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Abstract 

Structure Function Analysis of Drug Resistance Driver Mutations in Acute 

Lymphoblastic Leukemia 

Zachary Wayne Carpenter 

Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic tumor 

and is the most common malignancy in children (Horton and Steuber 2014). This 

disease is characterized by the infiltration of bone marrow by malignant immature 

lymphoid progenitor cells and is invariably fatal without treatment.  Although 

multi-agent combination chemotherapy is curative in a significant fraction of ALL 

patients, treatment currently fails in approximately 20% of children and up to 50% 

of adults with ALL, making relapse and drug resistance the most substantial 

challenge in the treatment of this disease(Fielding, Richards et al. 2007, Aster 

and DeAngelo 2013). Understanding what causes treatment failure is of great 

medical importance as second line therapies also fail in the majority of relapse T-

cell ALL (TALL)  patients (Fielding, Richards et al. 2007, Aster and DeAngelo 

2013). Using next-generation sequencing to compare the genomes of tumors 

before and after therapy, mutations in gene cytosolic 5’-nucleotidase II (NT5C2) 

were discovered in 19% of pediatric samples with relapsed T-ALL(Tzoneva, 

Carpenter et al. 2013). Preliminary structure function analysis and subsequent in 

vitro experimental nucleotidase activity assays confirmed that these mutations 
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lead to hyperactive NT5C2 protein. Furthermore, NT5C2 mutant proteins 

conferred resistance to 6-mercaptopurine and 6-thioguanine chemotherapy drugs 

when expressed in ALL lymphoblasts, suggesting NT5C2 is responsible for the 

inactivation of nucleoside-analog chemotherapy drugs. In order to assess the 

ability of these mutations to lead to novel inhibitor schemes, the functional impact 

of each mutation was analyzed through robust structure function methods. The 

result of this in silico analysis, is the identification of a potential allosteric 

regulatory mechanism of negative feedback inhibition never before described. 

Most notably, the majority of NT5C2 mutations identified have characteristics that 

suggest they abrogate the function of this proposed mechanism, yielding a novel 

viable target for the development of allosteric inhibitors specific for constitutively 

active NT5C2 mutant proteins. Overall these findings support a prominent role 

for activating mutations in NT5C2 and chemotherapy resistance in ALL, 

and highlight new avenues for relapsed ALL therapy development in the 

future. 
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Chapter 1. Introduction 
 

1.A. Next Generation DNA Sequencing and Future Perspectives in Oncology 

Sequencing technology has made incredible strides in efficiency and accuracy since the 

inception of Sanger’s landmark discoveries in 1977(Sanger, Nicklen et al. 1977). The future 

will witness widespread adoption of next generation sequencing (NGS) in clinical diagnostics, 

translational research, and basic science. Today’s leading NGS platforms offer high-quality 

rapid turnover of DNA samples at costs approaching $1,000 per genome - a precipitous drop 

from the 2.7 billion dollar human genome project which concluded just over a decade ago in 

2001. Oncology is one area of application with a particularly bright future, and in the past 

decade NGS technologies have already facilitated a dramatic shift in our view of cancer as a 

disease(Kulkarni and Ma 2013). While it is now well established that cancer is a genomic 

disease, sequencing has enabled researchers for the first time to appreciate just how 

dramatically different cancers can be on a molecular level. In the context of other genetic 

alterations such as amplifications, deletions, gene fusions, and epigenetic changes, the 

combined altered-genomics picture of any given tumor type becomes widely complex. 

Furthermore, while the notion of inter-tumor heterogeneity has become an accepted concept, 

our understanding of intra-tumor heterogeneity remains limited(Kulkarni and Ma 2013).  

It is estimated that NGS adoption in oncology will approach penetration of 25 to 70 

percent of presenting adjuvant and metastatic patients within 5 years(Kulkarni and Ma 2013). 

As there are limited pharmacological interventions available to physicians, not every indication 

will benefit from the increased information obtained through NGS. From a clinical perspective, 

therefore, the most attractive target candidates are those with a prominent role in driving 
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disease. While the number and variety of genetic variations across a given cohort of patients 

can be staggering, prevailing notion maintains that the vast majority are ‘passenger’, or 

secondary, in nature and only a small subset are responsible for driving disease. Identification 

of these alterations, called ‘drivers’, is held as the key to unlocking new therapeutic and 

diagnostic avenues. Thus, the major hurdle limiting the extent of NGS’s impact in clinical 

diagnostics and translational medicine is not physical limitations or cost, but, rather, the 

actionability of the sequence information that is generated.  The paramount questions, 

therefore, become: in a world of increasingly large datasets, what is the optimal method to 

prioritize genetic alterations that deserve additional investigation? Which alterations are those 

that hold the greatest potential translationally?  

 

In this thesis, I will explain how post-processing information, with a heightened 

focus on protein structure analysis, can greatly increase the actionability of next 

generation sequencing results. In particular, I will focus on my work to elucidate the 

genetic causes of drug resistance derived relapse in T-cell Acute lymphoblastic 

Leukemia (T-ALL). Although T-ALL was one of the first human cancers to be treated 

successfully with chemotherapy, treatment currently fails in approximately 20% of 

children and up to 50% of adults with ALL(Fielding, Richards et al. 2007, Aster and 

DeAngelo 2013). Understanding what causes this treatment failure is of great medical 

importance as second line therapies also fail in the majority of relapse T-ALL 

patients(Fielding, Richards et al. 2007, Aster and DeAngelo 2013). Using next-

generation sequencing to compare the genomes of tumors before and after therapy, I 

uncovered a likely mechanism of therapy resistance in T-ALL. This approach identified 
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a single mutation in enzyme cytosolic 5’-nucleotidase II (NT5C2) in one out of five 

pediatric samples with relapsed T-ALL, at which point the task of understanding how it 

might impact protein function to lead to drug resistance came to light. Through structure 

function analysis of this sentinel case, I ascertained the activating role of NT5C2 

mutation K359Q, suggesting that it may directly drive drug resistance in relapsed T-ALL 

patients.  To investigate the recurrence of this mutation, targeted sequencing was 

subsequently performed for 103 total patients with relapsed T-ALL, revealing 20 

validated NT5C2 mutations. These findings suggested that NT5C2 may play a role in 

drug resistance of close to one fifth (19%) of all T-ALL relapse patients(Tzoneva, 

Carpenter et al. 2013). The identification of a novel allosteric inhibitory mechanism 

documented in this thesis, opens the door to the development of a new class of toxicity-

free inhibitors targeting constitutively active mutant forms of NT5C2. As NT5C2 

overexpression has been associated with acute myeloid leukemia, chronic lymphoid 

leukemia, various lung cancers, high-risk myelodysplatic syndrome, hairy cell leukemia, 

and colorectal carcinoma, in addition to T- and B-ALL, a NT5C2 specific inhibitor holds 

the potential to help many cancer patients in the future (Tibaldi, Giovannetti et al. 2008, 

Yamauchi, Negoro et al. 2009, Mitra, Crews et al. 2011, Cancer Genome Atlas 2012, 

Petter Jordheim and Chaloin 2013).  

The structure of this thesis will reflect the scientific logic that led to the 

identification and prioritization of genetic aberrations responsible for drug resistance.  

This first chapter will provide a general introduction to the next generation sequencing 

workflow I have utilized, with a particular focus on methods used to prioritize specific 

genetic alterations for further study. In chapter 2, I will illustrate the application of this 
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workflow through our analysis of T-ALL sequencing results, documenting the 

collaborative discovery and prioritization of novel alterations associated with relapse. In 

the final chapter, I will focus on the most promising identified candidate, NT5C2, utilizing 

a dataset created across several publications to build a unifying model for mutation 

based hyperactivity of NT5C2 in T-ALL relapse patients.  

  

1.A.i Next Generation DNA Sequencing workflows 

From wet-lab to dry-lab, next generation workflows involve many steps including: 

sample preparation, detection, statistical analysis, validation, and frequency/recurrence 

analysis. Sample preparation begins with use of a template library selected from genomic, 

cDNA, PCR, or other sources. Template DNA taken from one of these sources is lysed into 

smaller segments through mechanical shearing, and then annealed to adaptors specific to 

various sequencing platforms. The resultant template library can then be further enriched 

along particular regions of interest. One method of achieving this enrichment is through 

hybridization to a selective microarray, allowing selected regions of the template library to be 

kept, and the rest washed away in elution steps. Biotinalated RNA “bait” libraries that are 

homologous to genomic regions of interest offer an additional method of template library 

enrichment. For a more detailed view of sequencing preparation please see review (Sulonen et 

al., 2011)(Sulonen, Ellonen et al. 2011). 

Two key parameters that affect the quality of NGS data are DNA library size 

distribution and DNA library concentration.  Each sequencing platform will generate 

different size read lengths, and therefore if the size of the DNA library is much larger 

than that of the read length, regions of interest might be missed, and the sequences 
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may be unable to assemble into contiguous reads. Accurate quantification of genomic 

template is also critical because all major sequencing technologies rely on specific 

target densities during template immobilization.  

The detection, or sequencing, step can be accomplished through several major 

technologies developed at Illumina, Pacific Biosystems, Roche and other companies. These 

platforms differ in sequencing chemistry, read length, run time, and the amount of DNA that 

can be sequenced per run, but all rely on clonal amplification of the input template DNA or 

RNA materials. The Illumina platform, utilized in all experiment designs in this thesis, uses an 

immobilized DNA strand as a template for reading sequences as nucleotides added to a 

growing strand (Figure 1.1). For a detailed review on sequencing chemistry and products 

please see review Metzker et al., 2009 and Illumina Research. 
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1.A.ii Cancer Gene Identification and Quality Control 

Following the chemical reactions of NGS sequencing, regardless of platform choice, a 

cumbersome set of data is created in the raw format of sequencing read files. These files are 

very large and require significant processing before they can be interpreted biologically. The 

first step of processing involves hierarchical organization of the data by sample type and ID 

onto local storage and computing clusters. On these clusters the samples are mapped to a 

reference genome enabling the acquired reads to be aligned and annotated with respect a 

matched position within a particular organisms genome.  The reference genome utilized in 
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these sequencing projects (except where otherwise specified) is hg19, which is provided and 

maintained by the UCSC Genome browser(Karolchik, Baertsch et al. 2003). After matched 

normal and tumor pairs (or triplets in which case a third sample would be matched) from a 

patient under go this process, it is then possible to compare particular genetic loci before and 

after transformation. Due to errors intrinsic to sequencing instrumentation, however, the 

comparative picture at this stage remains heavily convoluted; artifacts introduced through bias 

or error can often appear indistinguishable from authentic genetic lesions(Trifonov, 

Pasqualucci et al. 2013).  

The correction of noise introduced by error and bias, therefore, represents an important 

and logical step towards meaningful comparative analysis of related samples. Traditionally, 

statistical approaches designed to address platform-derived errors have concentrated on 

furnishing a binary call regarding any particular mutations presence or absence. These 

methods establish a call for each variant through utilization of arbitrary thresholds relating to 

the number of reads reporting a variant, their quality, and the total number of reads covering 

the variant’s position (Trifonov et al., 2010;(Li, Wang et al. 2011);(Morin, Johnson et al. 2010)). 

As the depths along the genome are unevenly distributed, these arbitrary thresholds act to 

introduce significant bias, and will screen variants that feature high depth and low quality, or 

the reciprocal situation of low depth and high quality. Discretization of the data in this manner 

leads to problems in instances with heterogeneous samples (ie contamination or other quality 

issues) [Trifonov et al., 2010; Li et al., 2011]. Additionally, as low frequency alleles can have 

marked impact on disease in later stages, a digital call of this type, does not take advantage of 

all available data, specifically in that it fails to consider differences in frequency of alleles 

(Trifonov et al., 2010;(Fabbri, Rasi et al. 2011)). Knowledge of frequencies holds the potential 
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to critically impact prognostic precision, particularly when samples along multiple time points 

are available (such as biopsy, surgery, and relapse samples all of an individual 

patient)(Trifonov et al., 2010). In the goal of establishing a statistical approach applicable in 

diverse scenarios that rationally addresses bias and systematic errors, and fully utilizes 

available allele frequency information, the Rabadan Lab developed the Statistical Algorithm for 

Variant Frequency Identification (SAVI) in the course of the comparative analysis of Hairy Cell 

Leukemia (HCL) patients (Tiacci et al., 2011)(Figure 1.2). Fundamentally, SAVI constructs 

Bayesian posterior distributions of allele frequencies, utilizing an iterative procedure with a 

fixed-point distribution for construction of an empirical prior from a given dataset. These 

posterior distributions allow high credibility interval for the frequency of particular alleles, in 

addition to presenting expected and most likely values (Trifonov et al., 2010). These 

distribution derived high credibility intervals are then used to decide between competing variant 

present/absent hypotheses, and to distinguish authentic alleles from those introduced as 

artifacts by sequencing instrumentation (Trifonov et al., 2010). Utilizing the SAVI algorithm for 

variant calling has enabled the sequencing conducted in this thesis to be more reliable than 

that allowed by other contemporary methods, and thus is a critical component in many aspects 

of these works. The general mechanics of SAVI workflow, which have been designed to 

include mapping and quality control steps aforementioned, are outlined in Figure 1.2 (Trifonov 

et al., 2010). 
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1.A.iii Cancer Gene Prioritization 

While the number and variety of DNA variations across a given cohort of patients 

can be staggering, the prevailing notion maintains that the vast majority of alterations 

within tumor genomes are passenger or secondary in nature and only a small subset 

are responsible for driving disease. This nature of tumors is demonstrated by many 

analyses; for example, only eight genes from an original pool of 453 validated non-silent 

mutations across 223 distinct genes in glioblastoma multiform (GBM) provided evidence 

of positive selection pressure (Sjöblom, Jones et al. 2006, Greenman, Stephens et al. 
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2007, Chin, Hahn et al. 2011).  

While mutation calling by the SAVI pipeline allows for statistical detection of 

mutations with unprecedented accuracy, it provides insufficient information for optimal 

prioritization of variants for research. In light of rapidly improving sequencing 

technologies and increasingly large datasets, prioritization of validated non-silent 

mutations represents an increasingly integral step in NGS analysis of cancer 

genomes(Lee, Yue et al. 2009)(Table 1.1). 
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Through use of computational and theoretical analysis, the number potential driver 

mutations present in the initial pool of validations can be greatly reduced, with false 

negative rates at low levels. The benefit of such pursuits is manifold, as the majority of 

called mutations are likely to represent passenger events and confer little to no growth 

advantages in tumors (The Cancer Genome Atlas Network 2008; Chin et al, 2011; 

Greenman et al., 2007; Sjoblom et al. 2006).  

1.A.iii.a Database Annotation Overlay and Synthesis 

 

Various databases exist towards the goal�of categorizing sectors, domains, 

motifs, and functional sites in proteins. Phosphorylation�sites, ubiquitinylation sites, 

glycosylation sites, �signal peptide motifs, metal binding sites, �localization signals, 

and cleavage sites�represent a very small example set of annotated�sequence 

information that can add great benefit�to mutational analysis(Gasteiger, Gattiker et al. 

2003). To be able to screen data of this sort one can build curl text mining algorithms or 

even simply browse and download (as many sites now offer this feature) to establish 

local databases that can be queried through use of basic text parsing and regular 

expressions to quickly identify functional sites or domains of importance overlapping 

with mutations identified through NGS experiments. Additionally, when these 

annotations are lacking, which is common amongst lesser-studied proteins, many tools 

exist to predict functional sites and motifs. The most comprehensive assembly of such 

resources can be found at the ExPasy Proteomics Tools Portal(Artimo, Jonnalagedda et 

al. 2012).  
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Particularly important resources to tumor mutation prioritization are databases 

like COSMIC and the Cancer Gene Census 

(http://www.sanger.ac.uk/genetics/CGP/Census/), which provide documentation of 

cancer related mutations. Acknowledging these mutations is of critical importance, as 

the overlap between different cancers in regard to transformation is both intuitive and 

substantially demonstrated (Forbes, Bhamra et al. 2008, Forbes, Tang et al. 2009, 

Forbes, Bindal et al. 2010),(Alkan, Coe et al. 2011, Alkan, Sajjadian et al. 2011). Very 

few of the available prediction programs or database annotations are integrated into 

high-throughput mutation impact algorithms and thus, these methods represent 

important value added steps to interpretation of sequencing output. 

 

Outside of information regarding specific genes, mutations can also be 

interpreted through analysis of the signaling pathways in which they occur. Databases 

that categorize protein-protein interaction pathways provide a valuable resource that 

can serve to identify unseen patterns in NGS data. Pathway analysis is especially useful 

when multiple samples are available, as meaningful mutations can occur in a mutually 

exclusive manner with respect to specific pathways (Parsons, Jones et al. 2008, Lee, 

Yue et al. 2009). This concept is particularly relevant to understanding drug escape 

mechanisms in patients exhibiting chemotherapy resistance and relapse of disease as 

genes can share metabolic pathways in common with drug metabolism.  

 

1.A.iii.b Primary Sequence Methods 

At the most fundamental level, variant amino acids fall into various categories 
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based on physio-chemical characteristics such as hydrophobicity, charge density, and 

polarity. These chemical identities, and their intrinsic propensity to determine secondary 

and tertiary structure in proteins, provide the foundation for interpretation of amino acid 

substitutions. Most amino acid substitution (AAS) predictive methods utilize an empirical 

severity index to score an amino acid change on a very fundamental level(Ng and 

Henikoff 2006). Many such indexes have been borrowed from substitution matrices 

created for use in alignment algorithms, in which particular amino acid substitutions are 

assigned a respective “penalty”(in certain blast algorithms, for example), and are in 

some way incorporated in all AAS methods. One of the most informative tools available 

for assessing the importance of mutation is the multiple sequence alignment (MSA), 

which allows for analysis of the conservation of its respective wild type allele. This 

conservation can be considered in either terms of absolute amino acid change, or in 

terms of class changes, such as hydrophobic to polar and etc. Most algorithms based 

on sequence information employ MSA of homologous proteins to provide a context in 

which to interpret the conservation of a particular site. Specifically, a multiple sequence 

alignment comprising a sufficient range of orthologous sequences reveals how far in 

evolutionary time particular sites are conserved. By analyzing the genetic distance 

between the organism containing the first protein to harbor a divergent amino acid and 

the query organism (in this case human), one can create quantifiable predictions on 

importance through naïve Bayes Classifiers (Adzhubei, Schmidt et al. 2010, Reva, 

Antipin et al. 2011). Reciprocally, ambiguity witnessed at a particular site in closely 

related species is a very good indication of neutral or benign effects (Ng et al, 2006; 

Adzhubei et al, 2010). These primary structural changes often translate into alterations 
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in secondary and tertiary structure that can drastically alter protein function stability. 

Predicting the impact of such structural changes can yield valuable insight into a 

mutation’s role in disease.  

1.A.iii.c Structural Methods 

Changes in secondary structure can be predicted through use of ab initio and 

conservation based algorithms at increasing accuracy. Many methods exist to assess 

the secondary structure impact of a particular mutation on protein function (Table 1.2) 

(Rost, Yachdav et al. 2004).  This analysis is particularly relevant when mutations occur 

in protein domains with well studied secondary structures. For example, the break of an 

amphipathic helix within a membrane-spanning region may alter a proteins stability 

leading to altered localization or singling properties.   

