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ABSTRACT

Modulation of the in vitro mechanical and chemical environment

for the optimization of tissue-engineered articular cartilage

Brendan L. Roach

Articular cartilage is the connective tissue lining the ends of long bones, providing a dynamic

surface that bears load while providing a smooth surface for articulation. When damaged, however,

this tissue exhibits a poor capacity for repair, lacking the lymphatics and vasculature necessary

for remodeling. Osteoarthritis (OA), a growing health and economic burden, is the most common

disease afflicting the knee joint. Impacting nearly thirty million Americans and responsible for

approximately $90 billion in total annual costs, this disease is characterized by a progressive loss of

cartilage accompanied by joint pain and dysfunction. Moreover, while generally considered to be a

disease of the elderly (65 years and up), evidence suggests the disease may be traced to joint injuries

in young, active individuals, of whom nearly 50% will develop signs of OA within 20 years of the

injury. For these reasons, significant research efforts are directed at developing tissue-engineered

cartilage as a cell-based approach to articular cartilage repair. Clinical success, however, will depend

on the ability of tissue-engineered cartilage to survive and thrive in a milieu of harsh mechanical

and chemical agents.

To this end, previous work in our laboratory has focused on growing tissues appropriate for

repair of focal defects and entire articular surfaces, thereby investigating the role of mechanical and

chemical stimuli in tissue development. While we have had success at producing replacement tissues

with certain qualities appropriate for clinical function, engineered cartilage capable of withstanding

the full range of insults in vivo has yet to be developed. For this reason, and in an effort to

address this shortcoming, the work described in this dissertation aims to (1) further characterize

and (2) optimize the response of tissue-engineered cartilage to physical loading and the concomitant

chemical insult found in the injured or diseased diarthrodial joint, as well as (3) provide a clinically

relevant strategy for joint resurfacing. Together, this holistic approach maximizes the chances for



in vivo success of tissue-engineered cartilage.

Regular joint movement and dynamic loads are important for the maintenance of healthy artic-

ular cartilage. Extensive work has been done demonstrating the impact of mechanical load on the

composition of the extracellular matrix and the biosynthetic activity of resident chondrocytes in

explant cultures as well as in tissue-engineered cartilage. In further characterizing the response of

tissue-engineered cartilage to mechanical load, the work in this dissertation demonstrated the im-

pact of displacement-controlled and load-controlled stimulation on the mechanical and biochemical

properties of engineered cartilage. Additionally, these studies captured tension-compression nonlin-

earity in tissue-engineered cartilage, highlighting the role of the proteoglycan-collagen network in

the ability to withstand dynamic loads in vivo, and optimized a commercial bioreactor for use with

engineered cartilage.

The deleterious chemical environment of the diseased joint is also well investigated. It is therefore

essential to consider the impact of pro-inflammatory cytokines on the mechanical and biochemical

development of tissue-engineered cartilage, as chemical injury is known to promote degradation

of extracellular matrix constituents and ultimately failure of the tissue. Combining expertise in

interleukin-1α, dexamethasone, and drug delivery systems, a dexamethasone drug delivery system

was developed and demonstrated to provide chondroprotection for tissue-engineered cartilage in

the presence of supraphysiologic doses of pro-inflammatory cytokines. These results highlight the

clinical relevance of this approach and indicate potential success as a therapeutic strategy.

Clinical success, however, will not only be determined by the mechanical and biochemical prop-

erties of tissue-engineered cartilage. For engineered cartilage to bear loads in vivo, it is necessary to

match the natural topology of the articular surface, recapitulating normal contact geometries and

load distribution across the joint. To ensure success, a method for fabricating a bilayered engineered

construct with biofidelic cartilage and subchondral bone curvatures was developed. This approach

aims to create a cell-based cartilage replacement that restores joint congruencies, normalizes load

distributions across the joint, and serves as a potential platform for the repair of both focal defects

and full joint surfaces.

The research described in this dissertation more fully characterizes the benefits of mechanical

stimulation, prescribes a method for chondroprotection in vivo, and provides a strategy for creating

a cartilage replacement that perfectly matches the native architecture of the knee, thus laying the



groundwork for clinical success of tissue-engineered cartilage.
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Chapter 1 Introduction

Articular cartilage provides a dynamic surface that bears load while providing a smooth surface for

joint articulation. When damaged, however, this tissue exhibits a poor capacity for repair, lacking

the lymphatics, cellularity, and vasculature necessary for remodeling. With time, therefore, the

progressive loss of articular cartilage leads to joint paint, dysfunction, and disruption in activities

of daily living. Significant research efforts are directed at developing tissue-engineered cartilage

as a cell-based approach to articular cartilage repair. Clinical success, however, will depend on

the ability of tissue-engineered cartilage to survive and thrive in a milieu of harsh mechanical and

chemical agents. In an effort to address this environment, the work presented in this dissertation

aims to (1) further characterize and (2) optimize the response of tissue-engineered cartilage to

physical loading and chemical insult, as well as (3) provide a clinically relevant strategy for joint

resurfacing. Together, this holistic approach looks to maximize the chances for in vivo success of

tissue-engineered cartilage.

Guiding this work, the following global hypothesis and specific aims are presented, accompanied

by an assertion of the significance of this work. An introduction to cartilage biology and repair is

followed by a brief review of the literature pertinent to the specific aims outlined.

1.1 Global hypothesis and specific aims

The research presented in this dissertation is comprised of three interdependent aims that work

toward the central goal of facilitating successful replacement of damaged articular cartilage (Figure

1.1).

In developing a biofidelic tissue prepared for the mechanical and chemical environment in vivo,

this work is guided by the following global hypothesis:
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Figure 1.1: Schematic depicting the current paradigm for cartilage tissue engineering, including a
canine preclinical model of OA.

Global Hypothesis: A combination of 1) optimized dynamic compressive loading and

the 2) incorporation of polymer microspheres that release dexamethasone from

within cell-seeded hydrogel constructs will prepare and protect constructs from the

deleterious effects of mechanical and chemical exposure in the diarthrodial joint,

allowing for improved cartilage repair in an unwelcoming environment.

The following specific aims outline the work necessary to investigate this global hypothesis.
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Specific Aim 1A) Using a custom-designed microscope based device, assess the tensile

and compressive properties of tissue engineered cartilage following culture under

free-swelling and dynamic loading (displacement-controlled) conditions. Evaluate the

relationships between biochemical content, culture conditions, and mechanical

properties.

Tension compression nonlinearity (TCN) is a phenomenon that describes articular cartilage’s com-

plex response to tensile and compressive forces. A higher stiffness in tension versus compression

allows cartilage to resist radial expansion under axial compressive loading, resulting in increased

fluid pressurization and dynamic stiffness (Huang et al. , 2001; Soltz & Ateshian, 2000; Soulhat

et al. , 1999). While this phenomenon has been well characterized in native cartilage explants, little

is known as to the existence and characterization of TCN in engineered cartilage. These studies

aim to complement native explant studies (Chahine et al. , 2004) and provide insight to the im-

pact of dynamic compressive loading on TCN in engineered cartilage. Use of an osmotic swelling

technique in combination with a microscope-based unconfined compression device allows for TCN

characterization in a single sample (Kelly et al. , 2009; Chahine et al. , 2004; Wang et al. , 2001). By

elucidating the impact of displacement-controlled dynamic loading on TCN in engineered cartilage,

this work aims to quantify osmotic tissue swelling, with potential implications for the diagnosis of

cartilage matrix damage.

Specific Aim 1B) Apply physiologic load-controlled protocols to tissue engineered

cartilage using a mechanoactive tissue engineering (MATE) bioreactor. Optimize

loading protocols for engineered tissues.

Displacement-controlled dynamic loading of tissue-engineered cartilage has traditionally employed

systems with single actuators that allows for simultaneous and interdependent stimulation of batch

tissues (Mauck et al. , 2003; Aufderheide & Athanasiou, 2006; Cassino et al. , 2007). While this

allows for physiologic loading (Park et al. , 2004), high testing volume, and has proven to aid in

the development of tissues with native mechanical properties (Lima et al. , 2007), this approach

ignores the reality that not all tissues are of equal thickness or stage of development (Davisson

et al. , 2002; Park et al. , 2004). The resulting divergences in strain across variable samples
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negatively impacts tissue development (Butler et al. , 2009). Single station, load-controlled systems

have been used in the past to investigate native explant cartilage (Park et al. , 2004), however,

the application of independent, load-controlled deformational loading to engineered tissues is, as

of yet, unexplored. By implementing the MATE bioreactor, a commercially available device, this

work looks to investigate the impact of physiologic, load-controlled compressive loading on the

development of tissue-engineered cartilage, and use these results to inform the optimization of

future loading protocols.

Specific Aim 2A) Perform in vitro experiments to characterize DEX release profile

from polymer microspheres comprised of FDA-approved poly(lactic-co-glycolic) acid

(PLGA). Compare the growth of chondrocyte-seeded agarose constructs (with media

supplementation of DEX) with the same tissues impregnated with DEX-loaded

microspheres (without exogenous DEX). Evaluate mechanical and biochemical

properties.

Specific Aim 2B) Perform parallel studies but with culture medium further

supplemented with interleukin-1 (IL-1) following 4 weeks of construct development

and analyze culture medium.

Inflammatory cytokines, elevated with trauma or OA (Irie et al. , 2003; Tsuchida et al. , 2014),

may contribute to inferior outcomes for cartilage repair (Vanlauwe et al. , 2011; Filardo et al. ,

2013; Saris et al. , 2003; Ozsoy et al. , 2009) as well as hamper cartilage regeneration (Yang et al.

, 2006; Beekhuizen et al. , 2013; Rodrigo et al. , 1995). To this end, preliminary data suggests

that early inhibition of pro-inflammatory cytokines may improve clinical outcomes (Morisset et al.

