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Clinical determinants of early parasitological
response to ACTs in African patients with
uncomplicated falciparum malaria: a
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individual patient data
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Abstract

Background: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses
a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to
artemisinin. This study was designed to establish the baseline values for clearance in patients from Sub-Saharan African
countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs).

Methods: A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials
(uncontrolled trials, controlled trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa,
between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial
Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting early parasitological
response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in
included studies was evaluated based on study design, methodology and missing data.

Results: In total, 29,493 patients from 84 clinical trials were included in the analysis, treated with artemether-lumefantrine
(n = 13,664), artesunate-amodiaquine (n = 11,337) and dihydroartemisinin-piperaquine (n = 4,492). The overall parasite
clearance rate was rapid. The parasite positivity rate (PPR) decreased from 59.7 % (95 % CI: 54.5–64.9) on day 1 to 6.7 %
(95 % CI: 4.8–8.7) on day 2 and 0.9 % (95 % CI: 0.5–1.2) on day 3. The 95th percentile of observed day 3 PPR was 5.3 %.
Independent risk factors predictive of day 3 positivity were: high baseline parasitaemia (adjusted odds ratio (AOR) = 1.16
(95 % CI: 1.08–1.25); per 2-fold increase in parasite density, P <0.001); fever (>37.5 °C) (AOR = 1.50 (95 % CI: 1.06–2.13),
P = 0.022); severe anaemia (AOR = 2.04 (95 % CI: 1.21–3.44), P = 0.008); areas of low/moderate transmission setting
(AOR = 2.71 (95 % CI: 1.38–5.36), P = 0.004); and treatment with the loose formulation of artesunate-amodiaquine
(AOR = 2.27 (95 % CI: 1.14–4.51), P = 0.020, compared to dihydroartemisinin-piperaquine).

Conclusions: The three ACTs assessed in this analysis continue to achieve rapid early parasitological clearance across
the sites assessed in Sub-Saharan Africa. A threshold of 5 % day 3 parasite positivity from a minimum sample size of 50
patients provides a more sensitive benchmark in Sub-Saharan Africa compared to the current recommended threshold
of 10 % to trigger further investigation of artemisinin susceptibility.
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Background
The increasing availability of artemisinin-based com-
bination therapies (ACTs) and long-lasting insecticidal
nets (LLINs) over the last decade has contributed to a
substantial reduction in malaria morbidity and mortal-
ity in Sub-Saharan Africa (SSA) [1, 2]. However, the
reduced efficacy of artemisinin against Plasmodium
falciparum malaria in the Greater Mekong region [3–9]
threatens to jeopardize the recent gains in malaria con-
trol and elimination. Identifying areas where decreased
artemisinin susceptibility is emerging is critical to in-
form an adequate international response.
Delayed parasite clearance is the hallmark of artemisinin

resistance [4, 10, 11]. However, its precise measurement
requires frequent sampling and this is often logistic-
ally difficult to implement in resource-constrained
settings [12]. Recently, specific mutations in the Kelch
13 (K13) gene have been shown to be highly corre-
lated with the slow clearance phenotype in parasites
from Northwest Cambodia [13] and other parts of the
Greater Mekong sub-region [8, 14]. Although K13
mutations are present in Africa, the variants differ
from those in Southeast Asia and their correlation
with artemisinin resistance has yet to be substantiated
[15–18]. The proportion of patients with persistent
patent parasitaemia (parasite positivity rate, PPR) on
day 3 has been proposed as a simple and pragmatic
metric of choice for routine monitoring to identify
suspected artemisinin resistance [19]. In depth clinical
and parasitological assessments are warranted in sites
where parasite positivity rate on day 3 (72 hours)
exceeds 10 % in a study [19]. If less than 3 % of the
patients in a site are still parasitaemic on day 3,
artemisinin resistance is considered highly unlikely
[20]. This threshold has been developed with data
mostly from low transmission settings in Southeast
Asia [20].
It is known that the speed of parasite clearance is

influenced by a number of host, parasite and drug
factors [10, 11, 21], including the level of acquired
immunity [22–24], parasite density at presentation
[20, 25–27], the quality of microscopy [28], the phar-
macokinetic/pharmacodynamic profiles of the different
artemisinin derivatives and the partner drugs [29].
Therefore, to assess the dynamics of early parasito-

logical response after artemisinin combination therapy
observed in SSA, parasite clearance data were com-
piled from patients with uncomplicated P. falciparum
malaria enrolled in ACT clinical efficacy trials con-
ducted between 1999 and 2012. The aim was to
provide a baseline of early parasitological response
profiles so that sites at high risk (hot spots) for
artemisinin resistance can be identified going forward,
to inform malaria control and containment efforts.
Methods
Identification of studies for potential inclusion
Individual patient data
A literature review was conducted in PubMed in March
2013 and updated in 2014 to identify all published
clinical trials of antimalarials since 1960. All antimalarial
clinical trials published since 1960 were identified by the
application of the key terms ((malaria OR plasmod*)
AND (amodiaquine OR atovaquone OR artemisinin OR
arteether OR artesunate OR artemether OR artemotil
OR azithromycin OR artekin OR chloroquine OR chlor-
proguanil OR cycloguanil OR clindamycin OR coartem
OR dapsone OR dihydroartemisinin OR duo-cotecxin
OR doxycycline OR halofantrine OR lumefantrine OR
lariam OR malarone OR mefloquine OR naphthoquine
OR naphthoquinone OR piperaquine OR primaquine
OR proguanil OR pyrimethamine OR pyronaridine OR
quinidine OR quinine OR riamet OR sulphadoxine OR
tetracycline OR tafenoquine)) through the PubMed
library. All references containing any mention of anti-
malarial drugs were tabulated and manually checked to
confirm prospective clinical trials. Studies on prevention
or prophylaxis, reviews, animal studies or studies of
patients with severe malaria or in pregnant women were
excluded. When pdfs were available further details of the
publications were reviewed, and basic details on the
study methodology, treatment arms assessed and the
study locations were documented. These are provided in
the WorldWide Antimalarial Resistance Network
(WWARN) publication library [30]. Specific details of
the studies with ACTs are available in Additional files 1
and 2. The year of the study was taken as the year in
which the paper was published, although the start and
end date of patient enrolment were also recorded.
Where a specific site was not reported in the manuscript,
the capital city of the country was used as the default
location. Countries were grouped into four sub-regions:
East; West; Central; and South Africa, as reported in the
WHO World malaria report 2014 [1].
All research groups in the systematic review were con-