The most powerful and comprehensive form of computational functional impact 

depends on a high quality crystal structure or model featuring regions containing the 

somatic mutations of interest. Tertiary structural predictions, strive to analyze how a 

mutation impacts�the global conformation and stability of a�protein region, but 

explicitly require a solved structure�or high quality model to be feasible. Given�such a 

model, factors such as solvent�accessibility, cavity volume and shape, carbon-�beta 

density, crystallographic B-factor, free�energy, torsional clashing, ionic interactions, 

covalent interactions (such as cofactor�association or disulfide bonding), 

hydrogen�bonding, and many others can be comparatively analyzed�between mutant 

and wild-type (Petterson et al.,�2004). Techniques that utilize crystal structures can be 

divided roughly into two types: high-throughput and manual. High throughput methods 

as their name suggests, are designed to handle large datasets of mutation information 
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and provide output calls on each mutation. These methods vary widely in their 

approaches but most, if not all, utilize homology-based template matching to existing 

protein crystal structures. While extremely labor efficient, these techniques come along 

with pitfalls as well. Annotations based solely on structural similarity can at times cloud 

the picture of a mutations role through introduction of incorrect assumptions caused by 

high structural similarity but lack of true relevance to a mutation. This type of issues can 

be seen in protein families with highly conserved structural folds concurrent with areas 

of high variability(Scheeff and Bourne 2005).  Mutations occurring in substrate 

specificity residues, for-example can be incorrectly interpreted as benign due to the 

variability seen across structures at these sites. Furthermore, structures are often 

manipulated to increase their stability or achieve other desired effects during 

crystallization protocols. This is often necessary in highly flexible proteins and 

membrane spanning proteins, for example. In the event of a mutation occurring in one 

of these proteins, non-physiologic structures can inadvertently lead to incorrect 

conclusions. As end output of many high-throughput servers is often statistical scores or 

binary calls on impact, the user is unaware of such problems, particularly when dealing 

with large datasets.  

Although increase in computer processing speed and big data utilization is 

rapidly improving the ability of high throughput algorithms to predict meaningful 

mutations, ultimately, functional impact is best assessed manually. Methods that enable 

this investigation form the second loose grouping of crystal structure dependent 

mutation impact assessing techniques. Through more advanced structural manipulation 

tools, biophysics, and visualization software these techniques give researchers a 
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cockpit-eye view to analyze mutations on a case-by-case basis. This focused approach 

enables researchers to go beyond binary calls based on arbitrary statistics, and ask 

experimentally relevant questions whose solutions enable legitimate biological findings 

in the context of disease. As computational speed increases, the line between these two 

sets of tools becomes more and more blurred. Two examples are SWISS-MODEL and 

I-TASSER (Figure 1.3) which operate as servers for modeling and functional predictions 

of proteins in a format accessible to researchers of all backgrounds(Guex and Peitsch 

1997, Roy, Kucukural et al. 2010). By restricting user input into very specific inputs 

these tools are able to utilize complex algorithms remotely and provide the user with 

much more comprehensive results then that of algorithms like Poly-Phen2. The 

sacrifice, of course, is throughput; I-TASSER for example requires roughly 2 or more 

days to accomplish structural refinement assembly simulations on a single protein 

prediction(Roy, Kucukural et al. 2010). The optimal solution put forth by researchers 

faced by daunting sets of data, therefore, is employment of high throughput techniques 

and available database annotations as a cursory prioritization for candidates worthy of 

more dedicated in silico follow up.  
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  While sequencing becomes more powerful and accessible, the genomes of 

tumors remain highly complex. As NGS becomes a reality in clinics and medical 

paradigm shifts towards a more personalized approach, a significant challenge facing 

both academic researchers and pharmaceutical companies alike lies in first, 

identification of driver mutations from passenger background, and second, 

understanding the impact of these alterations to an extent that enables the rationale 

development of targeted therapeutics. Post processing techniques that can prioritize 

genetic perturbations with regard to disease are thus of great value. In this thesis, the 

NGS technologies and prioritization techniques described above were applied towards 
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furthering medical understanding of T-ALL both at diagnosis and in drug resistant 

disease relapse.  

 

Chapter 2. Unraveling the Mutation Landscape of relapse in 

T-cell Acute Lymphoblastic Leukemia  

2.A Introduction 

2.A.i Clinical Status of T-ALL 

 T-cell acute lymphoblastic 

leukemia (T-ALL) is an aggressive 

hematologic malignancy that develops 

primarily in pediatric and adolescent 

patients. Patients with this disease 

routinely feature high peripheral-blood-

cell counts, increased numbers of blast 

cells, CNS dissemination, large 

mediastinal masses (Horton and 

Steuber 2014)(Figure 1.B.1) While T-

ALL often arises in the thymus, it 

displays considerable propensity for 

invasion into bone marrow and 

peripheral tissue and is invariably fatal 
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without treatment (Horton and Steuber 2014). In the past 50 years, prognosis for 

pediatric T-ALL patients has improved remarkably from an initial median survival of 2 

months to overall survival rates of over 80%(Pui, Relling et al. 2004, Grabher and 

Harald von Boehmer 2006). Survival in treatment of adult patients has seen less 

significant improvement, with overall survival remaining around 50% in patients under 

60, and 20%-30% in those over age 60(Grabher and Harald von Boehmer 2006, 

Fielding, Richards et al. 2007) The best hope for continued progress in disease 

treatment lies in a better understanding of TALL pathobiology and in the driving 

mechanisms that lead to chemotherapy resistance.  

2.A.ii Underlying Genomic Mechanisms  

T-cell acute lymphoblastic leukemia arises through malignant transformation of 

T-cell progenitors in which normal thymocyte development undergoes a shift to an 

aberrant state of cellular growth, proliferation, survival, and differentiation. Analysis of 

these changes on molecular and genetic levels has contributed greatly to our 

understanding of the pathology in 

ALL. While adult and pediatric ALL 

feature unique characteristics, there 

are several hallmark alterations in T-

ALL including unregulated 

expression of proto-oncogenes, 

chromosomal translocations, and 

tumor suppressor loss (Figure 

2.2)(Pui, Relling et al. 2004).  
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These changes are driven by different genetic mechanisms, which often act 

cooperatively through one or more pathways during different stages of T-cell 

development (Figure 2.3).  

 

T-ALL can be classified into at least five different subtypes based on gene expression 

profiles and specific oncogene activation. Altered NOTCH1 signaling is the most 

prominent characteristic of T-ALL, and more than 50% of all T-ALL cases are found with 

somatic activating mutations or chromosomal alterations that lead to hyperactive 
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NOTCH1 activity (Grabher and Harald von Boehmer 2006)(Figure 2.4). 

 

The high prevalence of NOTCH1 alterations in T-Cell has led to considerable 

investigation into the use of gamma-secretase inhibitors as candidates for 
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pharmacological intervention(Grabher and Harald von Boehmer 2006). In addition to 

NOTCH1, deletions of tumor suppressor genes p16/INK4A and p14/ARF via loss of the 

CDKN2A locus at chromosomal band 9p21 are present in more than 70% of T-ALL 

cases(Van Vlierberghe and Ferrando 2012). Rearrangements of transcription factors 

TLX1, TLX3, LYL1, TAL1, and MLL are also commonly observed in T-lineage 

ALL(Mullighan 2012).  

 

2.A.iii ALL Treatment 

Due to rapid onset of hematopoietic failure and life threatening infections ALL is 

invariably fatal without treatment. As a direct result of many sequential standardized 

research protocols over the past decades, survival rates for ALL have improved 

dramatically since the 1980s. Currently five-year survival rates in children are estimated 

at greater than 85% in recent years and are achieved through two to three year 

treatment protocols of multidrug regimens administered in several phases: induction, 

consolidation, and maintenance (Pui, Sandlund et al. 2004, Gatta, Capocaccia et al. 

2005, Horton and Steuber 2014). While specific regimens depend on risk category and 

immunophenotype, at diagnosis patients often require broad-spectrum antibiotics, 

transfusion support, and correction of metabolic imbalances. This treatment is followed 

by the induction therapy phase, which is designed to place patients into 

remission(Horton and Steuber 2014).  Induction typically involves weekly administration 

of vincristine, daily corticosteroids, and 6-12 doses of L-asparaginase(Dinndorf, 

Gootenberg et al. 2007). In high risk patients, anthracycline may be added to the 

regimen, while imatibib or dasatinib are generally limited to treatment of patients 
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featuring Philadelphia chromosome t(9;22) positive disease(Rives, Estella et al. 2011). 

While rapid response is strongly correlated with favorable outcome, over 90% of 

children and adolescents with ALL enter complete remission at the end of induction 

therapy regardless of initial risk grouping(Gaynon, Trigg et al. 2000, Harms and Janka-

Schaub 2000, Kamps, Veerman et al. 2000, Maloney, Shuster et al. 2000, Pui, Boyett et 

al. 2000, Schrappe, Reiter et al. 2000, Silverman, Declerck et al. 2000).  

Pending achievement of remission, the second major phase of ALL treatment, 

consolidation therapy, is initiated for approximately four to six months, in most cases. 

The goal of this phase is to prevent leukemic regrowth, especially that in which drug-

resistance has emerged. To achieve this, several different drug combinations with 

mechanisms of action distinct from that of induction phase therapies are employed on 

schedules designed to minimize resistance development and maximize synergistic 

efficacy(Harris, Shuster et al. 1998, Lauer, Shuster et al. 2001). These include 

Cytarabine, Methotrexate, Anthracyclines, Alkylating agents, and Epipodophyllotoxins 

with intensification adjustment based upon patients risk of poor outcome(Möricke, Reiter 

et al. 2008). 

Maintenance therapy is initiated after completion of both induction and 

consolidation phase therapy, and usually comprises a regimen of daily 6-

mercaptopurine (6-MP) and weekly methotrexate. This phase of treatment is long term, 

lasting from 24 to 36 months in most patients. In recent years patients receiving pulse 

therapy of vincristine and steroids in addition to 6-MP/methotrexate regimens appear to 

yield a more favorable long-term outcome, although it is still unclear at this point 

whether all patients stand to benefit from this regimen(Conter, Valsecchi et al. 2007, De 
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Moerloose, Suciu et al. 2010). During and after completion of maintenance therapy 

patients are monitored for relapse of disease as well as long-term side effects of their 

treatment. For a more in depth review behind the molecular mechanisms of each drug 

please see chapter 3 and in-depth review Pui et al. (Pui and Jeha 2007) 

 

2.A.iv Relapse to T-ALL 

Relapse to initial treatment arises in approximately 20-25% of children with ALL, 

and represents the second most common cause of cancer related death in 

children(Yang, Bhojwani et al. 2008, Horton and Steuber 2014). In adult patients, in 

addition to the 20% of initial diagnoses that show primary resistant disease, more than 

half of the remaining 80% that achieve remission will ultimately relapse(Larson 2014). 

The majority of relapses occur within 2.5 years of diagnosis in the bone marrow or a 

select few extramedullary sites. Patients relapsing after 2.5 years from diagnosis often 

represent a new leukemia development rather than a relapse of an original 

clone(Larson 2014). When relapse does occur, survival is dependent on a variety of risk 

factors, the strongest of which being the time to relapse following initial diagnosis. 

Patients who relapse within 18 months of diagnosis feature a particularly poor prognosis 

with five-year survival around 20%, while the survival rates of other patients depends 

largely on site, timing, and treatment regimen(Nguyen, Devidas et al. 2008). In patients 

who successfully enter remission following clinical induction therapy, monitoring for 

leukemic relapse is conducted through use of blood work, physical examination, and 

bone marrow aspiration at routine intervals. Upon relapse discovery, patients are 

administered aggressive and intensified reinduction therapy, often with agents not 



�
�
�

administered in the first round of induction(Locatelli, Schrappe et al. 2012). Such 

therapies include Nelarabine and Clofarabine both of which have shown efficacy in a 

portion of relapse patients. Clofarabine in particular plays an important role by acting as 

a “bridge to transplant” in helping patients to achieve second remission which is 

required for last stage effort hematopoietic cell transplantation (HCT)(Borgmann, von 

Stackelberg et al. 2003, Larson 2014).  

 

2.A.vi Genomic Mechanisms Underlying Drug Resistance  

While a great deal of effort has been placed on understanding the molecular basis of 

relapse and chemotherapy resistance in ALL, the specific mechanisms mediating 

disease progression, leukemia relapse, and therapy escape remain largely unknown.  

To address these questions we performed whole exome sequencing of matched 

diagnosis, remission and relapse DNA samples from 5 pediatric T-ALL patients 

(Supplementary Table 2.1). 

 

2.B Results and Discussion 

Our initial sequencing panel of 5 pediatric patients identified a mean mutation 

load of 13 somatic mutations per sample (range 5 – 17) (Table 2.1). In total, 60 somatic 

mutations were identified. Of these, 17 mutations were present at diagnosis and at 

relapse, 24 genes were selectively mutated in relapsed T-ALL samples and 19 

mutations were present only at diagnosis. Four out of the five total relapsed cases 

analyzed showed the presence of at least one somatic mutation present also at 

diagnosis, together with secondary mutations specifically acquired at the time of 
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relapse. In addition, 4 out of the 5 cases showed absence of at least one mutation 

marker present at diagnosis during disease progression leading to relapse. 

Somatically mutated genes at diagnosis included known T-ALL tumor suppressor genes 
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not implicated before in the pathogenesis of this disease. As TP53 mutations have been 

reported in about 10% of` relapsed ALL cases and are associated with a particularly 

poor prognosis(Hof, Krentz et al. 2011).  Three genes encoding proteins involved in 

positive regulation of TP53 signaling at relapse is noteworthy. These alterations include 

TP53 itself (TP53 R213Q) as well as mutations in the genes BANP (BANP 

H391Y)(Jalota, Singh et al. 2005) and RPL11 (RPL11 R18P)(Jalota, Singh et al. 2005, 

Zhang, Ding et al. 2012). As TP53 plays an important role in DNA damage driven cell 

death response, an extended mutation analysis of the TP53, BANP and RPL11 genes 

was conducted in 18 additional diagnostic and relapsed T-ALL samples 

(Supplementary Table 2.1)(Bunz, Hwang et al. 1999). While no additional mutations 

were identified in TP53 or BANP, this analysis successfully identified the presence of 

two somatic mutant alleles in gene RPL11. Of these mutations, one (RPL1 X178Q) was 

found mutated at both diagnosis and relapse, while the other mutation (RPL11 G30fs) 

was found exclusively at relapse(Tzoneva, Carpenter et al. 2013)(Supplementary 

Figure 2.1).  

Other interesting relapse specific mutations identified by this study include a well 

known activating mutation in the NRAS oncogene (NRAS G13V). NRAS mutations in 

ALL have been associated with poor outcome and are particularly prevalent in early T-

cell precursor ALLs, a group of high risk leukemias with poor prognosis(Lubbert, Mirro 

et al. 1990, Coustan-Smith, Mullighan et al. 2009, Van Vlierberghe, Ambesi-Impiombato 

et al. 2011, Zhang, Ding et al. 2012). Extended mutation analysis conducted by 

collaborators of NRAS revealed an additional two mutations prototypical activating 

mutations present in three matched T-ALL pairs. Mutation NRAS G12S was found in 
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two matched diagnosis/relapse pairs while NRAS G12R mutant was identified at 

diagnosis and then exhibited loss of heterozygosity at time of relapse(Tzoneva, 

Carpenter et al. 2013).  

The most remarkable finding in our exome sequence analysis, however, was the 

identification of a relapse-specific heterozygous mutation in the NT5C2 gene (NT5C2 

K359Q)(Spychała, Madrid-Marina et al. 1988, Oka, Matsumoto et al. 1994). NT5C2 is a 

ubiquitous enzyme that functions to catalyze the final dephosphorylation of 6-

hydroxypurine nucleotide monophosphates such as IMP, dIMP, GMP, dGMP and XMP 

before they can be exported out of the cell (Table 3.2). Due to its catalytic preference 

for hydroxypurine nucleosides structures, NT5C2 has been shown to have activity on 

several purine based nucleoside analogues utilized therapeutically in the treatment of 

cancer, including T-ALL treatments 6-mecaptopurine (6-MP) and 6-thioguanine (6-TG). 

As NT5C2 may be capable of deactivating the active metabolites of these drugs (6-

thioinositol monophosphate and 6-thioguansine monophosphate) through 

dephosphorylation, it was hypothesized that a mutated NT5C2 enzyme could potentially 

lead to drug resistance(Petter Jordheim and Chaloin 2013). In order to assess if NT5C2 

mutations were prevalent in ALL an extended panel of 98 relapse T-ALL and 35 relapse 

B-precursor ALL samples was conducted (Supplementary Table 2.1). This panel 

identified 22 additional mutations in T-ALL and one additional NT5C2 mutation in a B-

precursor ALL patient in first relapse (Table 2.3). Strikingly, 13 of these samples 

harbored the same NT5C2 R367Q mutation, 4 cases showed a recurrent NT5C2 

R238W mutation and 2 samples harbored a L375F single amino acid substitution 

(Figure 2.5).�
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Moreover, NT5C2 mutations were acquired exclusively in relapse samples of each of 

the 9 cases for which original diagnostic DNA was available for analysis. Upon 

investigation all 23 T-ALL and 27 B-precursor ALL additional diagnostic samples no 

NT5C2 mutations were found, further supported the specific association of NT5C2 

mutations with relapsed disease. Analysis by Ferrando Lab collaborators of clinical and 
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molecular features associated with NT5C2 mutant relapsed T-ALLs treated in Berlin 

Frankfurt Münster (BFM) group based clinical trials (ALL-BFM 95, ALL-BFM 2000, 

COALL 06-97, NHL-BFM 95 and Euro-LB 02) (Supplementary Table 2.1) showed an 

association of NT5C2 mutations with early disease recurrence (very early or early 

relapse vs. late relapse, P <0.05) and relapse under treatment (P = 0.002) 

independently of treatment protocol (Supplementary Tables 2.2-2.7). Given the 

described role of NT5C2 in the metabolism and inactivation of nucleoside analog drugs; 

the recurrent finding of the NT5C2 R367Q, NT5C2 R238W and NT5C2 L375F alleles; 

and the reported association of increased levels of nucleotidase activity with thiopurine 

resistance and worse clinical outcome, we hypothesized that relapse-associated NT5C2 

mutations may represent gain of function alleles with increased enzymatic 

activity(Pieters, Huismans et al. 1992, Galmarini, Jordheim et al. 2003, Brouwer, 

Vogels-Mentink et al. 2005, Hunsucker, Mitchell et al. 2005). To assess this possibility 

each of the initial three identified mutations with structural coverage was first analyzed 

positionally on the NT5C2 active structure (PDB 2XCW) (Figure 2.6, 2.7.d).�
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The positions of each mutation revealed that not one of the mutations occurred in 

close proximity (<6Å) to the enzyme’s substrate-binding site or yielded any obvious 

impacts that might disturb the enzyme’s catalytic active site machinery. To further 

assess the potential functional effects of the identified NT5C2 mutations, the structure of 

each mutant protein was modeled for comparative analysis against several high-

resolution crystal structures of the NT5C2 wild type, both in apo form and that depicting 

the binding of various ligands and effectors (Table 3.2). Overall, models built for the cN-

II mutants R291W, R367Q, and K359Q exhibited no gross global topology changes. 
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Comparison between the distances of electrostatic interactions in the wild type and 

mutant structures suggest a retained active site pocket that is capable of binding NMPs. 

Most notably, all three-mutation models predict negligible structural change to critical 

sites Asp52 and Asp54, suggesting that the mutations do not impact the wild type 

function of these residues directly (Figure 2.7).  

Detailed structure-function analysis of the NT5C2 K359Q mutation further 

supported the hypothesis of mutational activation. Comparison of the wild-type NT5C2 

structure and models of the mutant NT5C2 K359Q protein showed that this mutation 

could result in increased NT5C2 activity by mimicking the effect of positive allosteric 

regulators (Fig. 2.6). Allosteric activation of NT5C2 is mediated by binding of ATP, 

dATP, diadenosine tetraphosphate (Ap4A) and 2,3-bisphosphoglyceric acid (BPG) to an 

allosteric pocket proximal to the NT5C2 active site (Wallden and Nordlund 2011). 