, 2007; Elsaid et al. , 2015; Olson et al. , 2014). Dexamethasone, a critical element for cultivating

engineered cartilage with native properties (Florine et al. , 2012), is demonstrated in vitro to prevent

cartilage tissue degradation in the presence of pro-inflammatory cytokines (Lu et al. , 2011) and

is used in vivo to suppress inflammation and provide joint pain relief. Used for joint pain relief,

however, dexamethasone, and glucocorticoids more broadly, are used at high concentrations, thus

hampering the immune system systemically and altering the function of disease-fighting leukoctyes.

As an alternative, recent work has exploited the use poly(lactic-co-glycolic acid) (PLGA) systems
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for the delivery of anti-inflammatory drugs, and glucocorticoids, specifically (Galeska et al. , 2005;

Dang et al. , 2011; Tang et al. , 2010; Bae et al. , 2010; Hickey et al. , 2002b; Hickey et al. ,

2002a; Rubin et al. , 2009; Kelmendi-Doko et al. , 2014). In fact, previous work suggests that the

continuous, low dose administration of glucocorticoids provides enhanced inhibition of inflammation

in OA. In an effort to exploit the anabolic and chondroprotective properties of dexamethasone, this

work focuses on (A) the fabrication of a PLGA drug delivery system for dexamethasone and its

application to tissue-engineered to cartilage to support growth and (B) protect the tissue from the

deleterious effects of pro-inflammatory cytokines, thus preparing the engineered tissue for the harsh

environment in vivo.

Specific Aim 3: Develop methodology to digitize the contours of the distal femur,

including both the articular surface and the subchondral bone. Using digital model,

reconstruct and prototype casting device that allows for the production of large

cartilage surface areas while preserving joint congruities. Finally, demonstrate the

ability to use chondrocyte-laden agarose to appropriately fill the topographies of the

casting device.

For patients with large cartilage defects (>10 cm2), fresh osteochondral allografts are often the only

suitable treatment (Bugbee, 2002). The technical demands associated with restoring congruency of

the articular surface pose a significant challenge to the success of this surgery. A seamless transition

between graft and host tissue requires matching of the donor joint size to provide grafts with similar

anatomical surface contours. The limited supply of suitable cartilage grafts to meet this clinical

demand has prompted recent attempts at developing cell-based therapies for cartilage repair (Lima

et al. , 2004; Vunjak-Novakovic et al. , 1999; Buckley et al. , 2012; Pazzano et al. , 2000). Unlike

previous attempts at developing cell-based therapies of scale, it may be more clinically relevant to

fabricate anatomically defined osteochondral constructs for large defects. Motivated by this clinical

need, the work introduced here aims to create biofidelic engineered tissues to restore proper load

distribution and allow for functional cartilage repair.

The in vitro studies outlined above will provide the groundwork for future in vivo studies in

a preclinical model of OA to assess the efficacy of our functional tissue engineering strategy for
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articular cartilage repair.
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1.2 Significance

Articular cartilage provides a surface that bears dynamic loads and allows for smooth joint articula-

tion. Following injury, however, cartilage’s inability to assess, degrade, and rebuild the extracellular

matrix poses a major challenge to cartilage health long-term. Osteoarthritis, the most common

disease afflicting synovial joints, is characterized by focal and progressive loss of cartilage and is

normally defined by pain, swelling, and stiffness in the joints. An estimated 27 million Americans

age 25 and older suffer from OA. This number is projected to rise to more than 67 million by 2030

(Hootman & Helmick, 2006) with total costs estimated at nearly $90B a year (Leigh et al. , 2001).

Further, 25 million of these people, or 9.3% of US adults, are projected to experience activity lim-

itations as a result of OA (Leigh et al. , 2001). These trends are driven in part by an increasing

number of joint injuries in young patients (e.g. tear of the ACL) (Soprano, 2005), who have a 50%

chance of developing radiographic indications of OA within two decades of the injury (von Porat,

2004; Lohmander et al. , 2007; Englund et al. , 2003). In these patients, reconstruction of the

knee following injury often focuses only on joint stabilization, failing to address the concomitant

cartilage damage (e.g. release of type 2 collagen fragments (Lohmander et al. , 2003) that plays a

critical role in the development of OA (von Porat, 2004; Lohmander et al. , 2003; Lohmander et al.

, 2007). Patients that develop cartilage lesions larger than 2 cm2may require therapeutic interven-

tion, but few widely-applicable and successful approaches are available that provide the inherent

benefits (mechanical function and articular contour) afforded by native tissue (Hangody & Füles,

2003; Knutsen et al. , 2004; Moseley et al. , 2010). To meet this need, extensive research has been

conducted to develop a cell-based therapy for cartilage repair, often including the use of cultured

cells inside a three-dimensional scaffold (Lima et al. , 2004; Mauck et al. , 2002; Mauck et al. ,

2000a; Pazzano et al. , 2000; Freed et al. , 1993; Vunjak-Novakovic et al. , 1996; Obradovic et al. ,

1999).

In an effort to prepare these scaffolds for the mechanical loads experienced in the knee, work

involving mechanical stimulation has been done to generate engineered tissues with functional me-

chanical properties (i.e., equilibrium moduli near native values) (Mauck et al. , 2000a; Mauck et al.

, 2003; Lima et al. , 2007; Huang et al. , 2009; Huang et al. , 2010). Unlike native explant cartilage

(Wang et al. , 2002b; Chahine et al. , 2004), however, a comprehensive understanding of how these
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engineered tissues respond to mechanical stimulation in vitro, and how that may impact function

in vivo, has yet to be elucidated. Part I of this dissertation investigates the complex compressive

and tensile forces at play within engineered cartilage and in response to mechanical stimulation

(Chapter 2). Chapter 3 explores, for the first time, the application of load-controlled, independent

’batch’ loading for tissue-engineered cartilage, making possible extended cultivation and physiologic

stimulation of tissue-engineered cartilage meant for use in the clinic.

The studies described in Part II of this dissertation aim to develop strategies for fostering

growth and providing chondroprotection for tissue-engineered cartilage. The harsh inflammatory

environment of the knee presents articular cartilage, and cartilage replacements, with a milieu

of pro-inflammatory cytokines and degradative enzymes. Clinical strategies, as well as those in

vitro, have utilized glucocorticoids, and in particular dexamethasone, to quell these inflammatory

agents. Long-term success of tissue-engineered cartilage in patients, however, mandates a mini-

malist strategy that maintains the beneficial aspects of steroid use while limiting the negative side

effects. Chapter 3 details the development of a drug delivery system that aims to provide prolonged,

low-dose concentrations of dexamethasone. These microparticles are then employed in Chapter 4,

investigating the usefulness of this approach in cultivating mechanically and biochemically sufficient

engineered tissues capable of defending themselves against physiologic levels of pro-inflammatory

cytokine.

Part III of this dissertation describes efforts to ensure effective translation of tissue-engineered

cartilage strategies to the clinic. While cartilage allografts, the gold standard for repair of large focal

defects, are in short supply, the importance of contour matching for positive clinical outcomes of

cartilage replacements remains paramount. Using a generalizable approach, and widely-applicable

technologies, Chapter 5 introduces a strategy for modeling, digitizing, and recreating biofidelic

tissue-engineered osteochondral constructs.

Together, these results recommend the synergistic combination of dynamic loading,

dexamethasone-loaded microspheres, and biofidelic curvatures to produce clinically-sized osteochon-

dral constructs for the successful treatment or prevention of OA.
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1.3 Background

1.3.1 Articular cartilage biology, structure, and function

Articular cartilage is the dense, white connective tissue found at the ends of long bones and, in

particular, in diarthrodial joints. Comprised of chondrocytes, water, and a matrix macromolecular

framework, cartilage derives its form and mechanical properties from its matrix. This extracellular

matrix (ECM) consists of two components: a mobile interstitial fluid phase (mostly water) and a

solid matrix (consisting of primarily type II collagen fibrils and proteoglycans) (Buckwalter, 2004a).

Proteoglycans, occupying 25-35% of the dry weight of cartilage, are lined with negatively-charged

(SO−
3 and COO−) glycosaminoglycan (GAG) side chains that create a high fixed-charge density in

the tissue (Mow et al. , 1984; Mow et al. , 1998; Mow & Lai, 1990). This ion gradient attracts

mobile cations and subsequently, interstitial water, into the tissue in an effort to maintain elec-

troneutrality. Collagen, comprising ∼60% of the dry weight of cartilage, provides a dense fibrillar

network that resist expansile forces created within the tissue (Setton et al. , 1998). The result-

ing Donnan osmotic pressure from GAG concentration swells the tissue against this constraining

fibrillar collagen framework, thus imparting cartilage with its dynamic mechanical properties. To

maintain this complex extracellular structure, chondrocytes, which make up only 1% of the tissue

volume in mature adults (Stockwell, 1967), actively synthesize and assemble appropriate types and

amounts of macromolecules into this highly ordered framework.

The complexity of cartilage is further evident from the changes in tissue composition and or-

ganizational structure observable through the depth of the tissue (Guilak et al. , 1995). From a

sagittal cross-section, articular cartilage is classified into blurred zones: the superficial (SZ), middle

(MZ), and deep (DZ) zones (Sophia Fox et al. , 2009; Buckwalter, 2004a). The SZ is the thinnest

zone of articular cartilage. Chondrocytes in this zone synthesize a matrix high in collagen and low

in proteoglycans, aligning the collagen fibrils in a dense network parallel to the joint surface. The

MZ contains the highest concentration of proteoglycan in the tissue (Buckwalter, 2004a) and large-

diameter collagen fibrils, aligned obliquely to the joint surface (Sophia Fox et al. , 2009). In the

deep regions of the MZ, and transitioning into the DZ, collagen fibrils begin to orient themselves

perpendicularly to the joint surface and chondrocytes begin to become hypertrophic as collagen

fibrils anchor into the subchondral bone and the tissue becomes calcified.