tacted to share the entire dataset of their study with
WWARN. Those who had contributed studies previously
to the WWARN data repository were also invited to par-
ticipate and asked whether they were aware of any unpub-
lished or ongoing clinical trials involving ACTs, and these
additional unpublished studies were also requested. Studies
were included in the meta-analysis provided that they were:
i) prospective clinical efficacy studies of uncomplicated
P. falciparum (either alone or mixed infections with
P. vivax); ii) clinical trials conducted in SSA with one
of the following three ACTs: artemether-lumefantrine
(AL) (six-dose), dihydroartemisinin-piperaquine (DP) and
one of the three formulations of artesunate-amodiaquine
(AS-AQ): fixed dose combination (ASAQ-FDC), non-
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fixed dose combination in a loose formulation (ASAQ-
loose NFDC) or non-fixed dose combination in a co-blister
formulation (ASAQ-coblistered NFDC); and iii) parasit-
aemia was sampled at least on days 2 (48 hours) and 3
(72 hours) following treatment. Individual study protocols
were available for all trials included, either from the publi-
cation or as a metafile submitted with the raw data. All
data were uploaded to the WWARN repository and stan-
dardized using a methodology described in the clinical
module data management and statistical analysis plan [31].

Definition of parameters assessed
Anaemia
Anaemia was defined according to WHO guidelines
[32] (that is, haemoglobin cut-offs for moderate anaemia
were 10 g/dl in children <5 years of age and 11 g/dl in
older patients, and for severe anaemia were 7 and 8 g/dl,
respectively). For studies where only haematocrit was
measured, the following relationship was used to estimate
haemoglobin: Haematocrit (%) = 5.62 + 2.60 ×Haemog-
lobin (g/dl) [33].

Parasite positivity
A pre-defined algorithm was used to impute positivity
status on days 2 or 3, if no observation of the blood film
was recorded on that day [34]. For studies with frequent
sampling, a patient was classified as being positive on
days 1, 2 and 3 after enrolment if the measurements
within a window of ± 3 hours of 24, 48 and 72 hours
were positive.

Malaria transmission intensity
The study sites were classified into two categories, low/
moderate and high malaria transmission, based on the
observed re-infection rate and the parasite prevalence
estimates obtained from the Malaria Atlas Project [35].
More information about this classification is available in
Additional file 3.

Ethical approval
All data included in this analysis were obtained in
accordance with ethical approvals from the country of
origin. Ethical approval for pooled analysis of individual
participant data was granted by the Oxford Tropical
Research Ethics Committee (OxTREC), based on the fact
that all studies contributed to WWARN must have
already obtained all necessary ethical approvals and
informed consent.

Statistical analysis
All statistical analyses were carried out based on an a
priori statistical plan [34]. The primary endpoint used in
the analysis was microscopically defined parasite positivity
on days 1, 2 and 3. The proportions of patients remaining
parasitaemic on days 1, 2 and 3 were expressed as parasite
positivity rates (PPRs) and were calculated for each study
site separately using the individual patient data. The
overall PPRs were calculated as a weighted average of
the estimates from each of the individual study sites and
associated confidence intervals (95 % CI) calculated by
adjusting for within study clustering using the method
described by Fleiss et al. [36]. Assuming baseline day 3
PPR equal to the upper limit of the 95 % CI around the
observed PPR, we computed the maximum number of
positive cases needed to be observed for the estimated
95 % CI to exclude this baseline for a given sample size, as
described elsewhere [20].
Univariable and multivariable analyses of risk factors

associated with parasite positivity status on days 1, 2 and
3 were conducted using generalized linear mixed model
(logit link), in a one-stage analysis by combining all of
the individual patient data. In order to account for
within study clustering, study sites were fitted as random
effects; the statistical significance of which was assessed
using a likelihood ratio test. Statistical heterogeneity was
quantified as the variance of the random effects using
maximum likelihood method and the proportion of total
variance contributed by the site-level variance compo-
nent (ρ) was reported. Missing covariates were dealt
with using multiple imputation methods. The number of
imputations (m) was determined based on the fraction
of missing information (γ) assuming 5 % loss in efficiency
(η) using m ≥ γ*(η/1–η) [37]. Known confounders (age,
parasitaemia and transmission setting) were kept in the
model regardless of significance. Covariates examined at
baseline included age, gender, fever (axillary, tympanic or
rectal temperature >37.5 °C), parasitaemia, anaemia, game-
tocytemia, transmission setting, ACTs used for treatment,
geographical region and year of the study. Any variables
significant in univariable analysis (below 10 % level of
significance) were kept for multivariable analysis; the deci-
sion of inclusion in the final model was assessed using a
likelihood ratio test. In a sub-group of studies in which
information was available on drug dosing, the effects of
weight-adjusted doses (mg/kg) on parasite positivity status
were evaluated after adjusting for the covariates significant
in the multivariable analysis.
The robustness of the coefficients in the final multivar-

iable model was examined using bootstrap sampling.
Sensitivity analysis was performed by excluding one study
site at a time and the coefficient of variation around the
parameter estimates was calculated. The final model was
used to simulate outcome for each patient and the
observed PPRs were plotted against the simulated PPRs to
assess model adequacy.
Continuous variables were compared between groups

using generalized linear regression with study sites fitted
as random effects. Data that were not normally distributed
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were compared with Mann–Whitney U test or Kruskal–
Wallis test. All statistical analyses were carried out using R
(version 3.1.2, R Foundation for Statistical Computing,
Vienna, Austria) using lme4 package.

Assessment of risk of potential bias
In accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines, the risk of bias within studies was assessed based on:
1) study design (randomization, sequence generation,
blinding); 2) microscopy methodologies for parasite quan-
tification; and 3) the proportion of patients with (a) miss-
ing outcomes (missing outcome on days 2 and 3) and (b)
missing baseline covariates (age, temperature, haemoglo-
bin/haematocrit).
To assess whether the non-availability of some individual

participant data could have biased the results, we extracted
data on PPRs from studies not providing individual patient
data and performed a two-stage meta-analysis of propor-
tions using logit transformation; a continuity correction of
0.5 was applied to studies with zero cell count using meta
package. Publication bias was assessed through the use of a
Fig. 1 Patient flowchart. AL, artemether-lumefantrine; AS-AQ, artesunate-am
participant data
funnel plot of the log-transformed odds ratio, the asym-
metry of which was tested using Egger’s method.