Occupancy of this regulatory site results in increased ordering of an alpha helix formed 

by residues Gly355–Glu364 (helix A/alpha), which in turn displaces Phe354 from the 

catalytic center and moves Asp356 into the active site of the protein (Fig. 2.7a,c) 

(Wallden and Nordlund 2011). Similarly, the mutation model predicts that the NT5C2 

K359Q mutation could increase the stability of helix A and reduce its solvent 

accessibility, resulting in an active configuration with displacement of Phe354 out of the 

NT5C2 active site and positioning Asp356 into the catalytic center of the enzyme (Fig. 

2.7 a–e).�
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Analysis of R367Q and R291W mutation models yielded no obvious mechanism 

of altering regulation of or increasing NT5C2 activity. Interestingly both sites feature 

solvent exposed orientations, directed away from NT5C2 activity centers. To assess if 

either mutation affected enzyme dimerization, the mutant models R367Q and R291W 

were constructed a second time in the form of a dimer and compared to wild-type. This 
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comparison revealed no appreciable structural changes to the monomer-monomer 

interface (Supplementary Figure 2.2). The R367 site occurs in a solvent accessible 

region not directly involved in monomer-monomer binding and its mutation to glutamine 

was not predicted to alter the interface hydrogen bonding of any nearby residues in a 

manner that might disrupt interface association (Supplementary Figure 2.2).  

Consistent with structural predictions, 5'-nucleotidase assays prepared in the 

Ferrando lab by Gannie Tzonvea using NT5C2 K359Q recombinant protein 

demonstrated a 48-fold increase in enzymatic activity compared wild type NT5C2 

(Figure 2.8). Despite the absence of clear structural cues suggesting a role of other 

mutations in NT5C2 activation, nucleotidase activity analysis of NT5C2 R367Q and 

NT5C2 D407A mutant proteins revealed an 18 fold and a 16 fold increase in their 5'-IMP 

nucleotidase activity compared with wild type NT5C2, respectively (Figure 2.8). 
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Finally, and to formally test the role of NT5C2 mutations in chemotherapy 

resistance the effects of wild type and relapse-associated mutant NT5C2 expression 

were analyzed in the response of CCRF-CEM T-ALL cells to 6-mercaptopurine (6-MP) 

and 6-thyogunanine (6-TG) (Figure 2.9)(Tzoneva, Carpenter et al. 2013). Cell viability 

analysis in the presence of increased drug concentrations demonstrated increased 

resistance to 6-MP and 6-TG therapy in cells expressing NT5C2 K359Q, NT5C2 R367Q 

and NT5C2 D407A compared with empty vector and wild type NT5C2 controls (Figure 
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2.9, Supplementary Figure 2.3, Supplementary Table 2.8). Similar results were 

obtained in the CUTLL1 T-ALL cell line (Figure 2.9, Supplementary Figure 2.3, and 

Supplementary Table 2.8)(Tzoneva, Carpenter et al. 2013). 

 

Finally, Gannie Tzoneva and Arianne Garcia of the Ferrando lab tested the 

effects of relapsed-associated NT5C2 mutations in the response to nelarabine – an 

AraG precursor highly active in relapsed T-ALL– and AraG(Berg, Blaney et al. 2005, 

DeAngelo, Yu et al. 2007, Larson 2007, Sanford and Lyseng-Williamson 2007, 

Gökbuget, Basara et al. 2011). Strikingly, both nelarabine and AraG showed to be 
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equally active in cells expressing relapse-associated NT5C2 mutations compared to 

controls (Supplementary Figure 2.6). 

Prolonged maintenance treatment with 6-mercaptopurine is essential to obtain 

durable remissions in the treatment of ALL(Koren, Ferrazini et al. 1990, Dibenedetto, 

Guardabasso et al. 1994, Relling, Hancock et al. 1999, Lauer, Shuster et al. 2001). This 

is best showcased in low-adherence to 6-mercaptopurine treatment, defined as less 

than 95% compliance, which results in increased relapsed rates and may account for as 

much as 59% of all ALL relapses(Bhatia, Landier et al. 2012). In this context, our results 

highlight the prominent role of relapse-specific mutations in NT5C2 as a mechanism of 

resistance to 6-MP and a genetic driver of relapse in ALL. Collectively these findings 

outline an explanation for relapse in a significant proportion of ALL patients and raise 

important questions regarding its treatment (Figure 2.10)(Cancer Genome Atlas 

2012).Our results are further confirmed by a concurrent study by Meyer et al., which 

identified gain of function mutations in NT5C2 in roughly 10% of relapsed B-precursor 

ALL samples(Aster and DeAngelo 2013, Meyer, Wang et al. 2013).  In addition, and 

most notably, the lack of nelarabine cross resistance in cells expressing activating 

NT5C2 alleles analyzed here suggests that these mutations may not impair the 

effectiveness of nelarabine-based salvage therapies in relapsed T-ALL(Tzoneva, 
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Carpenter et al. 2013). 

 

 

Chapter 3. A unifying model for NT5C2 Relapse Mutation 

Function 

3.A Introduction  

3.A.i. Physiologic Roles    

Nucleotides and nucleosides make up a heterogeneous family of metabolites that 

play a wide range of crucial cellular roles including cellular energy production, cellular 
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signaling, and DNA and RNA synthesis(Petter Jordheim and Chaloin 2013). 

Maintenance of homeostatic concentrations and ratios of nucleoside metabolites in the 

cell requires active metabolism by proteins that catalyze modifications of the 

nucleobase, sugar, and phosphorylation of nucleosides (Figure 3.1). 

 

The monophosphorlyation status of nucleosides is controlled by a family of 

proteins called 5’-nucleotidases, which catalyze the hydrolysis of dexoyribo- and 

ribonucleoside 5’-monophosphates (NMPs) into nucleosides and inorganic free 
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phosphate (Figure 3.2)(Bianchi and Spychala 2003, Bogan and Brenner 2010, 

Rampazzo, Miazzi et al. 2010, Meurillon, Marton et al. 2014).  

 

Cytosolic 5’-nucleotidase II (NT5C2) is one of eight human 5’-nucleotidases and 

plays an important role in the regulation of nucleotide pools critical for DNA and RNA 

synthesis(Wallden and Nordlund 2011). NT5C2 is a highly conserved protein with 

widespread distribution both in various organisms and tissues (Supplementary Figure 

3.1)(Itoh 2013). NT5C2’s substrate specificity and tissue distribution suggest that a 

primary role is in the excretion of excess intracellular purine nucleotides through 

dephosphorylation of IMP into diffusible inosine, while other more discreet functions 
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may depend on the absence or presence of regulatory factors(Itoh 2013). Evidence 

exists to suggest NT5C2 plays major roles in the Oxypurine Cycle, hepatic derived 

systemic purine supply, general adenine nucleotide breakdown and intracellular 

adenosine formation, substrate cycling between AMP and Adenosine in hepatocytes, 

and many other physiologic roles(Itoh 2013). This widespread functionality is related to 

NT5C2s central role in the cell of IMP and GMP hydrolysis(Itoh 2013).  

  

3.A.ii NT5C2 Associated Diseases  

One major window into the specific roles of NT5C2 is possible through the study 

of disorders associated with its malfunction. Both overexpression and silencing of 

NT5C2 in various cell types has been shown to have detrimental consequences on cell 

growth and survival(G Tozzi, Pesi et al. 2013). In humans several pathologies have also 

been linked to NT5C2 malfunction. Lesch-Nyhan disease (LND) is caused by congenital 

deficiency of the purine salvage enzyme hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) and characterized by hyperuricemia, motor 

disability, spasticity, metal retardation, and self-mutilation(López 2008). While uricemia 

is clearly caused by the absence of HPRT, the mechanisms leading to the 

neurobehavioral abnormalities remain enigmatic. ZMP is a natural intermediate of the 

purine biosynthetic pathway and a considerable increase in Z-nucleotides (ZMP, ZDP, 

and ZTP) has been observed in LND patients (López 2008).  Furthermore, patients 

suffering from Lesch Nyhan syndrome, NT5C2 activity is near doubled in fibroblasts and 

erythrocytes(Pesi, Camici et al. 2008). This activity increase is linked to the production 

of AICAriboside (Z-riboside) at levels leading to neuronal toxicity, suggesting that the 
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neurological manifestations of Lesch Nyhan may be due to NT5C2 mediated 

dephosphorylation of  ZMP (Garcia-Gil, Bertini et al. 2006). Although it has not been 

linked experimentally to NT5C2 directly, Z-riboside is also found in increased 

concentrations in the urine of patients with relapsed ALL. In a study examining Z-

riboside in 10 leukemic children, Z-riboside present in urine was found to differentiate 

between leukopenia of relapse and that of drug toxicity, and may act as a predictor of 

leukemia relapse even prior to other methods of diagnostic detection(Lulenski, 

Donaldson et al. 1970). These findings suggest that NT5C2 is hyperactive in both 

Lesch-Nyhan disease and at relapse in T-ALL patients. Strikingly, incubation of human 

lymphocytes with Z-riboside induces ZMP accumulation and apoptosis in B-

lymphocytes exclusively (Campàs, López et al. 2003). T lymphocytes are unaffected by 

this accumulation, and accordingly in LND patients, which also exhibit accumulation of 

ZMP, have low levels of B lymphocytes but normal levels of T lymphocytes(Allison, 

Watts et al. 1975). While providing drug resistance in both cases, NT5C2 hyperactivity 

in ALL may, therefore, be more taxing on transformed B-cells. This possibility provides a 

potential explanation for the seemingly higher frequency of NT5C2 mutations amongst 

T-ALL samples (19%) when compared to relapse in B-ALL (3%). Although experimental 

validation is required to assess these speculations, what is clear is that NT5C2 exhibits 

a wide range in substrate specificity. This promiscuity may play an unforeseen role in 

diseases or treatment regimens involving purine or purine-like compounds. One 

interesting note is that in Lesch-Nyhan disease NT5C2 hyperactivity is observed in the 

absence of NT5C2 mutations. This suggests that HPRT loss in some way leads to 

hyperactivity of NT5C2. Elucidating the signaling network behind this feedback may 
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identify additional mechanisms of increased NT5C2 activity relevant to ALL relapse. It is 

likely that some of the patients lacking NT5C2 mutations still achieve NT5C2 

hyperactivity and drug resistance through mutation in a protein of LND network.  

In the opposite direction, loss of NT5C2 function is also characterized by severe 

phenotypes both in experimental models and human patients. Hereditary spastic 

paraplegias (HSP) are a group of neurodegenerative disorders characterized by age-

dependent loss of corticospinal motor tract function. While a global understanding of 

HSP is lacking, several genetic variants present in NT5C2 have been linked to these 

pathologies(Novarino, Fenstermaker et al. 2014). Purine nucleotides play a critical role 

in protecting the ischemic and developing brain, and it is believed alterations in their 

levels can sensitize neurons to stress and insult leading to motor neuron 

degeneration(Novarino, Fenstermaker et al. 2014). Familial studies of spastic 

paraplegia have identified several NT5C2 variants including a homozygous R29X 

nonsense mutation, a homozygous frameshift and premature termination 

(Ser409Valfs436Ter), a homozygous R149X nonsense mutation, an acceptor splice site 

mutation (c.988-1G-T), and a homozygous donor splice site mutation (c.175+1G-

A)(Novarino, Fenstermaker et al. 2014). All of these mutations are predicted to be loss 

of function, and highlight the devastating effects of NT5C2 loss. In addition to HSP, 

NT5C2 germline variants have been identified in less defined roles involving genetic 

predisposition to higher blood pressure, increased coronary artery disease risk, and 

reduction of visceral and subcutaneous fat(Hotta, Kitamoto et al. 2011). While still 

enigmatic, these associations warrant further study to unravel how the central role of 

purine ring density determination played by NT5C2 plays out in various tissues.  
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3.A.iii Substrate Specificity and Kinetics of Activity 

NT5C2 is capable of both hydrolysis and phosphotransferase activity and acts 

preferentially to catalyze the removal of phosphate of 6-hydroxypurine nucleoside 5’-

monophosphates resulting in the creation of soluble 6-hydroxypurine nucleosides and 

either inorganic phosphate (hydrolysis activity) or a newly furnished nucleoside 

monophosphate acceptor (phosphotransferase activity)(Figure 3.2).   

In general, NT5C2 shows hydrolysis activity on a wide range of 6-hydroxypurine 

nucleoside 5’-monophosphates, but a clear preference for substrates IMP/dIMP and 

GMP/dGMP. Despite this, NT5C2 is a ubiquitous enzyme and is able to catalyze the 

final dephosphorylation of many 6-hydroxypurine nucleotide monophosphates such as 

IMP, dIMP, GMP, dGMP and XMP before they can be exported out of the cell. Table 

3.1 displays the reaction velocities  for various NT5C2 substrates, illustrating both the 
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preferences and promiscuous nature of this protein. 
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3.A.iv Role of Effectors on NT5C2 Kinetic Parameters 

Allosteric effectors of NT5C2 directly impact enzymatic activity, hydrolase-to-

phosphotransferase ratio, and substrate preferences, adding greatly to the complexity of 

NT5C2 regulation (Itoh 2013). While most allosteric effectors feature a similar 

nucleobase chemical structure, a wide variance is seen in allosteric effect; a full list of 

effectors and relative activity on IMP and AMP hydrolysis is shown in (Table 3.2)(Itoh 

2013). Among purine and pyrimidine nucleotides, ATP and dATP are most effective 

activators of IMP hydrolysis, suggesting that the cellular adenylate energy charge 

([ATP] +.5[ADP)/([ATP] + [ADP] +[AMP]) plays a critical regulator role of NT5C2 

activity(Atkinson 1968, Itoh 1981, Allegrini, Scaloni et al. 2004, Itoh 2013).  These 

regulatory properties tie NT5C2 activity directly to ATP hydrolysis, allowing for excess 

IMP to be removed under high cellular adenylate charge conditions, but acting to 

conserve precious purine molecules by allowing IMP accumulation in the face of excess 

ATP hydrolysis (Tozzi, Camici et al. 1991, Zimmermann 1992, Itoh 1993, Pesi, Baiocchi 
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et al. 1998, Allegrini, Scaloni et al. 2004).  

 

 

Each monomer subunit contains a substrate binding active site and at least two 

allosteric effector-binding sites(Walldén, Stenmark et al. 2007).  Crystallization of 

effector bound protein has revealed that allosteric activation is achieved through 

activator-mediated stabilization of a critical alpha helix, helix A or helix �. This helix acts 

as a conformational switch for enzyme activity: its ordering shifts critical amino acids of 

the substrate binding active-site into an active conformation, while its disordering leads 

to steric hindrance of nucleoside monophosphate binding (Figure 3.2)(Wallden and 

Nordlund 2011). The equilibrium of helix A between helical and disordered secondary 

structure is suggested to be the pivotal determiner of NT5C2 activity(Wallden and 

Nordlund 2011). The propensity for various effectors to increase enzyme activity are 



	��
�

directly related to their ability to shift helix A equilibrium towards an ordered state 

(Figure 3.3c)(Wallden and Nordlund 2011).  In the opposite direction, inorganic 

phosphate acts as an allosteric inhibitor of enzyme function by increasing enzyme Km 

and decreasing Vmax (Figure 3.3b)(Itoh 2013). While physiologic allosteric inhibitors 

have yet to be identified, synthetic studies have identified several classes of molecules 

capable of inhibition via competitive binding, albeit none with feasible in-vivo application 

at this time(Wallden and Nordlund 2011, Meurillon, Marton et al. 2014). 
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3.A.v Impact on Non-physiologic Nucleotide Analogues 

Nucleotide and nucleoside analogues, compounds that mimic the chemical 

structure, physiologic uptake, and metabolism of natural nucleotide and nucleosides, 

have been explored extensively for use in anti-viral and anti-cancer cell based therapies 

(Meurillon, Marton et al. 2014). While it is well understood that analogue therapies must 

compete with endogenous nucleotides to obtain these effects, the relationship between 

the size of endogenous nucleotide pools and therapeutic effect of these drugs is poorly 

understood. Due to its preference for hydroxypurine nucleosides structures, NT5C2 has 

been shown to have activity on several purine based nucleoside analogues utilized 

therapeutically in the treatment of cancer and viral diseases(Wallden and Nordlund 

2011). Banditellie et al. first confirmed this through showing that NT5C2 with dGMP as a 

phosphate donor was able to phosphorylate several nucleosides and nucleoside 

analogues (Figure 3.4b)(Banditelli, Baiocchi et al. 1996). 
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The clinical relevance of NT5C2 based therapy interference has since been well 

documented in several studies including acute myeloid leukemia (AML), high risk 

myelodysplstic syndrome, B-cell chronic lymphocytic leukemia (B-CLL), T-cell acute 

lymphoblastic leukemia/lymphoma, and B-cell acute lymphoblastic leukemia/lymphoma 

(B-ALL), but is likely to be relevant to all conditions treated with cytotoxic nucleoside 

analogues(Gallier, Lallemand et al. 2011, Petter Jordheim and Chaloin 2013). In 

addition, short hairpin RNA knockdown of NT5C2 was associated with induction of 
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apoptosis in human astrocytoma cells, which further suggests the relevance of NT5C2 

as a therapy target. Most pertinent is our own identification of NT5C2 in a panel of 

relapse acute lymphoblastic leukemia patients, where we demonstrated that NT5C2 

plays a direct role in drug resistance to the chemotherapy nucleoside analogue drugs 6-

mercaptopurine and 6-thioguanine (Figure 2.9, Figure 3.4c)(Tzoneva, Carpenter et al. 

2013). Due to a defined role in toxicity and resistance to nucleoside analogue therapy, 

NT5C2 is an attractive molecular target in the goal of preventing cancer patient relapse 

(Supplementary Table 3.1). To understand further how NT5C2 may act on these 

therapies it is necessary to understand the structural basis for NT5C2 mediated 

catalysis.  

 

3.A.vi NT5C2 Inhibitor Development 

Given its role in both disease and resistance to anti-cancer and anti-viral 

therapies, the need of NT5C2 inhibitors has become increasingly apparent.  

While pharmacological inhibitors of other nucleotidases have existed for some 

time, NT5C2 inhibitors have only been developed recently and are still not 

feasible for pre-clinical trials and application in patients. Apart from inorganic 

phosphate, the first discovered inhibitors described were 5’-deoxy-5’-

isobutylthioadensoine (IBTA) and 5’-deoxy-5’-isobutylthioinosine (IBTI). These 

compounds were shown to inhibit NT5C2 activity by 50% but only at relatively 

high concentrations (2-6mM and 7-10 mM for IBTA and IBTI, respectively) 

(Skladanowski, Sala et al. 1989, Petter Jordheim and Chaloin 2013). Additionally, 

these compounds show off target effects and also act as inhibitors of ecto-
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5’nucleotidase and AMP-specific soluble 5’nucleotidase, two critical enzymes for 

purine nucleotide pathways. More recently, substrate analogue based in silico 

approaches identified several potential ribonucleoside phosphonate analogues 

as inhibitors of NT5C2. These compounds feature a non-hydrolysable bond that 

prevents their dephosphorylation by NT5C2 upon binding and act competitively 

with NT5C2’s native substrates. In vitro screening of these compounds showed 

that beta-hydrozyphosphonates of cytosine and inosine induced 60% and 100% 

inhibition at 250uM and 1mM respectively. These molecules however, are too 

hydrophilic to pass the cellular membrane and thus require pro-drug manipulation 

and improvements in binding affinity. A second major study in 2013 utilized 

additional in silico screening and identified an anthraquinone derivative (AdiS) 

that was shown to block enzyme activity with a Ki of 2.0mM through competitive 

inhibition of NT5C2s active site. In subsequent cancer cell-line assays, AdiS 

showed synergy with cladribine and additivity with Clofarabine and increased 

induction of apoptosis. While demonstrating the utility of virtual screening, AdiS 

remains is not potent enough and requires additional structural optimization. As 

all of these compounds require high concentrations for in vitro inhibition, no in 

vivo experiments have yet been performed and many questions still exist 

regarding delivery, off target effects, and toxicity(Gallier, Lallemand et al. 2011).  