9



The depth-dependent composition and organization of cartilage define its unique mechanical

characteristics. The interplay of collagen and GAG in the SZ and DZ gives rise to cartilage’s

unique non-linear transition from tension to compression (Chahine et al. , 2004), where the tensile

modulus of the tissue (E+Y =3-6 MPa, (Kempson et al. , 1968; Williamson et al. , 2003b; Williamson

et al. , 2003a)) is over an order of magnitude higher than the compressive modulus (E−Y =0.1-1

MPa, (Wang et al. , 2002a; Wang et al. , 2002b; Park et al. , 2004)). This relationship is critical

to the proper function of articular cartilage as a dynamic load bearing tissue. A higher stiffness

in tension versus compression allows cartilage to resist radial expansion under axial compressive

loading, resulting in increased fluid pressurization and dynamic stiffness (Huang et al. , 2001; Soltz

& Ateshian, 2000; Soulhat et al. , 1999). This plays out following instantaneous loading, when fluid

cannot exude rapidly from within the dense ECM, causing initial deformation to be nearly isochoric

as fluid pressures rise considerably to resist the compressive load. In order to distribute and absorb

loads in a manner similar to native cartilage, engineered cartilage should exhibit similar properties

of tension-compression nonlinearity.

1.3.2 Articular cartilage injury and repair

OA, the most prevalent form of joint disease, is characterized by pain and dysfunction. While the

etiology of the disease is largely unknown, certain events are known to expedite its development.

Traumatic injury, via ligament or meniscal tear, leads to early-onset osteoarthritis in nearly 50% of

injured patients (von Porat, 2004; Lohmander et al. , 2007; Englund et al. , 2003). This is due in

part to repair strategies that focus largely on joint stabilization in an attempt to restore normal joint

kinematics, ignoring concomitant, and potentially more egregious, injuries to the chondral surface

(e.g., release of type 2 collagen fragments (Lohmander et al. , 2003)). In fact, the disruption of the

macromolecular framework of the matrix, manifest in the appearance of fibrillation, is often the first

stage of disease (Eyre & Wu, 2005; Farquhar et al. , 1996; Buckwalter & Brown, 2004; Buckwalter,

2004b). This leads to a decrease in proteoglycan concentration and may allow further swelling of the

tissue. Importantly, disruption of the matrix leads to an increase in permeability, and thus water

content, decreasing the stiffness of the matrix and the ability of the tissue to support loading. The

progressive softening of the matrix increases the vulnerability of the tissue to additional mechanical

damage with time (Bank et al. , 2000).
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Chondrocytes are quickly able to detect this macromolecular event through alterations in its

extracellular environment. In an attempt to repair the injured tissue, chondrocytes begin producing

a series of anabolic and catabolic factors, including matrix constituents, in an effort to replace the

lost tissue (Martin & Buckwalter, 2000; Martin et al. , 2002; Buckwalter, 2004a; Buckwalter,

2004b). With continued mechanochemical insult, however, and with a limited capacity for repair,

the balance between anabolic (TGF-β, IGF-1, TIMP-3) and catabolic factors (IL-1, TNF-α, IL-6,

IL-17, ADAMTS-4,5, MMP-13 (Goldring & Goldring, 2004; Mueller & Tuan, 2011)) begins to shift

in favor of degradation. For this reason, any cell-based therapy for cartilage repair must consider

the impact of pro-inflammatory cytokines on the health of the tissue.

The combined effects of abnormal kinematics and a harsh chemical environment often leads

to progressive loss of articular cartilage and a diminished anabolic and proliferative response in

chondrocytes (Mankin & LIPPIELLO, 1970; Mankin, 1974; Mankin et al. , 1981). With time, focal

areas of damage grow until the degradation is significant enough that the joint space has collapsed

and bone-on-bone articulation causes disabling pain and discomfort. Current strategies for repair,

however, are dependent on the joint involved, the size, location and severity of the defect.

For focal articular cartilage lesions (<2 cm2), minimally invasive reconstructive surgical ap-

proaches including microfracture (Steadman et al. , 2001), autograft transfer via periosteal grafts

(O’Driscoll et al. , 2001), osteochondral autograft transfer system or mosaicplasty (Hangody et al.

, 1997), and autologous chondrocyte implantation (Brittberg et al. , 1994) are currently utilized.

While addressing symptoms of pain and providing improvements in function, these strategies have

not shown long-term durability, are often limited by tissue availability, and in the case of osteochon-

dral grafts, can result in suboptimal tissue properties (Ahmad et al. , 2001) and significant donor

site morbidity (Lee et al. , 2000a; Lee et al. , 2000b). For larger lesions, greater than 10 cm2, when

articular cartilage loss has distorted the morphology of the condyle, fresh osteochondral allografts

are ideal (Bugbee, 2002). The technical demands associated with this procedure (i.e., attaining a

flush fit of the graft with the surrounding host cartilage tissue), however, and the limited supply

of suitable grafts, necessitate the development of alternative strategies for repair, including tissue-

engineered constructs of cultured cells in three-dimensional scaffolds (Lima et al. , 2004; Mauck

et al. , 2000a; Pazzano et al. , 2000; Vunjak-Novakovic et al. , 1999). For engineered constructs

to functionally bear the loads experienced in vivo, these tissues must capture the natural topology
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of the articular surface to fully recapitulate normal contact geometry and load distribution profiles

across the joint (Hung et al. , 2003; Cooney & Chao, 1977; Ateshian et al. , 1992; Ateshian et al.

, 1995; Eberhardt et al. , 1990; Huberti & Hayes, 1984). While progress has been made, there is

currently no tissue-engineered product able to meet these design challenges, thus warranting further

investigation.

1.3.3 Functional tissue-engineered articular cartilage

Functional cartilage tissue engineering as a strategy for the repair of injured cartilage tissue relies

on the use of an appropriate scaffold, cell source, and exogenous factors to foster the growth, in

vitro, of a tissue replacement capable of withstanding the mechanochemical demands of the joint

environment (Butler et al. , 2000). In this effort, our laboratory and others have modified this

paradigm, incorporating aspects of modern tissue culture techniques and research trends in order

to produce engineered cartilage with functional properties. Central to this approach are three

important factors: 1) scaffold type, 2) cell source, and 3) exogenous (mechanical and/or chemical)

factors.

1.3.3.1 Scaffold choice While scaffolds are not required for laboratory-based cartilage forma-

tion (Huang et al. , 2016b; Huang et al. , 2016a; Elder et al. , 2011; Bhumiratana et al. , 2014),

hydrogels as a scaffold for cartilage growth offer baseline properties similar to those observed in

other soft hydrated tissues (i.e. high water content) (Smetana Jr & Vilím, 1991). Polymers that are

capable of forming hydrogels stem from natural (e.g., hyaluronic acid (Burdick & Prestwich, 2011),

alginate (Bonaventure et al. , 1994), chitosan, chondroitin sulfate, collagen, agarose, silk (Wang

et al. , 2005)) or synthetic (e.g. poly(lactide-co-glycolide), poly(ethylene glycol) (Hwang et al. ,

2010), poly(vinyl alcohol)) origins. Each hydrogel carries advantages and disadvantages and are

appropriate for applications depending on the intended outcome.

Agarose, a hydrophilic linear polysaccharide derived from red seaweed, has been used in applica-

tions such as gel electrophoresis (Hammarlund & Rising, 1953), 3D printing (Campos et al. , 2012),

and for the creation of complex curved shapes (Hung et al. , 2003). A low-melt polymer, agarose

(type VII) allows for the encapsulation of cells prior to scaffold solidification (Lima et al. , 2007;

Mauck et al. , 2000b), making it ideal for certain tissue engineering applications including the repair
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of neural tissues (Khaing & Schmidt, 2012), skin (Gaspar et al. , 2011), and for bone regeneration

(Pandit et al. , 2013). Much like native cartilage, agarose displays strain-dependent hydraulic per-

meability (Buschmann et al. , 1995), exhibits ’pre-stress’, and contains a network of pores that at

once allows for nutrient flux and retains newly synthesized extracellular proteins (Pernodet et al. ,

1997; Ng et al. , 2005).

For these reasons, agarose has been extensively investigated for use in cartilage tissue engineering.

Early work on chondrocyte response to mechanical load utilized agarose for long-term suspension

cultures (Benya, 1982; Buschmann et al. , 1995; Lee & Bader, 1995), as the uncharged material

promotes and maintains the chondrocyte phenotype. This work demonstrated the development of

the pericellular matrix and, therefore, the ability to transduce mechanical signals to the embedded

chondrocytes (Buschmann et al. , 1995). Recent efforts in our laboratory have utilized the above

properties to develop tissue-engineered cartilage with the most reproducible and robust growth to

date (Lima et al. , 2007; Roach et al. , 2016). Clinically, agarose is being used as a co-polymer with

alginate, in combination with autologous chondrocyte implantation, in a cartilage repair product

in Europe and has reported good outcomes at a 2-year follow up (Selmi et al. , 2007; Selmi et al. ,

2008).

1.3.3.2 Cell source Early studies in cartilage tissue engineering used primary chondrocytes

isolated directly from native cartilage (Buschmann et al. , 1995; Benya, 1982). These fully differ-

entiated chondrocytes ensure extracellular matrix synthesis similar to that of native tissue. The

number of cells required for cartilage tissue engineering, however, surpasses the level found in avail-

able adult or juvenile primary cartilage, thus requiring the expansion in vitro of cellular populations.

To prevent dedifferentiation (Francioli et al. , 2007; Benya, 1982) of these cells during expansion in

2D, a cocktail of growth factors can be added to the culture medium to promote and maintain the

chondrocyte phenotype. This is especially critical for adult cells that are inherently less biosynthet-

ically active (Adkisson et al. , 2010; Barbero et al. , 2003; Barbero et al. , 2004; Smeriglio et al. ,

2015) and therefore must be ’primed’ for reintroduction into a 3D scaffold (Sampat et al. , 2011)

before they can be used effectively at scale.

