured by statistical

models? Two of the most widely studied are asymptotic properties and therefore

cannot be observed directly. Nonetheless, there is strong theoretical and empirical ev-

idence that networks are sparse and often have power law degree distributions (e.g. M.

Faloutsos, P. Faloutsos, and C. Faloutsos, 1999; Mitzenmacher, 2003; Leskovec, Klein-

berg, and C. Faloutsos, 2007; Clauset, Shalizi, and Newman, 2009; Newman, 2009,

and references therein). Other properties include so-called “small worlds” (Travers

and Milgram, 1969; Watts and Strogatz, 1998), hubs (Newman, 2009), and the afore-

mentioned transitivity, or clustering, property. These empirical properties, though not

well understood theoretically, should guide the development of models and methods

for analyzing network data.

(ii) Tractable analysis. Whether or not a model succeeds in capturing relevant aspects

of data is determined in part by analyzing the theoretical properties of the distribu-

tions in P. Furthermore, successful models may provide conceptual insight into the

underlying system that generated the data.

Each Pθ ∈ P represents a network as a set of vertices and edges, possibly with labels or

covariates, regarded as a system of random variables; Pθ is their joint distribution. In-

formally, for structure like the properties described in (i) to occur with non-negligible

probability, the variables must be dependent. As a general rule, more dependence

in a system of random variables leads to more complicated analysis. Alternately, as-
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sumptions constraining dependence typically lead to more tractable analysis. In the

network literature, a prototypical example is the basic preferential attachment (PA)

model (de Solla Price, 1965; Barabási and Albert, 1999) and its more bespoke vari-

ations (e.g. Aiello, Chung, and Lu, 2001; Bianconi and Barabási, 2001; Cooper and

Frieze, 2003; Borgs, Chayes, Daskalakis, and Roch, 2007). PA models use a simple

mechanism for generating networks, in which a vertex participates in a new interaction

with probability proportional to the number of its previous interactions. The inten-

tional simplicity of PA models makes them amenable to probabilistic analysis: Power

law degree distributions (Bollobás, Riordan, Spencer, and Tusnády, 2001), local weak

limits (Berger, Borgs, Chayes, and Saberi, 2014), and the asymptotic distributional

properties of the scaled degrees (Móri, 2005; Peköz, Ross, and Röllin, 2014) are no-

table examples. However, that simplicity constrains the flexibility needed to capture

network properties other than degree statistics.

(iii) Tractable inference procedures. Estimating and performing inference on the

model parameters, and using the results for secondary tasks such as prediction, should

be feasible in a reasonable amount of computational time. In general, a model with

less dependence between its constituent random variables requires less computation.

As a result, the statistics and machine learning literature has largely focused on mod-

els in which the edges are conditionally independent. As we discuss in detail in this

dissertation, restrictions on dependence between edges can lead to model misspecifi-

cation. However, computation easily becomes intractable if too much dependence is

present in the model, and some balance must be struck.
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These objectives are often in tension with each other. On one hand, the model should allow

for sufficient dependence to successfully capture the structural phenomena that arise in real

networks; on the other, increased dependence in the model leads to difficult analysis and

more complex inference procedures. The trade-offs required to balance these objectives are

a central theme of this dissertation, and we will revisit them throughout.

The work in this dissertation is motivated by the question of how statistical network

models handle stochastic dependence within a network. Many models constrain depen-

dence either explicitly (e.g. Holland and Leinhardt, 1981; Bollobás, Janson, and Riordan,

2007), or as a consequence of other assumptions like exchangeability (e.g. Lloyd, Orbanz,

Ghahramani, and Roy, 2012; Caron and Fox, 2015; Veitch and Roy, 2015; Borgs, Chayes,

Cohn, and Holden, 2016; Crane and Dempsey, 2016; Cai, Campbell, and Broderick, 2016).

As an example, the following networks are (a) a protein-protein interaction network (see

Section 3.3), and (b) its reconstruction sampled from a graphon model (discussed in more

detail in Section 2.3.1) fitted to (a) (Lloyd, Orbanz, Ghahramani, and Roy, 2012):

(a) (b)

The data set (a) contains pendants (several degree-1 vertices linked to a single vertex),

isolated chains of edges, hubs, etc. For these to arise at random requires local dependence

between edges on different length-scales, and they are conspicuously absent from (b). That is

not a shortcoming of the method used to fit the model, but inherent to graphon models, since
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they constrain edges to be conditionally independent given certain vertex-wise information:

whether or not an edge is present in a particular realization of the network does not depend

on the presence or absence of other edges.

The constraints on dependence are imposed for good reasons. At a basic level, they

are an attempt to answer the following question, which captures the tension between the

objectives above:

How do we simplify the probabilistic structure of Pθ, yet capture the relevant

properties of the network?

This type of question (and its inherent vagueness) is common throughout statistics and ma-

chine learning, where dependent, highly structured data from diverse fields such as text anal-

ysis (Srivastava and Sahami, 2009; Blei, 2012), image processing (Krizhevsky, Sutskever,

and Hinton, 2012), neuroscience (Helmstaedter, 2015), genetics (Kohane, 2011; Libbrecht

and Noble, 2015), medicine (Hripcsak and Albers, 2012; P. B. Jensen, L. J. Jensen, and

Brunak, 2012), and recommendation systems (Salakhutdinov and Mnih, 2008) present sim-

ilar challenges. Although it greatly simplifies analysis and inference when the network is

broken into simpler components, structure in the data may be discarded in the process. If

the discarded structure is relevant to statistical analysis, its absence constitutes a form of

model misspecification.

This dissertation focuses on addressing these issues, and on better understanding the

trade-offs involved when modeling structured, dependent data. To do so, we introduce a

class of models that, rather than constraining dependence, express it on different length-

scales. That dependence generates a range of interesting structures that are faithful to
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various aspects of real networks. We also derive a number of theoretical properties and

develop tractable inference procedures, both of which shed light on the interplay of the

modeling objectives discussed above. A particular sequence of random variables emerges

as crucial to theoretical analysis and inference. We undertake a detailed study of their

properties and their influence on sparsity and power law degree distributions, and make

connections to a number of models for partitions and graphs in the probability and statistics

literature.

Organization

Chapter 2: Background. We briefly review previous work upon which this dissertation

builds. The preliminaries contained in this chapter serve as a reference for later results, in-

troduce notation, and provide a formal framework for the subsequent chapters. We discuss

exchangeability and stochastic dependence, survey some existing models of network data,

and review some results from spectral graph theory and sequential Monte Carlo methods.

Chapter 3: Random walk models of networks. We introduce a simple class of models

that construct a network as a sequence of edges; each new edge depends on the entire

existing edge structure via a random walk. The typical length of the random walk controls

the typical length-scale of dependence in the network. Certain special properties of random

walks on graphs are used to demonstrate that, for a particular subclass of models, the degree

distributions behave much like those of preferential attachment models. In particular, they

can exhibit power law behavior.

Using the methods developed in Chapter 4, the model is applied to data, demonstrating
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how different parameters and latent variables can be usefully interpreted. Comparisons are

made with other network models, and we discuss potential issues with comparisons between

models that treat the dependence in the network differently.

Chapter 4: Inference methods for sequential models. Estimation and inference

procedures are developed. When the entire edge sequence is observed, maximum likelihood

can be used; we derive estimating equations for the entire class of models introduced in

Chapter 3. When the edge sequence is only partially observed, including the case when

only the final network is observed, the latent sequence must be imputed; we build on the

work of Andrieu, Doucet, and Holenstein (2010) and develop Markov chain Monte Carlo

(MCMC) methods for a wide class of sequential models satisfying a Markov property and a

monotonicity property. MCMC sampling for the fully observed case is also demonstrated.

Chapter 5: Nested urn models of partitions and graphs. Crucial to the results of

Chapters 3 and 4 is the sequence of times at which new vertices enter the graph. Chapter 5

studies the properties of preferential attachment-type partitions and graphs that arise by

randomizing that sequence with different distributions. We prove almost sure convergence

of the scaled degree sequence to a random limit, and that the asymptotic rate at which new

vertices appear determines the proper scaling of the degree sequence. We make connec-

tions to exchangeable Gibbs partitions (Gnedin and Pitman, 2006) and neutral-to-the-left

processes, and derive a number of constructive representations of the limit objects.

8



Chapter 2

Background

In this chapter, we review the previous work upon which the subsequent chapters build.

Exchangeable random sequences and partitions are reviewed in Section 2.2. Those objects

provide a conceptual backdrop for the study of networks, and the methods used to analyze

them are adapted to more complicated situations in Chapter 5. In Section 2.3, we give an

overview of the literature on network models, with a focus on the strengths and weaknesses

of various models in the framework outline in Chapter 1. Section 2.4 presents some results

from spectral graph theory that are relevant to the developments in Chapters 3 and 4, and

Section 2.5 reviews the Sequential Monte Carlo and Markov Chain Monte Carlo methods

that are necessary for the inference methods in Chapter 4.

2.1 Notation

Throughout this dissertation, we assume that random variables are defined on a common,

abstract probability space (Ω,A,P). As is standard, all random variables X are measurable
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mappings into their state space, i.e. for an S-valued random variable X, X : Ω → S.

Random variables are written uppercase, and their realized values are lowercase. Parameters

are typically Greek letters, e.g. Θ denotes a random parameter and θ a particular realization.

We use N to denote {0, 1, 2, . . .}, and N+ = N \ {0}. For a process indexed by t ∈ N, At

denotes the σ-algebra generated by the process up to and including t.

2.2 Exchangeable random sequences and the Pólya urn

Urn models are among the most well-studied probability models, forms of which appear in

the work of Laplace, Bernoulli, and others (Mahmoud, 2008). The version of Eggenberger

and Pólya (1923), often called the Pólya urn, is a basic urn model dating back at least to the

work of Markov from 1905 to 1907, and Paul and Tatyana Ehrenfest in 1907 (Mahmoud,

2008). The simplest version of the Pólya urn starts with an urn containing one black

ball and one white ball. At each step t, a ball is drawn uniformly at random from the

urn, and returned to the urn along with an additional ball of the same color. Despite its

simplicity, the urn and its related probability distributions exhibit a number of remarkable

properties. A full treatment is beyond the scope of this chapter, but there are numerous

good references, among them Johnson and Kotz (1977) and Mahmoud (2008). The basic

model has been generalized in too many directions to cite here; some notable results include

those of Blackwell and MacQueen (1973), Hoppe (1984), Pitman (1996), Janson (2006), and

Bacallado, Favaro, and Trippa (2013).

We focus here on aspects of the basic Pólya urn that lend insight into more complicated

models studied in the subsequent chapters of this work. First, consider the urn that begins
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with some number b0 ≥ 1 black balls and w0 ≥ 1 white balls. DefineXs = 1{draw s is black},

and Bt :=
∑t

s=1Xt and Wt := t−Bt. Then

P(X1, X2, . . . , Xt) =

∏Bt−1
b=0 (b0 + b)

∏Wt−1
w=0 (w0 + w)∏t−1

s=0(b0 + w0 + s)
(2.1)

=
Γ(Bt + b0)Γ(Wt + w0)Γ(b0 + w0)

Γ(b0)Γ(w0)Γ(t+ b0 + w0)
. (2.2)

Much can be learned from the form of these equations. The analysis now proceeds along

two separate lines, rejoining in Theorem 2.3.

2.2.1 Predictive martingales

Given a sequence X1, . . . , Xt and fixed pb, pw ∈ N, consider the predictive probability of

any particular further sequence of length p := pb + pw, Xt+1, . . . , Xt+p, such that pb of the

elements are black, i.e. Bt+p −Bt = pb:

P(Xt+1, . . . , Xt+p | X1, . . . , Xt) =
Γ(Bt + pb + b0)Γ(Wt + pw + w0)

Γ(Bt + b0)Γ(Wt + w0)

Γ(t+ b0 + w0)

Γ(t+ p+ b0 + w0)

:= Zt(pb, pw) .

Because B0 = W0 = 0, Zt(pb, pw) is well defined for all t ≥ 0, if pb > −b0 and pw > −w0,

though its interpretation as a predictive probability breaks down for negative or non-integer

pb, pw. A different interpretation, valid for all R-valued pb > −b0 and pw > −w0, is as the

likelihood ratio for urns with different starting conditions: The numerator is the probability

of seeing Bt black balls when the urn has b0 + pb black balls and w0 + pw white balls at

t = 0; the denominator is the same probability when the urn starts with b0 black balls and
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w0 white balls. This interpretation will prove useful in Chapter 5.

Observe that by Stirling’s formula (e.g. Tricomi and Erdélyi, 1951),

Zt(pb, pw) =
(Bt + b0)pb

(t+ b0 + w0)pb
(Wt + w0)pw

(t+ b0 + w0)pw
(1 +O(t−1)) . (2.3)

Therefore, if the limit limt→∞ Zt(pb, pw) exists, its expectation can be used to compute

the joint (pb, pw)-th moment of the limiting proportions of black balls and white balls, ξb

and ξw. Since pb and pw are arbitrary, the moments completely characterize the limiting

distribution of (ξb, ξw), if they exist. The next proposition shows that the moments indeed

exist, and how to compute them. Although the results are not new, the proof techniques

can be adapted to more complicated situations, and they are used to establish many of the

theoretical results in Chapters 3 and 5.

Proposition 2.1. For any fixed R-valued pb > −b0/2 and pw > −w0/2,

(t+ b0 + w0)−1(Bt + b0)
t→∞−−−→ ξ almost surely,

and

Zt(pb, pw)
t→∞−−−→ ξpb(1− ξ)pw almost surely.

Furthermore, ξ is a Beta(b0, w0) random variable.

Proof. Zt(pb, pw) is clearly non-negative by definition. For any t ∈ N+, let At denote the
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σ-algebra generated by the first t draws from the urn. Then

E[Zt+1(pb, pw) | At]

=
Γ(Bt + pb + b0)Γ(Wt + pw + w0)

Γ(Bt + b0)Γ(Wt + w0)

Γ(t+ 1 + b0 + w0)

Γ(t+ 1 + p+ b0 + w0)
. . .

× E
[
1 +

pb · 1{Xt+1 = 1}
Bt + b0

+
pw · 1{Xt+1 = 0}

Wt + w0

∣∣∣∣ At]
=

Γ(Bt + pb + b0)Γ(Wt + pw + w0)

Γ(Bt + b0)Γ(Wt + w0)

Γ(t+ 1 + b0 + w0)

Γ(t+ 1 + p+ b0 + w0)

(
1 +

p

t+ b0 + w0

)
= Zt(pb, pw) .

This shows that (Zt(pb, pw),At)t≥0 is a non-negative martingale with finite expectation for

any pb > b0 and pw > w0. By the Martingale Convergence Theorem (e.g. Çinlar, 2011,

Chapter V.4), Zt(pb, pw) converges almost surely. The factors of Zt(pb, pw) can be shown in

the same way to have almost sure limits,

(t+ b0 + w0)−1(Bt + b0)
a.s.−→ ξb ,

and likewise for ξw. Based on this and on the asymptotics in (2.3), it must be that the limit

of Zt(pb, pw) is ξpbb ξ
pw
w .

By basic properties of the Gamma function (see, e.g. Hofstad, 2016, Chapter 8, p. 306),

Zt(pb, pw)2 ≤
( ∏
i∈{b,w}

Γ(2pi + 1)

Γ(pi + 1)2

)
Zt(2pb, 2pw).

But Zt(2pb, 2pw) has finite expectation for 2pb > −b0 and 2pw > −w0, so Zt(pb, pw) is

bounded in L2 and therefore converges in L2 and also in L1, for any pb > −b0/2 and
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pw > −w0/2. From (2.3),

lim
t→∞

E

[
(Bt + b0)pb

(t+ b0 + w0)pb
(Wt + w0)pw

(t+ b0 + w0)pw

]
= E[ξpbb ξ

pw
w ] = lim

t→∞
E[Zt(pb, pw)] = Z0(pb, pw)

=
Γ(b0 + pb)Γ(w0 + pw)

Γ(b0)Γ(w0)

Γ(b0 + w0)

Γ(b0 + w0 + p)

=

∫ 1

0
ξpb(1− ξ)pwdνβ(b0,w0)(ξ) , (2.4)

where dνβ(b0,w0)(ξ) is the density of a random variable Ξ with distirbution Beta(b0, w0),

which identifies the distribution of ξb = 1− ξw = ξ as Beta(b0, w0).

Remark. The proposition can be extended easily to urns with k colors, which converges

in the limit to a Dirichlet random variable. The beauty of this technique is that it allows

one to show convergence, obtain the rate of convergence, and compute the moments with a

single family of martingales. Related martingales were used to prove results for extensions

of the basic two-color Pólya urn in Freedman (1965) and Gouet (1989, 1993), and for the k

color urn in Blackwell and Kendall (1964) and Gouet (1997). The technique was also used

in Móri (2005) to analyze the degrees of preferential attachment trees. /

For the purposes of this chapter, the primary significance of Proposition 2.1 is that both

predictive distributions and the empirical distributions, i.e. the limiting proportions,

converge to the same random variable with a Beta distribution. This is not a coincidence;

it is a special case of the more general result in Section 2.2.3.
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2.2.2 Conditionally i.i.d. and mixed i.i.d. sequences

For the second line of analysis, we show that the urn sequence X1, X2, . . . is a mixture of

independent and identically distributed, or i.i.d., random variables, a result due to

de Finetti (1930). In order to do so, we recognize (2.2) as a ratio of Beta functions, leading

to the identity1

P(X1, X2, . . . , Xt) =

∫ 1

0
ξBt(1− ξ)t−Btdνβ(b0,w0)(ξ) (2.5)

=

∫ 1

0

( t∏
s=1

ξXs(1− ξ)1−Xs
)
dνβ(b0,w0)(ξ) , (2.6)

which shows that the urn sequence X1, X2, . . . is a mixture of i.i.d. sequences, and it is

equivalent in distribution to a conditionally i.i.d. sequence:

Ξ ∼ Beta(b0, w0) (2.7)

X1, X2, . . . | Ξ = ξ
iid∼ Bernoulli(ξ) .

An equivalent sampling scheme is the following two-color paintbox:

(1) Sample Ξ ∼ Beta(b0, w0)

(2) Partition the unit interval into subintervals Ib = [0,Ξ) and Iw = [Ξ, 1]

(3) Sample U1, U2, . . .
iid∼ Uniform[0, 1]

(4) Paint each ball s according to the color of Us. That is, set Xs = 1{Us ∈ Ib}.

1Not coincidentally, (2.2) is also known as the Beta-Bernoulli distribution; it is the posterior predictive
distribution of Bernoulli observations with its conjugate prior, the Beta distribution.
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ξIb Iw

U3 U4 U1 U2 U5

Figure 2.1: Sampling a conditionally i.i.d. binary sequence: Given Ξ = ξ, Xs = 1{Us < ξ}.

Figure 2.1 shows a schematic of this process corresponding to the sequence 1, 0, 1, 1, 0.

All of these results extend to more general sequences of random variables, as we discuss

in the next two sections.

2.2.3 de Finetti’s theorem

The convergence of the empirical distributions, the identity (2.6), and the conditional i.i.d.

sampling representation (2.7) are special cases of more general results on random sequences

whose distributions are invariant under finite permutations of N+. More precisely, a finite

permutation of N+ is a bijective transformation t 7→ jt such that t = jt for all but finitely

many t.

Definition 2.2. A finite or infinite random sequence X := (X1, X2, . . .) in a measurable

space (S,S) is said to be exchangeable if its distribution is invariant to any finite permu-

tation of the elements of X. That is,

(Xj1 , . . . , Xjm)
d
= (X1, . . . , Xm) ,

where
d
= denotes equality in distribution, for any collection j1, . . . , jm of distinct elements

of the index set of X.
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The concept of exchangeability is central to Bayesian statistical analysis, and we will

return to it frequently throughout this work. Inspection of (2.1) shows that the urn sequence

X1, X2, . . . , Xt is exchangeable for any t: Its distribution depends only on the sum
∑t

s=1Xs,

which is (trivially) unchanged by permutations of X1, . . . , Xt. This is just one example of an

exchangeable binary sequence; remarkably, any exchangeable sequence of random variables

has a unique representation like (2.6) and (2.7), a result known as de Finetti’s theorem.

At a high level, de Finetti’s theorem states that any infinite random sequence with

values in S is exchangeable if and only if it is conditionally i.i.d. given a random variable Ξ

with values in M(S), the space of probability measures on S. It also states that both the

empirical distributions and the predictive distributions P̂t := P(Xt+1 | X1, . . . , Xt) converge

weakly to Ξ.

Theorem 2.3 (de Finetti (1930, 1937), Hewitt and Savage (1955)). Let X = (X1, X2, . . .)

be an infinite sequence of random variables with values in a measurable Borel space (S,S).

X is exchangeable if and only if there is a random probability measure Ξ on S such that the

elements X1, X2, . . . are conditionally i.i.d. with distribution Ξ. Moreover, for any sequence

of sets A1, A2, . . . ∈ S,

P(X1 ∈ A1, X2 ∈ A2 . . .) =

∫
M(S)

∞∏
s=1

ξ(As)ν(dξ) ,

where ν, which uniquely determines the law of X, is the law of Ξ. Furthermore, both

the empirical distributions and the predictive distributions converge weakly to Ξ, that is for
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every A ∈ S,

1

t

t∑
s=1

1{Xs ∈ A}
t→∞−−−→ Ξ(A) almost surely,

and

P̂t(A) = P(Xt+1 ∈ A | X1, . . . , Xt)
t→∞−−−→ Ξ(A) almost surely.

This is now a standard result, proof of which can be found in numerous places. See, e.g.

Kallenberg (2005, Chapter 1.1) for a few different approaches and an illuminating discus-

sion of the equivalence for infinite sequences of exchangeability and another probabilistic

symmetry, contractability. The latter result, on the convergence of the predictive distribu-

tions, is somewhat less standard; see Fortini, Ladelli, and Regazzini (2000), and Fortini and

Petrone (2012).

2.2.4 Exchangeable random partitions and Kingman’s paintbox

Exchangeable models of partitions have been studied extensively in the probability literature

(e.g. Kingman, 1978a,b; Pitman, 1996, 2006), and have been used as statistical models in

a range of applications, most notably forming the basis of clustering and mixture models

(Pitman, 2006; Hjort, Holmes, Müller, and Walker, 2010; De Blasi et al., 2015). A partition

of N+

π = (A1, A2, . . .)
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divides N+ into a possibly infinite number of non-overlapping subsets Aj ⊂ N+, called

blocks. We assume the blocks to be ordered by their least elements. Denote by P̃t the

space of partitions of [t] := {1, 2, . . . , t} ordered by their least elements. A finite partition is

regarded as the restriction to the first t elements of a partition of N+: For any t < t′ ∈ N+,

we obtain πt from πt′ by deleting the elements t+ 1, . . . , t′ and removing any empty blocks.

For example, a partition of [12] might be π12 = ({1, 2, 4, 5, 12}, {3, 7, 8}, {6, 10}, {9, 11}),

and its unique restriction to [8] is π8 = ({1, 2, 4, 5}, {3, 7, 8}, {6}). A block with one element

is called a singleton.

A random partition Π of N+ is a partition-valued random variable. In this dissertation,

we only consider distributions on Π for which the finite-dimensional distributions are co-

herent. More precisely, let T t+1
j be an operator that acts on partitions by inserting t + 1

into the j-th block, i.e. for Πt := {A1,t, . . . , Ak,t},

T t+1
j Πt :=


{A1,t, . . . , Aj,t ∪ (t+ 1), . . . , Ak,t} for 1 ≤ j ≤ k

{A1,t, . . . , Ak,t, 1} for j ≥ k + 1

.

Coherence requires that

P(Πt = {A1, . . . , Ak}) =

k+1∑
j=1

P(T t+1
j Πt) . (2.8)

We call the sequence (Πt)t≥1 a partition process.

Π is said to be exchangeable if the probability distribution of Πt is invariant under the

natural action of the symmetric group of permutations of [t], for each t ∈ N+ (Pitman,

2006). Exchangeability implies that the distribution of Πt depends only on the sizes of the
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blocks, that is

P(Πt = {A1, A2, . . . , Ak}) = p(|A1|, . . . , |Ak|) ,

for some symmetric function p on k-tuples of non-negative integers that sum to t (Pitman,

1995). Letting t and k vary defines a function p : ∪∞k=1N
k → [0, 1], called the Exchangeable

Probability Partition Function (EPPF).

A random partition Π of N+ can be formed from a random sequence X1, X2, . . . by

assigning the index of each element of the sequence to a block of Π. The most natural

assignment is by equivalence, that is (Xt = Xt′) ⇐⇒ (t, t′ ∈ Aj) for some j. Clearly, if

X1, X2, . . . is exchangeable, then so is Π. Kingman (1978a,b) showed that every exchange-

able random partition has the following paintbox representation, depicted in Figure 2.2:

(1) Sample a random sequence C = (C1, C2, . . .) of scalars Cj ∈ [0, 1], which satisfy

C1 ≥ C2 ≥ . . . and
∑

j Cj ≤ 1. Define Wk :=
∑k

j=1Cj .

(2) Partition the unit interval into sub-intervals Ij = [wj−1, wj) and I∞ = (1− w∞, 1].

(3) Sample U1, U2, . . .
iid∼ Uniform[0, 1].

(4) Form Π by assigning t ∈ N+ to block Aj if Ut ∈ Ij . Assign to its own block every t

for which Ut ∈ I∞.

The name paintbox comes from viewing each Cj as representing a different color; the ob-

servations {t : Ut ∈ Ij} are painted with the color Cj . The interval I∞, if it has non-zero

measure, represents a “continuum of colors” (Kingman, 1978b), also known as dust (Bertoin,

2006); each Ut ∈ I∞ forms a singleton block of a distinct color. An extension of the paintbox
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U3 U2 U1U4 U5

I∞

Figure 2.2: Sampling from a paintbox distribution with random sequence C = (C1, C2, . . .).
Two numbers t, t′ ∈ N+ are assigned to the same block Aj of the partition Π if the uniform
variables Ut and Ut′ are in the same interval Ij .

sampling scheme will play a role in Chapter 5.