 

3.A.vii. NT5C2 Structure 
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NT5C2 forms a dimer-of-dimers in which four monomers combine to form a 

tetrameric quaternary structure (Wallden and Nordlund 2011) (Figure 3.5.b). Interface A 

(alpha), which facilitates the association of two monomers into a dimer, is formed 

through salt-bridges and hydrogen bonding made by fifty three amino acids (Figure 

3.5.a). Interface B (beta), in-turn, facilitates the binding of two identical dimers through 

the interaction of 28 amino acids to form the active tetramer described by Wallden et al. 

(Figure 3.5.c)(Walldén, Stenmark et al. 2007, Pesi, Allegrini et al. 2010).  

 

3.A.vii.a Active Sites and Core Mechanics 

NT5C2 is a member of the haloacid dehalogenase (HAD) superfamily, and each 

monomeric protein of its global structure is defined by the presence of three main motifs 

that form a MG2+ coordinating active site essential for enzyme catalysis. Motif I 
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(DXDX[T/V]L), motif II ([T/S]), and motif III (K(Xx)D(X)0-4D) are positioned by an �/�-

Rossmann-like domain containing eight-stranded antiparallel �sheet surrounded by 

eight � helices (Petter Jordheim and Chaloin 2013). These three motifs come together 

in space to create the active site of NT5C2, which allows binding of substrate phosphate 

to coordinated Mg+2 in a similar manner to that seen in other nucleotidases. In the 

ligand/effector bound cN-II structure, the nucleoside moiety is stabilized by electrostatic 

interactions with Asp206 and Arg202, and stacking between aromatic residues Phe157, 

His209, and Tyr210.  These sites position the nucleoside for nucleophilic attack by 

residue Asp52 on the phosphate moiety of the substrate, and the subsequent donation 

of a proton by Asp54 to the departing nucleoside product (Wallden and Nordlund 2011). 

3.A.vii.b Effector Sites and Allosteric Regulation  

The reaction rates of both phosphate transfer and nucleotidase activity are 

impacted greatly by allosteric regulation through at least two effector sites. In the initial 

solved structures of NT5C2 adenosine was bound to two unique locations, leading to 

the identification of two putative effector sites termed effector site 1 and effector site 2, 

respectively(Tzoneva, Carpenter et al. 2013). Effector site one (ES1) occupies a space 

in close proximity to subunit interface, approximately 20Å from the phosphate moiety of 

IMP bound to the enzymes active site and has been has been crystalized with effectors 

ATP, dATP, Ap4A, and 2,3-BPG bound with full occupancy (Wallden and Nordlund 

2011). The underlying structural mechanism of allosteric regulation through effector site 

1 is a disorder-to-order transition in the helix (termed helix �) formed by residues 

Gly355-Glu364 (Figure 3.3c, Supplementary Figure 3.2). Structural alignment 

between solved apo form (2XCX) and the IMP/ATP (2XCW) bound form of NT5C2 
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illustrate the presence of an ordered helix � occurring exclusively in the NT5C2 active 

form (Figure 3.6b,c).  The ordering of helix � shifts residue Phe354 from the active site 

region into the effector site 1 pocket and transitions Asp356 into the active site of the 

protein; these movements induce a series of rearrangements that transform the enzyme 

into its active form (Figure 3.6)(Wallden and Nordlund 2011, Tzoneva, Carpenter et al. 

2013).�

 

 

The role of effector site 2, however, remains unclear. Although this cavity site has 

been crystalized successfully bound to adenosine, the same authors were unable to 
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bind ATP, Ap4A, dATP, or 2,3BPG to this site in a later crystallographic paper(Walldén, 

Stenmark et al. 2007, Wallden and Nordlund 2011). Studies designed to further 

investigate the role of effector site 2 found that upon mutagenesis of residue H428D 

NT5C2 became unresponsive to any of its described effectors, exhibiting complete 

impairment of enzyme regulation(Pesi, Allegrini et al. 2010). In their 2011 paper, 

Wallden et al. utilize a catalytically dead mutant (D52N), and particular conditions, which 

may prevent the binding of effector to this site (Figure 3.7). Alternatively, as this site 

was crystalized bound to adenosine but not ATP, it is possible that effector-site-2 may 

be specific for an effector not investigated(Wallden and Nordlund 2011). While the 

precise role of effector site 2 remains unresolved, its disruption of allosteric control upon 

mutation highlights the need for additional study(Pesi, Allegrini et al. 2010). 

 

3.A.vii.c C-Terminus and Redox Sensitivity  
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While the C-terminus of NT5C2 is probably the least well understood portion of 

the protein, it contains many regions of interest including highly mobile disordered linker 

regions, redox control switches, and a striking 13 residue long C-terminal acidic 

stretch(Bretonnet, Jordheim et al. 2005). The acidic tail of NT5C2 is present in all forms 

of the enzyme and is highly conserved with particular orthologues displaying extensions 

of the negative motif by 9 additional glutamate residues (Supplementary Figure 

3.3)(Bretonnet, Jordheim et al. 2005). The function of this region has been analyzed 

through mutated constructs where contradicting results have been recorded. Originally, 

deletion of the trailing 13 acidic amino acids of NT5C2 was reported to yield 20-fold 

decreased expression, a 2-fold increase in Km and 20-fold decrease in specific activity, 

and altered the quaternary structure of the enzyme from a tetramer to a monomer 

(Spychala, Chen et al. 1999, Walldén, Stenmark et al. 2007). In contrast, other studies 

measuring nucleotidase activity of bovine NT5C2 with a 35-residue truncation displayed 

no difference in enzyme activity. A separate study utilized two constructs, one which 

lacked the terminal 25 residues and another which lacked the final 12 terminal residues, 

and found that neither truncation affected expression or quaternary structure(Walldén, 

Stenmark et al. 2007). Our unpublished results depict a similar finding in that removal of 

the C-Terminus has limited effect on nucleotidase activity (Spychala, Chen et al. 1999). 

These contrasting results may arise from experimental differences as each assay 

utilized slightly different forms of the protein(Bretonnet, Jordheim et al. 2005). 

Three positive regions of NT5C2 structure hold the electrostatics to potentially 

interact with the negative tail stretch: (K(25)KYRR), (K359)SKKRQ), and 

(Q(420)RRIKK)(Walldén, Stenmark et al. 2007). Crystal structures of the NT5C2 protein 
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suggest that (K(359)SKKRKQ), which comprises most of helix alpha, binds to effectors 

at effector site 1 and that the (Q(420)RRIKK) positive-site may, at least in some 

situations, be responsible for binding to effectors at effector-site 2. The most likely C-

terminal interactor, therefore, is the third stretch (K(25)KYRR) stretch, although this has 

yet to be confirmed experimentally (Supplementary Figure 3.4)(Walldén, Stenmark et 

al. 2007). 

 

In addition to its conserved negative cap, the C-terminal tail also includes 

mechanisms to provide sensitivity to oxidizing conditions(Allegrini, Scaloni et al. 2004). 

Disulfide bridge formation between residues C175 and C547 have been confirmed by 

Edman degradation of purified disulfide-containing peptides(Allegrini, Scaloni et al. 

2004). Additionally, two forms of the NT5C2 protein have been described in physiologic 

conditions through use of MALDI-TOF analysis(Allegrini, Scaloni et al. 2004). One of 

these which features a truncation at AA 526 no longer displays sensitivity to changes in 

redox conditions, further evidencing the presence of a redox control switch at AA 547 of 

the NT5C2 C-terminus. Whether these differences constituted valid physiologic controls 

or experimental artifacts requires further study, particularly into the structural nature of 

the C-Terminal stretch AA480-560(Bretonnet, Jordheim et al. 2005). Despite a cytosolic 

location, NT5C2 has a particularly poor solubility making crystallization of the full-length 

protein difficult. Due to this, in all NT5C2 structures, including homologous cN-II in 

Legionella pneumonia, the C-terminal region is truncated by 25 amino acids and 

containing approximately 487 ordered residues. In context of the NT5C2 tetramer, this 

approximately yields 320 absent amino acids per tetrameric unit (Figure 3.8). Given the 
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potential role of the acidic stretch in the C-terminus and redox switch these crystalized 

representations provide an incomplete picture of the enzymes regulation, warranting 

further crystallographic study. 

 

3.A.viii. Mutation Impact 

Collectively, the development of NT5C2 inhibitors has yet to yield a 

molecule capable of inhibition at physiologically relevant concentrations, 

deliverable chemical structures, or required specificities. Additionally, all 

compounds screened thus far act through competitive inhibition at the enzymes 

active site by mimicking nucleoside monophosphate structure to out-compete 

substrate (Meurillon, Marton et al. 2014). As NT5C2 shows considerable 

substrate overlap with many enzymes, these current inhibitor schemes run 
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considerable risk of unwanted side effects due to lack of specificity. Further 

complicating development, familial cases of HPS highlight the severe side effects 

associated with systemic loss of NT5C2 activity. This disorder provides the 

rationale that even perfectly specific NT5C2 inhibition via competitive means runs 

high risk of major toxicity. The pharmacological properties of an effective 

competitive inhibitor must adhere to a remarkably tight window to avoid these 

toxicities and still retain therapeutic value (Petter Jordheim and Chaloin 2013). 

HSP patients have thus far been identified with homozygous loss of NT5C2, 

suggesting loss of both copies is correlated with pathology. On the other hand, 

heterozygous family members display no obvious phenotype, suggesting that the 

presence of one functional NT5C2 gene can avoid toxicity. The development of 

inhibitors that are specific for hyperactivated mutated NT5C2 exclusively, 

therefore, hold the potential to avoid many toxicity concerns. Although the 

development of this specificity is possible, no identified NT5C2 mutations occur 

within the substrate-binding region of the protein, suggesting that the competitive 

inhibitor schemes developed thus far are incapable of optimization into mutation 

specific inhibitors. Collectively, these issues create a significant obstacle to the 

therapeutic use of NT5C2 competitive inhibitors. A much more attractive option, 

therefore, is the development of allosteric inhibitors. While the substrate-binding 

site of NT5C2 is highly conserved amongst homologous proteins, the remaining 

structure of the protein shows much higher variation. This property makes the 

task of NT5C2 specific inhibitor development more achievable, as less structural 
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homology reduces the likelihood of off target binding. Most notably, allosteric 

modes of inhibition allow for the possibility of mutant NT5C2 specific inhibitors 

that can act to down regulate drug resistance but avoid toxicity attributed to 

complete loss of NT5C2 activity such as in HPS patients. While robust structural 

work has uncovered the role of effector-based activation in NT5C2, no known 

allosteric mechanisms of inhibitory function have yet been discovered. The 

identification and structural characterization of such a site is critical towards the 

development of optimal inhibitors. 

 

Despite the identification of multiple recurrent relapse associated mutations in 

relapsed ALL patients, it remains unclear how these site-specific alterations change 

NT5C2 function on molecular level. Following the publication of our 2013 paper in 

Nature Medicine, follow up sequencing identified an additional set of NT5C2 mutations. 

Up to this point, we have identified 26 non-silent unique mutations in more than 56 

relapse samples (Table 3.3). 
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While preliminary work on mutation K359Q, which occurs directly in known regulatory 

region helix alpha, suggests a clear mechanism of activation, the remaining mutations 

identified do not display an obvious connection to NT5C2’s core machinery (Figure 

2.7). The leading findings on NT5C2 structure-function suggests that helix � must be 

ordered in helical structure for NT5C2 to be active(Wallden and Nordlund 2011). 

Therefore, I hypothesized that to have an activating effect on enzyme catalysis, each 

mutant must 1) increase the ordering propensity of helix �, 2) remove a dependence 

upon it, or 3) prevent dimerization of NT5C2 monomers altogether. Here through robust 

structural analysis of the NT5C2 protein and each mutant I present a unifying model for 

NT5C2 hyperactivity in T-ALL relapse. Additionally, through the characterization of a 

novel allosteric regulatory mechanism, I enable for the first time the potential for the 

rationale design of an allosteric and mutation specific NT5C2 inhibitor. 

 

3.B Results and Discussion 

 

3.B.i Mutant Categorization  

As a first-pass approach to identify potential mechanisms of function for both the 

previously published and newly discovered NT5C2 relapse mutations, regions of 

potential interest on the NT5C2 monomer were categorized. These regions include the 

NT5C2 active site, effector-site 1, effector-site 2, C-terminal tail, and also a previously 

undescribed region of the protein formed by two amphipathic alpha helices (L375-400, 

420-433) and an interim unstructured loop (AA 401-419) (Figure 3.9). This di-helical 
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extension (DHE domain) of approximately 58 residues (AA 375-433) is present in all cN-

II structures in a helix-disordered loop-helix format. 

 

Each identified relapse mutant was then overlaid on the molecular surface of 

active NT5C2 2XCW and binned into one of the structural regions described in Figure 

3.9. While two mutations occur directly within the regulatory helix �, the monomer 

protein overlay reveals no obvious clustering of the remaining mutations to any 

particular region (Figure 3.10).  As previously found with the first three identified 

mutations, not one of the newly discovered mutations occurs in close proximity to the 

enzymes active site.  
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As NT5C2’s active physiological state is a tetramer, and it has been previously 

shown that the NT5C2 dimer is the minimal quaternary structure with enzymatic activity, 

I hypothesized that the mutations might cluster in a more intuitive fashion when overlaid 

on a physiologic structural representation of the NT5C2 protein (Figure 3.11)(Pesi, 
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Allegrini et al. 2010). 

 

 

Upon analyzing this new quaternary format, a new categorical region of the 

protein became apparent: a cavity created by monomer-monomer interface A (Figure 

3.12).  This cavity occurs directly beneath the DHE domain and proximal to effector site 
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2 of one monomer while its opposing wall is formed by residues backing into helix � of 

the respective opposing monomer (Figure 3.12). In order to characterize this cavity 

quantitatively the surface topography of the NT5C2 dimer was computed using a 1.4-

angstrom probe. Interestingly, CasTp analysis suggest that the dimer interface forms a 

channel which terminates into a mirror image pocket on both side of the dimer. This 

channel highlighted a molecular surface (MS) volume of 8356.8 Å, and solvent-

accessible surface volume (SA) of 3099.1Å 
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To assess the position of mutations within the correct quaternary structure, each 

mutation was overlaid onto four monomers arranged in the biologically relevant 

positioning of the tetrameric structure. Overlay of the mutations on to the dimer structure 

reveals a distinct clustering of mutants in and around this dimer interface cavity, 

suggesting it may play a direct role in enzyme activation or control (Figure 3.13). Also 

evident is a second cluster of two mutations to helix � (Figure 3.13).  

 As 

overlay of the quaternary structure yielded novel categorization patterns, each relapse 

mutant was re-categorized into several novel groups: helix �, dimer interface cavity, 

DHE domain, and finally a wastebasket category of not clearly specified mutations 
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(Figure 3.14). 

 

An interesting observation about many of the mutations is that their native wild-

type amino acids have limited contact with surrounding residues and, instead, point into 

the space of the cavity. This is true for mutation sites R39, R367, S445, R446, R238, 

and R478 (Figure 3.15). 
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Interestingly, the region of disorder in the DHE domain loop (400-420) also 

seems to be oriented into the interface cavity interior. This motif region varies widely 

between individual NT5C2 structures, suggesting that the region is highly dynamic 

(Table 3.4). The DHE domain is formed by two helical extensions that form “arms” to 

position a disordered loop region of varying size. Table 3.4 specifies the length of the 

DHE disordered loop region, which is the amount of the DHE domain that appears 

unstructured in all NT5C2 PDB crystallizations. The minimum length of this disorder is  



���
�

11 amino acids of the apo structure 2XCX while the maximum loop is 25 amino acids 

long in structures 2XJF and 2XCV (Table 3.4). All structures contain the minimum 

sequence motif LDSSSNERPD, but the function of this region and the reason for its 

disorder remains unclear.  

 

If this region is, indeed, highly mobile, it is possible that the unraveling of the 

helical arms of the DHE domain allows control of interactions by the disordered region. 

In other words, increasing the loop length allows for more flexibility in this area, 

potentially allowing mutation sites D407 S408 to interact with other areas of the protein, 

such as the interface cavity interior, pending yet undescribed regulatory signals (Figure 
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3.16). 

 

3.B.ii DHE Loop Pocket Interaction 

To assess the position of the disordered loop region of the DHE domain and it’s 

identified relapse mutation sites D407 and S408, I first set out to confirm the dynamic 

nature of this region by analyzing the �-factor of its available crystallizations. �-factor is 

a representation of thermal motion, and thus to test the hypothesis that the disordered 

loop region is truly dynamic in nature its � -factor should exhibit relative increase with 
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regard to the rest of NT5C2. To assess �-factor of this region, the thermal motion of 

structure 2XCW was analyzed through a render by attribute depiction of the NT5C2 

structures. Each NT5C2 PDB file includes �-factor data which can be read in and be 

color mapped along a histogram of �-factor values that describe the displacement of the 

atomic positions from an average value. For instance, the more flexible an atom is the 

larger its mean-squares displacement from the position will be(Karadaghi 2014). � -

factors are normally between 15 to 30 square Angstroms, but can be higher than 30 in 

more flexible regions. As suspected, the �-factor of this NT5C2 structure clearly 

indicates high thermal motion in the DHE domain, particularly the regions adjoined to 

the disordered loop which yield �-factor values approaching 115 square Angstroms  

(Figure 3.17). 
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In order to rule out experimental variances during crystallization, the �-factor of 

all existing NT5C2 structures, including homologous cN-II Legionella pneumonphila 

(Lp), were analyzed and plotted on their respective structures. Figure 3.18 reveals that, 

indeed, the dynamic loop region displays the highest relative �-factor in every structure, 

although the values between structures vary considerably (~30-140+ square 

Angstroms). As these structures all feature the same unit cell organization this 

comparison is valid crystallographically, and suggests that the loop is indeed the most 

dynamic portion of NT5C2 across many different physical states including reservoir 

conditions, ligand and effector presence, and adenylate charge (Supplementary Table 

3.5). 
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Given the dynamic nature of this loop, I hypothesized that the disordered loop 

region of the DHE domain (400-420AA) of one monomer may interact directly with the 

residues of the interface cavity formed by both monomers. If valid, this mechanism 

would enable the residues of the DHE disordered loop to “talk” with those in the cavity, 

providing both a means of indirect regulation to helix alpha and an explanation for why 

the mutated cavity residues (R39, R367, S445, R446, R238, and R478) point into the 

interior void of the cavity without clear interaction with surrounding residues (Figure 
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3.16).   

In order to test the feasibility of a loop-pocket interaction I then analyzed the 

electrostatics of the region by calculating the bimolecular solvation of the NT5C2 

structures through use of the Adaptive Poisson-Boltzmann Solver (APBS)(Baker, 

Sept et al. 2001). Results of this analysis yield an interesting electrostatic picture 

of the enzyme, which shows clear regions of distinct charge across its surface 

(Figure 3.19). 