Results
Characteristics of eligible studies
The systematic literature review identified 140 published
clinical studies of ACT efficacy that were potentially rele-
vant to this analysis. Researchers agreed to share individual
patient data from 71 trials (50.7 %) including 25,731 pa-
tients (59.9 % of the targeted population). Additional data
were available for 3,762 patients from 13 unpublished tri-
als. In total, individual records were available from 29,493
patients enrolled in 27 different countries between 1999
and 2012 (Fig. 1). Fourteen studies (n = 4,177) had a single
arm and the remaining 70 studies had at least two ACT
arms (n = 25,376). Among these, 65 studies were random-
ized, 14 were non-randomized and randomization status
was not reported in 5 studies. AL was administered to
46 % (n = 13,664) and DP to 15 % (n = 4,492) of patients.
AS-AQ was administered in three different formula-
tions: ASAQ-FDC (17 %, n = 4,907); ASAQ-loose
NFDC (13 %, n = 3,925); and ASAQ-coblistered NFDC
odiaquine; DP, dihydroartemisinin-piperaquine; IPD, individual
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(9 %, n = 2,505). Thirty-five studies were conducted in
West Africa (n = 10,676), 31 in East Africa (n = 8,331), 4 in
Central Africa (n = 609), 4 in South Africa (n = 666), and
the remaining 10 studies were multi-regional (n = 9,211).
Baseline characteristics
The baseline characteristics of the included patients are
given in Table 1. The mean age (years ± SD) was 6.7 ± 8.78,
and was similar for patients treated with AL (7.4 ± 9.22)
and AS-AQ (6.6 ± 8.60). The mean age was lower for pa-
tients treated with DP (4.9 ± 7.51), with 90 % (4,064/4,492)
of patients treated with this regimen being less than
12 years old (P <0.05, linear regression). The median base-
line parasitaemia was 20,200 parasites/μl (IQR: 6,320–
51,520) with slight differences between treatment groups
(Table 1). A high proportion (55.5 %, 11,918/21,479) of pa-
tients were anaemic at enrolment and 9 % (2,083/22,402) of
the patients carried gametocytes at presentation (Table 1).
Table 1 Baseline characteristics of the patients in the analysis

Baseline characteristics AL (2002–2012) AS-AQ

Patients (N) 13,664 (46.3 %) 11,337 (

Female 6,437 (47.1 %) 5,322 (4

Age

Mean age ± SD (years) 7.4 ± 9.22 6.6 ± 8.6

<1 year 795 (5.8 %) 842 (7.4

1 to <5 years 7,183 (52.6 %) 6,324 (5

5 to <12 years 3,184 (23.3 %) 2,357 (2

≥12 years 2,478 (18.1 %) 1,801 (1

Geographic region

East Africa 6,040 (44.2 %) 2,920 (2

West Africa 6,481 (47.4 %) 6,749 (5

Central Africa 483 (3.5 %) 758 (6.7

South Africa 660 (4.8 %) 910 (8.0

Transmission settings

High 4,836 (35.4 %) 4,062 (3

Low/moderate 8,828 (64.6 %) 7,275 (6

Enrolment clinical parameters

Mean body weight ± SD (kg) 21.2 ± 16.23 19.5 ± 1

Median parasitaemia (IQR) 19,260 (5,930–48,260) 20,000 (

Parasitaemia >100,000/μL 8.4 % (1,152/13,664) 10.7 %

Mean haemoglobin ± SD (g/dl) 10.3 ± 2.17 9.7 ± 2.1

Gametocytes presence 8.2 % (868/10,649) 11.1 %

Elevated temperature (>37.5 °C) 61.9 % (7,861/12,691) 67.3 %

Anaemia

Moderate 44 % (4,246/9,650) 48.6 %

Severe 6.9 % (666/9,650) 10.1 %

AL, artemether-lumefantrine; AS-AQ, artesunate-amodiaquine; DP, dihydroartemisin
After adjustment for age, both of these percentages were
similar in the different treatment groups.

Observed parasite positivity rates (PPRs) on days 1,
2 and 3
The presence and density of parasites on day 1 could
only be assessed in 55 % (16,196/29,493) of patients (52
studies). The overall parasite clearance rate for all studies
was rapid. The PPR decreased from 59.7 % (95 % CI:
54.5–64.9) on day 1 (10,099/16,916) to 6.7 % (95 % CI:
4.8–8.7) on day 2 (1,853/27,496) and 0.9 % (95 % CI: 0.5–
1.2) on day 3 (253/28,580). The PPRs on days 1, 2 and 3
were similar for AL, DP and ASAQ-FDC, but higher for
the non-fixed formulations of AS-AQ on days 2 and 3
(Table 2). Compared to patients older than 12 years, chil-
dren from 1 to 5 years had the highest PPR on day 1
(64 %, 6,430/10,053, P <0.001) and day 2 (7.5 %, 1,176/
15,677, P <0.001), but there was no age-related difference
on day 3. Patients with an initial parasite density >100,000
(1999–2012) DP (2003–2011) Total (1999–2012)

38.4 %) 4,492 (15.2 %) 29,493

6.9 %) 2,123 (47.3 %) 13,882 (47.1 %)

0 4.9 ± 7.51 6.7 ± 8.78

%) 447 (10.0 %) 2,084 (7.1 %)

5.8 %) 3,185 (70.9 %) 16,692 (56.6 %)

0.8 %) 432 (9.6 %) 5,973 (20.3 %)

5.9 %) 427 (9.5 %) 4,706 (16.0 %)

5.8 %) 2,229 (49.6 %) 11,189 (37.9 %)

9.5 %) 1,302 (29.0 %) 14,532 (49.3 %)

%) 174 (3.9 %) 1,415 (4.8 %)

%) 787 (17.5 %) 2,357 (8.0 %)

5.8 %) 1,876 (41.8 %) 10,774 (36.5 %)

4.2 %) 2,616 (58.2 %) 18,719 (63.5 %)

5.26 16.3 ± 13.72 19.8 ± 15.59

6,080–52,480) 25,540 (8,320–59,830) 20,200 (6,320–51,520)

(1,209/11,337) 11.7 % (527/4,492) 9.8 % (2,888/29,493)

0 9.6 ± 1.86 9.9 ± 2.11

(821/7,428) 9.1 % (394/4,325) 9.3 % (2,083/22,402)

(7,461/11,092) 63.7 % (2,814/4,419) 64.3 % (18,136/28,202)

(3,761/7,734) 52.7 % (2,159/4,095) 47.3 % (10,166/21,479)

(780/7,734) 7.5 % (306/4,095) 8.2 % (1,752/21,479)

in-piperaquine



Table 2 Parasite positivity rate (PPR) for three different ACTs

AL AS-AQc DP Overall

Day 1

PPR (%)a 59.3 % (4,721/7,966)
(95 % CI: 52.2–66.3)

60.3 % (3,463/5,746)
(95 % CI: 54.7–65.8)

59.8 % (1,915/3,204)
(95 % CI: 50.3–69.2)

59.7 % (10,099/16,916)
(95 % CI: 54.5–64.9)