2.3 Models of network data

The most common representation of a network is a graph. A graph G = (V,E) consists of

a set V of vertices,2 and a set E of edges. We denote by |V| the cardinality of V, i.e. the

number of vertices in G, and likewise for E. As an illustrative example, consider an online

social network. Users are represented as vertices and interactions between users form the

edges. A simple graph consists of {0, 1}-valued undirected edges; in the social network

example, an edge might represent whether or not two users are friends. Typically, self-edges

are not allowed in simple graphs. In a multigraph, edges can take values inN, representing,

say, the number of interactions between two users. In a more general form, a weighted

graph, edges might be R-valued, and in all of these cases the edges might be directed.

Furthermore, there may be covariate information attached to the vertices and the edges; for

example, the physical locations of two users and the time at which an interaction between

them occurred. A relatively newer area of research is on multidimensional or multilayer

2The network science literature typically uses the word nodes, but we use the language of graph theory
in this dissertation.
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networks, with different layers representing different types of interactions. See Kivelä et al.

(2014) for a recent review. It is important to note that in all of these representations, there

is often some loss of information, possibly because it was not observed or not recorded, or

because it was discarded during the transformation of a network into its representation as

a graph.

In this dissertation, only undirected simple graphs and multigraphs are considered.

(Directed versions of results are typically straightforward adaptations of the undirected

versions.) When discussing a property that applies to both simple and multigraphs, or

when the type of graph is clear from the context, we will simply use the term graph.

When a network is represented as a graph, a statistical network model is formulated as a

probability model on graphs, known as a random graph model.

The literature on models of random graphs is far too extensive to cover here; we restrict

our attention to models with properties that motivate or enhance our understanding of

the models proposed in Chapter 3. For broader views of the literature, see the surveys of

Goldenberg, Zheng, Fienberg, and Airoldi (2010), Hunter, Krivitsky, and Schweinberger

(2012), and Orbanz and Roy (2015) and the text by Kolaczyk (2009), which focus on

statistical models; the texts of Durrett (2006) and Hofstad (2016) give thorough overviews

of the extensive probabilistic literature, particularly for dynamic or evolutionary models.

Newman (2009) takes a network science perspective. This section is a high-level overview,

delving only deeply enough to provide insight relevant to this dissertation. Models are

grouped roughly according to whether or not they exhibit some form of exchangeability.

We view (Gt)t∈T as a stochastic process on (Gt)t∈T, the space of (possibly labeled)

graphs indexed by a totally ordered (by the relation ≤) set T. Generally, we assume that
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Gs ⊆ Gt for s ≤ t. For the models studied in detail in this dissertation, T = N+; some of

the models discussed in this section have T = R+. In either case, (Gt)t>0 is a well-defined

stochastic process. If a model is defined on labeled graphs, then we assume that (Gt)t>0

is a set of labeled graphs, unless explicitly stated otherwise. For example, a multigraph

constructed from a sequence of interactions X1, X2, . . . may require that each multi-edge

eij ∈ N have a vector of labels `ij ∈ N
|eij |
+ specifying which elements of the interaction

sequence are represented by eij . (Gt)t>0 is the labeled multigraph sequence (Vt,Et, `t)t>0,

with label set `t.

A random graph model is a family of distributions P = {Pθ : θ ∈ T } on such processes.

A basic property of a random graph model is its index set, which typically corresponds to the

size of the graph. Models from the statistics literature traditionally have been indexed by the

number of vertices, i.e. T = N+, where t is the number of vertices of Gt. (This convention

likely can be traced to the literature on social networks, where much of network analysis

has roots (e.g. Holland and Leinhardt, 1971, 1976, 1977).) More recent models index the

process by the number of edges (e.g. Crane and Dempsey, 2015a, 2016; Williamson, 2016;

Cai, Campbell, and Broderick, 2016, Chapter 3 of this dissertation). As those papers

discuss, the treatment of interactions as the data points, or statistical units, resolves some

of the issues that arise when viewing Gt as a partial observation of a larger graph. To

paraphrase, if vertices are the statistical unit, it is implicitly assumed that Gt contains all

interactions between its vertices; a graph can only grow via the observation of new vertices,

but not via additional interactions. This is plainly unrealistic in many modeling situations,

and there are implications for subsampling and for prediction (see Orbanz and Roy, 2015;

Crane and Dempsey, 2015a, 2016; Williamson, 2016). Not every model has an index set
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that corresponds to a deterministic graph quantity. For example, the index set of the recent

models of Caron and Fox (2015), Veitch and Roy (2015), and Borgs, Chayes, Cohn, and

Holden (2016) is T = R+, and corresponds to the expected number of edges, i.e. E[Gs] = s.

A basic representation of a graph is as an adjacency matrix A, with elements [A]ij =

w(vi, vj), where w(vi, vj) is the weight of an edge between vertex i and vertex j. For simple

graphs, the range of w is {0, 1}; for multigraphs it is N. The degree deg(v) of a vertex v

is the sum of the weight of all of its edges, that is deg(v) :=
∑

u[A]vu. The volume of a

graph is the sum of its degrees, vol(G) :=
∑

v∈V deg(v).

Of the many statistics used to quantify graph properties, much attention has been paid

recently to the following two:

• Sparsity. Roughly, the average degree grows more slowly than the number of edges

needed for a complete graph on the same number of vertices. Let Ne(t) and Nv(t)

denote the number of edges and vertices, respectively, in Gt. For 1 ≤ ε < 2, we call a

graph sequence (Gt)t>0 ε-sparse if

lim sup
t→∞

Ne(t)

Nv(t)ε
= cε > 0 . (2.9)

If ε ≥ 2, the network is called dense.

• Power law degree distribution. Let md(t) be the number of vertices of degree d in

Gt. The degree distribution is the normalized histogram vectorNv(t)
−1(m1,t,m2,t, . . . )

of the vertex degrees in Gt. A graph sequence (Gt)t>0 exhibits a power law degree
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distribution with exponent η > 1 if

pd(t) :=
md(t)

Nv(t)

t↑∞∼ L(d)d−η for all large d as t→∞ , (2.10)

for some slowly varying function L(d), that is, limx→∞ L(rx)/L(x) = 1 for all r > 0

(e.g. Feller, 1971; Bingham, Goldie, and Teugels, 1989), and where a(t)
t↑∞∼ b(t) in-

dicates limt→∞ a(t)/b(t)→ 1. Note that L(d) controls the shape of the distribution,

but not the upper tail; hence, variations in finite sample behavior and the lower tail

are captured by L(d).

On the basis of theory and extrapolation of empirical evidence, it is widely believed that

real networks are often sparse and exhibit power law degree distributions (e.g. Barabási and

Albert, 1999; M. Faloutsos, P. Faloutsos, and C. Faloutsos, 1999; Leskovec, Kleinberg, and

C. Faloutsos, 2007; Clauset, Shalizi, and Newman, 2009; Newman, 2009). Many real net-

works are estimated to exhibit η > 2 (Chung and Lu, 2006; Clauset, Shalizi, and Newman,

2009), though there are examples with 1 < η < 2 (Clauset, Shalizi, and Newman, 2009;

Crane and Dempsey, 2015b). As we discuss in Section 5.5, for models of edge sequences

generated with a PA-type mechanism, exchangeable and non-exchangeable models appear

to be complementary in terms of the levels of sparsity and the range of possible power law

exponents appearing in the degree distribution.

2.3.1 Models based on probabilistic symmetry

Vertex-exchangeable models. Of the models in the statistics and machine learning

literature, many fall in this category, also known as graphon models. Examples include
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the stochastic blockmodel (SBM) when class structure is unobserved (e.g. Nowicki and

Snijders, 2001; Airoldi, Blei, Fienberg, and Xing, 2008) and its Bayesian nonparametric

version (Kemp, Tenenbaum, T. L. Griffiths, Yamada, and Ueda, 2006; Xu, Tresp, Yu, and

Kriegel, 2006), and others (Hoff, 2008; Miller, Jordan, and T. L. Griffiths, 2009; Roy and

Teh, 2009; Leskovec, Chakrabarti, Kleinberg, C. Faloutsos, and Ghahramani, 2010; Lloyd,

Orbanz, Ghahramani, and Roy, 2012; Zhou, 2015).

As the name implies, the graph process is indexed by the number of vertices. A graph is

vertex-exchangeable if its distribution is invariant to permutations of the vertex labels.

More precisely, let A represent the adjacency matrix of a random graph G on vertex set [t],

so that the matrix entry [A]ij = 1 if there is an edge between vertices i and j, and [A]ij = 0

otherwise. Then A is vertex-exchangeable if

([A]ij)
d
=
(
[A]σ(i)σ(j)

)
(2.11)

for all permutations σ of [t]. The Aldous–Hoover theorem (Hoover, 1979; Aldous, 1981;

Kallenberg, 2005), which yields a de Finetti-style representation for exchangeable arrays

(up to equivalence classes), provides an attractive theoretical foundation for such models.

All vertex-exchangeable models of simple graphs can be represented by a random func-

tion on the unit square known as a graphon, W : [0, 1]2 → [0, 1], from which G(t,W ), with

adjacency matrix A, is generated as follows:

W ∼ ν

Ui
iid∼ Uniform[0, 1], i ≤ t
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[A]ij |W,Ui, Uj
ind∼ Bernoulli(W (Ui, Uj)), i < j ≤ t . (2.12)

W thus defines a distribution over graphs, PW (Gt) := P(Gt | W ). Since the collection of

random variables (Ui) are i.i.d. and independent of W , PW is invariant under any permuta-

tion of the vertex set. Importantly, the edges [A]ij are conditionally independent given W

and (Ui).

These properties still obtain if we let t→∞. The Aldous–Hoover theorem states that W

plays a role analogous to Ξ in Theorem 2.3: W is the weak limit of the empirical distributions

(up to equivalence classes defined by weak isomorphisms of W (Diaconis and Janson, 2007;

Lovász, 2013)), and given W , G1, G2, . . . can be sampled by the conditionally independent

edge process described by (2.12). Furthermore, any exchangeable infinite random graph can

be represented as a mixture of G(∞,W ). See Diaconis and Janson (2007), Lovász (2013),

and Orbanz and Roy (2015) for details.

However, as discussed in the introduction, graphon models constrain the dependence

between edges and may be misspecified for many network analysis problems. Various

symptoms of this problem have been noted (e.g. Borgs, Chayes, Cohn, and Zhao, 2014;

Orbanz and Roy, 2015). For example, the generated graph is dense or empty, and unless

it is k-partite or disconnected, the distance between any two vertices in an infinite vertex-

exchangeable graph is almost surely 1 or 2. Although sparsity has been the most widely

noted issue, the more fundamental culprit is the conditional independence of the edges: A

graphon can encode any fixed pattern on some number t of vertices, but this pattern then oc-

curs on every possible subgraph of size t with fixed probability (Diaconis and Janson, 2007).
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Edge-exchangeable models. Graphs formed from an exchangeable sequence of edges

are known as edge-exchangeable (Crane and Dempsey, 2015a, 2016; Williamson, 2016;

Cai, Campbell, and Broderick, 2016). The models introduced in Chapters 3 and 4 are also

formed from a sequence of edges. However, the sequence is not exchangeable. The difference

is important; in the exchangeable case, much of the content Section 2.2 on exchangeable

sequences applies to edge-exchangeable graphs directly or can be refined to apply. In par-

ticular, for a non-trivial graph, the edges are derived from a random partition of N+ and

are conditionally i.i.d. given a random probability measure analogous to Kingman’s paint-

box representation. A number of earlier models such as the configuration model (see, e.g.

Bender and Canfield, 1978; Bollobás, 1980; Chung and Lu, 2002, 2003; Newman, 2009;

Chatterjee, Diaconis, and Sly, 2011; Riordan, 2012) are similar (though not equivalent) to

edge-exchangeable graphs in which the random probability measure on edges factorizes into

a product of measures on vertices.

A number of edge-exchangeable models that generate sparse graphs exhibiting power law

degree distributions have been proposed (Crane and Dempsey, 2015a, 2016; Cai, Campbell,

and Broderick, 2016). Despite addressing some of the shortcomings of vertex-exchangeable

models, edge-exchangeable models still restrict dependence between edges in a way that

may be misspecified for many network analysis problems.

R2
+-exchangeable models. A class of models proposed by Caron and Fox (2015) and

studied in more depth by Veitch and Roy (2015), Borgs, Chayes, Cohn, and Holden (2016),

and Janson (2016) treats a random graph as the partial realization of a point process in R2
+,

the distribution of which is invariant under measure-preserving transformations of R2
+. The
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index set is R; the size of a graph is a stochastic function of t. It is not clear if inference for

general models in this class is computationally tractable, and there are open questions as

to the interpretation of some aspects of the model. Veitch and Roy (2016) makes progress

on some of these questions.

One exception is the following special case for generating multigraphs studied by Caron

and Fox (2015):

(1) Sample a purely atomic random measure Ξv = (Θ,C) on R2
+, with atom weights

C = (C1, C2, . . .).

(2) Construct a measure on pairs of vertices (i, j) as the direct product Ξe = Ξv × Ξv.

Denote by Ξe(t) the restriction of Ξe to [0, t] × [0, t], with mass M(t), and Ξ∗e(t) :=

Ξe(t)/M(t), such that the probability of sampling an edge eij is CiCj/M(t).

(3) Sample a total number of edges for the network, Ne ∼ Poisson(M(t)).

(4) Draw Ne i.i.d. samples from ei ∼ Ξ∗e(t).

(5) Form the multigraph from the edges (ei)
Ne
i=1.

The final two steps make clear that conditioning on Ξe(t) yields an i.i.d. sequence of edges.

Thus, an edge-exchangeable model with directing measure Ξ∗e(t) generates graphs that are

equal in distribution to graphs sampled as above, when both have Ne edges. This equiva-

lence, along with the factorizable form of Ξe enabled an MCMC sampling scheme based on

degree statistics to be used in Caron and Fox (2015). See also Herlau, Schmidt, and Mørup

(2016) for a block-structured version.
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2.3.2 Sequential models of network formation

The non-exchangeable random graph models considered in this dissertation form graphs

from a sequence of edges and vertices. To date, the vast majority of such models have been

some type of reinforcement process. Reinforcement processes have appeared in numerous

models of self-organizing systems in which some large-scale property is attained from small-

scale interactions. See Pemantle (2007) for a review. Importantly, limiting properties are

not explicitly modeled by the small-scale interactions; rather, there is an “emergence of

macro-structure” (Arthur, Ermoliev, and Kaniovski, 1987). The most well-known example

is the Pólya urn, from which the limiting proportions emerge. Reinforcement processes also

have been successful at modeling power law distributions in a range of settings; see Mitzen-

macher (2003) for some examples. As discussed in the introduction, power law degree

distributions have been observed in many real networks. As such, it is natural to consider

models based on reinforcement processes. We review some previous work here, and under-

take a closer study in Chapter 5.

Preferential attachment models. Motivated by the power law degree distributions

observed in many real networks, Barabási and Albert (1999) (BA) proposed a model based

on a simple reinforcement process that they called preferential attachment (PA). The

BA model starts with an arbitrary configuration of m0 non-isolated vertices and proceeds

as follows: at each step t + 1, attach a new vertex with ` edges to the graph Gt; for each

of the ` new edges, sample an existing vertex v ∈ V(Gt) for attachment with probability

proportional to the degree of v. Vertices with higher degree are more likely to have new
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edges attached, i.e. “the rich get richer.” BA random graphs were shown to have a power

law degree distribution with exponent γBA = 3 (Bollobás, Riordan, Spencer, and Tusnády,

2001). Many variations of the basic preferential attachment scheme have been formulated

and studied; recent work has explored representations of their limits. See, e.g. Móri (2005),

Athreya, Ghosh, and Sethuraman (2008), Peköz, Ross, and Röllin (2014), and James (2015).

Although modeling local dependence in real networks was not the intention of the BA

model, it is instructive to consider how it falls short as such a model. It captures the over-

all scaling of the degree distribution, but the reinforcement rule in the BA model is too

simplistic to model real networks. At each step t, the degree sequence of Gt is sufficient to

predict the distribution of Gt+1. The mechanism for inserting edges is insensitive to rear-

rangements of the existing edges as long as the degree sequence is maintained, and therefore

all dependence between edges arises via the degrees. While the degrees may capture some

of the dependence, it is unrealistic to assume that real network structure arises only from

the degree sequence. In this respect, PA models have much in common with factorizable

edge-exchangeable models. We explore the connection in Chapter 5.

Other sequential models. There are a number of other models that are motivated by

an observed property of real networks, such as small-world models (Watts and Strogatz,

1998). Other sequential models for network evolution have also been proposed, such as

copying models (Chung, Lu, Dewey, and Galas, 2003). In general, however, such models

either are not flexible enough to be good models of network data or have proved inferentially

intractable, or both. Notable exceptions are methods proposed in the evolutionary biology

literature (Wiuf, Brameier, Hagberg, and Stumpf, 2006; Thorne and Stumpf, 2012; Wang,
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Jasra, and De Iorio, 2014), which we discuss further in Section 4.5.

2.4 Random walks and spectral graph theory

Spectral graph theory is a field of math that focuses on the eigenvalue spectrum of various

matrices that are used to represent graphs. Although considered a field of pure mathemat-

ics, with connections to differential geometry and algebra, the study of graph spectra has

applications in physics, chemistry, and other areas of science. Closer to the subject area of

this dissertation, graph spectra have been used to study the mixing properties of Markov

chains on discrete state spaces (e.g. Aldous, 1983; Boyd, Diaconis, Parrilo, and Xiao, 2009;

Levin, Peres, and Wilmer, 2009).

In this section, the random walk matrix W and the normalized graph Laplacian

matrix L are the objects of focus. The standard reference is Chung (1997), from which

this section borrows heavily. Denote by D = diag(deg(v1), . . . ,deg(vn)) the diagonal degree

matrix of a graph on n vertices. For a graph with adjacency matrix A, W and L are defined

as

W := D−1A = I−D−1/2LD1/2 (2.13)

L := D1/2(I−W)D−1/2 = I−D−1/2AD−1/2 , (2.14)

where I is the identity matrix of dimension equal to the number of vertices in G. By

convention, [D−1]ii = 0 for any isolated vertices vi.

W is called the random walk matrix because it is the transition matrix for random

walks: [W]ij = w(vi, vj)/deg(vi). For a random walk started on vi, the probability of
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reaching vj after k steps is [Wk]ij .

L derives its name from its interpretation as the discrete analogue to the Laplacian

operator ∇2 on continuous spaces. Consider a function g : V → R such that g(u) is the

value of g on vertex u, and g is a column vector in Rn. Denote by 1 the vector of all ones.

An alternative way of defining L is as an operator on the space of functions g : V → R. L

is the unique operator that satisfies

〈g,Lg〉 = −1

2

∑
u•−•v

w(u, v)
( g(u)√

deg(u)
− g(v)√

deg(v)

)2

= −1

2

∑
u•−•v

w(u, v)(f(u)− f(v))2 for f = D−1/2g

where 〈g1, g2〉 = g′1g2 =
∑

u g1(u)g2(u) is the inner product on Rn and u •−• v indicates

that w(u, v) > 0; the sum is over all edges, i.e. over all unordered pairs u •−• v. This

representation makes clear the analogy to ∇2: L quantifies the “smoothness” of g through

its local variations, just as 〈f,∇2f〉Ω quantifies the local variations of a function f on some

continuous space Ω. The intuition is made precise in the following:

Theorem 2.4 (Spectral properties of L and W). L is a symmetric, positive semidefinite

matrix with eigenvalues (σi)
n
i=1 and eigenvectors (ψi)

n
i=1, which have the following proper-

ties:

(i) The eigenvalues satisfy 0 ≤ σi ≤ 2, and the number of eigenvalues equal to zero is the

number of connected components of G.

(ii) ψ1 = D1/21/
√

vol(G) is an eigenvector with the eigenvalue σ1 = 0.

(iii) Denote by Hi the subspace generated by the first i harmonic eigenfunctions ψ̃i = D−1/2ψi.
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Then σi+1 satisfies

σi+1 = inf
f⊥Hi

∑
u•−•v

w(u, v)(f(u)− f(v))2

∑
u∈V

f(u)2deg(u)
, (2.15)

and ψ̃i+1 is the f that achieves the infimum.

(iv) The right eigenvectors of W are the harmonic eigenvectors
(
ψ̃i
)n
i=1

, with associated

eigenvalues (1− σi)ni=1, that is Wψ̃i = (1− σi)ψ̃i.

(v) The left eigenvectors of W are ψ̂i = D1/2ψi = Dψ̃i, that is ψ̂
′
iW = (1− σi)ψ̂

′
i.

(vi) If G is connected and non-bipartite, then σn < 2 and the unique stationary distribution

of a Markov chain on G with transition matrix W is S = ψ̂1/||ψ̂1|| = D1/vol(G), in

which case S′W = S′.

(vii) Let G be a simple graph. Let V, if it exists, be a collection of mutually non-adjacent

(resp. adjacent) vertices such that each vertex in V has the same closed neighborhood of

size d. Then there are |V|−1 eigenvalues of 1 (resp. d+1
d ) associated with eigenvectors

such that ψ(v) 6= 0 iff v ∈ V.

Proof. For properties (i)-(iii), (vi), see Chung (1997), Chapter 1. Properties (iv)-(v) follow

from the relationship of L and W (2.14). (vii), known as the twin vertex property, is due

to Butler (2008, 2016). Butler (2015) has a version of (vii) applicable to general weighted

graphs, and to twin subgraphs, but the statements are not as succinct.

At a high level, the interpretation of properties (ii)-(v) is that the eigenvectors encode

structure of decreasing smoothness as i increases. The first-order harmonic eigenvector is
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constant, the second-order harmonic eigenvector is the next smoothest, and so on, with

the n-th order harmonic eigenvector the “wiggliest”. Heuristically, smoother functions are

correlated over longer distances and are less sensitive to local perturbations; the low-order

harmonics can be thought to encode longer range, weaker dependence, while the opposite

is true of the high-order harmonics. Interestingly, property (vii) says that the middle of the

eigenvalue spectrum consists of eigenvectors that are non-zero only on vertices that look

the same to the rest of the graph. The eigenvectors of L are obtained from those of W by

a simple change of basis transformation, and therefore encode the same structure.

The eigenvectors of L are used throughout statistics and machine learning. An entire

sub-field on spectral clustering algorithms relies on the eigensystem of L and similar matri-

ces. See von Luxburg (2007) for a thorough review. A family of kernels defined on graphs

regularize the higher-order eigenfunctions by damping the eigenvalue spectrum (Smola and

Kondor, 2003; Belkin, Matveeva, and Niyogi, 2004). Kirichenko and Zanten (2015) use a

Bayesian approach to Laplacian regularization to estimate smooth functions on graphs.

The properties of L and W will be important to the theoretical results in Chapter 3,

and to deriving inference algorithms in Chapter 4.

2.5 SMC and particle MCMC methods

Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods provide

the basic building blocks for the inference procedures we develop in Chapter 4. We briefly

review the basic framework of SMC, and give an overview of recent work incorporating

SMC into MCMC.
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2.5.1 Basic SMC

We briefly recall SMC algorithms. The canonical application is a state space model. Ob-

served is a sequence x1:T = (x1, . . . , xT ). The model explains the sequence using an unob-

served sequence of latent states Z1:T , and defines three quantities:

• A Markov kernel qtθ( • | Zt−1) that models transitions between latent states.

• An emission distribution ptθ that explains each observation as xt ∼ ptθ( • | Zt).

• A vector θ collecting the model parameters.

In the simplest case, θ is fixed. The inference target is then the posterior distribution

Lθ(Z1:T | x1:T ) of the latent state sequence.

A SMC algorithm (see Algorithm 2.1) generates some number N ∈ N of state sequences

Z1
1:T , . . . , Z

N
1:T , and then approximates the posterior as a sample average over these se-

quences, weighted by their respective likelihoods. The imputed states Zi1:t are called parti-

cles. Since the sequence of latent states is Markov, particles can be generated sequentially

as Zt ∼ qtθ(Zt|Zt−1). In cases where sampling from qtθ is not tractable, qtθ it is addition-

ally approximated by a simpler proposal kernel rtθ. The likelihood, and the accuracy of

approximation of qtθ by rtθ, are taken into account by computing normalized weights

wit :=
w̃it∑N
j=1 w̃

j
t

where w̃it = ptθ(xt|Zit) ·
qtθ(Z

i
t | Zit−1)

rtθ(Z
i
t | Zit−1)

. (2.16)

In step t, SMC generates particles Zit by first resampling from the previous particles (Zi1:t−1)i

with probability proportional to their weights, e.g. by sampling from the multinomial dis-
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tribution

Ait ∼ MN(N, (wit−1)Ni=1) .

The next set (Zi1:t)i of particles is then generated by sampling Zit ∼ rtθ( • | Z
Ait
t−1) and setting

Zi1:t = (Z
Ait
1:t−1, Z

i
t). Resampling a final time after the T -th step yields a complete array

(Zi1:T )i, with which the posterior is approximated as the average

Lθ(dz1:T | x1:T ) ≈ 1

N

N∑
i=1

δZi1:T
(dz1:T ) . (2.17)

Alternatively, the final resampling step can be omitted, in which case the posterior is ap-

proximated with a weighted average. Either approximation is asymptotically unbiased as

N →∞. See Doucet and Johansen (2011) for a thorough review.

Algorithm 2.1 (SMC sampling).

• Initialize Zi1
iid∼ q1

θ( • ) and w̃i1 = qθ(Z
i
1)p1

θ(x1 | Zi1) for each i ≤ N .

• For t = 2, . . . , T − 1, iterate:

– Resample indices Ait ∼ MN(N, (wit−1)i).