In addition to their use as primary isolates, a number of studies have expanded juvenile bovine

chondrocytes for use in cartilage tissue engineering applications. An ideal candidate for in vitro
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work, these chondrocytes are plentiful, robust and provide a reliable experimental model for explor-

ing other mechanical and chemical properties of engineered cartilage. Moreover, these chondrocytes

synthesize extracellular matrix with near native mechanical and biochemical properties (Lima et al.

, 2007). For the purposes of our work, these cells allow for stimulation via dynamic compressive

loading (Mauck et al. , 2000b; Buschmann et al. , 1999) as well as stimulation through anabolic

and catabolic (Byers et al. , 2008; Mauck et al. , 2003; Lima et al. , 2008a) chemical factors. While

suitable for in vitro studies, translatability of this approach relies on the use of clinically available

cell sources, namely adult chondrocyte or stem cell populations.

As an alternative to adult chondrocytes, adult stem cells are a widely investigated cell source

for cartilage tissue engineering (Tuan et al. , 2002; Guilak et al. , 2004; Caplan, 2007; He et al.

, 2009). Adult stem cells can be isolated from synovial tissue (Li et al. , 2011; Pei & He, 2012),

bone marrow aspirates (Pittenger et al. , 1999), adipose tissue (Estes et al. , 2006a; Estes et al. ,

2006b; Estes et al. , 2008), and other mesenchymal sources. A readily available cell source, adult

stem cells can easily be obtained and expanded in vitro. Via application of a growth factor cocktail

similar to that used for juvenile and adult chondrocytes, adult stem cells can be pushed toward

the chondrocyte lineage. While expressing chondrocyte markers, these differentiated cells produce

ECM that underperforms native properties.

In this dissertation, for the reasons discussed above, both juvenile bovine chondrocytes, adult

canine chondrocytes, and adult human chondrocytes were employed. Juvenile bovine chondrocytes

allow us to investigate the impact of chemical cues on the matrix composition of mechanically robust

engineered cartilage. The use of canine and human chondrocytes brings clinical application to the

fore, resulting in data that is directly translatable to what might be expected in vivo.

1.3.3.3 Exogenous cell culture conditions In addition to a chemically defined, serum free

culture medium (Bian et al. , 2009a; Byers et al. , 2008), joint loading is critical for normal main-

tenance of articular cartilage. This is evidenced by studies demonstrating the impact of mechanical

load on the composition of the extracellular matrix and the biosynthetic activity of resident chon-

drocytes (Gray et al. , 1988; Guilak et al. , 1994; Buschmann et al. , 1999; Torzilli et al. , 1997;

Lee & Bader, 1997) in cartilage explant cultures. Static compressive loads (0.001-3 MPa) have been

shown to cause a decrease in proteoglycan synthesis and increase in release from the ECM to the
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medium (Gray et al. , 1988), while cyclic loading conditions have been shown to stimulate synthesis

and incorporation of proteoglycans (Buschmann et al. , 1999; Ng et al. , 2009). Similarly, mechani-

cal loading protocols have been applied to tissue-engineered cartilage and have been found to elicit

biosynthetic and gene expression changes similar to articular cartilage explants (Buschmann et al.

, 1995; Davisson et al. , 2002; Lo et al. , 2001; Lee et al. , 2003).

Deformational loading of tissue-engineered cartilage has traditionally employed devices with

single actuators that stimulate tissues, in batches, simultaneously and interdependently (Mauck

et al. , 2000b; Aufderheide & Athanasiou, 2006; Cassino et al. , 2007). This allows for physiologic

loading (Park et al. , 2004), high testing volume, and has proven to aid in the development of tissues

with native mechanical properties (Lima et al. , 2007).

The alternative to displacement-controlled loading, an approach that may not result in uniform

strain (Butler et al. , 2009) across a sample population, force-controlled stimulation has been limited

by the technical necessity to independently load each sample (Waldman et al. , 2006). A recently

developed system allows for the continuous, independent, and force-controlled stimulation of up to

6 samples, making use of this approach practical for tissue-engineering studies (Lujan et al. , 2011).
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Physiologic Dynamic Loading
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Chapter 2 Tissue-engineered articular cartilage exhibits

tension-compression nonlinearity reminiscent of the

native cartilage

2.1 Abstract

The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-

seeded agarose constructs over different developmental stages through a novel method that combines

osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was

previously used to examine tension–compression nonlinearity in native cartilage. Further, this work

investigates the impact of dynamic loading (DL) on adult canine chondrocyte cartilage constructs

and its ability to better prepare engineered tissues for the harsh mechanical environment in vivo.

Engineered cartilage, cultured under free swelling (FS) or dynamically loaded conditions, was

tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equi-

librium modulus decreased with increasing salt concentration, indicating that increasing the bath

solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along

the tension–compression curve and revealing the intrinsic properties of the tissue. With this method,

we were able to measure the tensile (401 ± 83 kPa for FS and 678 ± 473 kPa for DL) and com-

pressive (161 ± 33 kPa for FS and 348 ± 203 kPa for DL) moduli of the same engineered cartilage

specimens. These moduli are comparable to values obtained from traditional methods, validating

this technique for measuring the tensile and compressive properties of hydrogel-based constructs.

This study shows that engineered cartilage exhibits tension–compression nonlinearity reminiscent

of the native tissue, and that dynamic deformational loading can yield significantly higher tensile

properties.

2.2 Introduction

Native articular cartilage exhibits low compressive Young’s modulus (E−Y ; 0.1–1 MPa) (Wang et al.

, 2002b; Wang et al. , 2002a; Park et al. , 2004) relative to its high tensile Young’s modulus (E+Y ; 3–6

MPa) (Kempson et al. , 1968; Williamson et al. , 2003a; Williamson et al. , 2003b), which regulates

the mechanical response of cartilage in unconfined compression (Cohen et al. , 1998; Soulhat et al. ,
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1999; Soltz & Ateshian, 2000; Huang et al. , 2001; Huang et al. , 2003; Chahine et al. , 2004) and in

contact configurations (Krishnan et al. , 2004). Previous studies indicate that a high E+Y combines

with interstitial fluid pressurization to produce an elevated dynamic compressive modulus (G*) at

least 6x greater than E−Y (Soltz & Ateshian, 2000; Park et al. , 2003; Park & Ateshian, 2006). This

mechanism arises because the high E+Y of cartilage restricts lateral expansion of the tissue upon

axial compression. Since the interstitial fluid cannot exude rapidly, the initial deformation must

be nearly isochoric, occurring only if the interstitial fluid pressurizes considerably to help resist the

compressive load. In order to distribute and absorb loads similar to native cartilage, engineered

cartilage should exhibit similar tension–compression nonlinearity (TCN). Previous studies have

demonstrated that chondrocyte seeded agarose constructs are capable of achieving native values for

E−Y and glycosaminoglycan (GAG) content (Kelly et al. , 2006; Bian et al. , 2009a; Bian et al.

, 2009b; Bian et al. , 2010a; Natoli et al. , 2009a; Natoli et al. , 2009b). While E−Y and E+Y

have been independently analyzed previously, the role of TCN in developing engineered cartilage

has not been addressed. Therefore, we adapted a method used previously to examine TCN in

native cartilage (Chahine et al. , 2004), which permits determination of E+Y and E−Y from a single

specimen. Using this technique, E+Y and E−Y were found to be similar to values obtained from

direct measurements using more conventional methods (Huang et al. , 2001; Huang et al. , 2003;

Huang et al. , 2005; Wang et al. , 2002a; Wang et al. , 2002b; Williamson et al. , 2003b; Williamson

et al. , 2003a; Park et al. , 2004). This technique uses osmotic swelling to place the sample in

an initial state of tension. Small compressive displacement increments are then applied and the

resultant loads are measured during the tissue’s transition from tensile to compressive strains.

The underlying principle behind this technique stems from the fact that hydrated tissues pos-

sessing a fixed charge density swell and stiffen under hypotonic loading. Conversely, these tissues

shrink and become softer under hypertonic loading via concomitant changes in Donnan osmotic

pressure (Maroudas, 1976; Lai et al. , 1991; Wang et al. , 2002a; Wang et al. , 2002b; Lima et al.

, 2007). Therefore, compressing swollen tissues allows for measurement of E+Y when the applied

compressive strain is smaller than the true tensile swelling strain of the solid matrix (Figure 6.5E).

As the strain increases, the measured response yields E−Y .

The objective of this study is to determine the TCN in engineered cartilage grown under free

swelling (FS) or dynamically loaded (DL) cultures, and we hypothesize that DL will improve both
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E+Y and E−Y of engineered cartilage compared to FS controls. Therefore, we acquired a spectrum of

engineered cartilage moduli from tension to compression using compressive loading in the presence

of osmotic swelling and report for the first time E+Y and E−Y of the same engineered cartilage

specimen.

2.3 Materials and methods

2.3.1 Sample preparation and tissue culturing

Articular cartilage was harvested from adult canine knee joints. Three to five joints were used and

cells were pooled from all joints, as previously described (Lima et al. , 2007; Bian et al. , 2010a).

Cartilage chunks were digested with 390 U/mL collagenase type VI (Sigma) for 8 h with slight

agitation. Isolated chondrocytes were passaged in DMEM containing 10% FBS, 10 ng/mL PDGF,

1 ng/mL TGF-β1, 5 ng/mL FGF-2 and 1% antibiotics/antimycotics. Chondrocytes were seeded in

2% (w/v) agarose at 30 x 106 cells/mL and cast between parallel plates.

Cylindrical constructs (∅ 4.0 2.3 mm) were cored and cultured in DMEM containing 50 μg/mL

L-proline, 100μg/mL sodium pyruvate, 1% ITS+ premix (BD Biosciences), 100 nM dexamethasone,

1% antibiotics/antimycotics, 50 μg/mL ascorbic acid, and 10 ng/mL TGF-β3 (R&D Systems). Con-

structs were maintained in FS culture for 14 days. After day 14, constructs were either cultured

under DL conditions or maintained under FS conditions until day 42. For DL, a sinusoidal defor-

mation with a magnitude of 10% peak-to-peak strain at a frequency of 1 Hz (5 days/week, 3 h/day

continuous) was applied (Figure 2.1), with an initial 2% tare strain.