Number of study sitesb 81 52 25 158

Median PPR (IQR; range)b 61.8 % (35.5–79.1; 0–97.6) 58.8 % (47.1–77.0; 0.0–96.3) 53.8 % (32.4–69.4; 18.3–93.0) 57.9 % (36.1–77.0; 0.0–97.6)

Day 2

PPR (%)a 5.9 % (729/12,255) 7.2 % (784/10,821) 7.7 % (340/4,420) 6.7 % (1,853/27,496)

Number of study sitesb 100 79 36 215

Median PPR (IQR; range)b 2.9 (1–8.3; 0.0–42.4) 5.6 % (1.5–12.3; 0.0–88.1) 3.9 % (0.4–6.7; 0.0–39.1) 3.3 % (1.2–10.2; 0.0–88.1)

Day 3

PPR (%)a 0.6 % (76/13,004) 1.3 % (143/11,142) 0.8 % (34/4,434) 0.9 % (253/28,580)

Number of study sitesb 105 84 36 225

Median PPR (IQR; range)b 0.0 % (0.0–0.9; 0.0–7.8) 0.3 % (0.0–1.6; 0.0–30.7) 0.0 % (0.0–0.5; 0.0–7.7) 0.0 % (0.0–0.7;0.0–30.7)
aThe PPR was computed using all available data and associated 95 % confidence interval was adjusted for within site correlation; bonly sites with the number of
patients >25 were considered; cPPRs (95 % CI) on days 1, 2 and 3 were 62.3 % (52.4–72.3), 4.9 % (2.5–7.3) and 0.5 % (0.1–0.9) for ASAQ–FDC (from 32 sites);
58.4 % (50.2–66.6), 8.7 % (6.3–11.2) and 1.7 % (1.0–2.4) for ASAQ-loose NFDC (from 43 sites); and 58.9 % (52.6–65.3), 10.6 % (0–21.3) and 2.4 % (0–5.7) for
ASAQ-coblistered NFDC (from 9 sites), respectively. Detailed information of PPR is presented in Additional file 4. ACT, artemisinin-based combination therapy;
AL, artemether-lumefantrine; AS-AQ, artesunate-amodiaquine; DP, dihydroartemisinin-piperaquine; PPR, parasite positivity rate
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parasites/μl had a PPR of 82.7 % (1,494/1,807) on day 1,
14.3 % (385/2,696) on day 2 and 1.3 % (37/2,752) on day
3. The corresponding proportions for patients with para-
sitaemia less than 100,000 parasites/μl were 57.0 % (8,605/
15,109), 5.9 % (1,468/24,800) and 0.8 % (216/25,828),
respectively for days 1, 2 and 3 (all P <0.05). There were
no regional differences or temporal trend in the PPRs on
any days during the time period studied, that is, 1999–
2012. A detailed summary of the PPRs for each of the
treatment regimens stratified by country and calendar year
is presented in Additional file 4. In total, there were 22 sites
that had a PPR on day 3 exceeding 3 % (Table 3). The risk
of day 3 parasitaemia exceeding 3 % was greatest in
patients treated with ASAQ-loose NFDC (19.0 %, 8/42)
and ASAQ-coblistered NFDC (11.1 %, 1/9) compared to
9.4 % (3/32) for AS-AQ FDC, 5.6 % (2/36) for DP and
7.6 % (8/105) for AL (Table 3). At two sites, the day 3
PPR was higher than 10 %: Miandrivazo, Madagascar,
2006 (n = 68, PPR = 10.3 %, ASAQ-loose NFDC) and
Yaoundé, Cameroon, 2005 (n = 101, PPR = 30.1 %,
ASAQ-coblistered NFDC) (Fig. 2).
Risk factors associated with the parasite positivity status
The independent risk factors for parasite positivity were
similar on days 1 and 2 (see Additional file 4: Table S6 for
details on day 1 and Table 4 for day 2). After adjust-
ing for confounding factors, patients treated with AL
were at an increased risk of remaining parasitaemic
on day 2 (adjusted odds ratio (AOR) = 1.21 (95 % CI:
1.01–1.44), P = 0.040) compared to those treated with
DP or those treated with ASAQ-FDC (AOR= 1.33 (95 %
CI: 1.08–1.63), P = 0.005). Similarly, patients treated with
ASAQ-loose NFDC had an increased risk of remaining
parasitaemic on day 2 compared to DP (AOR= 1.46 (95 %
CI: 1.05–2.01), P = 0.022) and compared to ASAQ-FDC
(AOR= 1.61 (95 % CI: 1.14–2.29), P = 0.007). In the same
multivariable model, patients from low/moderate transmis-
sion sites were also at greater risk of remaining parasitae-
mic on day 2 compared to those from high transmission
sites (AOR = 1.88 (95 % CI: 1.09–3.24), P = 0.024) (Fig. 3).
In multivariable analysis, the risk of being parasitaemic

on day 3 increased with baseline parasitaemia (AOR = 1.16
(95 % CI: 1.08–1.25), for every 2-fold increase in parasite
density, P <0.001), fever (AOR = 1.50 (95 % CI: 1.06–2.13),
P = 0.022), severe anaemia (Hb < 7 g/dl) (AOR = 2.04
(95 % CI: 1.21–3.44), P = 0.008) and being from areas of
low/moderate transmission (AOR = 2.71 (95 % CI: 1.38–
5.36, P = 0.004 compared to high transmission areas); see
Table 5. Patients treated with ASAQ-loose NFDC were at
2.27-fold ((95 % CI: 1.14–4.51), P = 0.020) increased risk of
being parasitaemic on day 3 compared to patients treated
with DP and 3.36-fold ((95 % CI: 1.61–6.98), P = 0.001)
higher risk compared to patients treated with ASAQ-FDC.
Similarly, patients treated with ASAQ-coblistered NFDC
were at 4.18-fold ((95 % CI: 1.28–13.68), P = 0.017) greater
risk compared to those treated with ASAQ-FDC (Table 5).
Effect of weight adjusted (mg/kg) artemisinin components
The weight adjusted drug dosage (mg/kg) was available
in 72 % (21,310/29,493) of the patients. Adjusted for the
baseline confounders, the mg/kg dose of artemisinin
component was not associated with the risk of parasite



Table 3 Study sites with day 3 parasite positivity rate (PPR) >3 %

Study site (country) Year Treatment Day 3 PPR (95 % CI)a

New Halfa (Sudan) 2006 AL 3.0 % (1/33) (0.5–15.3)

ELWA Hospital (Liberia) 2007 AL 3.4 % (2/58) (0.9–11.7)

JFK Hospital (Liberia) 2007 AL 3.8 % (2/53) (1.0–12.8)