– Draw Zit ∼ rtθ( • | Z
Ait
t−1) for each i.

– Compute weights as in (2.16) and normalize to obtain wit.

• Resample N complete sequences Zi1:T = Zi ∼ MN(N, (wiT−1)i) and set wiT = 1/N .
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2.5.2 Pseudo-marginal and particle MCMC methods

In addition to generating an asymptotically unbiased approximation of the posterior, SMC

yields an unbiased approximation of the marginal likelihood pθ(x1:T ) of the data. Define

p̂θ(x1:T ) := p̂θ(x1)
T∏
t=1

p̂θ(xt | xt−1) where p̂θ(xt | xt−1) =
1

N

N∑
i=1

w̃it . (2.18)

Then E[p̂θ(x1:T )] = pθ(x1:T ). Proof of unbiasedness is given under very general conditions

in Del Moral (2004, Chapter 7); a more accessible proof is in Pitt, Silva, Giordani, and

Kohn (2010), in the context of a version of SMC called the auxiliary particle filter.

p̂θ(x1:T ) is useful for parameter inference. Consider a Metropolis–Hastings (MH) sam-

pler targeting the joint posterior distribution of (Θ, Z1:T ) | x1:T , where Θ has prior P[Θ].

Given a state (Θ, Z1:T ), a new proposal is generated by first proposing a new parameter

Θ∗ ∼ q̃( • | Θ), then generating a sample Z∗1:T | Θ∗, x1:T with Algorithm 2.1. The proposal

is accepted with probability min{1, AMH}, with MH acceptance ratio

AMH =
P[Θ](Θ

∗)pΘ∗(Z
∗
1:T )pΘ∗(x1:T | Z∗1:T )

q̃(Θ∗ | Θ)pΘ∗(Z∗1:T | x1:T )

q̃(Θ | Θ∗)pΘ(Z1:T | x1:T )

P[Θ](Θ)pΘ(Z1:T )pΘ(x1:T | Z1:T )

=
P[Θ](Θ

∗)pΘ∗(x1:T )

P[Θ](Θ)pΘ(x1:T )

q̃(Θ | Θ∗)
q̃(Θ∗ | Θ)

. (2.19)

The marginal likelihood pΘ(x1:T ) is typically intractable (hence a reason for using SMC),

but using any unbiased positive estimate p̂Θ(x1:T ) in AMH is enough to generate an ergodic

Markov chain that converges to the correct posterior distribution (Andrieu and Roberts,

2009; Andrieu, Doucet, and Holenstein, 2010).3 This general technique is known as the

3In fact, unbiasedness is stronger than necessary. If the estimator is biased, such that E[p̂θ(x1:T )] =
bpθ(x1:T ), it is sufficient that b > 0 is independent of the value of θ (Andrieu and Roberts, 2009).
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pseudo-marginal method (Beaumont, 2003; Andrieu and Roberts, 2009). When SMC is

used to generate proposals and estimate the marginal likelihood, it is known as particle

MCMC (Andrieu, Doucet, and Holenstein, 2010). We further develop particle MCMC in

the context of sequential models of random graphs in Chapter 4.
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Chapter 3

Random walk models of networks

The class of models studied in the following generate a graph by inserting one edge at a

time: Start with a single edge (with its two terminal vertices). For each new edge, select a

vertex V in the current graph at random.

• With a fixed probability α ∈ (0, 1], add a new vertex and connect it to V .

• Otherwise, start a random walk at V , and connect its terminal vertex to V .

In contrast to the models discussed in Section 2.3, the location of newly inserted edges

depends on those of previously inserted ones, through the random walk. The dependence

results in some unusual properties. One is that, with two scalar parameters, the model

generates a perhaps unexpected range of different graph structures (see Figure 3.1 in Sec-

tion 3.1 for examples). The random walk step can be regarded as a model of interactions

modulated by the existing graph:

• Long walks can connect vertices far apart in the graph. In this sense, the (expected)

length of the walk is a range scale.
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• Where convenient, the walk may be interpreted explicitly, as a process on the net-

work (e.g. users in a social network forming connections through other users). More

generally, it biases connections towards vertices reachable along multiple paths.

Thus, random walk models can explain a range of graph structures as the outcome of inter-

actions on a certain length scale. Importantly, they are also statistically and analytically

tractable.

The approach taken here is to make a modeling assumption on the network formation

process (as e.g. preferential attachment models do); whether that assumption is considered

adequate or not must depend on the problem at hand. Conceptually, however, the random

walk models studied in the following allow slightly more intricate forms of stochastic de-

pendence than the models discussed above, without sacrificing applicability.

Chapter overview. Random walk models are defined in Section 3.1. They can be chosen

to generate either multigraphs or simple graphs, which in either case are sparse. A quantity

that plays a key role in both theory and inference is the history of graph, i.e. the order Σ in

which edges are inserted. In dynamic networks (e.g. Durrett, 2006; Kolaczyk, 2009), where

a graph is observed over time, Σ is an observed variable. If only the final graph is observed,

Σ is latent. Section 3.2 establishes some theoretical properties:

• Under suitable conditions, the limiting degree distribution can be characterized (The-

orem 3.3). The generated graphs can exhibit power law properties.

• Conditionally on the order in which vertices are inserted, the scaled degree sequence

converges to an almost sure limit. Each limiting relative degree can be generated
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marginally by a sampling scheme reminiscent of “stick-breaking”. See Theorem 3.4.

Results of this type are known for preferential attachment models, for which the vertex

order is deterministic, and hence need not be conditioned upon. See Chapter 5 for

more general results of this type.

• If the length of the random walk tends to infinity, the model converges to a general-

ization of the preferential attachment model (Proposition 3.5).

Using the inference methods developed in Chapter 4, we fit the model to data. In Section 3.3,

we discuss empirical results and applications to data:

• The role of the random walk parameter can be understood in more detail by relating

it to the mixing time of a simple random walk on the data set; see Section 3.3.1.

• Comparisons between the random walk model and other network models are given in

Section 3.3.2; we also discuss issues raised by such how comparisons are performed.

• The latent order Σ can be related to measures of vertex centrality (Section 3.3.3).

3.1 Model definition

A random walk on a connected graph g started at vertex v is a random sequence of vertices

(v, V1, . . . , Vk), such that neighbors in the sequence are connected in g. Figuratively, a walker

repeatedly moves along an edge to a randomly selected neighbor, until k edges have been

crossed. Edges and vertices may be visited multiple times. The random walk is simple

if the next vertex is selected with uniform probability from the neighbors of the current

one. The distribution of the terminal vertex Vk of a simple random walk of length k on
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g is denoted SRW(g, v, k). The model considered in the following is, like many sequential

network models, most easily specified in terms of a generative algorithm:

Algorithm 3.1 (Random walk model on multigraphs).

• Fix β ∈ (0, 1], a distribution P on N, and a graph G1 with a single edge connecting

two vertices.

• For t = 2, . . . , T , generate Gt from Gt−1 as follows:

(1) Select a vertex V of Gt−1 at random (see below).

(2) With probability β, attach a new vertex to V .

(3) Else, draw K ∼ P and connect V to V ′ ∼ SRW(Gt−1, V,K).

The vertex V in (1) is either sampled uniformly from the current vertex set, or from the size-

biased (or degree-biased) distribution S(v) = deg(v)/
∑

v′∈V(g) deg(v′), where deg(v) is

the degree of vertex v in g.

Algorithm 3.1 generates multigraphs, since the two vertices selected by the random

walk may already be connected (resulting in a multi-edge), or may coincide (resulting in a

self-loop). To generate simple graphs instead, step (3) above is replaced by:

(3’) Else, draw K ∼ P and V ′ ∼ SRW(Gt−1, V,K). Connect V to V ′ if they are

distinct and not connected; else, attach a new vertex to V .

Either sampling scheme defines the law of a sequence (G1, G2, . . .) of graphs. We denote this

law RWU(β, P ) if the vertex V in (1) is chosen uniformly, or RWSB(β, P ) in the size-biased

case. Each such law is defined both on multigraphs and on simple graphs, depending on

which sampling scheme is used.

We generally choose the length of the random walk as a Poisson variable (although most

theoretical results in the next section hold for any choice of P ): Denote by Poisson+(λ)

the Poisson distribution with parameter λ, shifted by 1, i.e. the law of K + 1, where K
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β = 0.5, λ = 2 β = 0.5, λ = 4 β = 0.5, λ = 8β = 0.1, λ = 4 β = 0.9, λ = 4

β = 0.5, λ = 2 β = 0.5, λ = 4 β = 0.5, λ = 8β = 0.1, λ = 4 β = 0.9, λ = 4

Figure 3.1: Examples of simple graphs generated by a random walk model:
RWU(β,Poisson+(λ)) distribution (top row), and by a RWSB(β,Poisson+(λ)) distribution
(bottom row).

is Poisson. We write RW(β, λ) for RW(β,Poisson+(λ)) where convenient. Examples of

graphs generated by this distribution are shown in Figure 3.1.

3.2 Model properties

We first observe that graphs generated by the model are sparse by construction. Let

(G1, . . . , Gt, . . .) be a graph sequence generated by any RW model on simple or multi-

graphs, with parameter β, where G1 has a single edge connecting two vertices. Denote by

V(Gt) and E(Gt) the set of vertices and of edges, respectively, in Gt. For any RW model,

each vertex is added with one edge and there is a constant positive probability at each step

of adding a new vertex, which leads to the following:
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Observation. Graphs generated by the random walk model are sparse: In a sequence

(G1, G2, . . .) ∼ RW(β, P ), the number of edges grows as |E(Gt)| = Θ(|V(Gt)|).

3.2.1 Mixed random walks and the graph Laplacian

Most results in the following involve the law of a random walk. For a walk of fixed length,

this law is determined by the graph’s Laplacian matrix (Chung, 1997). If the length is

randomized, one has to mix against its distribution; for suitable choice of the length distri-

bution, the mixed law of the random walk is still available in closed form.

Consider an undirected graph G with n vertices, adjacency matrix A and degree matrix

D = diag(deg(v1), . . . ,deg(vn)). The probability that a simple random walk started at a

vertex u terminates at v after exactly k steps is the entry (u, v) of the matrix Wk =

(D−1A)k. If the length of the walk is a random variable K with law P , the marginal

probability of reaching v from u is

P (Vend = v | V0 = u, G) =
[∑
k∈N

(D−1A)kP (K = k)
]
uv

=
[
EP
(
D−1A

)K]
uv

. (3.1)

A useful way to represent the information in W is as the matrix

L := D1/2(In −D−1A)D−1/2 with In := identity matrix , (3.2)

known as the normalized graph Laplacian (Chung, 1997), the properties of which were

reviewed in Section 2.4. The law of a random walk of random length is obtained as follows:
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Proposition 3.1. Let g be a connected, undirected simple graph or multigraph on n ver-

tices, and let K have law P with support N+, such that P has probability generating function

HP (z) := EP [zK ] for |z| ≤ 1. Let (σi)
n
i=1 be the eigenvalues, and (ψi)

n
i=1 the eigenvectors,

of L, and define

KP := HP (In − L) =
n∑
i=1

HP (1− σi)ψiψ′i . (3.3)

Then for a simple random walk (V0, . . . , VK) of random length K on g,

P (Vend = v | V0 = u, g) =
[
D−1/2KPD1/2

]
uv
. (3.4)

As a consequence of Proposition 3.1, there are the following important special cases:

Proposition 3.2. Let g be a connected, undirected graph on n vertices, and define

KPoisson+(λ) = Kλ := e−λL and KNB+(r,p) = Kr,p :=
(
In + p

1−pL
)−r

. (3.5)

Then for a simple random walk (V0, . . . , VK) of random length K on g,

P (Vend = v | V0 = u, g) =
[
D−1/2(In − L)KD1/2

]
uv
, (3.6)

with K = Kλ if K has law Poisson+(λ), or K = Kr,p if K has law NB+(r, p).

For a Poisson length, the result derives from the relationship

∞∑
k=0

e−λ
λktk

k!
Bk = e−λ(In−tB) for any B ∈ Rn×n (3.7)
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of the Poisson convolution semigroup to the matrix exponential function. It extends to the

negative binomial distribution, since the latter is obtained from the Poisson by mixing: Let

NB+(r, p) denote the negative binomial distribution, again shifted to positive integers, with

parameter r and p. The random walk model satisfies

RWU(β,NB+(r, p)) =

∫
RWU(β,Poisson+(λ)) γ(λ | r, p

1−p)dλ (3.8)

where γ( • | a, b) denotes the gamma density with parameters a and b. The same holds

for RWSB. The matrices (3.5) arise in other contexts, in particular in the machine learning

literature: The heat kernel Kλ and the regularized Laplacian kernel Kr,p have appli-

cations in collaborative filtering, semi-supervised learning and manifold learning (Kondor

and Lafferty, 2002; Lafferty and Lebanon, 2005; Fouss, Yen, Pirotte, and Saerens, 2006).

Both act as a smoothing operators on functions defined on the vertex set, by damping the

eigenvalue spectrum (Smola and Kondor, 2003).

3.2.2 Asymptotic degree properties

A property of network models intensely studied in the theoretical literature is the behavior of

vertex degrees as the graph grows large. For preferential attachment graphs, limiting degree

distributions can be determined analytically (Durrett, 2006; Hofstad, 2016). Our next

results describe analogous properties for random walk models. The proofs use invariance of

the degree-biased distribution under the operators Kλ and Kr,p to reduce to proof techniques

developed for preferential attachment, despite the presence of the random walk.

Denote by Vd,t the subset of vertices in Gt with degree d, and let md,t := |Vd,t|. The
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degree distribution is the normalized histogram vector N−1
t (m1,t,m2,t, . . . ) of the vertex

degrees in Gt. Let pd(t) be the probability that a vertex sampled uniformly at random from

V(Gt) has degree d. When the average probability (over vertices) of inserting a self-loop—

i.e., of a random walk ending where it started—vanishes for large t, as is the case for λ→∞,

it can be shown that as t→∞, RWSB random multigraphs have degree distribution of the

form

p(d) = ρ
Γ(d)Γ(1 + ρ)

Γ(d+ 1 + ρ)
where ρ :=

(
1 +

β

2− β

)
. (3.9)

This distribution over N+ is known as the Yule–Simon distribution (e.g. Durrett, 2006).

For large d, p(d) scales as a power law in d with exponent γ ∈ (2, 3], where

γ := 2 +
β

2− β
= 1 + ρ . (3.10)

For general λ that may have non-vanishing average self-loop insertion probabilities, simu-

lations indicate the same behavior.

Theorem 3.3 (Degree distribution). Let a sequence of multigraphs (G1, G2, . . . ) have law

RWSB(β, P ), for some distribution P on N, such that for all d ∈ N+

1

md,t

∑
v∈Vd,t

P (Vend = v|V0 = v,Gt) = o(1) as t→∞ . (3.11)

Then the scaled number of vertices in Gt with degree d follows a power law in d with exponent
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Figure 3.2: Simulated degree distributions for multigraphs with T = 4000 edges: left,
β = 0.25; right, β = 0.5. In both cases, the distributions for finite λ appear to be the same
as for λ→∞.

γ as in (3.10). In particular, for all d ∈ N+,

md,t

βt
−→ p(d) in probability as t→∞ . (3.12)

Condition (3.11) controls the number of self-loops in the graph, by requiring that the prob-

ability of a random walk ending where it starts vanishes for t→∞, separately for each

degree d. Although we do not have a method for checking when the condition is satisfied

for finite λ, simulations indicate that the degree distribution behaves as in the λ → ∞

case, where Condition (3.11) is known to be satisfied. Figure 3.2 shows simulated degree

distributions for multigraphs with 4000 edges, for β ∈ {0.25, 0.5}. In both cases, the distri-

butions for finite λ appear to be the same as for λ → ∞, which is a generalization of the

basic preferential attachment model (see Section 3.2.3).

Denote by degt := (degt(v1), degt(v2), . . . ) the degree sequence of a sequential ran-

dom graph model, where vj is the j-th vertex to appear in the graph sequence. For the
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preferential attachment model, the limiting degree sequence deg∞ can be studied analyti-

cally, and has received considerable attention in the probability literature (see e.g. Durrett,

2006; Hofstad, 2016). The PA degree sequence is closely related to a Pólya urn, and like

the limit of an urn, deg∞ is itself a random variable: Informally, edges created early have

sufficiently strong influence on later edges that randomness does not average out asymp-

totically. The joint law of deg∞ can be obtained explicitly (Móri, 2005; Peköz, Ross, and

Röllin, 2014; Hofstad, 2016), and determines the local weak limit (Berger, Borgs, Chayes,

and Saberi, 2014). In some cases, it also admits constructive representations: Using only

sequences of independent elementary random variables, one can generate a random sequence

whose joint distributions are identical to those of the limiting degree sequence (Móri, 2005;

James, 2015). Such representations are closely related to “stick-breaking constructions” of

random partitions (e.g. Pitman, 2006).

The next result similarly describes the limiting degree sequence deg∞ of the RWSB

model. The relevant technical tool is to condition on the order in which edges occur: For

a graph sequence (G1, G2, . . .) be a graph sequence generated by the model, denote by Sj

the time index at which vertex vj is inserted in the model (that is, GSj is the first graph in

sequence that contains vj), and let S1:r := (S1, . . . , Sr). Let Zα be a positive stable random

variable with index α, i.e. characterized by the Laplace transform E[e−tZα ] = e−t
α
, and

fα(z) its density. Define Zα,θ, for θ > −α, as a random variable with the polynomially

tilted density fα,θ(z) ∝ z−θfα(z). The variable Mα,θ := Z−αα,θ is said to have generalized

Mittag-Leffler distribution with parameters α and θ (Pitman, 2006; James, 2015).

Theorem 3.4 (Degree sequence). Let a sequence of multigraphs (G1, G2, . . . ) have law

RWSB(β, P ), for some distribution P on N. Conditionally on (S1, S2, . . .), the scaled degree
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sequence converges jointly to a random limit: For each r ∈ N+,

t−1/ρ(degt(v1),degt(v2), . . . ,degt(vr))
∣∣S1:r

t→∞−−−→ (ξ1, ξ2, . . . , ξr)
∣∣S1:r (3.13)

almost surely. Each limiting conditional law L(ξj | Sj), for j ≥ 1, can be represented con-

structively: Let Mj ∼ Mittag-Leffler
(
ρ−1, Sj − 1

)
, Bj ∼ Beta (1, ρ(Sj − 1)), and

ψj ∼ Beta (Sj , Sj+1 − Sj) be conditionally independent given Sj. Then for 1 ≤ i < j

ξj
∣∣Sj d

= Mj ·Bj
∣∣Sj d

= ξi

j−1∏
k=i

ψ
1/ρ
k

∣∣Si:j . (3.14)

The marginal law L(ξj) is uniquely characterized by the moments

E
[
ξkj
]

=
Γ(k + 1)Γ(j − 1)

Γ(j − 1 + k
ρ )

β
k
ρ 2F1

(
1 + k

ρ ,
k
ρ ; j − 1 + k

ρ ; 1− β
)

(3.15)

= Γ(k + 1)β
k
ρ j
− k
ρ · (1 +O(j−1)) as j →∞ ,

where 2F1(a, b; c; z) is the ordinary hypergeometric function.

For any fixed T , one can fix an arbitrary enumeration of the edge set ofGT . The sequence

G1:T then determines a (random) permutation Σ of the edge set {1, . . . , T}, specifying the

order in which edges where inserted, and G1:T can be represented equivalently as the pair

(Σ, GT ). We will find in Chapter 4 that Σ also plays an important role in inference, as

a latent variable. Σ completely determines (S1, . . . , ST ) (though not vice versa), and the

result above remains valid if one conditions on Σ rather than S1:T . We study the properties

of S1:T in PA-type models in Chapter 5, where we find that they determine the edge density
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and the properties of the asymptotic degree sequence.

The simple constructive representation of the limiting distribution (3.14) seems only

to exist marginally for the random walk model, not for the joint law L(ξ1, . . . , ξr
∣∣S1:r),

in contrast to PA-type models, where a recursive analogue of (3.14) holds even jointly

(Peköz, Ross, and Röllin, 2014; James, 2015). Chapter 5 also establishes simple constructive

representations for the marginal and joint laws of closely related models.

3.2.3 Relationship between RW and preferential attachment models

If the random walk step (3) in Algorithm 3.1 is omitted—that is, for β = 1—the RWSB

model becomes reminiscent of the well-known preferential attachment model (Barabási and

Albert, 1999). There are varying definitions of the PA model, but in essence, it inserts a

new vertex into the graph at every step, and connects it to m vertices sampled from the

size-biased distribution on the current vertex set; m is a model parameter.

A generalization of this model, due to Aiello, Chung, and Lu (2002), is defined as

follows: Fix β ∈ (0, 1] and let G1 be a graph with a two vertices connected by a single

(i) (ii) (iii)

Figure 3.3: Network data examples: (i) the largest connected component of the NIPS
co-authorship network, 2002-03 (Globerson, Chechik, Pereira, and Tishby, 2007); (ii) San
Juan Sur family ties (Loomis, Morales, Clifford, and Leonard, 1953); (iii) protein-protein
interactome (Butland et al., 2005).
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edge. In each step t, construct Gt from Gt−1 as follows: Select a vertex V according to

the size-biased distribution on Gt−1; with probability β, attach a new vertex; otherwise,

connect V to a vertex V ′ sampled independently from the same size-biased distribution.

This model is denoted ACL(β) in the following. It can be regarded as a natural extension

of the Yule–Simon model from sequences to graphs.

Proposition 3.5. The limit in distribution RWSB(β,∞) := limλ→∞RWSB(β, λ) exists for

every β, and RWSB(β,∞) = ACL(β) if both models start with the same seed graph.

Remark (Generalization of Proposition 3.5). The proof of Proposition 3.5 relies on the fact

that if K is almost surely infinite, only the lowest order eigenvector, corresponding to σ1 = 0,

contributes to the mixed random walk probability (3.6). In fact, the same can be shown to

hold for any distribution P (with parameters φ) that has as a limiting case a point mass at

K =∞ :

lim
φ
P (K <∞) = 0 .

If this is the case, then HP (z) = δ1(z), in which case Proposition 3.1 shows that only the

lowest order eigenvector contributes to the mixed random walk probability. Appendix A.5

shows that this implies distributional equivalence to the ACL(β) model. /

3.3 Experimental evaluation

Using inference methods developed in Chapter 4 for fitting the RW model to data observed

only at GT , this section evaluates properties of the model on real-world data and compares
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its performance to other network models. We also discuss the interpretation of the random

walk parameter as a length scale, and of the latent order Σ as a measure of vertex centrality.

We consider three network datasets, shown in Figure 3.3, that exhibit a range of char-

acteristics. The first is the largest connected component (LCC) of the NIPS co-authorship

network in 2002-03, extracted from the data used in Globerson, Chechik, Pereira, and

Tishby (2007). As shown in Figure 3.3, it has a global chain structure connecting highly

localized communities. The second dataset represents ties between families in San Juan

Sur (SJS), a community in rural Costa Rica (Loomis, Morales, Clifford, and Leonard, 1953;

Batagelj and Mrvar, 2006), and is chosen here as an example of a network with small di-

ameter. The third is the protein-protein interactome (PPI) of Butland et al. (2005), which

exhibits features such as chains, pendants, and heterogeneously distributed hubs. Summary

statistics are given in Table 3.1. None of these data sets is particularly large: Sampler di-

agnostics show graphs of this size suffice to reliably recover model parameters under the

random walk model.

Using Algorithm 4.3, the posterior distributions of β and λ for both the uniform and

the size-biased RW(β,Poisson+(λ)) model can be sampled. Kernel-smoothed posterior

distributions under all three datasets are shown in Figure 3.4. Although posteriors in the

uniform and size-biased case are very similar, these models generate graphs with different

Table 3.1: Summary statistics for data used in experiments.

Dataset Vertices Edges Clustering coeff. Diameter L2-mixing time of r.w.

NIPS 70 114 0.70 14 ≥ 62.4
SJS 75 155 0.32 7 ≥ 6.1
PPI 230 695 0.32 11 ≥ 9.2
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Figure 3.4: Kernel-smoothed estimates of the posterior distributions of β and λ, under the
models RWU (blue/solid) and RWSB (orange/dotted). Left column: NIPS data. Middle:
SJS. Right : PPI. Posteriors are based on 1000 samples each (lag 40, after 1000 burn-in
iterations; 100 samples each are drawn from 10 chains).

characteristics for identical parameter values (see Section 3.3.2).

3.3.1 Length scale

The distance of vertices that can form connections under the model is governed by the

parameter λ of the random walk, which can hence be interpreted as a form of length-scale.

This scale can be compared to the mixing time of a random walk on the observed graph

(listed, in L2 norm, in the table above for each data set): If λ is significantly smaller, the

placement of edges inserted by the random walk strongly depends on the graph structure; if

λ is large relative to mixing time, dependence between edges is weak. Based on Figure 3.4,

we observe the following:

• Concentration of the λ-posterior on small values in [1, 2] for the NIPS data thus indi-

cates predominantly short-range dependence in the data and, since the mixing time

is much larger, strong dependence between edges. Concentration of the β-posterior
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near the origin means connections are mainly formed through existing connections.

• In the SJS network, the posterior peaks near λ = 6, and hence near the lower bound

on the mixing time, with β again small. Thus, the principal mechanism for inserting

edges under the model is again the random walk, but a random walk of typical length

has almost mixed. Hence, the local connections it creates do not strongly influence

each other.

• The PPI network exhibits an intermediate scale of dependence, with most posterior

mass in the range λ ∈ [3, 5]. Although structures like pendants and chains indicate

strong local dependence, there are also denser, more homogeneously connected regions

that indicate weaker dependence with longer range.

Narratives explaining these effects are not hard to come by—for example, short-range de-

pendence in the NIPS data indicate new collaborations are often formed through existing

co-authors; the weak dependence between edges in the SJS data suggests connections can be

formed by some process external to the observed graph, as may be expected for a commu-

nity concentrated in a small geographic area—but warrant caution, as all data storytelling

does.