2.3.2 Average mechanical properties

A custom unconfined compression device (Mauck et al. , 2000a) with rigid-impermeable loading

platens and a 250 g load cell (Honeywell Sensotec) was used to assess the E−Y of the whole construct

at days 0, 14, 28 and 42 (n=4–11). Before each test, the construct thickness and diameter were

measured, specimens were equilibrated under a 0.02 N tare load, and a 10% strain was applied at

0.05% strain/sec. E−Y was calculated from the equilibrium stress and initial cross-sectional area.

The average unconfined dynamic modulus (G*) was subsequently measured by superimposing a 2%

sinusoidal strain at 1 Hz.
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Figure 2.1: Custom device used for dynamic, displacement-controlled deformational loading.

To establish whether E−Y of engineered tissue was dependent on strain, immature bovine ar-

ticular chondrocytes were harvested and used to create constructs, as described above. On days 0

and 42, these constructs were used in a series of stress-relaxation tests at 5%, 10%, 15%, and 20%

strains (n=5). For comparison, freshly harvested explants were also tested.

2.3.3 Direct tensile testing of agarose constructs

Acellular constructs were cast as described above to test the tensile mechanical properties of 2%

(w/v) agarose. Rectangular samples were cut from the slab (length=12 mm, width=3 mm, thick-

ness=2.34 mm, n=7). Sandpaper grips were glued to the top and bottom edge of the sample and

secured in metal grips that attached to the mechanical testing device (Instron). A quasi-static ramp

was applied at a rate of 0.01%/s, and load and displacement data were recorded until failure. The

tensile modulus was calculated as the slope of the stress-strain curve.

2.3.4 Tension-compression analysis

A custom glass-bottom device was mounted on the stage of an inverted microscope and used to

mechanically test semi-cylindrical specimens (Wang et al. , 2002a; Wang et al. , 2002b; Wang et al.
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, 2003; Chahine et al. , 2004). Prior to testing, the thickness of each construct was measured, the

constructs were halved, and each half was maintained in isotonic saline (Figure 6.5A). At days 0

(n=4) and 42 (n=4−6), the semi-cylindrical samples were tested in 0.015 M NaCl (hypotonic saline)

to determine TCN under conditions of maximal osmotic swelling (e.g., expansion of the collagen

network) or 2 M NaCl (hypertonic saline) to determine TCN under conditions where the contribution

of osmotic swelling is minimal. As an additional control, acellular constructs, cast with dark blue

polystyrene microspheres (1 x 109 microspheres/mL; 0.88 μm diameter, Bangs Laboratories), were

also analyzed in hypotonic saline to measure the TCN of 2% w/v agarose (n=4). The microspheres

were used solely in cell-free constructs as fudicial markers to provide optical texture for DIC.

For testing, each semi-cylindrical sample was equilibrated for 1 h in the appropriate saline

solution containing LIVE/DEAD dyes (Invitrogen). The equilibrated thickness of the specimen was

measured, initial images of the cross-section of the samples were acquired, and the samples were then

compressed at nominal 2% strain increments, up to a final compression of 10–12% (Figure 6.5B).

After each compression, samples were allowed to equilibrate for 15 min with images being acquired

immediately before each subsequent compression (Figure 6.5C, D).

Optimized DIC was used to obtain accurate axial and lateral strains (Wang et al. , 2002a; Wang

et al. , 2002b; Wang et al. , 2003; Kelly et al. , 2006; Chahine et al. , 2004). The equilibrium

normal stress was calculated from the measured load and the initial cross-sectional area of the

constructs. The effective incremental Young’s modulus (EY i) was calculated for each compression

level (Figure 6.5E). E+Y was defined as the highest EY i measured under initial compression in

hypotonic saline, while E−Y was defined as the nearly constant EY i obtained at higher compressive

strains, an average of the values in the range of 8–10% compression. The incremental Poisson’s

ratio (νi) was also calculated as the negative ratio of the axial and lateral strains. After testing, the

samples were processed for histology or weighed and stored at -20◦C for biochemical analysis.

2.3.5 Biochemical analysis

Samples (n=4−11) were thawed, lyophilized, and weighed dry and digested with 0.5 mg/mL pro-

teinase K (Promega) in 50 mM Tris-buffered saline containing 1 mM EDTA, 1 mM iodoacetamide

(Acros Organics). DNA content was quantified using a PicoGreen assay (Invitrogen) (McGowan

et al. , 2002) with lambda phage DNA standards. GAG was quantified using 1,9-dimethylmethylene

21



Figure 2.2: (A) Prior to osmotic testing the semi-cylindrical samples were equilibrated in the appro-
priate saline solution (solution A and solution B). The order of testing was rotated to prevent bias
from multiple testing of the same semi-cylindrical sample. (B) For each test, the semi-cylinder was
loading into the microscope testing device and compressed at 2% increment to a final compression
of 10–12% and allowed to equilibrate for 15 min between each compression. Images were acquired
prior to each compression. (C) and (D) Images of typical construct before (C) and after (D) com-
pression. (E) Schematic tension–compression curve: By controlling the osmolarity of the bathing
fluid we can swell or shrink a test sample along its tension–compression curve. By then applying a
compressive load to a swollen construct and comparing its properties to an unswollen construct we
can extract its tensile modulus under compression without special grips. Hatched region represents
region where specimen is under tension.
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blue (Sigma) dye-binding assay (Farndale et al. , 1986), with shark chondroitin-6-sulfate (Sigma)

standards. The digests were hydrolyzed in 5 N HCl at 110◦C for 16 h and used to quantify the

total collagen content via an orthohydroxyproline (OHP) colorimetric assay (Stegemann & Stalder,

1967) with bovine OHP (Sigma) standards. Collagen content was calculated by assuming a 1–10

OHP-to-collagen mass ratio (Stegemann & Stalder, 1967). The collagen and GAG contents were

normalized to the construct wet weight, dry weight and DNA content.

2.3.6 Statistical analysis

ANOVA (α=0.05) was used to determine significant differences (n=4−11). If significant changes

were noted (p<0.05), Fisher’s LSD post-hoc test was performed.

2.4 Results

2.4.1 Average tissue properties

At day 0, chondrocyte-seeded constructs exhibited strain-softening behavior between 5% and 20%

compression (Figure 2.3A), where E−Y decreased with increasing applied compressive strain. This

behavior is typical of agarose hydrogels. By day 42, chondrocyte-seeded constructs (as well as the

cartilage explants) exhibited E−Y that remained nearly constant with increasing compressive strain

over the tested range, indicative of a stiffer construct due to matrix elaboration and reflective of

the diminished contribution of the agarose hydrogel to the overall stiffness.

E−Y increased significantly over time in culture for both FS and DL constructs (p<0.005;

Figure 2.3B, C). By day 28, E−Y was significantly greater for DL constructs compared to FS controls

(Figure 2.3B). DL did not yield significant differences in G* (Figure 2.3C).

The thickness, diameter, wet weight and dry weight of chondrocyte-seeded agarose hydrogels

increased significantly over the 6-week culture period for both FS and DL constructs (p<0.005;

Table 1), with significantly greater increases observed in FS constructs (p<0.05). Additionally,

the water content decreased significantly over time in culture (p<0.0005); however, there were no

significant differences with loading.

The biochemical content of the constructs increased significantly over time in culture (p<0.0005;

Table 1 and Figure 2.4). The DNA content increased significantly over the 42-day culture period
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Figure 2.3: (A) The Young’s modulus (EY ) of chondrocyte-seeded constructs tested at days 0 and
42, in isotonic (0.15 M NaCl) saline at 5% strain intervals and normalized to 5% strain values.
Immature bovine cartilage explants were tested as an additional control. * p<0.05 versus all other
strain levels; † po0.05 versus day 42 constructs and cartilage explants (n=5). (B), (C) Young’s
modulus ((B); EY ) and dynamic modulus at 1.0 Hz ((C); G*) of free swelling (FS) and dynamically
loaded (DL) constructs (n=5−6) over a 42-day culture period. * p<0.005 versus day 0; † p<0.05
versus FS controls.

(p<0.0005), however, no significant differences with loading were observed. There were also no sig-

nificant differences in the GAG content of FS and DL chondrocyte-seeded constructs. The collagen

content was significantly higher in DL constructs than in FS constructs by day 42 when normalized

to DNA or dry weight (p<0.05). No load-dependent differences in collagen content were observed

when normalized to the construct wet weight. At day 42, GAG and collagens comprised a significant

portion of the solid tissue components compared to day 0 (p<0.005; Figure 2.6). By day 42, GAGs

and collagens accounted for 54% and 61% of the solid component (i.e., % normalized by dry weight)

of FS and DL constructs, respectively.

At day 42, the distribution of GAG was similar in FS and DL constructs (compare Figure 2.4D,

E). However, more labeling of collagen was observed in the central regions of DL constructs
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Table 1: The bulk morphological and biochemical properties of chondrocyte-seeded agarose hydro-
gels grown in free swelling (FS) and dynamically loaded (DL) cultures over a 6-week period (for day
0, n=4−5; for day 42, n=6−11; mean ± standard deviation). * Represents significant differences
versus day 0 (p<0.0005). † Represents significant differences versus FS controls (p<0.05). Note
that the thickness and diameter presented here were measured prior to any testing.

(Figure 2.4F) compared to FS controls (Figure 2.4G).

2.4.2 Tension-compression nonlinearity

The effects of salt concentration on the thickness and material properties of chondrocyte-seeded

constructs are presented in Table 2. The samples were first mechanically tested whole to yield aver-

age construct properties, and then allowed to recover for 60 min in the appropriate saline solution

prior to testing in the custom built microscope-mounted testing rig (Figure 6.5). Similar inter-

group differences in tissue dimensions were observed before bulk testing and after recovery in saline

(compare Table 1 and Table 2). Additionally, the thickness of DL constructs increased significantly

in hypotonic saline (p<0.05), which corresponds to a 3% increase in thickness. There was a 2%

increase in thickness observed for the FS controls, however, this difference was not significant. In

hypertonic saline, the FS and DL samples shrunk by 4% and 3% (p<0.05), respectively. In all cases,

DL samples showed significantly lower temporal increases in construct dimensions than FS controls

(p<0.05).