Bagamoyo (Tanzania) 2004 AL 4.0 % (2/50) (1.1–13.5)

Afokang (Nigeria) 2007–08 AL 5.9 % (10/170) (3.2–10.5)

Ndumo (South Africa) 2002 AL 6.0 % (6/100) (2.8–12.5)

San Pedro (Côte d’Ivoire) 2012 AL 6.5 % (2/31) (1.8–20.7)

Gedaref (Sudan) 2006 AL 7.8 % (4/51) (3.1–18.5)

Andapa (Madagascar) 2007 AS-AQ (loose NFDC) 3.3 % (1/30) (0.6–16.7)

Gaya (Niger) 2011 AS-AQ (FDC) 3.9 % (3/77) (1.3–10.8)

Grand Gedeh County (Liberia) 2010–11 AS-AQ (FDC) 3.9 % (4/102) (1.5–9.7)

Dabola (Guinea) 2004 AS-AQ (loose NFDC) 4.5 % (5/110) (1.9–10.2)

Afokang (Nigeria) 2007–08 AS-AQ (FDC) 5.2 % (9/173) (2.8–9.6)

Malakal (Sudan) 2003 AS-AQ (loose NFDC) 5.3 % (7/131) (2.6–10.6)

Kuito (Angola) 2003 AS-AQ (loose NFDC) 5.4 % (5/93) (2.3–11.9)

Kailahun (Sierra Leone) 2004 AS-AQ (loose NFDC) 5.6 % (7/125) (2.7–11.1)

Mlomp (Senegal) 1999 AS-AQ (loose NFDC) 5.8 % (9/154) (3.1–10.7)

Richard Toll (Senegal) 2003 AS-AQ (loose NFDC) 7.1 % (3/42) (2.5–19.0)

Miandrivazo (Madagascar) 2006 AS-AQ (loose NFDC) 10.3 % (7/68) (5.1–19.8)b

Yaoundé (Cameroon) 2005 AS-AQ (coblistered NFDC) 30.7 % (31/101) (22.5–40.3)b

Manhiça (Mozambique) 2005–06 DP 4.0 % (12/299) (2.3–6.9)

Afokang (Nigeria) 2007–08 DP 7.7 % (11/142) (4.4–13.3)
aAssociated 95 % confidence interval computed using Wilson’s method; bthese sites have day 3 PPR >10 % and would be classed as sites with suspected partial
artemisinin resistance requiring further investigation. Patients in Miandrivazo were treated with ASAQ-loose NFDC and those in Yaoundé treated with ASAQ-coblistered
NFDC. AL, artemether-lumefantrine; AS-AQ, artesunate-amodiaquine; DP, dihydroartemisinin-piperaquine; NFDC, non-fixed dose combination; PPR, parasite positivity rate

Fig. 2 Parasite positivity rates (PPRs) on days 2 and 3 following treatment administration. Boxplot showing PPRs for each of the ACTs separately.
Only studies with sample size >25 patients were considered for the plot. There were two study sites with day 3 PPR >10 %, both of these sites used
the non-fixed presentations of AS-AQ. ACT, artemisinin-based combination therapy; AL, artemether-lumefantrine; AS-AQ, artesunate-amodiaquine;
DP, dihydroartemisinin-piperaquine; PPR, parasite positivity rate
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Table 4 Univariable and multivariable risk factors for parasite positivity on day 2

Univariable analysis Multivariable analysisc

Variable N (n)a Random effectsb Crude OR (95 % CI) P value Adjusted OR (95 % CI) P value

Baseline parasitaemia (2-fold rise) 27,496 (1,853) 2.31 1.30 (1.26–1.34) <0.001 1.27 (1.24–1.31) <0.001

Baseline anaemia

Non-anaemic (reference)d 8,838 (544) 2.14 1 - - -

Moderate 9,652 (714) 1.07 (0.94–1.22) 0.274 1.07 (0.94–1.22) 0.289

Severe 1,668 (124) 1.24 (0.99–1.55) 0.056 1.33 (1.06–1.67) 0.014

Unknown 7,338 (471) - - - -

Gametocytes presence

No (reference) 18,672 (1,358) 2.08 1 - - -

Yes 1,979 (102) 0.95 (0.74–1.2) 0.650 - -

Febrile on presentation (temperature >37.5 °C)