 Of 

note is a concentration of positive charge within the mutated interface cavity. The 
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overt positive nature of this pocket suggests strongly that it is involved in 

electrostatic interactions, particularly due to the outward facing nature many of 

the positive charges (Figure 3.19). Mapping APBS calculations with electrostatic 

potential map compute gird in Chimera allows visualization of these electrostatic 

potential isocontours (kT/e) on the protein molecular surface. When compared 

to the apo structure, highly positive interface cavity becomes clear in active 

structure 2XCW with heavy blue color indicating strong positive potential (~10 

kT/e). This finding suggests that this cavity may display different accessibility 

depending on the enzymes form, as in the apo structure it shows less positive 

potential (3-4 kT/e) (Baker, Sept et al. 2001)(Figure 3.20, Supplemental Figure 

3.6, Supplementary Figure 3.7). 
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As the majority of the DHE domain loop is disordered in all NT5C2 

structures, the missing sequences were aligned and analyzed through primary 

structure methods. Electrostatic analysis of the disordered loop motif reveals a 

highly specific ordering or polar, negatively charged, and hydrophobic residues 

(Figure 3.21). The ideal positioning of several highly negative residues suggest 

that electrostatic interaction is compatible between the disordered loop and the 

positive cavity pocket (Figure 3.21), while positive residues (K404 and R413) 

provide a restricting influence of the DHE into particular conformations. 

Evolutionary analysis of this motif reveals that this sequence is highly conserved 

through protostomian evolution with invariant conservation through Danio rerio 

(Figure 3.22).  
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3.B.iii Modeling of Di-Helical Extension Disordered Loop 

After confirming the feasibility of loop-cavity interaction at the dimeric interface of 

NT5C2, I then sought to test this interaction further through the use of in-silico molecular 

dynamics and docking algorithms. In-silico modeling of the 19 disordered residues 

(E(399)LYKHLDSSSNERPD) of structure 2XCW reveals the full dynamic range 

of this region by allowing ab-initio folding to explore different conformations 

iteratively in a deterministic fashion. Ranked discrete optimized protein energy 

scores (DOPE), the best 20 models were picked and displayed on the molecular 

structure of PDB 2XCW (Figure 3.24). The DOPE score is an atomic distance-

dependent statistical potential calculated from a sample of native protein 



��
�

structure training sets and it is implemented into the modeling package 

MODELLER as a means of energy evaluation of predicted models(Fiser, Do et 

al. 2000). Interestingly, each model has a different conformation, exhibiting a 

highly dynamic yet restricted movements of the DHE loop within the positive 

dimer interface cavity and effector-site 2(Figure 3.23). 
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As the Apo form 2XCX exhibits the most ordered DHE domain of all 

crystalized structures, and thus the shortest DHE loop, I hypothesized that 

modeling of its disordered region (L(405)DSSSNERPD) would limit pocket 

interaction. The top DOPE ranked loop refinements determined by Modeller, 

confirm a limited pocket interaction and restricted mobility (Figure 3.24). 

Modeling of loop in other structures, confirm that this nature is not unique to 

structure 2XCW. These modeling results suggest that loop-pocket interaction 

may only come into play during activated NT5C2 conformation. 
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As electrostatic interactions between the positive pocket residues and loop 

residues are hypothesized to be driven primarily by negative residue D407, I then 

analyzed the positions of D407 in both set of top ranked model conformations to 

observe this residue. Figure 3.25 shows the difference in range of residue D407 

between Apo and Active structures, highlighting D407’s heavy presence within 

the positive cavity in the IMP bound structure and restricted non cavity position in 

the Apo structure (Figure 3.25)(Wallden and Nordlund 2011).�
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Next, to analyze which cavity residues Asp407 might be interacting with 

directly, I utilized molecular dynamics and stepwise energy minimization to 

morph between trajectories of each loop conformation prediction. (Figure 3.26).�
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By dynamically registering all potential hydrogen bonding and salt-bridge 

opportunities throughout each stepwise motion of the DHE loop, a set of residues 

with electrostatically feasible interaction with Asp407 were identified (Figure 

3.27). Molecular surface representation of these residues, colored by heteroatom 

and charge, shows a distinctive positive path through which D407 may move 

dynamically via stepwise hydrogen bond and salt bridge formation (Figure 3.26). 
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Repeating this analysis with the residue S408, S409, S410, N411, and E412 

fragment (D(407)SSSNE(412)) reveals the positive channel created by the 

pocket residues active in hydrogen bonding (Figure 3.28). 
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The most intriguing finding associated with this analysis, occurs upon 

overlay of the mutations onto this positive channel. As shown in Figure 3.29, 

many of the positive channel nitrogen atoms depicted belong to an amino acid 

residue that is mutated at relapse in T-ALL (Figure 3.29, Table 3.3). This 

includes five different mutations: R367Q, R446Q, R39Q, R238W/L, and R478S. 

Concurrently, the residues of the DHE loop predicted to hydrogen bond to these 

positive nitrogen atoms also feature several mutations (Figure 3.29). Collectively 
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these findings begin to paint a picture mutation based loop-pocket disruption.�

 

While Figure 3.29 demonstrates a strong association between DHE loop and 

interface pocket mutations, how these mutations impacted NT5C2 activity 

remained unclear. As helix alpha must be ordered for NT5C2 to be active, I 

hypothesized that these mutations were acting to shift the equilibrium towards 

the ordered state (Figure 3.30). Helix alpha is, in part, stabilized by hydrogen 

bonding between Aspartic Acid 459 and Lysine 361. Strikingly, in the lowest 

potential energy structure D407 occurs with predicted hydrogen bonding to 

residue K361, directly linking the DHE loop with helix alpha (Figure 3.31). 
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In order to assess if the stabilizing core formed between Asp459, Lys361, 

and Arg39 was destabilized by the presence of Asp407 in its lowest energy 

conformation, the DHE loop was remodeled a second time with eased 

restrictions on helix alpha secondary structure and previous run top structure 
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(Figure 3.31) was used as a starting point. Though far more computationally 

expensive, this modeling run resulted in the highest DOPE scores thus far, and 

depicted many conformations of intermediate transition between ordered and 

disordered helix alpha (Supplementary Files). The intensely close range of 

energy scores for these different conformations suggests that the loop moves 

dynamically through the pocket rather than settling in any one particular position 

(Supplementary Files). This nature is highly supported by � -factor analysis of 

the many crystalized structures of NT5C2 (Figure 3.18).  

Given its dynamic movement, which is initiated only upon active conformation 

(Figure 3.23, Figure 3.24) and its predicted interaction with critical components 

of helix alpha stabilization (Figure 3.31), I hypothesized that the DHE loop may 

act as a negative feedback inhibition mechanism. Upon activation by effectors or 

by random walk, NT5C2 monomers shift conformations slightly and helix alpha 

becomes ordered (Figure 3.6). This ordering is in part stabilized by effectors at 

effector site 1 (Figure 3.6), but also by interactions of Lys361 with Asp459 

(Figure 3.30). Once in this state, the DHE loop gains additional flexibility, as 

predicted by loop refinement (Figure 3.24), and begins to travel along a path of 

positive interface residues through stepwise hydrogen bonding (Figure 

3.27,3.29). Along this path Asp407 comes in contact with K361 potentially 

forming a salt bridge. This bond causes a shift of Asp 459 into more direct 

bonding with Arg367 as seen in apo structure 2XCX (Figure 3.30). The bond 

between residue D407 and K361 is shortly disrupted by interaction with other 
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competing positive cavity residues, but has already provided the necessary 

energy to destabilize helix alpha. Collectively these findings suggest a novel 

negative feedback mechanism where Apo to active (2XCX-2XCW) transition 

enables enzyme activity, but also releases a regulatory disordered region 

(Figure 3.32.). 

 

 

 

�
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Given NT5C2’s indispensible role in in cellular processes via nucleoside 

manipulation, and wide spread tissue distribution, this level of activity control 

seems reasonable(Itoh 2013). More over, these results provide a possible 

explanation as to why NT5C2 structures cannot crystalize with the DHE loop 

bound to the interface cavity, as thermal instability is intrinsic to this region 

(Figure 3.17, Figure 3.18, Figure 3.32). While not definitive without explicit 

experimental verification through additional crystallization, the rational behind this 

model is well supported through many lines of in silico evidence. Even more 

supportive, however, is the nature and positioning of the NT5C2 relapse 

mutations themselves.  

 

3.B.iv Structural Modeling of NT5C2 relapse mutations 

After developing this model of NT5C2 regulation and outlining its close 

association with many of the mutations identified in T-ALL relapse, I then hypothesized 

that the majority of mutations identified in T-ALL relapse would either play a role in 

disruption of the inhibitory mechanism of the DHE loop model or directly impact helix 

alpha itself. To accomplish this, each mutant was first analyzed for charge shift to 

assess potential reasons for disruption of either structural motif. 
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Table 3.3 displays the structural location of each mutation and the amino acid class 

change. Overall, 53 unique cases display a shift of a positive cavity amino acid into 

a non-charged amino acid (Table 3.3, Figure 3.33). Another striking finding is that 

all of the mutations to the DHE loop involving a negatively charged residue alter it 

into either a less negative residue, an uncharged residue, or the insertion of a 

positive residue (Figure 3.33, Table 3.3).  
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In order to assess how each mutation might affect NT5C2, a mutant 

structure was modeled using the NT5C2 dimer 2XCW as template. Where 

relevant, the DHE loop was also remodeled along side the introduced mutation to 

assess for changes in this potential inhibitory mechanism. 

 

The most prevalent mutation identified by far is the mutation 

NT5C2_R367Q, which removes a large positive charge from the core 

stabilization area of helix alpha. The modeling of this mutation predicts a few 

interesting new bonding opportunities. First, due to glutamines bivalent nature, 

Q367 it is able to form hydrogen bonding with Asp459 as before, but also a new 

bond directly to Lys361 (Figure 3.34). This bond provides an additional means of 

stabilization for the ordered state of helix alpha. Second, this increased bonding 

would act to reduce the impact of competition from D407, thus making inhibition 

through the DHE loop more difficult to achieve (Figure 3.34). Additionally, many 

conformational models of DHE loop folding suggest that R367 plays a role in the 

stepwise bonding that leads Asp407 into contact with Lys361. As both 

exceedingly active and silenced NT5C2 activity has been shown to cause 

significant cell toxicity, mutants that adhere to a strict window of activity should in 

theory be selected for under presence of nucleotide analogue therapy(Campàs, 

López et al. 2003, Suzuki, Sugawara et al. 2007, G Tozzi, Pesi et al. 2013, Itoh 

2013, Petter Jordheim and Chaloin 2013, Novarino, Fenstermaker et al. 2014). 

For these reasons, an ideal mutation might act to only slightly increase the 
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enzyme’s activity through slight stabilization of helix alpha and mitigation of the 

inhibitory loops effects without causing any major structural disturbances (Figure 

3.34). To support this idea SDM server, which predicts mutations impact on 

protein stability, predicts an overall neutral impact with very slight stabilization 

and a non disease associated pseudo DELTA G of .23 for mutation R367Q 

(Worth, Preissner et al. 2011). A mild increase was further verified through 

NT5C2 experimental activity assay conducted by collaborator Gannie Tzonvea, 

who showed R367Q activating potential to be moderate compared to that of 

other mutations such as K359Q (Figure 2.8)(Tzoneva, Carpenter et al. 2013). As 

K359Q is predicted to highly stabilize helix alpha directly through a different 

mechanism, it is also forth telling that its experimental activity is extremely high 

relatively and its frequency amongst samples extremely low. One possible 

explanation for this is that it has toxic effects on tumor cells that acquire it(Allison, 

Watts et al. 1975, López 2008).  
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Mutations at D407 provide a complementary verification to the logic 

predicting the impact of mutation R367Q. D407A/Y and mutation S408R, would 

both act to disrupt the charged interaction between D407 and K361 either 
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through loss of negative residue or neutralization of negative charge through 

introduction positive arginine. Additionally, both changes may act to prevent 

D407 positioning near K361 entirely by preventing interaction with any positive 

steps into the pocket (Figure 3.35).�
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These positive bonding steps are formed by amino acids that are also 

often mutated. This is the case with mutations R39Q, R446Q, R238W/L, and 

R478S, which all involve the loss of a positive charge and thus should act in a 

similar fashion to prevent interaction between residue D407 and K361. SDM 

algorithm assessment of each of these sites again predicts negligible impact of 

Arginine to Glutamine in overall protein stability. As there is no known function for 

any of these sites, and their mutation does not influence overall protein stability, 

the DHE loop model provides a rationale potential explanation for their action. 

(Figure 3.27,Figure 3.32, Figure 3.39).  

The only mutation in the cavity that does not fit this characteristic change is 

S445F. This mutation transforms a polar residue into a very large bulky 

hydrophobic residue directly into the line path of the DHE loop. Through steric 

hindrance this mutation should, ultimately, act much the same as the positive 

pocket mutations by preventing D407’s access to the critical switch residue 

K361. Modeling of this mutation while keeping restriction on the DHE loop 

demonstrates that 32 unique clashes caused by this introduction (Figure 3.36). 
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Mutation D407E at first glance appears to not fit into the model as the rest 

of the mutations because it involves a change of one negative amino acid to 
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another negatively charged amino acid at site D407. Interestingly, upon closer 

analysis, this mutation in-fact helps to provide support for the hypothesis of 

limited activation of NT5C2, as the pK of aspartic acid is .3 less than that of 

glutamic acid. What this means is that glutamic acid spends less time in a 

charged state at physiologic pH, or in other words, the mutated residue is less 

negative than wild-type aspartic acid. Furthermore, glutamic acid contains an 

additional CH2 group that may act to cause steric hindrance to the loop during 

folding.  

Of the two mutations on the edges of the DHE loop motif (P414S and 

K404N), each mutation involves the loss of a key structural point that assists the 

unraveling of the loop into the pocket. Residue K404, forms hydrogen bonding 

with glutamic acid 401. This interaction causes a kinking in the loop and restricts 

its movement into the cavity pocket (Figure 3.37) which results from loss of 

stabilization by hydrogen bonding between K404 and E401, as well as that 

between K404 and the adjacent backbone, by mutation Asn404. Figure 3.37 

shows the loss of these bonds due to distance and charge constraints. 
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In secondary structure, proline plays a particularly important role due to its cyclic 

nature which gives this amino acid exceptional conformational rigidity compared 

to other amino acids. Proline often acts as a disrupter of alpha helices and is 

found at their edge because of its propensity to cause turns in amino acid chains. 

Mutation of P414S, removes this helix cap, and thus allows for the helix to 

continue on, preventing the DHE loop from unraveling into the pocket. This is 

further supported by predict-protein secondary structure assignment between 

both mutations showing a gain of extra length alpha helix (Rost, Yachdav et al. 
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2004). The structural predictions of both of these mutations suggest activation 

roles as they might act to disrupt a negative feedback system.  

This pattern makes sense in light of the proposed loop-pocket mediated 

negative-feedback-loop model, as any loss of positive charge within the track 

could delay the enzymes shutoff (Figure 3.26, Figure 3.32). The hypothetical 

result of such a delay would be a moderate increase in enzyme activity, to a level 

that is hyperactive but still sustainable physiologically(G Tozzi, Pesi et al. 2013). 

This activity profile would mimic the increased Vmax and decreased Km of weak 

effectors, but also retain strong ability to be activated further by effectors such as 

ATP and Ap4A(Itoh 2013).   

The only remaining mutations are those that that do not occur at the 

interface or within the DHE loop. These include K359Q, S360P, and L375F. 

While K359Q analysis confirms published predictions of helix alpha stabilization 

(Tzoneva, Carpenter et al. 2013), mutation S360P works through a slightly 

different although related mechanism.  Proline introduction into alpha helices 

nearly invariantly disrupts helical secondary structure which is why it either starts 

or ends alpha helical regions in most cases. As such, mutation S360P, which 

inserts a proline directly into the center of helix alpha was initially perplexing as it 

should lead to some permanent disorder of the helix. In order to investigate 

further, this mutation was modeled into active and apo NT5C2 structures to 

assess its potential impact on NT5C2 activity and critical alpha helix residues 

D351, F354, and D356 (Wallden and Nordlund 2011). Strikingly, modeling of this 
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mutation suggests that while half of helix alpha is rendered unable to order by the 

kinking nature of P360, the other half retains its secondary structure resulting in 

the positioning of residues D356 and F354 (Figure 3.38). Additionally, the 

predicted model suggests that cross talk from the positive cavity pocket may be 

disrupted by this mutation, as Lys361 no longer retains influence on critical 

residues D351,F354, and D356 (Figure 3.38). This finding suggests that 

mutation S360P also works by indirectly disrupting inhibitory influence, further 

supporting the model proposed in Figure 3.38. 
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Mutation L375F does not occur directly within any of the outlined structural 

regions such as the positive cavity pocket, negative inhibitory loop, or helix alpha 

itself. However, upon structural mapping and molecular environment analysis it is 

clear that L375 is present within a dedicated hydrophobic pocket formed by 

residues A31, Y32, F36, I372, L375, L379, W382, L440, F441, Y461, A463, and 

H486 of the opposing monomer. These amino acids are responsible for assisting 

dimerization of monomer-monomer NT5C2 interaction (Figure 3.39). Mutation of 

residue L375F to a phenylalanine serves to introduce an additional hydrophobic 

ringed structure to a pocket already stabilized sustainably through pi-stacking 

and hydrophobic interactions (Figure 3.39).  This mutation is predicted to 

stabilize this hydrophobic core further, resulting in a more stable enzyme dimer. 

As NT5C2 requires dimerization for activity and it oligomerization is one mode of 

regulatory control within the cell, this mutation likely hyperactivates NT5C2 by 

increasing the concentration of tetrameric NT5C2 in the cell(Allegrini, Scaloni et 

al. 2004).  In strong support of this hypothesis, a mutagenesis experiment which 

mutate residue F36 to a positive arginine found complete loss of NT5C2 

activity(Pesi, Allegrini et al. 2010). Supplementing this rationale, SDM stability 

algorithm analysis of mutagenesis mutation F36R mutation predicted to highly 

disturb localized protein stability, while not the mutation L375F mutation was 

predicted to highly stabilize localized protein stability(Worth, Preissner et al. 

2011). 
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As every mutation except for L375F and K359Q were predicted to in some 

way disrupt the inhibitory action of the DHE loop on site Lys361, I suspected that 

they should also lead to similar levels of NT5C2 hyper-activity. Indeed NT5C2 

activity assays measuring IMP hydrolysis conducted by collaborator Gannie 

Tzonvea confirms similar levels of hyperactivity for mutations R367Q, S445F, 

S408R, D407A, S360P, and R238W (Figure 3.40). Although this argument only 

considers one parameter and its results could have other explanations, the 

similarity across these different sites in activity is intriguing. Additionally, as 

predicted mutations L375F and K359Q display noticeably larger hyperactivity 

levels, they may indeed work through alternative mechanisms such as those 
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provided in figures 2.4 and 3.36 (Figure 3.37).�

 

A remaining question is that of effector site 2 and how it fits into the predicted 

loop-pocket based inhibition model. Given this sites proximity and predicted 

interaction with the DHE loop in several mid-range scoring models the question 

of this effector-site raises once more. In the active IMP bound NT5C2 structure 

(PDB 2XCW) unphosphorlated DHE loop models, the loops capable of folding 

within the effector-site 2 would presumably compete with a binding of a ligand. 