The effects of salt concentration on the apparent EY i of acellular and chondrocyte-seeded con-

structs are shown in Figure 2.5, Figure 2.6, Figure 2.8, and in Table 2. Strain-softening behavior

was observed in day 0 and acellular samples. There was no dependence on salt concentration, which

is consistent with the uncharged nature of agarose hydrogels. Here, E+Y and E−Y obtained for

day 0 and acellular constructs were 28–40 kPa and 8–10 kPa, respectively. Direct measurement of
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Figure 2.4: (A), (B). GAG (A) and collagen (B) contents (normalized to the wet weight (WW) of
the constructs) of free swelling (FS) and dynamically loaded (DL) constructs over a 42-day culture
period (n=5–11). * p<0.005 versus day 0; † p<0.05 versus FS controls. C. Biochemical content
normalized to the dry weight (DW) of FS and DL constructs over a 42-day culture period (n=5−11).
(D)–(G) Safranin O (GAGs) and Picrosirius Red (collagens) staining of FS and DL constructs at
day 42.

Table 2: The effects of osmotic loading were determined for free swelling (FS) and dynamically
loaded (DL) constructs that were tested in 2 M or 0.015 M salt solution (n=4−5, mean± standard
deviation). Note that the thickness and diameter presented here were measured after equilibrium
in the appropriate saline solution, but prior to macroscopic mechanical testing. * Represents sig-
nificant differences versus day 0 constructs (p<0.05). † Represents significant differences versus FS
constructs (p<0.05). § Represents significant differences versus 2 M NaCl values (p<0.05).
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Figure 2.5: (A) Incremental Young’s modulus (EY i) of acellular and day 0 chondrocyte-seeded
agarose constructs tested in hypotonic (0.015 M NaCl) and hypertonic (2 M NaCl) saline (n=4).
Inset. Compressive and tensile EY of 2% agarose obtained from direct measurements (n=7). (B)
Incremental Poisson’s ratio (νi) of day 0 chondrocyte-seeded agarose constructs tested in hypotonic
(0.015 M NaCl) and hypertonic (2 M NaCl) saline (n=4).

acellular agarose yielded similar results (E+Y = 39 kPa and E−Y = 11 kPa) (Figure 2.5A inset).

At day 42, FS and DL constructs exhibited similar changes in the apparent EY i in response

to changes in salt concentration and applied strain (Figure 2.6). Here, the constructs are placed

in a state of tension via applied hypotonic loading; therefore, EY i measured at low applied strain

(below the swelling strain of the constructs) represents E+Y of the constructs. As the construct is

compressed, the tissue transitions from a state of tension to compression, permitting the examination

of TCN in these constructs. At both salt concentrations, the apparent EY i was highest at the

lowest applied strain and decreased with increasing applied strain. Overall, the measured apparent

EY i increased with decreasing salt concentration. In the hypotonic state, DL constructs exhibited

significantly higher apparent EY i than FS constructs (Figure 2.7A). No significant differences in the

apparent EY i were observed in hypertonic saline (Figure 2.7B, C).

In hypotonic saline, the apparent E+Y (Table 2) was obtained at the lowest strain increment
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Figure 2.6: Incremental Young’s modulus (EY i) of free swelling (FS) and dynamically loaded (DL)
chondrocyte-seeded agarose constructs tested in hypotonic ((A); 0.015 M NaCl) and hypertonic
((B); 2 M NaCl) saline on day 42 (n=4–6). * p<0.05 versus free FS, † p<0.05 versus higher strain
values p<0.05; § p<0.05 versus >3% strain values.

(401 kPa for FS and 678 kPa for DL), which was significantly higher than hypertonic saline values

(46 kPa for FS and 35 kPa for DL; p<0.05). Additionally, at each salt concentration, the apparent

E+Y of DL constructs was significantly higher than that of the FS controls (p<0.05). At high strain,

the apparent E−Y of FS constructs was similar in hypotonic and hypertonic saline. However, for DL

constructs, the apparent E−Y was significantly greater for constructs in hypotonic saline compared

to hypertonic saline (p<0.05).

The effects of salt concentration on the apparent νi of acellular and chondrocyte-seeded con-

structs are shown in Figure 2.5, Figure 2.7, and Figure 2.8B. At day 0, νi remained constant as

the incremental strain was increased and were similar at all saline concentrations (Figure 2.5B).

At day 42, FS and DL constructs exhibited disparate changes in νi in response to changes in salt

concentration and applied strain (Figure 2.7). For FS constructs tested in hypotonic saline, νi was

high at low strain and decreased at higher applied strain to a steady-state value. In hypertonic

saline, νi remained constant across all applied strains, similar to the νi obtained at higher applied

strain in hypotonic saline. For DL, when tested in hypotonic saline, νi was initially low, compared

to FS controls, but decreased slightly as the applied strain was increased to a steady-state value. In
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Figure 2.7: Incremental Poisson’s ratio (νi) of free swelling (FS) and dynamically loaded (DL)
chondrocyte-seeded agarose constructs tested in hypotonic ((A); 0.015 M NaCl) and hypertonic
((B); 2 M NaCl) saline on day 42 (n=4-6). * p<0.05 versus FS, † p<0.05 versus higher strain values
p<0.05; § p<0.05 versus >3% strain values.

hypertonic saline, νi did not vary with increased applied strain. Here, νi was similar to the values

measured in hypotonic saline at higher applied strains. Furthermore, in hypertonic saline, similar

νi was obtained for both FS and DL constructs.

The data in Figure 2.6 and Figure 2.7 were combined using the construct’s swelling strains

(Table 2) to generate TCN plots for both EY i and νi (Figure 2.8). Under these conditions, E+Y

of both FS and DL constructs were significantly higher in tension, decreasing exponentially as

the constructs transition to purely compressive conditions (Figure 2.8A; R2=0.98−0.99, p<0.05).

Additionally, DL constructs exhibited significantly higher E+Y compared to FS controls (p<0.05).

These trends were comparable to those observed for native cartilage (Figure 2.8A inset).

In FS constructs, νi was significantly higher when the constructs were in tension but decreased ex-

ponentially as the constructs transitioned into purely compressive conditions (Figure 2.8B; R2=0.87;

p=0.05). For DL constructs, νi exhibited a slight but exponential decrease as the tissue transitioned

from tensile to compressive conditions (R2=0.60). Additionally, νi of DL constructs was significantly

lower than FS controls when the constructs were placed in tension (p=0.05). νi showed similar trends

to native cartilage (Figure 2.8B inset), i.e., decreased nonlinearly with increased strain, however un-
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der tensile strain, νi was higher than in native tissue.

Figure 2.8: (A), (B). Tension–compression nonlinearity plots highlighting differences in the incre-
mental Young’s modulus ((A); EY i) and incremental Poisson’s ratio ((B); νi) of free swelling (FS)
and dynamically loaded (DL) chondrocyte-seeded agarose constructs tested in hypotonic (0.015 M
NaCl) and hypertonic (2 M NaCl) saline on day 42 (n=4–6). * p<0.05 versus FS, † p<0.05 versus
higher strain values; § p<0.05 versus 43% strain values. The data was curve fitted to show the over-
all trends. In all cases exponential functions yielded best-fits (EY i FS R2=0.99; EY i DL R2=0.98;
ν FS R2=0.87; ν DL R2=0.60). Insets. Tension–compression nonlinearity plots illustrating Young’s
modulus ((A); EY i) and incremental Poisson’s ratio ((B); νi) of cartilage explants (in the depth
direction; n=8).

2.5 Discussion

In this study, osmotic swelling and uniaxial compressive loading were used to determine tensile and

compressive responses within the same chondrocyte-seeded agarose constructs. Using the general

framework of porous media mechanics and Donnan equilibrium theory (Overbeek, 1956; Grodzinsky,

1982; Lanir, 1986; Lai et al. , 1991; Basser et al. , 1998; Wang et al. , 2002a; Wang et al. ,

2002b; Ateshian et al. , 2004; Wilson et al. , 2007; Maroudas, 1976; Chahine et al. , 2004), it

is apparent that bathing native or engineered cartilage in solutions of greater salt concentration

will result in a decreased contribution of osmotic pressure to the effective tissue material responses

(due to increased shielding of the fixed charge density arising from GAGs). Likewise, bathing

native or engineered cartilage in hypotonic solution results in tissue swelling (relative to isotonic

dimensions) and stiffening. Tissue swelling is a manifestation of the expansion of the fibrillar

collagen network (e.g., recruitment of collagen fibers extended beyond their toe-region) to balance

the increase in Donnan osmotic pressure resulting from the fixed charge density associated with the
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GAGs (Maroudas, 1976).

While the E−Y of 2% agarose is in a typical range of 5–15 kPa (Figure 2.5, Inset), tensile testing

yielded E+Y of 39 kPa, similar to previously reported values (Huang et al. , 2008). Although

agarose does not exhibit swelling or shrinking in response to salt solutions, there is observable

strain-softening in response to greater levels of applied compression. The initially higher EY i at

very low applied compression, similar to the measured E+Y determined from conventional testing,

is thought to arise from residual stresses of the polymer that place the hydrogel in a swollen state

during gelation (Amici et al. , 2000; Normand et al. , 2000). As this swollen state is overcome,

compressive properties are exhibited. Since E−Y and E+Y of mature engineered tissues are more

than an order of magnitude greater than agarose, the hydrogel scaffold contributes minimally to the

mechanical behavior of the mature engineered tissues.

The results of this study showed that testing of mature (day 42) engineered cartilage in hyper-

tonic saline significantly reduced the apparent EY i of constructs relative to hypertonic conditions

but not to day 0 levels, which were consistent with data obtained for native cartilage (Chahine et al.