No (reference) 9,355 (433) 2.06 1 - - -

Yes 17,217 (1,412) 1.72 (1.52–1.95) <0.001 1.46 (1.28–1.66) <0.001

Gendere

Female (reference) 12,873 (835) 2.22 1 - - -

Male 13,995 (982) 1.11 (1.00–1.23) 0.052 - -

Age category

≥12 years (reference) 4,245 (202) 2.22 1 - - -

<1 year 2,014 (139) 1.89 (1.40–2.57) <0.001 1.49 (1.09–2.05) 0.013

1 to <5 years 15,677 (1,176) 1.94 (1.52–2.46) <0.001 1.54 (1.21–1.97) 0.001

5 to <12 years 5,528 (334) 1.49 (1.20–1.85) <0.001 1.25 (1.00–1.56) 0.048

Transmission settings

High (reference) 10,368 (455) 2.12 1 - - -

Low/moderate 17,128 (1,398) 1.50 (0.88–2.55) 0.135 1.88 (1.09–3.24) 0.024

Treatmentf

DP (reference) 4,420 (340) 2.12 1 - - -

AL 12,255 (729) 1.19 (1.00–1.42) 0.050 1.21 (1.01–1.44) 0.040

ASAQ-FDC 4,997 (246) 0.94 (0.75–1.19) 0.619 0.90 (0.71–1.14) 0.388

ASAQ-coblistered NFDC 1,574 (167) 1.80 (0.84–3.85) 0.130 1.87 (0.86–4.04) 0.113

ASAQ-loose NFDC 4,250 (371) 1.62 (1.18–2.22) 0.003 1.46 (1.05–2.01) 0.022
aN, number of patients with non-missing data; n, number of patients with positive blood smear on day 2; bvariance of the random effects for the univariable
analyses; cN = 26,544 for the final multivariable model with 1,843 cases of positive parasitaemia. Likelihood ratio test for random effect (P <0.001). Variance of
random effect = 2.05. Proportion of total variance contributed by the site-level variance component (ρ) = 0.38. Coefficient (standard error) of intercept = −7.95
(0.3539). The coefficient of variation in parameter estimates was calculated by excluding one study site at a time and expressed as relative standard deviation
(RSD). Distributions of the adjusted odds ratio (AOR) were generated from 250 bootstrap samples. The RSD and bootstrap distribution are shown in Additional file 4: Table
S8 and Figure S3); dmultiple imputation was performed on missing anaemia status using ordinal logistic regression with age, gender and parasitaemia as covariates. The
estimates derived using 100 imputations for moderate and severe anaemia are: AOR = 1.05 (95 % CI: 0.93–1.19), P = 0.446; and AOR= 1.24 (95 % CI: 0.99–1.55), P= 0.056,
respectively; egender (AOR = 1.10 (95 % CI: 0.99–1.22), P= 0.079 using likelihood ratio test) was no longer significant in the presence of the other variables shown in the
multivariable model and hence dropped; ffor AL compared to ASAQ-FDC (AOR = 1.33 (95 % CI: 1.08–1.63, P= 0.005). For ASAQ-loose NFDC compared to ASAQ-FDC
(AOR= 1.61 (95 % CI: 1.14–2.29), P = 0.007). AL, artemether-lumefantrine; AS-AQ, artesunate-amodiaquine; ASAQ-coblistered NFDC, non-fixed dose combination in a
co-blister formulation; ASAQ-FDC, fixed dose combination; ASAQ-loose NFDC, non-fixed dose combination in a loose formulation; DP, dihydroartemisinin-piperaquine
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positivity on any day for patients treated with DP or
AS-AQ (either for the fixed or the loose combinations).
However, in patients treated with AL, an increased
mg/kg dose of artemether was associated with a lower
risk of patent parasitaemia only on day 1. Every unit
increase in daily mg/kg artemether dose reduced the
risk of parasite positivity by 5 % ((95 % CI: 1–7 %),
P = 0.003) (see Additional file 4: Table S10).
Derivation of day 3 PPR threshold for suspected
diminished artemisinin susceptibility
The overall day 3 PPR was 0.58 % (95 % CI: 0.34–0.82)
for AL, 0.54 % (95 % CI: 0.14–0.94) for ASAQ-FDC and
0.77 % (95 % CI: 0.11–1.42) for DP. In studies with a
sample size greater than 50 patients, the observed PPR
was unlikely to exceed 5 % positivity on day 3 (Fig. 4).
However, in studies with fewer than 50 patients, the



Fig. 3 Probability of remaining parasitaemic (%) on days 2 and 3 for a given baseline parasitaemia in areas with different levels of transmission
for children from 1 to 5 years of age. The probability of remaining positive on a given day was generated using coefficients from the final
multivariable logistic regression with random effects for study sites. Zero study site effect was assumed for generating the predicted risk. The
difference in risk of positivity for low/moderate setting has been given as δ and associated 95 % confidence interval presented
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variance around the estimate was extremely wide, so a
reliable estimate could not be derived (Table 6, Fig. 4).

Assessment of potential bias
Attrition biases of the included studies are presented in
Additional file 1. Sensitivity analyses showed that exclu-
sion of any of the studies did not change the main con-
clusions of the analysis (Additional file 4: Table S12). In
addition, parameter estimates obtained from bootstrap
sampling were similar to the estimates from final multi-
variable models (Additional file 4: Figures S2,3). Com-
bining studies with and without individual patient data
concluded similar results to those in which only studies
with individual patient data were available (Additional
file 4: Table S13). Funnel plots of the log-transformed
odds ratio against standard error were symmetric sug-
gesting low risk of publication bias (Additional file 4:
Figures S7,8).

Discussion
This large pooled analysis of nearly 30,000 patients from
trials conducted before 2012 highlights that parasite
clearance after treatment with an ACT is still extremely
rapid in Sub-Saharan Africa. More than 90 % of the
patients were aparasitaemic by day 2 and 99 % by day 3,
consistent with previous reports demonstrating rapid
parasite clearance after treatment with ACTs in high
transmission settings [20, 26].
In areas of intense transmission, immunity develops at

a relatively young age [38, 39] and is a key determinant
of the antimalarial therapeutic response [40]. Our results
show that patients from areas of low/moderate transmis-
sion were at greater risk of parasite positivity compared
to patients from high transmission regions, a likely
reflection of the influence of immunity in the early
therapeutic response. Almost 80 % of patients were less
than 12 years old, an age group with the highest risk of
parasitaemia on days 1 and 2. Every 2-fold increase in
parasite density was associated with 1.5 to 1.2-fold risk
of failing to clear parasitaemia on days 1 to 3, respec-
tively. Similarly, patients with fever at enrolment had a
higher risk of persistent parasitaemia. Fever and parasit-
aemia are closely correlated, with symptoms manifesting
in those exceeding a pyrogenic threshold, this threshold
rising as the host experiences repeated infections and
acquires a degree of immunity. However, independent of
baseline parasitaemia, patients with fever on presenta-
tion showed slower parasitological clearance as has been
noted previously and hypothesized to relate to a reduced
host immunity [25, 27]. The results of these analyses
emphasize the importance of transmission intensity in
the development of immunity and the pivotal role of
acquired immunity in modulating early parasitological
response to treatment with ACTs [22, 23]. Patients who
were severely anaemic at presentation were also at
greater risk of remaining parasitaemic on days 1 to 3
compared to those who were non-anaemic. Severe an-
aemia is associated with recurrent episodes of malaria
and can arise as a consequence of treatment failure,
hence may be indicative of a poor immune response
or emerging parasite resistance [41]. In addition, co-
infections with helminths, poor socioeconomic status
and malnutrition may further compound the effects
[42]. Further research is needed to understand the under-
lying biological pathways and will be explored in the
WWARN Haematology Study Group [43].



Table 5 Univariable and multivariable risk factors for parasite positivity on day 3

Univariable analysis Multivariable analysisc

Variable N (n)a Random effectsb Crude OR (95 % CI) P value Adjusted OR (95 % CI) P value

Baseline parasitaemia (2-fold rise) 28,580 (253) 2.57 1.18 (1.10–1.28) <0.001 1.16 (1.08–1.25) <0.001

Baseline anaemia

Non-anaemic (reference)d 9,368 (60) 2.50 1 - - -

Moderate 9,926 (86) 1.14 (0.80–1.61) 0.473 1.14 (0.80–1.61) 0.476

Severe 1,697 (23) 1.94 (1.15–3.25) 0.012 2.04 (1.21–3.44) 0.008

Unknown 7,589 (84) 1.08 (0.55–2.13) 0.827 - -

Gametocytes presence

No (reference) 19,561 (168) 3.20 1 - - -

Yes 2,038 (17) 1.10 (0.63–1.91) 0.747 - -

Febrile on presentation (temperature >37.5 °C)