3.3.2 Model fitness

Assessing model fitness on network data is difficult: For other types of data, cross vali-

dation is often the tool of choice, and indeed, cross-validated link prediction (where links

and non-links are deleted uniformly and independently at random) is widely used for model

evaluation in the machine learning literature. Even if link prediction is considered the rel-
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Figure 3.5: Estimated PPDs for the PPI data set of three statistics: Normalized degree
dk, normalized edgewise shared partner statistic χk, and normalized pairwise geodesic γk.
Results are shown for four models: Erdős–Rényi (top row), IRM (second row), RWU (third
row), and RWSB (bottom row). The black line represents the distribution from the PPI
data.

evant statistic of interest, however, cross-validating network data requires subsampling the

observed network. Any choice of such a subsampling algorithm implies strong assumptions

on how the data was generated; it may also favor one model over another.

We therefore use a protocol developed by Hunter, Goodreau, and Handcock (2008),

who compare models to data by fixing a set of network statistics. The fitted model is

evaluated by comparing the chosen statistics of the data to those of networks simulated

from the model. The selected statistics specify which properties are considered important
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in assessing fit. To capture a range of structures, the following count statistics are proposed

in Hunter, Goodreau, and Handcock (2008), which we also adopt here:

• Normalized degree statistics (ND), dk, the number of vertices of degree k, divided by

the total number of vertices.

• Normalized edgewise shared partner statistics (NESP), χk, the number of unordered

pairs {i, j} such that i and j are connected and have exactly k common neighbors,

divided by the total number of edges.

• Normalized pairwise geodesic statistics (NPG), γk, the number of unordered pairs

{i, j} with distance k in the graph, divided by the number of dyads.

In a Bayesian setting, executing the protocol amounts to performing posterior predictive

checks (Box, 1980; Gelman, Meng, and Stern, 1996) via the following procedure:

(1) Sample the model parameters from the posterior, θ ∼ π(θ|GT ).

(2) Simulate a graph of the same size as the data, G(s) ∼ P (G|θ).

(3) Calculate the statistic(s) of interest for the simulated graph, f(G(s)).

Table 3.2: Summary of goodness-of-fit: total variation distance of PPDs to the empirical
distribution of the PPI and NIPS data sets. Smaller values indicate a better fit.

PPI data NIPS data

Model Degree ESP Geodesic Degree ESP Geodesic

EPM 0.49± .03 0.31± .07 0.65± .04 0.57± .06 0.43± .15 0.72± .05
IRM 0.30± .04 0.15± .07 0.25± .07 0.29± .08 0.46± .10 0.36± .13

ER 0.57± .02 0.45± .03 0.23± .02 0.26± .06 0.69± .06 0.41± .06
ACL 0.28± .02 0.09± .02 0.34± .03 0.42± .05 0.51± .06 0.50± .04

RW-U 0.23± .03 0.17± .02 0.16± .08 0.26± .04 0.33± .05 0.22± .08
RW-SB 0.27± .02 0.11± .02 0.34± .04 0.42± .05 0.39± .06 0.45± .07
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The value f(G(s)) is then a sample from the posterior predictive distribution (PPD) of the

statistic f under the model. If the PPD places little mass on the observed value of the

statistic, this indicates the model does not explain those properties of the data measured

by the given statistic.

For each of the datasets and statistics above, PPDs are estimated for the following

models: The Erdős–Rényi model (ER); the infinite relational model (IRM) with a Chinese

Restaurant Process prior on the number of blocks (Kemp, Tenenbaum, T. L. Griffiths,

Yamada, and Ueda, 2006; Xu, Tresp, Yu, and Kriegel, 2006); the infinite edge partition

model with an underlying hierarchical gamma process (EPM) (Zhou, 2015); the ACL model

described in Section 3.2.3; and the RWU and RWSB models. Table 3.2 lists the total

variation distance between the empirical distribution of each statistic on the observed graph

and on graphs generated from the respective models. Standard errors are computed over

1000 samples. Smaller values indicate a better fit.

For the ER model, the IRM, and the two random walk models, PPD estimates are

shown in more detail in Figure 3.5, on a logarithmic scale. Some comments:

• In terms of the protocol of Hunter, Goodreau, and Handcock (2008), the uniform

(i) (ii) (iii) (iv) (v)

Figure 3.6: Reconstructions of the PPI network (i), sampled from the posterior mean of (ii)
the RWU model, (iii) the RWSB model, (iv) the IRM, and (v) the Erdős–Rényi model.
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random walk model provides the best fit on both data sets.

• Of the models used for comparison, the IRM does similarly well, although it does place

significant posterior mass on d0 and γ∞ (since it tends to generate isolated vertices).

• In the case of the IRM, good fit comes at the price of model complexity: The IRM is

a prior on stochastic blockmodels with an infinite number of classes, a finite number

of which are invoked to explain a graph of finite size. For the PPI data set, for

example, the IRM posterior sharply concentrates at 9 classes, which amounts to 53

scalar parameters, compared to 2 parameters of the RW model.

The numerical results can be illustrated by sampling reconstructions of the input network

from models fitted to the data. Figure 3.6 compares reconstructions of the PPI data set

generated by the random walk models to those generated by the IRM and the ER model.

Such visual network comparisons should be treated with great caution; nonetheless, the

comparison underscores that for some types of data, including the data set depicted here,

the random walk model provides an arguably better structural fit.

Figure 3.7: NIPS authors sampled earliest in latent sequence under the RWU model. Col-
ored vertices correspond to those in Table 3.3.
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Table 3.3: Measures of vertex centrality for the NIPS graph. Figure 3.7 maps these vertices
in the graph.

Arrival Order Degree Btwn. Cent. Info. Cent. Katz Cent.
(median order) (degree) (# shortest paths) (info. cent.) (Katz cent.)

(r) 1 (6) 14 (4) 2 (2376) 1 (0.4478) 6 (0.2380)
(l) 1 (6) 4 (8) 3 (2340) 2 (0.4443) 2 (0.3740)
(r) 2 (7) 1 (12) 1 (2797) 3 (0.4374) 3 (0.2571)
(l) 2 (7) 8 (6) 5 (2116) 5 (0.4178) 4 (0.2539)

3 (8) 2 (10) 11 (728) 4 (0.4259) 1 (0.3789)
4 (10) 2 (10) 4 (2196) 11 (0.3877) 5 (0.2458)
5 (12) 14 (4) 6 (1870) 17 (0.3645) 35 (0.0667)
6 (13) 14 (4) 16 (173) 6 (0.4040) 19 (0.1291)
7 (14) 14 (4) 23 (28) 7 (0.3956) 7 (0.2264)

3.3.3 Latent arrival order and vertex centrality

Various network statistics attempt to measure the importance of individual vertices for

interactions within the network, a property known as centrality. This idea can be formal-

ized in a variety of ways. A simple measure of centrality is simply the degree of a vertex.

Other examples include Eigenvalue Centrality, Katz Centrality, and Information Centrality

(e.g. Kolaczyk, 2009; Newman, 2009), which each measure different properties of the graph.

Under a random walk model, the number of random walks passing through a vertex in the

process of network formation provides an obvious measure of that vertex’s importance to

the formation of the network. A simpler proxy is the order in which vertices are inserted.

If only the final graph GT is observed, this is the order induced by the latent vertex arrival

times S1:T in Theorem 3.4, which is in turn determined by the latent edge order Σ, as given

by the posterior distribution of the bridge G1:T generated by the inference algorithm (see

Chapter 4). The median of the inferred arrival time of vertices in Σ under the RWU model

for the NIPS dataset, for those nine authors with earliest median appearance, is listed in
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Table 3.3; other measures of centrality are also listed. For each measure, the vertex’s rank

is listed, with the numerical value in parentheses. Since one would generally expect that

vertices inserted into the graph earlier tend to have larger degree, it is interesting to note

that arrival order seems to correlate more closely with rank of Betweenness Centrality and

of Information Centrality than with vertex degree.

3.4 Discussion

We have introduced a class of network models that can account for dependence of new links

on existing links, but are nonetheless tractable. In light of our results, there are two reasons

for tractability:

• There exists a latent variable—the edge insertion order Σ—conditioning on which

greatly simplifies the distribution of G1:T | GT .

• The effects of the parameters β and λ are sufficiently distinct that, as we show in

Chapter 4, inference is possible—a single graph generated by the model carries suffi-

cient signal for parameter values to be recovered with high accuracy.

Conditioning on history information, either on the order in which vertices are inserted,

or on entire history Σ, is instrumental both for theoretical results and for inference. As

mentioned in the introduction, a qualitatively similar effect—the joint distribution of the

network graph simplifies conditionally on a suitable latent variable—is observed in other

network models, such as graphon models and the configuration model. In Chapter 5, we

undertake a careful study of Σ and S1, S2, . . . in preferential attachment-type models.
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Open questions. There are open questions beyond the scope of this dissertation. Some

of these are obvious, such as applications to dynamic network problems; generalizations

to disconnected graphs (e.g. using a disconnected seed graph); or which choices of the

distribution P of the random walk length in Theorem 3.3 satisfy condition (3.11).

A question we consider intriguing is whether the random walk itself results in power

law behavior. Intuitively, the probability to reach a vertex by random walk increases with

degree; that suggests the random walk might result in an effect similar to preferential

attachment. For any RW(β,Poisson+(λ)) model, the probability (3.1) can be written as

P(Vend = v|V0 = u, G) =
[

dv
vol(G)

+
√

dv
du

n∑
i=2

(1− σi)e−λσiψi(u)ψ′i(v)
]
,

where (ψi) are the eigenvectors, and (σi) the eigenvalues, of the normalized graph Laplacian

L. Thus, the probability to terminate at v is a mixture of a preferential attachment term

(proportional to dv), and a term depending on λ and on the structure of G at various scales.

Our power law results in Section 3.2 stem from size-biased selection from the vertex set, not

the random walk. This mechanism is not used in the RWU model on multigraphs, which

empirically nonetheless exhibits a heavy-tailed degree distribution. That seems to suggest

an affirmative answer, but at present, we have no proof.
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Chapter 4

Inference methods for sequential

models

We consider the problem of performing estimation and inference of model parameters for

sequential models of networks generally, and random walk models in particular. If the entire

history Σ of a multigraph is observed, model parameters can be estimated by maximum

likelihood or traditional MCMC.

The primary source of difficulty presents itself when the edge order Σ is unobserved.

If only the final graph is observed, inference is still possible, by treating the history Σ as

a latent variable and imputing it using a sampling algorithm. This problem is of broader

interest, since it permits the application of sequential or dynamic network models, includ-

ing the PA model and many others, to a single observed graph. Furthermore, the random

walk mechanism presents inferential challenges: Given Gt, the probability of Gt+1 does

not depend on a simple statistic of Gt, as in the PA model, but on the entire structure of
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Gt. Using the results of Section 3.2.1, we derive collapsed sampling updates that improve

sampling efficiency.

Chapter overview. In Section 4.1 we assume a RW(β, P ) model, and that the history

of the network is observed, in which case the Markov structure of the RW(β, P ) model

likelihood admits tractable maximum likelihood estimators. The estimators are obtainable

in closed form for β, and via estimating equations for the parameters of P . We derive the

quantities necessary for solving the estimating equations via numerical optimization.

In Section 4.2 we consider the general problem of performing inference on a sequential

model when the history is only partially observed, and in particular when only GT is

observed. Given the sequential specification of such models, sequential Monte Carlo (SMC)

techniques are the natural building block for inference algorithms. For joint inference of

the latent history and the parameters of the model, we extend the particle MCMC methods

in Andrieu, Doucet, and Holenstein (2010) for models satisfying a Markov property and a

monotonicity property. In Section 4.3, we apply the results of Sections 3.2 and 4.2 to derive

a collapsed particle Gibbs sampler for the RW(β,Poisson+(λ) model, and demonstrate

empirically that it accurately recovers the parameters from a single GT generated from the

model. We also demonstrate an example of MCMC for the case when Σ is observed, in

Section 4.4. Proofs of all theoretical results are given in Appendix C.
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4.1 Maximum likelihood estimation for fully observed

sequential models

We consider parameter estimation for multigraphs in the “dynamic” case, where the en-

tire history of a graph is observed. Let (G1, . . . , Gt) be a multigraph sequence gener-

ated by any RW model, with parameter β, where for simplicity G1 has a single edge

connecting two vertices.1 Denote by (vs, v
′
s) the pair of vertices connected by the edge

inserted in step s ≤ t. The edge was generated by step (2) of the sampling scheme if

and only if one of the vertices has degree 0 in Gs−1, and hence if the indicator variable

Bs := 1{min {degs−1(vs), degs−1(v′s)} = 0} takes value 1. Since the model creates vertices

by independent β-coin flips, the numberNt of vertices inGt is (Nt − 2) ∼ Binomial(t− 1, β),

and therefore

β̂t =

∑t
s=2Bs
t− 1

=
Nt − 2

t− 1
(4.1)

is a maximum likelihood estimator for β. The sequence’s probability of occurrence under a

RW(β, P ) model is

Lt(β, φ) := CNt,t(β)

t∏
s=2

P{edges = (vs, v
′
s)}

1−Bs , (4.2)

where CNt,t(β) denotes the probability of Nt − 2 under a Binomial(t − 1, β) distribution,

and φ denotes the parameter(s) of the random walk length distribution, P . The product’s

1This section applies to arbitrary fixed seed graphs, as long as estimators are modified appropriately.
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factors are given by Proposition 3.1. In particular, define

Qφs := D−1/2
s Kφ

sD
1/2
s , (4.3)

with the kernel Kφ
s induced by P as in (3.3). Denote the relative degree of a vertex v in Gs

by d̄s(v) := degs(v)/
∑

v′∈VGs degs(v
′). Then for a RWSB(β, P ) model, β̂t as in (4.1) and

φ̂t := arg max
φ

t∏
s=2

(
[Qφs−1]vsv′s d̄s−1(vs) + [Qφs−1]v′svs d̄s−1(v′s)

)1−Bs (4.4)

are maximum likelihood estimators of the parameters β and φ. For a RWU(β, P ) model,

φ̂t is obtained by replacing d̄s−1(vs) with 1/Ns−1. Neither estimate depends on the other,

and φ̂t can be computed by straightforward numerical optimization using the derivatives of

`t(β, φ) := logLt(β, φ),

∇φ`t(β, φ) =
t∑

s=2

(1−Bs)
(
[Q̇φs−1]vsv′s d̄s−1(vs) + [Q̇φs−1]v′svs d̄s−1(v′s)

)(
[Qφs−1]vsv′s d̄s−1(vs) + [Qφs−1]v′svs d̄s−1(v′s)

) (4.5)

∇2
φ`t(β, φ) =

t∑
s=2

(1−Bs)

((
[Q̈φs−1]vsv′s d̄s−1(vs) + [Q̈φs−1]v′svs d̄s−1(v′s)

)(
[Qφs−1]vsv′s d̄s−1(vs) + [Qφs−1]v′svs d̄s−1(v′s)

)
−
(
[Q̇φs−1]vsv′s d̄s−1(vs) + [Q̇φs−1]v′svs d̄s−1(v′s)

)2(
[Qφs−1]vsv′s d̄s−1(vs) + [Qφs−1]v′svs d̄s−1(v′s)

)2
)
, (4.6)

where Q̇φ and Q̈φ denote the first and second derivatives, respectively, of Qφ with respect

to φ.

For a RWSB(β,Poisson+(λ)) model, for example, define

Qλs := D−1/2
s (INs − Ls)K

λ
sD

1/2
s , (4.7)
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with the heat kernel Kλ
s = e−λL, as in (3.5). The derivatives are

Q̇λs = −D−1/2
s (INs − Ls)LsK

λ
sD

1/2
s

Q̈λs = D−1/2
s (INs − Ls)L

2
sK

λ
sD

1/2
s .

Similarly, tractable ML estimators can be obtained in the negative binomial case, by sub-

stituting Kr,p for Kλ in (4.7).

We note that β̂t behaves as a classical maximum likelihood estimator. φ̂t may behave

differently; in particular, we observe the following:

• The variance of φ̂t is connected to β: The expected effective sample size is

E[ESSφt ] = E[t− 1− (Nt − 2)] = (1− β)t+ 1 . (4.8)

Thus, for higher values of β, which corresponds to sparser graphs, φ̂t may have high

variance, regardless of the properties of P or the structure of G1:T .

• Gs enters the likelihood through Qφs . Thus, the accuracy and variance of φ̂t depends

strongly on the structure of each Gs. If, for example, the typical Ks is small compared

to the mixing time of a random walk on Gs, the signal relevant to estimating φ will be

relatively strong. If, on the other hand, the typical Ks is on the order of the mixing

time of Gs, the signal will be lower and φ̂t will have high variance. Furthermore, it

may be difficult to recover φ corresponding to typical K much larger than the mixing

time.

For simple graphs, maximum likelihood estimation is still possible in principle, but is more
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complicated since the effects of β and λ are no longer independent: In step (3’) in Section 3.1,

the probability of generating an additional vertex, which increments the count Nt, depends

on the outcome of the random walk. The definition of step (3’) is one of several possible

ways to translate the multigraph case to simple graphs, but dependence of β and λ is not

an artifact of a specific definition: Rather, it is due to the fact that a simple graph contains

no observable evidence of a random walk connecting two previously connected vertices.

4.2 Particle methods for partially observed sequential

models

This section develops Markov chain sampling methods for a commonly encountered problem:

A sequential network model is assumed, but only the final graph GT generated by the model

is observed, as opposed to the entire history G1:T := (G1, . . . , GT ) of the generative process.

The methods developed here are easily adapted to the case when the history is partially

observed, say at Gt∗1 , Gt∗2 , . . .. Then the subsequences G1:t∗1
, Gt∗1:t∗2

, . . ., can be handled in

the same manner as G1:T .

The methods developed here assume a Bayesian setup, with a prior distribution L(θ)

on the model parameter θ, where L( • ) generically denotes the law of a random variable.

They sample the posterior distribution L(θ|GT ), and are applicable to sequential network

models satisfying two properties:

(P1) The sequence (G1, . . . , GT ) of graphs generated by the models forms a Markov chain

on the set of finite graphs, that is, Gt+1 ⊥⊥Gt (G1, . . . , Gt−1) for t < T .

(P2) The sequence is strictly increasing, in the sense that Gt ( Gt+1 almost surely.

69



These hold for the random walk models, but also for many other network formation models,

such as preferential attachment graphs, fitness models, and vertex copying models (e.g.

Newman, 2009; Goldenberg, Zheng, Fienberg, and Airoldi, 2010). Despite the attention

these models have received in the literature, little work exists on inference (see Section 4.5

for references).

If only a single graph GT is observed, inference requires the unobserved history to be

integrated out. The result is a likelihood of the form

pθ(GT | G1) =

∫
pθ(GT , G2:(T−1) | G1) dG2:(T−1) , (4.9)

where θ is the vector of model parameters. Since the variables Gt take values in large

combinatorial sets, the integral amounts to a combinatorial sum that is typically intractable.

The strategy is to approximate the integral with a sampler that imputes the unobserved

graph sequence, noting that only valid sequences which lead to GT will have non-zero

likelihood (4.9). The sequential nature of the models makes SMC and particle methods

the natural tools of choice. Building on the methods reviewed in Section 2.5, we develop

tractable algorithms that enable inference on data with partially observed or unobserved

history.

4.2.1 SMC algorithms for graph bridges

Consider a sequential network model satisfying properties (P1) and (P2) above, with model

parameters collected in a vector θ. For now, θ is fixed, and the objective is to reconstruct

the graph sequence G1:T from its observed final graph GT and a fixed initial graph G1, i.e.
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Vertex set of G50 G1 G10 G30 G50

Figure 4.1: Two graph bridges generated by Algorithm 4.1: A graph G50 is drawn from
a RWU(β, P ) model, and two graph bridges G1:50 are sampled conditionally on the fixed
input G50. Shown are the graphs G1, G10 and G30 of each bridge.

the relevant posterior distribution is Lθ(G1:T | GT , G1). By the Markov property (P1), each

step in the process is governed by a Markov kernel

qtθ(g | g′) := P (Gt = g | Gt−1 = g′) .

The task of a sampler is hence to impute the conditional sequence G2:(T−1) | G1, GT , which

is a stochastic process conditioned on its initial and terminal point, also known as a bridge.

Compared to the SMC sampling algorithm for state space models, the unobserved sequence

G2, . . . , GT−1 takes the role of the hidden states z1:T , whereas G1 and the single observed

graph GT replaces the observed sequence x1:T . The emission likelihood ptθ(xt|zt) is replaced

by a bridge likelihood, of a graph Gt given G1 and GT .

The relevant likelihood functions, however, are themselves intractable: If gs is a fixed
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graph at index s in the sequence, the probability of observing gt at a later point t > s is

pt,sθ (gt|gs) :=

∫ (t−1∏
i=s

qi+1
θ (gi+1|gi)

)
dgs+1 · · · dgt−1 whenever t > s .

For a candidate graph Gt generated by the sampler, the likelihood under observation GT is

the bridge likelihood

Ltθ(Gt) := pT,tθ (GT |Gt) .

The bridge likelihood is intractable unless t = T − 1; indeed, for t = 1, this is precisely the

integral (4.9) that we set out to approximate.

A sequence G1:T satisfying (P2) is equivalent to an enumeration of the T edges of GT

in order of occurrence. Let σ be a permutation of {1, . . . , T}, i.e. an ordered list containing

each element of the set exactly once, and

σt(GT ) := graph obtained by deleting all edges of GT not listed in σt,

and any resulting isolated vertices.

A random sequence G1:T can then be specified as a pair (Σ, GT ), for a random permuta-

tion Σ of the edges in GT , with Gt = Σt(GT ). Given GT , not every permutation σ is a

valid candidate for the unobserved order: σ must describe a sequence of steps of non-zero

probability from the initial graph to GT , and we hence have to require

Ltθ(σt(GT )) > 0 for all t ≤ T . (4.10)

If so, we call σ feasible for GT . For GT given and Gt = Σt(GT ), we use Gt and Σt
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interchangeably. The target distribution of the SMC bridge sampler at step t is then

γθ(t) := Ltθ(Σt)P (Σt) = Ltθ(Σt)
t−1∏
s=1

qs+1
θ (Σs+1 | Σs) , (4.11)

which satisfies the recursion

γθ(t) =


Ltθ(Σt)

Lt−1
θ (Σt−1)

qtθ(Σt | Σt−1)γθ(t− 1) if Σt is feasible

0 otherwise

.

The intractable part is the bridge likelihood ratio Ltθ/L
t−1
θ . Define

ht(Σt) :=


1{Ltθ(Σt) > 0} for all t < T − 1

Ltθ(Σt) for t = T − 1

.

As Proposition 4.1 below shows, the apparently crude approximation Ltθ ≈ ht still produces

asymptotically unbiased samples from the posterior Lθ(G1:T | GT , G1); this is based on

methodology developed in Del Moral and Murray (2015) for bridges in continuous state

spaces. If Σt is feasible, substituting ht into (4.11) yields the surrogate recursion

γθ(t) =
qtθ(Σt | Σt−1)

rtθ(Σt | Σt−1)
γθ(t− 1) for t < T − 1 .

The SMC proposal kernel rtθ is hence chosen as the truncation of qtθ to feasible permutations,

rtθ(Σt | Σt−1) :=
1{Ltθ(Σt) > 0}qtθ(Σt | Σt−1)

τ tθ(Σt−1)
, (4.12)
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with

τ tθ :=
∑

σt:Ltθ(σt)>0

qtθ(σt | Σt−1) .

For particles Git = Σi
t(GT ), the unnormalized SMC weights (2.16) are

w̃it =


τ tθ(Σ

i
t−1) if t < T − 1

qtθ(Σ | Σi
T−1) τT−1

θ (Σi
T−2) if t = T − 1

. (4.13)

The sampling algorithm then generates a graph bridge as follows:

Algorithm 4.1 (Bridge sampling).

• Initialize Gi1 := G1, Σi
1 ∼ Uniform{1, . . . , T}, and wi1 := 1/N for each i ≤ N .

• For t = 2, . . . , T − 1, iterate:

– Resample indices Ait ∼ MN(N, (wit−1)i).

– Draw Σi
t ∼ rtθ( • | Σ

Ait
t−1) as in (4.12) for each i.

– Compute weights as in (4.13) and normalize to obtain wit.

• Resample N complete sequences Gi1:T = Σi ∼ MN(N, (wiT−1)i).

See Figure 4.1 for an illustration. Computation of ht(Σt) and τ tθ(Σt−1) is simplified by the

constraints on Σ: Given Σt−1, the requirement that Σt must again be a restriction of Σ

implies Σt = (Σt−1, et), for some et ∈ {1, . . . , T} \ Σt−1. Within this set, the et for which

Σt is feasible are simply those edges in GT connected to Σt−1(GT ).

Proposition 4.1. Let qtθ, for t = 1, . . . , T , be the Markov kernels defining a sequential

network model that satisfies conditions (P1) and (P2). Given an observation GT , Algo-

rithm 4.1 produces samples that are asymptotically unbiased as N → ∞. That is, for any
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bounded function f on graph sequences,

1

N

N∑
i=1

f(Gi1:T )
p−→ E[f(G1:T ) | GT , G1] as N →∞ , (4.14)

where the expectation is evaluated with respect to the model posterior Lθ(G1:T | GT , G1).

Finally, the particle MCMC methods of the next section will require an unbiased esti-

mate of the bridge likelihood, L1
θ(G1). Define the estimator

L̂1
θ :=

T−1∏
t=2

[(
N∑
i=1

w̃it
N

)(∑N
i=1 ht−1(GT | Git−1)w̃it−1∑N

i=1 w̃
i
t−1

)]
. (4.15)

Then there is the following:

Proposition 4.2. Let qtθ, for t = 1, . . . , T , be the Markov kernels defining a sequential

network model that satisfies conditions (P1) and (P2), and let rtθ be the corresponding

proposal kernels. Then given an observation GT and a fixed G1, L̂1
θ as in (4.15) is unbiased,

that is E[L̂1
θ] = L1

θ(G1) = pθ(GT | G1), for any N ≥ 1.