While the physiologic ligand or ligands for this site are unknown, only one ligand 

(adenosine) has been bound experimentally in crystal structure, 2JC9, which was 

incubated with adenosine during crystallization. In this structure the ribose of 
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adenosine is highly unstructured and its position unclear suggesting adenosine 

may not be the true physiologic ligand for this site. One hypothesis is that 

phosphates are required for full occupancy, and this is supported by the position 

of sulfate molecules, which act to mimic phosphate, in several structures 

structure 2JC9(Walldén, Stenmark et al. 2007). These two sulfates are 

positioned so that they form hydrogen bonding with residues K344 and R446, 

and K140 and R134, respectively (Figure 3.41).� Based on the positioning of 

sulfates that co-crystalize with NT5C2, it seems reasonable that a nucleotide 

could bind to effector site 2 and has one or more phosphates coordinated by the 

many charged Arginine and Lysine residues of the interface region.�
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It is hard to speculate as to the effect a bound ATP molecule would have 

on the disordered loop –pocket interaction as this first requires crystallization, or 

at least robust docking with ATP. Preliminary molecular docking with ATP on 

effector site 2 suggests that it is spatially and electrostatically feasible to add 

triphosphate onto the terminal ribose of 2JC9 adenosine.  Despite this, 

incubation with ATP, dATP, AP4A, BP3, GMP, dGMP in Walden et al.’s 2011 

study failed to achieve nucleotide binding at this site. Compounds that remain 

untested, or at least unpublished, include ADP, GDP, AMP, as well many other 

nucleoside variants(Cline, Smoot et al. 2007). The lack of binding in crystal 

structures suggests one of three possibilities: 1) Effector-site 2 is not a ligand 

binding site but instead acts as a pocket of interaction for other NT5C2 

regions (such as the C-terminal tail acidic stretch and loop that are missing), 2) 

Effector site 2 is a ligand binding pocket but the ligand has not been tested, or 3) 

Effector site 2 is a ligand binding pocket and has been incubated with 

physiologically relevant ligand but is unable to crystalize as such for unknown 

experimental reasons. Spatially, the DHE loop could not sit in several of its 

lowest energy conformations with Adenosine present. However, with two or even 

one (ATP and ADP respectively) terminal phosphates added to adenosine, the 

models would likely be altered significantly. It is possible that the DHE loop and 

effector site 2 ligand work competitively, but other possibilities cannot be ruled 

out without more concrete conformations. Understanding these interactions is 

important, as this regulatory site opens additional areas of an already existing 
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ligand binding site to development of inhibitors for therapeutic use. Currently, all 

developed NT5C2 inhibitors act competitively by mimicking nucleoside 

monophosphate structure and binding to the enzymes active site(Meurillon, 

Marton et al. 2014). As nucleosides, and enzymes that process them, are 

ubiquitous, these inhibitors run a strong risk of many off target effects and 

unforeseen toxicities (Petter Jordheim and Chaloin 2013). Allosteric inhibitors, 

however, hold the potential for specific NT5C2 inhibition. Furthermore, as the 

majority of NT5C2 activating mutations seem to affect this allosteric control site, it 

is plausible that inhibitors could be developed to be selective for hyperactive 

NT5C2, further reducing negative side effect profiles.  The only way to definitively 

address this and many aforementioned questions is through additional 

crystallization of the NT5C2 protein. However, collectively the work compiled in 

this thesis make significant strides into the understanding of NT5C2 regulation. 

This includes the description of a completely novel negative feedback 

mechanism that creates the first valid opportunity of feasible NT5C2 inhibitor 

development. (Figure 3.32).  

 

   

Conclusion 

While the number and variety of DNA variations across a given cohort of cancer 
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patients can be staggering, the prevailing notion maintains that the vast majority of 

alterations within tumor genomes are passenger or secondary in nature and only a 

small subset are responsible for driving tumorigenesis and metastatic disease. 

Identification of these alterations, called ‘drivers’, is held as the key to unlocking new 

therapeutic and diagnostic avenues in the future. In this thesis I have documented 

several strategies for identifying such alterations through use of next generation 

sequencing and post processing of NGS data. Here collaborators and I have 

accomplished the discovery of a mutation in the gene encoding the enzyme cytosolic 5�-

nucleotidase II (NT5C2) in 19% of patients with relapsed T-ALL and 1 of 35 (3%) 

patients with relapsed B-ALL. These gain-of-function mutations were identified only in 

relapsed disease, and shown to convey resistance to 6-mercaptopurine and 6-

thioguanine, but not to nelarabine or ara-G (guanine arabinoside), two 

chemotherapeutic agents that are often used in T-ALL salvage regimens. Given the 

identification of NT5C2’s role in drug resistance to nucleoside analogue therapies and 

neurotoxicity in Lesch Nyhan and other neurological disorders, the need for an 

efficacious NT5C2 specific inhibitor has become increasingly apparent. Despite this, 

current inhibitor schemes lack true potential as they lack the ability to specifically target 

NT5C2 mutated proteins and thus prevent significant toxicity and unwanted side effects. 

In order to identify other potential avenues I have undertaken a deep investigation into 

the structural mechanism through which each mutation acts. The result of this in silico 

analysis is the discovery of a potential emergent allosteric regulatory mechanism never 

before described. Most notably, the majority of NT5C2 mutations identified have 

characteristics that suggest they abrogate the function of this proposed mechanism. 
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These findings not only create a viable target for allosteric inhibition free of the 

obstacles of substrate mimicking inhibitors, but also a site in which mutation specific 

inhibitors become a feasible prospect. Furthermore, as the majority of NT5C2 activating 

mutations seem to affect this allosteric control site in a similar fashion, it is plausible that 

a single inhibitor could be developed to address NT5C2 hyperactivity in a majority of 

patients (Table 3.3). Although this work provides logically sound findings heavily 

supported through robust in silico prediction, the only way to definitively address the 

specific workings of the NT5C2 DHE domain is through additional crystallization of the 

NT5C2 protein. This work has already commenced in the form of a significant 

collaboration between the laboratories of Adolfo Ferrando M.D. and Liang Tong Ph.D. to 

crystalize and describe the functional role of NT5C2 allosteric DHE mechanisms both in 

WT and mutated proteins. These future studies will provide the means to develop 

mutation specific NT5C2 inhibitors capable of addressing many relapsed patients with 

few other options.   
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Materials and Methods 

 

Chapter 2 Methods 

Structural depiction and analysis. 

I identified structural coverage of the NT5C2 protein through use of the PSI-Blast and 

SKAN algorithms; we subsequently mapped viable structures to all NT5C2 isoforms and 

analyzed them using Chimera Suite(Pettersen, Goddard et al. 2004). We aligned 

structurally the PDB structures 2XCW, 2XCX, 2XCB, 2XCV, 2XJB, 2XJC, 2XJD, 2XJE, 

2XJF, 2J2C and 2JC9 and subsequently analyzed the composite structure to assess 

conformational flexibilities(Wallden and Nordlund 2011). We structurally modeled 

NT5C2 mutations using the I-TASSER software suite and subsequently refined and 

analyzed them by minimization and rotamer library analysis in Chimera(Roy, Kucukural 

et al. 2010). We predicted protein stability changes resulting from mutation through use 

of the SDM potential energy statistical algorithm and associated software(Worth, 

Preissner et al. 2011). We created all structural images using UCSF Chimera34. 

Patient samples. 

DNAs from leukemic T-ALL blasts at diagnosis and relapse and matched remission 

lymphocytes were provided by the Hemato-Oncology Laboratory at University of Padua, 

Italy; the Eastern Cooperative Oncology Tumor Bank Laboratory in New York, New 

York, USA; and the Department of Pediatric Oncology/Hematology at the Charité-

Universitätsmedizin Berlin in Berlin, Germany. Informed consent was obtained at study 
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entry. Samples were collected and analyzed under the supervision of the local 

Columbia University Medical Center Institutional Review Board. Selected samples for 

whole-exome sequencing were chosen on the basis of the availability of sufficient DNA 

from diagnosis, remission and relapse samples, and we evaluated high tumor content at 

relapse on the basis of copy number analysis of T cell receptor–associated deletions. 

Whole-exome capture and next generation sequence analysis. 

We matched diagnostic remission and relapsed DNA samples from five patients with T-

ALL from the University of Padua treated under Associazione Italiana Ematologia 

Oncologia Pediatrica (AIEOP) protocols for exome capture with the SureSelect 50 Mb 

All Exon kit (Agilent Technologies) following standard protocols. We performed paired-

end sequencing (2 × 100 bp) by using HiSeq2000 sequencing instruments at Centrillion 

Biosciences. Illumina HiSeq analysis produced between 60 million and 120 million 

paired-end reads per sample. We mapped reads to the reference genome hg19 using 

the Burrows-Wheeler Aligner (BWA) alignment tool version 0.5.9. The mean depth 

(defined as the mean number of reads covering the captured coding sequence of a 

haploid reference) was 50×, with 80% of the genome covered more than 10× and 57% 

covered more than 30×. We identified sites that differed from the reference (called here 

variants) in each sample independently. We constructed empirical priors for the 

distribution of variant frequencies for each sample. We obtained high-credibility intervals 

(posterior probability �1–10−5) for the corresponding change in frequency between 

tumor and normal samples using the SAVI (Statistical Algorithm for Variant 

Identification) algorithm developed at Columbia University(Trifonov, Pasqualucci et al. 

2013). The number of germline SNPs in the coding region was 18,000, which is 
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comparable with previous reports(Tiacci, Trifonov et al. 2011). Most of the candidate 

germline SNPs (16,000, or ~90% of germline variants) were reported in the dbSNP 

database. We identified candidate somatic variants using the following criteria: variant 

total depth in tumor and normal >10× and <300×, variant frequency >15% in tumor and 

<3% in normal and �1% change in frequency from the normal with high posterior 

probability (�1–10−5). Also, to remove systematic errors, we excluded all variants that 

were found in unaffected individuals. In addition, to eliminate ambiguous mapping from 

captured pseudogenes and regions of low complexity, each variant with a flanking 20-

base context sequence around its genomic position was mapped to the hg19 reference 

using the BLAST algorithm. We kept in the list only those with unique mappability; that 

is, we required the 41-base sequence to uniquely map to the reference genome with 

only one mismatch. 

To discern the regions of loss of heterozygosity (LOH), SAVI-calculated high-credibility 

intervals for the variants in dbSNP were used, which correspond to the change in their 

frequency between tumor and normal samples. In an LOH event, depending on whether 

the reference or the dbSNP allele was lost, at least a 1% or at most a −1% change in 

frequency from the normal is expected. Therefore, by segmenting the regions covering 

more than ten dbSNP variants with significantly changed frequencies, we were able to 

identify the LOH regions. 

Mutation validation and analysis of recurrence. 

Ferrando lab collaborators designed primers flanking exons containing candidate 

somatic variants using Primer3 (http://frodo.wi.mit.edu/primer3/) and used them for PCR 
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amplification from whole genome–amplified (WGA) tumor, relapse and matched normal 

(remission) DNAs. We analyzed the resulting amplicons by direct bidirectional 

dideoxynucleotide sequencing with a validation rate of 97%. After exome sequence 

analysis of 5 diagnostic relapse and remission T-ALL AIEOP samples from the 

University of Padua (Supplementary Table 2.1), 18 additional patient samples from the 

same institution were used for the analysis of recurrence of TP53, BANP, RPL11, 

NRAS and NT5C2 (Supplementary Table 2.1). We subsequently extended this series to 

additional relapse T-ALL samples from the University of Padua (n = 13) and the Charité-

Universitätsmedizin Berlin (n = 67) (Supplementary Table 2.1) and to relapsed patients 

with B-precursor ALL from the University of Padua (n = 35) for extended mutation 

analysis of NT5C2 (Supplementary Table 2.1). We used two cohorts of diagnostic 

patients with T-ALL from ECOG (n = 23) and diagnostic patients with B-precursor ALL 

from the University of Padua (n = 27) to verify the absence of NT5C2 mutations in 

diagnostic ALL specimens (Supplementary Table 2.1). 

Site-directed mutagenesis. 

Ferando Lab collaborator Gannie Tzonvea generated the NT5C2 mutations K359Q, 

R367Q and D407A by site-directed mutagenesis on the mammalian expression pLOC-

NT5C2 vector (Open Biosystems) using the QuikChange II XL Site-Directed 

Mutagenesis Kit (Stratagene) according to the manufacturer's instructions. 

Cell lines. 

Gannie Tzonvea cultured CCRF-CEM and CUTLL1 cells in RPMI-1640 medium 

supplemented with 10% FBS, 100 U ml−1 penicillin G and 100 �g ml−1 streptomycin at 
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37 °C in a humidified atmosphere under 5% CO2. We maintained HEK293T cells under 

similar conditions in DMEM media. 

Lentiviral production and infection. 

Gannie Tzonvea transfected the lentiviral constructs pLOC-NT5C2, pLOC-NT5C2-359, 

pLOC-NT5C2-367 and pLOC-NT5C2-407 and the pLOC-RFP control plasmid with Gag-

Pol– and V-SVG–expressing vectors into HEK293T cells using JetPEI transfection 

reagent (Polyplus). We collected viral supernatants after 48 h and used them for 

infection of CCRF-CEM and CUTLL1 cells by spinoculation. After infection, cells were 

selected for 5 d in blasticidin and ficolled them the day before experiments. 

Western blot. 

Western blot analysis was performed using a rabbit polyclonal antibody to NT5C2 

(1:1,000, Abcam, ab96084) and a goat polyclonal antibody to glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (1:1,000, Santa Cruz Biotechnology, sc-20357) 

using standard procedures. 

Cell viability and chemotherapy drug response. 

Gannie Tzonvea and Ariane Garcia determined cell viability by measurement of the 

metabolic reduction of the tetrazolium salt MTT using the Cell Proliferation Kit I (Roche) 

following the manufacturer's instructions. We performed experiments in triplicate. 

Viability was analyzed at 48 h or 72 h after initiation of treatment with 6-MP, 6-TG, 

nelarabine and AraG. 

Recombinant protein production and purification. 
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Gannie Tzonvea and Arriane Garcia cloned full-length complementary DNA constructs 

encoding wild-type, K359Q, R367Q and D407A NT5C2 with an N-terminal hexahistidine 

(His6) tag in the pET28a-LIC expression vector using the In-Fusion HD PCR cloning 

system (Clontech) as per the manufacturer's instructions. Recombinant proteins were 

expressed from Rosetta 2(DE3) Escherichia coli cells by induction with 0.5 mM 

isopropyl-�-D-thiogalactopyranoside for 3 h at 37 °C. Cells were harvested and lysed 

them in lysis buffer (50 mM sodium phosphate, pH 7.4, 100 mM NaCl, 10% glycerol, 5 

mM �-mercaptoethanol, 1% Triton X-100, 0.5 mg ml−1 lysozyme and 20 mM imidazole) 

supplemented with Complete EDTA-free protease inhibitor (Roche). His6-tagged 

NT5C2 proteins were purified by binding them to nickel-Sepharose beads and eluting 

them with 50 mM sodium phosphate, pH 7.4, 100 mM NaCl, 10% glycerol, 5 mM �-

mercaptoethanol and 300 mM imidazole. Imidazole was removed by buffer exchange 

using PD-10 desalting columns (GE Healthcare) and protein expression and purity was 

assessed by SDS-PAGE and Coomassie staining. 

5�-NT assay. 

Gannie Tzonvea and Arriane Garcia assessed 5�-NT activity of purified recombinant 

wild-type and mutant NT5C2 proteins using the 5�-NT Enzymatic Test Kit (Diazyme) 

according to the manufacturer's instructions. The assay measures the enzymatic 

hydrolysis of inosine 5�-monophosphate to inosine, which is reacted further to 

hypoxanthine by purine nucleoside phosphorylase and then to uric acid and hydrogen 

peroxide by xanthine oxidase. H2O2 is quantified using a Trinder reaction.  5�-NT 

activity levels were calculated using a calibrator of known 5�-NT activity as standard and 

assays were performed in triplicate in an Infinite M200 Tecan plate reader. 
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Statistical analyses. 

Gannie Tzonvea and Arriane Garcia evaluated differences in the percentages of wild-

type and mutant NT5C2 in patients with ALL in different relapsed categories using 

Fisher's exact test. The equality of categorical and continuous variables were analyzed  

by Fisher's exact test and Mann-Whitney U test, respectively. 

Chapter 3 Methods 

Figure Creation  

All structure figures were generated through use of the Chimera program 

suite(Pettersen, Goddard et al. 2004). 

Structural Homology Identification 

Structural coverage of the NT5C2 protein was identified through use of the PSI-

Blast and SKAN algorithms. Identified hits were subsequently mapped viable structures 

to all NT5C2 isoforms and analyzed them using Chimera Suite(Pettersen, Goddard et 

al. 2004).  

Protein Cavity Analysis  

Cavity Analysis was conducted through use of CAsTp Webserver and Chimera 

interface(Dundas, Ouyang et al. 2006). NT5C2 structure PDB files were re-written to 

contain quaternary structure coordinates. These files were subsequently used as input 

into the CaStP algorithm with a probe radius set at the default 1.4 Angstroms. HET 

groups were included in (Dundas, Ouyang et al. 2006)calculations that were set to 

proceed on any combination of chains from each structure.  
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Electrostatics analysis 

Electrostatics of NT5C2 molecular surfaces were investigated with APBS and 

PDB2PQR software packages. PDB2PQR submission was run with a PARSE force 

field, optimal hydrogen bonding network. PROPKA was utilized to assign protonation 

states for each structure at their respective crystallization pH(Unni, Huang et al. 2011). 

molecular solvation programs through the Chimera Interface(Unni, Huang et al. 2011). 

Grid dimensions were set at 161, 161, and 193. Boundary condition for coarse grid was 

set by single Debye-Huckel. Solute dielectric constant (pdie) set to 2.0 and solvent 

dielectric constant (side) set to 78.54. Charge mapping method utilized was cubic B-

spline discretization. Mobile ions were not included and Poisson-Boltzmann was run 

with linearized (lpbe) setting. Surface density of 10.0 and solvent radius of 1.4 were 

used. System temperature set to 298.15 with explicit solvent not included. 

Supplementary electrostatics analysis and visualization was conducted through use of 

the Columbic surface coloring algorithm provided in Chimera software 

package(Pettersen, Goddard et al. 2004).  

Structural Modeling 

All modeling was conducted through use of Modeller and I-TASSER webserver(Eswar, 

Eramian et al. 2008, Roy, Kucukural et al. 2010). Loop models were built, refined and 

scored through use of Modeller Software suite(Fiser, Do et al. 2000, Eswar, Eramian et 

al. 2008). Top models for figures were selected by ranking 5000 iterations by DOPE 

score (see below ‘model_energies_script) as described elsewhere(Fiser, Do et al. 

2000). Refinement parameters were set to loop refine slow to ensure highest quality 
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models possible. Models were refined repeatedly through use of Modeller software and 

Chimera based plug-ins. 

Secondary Structure prediction. 

All secondary structure prediction was conducted through use of the predict protein 

platform and webserver(Rost, Yachdav et al. 2004).  

Protein Stability Assessments 

Protein stability changes upon mutation were assessed through use of the SDM 

potential energy algorithm and webserver on re-written biological unit tetrameric NT5C2 

structure PDBs(Worth, Preissner et al. 2011). In-silico mutagenesis was conducted with 

Modeller Software suite utilizing SDM output as starting template structure(Eswar, 

Webb et al. 2006, Eswar, Eramian et al. 2008).  

Structure Morphing  

Path prediction and molecular dynamics of NT5C2 models was predicted thorugh 

use of UCSF Chimera tools and software(Pettersen, Goddard et al. 2004). Minimization 

of mutants was conducted using a 6-angstrom sphere to specify fixed and unfixed 

atoms, 1000 steepest descent steps, steepest descent step size of .02 angstroms, 100 

conjugant gradient steps of .02 angstroms each. Residues with one or more atoms 

included in sphere were included in their entirety regardless of full inclusion in 

6Angtroms from any point of mutant residue. Hydrogen bonding networks and Vander 

wall clashing predicted through use of UCSF Chimera Software(Pettersen, Goddard et 

al. 2004).  
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Sequence Alignments and Homology Assessments  

All multiple sequence alignments and figures were created with CLC Bio Software and 

methods(Workbench 2009). Motif scanning analysis was conducted with ExPasy prosite 

webserver(Artimo, Jonnalagedda et al. 2012). Docking, ligand screening, and 

supplementary cavity analysis was conducted through CLC drug discovery 

workbench(Workbench 2009). 