No (reference) 9,874 (46) 2.27 1 - - -

Yes 17,678 (207) 1.68 (1.19–2.38) 0.003 1.50 (1.06–2.13) 0.022

Gender

Female (reference) 13,439 (106) 2.56 1 - - -

Male 14,511 (142) 1.22 (0.94–1.58) 0.134 - -

Age category

≥12 years (reference) 4,639 (36) 2.55 1 - - -

<1 year 2,027 (20) 1.51 (0.75–3.03) 0.247 1.25 (0.62–2.55) 0.530

1 to <5 years 16,060 (130) 1.23 (0.72–2.10) 0.453 1.09 (0.64–1.87) 0.753

5 to <12 years 5,818 (66) 1.74 (1.09–2.76) 0.019 1.56 (0.98–2.48) 0.061

Transmission settings

High (reference) 10,377 (66) 2.38 1 - - -

Low/moderate 18,203 (187) 2.34 (1.14–4.80) 0.021 2.71 (1.38–5.36) 0.004

Treatmente

DP (reference) 4,434 (34) 2.01 1 - - -

AL 13,004 (76) 0.93 (0.57–1.51) 0.765 0.93 (0.57–1.52) 0.774

ASAQ-FDC 4,999 (27) 0.70 (0.38–1.31) 0.269 0.67 (0.36–1.25) 0.206

ASAQ-coblistered NFDC 1,851 (44) 2.23 (0.69–7.22) 0.183 2.87 (0.89–9.27) 0.078

ASAQ-loose NFDC 4,292 (72) 2.27 (1.12–4.60) 0.023 2.27 (1.14–4.51) 0.020
aN = number of patients with non-missing data; n = number of patients with positive blood smear on day 3; bvariance of the random effects for the respective
univariable analyses; cN = 27,520 for the final multivariable model with 252 cases of positive parasitaemia. Likelihood ratio test for random effect (P <0.001).
Variance of random effect = 1.72. Proportion of total variance contributed by the site-level variance component (ρ) = 0.35. Coefficient (standard error) of intercept = −9.07
(0.7084). The coefficient of variation in parameter estimates was calculated by excluding one study site at a time and expressed as relative standard deviation (RSD).
The RSD is shown in Additional file 4: Table S9; dmultiple imputation was performed on missing anaemia status using ordinal logistic regression with age, gender and
parasitaemia as covariates. The estimates derived using 100 imputations for moderate and severe anaemia are: AOR = 1.11 (95 % CI: 0.80–1.54), P = 0.523 and AOR = 1.62
(95 % CI: 0.99–2.66), P = 0.057, respectively; efor ASAQ-loose NFDC: AOR = 2.27 (95 % CI: 1.14–4.51), P = 0.020 compared to DP and AOR = 3.36 (95 % CI: 1.61–6.98),
P = 0.001 compared to ASAQ-FDC. For ASAQ-coblistered NFDC, AOR = 4.18 (95 % CI: 1.28–13.68), P = 0.017 compared to ASAQ-FDC. AL, artemether-lumefantrine; AS-AQ,
artesunate-amodiaquine; ASAQ-coblistered NFDC, non-fixed dose combination in a co-blister formulation; ASAQ-FDC, fixed dose combination; ASAQ-loose NFDC,
non-fixed dose combination in a loose formulation; DP, dihydroartemisinin-piperaquine
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After adjusting for these parasite and host factors, the
risks of persistent parasitaemia on days 1 and 2 were
higher in patients treated with AL compared to those
treated with DP and ASAQ-FDC, but this difference was
no longer apparent by day 3. Artemether is a lipophilic
compound and is more slowly absorbed than artesunate
or dihydroartemisinin, and this difference may explain
the slower action of AL [44, 45]. Moreover, artemether
is delivered in a lower dose which is split into twice daily
target dosing of 1.7 mg/kg compared with the once daily
dose of 4 mg/kg dose of dihydroartemisinin in DP and
4 mg/kg dose of artesunate in AS-AQ [46, 47]. This dose
effect was apparent on day 1 but not on days 2 and 3, with
every unit increase in artemether dose reducing the risk of
day 1 positivity by 5 %, a result observed previously in a
large pooled analysis [48]. Similarly, patients treated with



Fig. 4 Maximum day 3 parasite positivity rate (PPR) possible for each of the treatment regimens for a given study sample size. Worst-case estimates
were used for the analysis, that is, an upper limit of 95 % CI was assumed to be the true underlying parasite positivity rate on day 3, which was 0.82 %,
0.94 % and 1.42 % for AL, ASAQ-FDC and DP, respectively. The horizontal solid line represents 10 % day 3 WHO threshold and the dotted horizontal line
represents 5 % day 3 PPR. The saw-tooth spikes are the result of rounding to the nearest whole number. ACT, artemisinin-based combination therapy;
AL, artemether-lumefantrine; ASAQ-FDC, fixed dose combination; DP, dihydroartemisinin-piperaquine; PPR, parasite positivity rate

Table 6 Upper limit of parasite positivity rates (PPRs) which could be observed on day 3

Variable AL ASAQ-FDC DP

Day 3 PPR
(95 % CI)

Maximum
predicted riska

Day 3 PPR
(95 % CI)

Maximum
predicted riska

Day 3 PPR
(95 % CI)

Maximum
predicted riska

Age category

<1 year 0.79 (0.00–1.67) 6.50 0.67 (0.00–2.00) 7.69 0.68 (0.00–1.45) 6.00

1 to <5 years 0.54 (0.28–0.79) 4.30 0.70 (0.19–1.21) 6.00 0.83 (0.00–1.65) 6.35

5 to <12 years 0.69 (0.26–1.11) 6.00 0.32 (0.00–0.76) 4.11 0.70 (0.07–1.34) 6.00

≥12 years 0.49 (0.11–0.88) 4.76 0.13 (0.00–0.40) 4.00 0.48 (0.00–1.06) 5.66

Transmission

High 0.20 (0.03–0.37) 4.00 0.27 (0.06–0.48) 4.00 0.05 (0.00–0.15) 2.00

Low/moderate 0.79 (0.43–1.15) 6.00 0.65 (0.09–1.22) 6.00 1.28 (0.27–2.29) 8.00

Parasitaemia (x 1,000 parasites/μl)