Remark. If estimates exhibit high variance, it is straightforward to modify Algorithm 4.1

to use adaptive resampling (see Del Moral and Murray, 2015), and to replace multinomial

resampling above by residual or stratified resampling (e.g. Doucet and Johansen, 2011).

If a given model admits a more bespoke approximation ht to the bridge likelihood, this

approximation can be substituted for ht, following Del Moral and Murray (2015). In this

case, some of the equations above require (elementary) modifications; see the proof of a

more general version of Proposition 4.2 in Appendix B.2. /
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4.2.2 Parameter inference

Algorithm 4.1 generates a history of a graph under a model with fixed parameter vector θ.

For parameter inference, the parameters are treated as a random variable Θ, with prior dis-

tribution P[Θ], and the task is to generate samples from the joint posterior L(Θ, G1:T |G1, GT ).

The sample space of the sampler is thus extended by the domain of Θ. The bridge likelihood

L1
Θ(G1) is a marginal likelihood that naturally leads to pseudo-marginal methods (Lin, Liu,

and Sloan, 2000; Beaumont, 2003; Andrieu and Roberts, 2009) and particle MCMC (An-

drieu, Doucet, and Holenstein, 2010), which uses SMC to compute an unbiased estimate of

L1
Θ(G1). Substituting into the Metropolis–Hastings acceptance ratio of a proposal Θ̃ from

a (yet to be specified) proposal distribution q̃ yields

P{ accept Θ̃ } =
L̂1

Θ̃
· P[Θ](Θ̃)

L̂1
Θ · P[Θ](Θ)

· q̃(Θ | Θ̃)

q̃(Θ̃ | Θ)
. (4.16)

Using (4.15) and (4.16), Algorithm 4.2 defines a particle marginal Metropolis–Hastings

(PMMH) sampler.

Algorithm 4.2.

• Initialize Θ0 ∼ P[Θ].

• For j = 1, . . . , J iterate:

(1) Draw candidate a value Θ̃ ∼ q̃( • | Θj−1).

(2) Run Algorithm 4.1 with parameter Θ̃ to compute L̂1
Θ̃

as in (4.15).

(3) Accept Θ̃ with probability (4.16) and set Θj := Θ̃; else set Θj := Θj−1.

(4) If Θ̃ is accepted, select a single graph sequence Gj1:T by resampling from the

particles output by Algorithm 4.1; else set Gj1:T = Gj−1
1:T .

• Output the sequence (Θ1, G1
1:T ), . . . , (ΘJ , GJ1:T ).
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The algorithm asymptotically samples the joint posterior L(Θ, G1:T | G1, GT ), or the marginal

posterior L(Θ | G1, GT ) if step (4) is omitted:

Proposition 4.3. If the proposal density q̃( • | • ) is chosen such that the Metropolis–

Hastings sampler defined by (4.16) is irreducible and aperiodic, Algorithm 4.2 is a PMMH

sampler. The marginal distributions L(Θj , Gj1:T ) of its output sequence satisfy

‖L(Θj , Gj1:T )− L( • | GT , G1)‖TV

j→∞−−−→ 0 . (4.17)

This is true regardless of the sample size N generated by Algorithm 4.1 in step (2).

Although the result holds asymptotically independently of N , a larger value of N will

generally speed up convergence and reduce variance.

4.3 Particle Gibbs for RW(β, λ) models

The computational cost of Algorithm 4.2 stems mostly from two sources: Each rejection

in (3) requires an additional execution of steps (1) and (2) in order to produce a sample

distinct from the previous one, and the cost of each such execution may be high. Details

depend on the network model, but in most cases, (2) is the most expensive step. Rejections

can be addressed by turning the MH algorithm into a Gibbs sampler, which eliminates

the acceptance step, and does not require the choice of a proposal kernel q̃. The resulting

algorithm constitutes a particle Gibbs (PG) sampler (Andrieu, Doucet, and Holenstein,

2010). Such an algorithm is described below, now specifically for the random walk model.

The algorithm uses two sequences of auxiliary variables Bt and Kt, each corresponding to
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one model parameter. At each step, some of these variables, as well as the model parameters

themselves, can be integrated out, which simplifies sampling significantly.

For a RW(β,Poisson+(λ)) model, the parameter takes the form Θ = (β, λ), and we fix

a Beta(aβ, bβ) prior for β, denoted P[β], and a Gamma(aλ, bλ) prior, denoted P[λ], for λ. For

compactness, we let ϑ := (aβ, bβ, aλ, bλ). To sample a sequence G1, . . . , GT from the model

given a pair (β, λ), one can generate two i.i.d. sequences, B = (B1, . . . , BT ) of Bernoulli(β)

variables, and K = (K1, . . . ,KT ) of Poisson+(λ) variables. In step t of Algorithm 3.1, a new

edge is inserted if Bt = 1; otherwise, two vertices are connected by random walk of length

Kt. Since G1:T , B and K are dependent random variables, the kernel qtϑ in Algorithm 4.1

is a function of Gt−1, Bt and Kt. As shown in Appendix C, the entries Bt and Kt, along

with the model parameters β and λ, can be integrated out of the kernel. B and K can

therefore be sampled separately from the SMC steps, rather than inside Algorithm 4.1,

which improves exploration of the sample space.

In its jth iteration, the algorithm updates B and K by looping over the indices t ≤ T

of G1:T . Since Gibbs samplers condition on every update immediately, vectors maintained

by the sampler are of the form

Bj
−t := (Bj+1

1 , . . . , Bj+1
t−1 , B

j
t , . . . , B

j
T ) and Kj

−t := (Kj+1
1 , . . . ,Kj+1

t−1 ,K
j
t , . . . ,K

j
T )

Marginalizing out β, Kt, and λ yields the posterior predictive distribution of Bj+1
t ; similarly,

the predictive distribution of Kj+1
t marginalizes out λ, Bj+1

t , and β. Both distributions can

be obtained in closed form, despite their dependence on Gj1:T (see Appendix C for details).

We abuse notation and let the index j = 0 refer to the predictive distribution under the prior,
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i.e. we write L(B1|B0, G0
1:T ) :=

∫
L(B1 | β)P[β](dβ), and similarly for L(K1 | K0, G0

1:T ).

Algorithm 4.3 (Particle Gibbs sampling for RW(β,Poisson+(λ)) models.).

• For j = 0, . . . , J :

(1) Draw (Bj+1,Kj+1) ∼ L(Bj+1,Kj+1 | Bj ,Kj , Gj1:T ).

(2) Using Algorithm 4.1, with qtϑ( • | Gjt−1,B
j+1
−t ,K

j+1
−t ) andN ≥ 2, updateGj+1

1:T

and aj+1
2:T . At each step t, substitute the previous iteration’s bridge Gj1:t for

the particle with index ajt (see below).

(3) Draw βj+1 | Bj+1 and λj+1 | Kj+1 from their conjugate posteriors.

• Output the sequence (G1
1:T , β

1, λ1), . . . , (GJ1:T , β
J , λJ).

The algorithm is used for inference in the random walk model in all experiments reported

in Section 3.3. It constitutes a blocked Gibbs sampler with blocks (β, λ), (B,K), and G1:T .

Due to the marginalization described above, the parameter values βj and λj generated in

(3) are not used in the execution of the sampler; they only serve as output. Step (2),

which seeds Algorithm 4.1 with a bridge Gj1:T generated during the previous iteration, is

a conditional SMC step that biases the sampler towards Gj1:T and is necessary to make

Algorithm 4.3 a valid Gibbs sampler. Although the resampled indices at have no effect

on the sampled sequence G1:T , the Gibbs sampler is defined on an augmented space that

includes the random variables generated during the SMC steps, and so requires that we

include them in the conditional SMC update. See Andrieu, Doucet, and Holenstein (2010)

for more on conditional SMC.

Proposition 4.4. Algorithm 4.3 is a valid particle Gibbs sampler. For any N ≥ 2, it

generates a sequence (Gj1:T , β
j , λj)j whose marginal laws converge as

‖L(Gj1:T , β
j , λj)− L(G1:T , β, λ | GT , G1)‖TV

j→∞−−−→ 0 . (4.18)
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to the model posterior L(G1:T , β, λ | GT , G1).

4.3.1 Variance reduction and practical considerations in PG sampling

A well-documented problem encountered by SMC methods is that of path degeneracy, when

the particles concentrate on only a few paths. Each time the particles are resampled, fewer

and fewer distinct paths are propagated. On the other hand, not resampling results in weight

degeneracy, where the weights concentrate on only a few particles. Both issues lead to SMC

estimates with high finite-sample variance (see, e.g. Doucet and Johansen, 2011). As noted

by a number of authors, PG samplers may be “sticky” due to the issues inherited from

SMC: by conditioning on the previous latent trajectory Gj−1
1:T and repeatedly resampling

the particles, the conditional SMC update may make only a few changes, resulting in Gj1:T

being nearly the same as Gj−1
1:T .

A number of methods have been developed to address this problem. In traditional

SMC, adaptive resampling, where the particles are resampled only if the effective number

of particles falls below a fixed threshold, is typically employed in practice (Doucet and

Johansen, 2011). Backward simulation (Lindsten and Schön, 2013) is a set of smoothing

techniques for SMC that can improve performance, and has been adapted to particle MCMC

(Whiteley, 2010; Lindsten and Schön, 2012; Chopin and Singh, 2015). A related method,

particle Gibbs with ancestor sampling (PGAS) (Lindsten, Jordan, and Schön, 2014), has

proven successful in a range of applications.

PGAS adds a step to Algorithm 4.1: after the particles have been propagated to step

t, each particle’s ancestor is resampled from the set of particles at step t − 1 from which

it could have been propagated. Although the particles still degenerate to one path, the
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ancestor sampling step causes the degenerate path to be different than Gj−1
1:T . In our own

experiments with the RW(β,Poisson+(λ)) model, we found that although PGAS improved

performance, gains typically were not sufficient to justify the additional computation. The

culprit is the high-dimensional discrete state space. In order for ancestor sampling to work

well, each particle i at step t must have many possible ancestors from step t− 1, i.e. there

must be many particles j for which qtθ(G
i
t | G

j
t−1) > 0. For unconstrained models with a

continuous state space, the condition is trivially satisfied for all i and j. In a discrete state

space, however, the condition is often not satisfied for i 6= j. That the model constrains

the graphs to be connected for all t further constrains the possible transitions. As such, we

observe that a model allowing for multiple connected components (with a mechanism for

merging components) may benefit more from PGAS.

In our experiments, we found that breaking the conditional SMC update into sub-blocks

G1:b1 , Gb1:b2 , . . . , Gbn:T , as suggested in Andrieu, Doucet, and Holenstein (2010), improves

performance by reducing the necessary number of particles. It also reduces the memory

requirements. Finally, although adaptive resampling based on effective sample size within

in the conditional SMC update does not satisfy the assumptions necessary for the theoretical

guarantees of Proposition 4.4, we found that it improves exploration of the space of latent

trajectories G1:T without degrading the quality or accuracy of parameter sampling. Huggins

and Roy (2015) introduce a novel form of effective sample size, called ∞-ESS, and apply it

to particle Gibbs samplers with adaptive resampling; this seems to be a promising direction

for future particle MCMC implementations.
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Figure 4.2: Top: Posterior sample traces for a PG sampler fit to a synthetic graph GT gener-
ated with β = 0.5 and λ = 4 (solid black lines). Bottom: The corresponding autocorrelation
functions.

4.3.2 Sampler diagnostics on synthetic data

To assess sampler performance, we test the sampler’s ability to recover parameter values

for graphs generated by the model. For each such experiment, a single graph GT with

T = 250 edges is generated for fixed values of β and λ. The joint posterior distribution

of β and λ given GT is then estimated using Algorithm 4.3, run with a moderate number

(N = 100) of particles. Regardless of the input parameter value, a uniform prior is chosen

for β, and a Gamma(1, 4) prior for λ. For the sake of brevity, we report results only for the

RWU(β,Poisson+(λ)) model, on simple graphs (which pose a harder challenge for inference

than multigraphs, since edge multiplicities provide additional information about the history

of the graph). Figure 4.2 shows example traces of the samplers and the corresponding
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Figure 4.3: Joint posterior distributions, given graphs generated from an RWU model for
different parameter settings. β is on the vertical axis, λ on the horizontal axis, and gener-
ating parameter values are shown by dashed lines.

autocorrelation functions. The samplers mix and converge quickly, and as one would expect,

only λ displays any noticeable autocorrelation. Posteriors for various input parameters are

shown in Figure 4.3. Clearly, recovery of model parameters from a single graph is possible.

The effect of the model’s modification to generate simple graphs—the use of step (3’)

rather than (3) in Algorithm 3.1—is apparent for λ = 2: For small values of λ, a significant

proportion of random walks ends at their starting point, resulting in the insertion of a

new vertex. Since the model otherwise inserts new vertices as an effect of β, the two

parameters are correlated in the posterior, which is clearly visible in Figure 4.3, especially

for intermediate values of β. For applications to real data, see Section 3.3.

83



4.4 MCMC sampling for fully observed sequential models

When a Bayesian approach to inference is preferred, it is straightforward to construct

MCMC samplers for fully observed sequential models. In particular, Algorithms 4.2 and 4.3

are modified by excluding the SMC update, and making the following modifications:

• For a Metropolis–Hastings sampler, step (2) of Algorithm 4.2 is replaced by an eval-

uation of the model likelihood LT (β, λ), as in (4.2), and the acceptance ratio (4.16)

is modified accordingly.

• For a Gibbs sampler, step (1) of Algorithm 4.3 is modified to condition on the observed

G1:T , rather than the previous iteration’s sample Gj1:T .

As an example, we generated a sequence G1, . . . , GT , with T = 400 edges, from a

RWU(β, λ) model with β = 0.2 and λ = 4. We fitted a RWU(β, λ) model to the sequence

using a Gibbs sampler as in Algorithm 4.3 and the modification specified above. Typical

sampler traces are shown in Figure 4.4. The traces show that the sampler converges quickly.

The marginalizations described in Section 4.3 allow good exploration of the sample space;

autocorrelation between samples typically becomes negligible after 30-40 Gibbs updates.

4.5 Discussion

The methods developed here demonstrate that tractable and reliable inference is possible

for sequential models of data even when the data consists of one observation at the end

of the sequence. That inference is possible when the latent order is relevant to the model

is somewhat surprising. Indeed, it might be argued that a primary reason for assuming
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Figure 4.4: Posterior sample traces (gray lines) for a Gibbs sampler fit to a synthetic graph
sequence G1:T with T = 400 edges, generated with β = 0.2 and λ = 4 (solid black lines).
The maximum a posteriori estimates from 50,000 samples are displayed (dotted blue lines),
along with the maximum likelihood estimates (dashed red lines) based on the variables B2:T

and K2:T generated with G1:T .

exchangeability is to avoid the issue of imputing an order. The key is that the observed

structure retains signs of the latent order; the dependence between edges and vertices that

makes inference difficult is also necessary to perform inference at all.

Computational complexity. The inference algorithms in Section 4.2 work well for moder-

ately sized graphs (of up to a few hundred vertices). The dominant source of computational

complexity is sampling the latent order Σ, which even for the simplest models scales at least

quadratically in the number of edges in GT . The computational role of Σ is similar to the

latent vertex positions in inference algorithms for graphon models (which have comparable

input size limitations) (Lloyd, Orbanz, Ghahramani, and Roy, 2012).

Although improvements in computational efficiency or approximations are certainly pos-

sible, we do not expect the methods to scale to very large graphs. For example, one might

replace in the inference algorithms the mixed random walk probability matrix Q by a low-

rank approximation. However, the best low-rank approximation is not a right stochastic
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matrix (like Q), or even guaranteed to have non-negative entries. Constrained low-rank

approximations are possible, e.g. Ho and Van Dooren (2008) and Deng and Huang (2015),

but the complexity of sampling the latent order remains high. Very large graphs are not

the subject of this work. It is crucial that, under the random walk model, graphs of feasible

size do provide sufficient data for reliable inference. For more complicated models, that

might not be the case.

When the sequence G1:T is fully observed, the inference methods in Section 4.1 and Sec-

tion 4.4 may scale to larger graphs, and more complicated models may be tractable. In that

case, we expect that computational improvements via approximations would be significant.

Extensions and generalizations. One obvious extension of the models studied here is

the use of different random walk length distributions, P . Much of the sampling efficiency

for the Poisson case derived from marginalizing the random walk length out of the SMC

kernel at each step. Proposition 3.1 provides a method for general P , and thus designing

efficient particle MCMC samplers for general P seems to be straightforward. Additional

marginalization, of the random walk parameter λ, was possible because of the Poisson-

Gamma conjugacy relationship and the resulting closed-form posterior predictive distribu-

tion. Other candidates for P that would admit similar marginalizations are Binomial (with

a Beta prior), and categorical (with a Dirichlet prior).

Finally, although the particle methods in Section 4.2 were developed in the context of

sequential network data, they can be used for any type of composite data for which a se-

quential model satisfies the Markov property (P1) and the monotonicity property (P2). For

example, inference can be performed on non-exchangeable models of partition structures or
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permutations.

Related work. Existing work on the use of sampling algorithms for inference in se-

quential network models mainly follows one of two general approaches: Importance sam-

pling (Wiuf, Brameier, Hagberg, and Stumpf, 2006), or approximate Bayesian computation

(ABC) schemes (Thorne and Stumpf, 2012). ABC relies on heuristic approximations of the

likelihood, and therefore is not guaranteed to sample from the correct target distribution.

The basic approach used above—conduct inference by imputing graph sequences generated

by a suitable sampler—seems to be due to Wiuf, Brameier, Hagberg, and Stumpf (2006),

based on earlier work by R. C. Griffiths and Tavaré (1994a,b) on ancestral inference for

coalescent models. The work of Wang, Jasra, and De Iorio (2014) is related to ours in that

it employs particle MCMC, for a particular sequential model. All these methods are, in

short, applicable if the sequential model in question is very simple. Otherwise, they suffer

(1) from the high variance of estimates that is a hallmark of importance sampling (Doucet

and Johansen, 2011), and (2) infeasible computational cost. The algorithm in Wang, Jasra,

and De Iorio, 2014, for example, samples backwards through the sequence generated by the

model, and for each reverse step Gt → Gt−1 requires computing the probability of every

possible forward step G′t−1 → Gt under the given model; even for the (still rather simple)

random walk model, that is no longer practical.

A separate body of work applies SMC to a related problem, inference in probabilistic

graphical models (e.g. Naesseth, Lindsten, and Schön, 2014). Here, models lack a sequen-

tial structure, which is addressed algorithmically by constructing the dependence structure

clique by clique via artificial intermediate distributions; not surprisingly, the design of good
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intermediate distributions turns out to be crucial. In a sequential graph model, these inter-

mediate distributions are given by the model.
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Chapter 5

Nested urn models of partitions

and graphs

Crucial to the results in Section 3.2.2 and to the inference algorithms in Chapter 4 are the

random sequence of times at which new vertices appear, S1:∞. Furthermore, the random

walk model generates a sequence of edges that is not exchangeable; the lack of exchange-

ability stems from the random walk, and from the constant probability of a new vertex

appearing. It is natural, therefore, to consider what effect the constant probability has on

the properties of the resulting graph sequences. In this chapter, we study simple preferen-

tial attachment-type models, and randomize S1:∞ with different distributions. Due to their

relative simplicity, we begin by analyzing partitions, and turn to graphs in Section 5.4.
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5.1 Partitions from nested urn sequences

The building block of models studied in this chapter is a generalization of the basic Pólya

urn, the properties of which were reviewed in Section 2.2. The basic Pólya urn scheme can

be extended by adding new colors to the urn and augmenting the sampling probabilities.

More precisely, let C1, C2, . . . , Ct := (Ct)t≥1 be a sequence of random variables with values

in a measurable space (Ωc, C), and let ν be a non-atomic probability distribution on Ωc. In

what follows, we will refer to Ct as the color of the t-th ball drawn from the urn. We denote

the number of balls of the j-th color (in order of appearance) after t steps by nj(t).

Of central importance to this chapter are the steps in C1, C2, . . . when a new color first

appears. We call such steps arrival times,1 denoted 1 = s1, s2, s3, . . ., with inter-arrival

times δj := sj − sj−1. Note that δj > 0 for all j ∈ N+. For urns with a finite number r of

colors, we use the convention sj =∞ for j > r.

Given a sequence of arrival times, s1:∞ := (s1 < s2 < . . . ), a ball of a new (random)

color is added on steps t = sj ; for the remainder of the steps, the urn is updated as the

usual multicolor Pólya urn, resulting in the following predictive distribution:

P(Ct+1 ∈ • | C1:t, s1:∞) = 1t+1(sk(t)+1)ν( • ) + (1− 1t+1(sk(t)+1))

k(t)∑
j=1

nj − α
t− αk(t)

δC∗j ( • ) .

(5.1)

Although it is a straightforward modification, explicitly separating the arrival times from

the Pólya urn process allows us to study a number of seemingly different urn models within

1Other names used in the literature include increments (Nacu, 2006) and record indices (e.g. R. C.
Griffiths and Spanò, 2007).
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the same framework.

Algorithm 5.1 (Multicolor Pólya urn scheme with fixed arrival times).

Fix α ∈ (−∞, 1) and s1:∞ := (1 = s1 < s2 < . . . ).

• Begin with one ball of color C∗1 ∼ ν, and set C1 = C∗1 , nC∗1 (1) = 1. For t ≥ 2:

– If t = sj for some j, add a ball of new, distinct color C∗j ∼ ν to the urn and

set Ct = C∗j .

– Else, draw a ball of color C∗i with probability proportional to nC∗i (t−1)−α,

and replace it along with an additional ball of the same color. Set Ct = C∗i ,

nC∗i (t) = nC∗i (t− 1) + 1, and nC∗j (t) = nC∗j (t− 1) for j 6= i.

A partition Πt of [t] := {1, . . . , t} is constructed by grouping balls of the same color, i.e.

Aj = {t : Ct = C∗j }, with the blocks in order of their least elements. Note that the least

element of block Aj is sj . Analysis of Algorithm 5.1 is simplified by observing that it is

equivalent to the following:

Algorithm 5.2 (Nested Pólya urn scheme with fixed arrival times).

Fix α ∈ (−∞, 1) and s1:∞ ∈ N∞+ .

• Begin with s2 − 1 balls of color C∗1 ∼ ν in urn u = 1.

• For steps t ≥ s2, proceed as follows:

(1) If t = sj for some j, create a new urn with 1 ball of a new, distinct color

C∗j ∼ ν and (nC∗i (t− 1))i<j balls of the first j − 1 colors. Set Ct = C∗j .

(2) Else, starting with urn u = max{j : sj ≤ t} recursively do:

– Draw a ball of color C∗i from urn u with probability proportional to

nC∗i (t− 1)− α; replace it and add a ball of the same color. If the ball

was some color other than C∗u, repeat with urn u − 1; else set Ct = C∗u
and nC∗u(t) = nC∗u(t− 1) + 1, and go to step t+ 1.

We call a partition process (Πt)t≥1 generated by Algorithm 5.1 or Algorithm 5.2 a nested

Pólya partition (nPP) process on P̃, the space of partitions ordered by their least elements.

We denote its law as nPP(α | s1:∞), which is a regular conditional probability distribution

on N∞+ × P̃.
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Figure 5.1: A nested exchangeable sequence. Dotted boxes contain observations that are
exchangeable: All observations of C∗1 are (trivially) exchangeable with each other, all ob-
servations of C∗1 and C∗2 that occur at t > s2 are exchangeable, and so on.

We define the conditional partition probability function (CPPF) of Πt with k(t)

blocks to be

P(Πt | s1:k(t)) =
1

Γ(t− αk(t))

k(t)∏
j=1

Γ(sj − αj)
Γ(sj − 1− α(j − 1) + 11(j))

Γ(nj(t)− α)

Γ(1− α)
. (5.2)

In contrast to exchangeable random partitions, the distributions of which are invariant to

all permutations σ of [t], the CPPF of the nested Pólya partition is invariant to a subset of

all permutations of [t]. Let St be the set of all permutations of [t], and Sδt ⊂ St is the subset

of permutations that, when applied to Πt, leave (5.2) unchanged. Further, let C∗t be the set

of unique colors observed up to and including step t. A sufficient condition for σ ∈ Sδt is

that it satisfies both of the following properties:

Cσ(sj) = Csj for all j s.t. sj ≤ t
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Cσ(s) ∈ C∗s for all s ≤ t .

The restrictions induce a nested exchangeability structure in the sequence C1, C2, . . . . Let

(tk,i)i≥1 be the indices of the occurrences of the colors C∗1 , . . . , C
∗
k that occur after sk. Then

the subsequence (Ctk,i)i≥1 forms an exchangeable sequence in i, and (5.2) is invariant to all

σ that act only on (Ctk,i)i≥1. See Figure 5.1 for an illustration.

In what follows, we use the conventions that a Beta(a,∞) distribution is a point mass

at 0, and a Beta(a, 0) distribution is a point mass at 1.

In light of the nested exchangeability structure of the nPP, and of the properties of binary

exchangeable sequences, in particular the two-color paintbox scheme from Section 2.2.4,

a nested paintbox scheme is natural. The following algorithm defines such a sampling

scheme.
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Algorithm 5.3 (Nested Pólya Paintbox with fixed arrival times).

Fix α ∈ (−∞, 1) and s1:∞ ∈ N∞+ .