PDB files 

All protein sturctures for NT5C2 were obtained from the PDB repository. PDB IDs 

2XCW, 2XCX, 2XCB, 2XCV, 2XJB, 2XJC, 2XJD, 2XJE, 2XJF, 2J2C and 2JC9 . All PDB 

files for predicted models are included in supplementary files.  
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Appendix A. Further Unraveling the genetics of T-ALL 

During Relapse 

A Summary 

Although multi-agent combination chemotherapy is curative in a significant fraction of 

acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die due to 

chemo-refractory disease. Here we used whole-exome sequencing to analyze the 

mutational landscape and pattern of clonal evolution at relapse in 57 pediatric ALL 

cases. These analyses showed that ALL relapses originate from a common ancestral 

precursor clone of the diagnosis and relapsed populations and frequently harbor 

mutations implicated in chemotherapy resistance (NT5C2, CREBBP, NR3C1, TP53). 

Notably, RAS-MAPK activating mutations in NRAS, KRAS and PTPN11 were present in 

21/57 (37%) cases in our series and oncogenic KRAS (KRAS G12D) conferred 

resistance to chemotherapy with methotrexate when expressed in ALL lymphoblasts. 

These results identify chemotherapy driven clonal selection and branched clonal 

evolution as mechanisms of leukemia progression and relapse and implicate, for the 

first time, the RAS-MAPK pathway as a driver of methotrexate resistance in ALL. 

Our sequencing analysis yielded an average of 9 mutations at diagnosis and 17 

mutations at relapse through a mean coverage depth of 89.4x per exome with 82.5% of 
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targeted regions covered at frequencies higher than 30x. Figure 4.1 displays the 

breakdown of mutations between sample type for most recurrent genes. 

Altogether, 1,079 genes were affected by mutations of which 94 appeared recurrently in 

at least 2 cases while 24 showed reccurency in three or more patients . Somatically 

mutated genes in our series included known oncogenes and tumor suppressors 
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recurrently mutated in B-precursor leukemias (KRAS, NRAS, FLT3, JAK2, JAK3, and 

CREBBP) 17 and T-ALL (NOTCH1, FBXW7, PHF6, DNM2, WT1, JAK1, JAK3, 

BCL11B, TP53, CREBBP, RPL10, RUNX1, CNOT3 and MAGEC3) in addition to 

numerous new genes not previously implicated in the pathogenesis of this disease 

(Figure 4.2) 18-25. 

 

 

Analysis of mutations acquired at the time of relapse identified 28 genes harboring 

recurrent mutations gained during disease progression (Figure 4.1). Amongst the 

mutations, heterozygous, relapse-specific mutations in the NT5C2 gene were identified 



���
�

in 10/57 (17%) cases [1/24 (4%) in B-precursor ALL; 9/33 (27%) in T-ALL]. These 

included, three previously characterized gain of function NT5C2 alleles (NT5C2 R238W, 

NT5C2 K359Q and NT5C2 R367Q) involved in 6-MP and 6-TG resistance 13,14, two 

mutations at positions altered in previously reported NT5C2 gain of function alleles 

(NT5C2 D407E, NT5C2 S445F R446Q) and one novel NT5C2 mutation (NT5C2 

R478S) (Figure 4.2). As in the case of previously characterized relapse-associated 

NT5C2 mutations, expression of the new NT5C2 R478S allele was shown by 

collaborators to induce increased resistance to chemotherapy with 6-mercaptopurine 

and 6-thioguanine . 
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Moreover, and consistent with the prominent role of glucocorticoids in the treatment of 

ALL, we identified two cases with relapsed-acquired mutations in the glucocorticoid 

receptor gene (NR3C1) (Figure 4.1). Mutations were also identified in CREBBP, a gene 

encoding a histone acetyl-transferase involved in glucocorticoid induced transcriptional 

regulation, in 4 cases [4/57 (7%); 2/24 (8%) B-precursor ALLs; 2/33 (6%) T-ALLs] 

including 3 patients with mutations acquired at the time of relapse (Figure 4.1, Figure 

4.2) Consistent with the proposed role for loss of CREBBP activity in relapsed ALL 

23,30, CREBBP mutations in our series included truncating mutations (CREBBP 
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Q1803* and CREBBP E1709*) and single amino-acid substitutions in the histone acetyl-

transferase domain (CREBBP P1488L and CREBBP Y1450C) (Figure 4.2). Further 

analysis of relapse-associated mutations in our series revealed 4/57 (7%) mutations in 

the MLL2 H3K4 histone methyl-transferase gene, 3 of which were acquired at relapse. 

In addition, we identified 4 T-ALLs with mutations in the TP53 gene (4/33, 13%), a major 

mediator of radiation and chemotherapy induced apoptosis 31,32, one of which was 

specifically acquired at the time of relapse (Figure 4.1, 4.2).  

In this scenario, it was hypothesized that driver genes mutated in relapsed ALL 

could be functionally related in their effector pathways. Moreover this suggested that 

analysis of protein- protein interactions in the space of relapse-associated mutations 

could reveal critical mechanistic nodes involved in chemotherapy resistance. To test this 

hypothesis, I analyzed experimentally established protein-protein binding interactions 

across 153 genes harboring at least one mutation gained at relapse in our series. This 

analysis revealed a network structure in which most interactions converged on a limited 

number of highly connected proteins (Figure 4.3). Notably, the highest connected 

nodes in this circuitry encompassed the products of key genes whose mutations can 

drive chemotherapy resistance (TP53, CREBBP and NR3C1) (Figure 3.3). The protein-

protein binding networks formed by each of these proteins further highlights the linkage 

between mutation recurrence and interconnectedness with chemotherapy related genes 

(Figure 4.4). 
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Next, in-order to test for potential roles for the linked genes with chemotherapy 

resistance, I analyzed their intersection with documented metabolic pathways of T-ALL 

therapies(Knox, Law et al. 2011). The most striking findings of this analysis were 9 

unique gene hits to PharmGKB purine metabolism pathway and 6 unique gene hits to 

the PharmGKB Prednisone metabolism pathway (Figure 4.5). 
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In addition, several other metabolic pathways featured genes with mutations in our 

series. To assess whether or not any of these genes might play a driving role behind 

resistance to particular drugs, I clustered our mutation data by gene, sample, and drug 

pathway. Strikingly, almost no overlap between drug-associated genes was observed 

between samples (Figure 4.6). 
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Collectively these findings identify several novel genes involved in drug resistance of T-

ALL, each of which potentially playing a sufficient driving role.  
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Appendix B. Reverse engineering of oncogenic 

transcriptional networks in T-cell leukemia 

 

Summary  

The TLX1 and TLX3 transcription factor oncogenes play an important role in the 

pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL)(Ferrando, Neuberg et al. 

2002, Aifantis, Raetz et al. 2008). Here reverse engineering of global transcriptional 

networks was utilized to decipher the oncogenic regulatory circuit controlled by TLX1 

and TLX3. This Systems Biology analysis defined TLX1 and TLX3 as master regulators 

of an oncogenic transcriptional circuit governing T-ALL. Notably, network structure 

analysis of this hierarchical network identified RUNX1 as an important mediator of TLX1 

and TLX3 induced T-ALL. Through structural informatics methods, RUNX1 mutations 

were predicted to have a tumor suppressing in T-cell transformation. Mapping of TALL 

RUNX1 mutations on the structure of the RUNX1 runt domain (PDB 1H9D) showed 

clustering of these amino acid substitutions in the DNA recognition interface of RUNX1 

(Figure 5.1). Most strikingly, the RUNX1 H78 residue resides within a highly structurally 

conserved 16.9 Å diameter cavity frequently targeted by RUNX1 AML mutant alleles, 

which is adjacent to the DNA binding interface and is predicted to be disrupted in the 

RUNX1 H78Y T-ALL mutant. Consistent with these results, we identified recurrent 

somatic mutations in RUNX1 that occur in the DNA binding domain of the protein 

structure in human T-ALL primary patient samples and cell lines (Figure 5.1c). Next we 

tested the functional role of the RUNX1 mutants predicted to be the most structurally 
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disruptive in luciferase reporter assays. In these experiments, the RUNX1 H78Y, 

RUNX1 S114fs and RUNX1 G138fs mutants showed marked (80%) reductions in their 

capacity to activate a RUNX1-responsive colony-stimulating factor (CSF) promoter 

reporter construct compared to wild-type RUNX1 (Fig. 5.1d). 

 

Overall, these results place TLX1 and TLX3 atop of an oncogenic transcriptional 

network controlling leukemia development, demonstrate power of network analysis to 

identify key elements in the regulatory circuits governing human cancer and identify 

RUNX1 as a tumor suppressor gene in T-ALL.� 
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Appendix C. Genetic Landscape of Peripheral T-Cell 

Lymphoma  

Summary  

Peripheral T cell lymphomas (PTCLs) are a heterogeneous and poorly understood 

group of non-Hodgkin lymphomas1, 2. Here whole-exome sequencing of 12 tumor-

normal DNA pairs, RNA sequencing analysis and targeted deep sequencing  were 

combined to identify new genetic alterations in PTCL transformation. These analyses 

identified highly recurrent epigenetic factor mutations in TET2, DNMT3A and IDH2 as 

well as a new highly prevalent RHOA mutation encoding a p.Gly17Val alteration present 

in 22 of 35 (67%) angioimmunoblastic T cell lymphoma (AITL) samples and in 8 of 44 

(18%) PTCL, not otherwise specified (PTCL-NOS) samples. Mechanistically, the RHOA 

Gly17Val protein interferes with RHOA signaling in biochemical and cellular assays, an 

effect potentially mediated by the sequestration of activated guanine-exchange factor 

(GEF) proteins. In addition, we describe new and recurrent, albeit less frequent, genetic 

defects including mutations in ATM, B2M and CD58 implicating SRC signaling, impaired 

DNA damage response and escape from immune surveillance mechanisms in the 

pathogenesis of PTCL. In addition, we detected the presence of new recurrent FYN 

kinase (NM_002037) mutations, including a recurrent allele encoding a p.Arg176Cys 

substitution present in two PTCL-NOS cases and a mutation encoding a p.Leu174Arg 

alteration found in one AITL sample, in addition to the p.Tyr531His-encod- ing allele 

identified via exome analysis in a PTCL-NOS sample, for an overall frequency of 3% 

(4/137) for FYN mutations in our series (Fig. 6.1). The FYN tyrosine kinase is, along 



�	��
�

with LCK, the predominant SRC family kinase found in T lymphocytes and has an 

important role in T cell activation upon T cell receptor (TCR) stimulation. 

Strikingly, FYN mutations found in PTCL are predicted to specifically disrupt the 

intramolecular inhibitory interaction of the FYN SH2 domain with the C-terminal SRC 

kinase (CSK)-phosphorylated Tyr531 residue. Consistently, expression of FYN 

Leu174Arg, FYN Arg176Cys and FYN Tyr531His in Rat1A rat embryo fibroblast cells 

resulted in increased levels of FYN activation compared with control cells expressing 

wild-type FYN (Fig. 4.2a,b). In addition, structural model analysis of wild-type and 

mutant FYN proteins further supported this hypothesis (Fig. 6.2c,d). To test this model, 

we analyzed the interaction between recombinant GST-fused FYN SH2 domain and 

biotinylated C-terminal FYN peptides encompassing position Tyr531. In these assays, 

wild-type FYN SH2 domain was effectively pulled down with the phosphopeptide with 

Tyr531 phosphorylated but not with the corresponding unphosphorylated sequence or 

with a peptide contain- ing a p.Tyr531His substitution (Fig. 6.2e). Similarly, the 

introduction of a p.Leu174Arg or a p.Arg176Cys substitution abrogated the interaction of 

FYN SH2 domain with the C-terminal FYN peptide phoshorylated at Tyr531 (Fig. 6.2f). 

Consistently, CSK effectively inhibited wild-type FYN but did not abrogate the activity of 
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the mutant FYN proteins (Fig. 6.2g). Finally, given the prominent role of kinase 

inhibitors as targeted ther- apies for tumors driven by constitutively active kinase 

oncogenes, we tested the ability of dasatinib, a multikinase inhibitor that blocks ABL1 

and SRC kinases, to inhibit the activity of FYN Leu174Arg, FYN Arg176Cys and FYN 

Tyr531His mutant proteins. Notably, in each case, dasatinib treatment induced dose-

dependent inhibition of FYN phosphorylation (Fig. 6.2h). Moreover, dasatinib treatment 

impaired the growth of transformed Rat1A cells expressing the FYN Tyr531His mutant 

protein but not that of cells expressing a drug- resistant gatekeeper mutant of this 

kinase (FYN Thr342Ile/Tyr531His) (Fig. 6.2i,j). On the basis of these results, we 
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propose that SRC kinase inhibition with dasatinib may confer therapeutic benefit in 

selected PTCL cases harboring activating mutations in the FYN kinase gene.  

 

���������������������������������������������������������������������������������� �

��������������!"#$�%�&��!%6&����)/�>D2�%����%��)!���%�����!)�6)���!1�/)(�0�)�0�)(&6%����
�$8��!�$%������66���!/������9����(��()��(�������0(����!1�9�6�4�&0��>D2�)(��78�4%��)��%����
>D2����%!��4>D2��0�)�0�)(&6%����>D2��%'&��!%6&����)/�>D2�%����%��)!���%�����!)�6)���!1�
)/�>D2�����!)0(���0��%����/()��$%������66���!/������9����(��()��(�������0(����!1�9�6�4
�&0��>D2�)(��78�4%��)��%����>D2����%!���/)(�0�)�0�)(&6%�����$8��%�&�5)6���6%(�(���)!�
(�0(���!�%��)!�)/�������(����(��)/�9�6�4�&0��,A7-�>D2���)9�!1�����0)����)!�!1�)/�����>D2�
�?���)�%�!�%!������84��(��!%6�7&(
���0�)�0�)�������4D
����0�)�0�)(&6%����7&(
����%�&�
��(����(%6��)��6�!1�)/�����>D2�7&(
��?����>D2��(1���8&��%!��>D2������	�(1����%!����



�
��
�

%�&��!%6&����)/������!��(%���)!�)/�9�6�4�&0��'�74�)�!��>D2��?���)�%�!�9����84��(��!%6�
>D2�0�0������)((��0)!��!1��)�>D2�0()���!�9�6���&0��%��7&(
���,D-��0�)�0�)(&6%����%��
7&(
���,0D-�)(����%����%��7&(
���,?-���%�0()���!��6)��%!%6&����)/�'�74/�����>D2��?��
�)�%�!��!���(�0�%����!4��)��!�84��(��!%6�>D2�0�0�����0�66�)9!�%��%&���7�����0�(���!��
9%��(�06��%�����9�����%�&��!%6&����)/������!��(%���)!�)/�84��(��!%6�>D2�0�0�����
0�)�0�)(&6%����%��7&(
���9����9�6�4�&0��'�74/�����>D2��?���)�%�!�%!���?���)�%�!�
���%!��������	�(1�%!���(1���8&����%�0()���!��6)��%!%6&����)/�'�74/�����>D2��?���)�%�!�
�!���(�0�%����!4��)��!�0�66�)9!��9����84��(��!%6�>D2�0�0�����0�)�0�)(&6%����%��7&(
����
%�&��()���!��6)��%!%6&����)/�8�+��!������)!�)/�>D2�%������&��!�?��%���66����0(����!1�9�6�4�&0��
>D2�)(��78�4%��)��%�������%!��/)(���)/�>D2��%�&��()���!��6)��%!%6&����)/��%�%��!���
�!������)!�)/�>D2�%������&��!�?#+���7���66����0(����!1��78�4%��)��%����>D2����%!����%�()&�
�!%6&����)/������//�����)/��%�%��!���)!�>D2�0�)�0�)(&6%��)!�,�-�%!��(�6%�������66�1()9���%)&�
�!��(%!�/)(����$%������66����0(����!1��)!���������6&�%������>D2�7&(
��?���)(��%�%��!��4
(�����%!��>D2�7�(�	��6�P7&(
��?����)��6�����%!���<%�%��!�:���)9�%��(%1���%6����]������
/()���(�06��%����%�06�������%6����9�(���%6��6%�������!1������9)4�%�6��������!�=����������2���
!)����1!�/��%!���>�1�(��%!����1�!��%�%0����/()���%6)��()����%6�����	�

 

 

 

 

 

 

 

 

 



�
��
�

 

 

AA.D Methods  

Appendix A 

Patient samples. DNAs from leukemic ALL blasts at diagnosis and relapse and 

matched remission lymphocytes were provided by the Children’s Oncology Group; the 

Pediatric Oncology Division at Columbia University Medical Center; the Department of 

Hematology/Oncology, Saitama Children’s Medical Center, Saitama, Japan; and the 

Hemato-Oncology Laboratory at University of Padova, Italy. Informed consent was 

obtained at study entry. We collected and analyzed samples under the supervision of 

the local Columbia University Medical Center Institutional Review Board. Collaborators 

selected samples for whole exome sequencing on the basis of the availability of 

sufficient DNA from diagnosis, remission and relapse samples. Sample size was 

determined to have 95 % power to detect recurrent mutations present in over 5% of 

samples and 78% power to detect these as recurrent in at least two samples. 

Extraction of genomic DNA 

Genomic DNA was extracted from patient leukemic blasts or from the lymphoid fraction 

from peripheral blood at remission using the Qiagen DNeasy Blood & Tissue Kit. 

Whole exome capture and next generation sequencing. We used purified high 

molecular weight genomic DNA (~ 1 �g) from matched diagnosis, remission, and 
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relapse samples of 57 ALL patients. The DNA sequences were enriched in protein-

coding sequences by using the Agilent SureSelect Human 51Mb All Exon V4 kit (Agilent 

Technologies), and amplified and subjected to high-throughput paired-end (2 × 100 bp) 

sequencing on the Illumina HiSeq2000 System at Centrillion Biosciences, Inc. The 

analysis produced an average of 90.1 million paired- end reads per sample. After 

filtering for duplicate reads (i.e. reads with identical start and orientation), sequences 

were aligned to the reference human genome hg19 assembly using the Burrows-

Wheeler Aligner (BWA) tool version 0.5.9 39. In average 98.4% mapped properly to 

human genome (Supplementary Table1). We independently obtained sequence 

variants (nucleotide substitutions and small deletions and insertions) for tumor and 

remission samples. We used the SAVI (Statistical Algorithm for Variant Identification) 

algorithm 16, which constructed empirical priors for the distribution of variant 

frequencies in each sample. From that prior, we obtained a corresponding high-

credibility interval (posterior probability �1–10−5) for the frequency of each variant and a 

high-credibility interval for the corresponding change in frequency between the 

diagnosis or relapse tumors and normal samples or the relapse vs. diagnosis samples. 

Variants were considered absent when observed with a frequency of 0 to 2%, and 

present when observed with a frequency �3%. We chose 3% as the lower threshold for 

detecting variants, considering our mean depth of coverage of >80x across samples, 

and errors occurring with a rate of 1% for the technology, following a binomial 

distribution. Mutations were classified as clonal if the fraction of variant reads was 

�15%. Variants were then filtered for i) systematic errors known to be associated with 

the Illumina sequencing technology, ii) variants observed in only one strand, and iii) 
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variants mapping to multiple loci in the genome, which may reflect captured 

pseudogenes and regions of low complexity. To this end, each variant with a flanking 

35-base context sequence around its genomic position was mapped to the hg19 

reference using the BLAST algorithm, and only variants with “unique mappability” were 

retained, that is, we required the 71-base sequence to uniquely map to the reference 

genome with only one mismatch. The average number of germline SNP variants per 

sample obtained by sequencing was 20,000, 90% of which were reported in the dbSNP 

database, comparable to the numbers of SNPs detected in previous reports 40. 