<10 0.39 (0.18–0.60) 4.00 0.43 (0.00–0.91) 4.92 0.87 (0.00–1.81) 7.02

10 to <50 0.58 (0.30–0.86) 4.62 0.35 (0.00–0.72) 4.00 0.54 (0.01–1.08) 5.77

50 to <100 0.81 (0.32–1.30) 6.00 1.01 (0.20–1.83) 7.02 0.86 (0.00–1.85) 7.14

≥100 1.04 (0.35–1.74) 6.67 1.12 (0.00–2.25) 8.00 1.15 (0.13–2.17) 8.00

Study sample size

<50 1.02 (0.12–1.92) 10.34 0.78 (0.00–2.00) 10.71 0.00 (0.00–7.71) 20.68

50 to <100 0.72 (0.30–1.13) 6.00 0.55 (0.00–1.53) 6.00 0.25 (0.00–0.50) 4.00

100 to <200 0.90 (0.34–1.45) 4.62 0.88 (0.08–1.68) 5.00 1.43 (0.00–3.03) 7.01

≥200 0.25 (0.05–0.45) 1.75 0.18 (0.02–0.35) 1.50 0.70 (0.00–1.73) 4.00

Overall 0.58 (0.34–0.82) 4.41 0.54 (0.14–0.94) 5.08 0.77 (0.11–1.42) 6.00
aThe maximum predicted risk is the day 3 PPR which could be observed assuming the worst case day 3 PPR, that is, the upper limit of day 3 PPR 95 % CI. For calculating
the maximum predicted risk for age, transmission and parasitaemia, a minimum study sample size of 50 in a study was assumed. AL, artemether-lumefantrine;
ASAQ-FDC, fixed dose combination; DP, dihydroartemisinin-piperaquine; PPR, parasite positivity rate
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ASAQ-loose NFDC were at increased risk of slow clear-
ance on days 2 and 3 compared to those treated with
ASAQ-FDC (and DP) despite the target dose of artesunate
being the same (4 mg/kg/day) across all the formulations.
The differences in the mg/kg amodiaquine dosage be-
tween different formulations were found not to affect early
parasitological responses (data not shown). The elevated
risk observed with the NFDCs could be associated with
several factors including drug quality and tablet splitting
required for many children, which could potentially lead
to dosing inaccuracy or reduced compliance [49, 50].
The study period encompasses 1999 to 2012, covering

the period during the introduction of the large scale de-
ployment of ACTs across Africa. Overall, there were no
differences in the early parasitological response post-
ACT treatment in different sub-regions of SSA and
there was no evidence of decreased susceptibility to arte-
misinin in Africa over this time period. Nevertheless,
there were 22 sites where PPR on day 3 exceeded 3 %
(the threshold below which artemisinin resistance in un-
likely), with two sites exceeding day 3 PPR of 10 % (the
WHO threshold for suspected partial resistance). In
Miandrivazo (Madagascar), the reported PPR was 10.3 %
in 2006 [51] but less than 1 % in a subsequent trial in
the same region (Tsiroanomandidy) [52]. In Yaoundé, a
PPR of 30 % was reported in 2005 [53]; however, in a
study conducted at the same site 7 years later [54], the
PPR was 2.9 % (95 % CI: 3.7–27.2, 2/68) suggesting that
the high PPR observed in our dataset could have been
an artefact. High day 3 PPR does not necessarily relate
to a change in parasite susceptibility to artemisinin;
other factors, such as declining immunity [55], poor
drug quality [56] and variable quality of microscopy [57]
can play major roles. Studies with more intense blood
sampling are needed in areas of delayed parasite clear-
ance [10, 12]. These will require better definition of the
parasite clearance, complementary in vitro testing [58]
and molecular analysis [13] to rule out any change in
artemisinin susceptibility.
Our analysis has a number of limitations. First, the lit-

erature search was limited to prospective clinical trials
indexed in PubMed and some relevant studies may have
been overlooked. However, we actively looked for rele-
vant trials (unpublished) and the research groups con-
tacted represent the majority of the malaria community,
which is relatively small and highly interactive. It is
highly unlikely that any studies were missed. The assess-
ment of publication bias (PB) showed that effect sizes
were symmetrical suggesting low risk of bias in studies
included. Of the 140 trials identified, individual patient
data were available for inclusion for 71 of the published
studies (50.7 %). To address this potential bias, included
studies were compared with the published studies that
were not available. There were no apparent differences
in patient population and/or outcomes between the
studies included and those where individual patient data
were not available. Reassuringly, the results from two-
stage meta-analyses, which combined studies with and
without individual patient data, were also similar to the
results obtained from studies where only individual pa-
tient data were available, suggesting that systematic attri-
tion bias was unlikely. A second issue is that, although
the days of follow-up were recorded in the studies, the
actual time of blood collection was not. Daily samples
were taken over a range of times and the interval be-
tween days is likely to have varied significantly from the
desired 24-, 48- or 72-hour timelines. Third, the data
used rely on quantitative microscopy and quality control
on microscopy procedures were reported in only 60 % of
the studies. Accurate recording of the time of sampling,
harmonizing microscopy procedures and appropriate
quality control procedures could greatly improve the
precision of the parasite clearance time [11]. To facilitate
this process, a new microscopy procedure has been devel-
oped recently to improve comparability of results between
groups [59]. Finally, no data on drug levels were available
to assess whether patients achieved therapeutic blood
concentrations. However, absorption of artemisinin deri-
vatives in uncomplicated malaria is usually good and in
the majority (89 %) of studies, drug administration was
observed fully or partially by the clinical team.
This large dataset provided a unique opportunity to

identify a threshold for day 3 parasite positivity based
upon African studies, below which artemisinin resistance
is highly unlikely. The upper limit of the 95 % CI for day 3
PPR, indicative of the worst-case scenario, defines max-
imum PPR which could be observed reliably in a clinical
trial. This threshold was vulnerable to the initial parasit-
aemia and study sample size. For example, in studies with
50 or less patients, the confidence interval around any
threshold value was wide, hence its predictive utility under
those circumstances is limited. Our results demonstrate
that the 95th percentile of the observed day 3 PPR in Africa
was 5.3 %, substantially lower than the currently recom-
mended threshold of 10 % for suspected partial artemisinin
resistance. These findings strongly suggest that a ‘one size
fits all’ threshold of 10 % should be used with caution. A
simple sensitive parameter indicative of potential artemisi-
nin resistance would be an extremely useful surveillance
tool. Our analysis suggests that although the widely pro-
posed 10 % threshold would be specific, it lacks sensitivity
in detecting an early stage changes of delayed parasite
clearance. Moreover, a previous WWARN meta-analysis of
published literature showed that the PPR on day 3 over the
same period (1999–2012) was much lower in Africa (1 %)
compared to Asia (3.8 %) [26]. A threshold of 5 % provides
greater sensitivity and an early warning signal in SSA. Mod-
elling will help to refine this threshold further [21, 60].
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Conclusion
In conclusion, this pooled analysis provides critical base-
line information regarding early parasitological response
post-treatment with ACTs in SSA. The assessment of
the host, parasite and drug determinants which influence
the early parasitological response can provide evidence-
based guidance for monitoring the early signs of artemi-
sinin resistance and effective case management that will
be critical in optimizing malaria control and contain-
ment efforts.
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