(1) Let ψ1, ψ2, . . . be independent beta random variables sampled as:

ψj ∼ Beta(1− α, sj − 1− (j − 1)α) . (5.3)

(2) Partition the unit interval into sub-intervals as:

φj = ψj ·
∞∏

i=j+1

(1− ψi) , Wj =

j∑
i=1

φi , and Ij = [Wj−1,Wj) . (5.4)

(3) For t = 1, 2, . . . sample Ut
iid∼ Uniform[0, 1], and define

Ũt :=

Wr−1 + φrUt if t = sr

WrUt if sr < t < sr+1

. (5.5)

(4) Construct the partition Πs by the rule:

t ∈ Aj iff Ũt ∈ Ij , t ≤ s .

Although the partition of the unit interval in Algorithm 5.3 potentially involves an

infinite number of random variables, each round of sampling can be conducted using a

finite number of variables. Observe that

P(Ut ∈ Ik) =
φk
Wr

=
ψk
∏∞
i=k+1(1− ψi)∏∞

m=r+1(1− ψm)
for sr < t < sr+1

= ψk

r∏
i=k+1

(1− ψi) (5.6)

=
ψk
∏k
i=2(1− ψi)−1∑r

`=2 ψ`
∏`
m=1(1− ψm)−1

. (5.7)

See Figure 5.2 for an illustration.

Proposition 5.1. Fix α ∈ (−∞, 1) and s1:∞. Let (Πt)t≥1 have law nPP(α | s1:∞).
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Sampling according to (5.6).

1 ≤ t ≤ s2 − 1

W1

s2 + 1 ≤ t ≤ s3 − 1

W1 W2

...

sj + 1 ≤ t ≤ sj+1 − 1

W1 W2 Wj

Sampling according to (5.7).

W1

W1 W2

..

.

W1 W2 Wj

Figure 5.2: The nested Pólya paintbox sampling scheme. On the left, Wj = 1 in each
sampling round j, but the intervals Ik for k ≤ j change. On the right, each interval Ik is
constant across each sampling round j, but Wj changes.

Further, let (Πψ
t )t≥1 be generated by Algorithm 5.3. Then

Πt
d
= Πψ

t , for all t ≥ 1 .

Proof. Each urn in Algorithm 5.2 is a two-color Pólya urn; therefore, as t → ∞, the

proportion of color cj balls in each urn j ≥ 1 converges to a random limit ψ1 = 1 and

ψj ∼ Beta(1−α, sj − 1− (j− 1)α). The sequence of balls for each urn is exchangeable, and

by de Finetti’s theorem (Theorem 2.3), each urn sequence is conditionally i.i.d. given ψj .

For sj < t < sj+1, (5.6) is the probability that the t-th ball is of color ck, which establishes

the equality in distribution of the urn scheme and the nested paintbox scheme.

Alternatively, define n̄j(t) :=
∑j

i=1 ni(t). Then

E(ψj)j [P(Πt, ψ1:k(t) | s1:k(t))]
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=

k(t)∏
j=1

Γ(sj − jα)

Γ(1− α)Γ(sj − 1− (j − 1)α+ 11(j))

∫ 1

0
ψ
nj(t)−α
j (1− ψj)n̄j−1(t)−(j−1)αdψj

(5.8)

=

k(t)∏
j=1

Γ(sj − jα)

Γ(1− α)Γ(sj − 1− (j − 1)α+ 11(j))

Γ(nj(t)− α)Γ(n̄j−1(t)− (j − 1)α)

Γ(n̄j(t)− jα)

(5.9)

=
1

Γ(t− αk(t))

k(t)∏
j=1

Γ(sj − αj)
Γ(sj − 1− (j − 1)α+ 11(j))

Γ(nj(t)− α)

Γ(1− α)
(5.10)

= P(Πt | s1:k(t)) . (5.11)

Remark. We make the following observations in relation to previous work:

• A version of Algorithm 5.3, with sampling rounds of fixed length `, was used by

Berger, Borgs, Chayes, and Saberi (2005, 2014) to analyze the Benjamini–Schramm

limit (Benjamini and Schramm, 2001) of PA graphs. See also Durrett (2006).

• In R. C. Griffiths and Spanò (2007), the representation (5.4) was derived (with a

different proof) for the limiting proportions of block sizes in infinite EGPs, i.e. when

S1:∞ are the random arrival times generated by an EGP; it was noted there that

conditionally on S1:∞ = s1:∞, the elements of the sequence

ξ̃ :=

(
ξj∑j
i=1 ξi

)
j>1

= (ψj)j>1

are mutually independent. (ξj)j≥1 is therefore a neutral-to-the-left (NTL) process, and

R. C. Griffiths and Spanò (2007) show that the NTL property characterizes the class
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of EGPs. That characterization holds only in the case that (ξj)j≥1 are the limiting

proportions; the NTL property holds for nPPs in general.

• As noted in R. C. Griffiths and Spanò (2007), (5.4) is a reversed version of a neutral-

to-the-right (NTR) process called the Beta–Stacy process, as developed in Walker and

Muliere (1997). It is interesting to observe that the nested urn process in Algorithm 5.2

is a reversed version of the urn process formulated in Walker and Muliere (1997).

/

In the basic Pólya urn, the proportions of white and black balls converge to a well-

defined random limit; we might ask whether the scaled counts converge in the nested Pólya

urn, and if so, what is the appropriate scaling and what are the limit objects? Algorithm 5.3

describes a constructive representation of the limiting objects with fixed s1:∞. The scaled

count sequence requires further analysis.

Fix a sequence of arrival times s1:∞, and encode a finite sequence of shifts by a vector

p = (p1, p2, . . . ) ∈ N∞. That is, pj = 0 for all j > k∗, for some k∗. Let the partial sums of

the shifts be denoted by p̃j =
∑j

i=1 pi. Consider the partition process Πp
t where the arrival

times are shifted such that spj = sj + p̃j−1; the additional steps due to pj are allocated to

block j.

For t ≥ sk∗ , compare the unshifted partition process Πt, with block counts (nj(t))
k(t)
j=1,

to the shifted partition process Πp
t with block counts (nj(t) + pj+1)

k(t)
j=1. The ratio of the

CPPFs is

Zp(t) :=
P(Πp

t | s1:∞ + p̃1:∞)

P(Πt | s1:∞)
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=
Γ(t− αk(t))

Γ(t− αk(t) + p̃k∗)

 k∗∏
j=1

Γ(nj(t)− α+ pj)

Γ(nj(t)− α)

 · · ·
×

k(t)−1∏
j=1

Γ(sj+1 − 1− αj)Γ(sj+1 − α(j + 1) + p̃j)

Γ(sj+1 − 1− αj + p̃j)Γ(sj+1 − α(j + 1))

 . (5.12)

The likelihood ratio (5.12) may also be interpreted as the probability of the perturbed

process conditioned on the unperturbed process. Note that Zp(t) is well-defined even for R-

valued pi, but its interpretation is no longer clear. As in the basic Pólya urn in Section 2.2,

it is a martingale.

Proposition 5.2. Fix a vector of shifts p = (pj)j≥1, with pj > −(1 − α) for j > 1,

such that pj = 0 for all j > k∗. Then Zp(t) is a nonnegative martingale with respect

to (At)t≥1, the filtration generated by the partition process, for t ≥ sk∗. Furthermore, if

p1, . . . , pr > −(1− α)/2, then Zp(t) converges in L2 and therefore in L1.

Proof. Observe that Zp(t) is nonnegative by construction, and

E

 Γ(t+ 1− αk(t+ 1))

Γ(t+ 1− αk(t+ 1) + p̃k∗)

k∗−1∏
j=1

Γ(nj(t+ 1)− α+ pj)

Γ(nj(t+ 1)− α)

∣∣∣∣∣∣ At, s1:∞


=

Γ(t− αk(t))

Γ(t− αk(t) + p̃k∗)

k∗−1∏
j=1

Γ(nj(t)− α+ pj)

Γ(nj(t)− α)
· · ·

×
(

1 + 1{t+ 1 = sk(t)+1}
Γ(t− αk(t) + p̃k∗)Γ(t+ 1− α(k(t) + 1)

Γ(t− αk(t))Γ(t+ 1− α(k(t) + 1) + p̃k∗)

)
.

The indicator is non-zero only for arrival times; a rearrangement shows that Zp(t) is there-

fore a martingale. Furthermore, by the properties of the Gamma function, for a finite
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constant Cp (see Hofstad (2016), Chapter 8.7 for proof of a similar inequality),

Zp(t)2 ≤ CpZ2p(t) .

Now, E[Zp(t) | s1:∞] = E[Zp(sk∗) | s1:∞] <∞ for all pi > −(1 − α), so E[Z2p(t)] is finite

when each pi > −(1 − α)/2. This implies that Zp(t) is an L2-bounded martingale; it

therefore converges in L2 and also in L1.

Zp(t) is our main tool for establishing asymptotic properties of the urn sequence. The

next theorem states that the joint moments of the ordered block size sequence converge to

a random limit.

Theorem 5.3 (Limiting count sequence with fixed arrival times). Fix α ∈ (−∞, 1) and

s1:∞ ∈ N∞+ . Let (Πt)t≥1 be a nested Pólya partition with law nPP(α | s1:∞). Assume

lim
j→∞

sj
j

= µδ for some µδ ∈ R>0 ∪ {∞} .

Then the scaled count sequence converges jointly to a random limit: For each r ∈ N+,

lim
t→∞

M∗p(s1:∞)t−γE[n1(t)p1 · · ·nr(t)pr ] = E[ξp11 · · · ξ
pr
r ] where γ = 1− 1− α

µδ − α
, (5.13)

where M∗p(s1:∞) is a constant that depends on p. The limiting law L(ξ1, . . . , ξr) is charac-

terized by the joint moments

E[ξp11 , . . . , ξ
pr
r ] =

r∏
j=1

Γ(1− α+ pj)

Γ(1− α)

Γ(sj − jα+ p̃j−1)

Γ(sj − jα+ p̃j)
where p̃j =

j∑
i=1

pi . (5.14)
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Proof. Define the ratio

Rj,pj (t) :=
Γ(nj(t)− α+ pj+1)

Γ(ni(t)− α)
. (5.15)

For large ni(t), Ri,pi(t)
t↑∞∼ nt(t)

pi , where a(t)
t↑∞∼ b(t) indicates limt→∞ a(t)/b(t) → 1. We

will show that Ri,pi(t) converges to ξpii when properly scaled. Because ξi is positive, these

moments uniquely determine the distribution of ξi. Define

cp(t) :=
t−1∏
s=1

s− αk(s)

s− αk(s) + p̃(s)1{(s+ 1) /∈ s1:∞}
where p̃(s) :=

∑
i>1

pi1{si ≤ s} . (5.16)

Then Zp(t) can be rewritten as

Zp(t) := cp(t)
r∏
i=1

Rji,pi(t) . (5.17)

Based on the asymptotic behavior of Ri,pi(t), the proper scaling of the block sizes will

depend on the behavior of cp(t) for large t. Note that

cp(t) =

(
t−1∏
s=1

s− αk(s)

s− αk(s) + p̃(sm)

)k(t)−1∏
m=1

sm+1 − 1− αm+ p̃(s)

sm+1 − 1− αm

 := r1(t)r2(t) . (5.18)

Now, by Stirling’s approximation (Gradshteyn and Ryzhik, 2015, p. 8.327),

ln r1(t) =

t−1∑
s=1

ln(s− αk(s))− ln(s− αk(s) + p̃(s))

=

t−1∑
s=1

− ln

(
1 +

p̃(s)

s− αk(s)

)
= C1 −

t−1∑
s=1

p̃

s− αk(s)
+O(s−2) ,
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for some constant C1 that captures the non-vanishing error in the approximation. By

assumption, k(s)
t↑∞∼ 1 + (s− 1)/µδ. Therefore, for large t,

ln r1(t) = C1 −
p̃

1− α/µδ
ln(t− 1) +O(t−1) ,

and r1(t)
t↑∞∼ t−p̃/(1−α/µδ). For the second term of cp(t),

ln r2(t) =

k(t)−1∑
m=1

ln

(
1 +

p̃(sm)

sm+1 − 1− αm

)
= C2 +

k(t)−1∑
m=1

p̃

sm+1 − 1− αm
+O(s−2

m+1) .

By assumption, sj
t↑∞∼ 1 + µδ(j − 1); for large t,

ln r2(t) = C2 +
p̃

µδ − α
ln(t− 1) +O(t−1) ,

and r2(t)
t↑∞∼ tp̃/(µδ−α). Therefore,

cp(t) = M∗p(s1:∞)t
−p̃ µδ−1

µδ−α (1 +O(t−1)) , (5.19)

where M∗p(s1:∞) captures the approximation constants C1 and C2. Note that if µδ = ∞,

cp(t) scales as t−p̃. With this scaling, denoting pj as the restriction of p to its first j

components, followed by all zeros, then

lim
t→∞

E[Zp(t) | s1:∞] = lim
t→∞

M∗pt
−p̃ µδ−1

µδ−αE[n1(t)p2 , . . . , n(t)pr+1
r | s1:∞] (5.20)

= E[Zpr−1(sr) | s1:∞]
Γ(1− α+ pr)

Γ(1− α)

Γ(sr − αr + p̃r−1)

Γ(sr − αr + p̃r)
. (5.21)
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Iterating yields the stated moments.

Random arrival times. By randomizing the arrival times, we can further characterize

the limiting random variables ξj conditional on the first j arrival times via their left-

conditional laws L(ξj | S1:j). Let Λ be the law of S1:∞ such that Λ(S1 = 1) = 1. We will

assume throughout that Λ admits a Markov decomposition into a sequence of probability

distributions for the inter-arrival times ∆j . That is,

Λ(S1:∞) =
∏
j≥1

Λ(j−1)(∆j | Sj−1) , (5.22)

for some sequence (Λ(j))j≥1 of discrete probability measures on N+. The decomposition

amounts to requiring that the j-th arrival time Sj depends on the previous arrival times only

through Sj−1. That is, S1, S2, . . . is an increasing Markov process onN+. Furthermore, they

do not depend on the sequence C1, C2, . . . , which means they can be sampled independently

of the urn process. Furthermore, in order to avoid partitions consisting entirely of singletons,

we require that Λ(j)(∆j+1 > 1) > 0 for j > 1.

As with the exchangeable random partitions in Section 2.2.4, the restriction Πt−1 of

a nested partition process with fixed arrival times is obtained from Πt by deletion of the

t-th element. We require the same property of Λ-random nested partition processes. Fur-

thermore, we require their finite-dimensional distributions to be coherent. We re-state that

requirement from (2.8):

P(Πt = {A1, . . . , Ak}) =

k(t)+1∑
j=1

P(T t+1
j Πt) . (5.23)
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The coherence requirement and the Pólya urn process determine the prediction rule

P(T t+1
j Πt | Πt) =


(1− λ(k)(t+ 1))

nj(t)−α
t−αk for 1 ≤ j ≤ k

λ(k)(t+ 1) for j = k + 1

, (5.24)

for a sequence (λ(k))k≥1 of sequential arrival time probabilities induced by Λ. For Λ(j)

on N+ with probability generating function

HΛ(j)(z) =
∞∑
n=1

qnz
n ,

the sequential arrival time probabilities are

λ(k)(t) = Λ(k)(∆k+1 = t− Sk | ∆k+1 ≥ t− sk, Sk = sk) (5.25)

=
qt−sk

1−
∑t−sk−1

n=1 qn
. (5.26)

For Λ satisfying (5.22) and the coherence property (5.23), there is the disintegration

nPP(α,Λ) =

∫
N∞+

nPP(α | δ1:∞)Λ(dδ1:∞) , (5.27)

and the following theorem.

Theorem 5.4 (Limiting count sequence for Λ-random arrival times). Fix α ∈ (−∞, 1)

and assume that Λ satisfies (5.22) and that

Sj
j

Λ-a.s.−−−−→
j→∞

µδ for some µδ ∈ R>0 ∪ {∞} ,
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and

1

j

j∑
m=1

1{∆m ≤ n}
Λ-a.s.−−−−→
j→∞

Λ(∆ ≤ n) for all n ∈ N+ .

Generate (Πt)t≥1 ∼ nPP(α,Λ). Then for each r ∈ N+, conditionally on the first r arrival

times,

lim
t→∞

M̃∗p(Λ)t−γE[n1(t)p1 · · ·nr(t)pr | S1:r] = E[ξp11 · · · ξ
pr
r | S1:r] where γ = 1− 1− α

µδ − α
,

(5.28)

for some constant M̃∗p(Λ). For each j ∈ N+, the marginal limiting left-conditional law

L(ξj | S1:j) is uniquely characterized by its moments for p > −(1− α)/2,

E[ξpj | S1:j ] =
Γ(1− α+ p)

Γ(1− α)

j−1∏
m=1

Sm+1−1∏
s=Sm

s− αm
s− αm+ p(1− λ(m)(s+ 1))

. (5.29)

Proof. As in the proof of Theorem 5.3, we rely on martingale techniques. Define (as

before), for fixed α ∈ (−∞, 1) and pi ∈ R>−(1−α), the ratio

Ri,pi(t) :=
Γ(ni(t)− α+ pi)

Γ(ni(t)− α)
.

Let p := (pi) be a vector of shifts. Further, let k(t) be the number of blocks in the partition

at step t. Define

c̃p(t) :=

t−1∏
s=1

s− αk(s)

s− αk(s) + p̃(1− λ(k(s)+1)(s+ 1))
where p̃ :=

r∑
i=1

pi . (5.30)
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Then

Z̃p(t) := c̃p(t)

r∏
i=1

Rji,pi(t) (5.31)

is a nonnegative martingale for t ≥ Sjr , with respect to (At)t≥1, the filtration generated

by the partition process. As in Theorem 5.3, a straightforward adaptation of the proof

of Proposition 2.1 shows that Z̃j,p(t) converges in L2 and therefore in L1 for p1, . . . , pr >

−(1− α)/2.

As in the fixed arrival time case, the asymptotics of c̃p(t) determine the scaling in (5.28).

In particular (abusing notation by absorbing all constants into C),

ln c̃p(t) = −
k(t)−1∑
m=1

Sm+1−1∑
s=Sm

ln

(
1 +

p̃

s− αm
− λ(m+1)(s+ 1)

s− αm

)
(5.32)

= C −
k(t)−1∑
m=1

Sm+1−1∑
s=Sm

p̃

s− αm
− λ(m+1)(s+ 1)

s− αm

= C − p̃

1− α/µδ
ln(t− 1) + p̃

∞∑
n=1

k(t)−1∑
m=1

1{∆m ≥ n} qn
1−

∑n−1
i=1 qi

m(µδ − α)

= C − p̃

1− α/µδ
ln(t− 1) + p̃

∞∑
n=1

k(t)−1∑
m=1

(1−
∑n−1

i=1 qi)
qn

1−
∑n−1
i=1 qi

m(µδ − α)

= C − p̃

1− α/µδ
ln(t− 1) + p̃

∞∑
n=1

k(t)−1∑
m=1

qn
m(µδ − α)

= C − p̃

1− α/µδ
ln(t− 1) +

p̃

µδ − α
ln(t− 1) . (5.33)

Therefore, c̃p(t) scales as M̃∗p(s1:∞)t
−p̃ µδ−1

µδ−α . (5.29) follows from

E[ξpj | S1:j ] = E[Z̃j,p(Sj) | S1:j ].

The moments of the limiting joint left-conditional law can be calculated iteratively. For
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a vector p, define pj to be the restriction to the first j components, and likewise for the

sum p̃j . Define p̃0 = 0.

Corollary 5.5. Let c̃j,p(t) be as in (5.30). For (Πt)t≥1 ∼ nPP(α,Λ) as in Theorem 5.4,

the mixed moments of the limiting joint left-conditional law L(ξ1, . . . , ξj | S1:r) are

E[ξp11 · · · ξ
pr
r | S1:r] =

r∏
i=1

Γ(1− α+ pi)

Γ(1− α)

c̃p̃i(Si)

c̃p̃i−1(Si)
, (5.34)

with c̃p̃(t) as in (5.30).

Proof. With j = (1, . . . , r),

E[ξp11 · · · ξ
pr
r | S1:r] = E[Z̃j,p(Sr) | S1:r]

= E[Z̃jr−1,pr−1(Sr) | S1:(r−1)]
Γ(1− α+ pr)

Γ(1− α)

c̃j,p(Sr)

c̃jr−1,pr−1(Sr)
.

Iterating for r − 1, . . . , 1 yields the result.

Specific families of distributions are studied in detail in the following sections, yielding

constructive representations of the limiting left-conditional laws.

5.2 Exchangeable Gibbs partition processes

An exchangeable random partition is said to be of Gibbs-type if, for some (non-random)

nonnegative weights u = (uj)j≥1 and v = (vt,k)t≥1,k≥1, the EPPF has the form

p(|A1|, . . . , |Ak|) = vt,k

k∏
j=1

u|Aj | . (5.35)
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The Gibbs-type family of models was studied by Gnedin and Pitman (2006) and forms the

basis for many Bayesian nonparametric statistical models. See De Blasi et al. (2015) for a

detailed review. Gnedin and Pitman (2006) showed that the weights define an exchangeable

Gibbs-type partition (EGP) if and only if2

uj = (1− α) . . . (j − 1 + 1− α)

=
Γ(j + 1− α)

Γ(1− α)
for −∞ < α < 1 , (5.36)

and the sequence v satisfies v1,1 = 1 and the backward recursion

vt,k = (t− αk)vt+1,k + vt+1,k+1 . (5.37)

A sequential construction can be deduced: Given Πt = {A1, A2, . . . , Ak}, the probability

that the next observation assigned to a new block k + 1 is

λ(k)
α,v(t+ 1) :=

vt+1,k+1

vt,k
. (5.38)

The probability that it is assigned to existing block j is

nj(t)− α
t− αk

(
1− λ(k)

α,v(t+ 1)
)
. (5.39)

These predictive probabilities uniquely characterize the law of an EGP, which we denote as

EGP(α, v).

2The case α = −∞ is also well-defined but it corresponds to a partition with a single block. Likewise,
α = 1 corresponds to all singleton blocks.
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Conditioned on being in an existing block, the new observation is allocated with prob-

ability identical to that of the urn processes in the previous section. Furthermore, at each

t the probability of an arrival time depends on the existing process only through t and the

number of previous arrivals. Denote by ΛEGP(α,v) the law of the arrival times induced by

a EGP(α, v) process. Then

EGP(α, v) =

∫
N∞+

nPP(α | δ1:∞)ΛEGP(α,v)(dδ1:∞) . (5.40)

EGPs are a special case of Theorem 5.4, with ΛEGP(α,v). Furthermore, µδ = ∞, implying

a scaling factor of t−1, as is well known for exchangeable sequences (see Section 2.2).

The moments of the limiting left-conditional laws (5.29) for EGPs have a particularly

simple form. Combining (5.37) and (5.38),

Eα,v[ξ
p
j | S1:j ] =

Γ(1− α+ p)

Γ(1− α)

j−1∏
m=1

Sm+1−1∏
s=Sm

(
1 + p

vs+1,m

vs,m

)−1

for p > −(1− α)/2 .

(5.41)

Using the identity (R. C. Griffiths and Spanò, 2007, Lemma 4.1)

Eα,v[ξ
p
j | Sj ] =

Γ(1− α+ p)

Γ(1− α)

vSj+p,j

vSj ,j
, (5.42)

we deduce that

Eα,v

 j−1∏
m=1

Sm+1−1∏
s=Sm

(
1 + p

vs+1,m

vs,m

)−1
∣∣∣∣∣∣ Sj

 =
vSj+p,j

vSj ,j
, (5.43)
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where the expectation is taken with respect to Λα,v, over the first j − 1 arrival times.

Ewens–Pitman EGPs. Perhaps the most distinguished member of the class of EGPs is

the so-called Ewens–Pitman two-parameter family, denoted as EGP(α, θ). Ewens (1972) in-

troduced the one-parameter Ewens sampling formula (ESF), which corresponds to EGP(0, θ),

in the context of the sampling theory of alleles. See the recent survey Crane (2016) for a

thorough overview of the ESF’s many appearances throughout probability and statistics.

Pitman (1995) studied the two-parameter model. See Pitman (1996, 2006) for more details,

including earlier related work.

Ewens–Pitman EGPs have weights

vt,k(α, θ) = αk
Γ(k + θ/α)

Γ(θ/α)

Γ(θ)

Γ(t+ θ)
with −∞ < α < 1 and θ ≥ −α . (5.44)

The special form of vt,k(α, θ) as a ratio vk/Ct enables constructive representations of the

limiting left-conditional laws.

Proposition 5.6. Let (Πt)t≥1 have law EGP(α, θ), for some −∞ < α < 1, θ > −α.

Then (5.28) holds with γ = 1. Furthermore, for any j ∈ N+,

ξj | Sj
d
= ψj where ψj ∼ Beta(1− α, Sj + θ − 1 + α) , (5.45)

and for any k > j ∈ N+,

ξk | Sj:k
d
= ξ′j

k−1∏
i=j

Bi where Bi
ind∼ Beta(Si + θ,∆i+1) and ξ′j

d
= ξj | Sj . (5.46)
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The members of the Ewens–Pitman family are the only EGPs such that ξj depends on the

previous inter-arrival times only through their sum, as in (5.45), that is,

ξj | S1:j
d
= ξj | Sj . (5.47)

Proof. Note that in the case of α ∈ (−∞, 0), Sj will be finite only for j ≤ θ/|α|. In that

case, for j > θ/|α|, ψj = ξj = 0. For all parameter values, µδ = ∞, so Theorem 5.4 holds

with γ = 1.

For non-zero ξj ,
vs+1,k

vs,k
= (s + θ)−1, which induces a left-conditional limiting law that

depends only on Sj ,

Eα,θ[ξ
p
j | S1:j ] =

Γ(1− α+ p)

Γ(1− α)

Γ(Sj + θ)

Γ(Sj + θ + p)
(5.48)

= Eα,θ[ξ
p
j | Sj ] .

The moments are recognizable as those of a Beta(1 − α, Sj + θ − 1 + α) random variable.