, 2005). In contrast, for immature (day 0) and acellular constructs, no differences were observed

at various salt concentrations (Figure 2.5A). These results confirm that the observed effects of salt

concentration can be attributed to the charged GAG species accumulated in the mature engineered

cartilage over time (Ehrlich et al. , 1998; Chahine et al. , 2005). Cell swelling may contribute to the

tensing of the fibrillar collagen network, however previous results indicate the ECM acts to limit

cell expansion (Lee & Bader, 1995; Knight et al. , 1998). As such, the measured properties with

hypertonic saline reflect the intrinsic material properties of the engineered cartilage without the

contribution of Donnan osmotic pressure.

When the matrix is in a state of tension the measured stiffness represents E+Y , the highest

modulus measured under initial compression in hypotonic saline. The results of this study indicate

that tissue growth of chondrocyte-seeded agarose constructs leads to an increase in E+Y . At day

42, E+Y measured in hypotonic saline ranged from an average of 0.40 MPa for FS constructs to

0.68 MPa for DL constructs. E+Y ranging from 0.2 to 5 MPa has been reported for engineered

cartilage (Gemmiti & Guldberg, 2006; Gemmiti & Guldberg, 2009; Huang et al. , 2008; Huang

et al. , 2012; Bian et al. , 2009a; Bian et al. , 2009b; Natoli et al. , 2009a; Natoli et al. , 2009b;

Natoli et al. , 2010; Moutos & Guilak, 2009; Eleswarapu et al. , 2011; Eleswarapu & Athanasiou,
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2013). In fact, previous data from our laboratory for constructs cultured under similar conditions

found similar tensile properties (0.2 MPa for Bian’s CONT versus 0.4 MPa for FS) (Bian et al. ,

2009a; Bian et al. , 2009b). Those values are consistent with E+Y observed in this study at day

42. As with native cartilage, the measured EY i decreased with increasing salt concentration, since

the concomitant reduction in swelling pressure also reduced the swelling strain, thereby shifting

the FS initial configuration on the TCN curve to the left (Figure 2.6; (Chahine et al. , 2005)).

Furthermore, increasing the swelling strain by further decreasing the bathing media osmolarity

would be anticipated to yield a higher measured EY i, thereby shifting the TCN curve to the right.

We chose 0.015 M NaCl, because it allows for sufficient tissue swelling without causing the tissue

to burst apart.

This method allows for the analysis of local material properties of the constructs (data not

shown). Spatial variation in E+Y was similar to those previously reported for E−Y , that is the

edges of the constructs (i.e., axial faces) were stiffer compared to the middle with DL exhibiting a

stiffer central region compared to FS controls (Kelly et al. , 2006).

The results of this study confirmed our previous observation that DL yielded lower ν than FS

culture, which is expected if DL constructs have higher E+Y than FS controls (Kelly et al. , 2006).

The observed increases in tensile νi of FS constructs over native values emphasize the importance

of E+Y on proper functioning of cartilaginous tissues (Figure 2.8B). For DL constructs, νi was in

the range observed for native cartilage. Higher swelling strains may be required to fully elucidate

the effects of tensile strain on νi.

When comparing FS and DL cultures, it is found that the biochemical composition evolves

similarly for both groups at most time points, except for day 42, where the collagen content is

greater in DL group when normalized to the DNA or dry weight (Figure 2.4C and Table 1 ). The

mechanical response of the tissues exhibit significant differences on day 42 for E−Y (Figure 2.3

B); however, no significant difference in G* was observed (Figure 2.3C). E+Y measured from the

osmotic swelling experiments shows a significantly higher value in DL group (Figure 2.5C). We have

previously shown that DL produces constructs with a more organized matrix than those grown

in FS culture. More specifically, in DL constructs, the collagen fibers were shown to be aligned

transversely to the direction of loading with increased type II and IX collagen (Kelly et al. , 2004;

Kelly et al. , 2006), which may have contributed to the increased E+Y .
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The best results from these studies reveal engineered cartilage with E−Y and GAG content

similar to those of native cartilage; however, G* (∼10–30% of native), E+Y (∼15–25%) and collagen

(∼24–48%) are a fraction of the native values (Huang et al. , 2005; Chahine et al. , 2004). Low

collagen content and its effect on engineered cartilage material properties remains a major challenge

in cartilage tissue engineering (Riesle et al. , 1998; Mauck et al. , 2000a; Mauck et al. , 2002;

Williamson et al. , 2003b; Williamson et al. , 2003a; Kelly et al. , 2004; Kelly et al. , 2006; Gemmiti

& Guldberg, 2006).

Here, hypotonic and hypertonic conditions were used as a methodological tool to examine TCN

in these constructs. For the first time, we are able to determine E−Y and E+Y of engineered cartilage

using applied compressive loading without the need to prepare multiple specimens or conduct mul-

tiple experiments. The resolution of optical strain measurements makes it possible to examine the

transition from tension to compression, producing a clearer understanding of the disparate material

properties of DL and FS constructs. More complete characterizations of the material properties of

engineered cartilage can improve critical assessments of the efficacy of tissue engineering approaches

for producing functional tissues for articular cartilage repair and replacement.

2.6 Conclusion

TCN is a phenomenon that describes articular cartilage’s complex response to tensile and compres-

sive forces. A higher stiffness in tension versus compression allows cartilage to resist radial expansion

under axial compressive loading, resulting in increased fluid pressurization, dynamic stiffness and

improved performance under dynamic loads in vivo. The studies described in this dissertation are

complementary to previous work with cartilage explants, characterizing TCN in engineered tissues

and demonstrating the ability to use osmotic swelling to measure both compressive and tensile prop-

erties in a single cartilage sample. Uniquely, this approach may allow for more rigorous investigation

into the quantification of tissue swelling as an early indicator of cartilage pathology in OA, with

important implications for the clinical diagnosis of cartilage matrix damage.

In addition to the characterization of TCN, these studies demonstrate the beneficial effect of

displacement-controlled dynamic compressive loading in engineered cartilage. Developed from an

adult chondrocyte cell source, these tissues reached near-native compressive mechanical properties,

with dynamic loading producing significant improvements in both EY and collagen content. As
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a strategy for preparing engineered tissues for mechanical loading in vivo, displacement-controlled

compressive loading is an attractive approach.
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Chapter 3 Application of a Turn-Key Bioreactor for Functional

Tissue Engineering of Articular Cartilage

3.1 Introduction

As discussed in Chapter 2, dynamic compressive loading in vitro is a promising strategy for preparing

tissue-engineered cartilage for the harsh mechanical environment experienced in vivo (Hung et al.

, 2004; Lima et al. , 2007; Cassino et al. , 2007). To this end, deformational loading of tissue-

engineered cartilage has traditionally employed devices with single actuators that stimulate tissues,

in batches, simultaneously and interdependently (Aufderheide & Athanasiou, 2006; Cassino et al.

, 2007; Mauck et al. , 2003). While this approach allows for physiologic loading patterns (Park

et al. , 2004), high testing volume, and has proven to aid in the development of tissues with native

mechanical properties (Lima et al. , 2007), this approach ignores the reality that not all tissues

are of equal thickness or stage of development (Davisson et al. , 2002; Park et al. , 2004). ‘10%’

strain applied uniformly by the actuator, therefore, may not result in uniform strain across a sample

population, with some being strained less and some strained more than the target deformation. The

resulting divergences in real tissue strain can negatively impact cartilage development (Butler et al.

, 2009).

Similar to previous designs that account for differences in construct thickness (Butler et al. ,

2009), the Mechanoactive Tissue Engineering bioreactor (MATE), a commercially available unit

(APEX Biomedical, LLC), was developed to allow for sample specific dynamic loading patterns and

analysis (Lujan et al. , 2011). With 6 independent voice coil motors, the MATE is able to use both

displacement- and force-controlled protocols to stimulate samples individually. While displacement-

controlled loading protocols have previously been used to generate reproducible results for batch

loading (Ng et al. , 2006; Waldman et al. , 2004; Kisiday et al. , 2009; Kisiday et al. , 2004; Aufder-

heide & Athanasiou, 2006; Lima et al. , 2007), and was utilized in Chapter 2 of this dissertation,

the MATE allows for stimulation of individual samples with reproducible force-controlled regimens,

ensuring tissue quality across a population. Both approaches will be investigated here in the context

of the MATE.

The following studies aim to do two things: 1) Characterize and optimize the MATE for cartilage
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tissue engineering applications and 2) investigate the utility of the bioreactor to stimulate tissue

growth in explants and constructs from a variety of cell sources.

3.2 Materials and methods

3.2.1 Bioreactor characterization and optimization for tissue engineering strategies

3.2.1.1 Characterization of MATE analysis protocols To evaluate the ability of the

MATE to analyze samples of variable equilibrium moduli, agarose hydrogels of multiple concen-

trations (2%, 4%, and 6%) were used. Each sample was cored from an agarose slab via biopsy

punch (Ø 4.0 x 2.34 mm) immediately prior to analysis. Analysis was conducted using the MATE

software from test strains of 1% to 10%. Additionally, accuracy of the MATE was compared against

values obtained via established material testing methodologies (Roach et al. , 2016).

To investigate the impact of structural properties on the performance of the MATE system,

agarose hydrogels of variable diameters and consistent equilibrium moduli were used. Each sample

was cored from an agarose (2%) slab via biopsy punch (Ø 4.0, 6.0, 8.0 x 2.34 mm) immediately prior

to analysis. Analysis parameters were held constant for this evaluation, applying a 2% pre-strain

and 3% test strain.

Figure 3.1: MATE bioreactor analysis protocol. The slope of the curve over the first second deter-
mines the ’elastic’ modulus of the tissue. After 1 second, the load is held constant and the tissue is
allowed to creep for 10 seconds. The change in strain required to maintain this load is recorded as
creep.