Identification of somatic variants (SVs). Candidate somatic variants were obtained by 

excluding i) variants present in the corresponding paired remission DNA, ii) variants 

present in any one of 220 exomes from unaffected individuals that were analyzed at our 

institution. Relapse-specific somatic variants were defined as those clonally represented 

in relapse and absent in diagnosis. We similarly defined diagnosis-specific somatic 

variants. Shared somatic variants were defined as those present in both relapse and 

diagnosis, but clonally represented in at least one sample. Circular representation of 

recurrence of diagnostic-specific and relapse – specific genetic alterations in recurrently 

mutated (�3 lesions) genes was generated using Circos software 41. 

  PPI Protein-protein physical binding networks were generated by crossing all genes 

with somatic mutations at relapse with the BIO-Grid Homo sapiens specific database 

using in-house developed software and methods(Stark, Breitkreutz et al. 2006). Protein 

specific networks were generated as a subset of the global relapse binding network with 

each figure displaying only the nodes and edges with 1 degree of separation from the 
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protein of interest. All network figures and legends were generated through use of 

Cytoscape 3 software(Cline, Smoot et al. 2007). 

  

Drug Analysis.  Drug pathway analysis was accomplished by crossing filtered 

sequencing results with drug annotation databases SMPDB and DrugBank(Frolkis, 

Knox et al. 2010, Knox, Law et al. 2011). All standard and relapse specific therapies 

(uptodate) as well as therapies with close chemical structure to these regimens were 

included in this analysis (Frolkis, Knox et al. 2010, Knox, Law et al. 2011).Therapy 

pathway figures were created using DrugBank diagrams, and altered accordingly with 

Adobe Illustrator to show mutational impact 49. 

Appendix B Methods 

Structural depiction and analysis. 

Structural coverage of the RUNX1 protein was identified through use of the PSI-Blast 

and SKAN algorithms; viable structures were subsequently mapped to all RUNX1 

isoforms and analyzed with the MarkUS web annotation server29. The Protein Data 

Base structures 1EAN, 1EAO, 1EAQ, 1H9D, 1IO4, 1HJB, 1HJC and 2J6W were 

structurally aligned along the RUNX1 runt domain–DNA interface, and the resulting 

composite structure was subsequently analyzed to assess conformational flexibilities30. 

Potential effects for the RUNX1 mutants in T-ALL were investigated with SCREEN and 

VASP for cavity prediction and volumetric rendering, ConSurf for analysis of structural 

conservation, PredUS for protein-protein interface prediction and DelPhi to highlight 

potential alterations in electrostatic potential29. A probabilistic classification of mutations 

through physical and evolutionary comparative considerations was conducted through 
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the use of the PolyPhen-2 batch servers and algorithms31. RUNX1 mutants in AML 

were extracted from the COSMIC database, filtered and mapped to runt domain 

structures30. All structural images were created using UCSF Chimera30. 

ChIP and ChIP-chip analysis. 

A ChIP-chip analysis of the TLX3 and RUNX1 target genes was performed in the HPB-

ALL cell line. Briefly, 1 × 108 cells were used for ChIP using A-17 goat polyclonal (sc-

23397) and H-55 rabbit polyclonal (sc-30185) antibodies to TLX3 (Santa Cruz 

Biotechnology) or two rabbit polyclonal antibodies to RUNX1 (Ab980 from Abcam and 

4336S from Cell Signaling Technologies). ChIP-chip was performed following the 

standard protocols provided by Agilent Technologies using Agilent Human Proximal 

Promoter Microarrays (244,000 features per array), as previously described28. This 

platform analyzes ~17,000 of the best-defined human genes sourced from UCSC hg18 

(NCBI Build 36.1, March 2006) and covers regions ranging from −5.5 kb upstream to 

+2.5 kb downstream of their transcriptional start sites. We scanned the arrays with an 

Agilent scanner and extracted the data using Feature Extraction 8 software. Genes that 

were direct targets of TLX3 and RUNX1 were identified using a ChIP-chip significance 

analysis, as previously described28. A ChIP-chip analysis of MYC and TLX1 in T-ALL 

has been previously reported11, 28. 

Relative real-time PCR quantification of the RUNX1 promoter sequences was 

normalized to the ACTB gene in chromatin immunoprecipitates performed with 

antibodies to TLX1 (C-18 rabbit polyclonal antibody (sc-880), Santa Cruz 

Biotechnology) and TLX3 (A-17 goat polyclonal antibody (sc-23397), Santa Cruz 

Biotechnology). The primer sequences used are listed in Supplementary Table 10. 
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Appendix C Methods 

Patient samples. 

DNA samples from PTCLs were provided by tumor banks at the Columbia University 

Medical Center (New York, New York, USA), the Sylvester Comprehensive Cancer 

Center (Miami, Florida, USA), the Hospital Central de Asturias (Oviedo, Spain), the 

Centro Nacional de Investigaciones Oncologicas (Madrid, Spain), the Institut Gustave 

Roussy (Villejuif, France), the Centre Henri Becquerel (Rouen, France) and Hospital 

Clinic (Barcelona, Spain). Samples were obtained with informed consent, and analysis 

was conducted under the supervision of the Columbia University Medical Center 

Institutional Review Board. We selected samples for whole-exome sequencing on the 

basis of the availability of sufficient DNA from diagnosis and normal (blood, buccal swab 

or non-tumor infiltrated biopsy material) matched samples. 

Whole-exome capture and next-generation sequence analysis. 

We used matched tumor and normal DNA samples from 12 individuals with PTCL 

(Supplementary Table 1) for exome capture with the SureSelect 50Mb All Exon kit 

(Agilent Technologies), following standard protocols. We performed paired-end 

sequencing (2 × 100 bp) using HiSeq 2000 sequencing instruments at Centrillion 

Biosciences (Palo Alto, California, USA). Illumina HiSeq analysis produced between 

67.5 and 136.8 million paired-end reads per sample (Supplementary Table 2). We 

mapped reads to the hg19 reference genome using the Burrows-Wheeler Aligner 

(BWA) alignment tool version 0.5.9. Mean depth (defined as the mean number of reads 

covering the captured coding sequence of a haploid reference) was 45×, with 84% of 
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the genome covered by more than 10× and 58% of the genome covered by more than 

30×. We identified sites that differed from the reference (called here variants) in each 

sample independently. We constructed empirical priors for the distribution of variant 

frequencies for each sample. We obtained high-credibility intervals (posterior probability 

� 1–10−5) for the corresponding change in frequency between tumor and normal 

samples, using the SAVI algorithm (Statistical Algorithm for Variant Identification) 

developed at Columbia University20, 21. There were 18,000 germline SNPs in the 

coding region, comparable to the numbers of SNPs detected in previous reports20. 

Most of the candidate germline SNPs (16,000 or ~90% of germline variants) were 

reported in the dbSNP database. We identified candidate somatic variants using the 

following criteria: variant total depth in tumor and normal greater than 10× and less than 

300×, variant frequency greater than 15% in tumor samples and less than 3% in normal 

samples, and at least 1% change in frequency from normal samples with high posterior 

probability (�1–10−5). To remove systematic errors, we excluded all variants that were 

found to be present in any of the normal samples. In addition, to eliminate ambiguous 

mapping from captured pseudogenes and regions of low complexity, each variant with a 

flanking 20-base context sequence around its genomic position was mapped to the 

hg19 reference genome using the BLAST algorithm. We retained only the variants with 

unique mappability, i.e., we required the 41-base sequence to uniquely map to the 

reference genome, with only one mismatch. 

Mutation validation. 

We designed primers flanking exons containing 121 randomly selected candidate 

somatic variants identified by exome sequencing using Primer3 and used whole 
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genome–amplified DNA from tumor and matched normal DNA samples for PCR 

amplification. We analyzed the resulting amplicons by direct bidirectional 

dideoxynucleotide sequencing and obtained a validation rate of 90% (Supplementary 

Table 1). 

RNA sequencing and mapping and identification of variants. 

After exome sequence analysis of 12 tumor and normal PTCL samples (Supplementary 

Table 1), we analyzed 34 additional PTCL samples by RNA-seq using paired-end 

Illumina HiSeq sequencing (Supplementary Table 7). We obtained on average over 

67.6 million reads, 51.5 million (75.7%) of which mapped to the human NCBI reference 

sequence (RefSeq) database using BWA alignment algorithms22. Reads mapping to 

the same starting position were discarded. We identified sites that differed from the 

reference in each sample and constructed empirical priors for the distribution of variant 

frequencies for each sample independently. To reduce the false positive rate in variant 

detection and remove mapping artifacts and systematic errors, we mapped paired-end 

reads for the samples to human RefSeq with the Bowtie 2 alignment algorithm23, which 

mapped a total of 1.83 billion reads (76%) properly to the reference. We then identified 

sites that differed from the reference in each sample and intersected the set of variants 

identified with both BWA and Bowtie 2 alignment as previously described24. In all 

samples, we selected variants with total depth of >10× and frequency of >20% and 

excluded variants identified in the dbSNP135 database, as well as those that did not 

pass the Multiplicity filter. In addition, variants corresponding to poorly expressed (< 3 

reads per kilobase per million) genes were removed to reduce the effects of spurious 

PCR amplification during library preparation. To reduce the presence of germline 
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mutations, identified variants that were also present in 65 DNA sequencing samples 

from unaffected individuals were excluded, and we also removed variants common to 

those present in 11 RNA-seq samples from normal B and T cells. In detail, we mapped 

normal RNA-seq sample reads with BWA and Bowtie 2 to human RefSeq and identified 

variants, creating an internal normal variant database (INVD) composed of the union of 

all the variants identified in normal B and T cells. Successively, we filtered out variants 

occurring in PTCL samples that overlapped with the INVD variants. Finally, we limited 

the list of variants to those identified in genes found to be somatically mutated in PTCL 

by exome sequencing. 

Targeted deep resequencing. 

Mutational analysis of selected genes of interest was performed by targeted 

resequencing using microfluidics PCR (Access Array system, Fluidigm) followed by 

sequencing of the amplicon libraries on a MiSeq instrument (Illumina). Primers targeting 

the regions of interest were designed at Fluidigm to produce amplicons of 200 ± 20 bp. 

We performed multiplex PCR amplification of up to ten amplicons per well of the 

Fluidigm Access Array chip according to the manufacturer's instructions, using 30 ng of 

DNA per sample. After multiplex PCR amplification, resulting DNA products were 

barcoded so that all amplicons corresponding to each sample carried the same index. 

Indexed libraries were pooled, and the resulting library was quantified by quantitative 

PCR using the Kapa Library Quantification kit (Kapa Biosystems) on a 7500 PCR 

instrument (Applied Biosystems). Amplicon libraries were spiked with ~25% PhiX 

genomic library to increase amplicon diversity and were sequenced on a MiSeq 

instrument to generate 2 × 251-bp paired reads, following an amplicon sequencing 
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protocol for custom primers. Each pair of paired-end reads produced by MiSeq was 

stitched together using FLASH version 1.2.6 (Fast Length Adjustment of SHort reads), 

given that the amplicon sequences (up to 200 bp) were shorter than the read length 

(251 bp). This step increased the quality of the reads, correcting for mismatches in 

overlap by selecting the base with higher quality. Then, 5� and 3� adaptors and PCR 

primer sequences were trimmed using cutadapt. Merged and trimmed reads were 

aligned to the UCSC hg19 reference genome as single-end reads using BWA-MEM. 

Aligned reads were analyzed for variants using the SAVI algorithm, and variants were 

selected on the basis of coverage depth and frequency. Given the presence of 

abundant normal cells in most PTCL samples, variants with a frequency of around 50% 

were flagged as candidate private germline SNPs. Candidate variants identified by this 

first round of amplicon resequencing were independently validated in a second round of 

targeted deep sequencing. Briefly, we selectively amplified the amplicons covering the 

positions of candidate mutations in their corresponding positive samples, barcoded 

these PCR products, pooled them and sequenced the resulting library on a MiSeq 

instrument. 

Structural depiction and analysis. 

We identified structural coverage of the FYN protein through use of the PSI-Blast and 

SKAN algorithms. The structures 2DQ7, 2DLY, 3UA7, 2LP5 and 1G83 were structurally 

aligned into composite structures to assess conformational flexibilities and subsequently 

analyzed through use of the Chimera Suite27, 28. In silico modeling of identified 

mutations was performed using the I-TASSER software suite and Modeller program; 

structures were refined and analyzed in Chimera27, 29. We predicted protein stability 
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changes upon mutation through use of the SDM potential energy statistical algorithm 

and associated software30. We created all structural images using UCSF Chimera27. 

Plasmids and vectors. 

We obtained pcDNA3 EGFP-RHOA WT (plasmid 12965) containing the full-length 

human RHOA construct fused to EGFP as well as pcDNA3 EGFP–RHOA Thr19Asn 

dominant negative (plasmid 12967) and pcDNA3-EGFP–RHOA Gln63Leu constitutively 

active (plasmid 12968) mutants from Addgene31. We generated the RHOA allele 

encoding p.Gly17Val by site-directed mutagenesis on the mammalian expression vector 

pcDNA3-EGFP–RHOA WT using the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene) according to the manufacturer's instructions. We cloned PCR products 

encompassing wild-type RHOA and encoding RHOA p.Gly17Val, RHOA p.Thr19Asn 

and RHOA p.Gln63Leu with an N-terminal HA tag as BglII-XhoI fragments into the 

pMSCV vector for retroviral expression. We obtained pRK5–c-FYN plasmid containing a 

full-length FYN ORF32 from Addgene (plasmid 16032), subcloned the FYN ORF in the 

pcDNA3.1 plasmid vector and introduced the mutations in FYN encoding FYN 

p.Leu174Arg, FYN p.Arg176Cys, FYN p.Tyr531His and FYN p.Thr342Ile/Tyr531His 

using the QuikChange II XL Site-Directed Mutagenesis kit. All constructs were verified 

by sequencing. Wild-type and mutant FYN cDNA encoding an N-terminal HA tag was 

subcloned into pcDNA3.1(−) and inserted into the MSCV240-puromycine-IRES-GFP 

retroviral vector. The CSK-pcDNA3.1 (+) hygro plasmid containing a full-length CSK 

ORF was a gift from X.-Y. Huang (Cornell University). We cloned FYN SH2 domain 

complementary DNA constructs encoding wild-type FYN SH2 domain (codons 148–

231) with an N-terminal GST tag in the pGEX4-T1 expression vector between the EcoRI 
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and XhoI restriction sites. We generated the FYN SH2 domain mutations encoding 

p.Leu174Arg and p.Arg176Cys by site-directed mutagenesis on the Escherichia coli 

expression pGEX4-T1 vector encoding the FYN SH2 domain using the QuikChange II 

XL Site-Directed Mutagenesis kit according to the manufacturer's instructions. 

Cell lines. 

We cultured HEK293T (Thermo Scientific), HeLa (American Type Culture Collection, 

ATCC) and Rat1A cells (a gift from A. Lasorella, Columbia University) in DMEM 

supplemented with 10% FBS, 100 U/ml penicillin G and 100 �g/ml streptomycin at 37 

°C in a humidified atmosphere under 5% CO2. We maintained Jurkat cells (ATCC) 

under similar conditions in RPMI 1640 supplemented with 10% FBS. Cell lines were 

regularly tested for mycoplasma contamination. 

Retrovirus production and infection. 

We transfected the retroviral constructs pMSCV-HA-RHOA, pMSCV-HA–RHOA 

Gly17Val, pMSCV-HA–RHOA Gln63Leu, pMSCV-HA–RHOA Thr19Asn, pMSCV-FYN, 

pMSCV–FYN Tyr531His, pMSCV–FYN Thr342Ile/Tyr531His, pMSCV–FYN Arg176Cys, 

pMSCV–FYN Leu174Arg and the pMSCV control plasmid with gag-pol– and V-SVG–

expressing vectors into HEK293T cells using JetPEI transfection reagent (Polyplus). We 

collected viral supernatants after 48 h and used them for infection of Rat1A and Jurkat 

cells by spinoculation. After infection, we selected cells for 4 d in medium containing 1 

�g/ml puromycin. 

Immunoprecipitation and protein blot analysis of FYN activation. 
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We performed FYN immunoprecipitations in Rat1A cells infected with control (empty 

vector) retroviruses or with retroviruses expressing wild-type FYN, FYN Leu174Arg, 

FYN Arg176Cys or FYN Tyr531His using FYN rabbit polyclonal antibody (4023, Cell 

Signaling Technology)33 at 1:100 dilution and analyzed FYN phosphorylation via 

protein blot analysis with a Phospho-Src Family (Tyr416) polyclonal antibody (2101, Cell 

Signaling Technology) at 1:100 dilution. 

FYN protein expression in E. coli, purification, and peptide binding assays. 

We expressed wild-type and mutant FYN SH2 domain as GST-fused proteins in E. coli 

Rosetta 2(DE3) cells as detailed for the production of GST-RHOA fusion proteins. Next, 

we performed peptide binding assays with the Pull-Down Biotinylated Protein-protein 

Interaction kit (Thermo Scientific), according to the manufacturer's instructions, using a 

biotinylated FYN peptide corresponding to amino acids 527–537 (biotin-

TEPQYQPGENL), a biotinylated FYN peptide corresponding to amino acids 527–537 

with phosphorylation at Tyr531 (biotin-TEPQpYQPGENL) and a biotinylated FYN 

peptide corresponding to amino acids 527–537 with a p.Tyr51His alteration (biotin-

TEPQHQPGENL) (Anaspec). Briefly, we incubated synthetic biotinylated peptides with 

purified GST-fused FYN SH2 domain or mutant FYN SH2 domain or with GST alone for 

1 h at 4 °C, resolved and analyzed interacting proteins via 10% SDS-PAGE, transferred 

proteins to a PVDF membrane and carried out protein blot analysis with an antibody to 

GST. 

CSK FYN inhibition assays. 

We transfected HeLa cells with plasmids driving expression of wild-type (pcDNA3.1–
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FYN) and activating mutant FYN (pcDNA3.1–FYN Leu174Arg, pcDNA3.1–FYN 

Arg176Cys and pcDNA3.1–FYN Tyr531His) alone or with a vector driving expression of 

CSK (CSK-pcDNA3.1) at 1:1 and 1:3 ratios and analyzed the levels of FYN activation 

and FYN and CSK expression via protein blot analysis. 

Dasatinib FYN inhibition assays. 

We transfected HEK293T cells with vectors driving the expression of activated mutant 

FYN proteins (pcDNA3.1–FYN Leu174Arg, pcDNA3.1–FYN Arg176Cys and pcDNA3.1–

FYN Tyr531His). After 24 h, cell cultures were treated with increasing concentrations of 

dasatinib (Selleck Chemicals) for 6 h and were analyzed for FYN phosphorylation and 

expression by protein blot analysis. Similarly, transformed Rat1A cells expressing the 

FYN Tyr531His mutant or a double FYN Thr342Ile/Tyr531His mutant were treated with 

vehicle alone or with dasatinib (1 �M) for 6 h and analyzed for FYN phosphorylation and 

expression by protein blot analysis. 

Cell proliferation assays. 

We analyzed relative cell growth at 72 h in vehicle-treated and dasatinib-treated (1 �M) 

Rat1A transformed cells expressing either the FYN Tyr531His mutant or a FYN 

Thr342Ile/Tyr531His double mutant. Cell growth was determined in triplicate by 

measurement of metabolic reduction of the tetrazolium salt MTT using Cell Proliferation 

Kit I (Roche) according to the manufacturer's instructions. 
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