(5.46) also can be verified by checking the moments. Each Bi serves to “shift” the second

term of the product in (5.48):

Eα,θ[ξ
p
j | Sj ]Eα,θ[B

p
j | Sj:j+1] =

Γ(1− α+ p)Γ(Sj + θ)

Γ(1− α)Γ(Sj + θ + p)

Γ(Sj + θ + p)Γ(Sj+1 + θ)

Γ(Sj + θ)Γ(Sj+1 + θ + p)
(5.49)

= Eα,θ[ξ
p
j+1 | Sj+1] . (5.50)

Iterating gives the result for general k > j.

Kerov (2006) showed that the only EGPs with v-weights representable as ratios vk/Ct
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are the members of the Ewens–Pitman two-parameter family (see also Gnedin and Pitman,

2006), which implies the final claim, due to the form of (5.41).

The simplicity of the marginal left-conditional laws does not carry over entirely to the

joint left-conditional laws. The additional dependence induced by conditioning ξ1 on S2:r,

and ξ2 on S3:r, and so on, complicates the representations.

Let X be a positive random variable such that its Mellin transform is

E[Xp] =
Γ(a1 + β1p) · · ·Γ(aK + βKp)

Γ(a1) · · ·Γ(aK)

Γ(b1) · · ·Γ(bN )

Γ(b1 + β1p) · · ·Γ(bN + βNp)
. (5.51)

Then X is said to have moments of Gamma type (Janson, 2010). When all βk, βn = ±1,

X is said to have G distribution, denoted G(a1, . . . , aK ; b1, . . . , bN ) (Dufresne, 2010). G

random variables appear in the joint limiting left-conditional laws.

Proposition 5.7. Let (Πt)t≥1 have law EGP(α, θ), for some 0 < α < 1, θ > −α. Then

the joint limiting left-conditional law, conditional on S1:r, has the following constructive

representation: For j = 1, 2, . . . , let ψj be independent Beta(1− α, Sj + θ − 1 + α) ran-

dom variables, and let Gj be independent G(Sj + θ;Sj + θ − 1 + α) random variables, with

Mellin transform as in (5.51). Set

ξ̃j = ψj

r∏
i=j+1

Gi(1− ψi) for each 1 ≤ j ≤ r . (5.52)

Then for each r ∈ N+,

(ξ1, . . . , ξr) | S1:r
d
= (ξ̃1, . . . , ξ̃r) .
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Proof. Using (5.34), for any p1, . . . , pr > −(1− α)/2

Eα,θ[ξ
p1
1 · · · ξ

pr
r | S1:r] =

r∏
j=1

Γ(1− α+ pj)

Γ(1− α)

Γ(Sj + θ + p̃j−1)

Γ(Sj + θ + p̃j)
. (5.53)

Furthermore,

E[ξ̃p11 · · · ξ̃
pr
r ] = E

[
ψp11

r∏
j=2

ψ
pj
j (1− ψj)p̃j−1G

p̃j−1

j

]
= E[ψp11 ]

r∏
j=2

E[ψ
pj
j (1− ψj)p̃j−1 ]E[G

p̃j−1

j ]

=
Γ(1− α+ p1)

Γ(1− α)

Γ(S1 + θ)

Γ(S1 + θ + p1)
× · · ·

r∏
j=2

Γ(1− α+ pj)Γ(Sj + θ − 1 + α+ p̃j−1)Γ(Sj + θ)

Γ(1− α)Γ(Sj + θ − 1 + α)Γ(Sj + θ + p̃j)

Γ(Sj + θ + p̃j−1)Γ(Sj + θ − 1 + α)

Γ(Sj + θ)Γ(Sj + θ − 1 + α+ p̃j−1)

=

r∏
j=1

Γ(1− α+ pj)

Γ(1− α)

Γ(Sj + θ + p̃j−1)

Γ(Sj + θ + p̃j)
,

which establishes the claim.

5.3 Yule–Simon partition processes

The models in this section get their name from their similarity to the pure birth point

process proposed in Yule (1925) to model the evolution of the number of species within

a genus, and on the distribution of sizes of genera. Simon (1955) proposed the sequential

model described below as a simple model for text, with the aim of constructing a distribution

of word frequencies that exhibited power law behavior. Simon, recognizing the connection

to Yule’s work, proposed naming the resulting distribution after Yule, but Simon’s name

has historically been attached, as well. In fact, variations on this model have appeared in

various branches of science; a fascinating review of its different incarnations is Simkin and
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Roychowdhury (2011).

The Yule–Simon model differs from EGPs in that at each t, the probability of a new

block is constant:

λ(k)

β (t+ 1) = β for all k, t ∈ N+ . (5.54)

The original Yule–Simon model allocated observations to an existing block with probability

proportional to the block size, and is therefore an example of a nested Pólya urn with

α = 0.3 We use the general Pólya urn rule and denote the law of Yule–Simon partitions as

YS(β, α).

The model gives rise to an eponymous distribution, which characterizes the asymptotic

block size distribution, i.e. the probability pd that a block sampled uniformly at random is

of size d. Simon (1955) showed that the distribution is

pd = ρ
Γ(d)Γ(1 + ρ)

Γ(d+ 1 + ρ)
for ρ > 0. (5.55)

In the context of YS(β) partitions, ρ = 1/(1− β). We defer further discussion of the block

size distribution until Section 5.4, when it will be used to study the degree distribution of

random graphs formed from random partitions.

The Yule–Simon model is perhaps the simplest nested Pólya partition model with i.i.d.

inter-arrival times. We refer to such models as τ -i.i.d. , where τ is the distribution of the

3Simon (1955) actually makes a weaker assumption, that the probability an observation is allocated
to an existing block of size k is proportional to the total number of observations in all blocks of size k.
Although it is satisfied by the Pólya urn mechanism with α = 0, the assumption leaves open the possibility
of non-uniform allocation among blocks of size k.
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arrival times. The sequential construction, in which a Bernoulli(β) random variable at each

step determines whether or not to create a new block, is converted to a nested Pólya urn

process by setting ∆1 = 1 and sampling

∆j
iid∼ Geometric(β) for j ≥ 2 .

The memoryless property, unique to the Geometric distribution of all discrete probability

distributions, yields simple representations of the left-conditional laws, particularly when

α = 0, similar to those in the Ewens–Pitman EGP(α, θ) case.

Proposition 5.8. Let (Πt)t≥1 have law YS(β, α). Then (5.28) holds with γ = 1−β
1−βα . Let

ρ = 1/(1− β), and define

Mj ∼ Mittag-Leffler(ρ−1, Sj − 1− α(j − 1))

ψj ∼ Beta(1− α, ρ(Sj − 1− α(j − 1)) + α)

Vj ∼ Beta(Sj − αj, α)

Bj ∼ Beta(Sj − α(j − 1),∆j+1 − α)

For any j ∈ N+,

ξj | S1:j
d
= ψjMj

j−1∏
m=1

V 1/ρ
m , (5.56)
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and for any k > j ∈ N+,

ξk | S1:k
d
= ξ′j

k−1∏
i=j

V
1/ρ
i B

1/ρ
i where ξ′j

d
= ξj | S1:j . (5.57)

The members of the YS(β, 0) = YS(β) family are the only nPP(α,Λi.i.d.
τ ) partitions such

that ξj depends on the previous inter-arrival times only through their sum. That is,

ξj | S1:j
d
= ξj | Sj .

Remark. In the case of α = 0, the distributional identities simplify considerably. In partic-

ular, (5.56) becomes

ξj | S1:j
d
= ψjMj .

/

Proof. The almost sure limit of (Sj − 1)/(j − 1) is µδ = 1/β, which yields γ = 1−β
1−βα .

(5.29) implies

Eβ,α[ξpj | ∆1:j ] =
Γ(1− α+ p)Γ(Sj − α(j − 1))

Γ(1− α)Γ(Sj − α(j − 1) + p/ρ)

j−1∏
m=1

Γ(Sm − αm+ p/ρ)Γ(Sm − α(m− 1))

Γ(Sm − αm)Γ(Sm − α(m− 1) + p/ρ)

= E[ψpjM
p
j ]

j−1∏
m=1

E[V p/ρ
m ] ,

which verifies (5.56). (5.57) is obtained in a similar way as its EGP(α, θ) counterpart,

(5.46): Each application of B
1/ρ
j “shifts” ψjMj to ψj+1Mj+1. Multiplication by V

1/ρ
j results

in the correct moments.
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When α = 0, Vm = 1 for all m, yielding simplified moments for ξj that depend only

on Sj . This property is unique to the YS(β) family among all nPP(α,Λi.i.d.
τ ) partitions

because λ(k)

β (t+ 1) = β is memoryless. Among all discrete probability distributions, only

the Geometric distribution is memoryless.

5.4 Random graphs from random partitions

There are multiple ways to create a graph G from a partition Π. The simplest is to treat

each observation as a vertex, and to add an edge between vertex v and vertex v′ if they

occupy the same block of Π. More precisely, let b(t) be the block of Π that contains t. Then

v •−• v′ ⇐⇒ b(v) = b(v′) .

However, this rule creates graphs with k(t) disjoint components, each of which is the com-

plete graph on |Aj | vertices. See Aldous (1997) for a different construction that connects

the component sizes in a Erdős-Rényi random graph to the multiplicative coalescent.

In this section we use a different procedure. Given a partition Π2t of [2t] with k blocks,

form a multigraph with t edges, Gt = ϕt(Π2t) as follows:

• For each block j = 1, . . . , k, create vertex vj .

• For each odd s < 2t, create the edge (b(s), b(s+ 1)) with label ds/2e.

The maps ϕt : P̃2t → Gt are bijective because the edges are labeled in order of appearance. If

the edge labels are discarded, Gt corresponds to more than one partition, and an equivalent

way to generate Gt is to sample pairs of elements of Π2t uniformly without replacement,
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and connect each pair with an edge. In either case, the induced mapping between blocks

and vertices is bijective.

A number of existing models for random graphs can be constructed this way, each with

a different distribution for Π2t. These include:

Preferential attachment graphs (Barabási and Albert, 1999; Berger, Borgs,

Chayes, and Saberi, 2014; Peköz, Ross, and Röllin, 2014). Given parameters

α and ` ∈ N+ and a seed graph Gn0 on n0 vertices with e0 edges, construct a random

multigraph with the following sequential process: For n > n0, add a new vertex vn+1. For

m = 1, . . . , `, add a new edge with one end connected to vn+1, and the other end connected

to vertex v′ ∈ V(Gn) ∪ {vn+1} with probability

dv′(n+m− 1)− α
e0 + `(n− n0)− α(n+ 1) +m− 1

. (5.58)

The PA model and its variations have been subject to extensive study. The local weak limit

was described in Berger, Borgs, Chayes, and Saberi (2014) using a nested paintbox similar

to Algorithm 5.3. The joint degree sequence for general seed graphs was characterized in

Peköz, Ross, and Röllin (2014), and studied from a different perspective by James (2015);

similar distributional results can be obtained from Theorems 5.3 and 5.4. The ACL(β)

model discussed in Chapter 3 is a generalization of the PA model that is closely related to

YS(β) partitions.

Factorizable edge-exchangeable models (Crane and Dempsey, 2015a, 2016; Cai,
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Campbell, and Broderick, 2016). As introduced in Section 2.3.1, let E1, E2, · · · =

(V, V ′)1, (V, V
′)2, . . . be an exchangeable sequence of edges, with entries taking values in

the measurable product space V∗ × V∗ (with σ-algebra AV∗). A graph formed from the

edges and the induced vertex set is called an edge-exchangeable graph, as studied in Crane

and Dempsey (2016) and Cai, Campbell, and Broderick (2016). de Finetti’s theorem,

adapted to edge-exchangeable graphs in Crane and Dempsey (2016), says that every edge-

exchangeable graph can be represented as a mixture of i.i.d. draws from a probability

distribution µ : V∗ × V∗ → [0, 1]. Consider a mixing distribution that places mass only on

factorizable µ, i.e. there is some m̃u such that

µ(A×B) = µ̃(A)µ̃(B), for all A, B ∈ AV∗ .

Such a model generates an exchangeable sequence of ends of edges, or edge stubs (New-

man, 2009; Riordan, 2012); it might be said to be “stub-exchangeable”. The specific model

studied in Crane and Dempsey (2016), called the Hollywood model because it was applied

to a dataset from the Internet Movie Database (IMDb), is precisely the Ewens–Pitman

EGP(α, θ) process adapted as a stub-exchangeable model for hypergraphs.4 The Holly-

wood model inherits a well-known property of EGP(α, θ) processes: The law of the limiting

block size proportions sorted into non-increasing order, denoted as (ξ↓j )j≥1, is the so-called

Poisson-Dirichlet distribution (Pitman and Yor, 1997; Pitman, 2006) PD(α, θ). There-

fore, µ̃ in the Hollywood model is PD(α, θ).

4Crane and Dempsey (2016) generalized to hypergraphs, where an edge is defined to be a set of k vertices,
with a possibly random k for each edge. For fixed k = 2, multigraphs from the Hollywood model are the
multigraph sequence formed from an EGP(α, θ) process. In the more general case, the same basic intuition
applies.
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5.5 Sparsity and degree distributions

The previous sections examined the limiting behavior of the ordered block count sequences;

the bijectivity of the mapping between blocks and vertices allows those properties to be

transferred without modification to the degree sequences of the resulting random graphs.

Of interest in many settings is the degree distribution. Intuitively, the degree distribution

is the probability that a uniformly sampled vertex will have degree d. More precisely, let

Ne(t) and Nv(t) be the number of edges and vertices, respectively, in Gt. Let md(t) be the

number of vertices in Gt with degree d. The degree distribution is the empirical histogram

vector Nv(t)
−1(md(t))d≥1 := ((pd(t))d≥1)t≥1, as in Section 3.2.2. Two of the most widely

cited empirical properties of real networks, repeated from Chapter 2, are:

• Sparsity. Roughly, the average degree grows more slowly than the number of edges

needed for a complete graph on the same number of vertices. Let Ne(t) and Nv(t)

denote the number of edges and vertices, respectively, in Gt. For 1 ≤ ε < 2, we call a

graph sequence (Gt)t>0 ε-sparse if

lim sup
t→∞

Ne(t)

Nv(t)ε
= cε > 0 . (5.59)

If ε ≥ 2, the network is called dense. Note that ε > 2 is only possible for multigraphs.

• Power law degree distribution. A graph sequence (Gt)t>0 exhibits a power law
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degree distribution with exponent η > 1 if

pd(t) :=
md(t)

Nv(t)

t↑∞∼ L(d)d−η for all large d as t→∞ , (5.60)

for some slowly varying function L(d), that is, limx→∞ L(rx)/L(x) = 1 for all r > 0

(e.g. Feller, 1971; Bingham, Goldie, and Teugels, 1989), and where a(t)
t↑∞∼ b(t) indi-

cates limt→∞ a(t)/b(t)→ 1.

For models based on a nested Pólya urn process, the two properties are intimately related.

It is easy to see that sparsity is entirely controlled by the distribution of the arrival times.

Perhaps harder to see is that the tail behavior of the degree distribution is also controlled

by Λ. Intuitively, if the number of vertices grows quickly, there will be many vertices of

small degree, placing high probability mass on small values of d. If vertex growth is too

high, the preferential attachment mechanism will have minimal effect and the tails will

fall off quickly; the degenerate cases of YS(1, α) or EGP(1, θ), for example, result in all

vertices of degree d = 1. As the new vertex rate of growth decreases, the effect of the

preferential attachment mechanism grows stronger and more vertices of higher degree will

occur, spreading probability mass away from small d. If the rate of growth is too low, the

degree distribution concentrates entirely on large d.

The tail behavior of the limiting degree distributions for EGP models and YS models

makes this clear. In the EGP case, the limiting degree distribution is (Pitman, 2006,

Lemma 3.11)

pEGP
α (d) = α

Γ(d− α)

Γ(d+ 1)Γ(1− α)
(5.61)
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=
α

Γ(1− α)
d−(1+α)(1 +O(d−1)) . (5.62)

In the YS case, the limiting degree distribution is a generalization of the well-known Yule–

Simon distribution introduced in Chapter 3 (see Appendix D.1)

pYS
β,α(d) = ρ(β, α)

Γ(d− α)Γ(1− α+ ρ(β, α))

Γ(1− α)Γ(d+ 1− α+ ρ(β, α))
where ρ(β, α) :=

1− βα
1− β

(5.63)

= ρ(β, α)
Γ(1− α+ ρ(β, α))

Γ(1− α)
d−(1+ρ(β,α))(1 +O(d−1)) .

In the EGP process, exchangeability requires that the rate of vertex arrivals decrease

asymptotically to zero; as a result, the degree exponent is η ∈ (1, 2). On the other hand,

the rate of vertex arrivals is constant (in expectation) in the non-exchangeable YS process;

the degree exponent is η ∈ (2,∞).

We make this intuition precise for random graph models built from exchangeable random

partitions in the following:

Proposition 5.9. Let (Gt)t≥1 = (ϕt(Π2t))t≥1, where the law of (Π2t)t≥1 is exchange-

able. Then the law of (Gt)t≥1 is invariant under the symmetric group acting on stubs,

and the graph sequence is either dense (ε ≥ 2) or has sparsity ε > 1. If, as t → ∞, the

degree distribution obeys a power law, its exponent is in the interval (1, 2). Moreover, if

the graph is both ε-sparse and has power law degree distribution, the power law exponent is

η = 1 + ε−1 ∈ (3/2, 2).

Proof. For α < 0, the Nv(t) is finite for all t greater than some finite T (Pitman, 2006),

resulting in dense graph sequences that do not exhibit power law degree distributions.
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For α = 0, Nv(t) ≈ log(2t), also resulting in dense sequences without power law degree

distributions.

For 0 < α < 1, all claims follow from Pitman (2006), Lemma 3.11: Nv(t)/(2t)
α a.s.−→ Zα

as t→∞, where Zα is a strictly positive random variable, yielding ε = 1/α. The definition

of sparsity requires α > 1/2. Furthermore, the asymptotic degree distribution is given in

(5.61) so η = 1 + α ∈ (1, 2). When the graph sequence is sparse, 3/2 < η < 2.

Remark. Crane and Dempsey (2016) define sparsity for hypergraphs; adapting ε-sparsity to

their definition, a hypergraph sequence is sparse if ε < µv, where µv is the average number

of vertices participating in each edge. Analogous claims can be shown to hold; in that case,

a sequence exhibiting both sparsity (i.e. α > 1/µv) and power law degree distribution has

η ∈ (1 + 1/µv, 2). /

For random graphs constructed from YS(β, α) partition processes, there is a counter-

part:

Proposition 5.10. Let (Gt)t≥1 = (ϕt(Π2t))t≥1, where (Π2t)t≥1 has law YS(β, α). Then

the graph sequence is almost surely ε-sparse with ε = 1, and the degree distribution obeys a

power law with exponent η = 1 + 1−βα
1−β ∈ (2,∞), as t→∞.

Proof. The sparsity claim is a straightforward result of the law of large numbers for a sum

of i.i.d. Bernoulli(β) random variables: The number of vertices scales as 1 + β(2t− 1)/2.

The asymptotic degree distribution is as in (5.63), which proves the claim.

Remark. We note that 1/ρ(β, α) is equal to γ, the scaling of the block count sequence for

YS(β, α) models in Proposition 5.8. The relationship suggests the following conjecture. /
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Conjecture 5.11. Let (Gt)t≥1 = (ϕt(Π2t))t≥1, where (Π2t)t≥1 has law nPP(α,Λi.i.d.
τ ),

and 0 < µτ < ∞ is the expectation of a τ -distributed random variable. Then the degree

distribution obeys a power law with exponent

η = 1 +
µτ − α
µτ − 1

∈ (2,∞) .

Finally, we characterize the degree distribution of all EGP(α, v) and YS(β, α) random

graph models as compound beta-geometric distributions:

Proposition 5.12. Let (Gt)t≥1 = (ϕt(Π2t))t≥1, where (Π2t)t≥1 either has law EGP(α, v)

or YS(β, α), for 0 < α < 1. Then the asymptotic degree distribution is a compound beta-

geometric distribution with the following representation:

p(d) = E[X(1−X)d−1] where X ∼


Beta(α, 1− α) if (Π2t)t≥1 ∼ EGP(α, v)

Beta(ρ(β, α), 1− α) if (Π2t)t≥1 ∼ YS(β, α)

.

(5.64)

Proof. If X ∼ Beta(a, b), then for any p > −a, q > −b,

E[Xp(1−X)q] =
Γ(a+ p)Γ(b+ q)Γ(a+ b)

Γ(a)Γ(b)Γ(a+ b+ p+ q)
.

Then

pEGP
α (d) =

Γ(1 + α)Γ(d− α)

Γ(α)Γ(1− α)Γ(d+ 1)

= α
Γ(d− α)

Γ(1− α)Γ(d+ 1)
,
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and

pYS
β,α(d) =

Γ(1 + ρ(β, α))Γ(d− α)Γ(1− α+ ρ(β, α))

Γ(ρ(β, α))Γ(1− α)Γ(d+ 1− α+ ρ(β, α))

= ρ(β, α)
Γ(d− α)Γ(1− α+ ρ(β, α))

Γ(1− α)Γ(d+ 1− α+ ρ(β, α))
,

which proves the claim.

Remark. The construction of the Yule–Simon distribution (5.63) with α = 0 is typically

given as a compound exponential-geometric distribution,

p(d) = E[e−X(1− e−X)d−1] where X ∼ Exponential(ρ(β, 0)) .

The construction follows directly from properties of Yule’s birth process (Yule, 1925). For

B ∼ Beta(a, 1) and X ∼ Exponential(a), there is the equality in distribution B
d
= e−X .

Therefore, it is straightforward to show that this construction is equivalent to the YS(β, 0)

case in (5.64). /

5.6 Discussion

The results in this chapter shed some light on the behavior of the tails of the degree distribu-

tion for preferential attachment-type models. At a high level, a power law requires that new

blocks be added to a partition at a sufficiently high rate. As Proposition 5.10 shows, one

way to produce power law behavior is to have i.i.d. inter-arrival times with Geometric(β)

distribution. Even when α = 0, a power law is obtained. The exchangeable case, however,

requires α > 0 to generate a power law distribution. Propositions 5.9 and 5.10 indicate
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that PA-type models for random graphs formed from edge sequences have two complemen-

tary regimes: exchangeable and non-exchangeable. A similar (non-rigorous) argument was

made by Crane and Dempsey (2015b), based on the rate of growth of the number of ver-

tices; the growth rates corresponding to the two regimes are precisely the ε-sparsity levels

of Propositions 5.9 and 5.10

The technique of Poissonization has been used to analyze asymptotic properties of ex-

changeable urn models (Gnedin, Hansen, and Pitman, 2007). Such an approach seems

natural in the non-exchangeable case. In particular, Yule’s original model was mapped to

a time-changed Poisson point process by Kendall (1966), and the connections here between

EGPs and Yule–Simon processes seem promising.

Finally, there is a literature on the limits of permutations and partitions with various

restrictions placed on them (e.g. Gnedin, 2006; Chen and Winkel, 2013; Gnedin and Gorin,

2015). To our knowledge, none of the existing work applies directly to the models studied

here; deeper connections may exist.

Higher-order models. Given that the number of vertices and the degree sequence are

predictive sufficient statistics at each t, it is perhaps not surprising that the class of models

studied in this chapter only allows modeling control of sparsity and degree properties. It is

in this sense that we call the edge density zeroeth-order and the degree sequence first-order

statistics. While it is possible to calculate the properties of higher-order statistics for models

based on zeroeth- and first-order statistics, such models do not offer sufficient flexibility as

statistical models to capture structure of higher orders.

It is natural to ask what sorts of higher-order statistics could be used as the basis for
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more flexible statistical models. While a number of possibilities may exist, one is provided

by realizing that the normalized degree sequence of a graph is the stationary distribution

of a simple random walk on the graph (and therefore also the dominant left eigenvector of

the transition matrix W). In a sequential model, inserting an edge by sampling twice from

the degree-biased distribution is equivalent in distribution to performing two infinite-length

random walks. Considering finite-length walks provides motivation for the random walk

models in Chapter 3.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 3.1

If K has law P with probability generating function G(z), then

EP [(D−1A)K ] =
∑
k

(D−1A)KP (K = k) = D−1/2

[∑
k

(In − L)kP (K = k)

]
D1/2

= D−1/2

[∑
k

n∑
i=1

(1− σi)kψiψ′iP (K = k)

]
D1/2

= D−1/2

[
n∑
i=1

∑
k

(1− σi)kψiψ′iP (K = k)

]
D1/2

= D−1/2

[
n∑
i=1

GP (1− σi)ψiψ′i

]
D1/2

= D−1/2GP (In − L)D1/2 . (A.1)

L is symmetric and positive semi-definite, so the eigenvalue decomposition always exists.

Moreover, it is well known that the eigenvalues of L are σi ∈ [0, 2] (Chung, 1997), so the

proof holds if G(z) exists for |z| ≤ 1.
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A.2 Proof of Proposition 3.2

The result can be read from Proposition 3.1, but we include the following calculations for

completeness. If K has law Poisson+(λ), (3.1) becomes

Qλ =

∞∑
k=0

e−λλk

k!
(D−1A)k+1 = D−1/2

[
(In − L) e−λ

∞∑
k=0

λk (In − L)k

k!

]
D1/2

= D−1/2
[
(In − L) e−λL

]
D1/2 = D−1/2

[
(In − L) Kλ

]
D1/2 .

Since the spectral norm of I− L is 1, series is absolutely convergent. For K ∼ NB+(r, p),

∞∑
k=0

Γ(k + r)

Γ(k + 1)Γ(r)
pk(1− p)r(D−1A)k+1 = D−1/2

[
(In − L)

(
In +

p

1− p
L

)−r]
D1/2

similarly yields Qr,p = D−1/2 [(In − L) Kr,p]D1/2.

A.3 Proof of Theorem 3.3

We begin with a lemma used in the proofs of Theorem 3.3 and Theorem 3.4. Let δ
(1)
j (t) be

an indicator variable that is equal to 1 if the first end of the t-th edge is attached to vertex

vj , and 0 otherwise; likewise define δ
(2)
j (t) for the second end of the t-th edge.

Lemma A.1. Suppose a sequence of graphs is generated with law RWSB(β, P ), such that

P is a probability distribution on N. Then the size-biased distribution St is left-invariant

under the mixed random walk probability Qt induced by P , that is

S′tQt = S′t where [Qt]uv := P{Vend = v | V0 = u,Gt} (A.2)
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holds for every t ∈ N+. Furthermore, for each vj ∈ V(Gt), the following holds:

E[δ
(1)
j (t+ 1) | Gt] =

1

1− β
E[δ

(2)
j (t+ 1) | Gt] =

degt(vj)

2t
. (A.3)

Proof. Substituting (3.1) into S′tQt yields

S′tQt =
∑
k

S′t(D
−1A)kP{K = k} =

∑
k

S′tP{K = k} = S′t . (A.4)

The RWSB model samples the first end of each edge from the size-biased distribution:

E[δ
(1)
j (t+ 1) | Gt] = P[Vt+1 = vj | Gt] =

degt(vj)

2t
. (A.5)

For the second end, denote by 1j,t the indicator vector for vertex vj . Then

E[δ
(2)
j (t+ 1) | Gt] =

∑
u

P[Vt+1 = u | Gt]
[
Qt
]
uv

= (1− β)S′tQt1j,t = (1− β)
degt(vj)

2t
.

In the setup of Theorem 3.3, asymptotic expected degree counts are as follows:

Lemma A.2. Let a sequence of multigraphs (G1, G2, . . . ) have law RWSB(β, P ), for a prob-

ability distribution P on N satisfying Equation (3.11). Then

E[md,t]

βt

a.s.−→ pd for each d ∈ N as t→∞ , (A.6)

where pd is given in (3.9).
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Proof. Equations (A.3) and (3.11) yield the recurrence

E(md,t+1) = β · δ1(d) + E(md,t)
(

1− (2− β)d

2t

)
+ E(md−1,t)

(2− β)(d− 1)

2t
+ o(1) ,

with m0,t = 0 for all t. This can be written more generally as

M(d, t+ 1) = (1− b(t)/t)M(d, t) + g(t) . (A.7)

If b(t)→ b and g(t)→ g, then M(d, t)/t→ g/(b+ 1) (e.g. Durrett, 2006, Lemmas 4.1.1,

4.1.2). For d = 1, we have b(t) = b = (2− β)/2 and g(t) = g = β, so E(m1,t)/t→ 2β
4−β = βp1.

Proceeding by induction, b = (2− β)d/2 and g = βpd−1(2− β)(d− 1)/2 yield

E[md,t]

βt
→ pd−1

(2−β)(d−1)
2+(2−β)d =

2

4− β

d−1∏
j=1

j
2

2−β + j + 1
=

2

2− β
Γ(d)Γ(2 + β

2−β )

Γ(d+ 2 + β
2−β )

,

for d > 1, which is just pd as defined in (3.9).

The following result, the proof of which can be found in Chung and Lu (2006, Section

3.6), shows that the random variable md,t concentrates about its mean:

Lemma A.3. Let a sequence of multigraphs (G1, G2, . . . ) have law RWSB(β, P ), for a prob-

ability distribution P on N satisfying Equation (3.11). Then

P
[ ∣∣∣md,t

βt
− pd

∣∣∣ ≤ 2

√
d3 log t

β2t

]
≥ 1− 2(t+ 1)d−1t−d = 1− o(1) . (A.8)

Proof of Theorem 3.3. Lemma A.3 shows that
md,t
βt concentrates around its mean, and

with Lemma A.2 showing that the mean is pd, the proof of the theorem is complete.
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A.4 Proof of Theorem 3.4

By definition of RW models (see Algorithm 3.1), at each step t a new vertex appears with

probability β, which is represented as a collection of Bernoulli(β) random variables (Bt)t≥2.

Alternatively, there is the collection of steps S1, S2, . . . , Sj , . . . at which new vertices appear,

such that Sj is the step at which the j-th vertex appears. By the fundamental relationship

between Bernoulli and Geometric random variables, the sequence S1, S2, . . . , Sj , . . . can be

sampled independently of the graph sequence as S1 = S2 = 1 and

Sj = Sj−1 + ∆j , where ∆j
iid∼ Geometric(β), for j > 2. (A.9)

In what follows, we condition on the sequence (Sj)j≥1 unless explicitly stated otherwise.

We begin by calculating the expected degree of the j-th vertex.

Lemma A.4. Let a sequence of multigraphs (G1, G2, . . . ) have law RWSB(β, P ) such that

Lemma A.1 applies. Let dj(t) := degt(vj) be the degree of vj in graph Gt, where vj is the

j-th vertex to appear in the graph sequence, and let ρ = 1 + β
2−β . Then conditional on Sj,

dj(t)t
−1/ρ converges almost surely to a random variable ξj as t→∞, and

E[dj(t) | Sj ] =
Γ(Sj)Γ(t+ 1

ρ)

Γ(Sj + 1
ρ)Γ(t)

(A.10)

Proof. Let At denote the σ-algebra generated after t steps. Then for t ≥ Sj ,

E[dj(t+ 1) | At] = dj(t) + E[δ
(1)
j (t+ 1) | At] + E[δ

(2)
j (t+ 1) | At] = dj(t)(1 + 1

ρt) ,
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where the final identity follows from Lemma A.1, and dj(Sj) = 1. The sequence

Mj(t) := dj(t)
Γ(Sj + 1

ρ)

Γ(Sj)
· Γ(t)

Γ(t+ 1
ρ)

for t ≥ Sj

is a non-negative martingale with mean 1, by (A.4). Therefore, Mj(t) converges almost

surely to a random variable Mj as t→∞. Taking expectations on both sides and rearrang-

ing (A.4) yields (A.10). With Stirling’s formula,

dj(t)

t1/ρ
a.s.−→Mj

Γ(Sj)

Γ(Sj + 1
ρ)

:= ξj . (A.11)

We now consider the joint distribution of the limiting random variables (ξj)j≥1. The

approach, which is adapted from Móri (2005) (Durrett, 2006; Hofstad, 2016, see also), is to

analyze a martingale that yields the moments of (ξj)j≥1. First, define for t ≥ Sj ,

Rj,k(t) :=
Γ(dj(t) + k)

Γ(dj(t))Γ(k + 1)
, (A.12)

At a high level, Rj,k(t) ≈ dj(t)k/k! for large t, so (A.11) shows that properly scaled Rj,k(t)

should converge to ξkj /k! for each j. We make this precise in what follows.

Let j := (ji) be an ordered collection of vertices such that 1 ≤ j1 < j2 < · · · < jr, and

let k := (ki) be a corresponding vector of moments. To define a suitable martingale, we
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abbreviate

µk :=

r∑
i=1

ki and Σj,k(t) :=

r∑
i,l=1

(
1

2

)1i=l ki(kl − 1i=l)
djl(t) + 1i=l

[Qt]jijl ,

and note [Qt]jj′ = 0 for all t < max{Sj , Sj′}. Define

cj,k(t) = Γ(t)
[t−1∏
s=0

(
s+ µk

ρ + 1−β
2 Σj,k(s)

)]−1
, (A.13)

which is a random variable since Qt is random, and is At-measurable for each t. Since

[Qt]jijl < 1, and since dj(t)
a.s.−→ ∞ as t → ∞ by by Lemma A.4, Σj,k(t)

a.s.−→ 0 as t → ∞,

which yields

cj,k(t) =
Γ(t)

Γ(t+ 1
ρµk)

(1 + o(1)) = t−µk/ρ(1 + o(1)) as t→∞ . (A.14)

Note that

lim
t→∞

cj,k(t)

r∏
i=1

Rji,ki =

r∏
i=1

ξkiji
Γ(ki + 1)

, (A.15)

if the limit exists. Existence is based on the following result:

Lemma A.5. Let At denote the σ-algebra generated by a RWSB(β, P ) multigraph se-

quence up to step t. Let r > 0 and 1 ≤ j1 < j2 < · · · < jr be integers, and real-valued

k1, k2, . . . , kr > −1. Then with Rj,k(t) defined in (A.12) and cj,k(t) defined in (A.13),

Zj,k(t) := cj,k(t)
r∏
i=1

Rji,ki(t) (A.16)
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is a nonnegative martingale for t ≥ max{Sjr , 1}. If k1, k2, . . . , kr > −1
2 , then Zj,k(t) con-

verges in L2.

Proof. It can be shown that

E
[ r∏
i=1

Rji,ki(t+ 1)
∣∣∣ At] =

( r∏
i=1

Rji,ki(t)
)(

1 +
µk
ρt

+
1− β

2t
Σj,k(t)

)
, (A.17)

from which it follows that

E[Zj,k(t+ 1) | At] = cj,k(t+ 1)Rj,k(t)
(

1 +
µk
ρt

+
1− β

2t
Σj,k(t)

)
= cj,k(t)Rj,k(t) = Zj,k(t) .

(A.18)

Furthermore, Zj,k(max{Sjr , 1}) > 0. By (A.14) and properties of the gamma function,

Zj,k(t)2 ≤ Zj,2k(t)
r∏
i=1

(
2ki
ki

)
. (A.19)

By (A.18), Zj,2k(t) is a martingale with finite expectation for 2k1, . . . , 2kr > −1. There-

fore, Zj,k(t) is an L2-bounded martingale and hence converges in L2 (and also in L1) for

k1, . . . , kr > −1
2 .

Combining the auxiliary results above, we can now give proof of the result.

Proof of Theorem 3.4. The limit of Zj,k(t) is (A.15), which enables calculation of the

moments of ξj . In particular, for any vertex vj , j ∈ N+, k ∈ R such that k > −1
2 ,

E
[

ξkj
Γ(k+1)

∣∣∣ Sj] = lim
t→∞

E[Zj,k(t) | Sj ] = E[Zj,k(Sj) | Sj ] =
Γ(Sj)

Γ(Sj+
k
ρ

)
. (A.20)
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Although the joint moments involve Σj,k, the moments (A.20) characterize the marginal

distribution of ξj | Sj via the Laplace transform. Since

E[ξkj | Sj ] =
Γ(Sj)Γ(k + 1)

Γ
(
Sj + k

ρ

) =
Γ (ρ(Sj − 1) + 1 + k) Γ(Sj)

Γ (ρ(Sj − 1) + 1) Γ
(
Sj + k

ρ

) Γ (ρ(Sj − 1) + 1) Γ(k + 1)

Γ (ρ(Sj − 1) + 1 + k)
,

E[ξkj | Sj ] = E[Mk
j B

k
j | Sj ], where Mj is a generalized Mittag-Leffler(ρ−1, Sj − 1) variable

(James, 2015), and Bj is Bj ∼ Beta(1, ρ(Sj − 1)). It follows that Mj ⊥⊥Sj Bj .

It remains to show (3.15). We begin by noting that the left-hand side of (A.20) is

an expectation that conditions on Sj . Define S̃j := Sj − 1− (j − 2), which is marginally

distributed as NB(j − 2, 1− β). Then

E
[
E[ξkj | Sj ]

]
= E

[Γ(S̃j + 1 + (j − 2))Γ(k + 1)

Γ(S̃j + 1 + (j − 2) + k
ρ )

]
=
∞∑
t=0

Γ(t+ 1 + (j − 2))Γ(k + 1)

Γ(t+ 1 + (j − 2) + k
ρ )

Γ(t+ j − 2)

Γ(j − 2)Γ(t+ 1)
(1− β)tβj−2 (A.21)

=
Γ(k + 1)Γ(j − 1)

Γ(j − 1 + k
ρ )

β
k
ρ 2F1(1 +

k

ρ
,
k

ρ
; j − 1 +

k

ρ
; 1− β) ,

where 2F1(a, b; c; z) is the ordinary hypergeometric function. For j →∞,

lim
j→∞

E
[
E[ξkj | Sj ]

]
= limj→∞

Γ(k+1)Γ(j−1)

Γ(j−1+ k
ρ

)
β
k
ρ (1 +O(j−1)) = Γ(k + 1)β

k
ρ j
− k
ρ (1 +O(j−1)) .

follows using the series expansion of 2F1(a, b; c; z).
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A.5 Proof of Proposition 3.5

Proof of Proposition 3.5. Existence of the limit as λ→∞ follows from the existence

of the limiting (stationary) distribution for each t ∈ N+. For equivalence, it suffices to show

that given any connected graph G, the conditional distribution over graphs G′ is the same

for RWSB(β,∞) and ACL(β). The probability of attaching a new vertex to an existing

vertex v in both models is βdeg(v)/vol(G). With probability 1− β, a new edge is inserted

between existing vertices u and v, and so it remains to show that in this case the distribution

over pairs of vertices, ν(u, v), is the same. We have

ν(u, v) = 2
deg(u)

vol(G)

deg(v)

vol(G)
and ν(u, v) =

deg(u)

vol(G)
[Qλ]uv +

deg(v)

vol(G)
[Qλ]vu

for the ACL and RWSB model respectively, with Qλ. First, consider (In − L)Kλ in terms of

the spectrum of L. Let 0 = σ1 ≤ · · · ≤ σn ≤ 2 be the eigenvalues for a graph on n vertices,

with eigenvectors ψi. Then

(In − L)Kλ = (In − L)e−λL =

n∑
i=1

(1− σi)e−λσiψiψ′i . (A.22)

When λ→∞, only the eigenvector ψ1 corresponding to the eigenvalue σ1 = 0 contributes

to the random walk probabilities, i.e. limλ→∞(In − L)e−λL = ψ1ψ
′
1. The limit satisfies

ψ1 ∝ D1/21, where 1 is the vector of all ones (Chung, 1997, Ch. 2). Therefore,

lim
λ→∞

[Qλ]uv =
[
11′D 1

vol(G)

]
uv

=
deg(v)

vol(G)
,
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and the result follows.
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Appendix B

Proofs for Chapter 4

B.1 Proof of Proposition 4.1

Proof of Proposition 4.1. Proposition 2.2 of Del Moral and Murray (2015) shows that

E[f(G1:T ) | G1, GT ] = L1
θ(G1)−1E

[
f(G1:T )LT−1

θ (GT−1) ht(Gt)
ht(GT−1)

∏T−1
s=2

hs(Gs)
hs−1(Gs−1) | G1

]
,

for any approximation function ht that is positive outside a null set. For our choice of ht,

the proposal density (4.12) only places probability mass on graphs with non-zero bridge

likelihood, making 1{ht = 0} a probability zero event. For an SMC approximation to be

consistent, the target density must be absolutely continuous with respect to the proposal

density at each step t (see, e.g. Doucet and Johansen, 2011; Robert and Casella, 2004). In

other words, the proposal density must be a valid importance sampling distribution at each

step. The target, Lθ(G1:t | GT , G1) is absolutely continuous with respect to
∏t
s=2 rθ(Gs |

Gs−1) from (4.12) by construction if properties (P1) and (P2) hold, and the result follows.
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B.2 Proof of Proposition 4.2

Proposition 4.2 is a special case of the following:

Proposition B.1. Let qtθ, for t = 1, . . . , T , be the Markov kernels defining a sequential

network model that satisfies conditions (P1) and (P2), and let rtθ be the corresponding

proposal kernels. Furthermore, let ht(GT | Gt) for t = 1, . . . , T − 2 be a sequence of fixed

functions that are strictly positive if Gt ⊆ GT . Given an observation GT and a fixed G1,

define the weights

w̃it :=



1, for t = 1

1

ht(GT | Git−1)

qtθ(G
i
t | Git−1)

rtθ(G
i
t | Git−1)

, for 2 ≤ t < T − 1

qtθ(GT | Gt)
ht(GT | Git−1)

qtθ(G
i
t | Git−1)

rtθ(G
i
t | Git−1)

, for t = T − 1

, (B.1)

and wit the corresponding weights normalized across the N particles. Define the estimator

L̂1
θ :=

T−1∏
t=2

[(
N∑
i=1

w̃it
N

)(∑N
i=1 ht−1(GT | Git−1)w̃it−1∑N

i=1 w̃
i
t−1

)]
(B.2)

:=
T−1∏
t=2

L̂θ(Gt | Gt−1) .

Then L̂1
θ is unbiased, that is E[L̂1

θ] = L1
θ(G1) = pθ(GT | G1), for any N ≥ 1.

Proof. Unbiasedness will be established by iterating expecations, following the approach

in Pitt, Silva, Giordani, and Kohn (2010). Let St be the set of particles and weights {Git; w̃it}
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at step t. Then we have that

E

[(
N∑
i=1

w̃iT−1

N

) ∣∣∣∣∣ ST−2

]

=

N∑
i=1

∫
qtθ(GT | GT−1)

hT−2(GT | GiT−2)

qtθ(GT−1 | GiT−2)

rtθ(GT−1 | GiT−2)

rtθ(GT−1 | GiT−2)hT−2(GT | GiT−2)w̃iT−2∑N
j=1 hT−2(GT | GjT−2)w̃jT−2

dGT−1

=
N∑
i=1

pT,T−2
θ (GT | GiT−2)w̃iT−2∑N
j=1 hT−2(GT | GjT−2)w̃jT−2

.

Therefore,

E[L̂θ(GT−1 | GT−2) | ST−2] =

N∑
i=1

pT,T−2
θ (GT | GiT−2)wiT−2 .

Likewise, it is straightforward to show that

E[L̂θ(GT−1 | GT−2)L̂θ(GT−2 | GT−3) | ST−3]

= E[ E[L̂θ(GT−1 | GT−2) | ST−2] L̂θ(GT−2 | GT−3) | ST−3]

=
N∑
i=1

pT,T−3
θ (GT | GiT−3)wiT−3 .

Iterating for t = T − 4, . . . , 1, we have

E

[
T−1∏
t=2

{(
N∑
i=1

w̃it
N

)(∑N
i=1 ht−1(GT | Git−1)w̃it−1∑N

i=1 w̃
i
t−1

)} ∣∣∣∣∣ S1

]

=
N∑
i=1

pT,1θ (GT | Gi1)wi1 = pθ(GT | G1) ,

which proves the claim.
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B.3 Proof of Proposition 4.3 and Proposition 4.4

Proof of Proposition 4.3. As in the proof of the analogous Theorem 4 in Andrieu,

Doucet, and Holenstein (2010), if (a) the resampling scheme in the SMC algorithm is

unbiased, i.e. each particle is resampled with probability proportional to its weight; and

(b) the estimate L̂1
θ(G1) is positive and unbiased, then Algorithm 4.2 yields a MH update

on the extended space that includes the state of the SMC variables. If, additionally, (c)

Lθ(G1:t | GT , G1) is absolutely continuous with respect to
∏t
s=2 rθ(Gs | Gs−1) for any θ; and

(d) the MH sampler targeting P[Θ](Θ) is irreducible and aperiodic, then by Theorem 1 of

Andrieu and Roberts (2009), the marginal law converges to the desired density. Condition

(a) is satisfied by the multinomial, residual, and stratified resampling schemes. As discussed

in the proof of Proposition 4.1, the condition (b) holds by construction if properties (P1)

and (P2) hold. Finally (c) holds by Proposition 4.2 and (d) holds by assumption.

Proof of Proposition 4.4. Algorithm 4.3 is a Gibbs sampler on the extended space that

includes the state of the SMC variables. That it has the correct marginal law follows from

Theorem 5 in Andrieu, Doucet, and Holenstein (2010), which requires absolute continuity as

in (c) in the previous proof, and that the Gibbs sampler defined by the updates (β, λ) | G1:T

and G1:T | (β, λ) is irreducible and aperiodic. Absolute continuity holds by construction, as

before; the irreducibility and aperiodicity are satisfied by inspection.
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Appendix C

Particle Gibbs updates

(Section 4.3)

The particle Gibbs sampler updates are performed in three blocks: (β, λ), (B2:T ,K2:T ), and

G2:(T−1). As we describe in the following subsections, we make use of conditional conjugacy

and tools from spectral graph theory to increase sampling efficiency. We discuss each block

of updates in turn.

Updating the parameters β and λ. The model is specified in terms of distributions for

the latent variables, and placing conjugate priors on their parameters we have,

Bt | β
iid∼ Bernoulli(β), β ∼ Beta(aβ, bβ) (C.1)

Kt | λ
iid∼ Poisson+(λ), λ ∼ Gamma(aλ, bλ). (C.2)
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The Gibbs updates are hence β | B2:T ∼ Beta (χ, ω) and λ | K2:T ∼ Gamma (κ, τ), with

χ := aβ +

T∑
t=2

Bt, ω := bβ + (T − 1)−
T∑
t=2

Bt (C.3)

κ := aλ +

T∑
t=2

Kt, τ := bλ + (T − 1) . (C.4)

Updating the latent variables B2:T and K2:T . The sequential nature of the model al-

lows each of the latent variables Bt and Kt to be updated individually. We use conditional

independence to marginalize out sampling steps where possible, since such marginaliza-

tion increases the sampling efficiency (Dyk and Park, 2008). For both B2:T and K2:T ,

we marginalize twice: The first transforms the conditional distributions P (Bt | β) and

P (Kt | λ) into the predictive distributions P (Bt | B−t), and P (Kt | K−t), which yields

Bt | B−t ∼ Bernoulli
( χ−t
χ−t + ω−t

)
and Kt | K−t ∼ NB+

(
κ−t,

1

1 + τ−t

)
.

The second improvement is made by marginalizing the conditional dependence of Bt on Kt,

and of Kt on Bt. That requires some notation: δt(Vt, Ut) indicates that a new edge is added

to the graph between vertices Vt and Ut. When a new vertex is attached to Vt, we write

δt(Vt, u
∗). We abbreviate τ̄ := 1

1+τ , and write Ñ (v) for the {0, 1}-ball of vertex v, i.e. v and

its neighbors. The updates for B2:T are

P (Bt = 1 | G(t−1):t,K−t, B−t) ∝
δt(Vt, u

∗)µt−1(Vt)χ−t
χ−t + ω−t

P (Bt = 0 | G(t−1):t,K−t, B−t) ∝ δ(Vt, Ut) +
δ(Vt, u

∗)µt−1(Vt)ω−t
χ−t + ω−t

∑
u∈Ñ (Vt)

[
Q
κ−t,τ̄−t
t−1

]
Vt,u
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with Q
κ−t,τ̄−t
t−1 as in (A.2) with r = κ−t, p = τ̄−t. The updates for K2:T are

P (Kt = k | G(t−1):t,K−t, B−t) ∝
Γ(κ−t + k)

Γ(k + 1)Γ(κ−t)
(1− τ̄−t)κ−t τ̄k−t . . .

×
[
δt(Vt, u

∗)µt−1(Vt)
( χ−t
χ−t + ω−t

+
ω−t

χ−t + ω−t

∑
u∈Ñ (Vt)

[
Qk+1
t−1

]
Vt,u

)
. . .

+ δt(Vt, Ut)
ω−t

χ−t + ω−t

(
µt−1(Vt)

[
Qk+1
t−1

]
Vt,Ut

+ µt−1(Ut)
[
Qk+1
t−1

]
Ut,Vt

)]

with Qk+1
t−1 = D

−1/2
t−1 (It−1 −Lt−1)k+1D

1/2
t−1, the probability of a random walk of length k+ 1

from u to v. For implementation, the distribution for Kt must be truncated at some finite

k, which can safely be done at three or four times the diameter of GT : The total remaining

probability mass can be calculated analytically, and the mass is placed on larger k is negli-

gible.

Sampling G2:(T−1). Implementation of Algorithm 4.1 is straight-forward, with one excep-

tion: at each SMC step Gt−1 → Gt, we collapse the dependence on the particular values

of Bt,Kt in that sampling iteration so that edges are proposed from the collapsed transi-

tion kernel qtϕ(Gt | Gt−1, B−t,K−t). Thus, Gt is composed of Gt−1 plus a random edge et

sampled as

P (et = (v, u)) ∝

1{(v, u) = (Vt, u
∗)}µt−1(v)

(
χ−t

χ−t+ω−t
+ ω−t

χ−t+ω−t

( ∑
u∈Ñ (v)

[
Q
κ−t,τ̄−t
t−1

]
v,u

))
+ . . .

1{(v, u) = (Vt, Ut)}
ω−t

χ−t + ω−t

(
µt−1(v)

[
Q
κ−t,τ̄−t
t−1

]
v,u

+ µt−1(u)
[
Q
κ−t,τ̄−t
t−1

]
u,v

)
.
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Appendix D

Proofs for Chapter 5

D.1 Asymptotic degree distribution for YS(β, α) models.

We derive the asymptotic distribution of degrees (equivalently, block sizes) used in Proposi-

tion 5.10 for the YS(β, α) model. The setup is similar to that for the proof of Theorem 3.3

in Appendix A.3: We derive the asymptotic expected number of vertices of each degree,

md,t, and then show that md,t concentrates around its mean.

It is straightforward to show that the expectation satisfies the recurrence (with kt the

number of vertices at step t)

E(md,t+1) = β · δ1(d) + E(md,t)
(

1− (1− β)(d− α)

t− αkt

)
+ E(md−1,t)

(1− β)(d− 1− α)

t− αkt
.

Now, d−α
t−αkt →

d−α
t(1−αβ) , so

E[m1,t]

βt
→ p1 :=

1−βα
1−β

1− α+ 1−βα
1−β
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and

E[md,t]

βt
→ pd = pd−1

d−β−1

d−α+ 1−βα
1−β

= p1

d∏
j=2

j − 1− α
d− α+ 1−βα

1−β

=
1− βα
1− β

Γ(d− α)Γ(1− α+ 1−βα
1−β )

Γ(1− α)Γ(d+ 1− α+ 1−βα
1−β )

,

which is (5.63). Lemma A.3 can be applied here, as well, which establishes the concentration

of md,t/(βt) about its mean.
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