For all analysis protocols, samples were submerged in a PBS bath within individual sample wells

and mounted in the loading dish. The testing strain was applied over a pre-determined 1 second

interval (indicating ’elastic’ modulus), and the hydrogel was allowed to relax under constant load
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for 10 seconds (indicating viscosity of the tissue) (Figure 3.1).

3.2.1.2 Optimization of MATE stimulation protocols Initial stimulation with the MATE

was done in an effort to mimic, as closely as possible, the loading pattern used by our lab previously

(Mauck et al. , 2000b; Lima et al. , 2007). This established loading pattern provides a sinusoidal

deformation with a magnitude of 10% peak-to-peak strain at a frequency of 1 Hz (5 days/week, 3

h/day continuous, 2% tare strain), and has been shown to be effective in yielding superior compres-

sive mechanical properties compared to unloaded free-swelling controls (Lima et al. , 2007; Bian

et al. , 2010a). For this reason, the investigation described here first utilized a strain-controlled

approach. The initial protocol produced a 2.0% pre strain and 3.0% test strain (1 Hz, 60 cycles).

The strain amplitude was adjusted as appropriate for optimization. Following exhaustion of strain-

controlled loading parameters, a force-controlled stimulation protocol was evaluated, unique to the

capabilities of the MATE (Lujan et al. , 2011), beginning with a 2 N pre load and a 3 N test load

(1 Hz, 10 cycles). This protocol was iteratively adjusted to optimize results.

The protocols described above were applied to engineered and explanted cartilage tissues of

varying maturity levels in an effort to identify a single loading protocol suitable for a range of

cartilage stiffnesses. When a broadly applicable stimulation protocol was found, it was then applied

for subsequent cell-based studies.

3.2.2 Sample preparation and tissue culturing

Following identification of an optimal loading protocol, and to investigate the general applicability

of the MATE (Figure 3.2b) to cartilage tissue engineering, two different chondrocyte cell sources

were used for subsequent studies: juvenile bovine and adult human tissues.

As described previously (Lima et al. , 2007) and in Chapter 2.3.1, articular cartilage was har-

vested from knees of freshly deceased donor specimens. At least three joints were used for experi-

mentation and cells were pooled from all joints. Chondrocytes were isolated from cartilage chunks

via digestion overnight with agitation in 390 U/mL collagenase type II (Worthington). For isolated

adult human chondrocytes, as described in Chapter 1.3.3.2, the use of a growth factor cocktail

maintained and promoted the chondrocyte phenotype while priming the cell for biosynthetic activ-

ity when reintroduced in a 3D environment (Adkisson et al. , 2010; Barbero et al. , 2003; Barbero
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et al. , 2004; Sampat et al. , 2011). Following two passages, cells were prepared for encapsulation

in an agarose hydrogel (type VII, Sigma). For both cell sources, chondrocytes were seeded at 30 x

106 cells/mL in 2% agarose. Cylindrical constructs (Ø 8.0 x 2.34 mm) were cored and cultured in

chondrogenic medium (detailed in Chapter 2.3.1). For juvenile chondrocytes, 10 ng/mL TGF-β3

(R&D Systems) was supplemented for the first 2 weeks of culture (Lima et al. , 2007). For adult

human chondrocytes, TGF-β3 was supplemented for the entirety of the study. Culture media was

exchanged 3x per week.

Following five weeks of culture, juvenile bovine chondrocyte-based tissues were stimulated via

MATE (Figure 3.2a) with optimized protocol for the next two weeks. For adult human chondrocyte-

based tissues, stimulation was initiated following six weeks of culture and was maintained for the

subsequent three weeks. Once begun, the stimulation protocol was active 24 hours a day and 7 days

a week. This force-controlled protocol applied a 0 N pre load and 5 N test load for 3 cycles at 10 Hz

(20 minute rest between cycles). For the duration of stimulation, samples were maintained inside

individual wells (Figure 3.2b). Free-swelling control samples were maintained in equal volumetric

ratios of chondrogenic medium.

3.2.2.1 Impact of fluid flow on tissue growth Because the optimized stimulation protocol

is in contrast to previously used protocols (Mauck et al. , 2000b), the source of tissue growth (tissue

deformation or fluid flow) needed to be isolated for accurate interpretation of results. A subset of

juvenile bovine chondrocyte tissues was isolated and cultured in the MATE system with protective

rubber cylinders. These rubber cylinders provided clearance between the surface of the culture

medium and the surface of the construct, allowing for the same loading protocol to be applied to

the fluid but not the constructs. These wells were loaded in tandem with the study described above.

3.2.3 Average mechanical properties

Evaluation of mechanical properties was performed in the MATE via the protocol described earlier

(Figure 2.3). Analysis was performed on these samples every 10 cycles. At the onset and end of the

stimulation window, engineered tissues were evaluated via established material testing methodology

(Roach et al. , 2016). This custom unconfined compression device (MT), with rigid-impermeable

loading platens and a 250 gram load cell (Honeywell), was used to assess compressive dynamic (G*)
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Figure 3.2: (a) Image of the MATE, assembled, and ready for culture in the incubator. A 6-sample
tray (b) sits on top of the unit and voice coil motors drive each sample dish up into the polysulfone
lid to create compress. Plastic guards surround the sample and create a guide for platens while
keeping the sample safely underneath.

and equilibrium moduli (EY ) (n=6). Before testing, the construct thickness and diameter were

measured. The specific testing protocol is described in Chapter s2.3.1. Following testing, samples

were halved and then frozen for biochemical analysis.

3.2.4 Biochemical analysis

For juvenile bovine chondrocyte based tissues, samples (n=6) were thawed, lyophilized, and weighted

dry. Proteinase K digestion, as well as biochemical assays for DNA, GAG, and OHP were completed

as described (Chapter 2.3.5).

3.2.5 Statistical analysis

Because of the limited time points and groups associated with this study, a Student’s t-test (α=0.05)

was satisfactory to determine significant differences (n=6).

3.3 Results and discussion

3.3.1 Bioreactor characterization and optimization for tissue engineering strategies

3.3.1.1 Characterization of MATE analysis protocols The MATE was able to discern

differences in ’elastic’ modulus measured across agarose samples of different concentrations (Table

e3). ’Elastic’ modulus was positively correlated, however, with the magnitude of applied strain

in each sample. The ’elastic’ modulus of a 4% agarose hydrogel at 1% test strain measured ∼3x
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Table 3: Equilibrium compressive moduli of agarose constructs at different concentrations was
measured via ’Lab Testers’ (MT). The ’elastic’ modulus, as measured by the MATE, is shown to
the left at each strain interval.

lower than did the same gel at 10% testing strain. The same trend was observed in 2% and 6%

agarose hydrogels. As a direct comparison, the same gels were evaluated using MT. These values

are significantly lower than those measured at any strain level by the MATE.

Differences in measurement of ’elastic’ moduli between MATE and MT can be attributed to the

manner in which this value is determined. For MT, full equilibrium is reached prior to determination

of the equilibrium load and thus, the equilibrium modulus. The MATE compresses the tissue to

the desired test strain in 1 second and records the force response of the gel at this point (Figure

3.1). Because this strain occurs over a pre-determined 1 second interval, water is not able to exude

instantly to the surrounding bath and is trapped inside the agarose core. This trapped water is

pressurized within the agarose and the resulting ’elastic’ modulus value reflects this. As the test

strain is increased from 1% to 10%, the strain rate also increases, leading to elevated levels of fluid

pressurization and thus higher ’elastic’ moduli. As such, the ’elastic’ modulus measured with the

MATE is more accurately described as an ’instantaneous’ modulus. It it is recommended that a

technique more representative of the material properties of the tissue be used in future work to

allow for comparison with the work of colleagues and collaborators. For intergroup comparisons

within a single study, however, a consistent test strain may be used for the duration of the study

to allow the MATE to discern differences in tissue growth relative to baseline properties.

Comparing 2% agarose cores of varying diameters, the mechanical properties determined by the

MATE ranged from 74 kPa to 135 kPa. These results can be compared to the EY measured by

MT (∼10 kPa). Interestingly, the ’elastic’ modulus of 2% agarose cores decreased with increasing

diameter (Table 4), while the thickness, as measured by the MATE, increased. Further, the creep

response of 4 mm diameter hydrogels was significantly different from other geometries, registering

nearly 6x more creep than 8 mm diameter samples prepared from the same gel.

40



Table 4: MATE bioreactor output as determined across 2% agarose hydrogels from 4 mm to 8 mm
in diameter. The thickness of all samples was identical (2.34 mm)

These results, together with those from Table 3, bring to light complications inherent in the

analysis mode of the MATE. For example, although the samples analyzed in Table 4 are of identical

thickness, the measured thickness decreases with decreasing diameter. This inaccuracy is due to

the sensing mechanism of the MATE. In order to determine contact, each station of the MATE

compresses their respective sample until 10 grams of load are sensed. This point becomes the

thickness of each sample. In reality, in samples of equal EY and thickness, 10 grams applied to a 4

mm diameter sample results in more displacement than does 10 grams applied to an 8 mm diameter

sample. In the case of Table 4, this may result in compaction of the pore structure with decreasing

diameter samples, increased fluid pressures, and thus elevated ’elastic’ modulus. Because of the

elevated load following application of the test strain, creep is elevated in the 4 mm diameter sample

compared with larger diameter samples, as it is unable to withstand the elevated load.

Our characterization of the MATE suggests the utility of this system lies in the use of consistent

analysis protocols and samples of equal diameter. If these parameters are tightly controlled, then

study results may be used to draw conclusions on tissue growth and comparisons between groups.

Biological studies rarely allow this level of control, however, making external validation of MATE

results critical.

3.3.1.2 Optimization of MATE stimulation protocols In an effort to identify the ideal

stimulation protocol, a variety of parameters were evaluated with immature and mature engineered

cartilage as well as immature explant cartilage tissue. Being consistent with previous work in the

laboratory demonstrating beneficial effects of strain-controlled dynamic loading (Mauck et al. ,

2000a; Lima et al. , 2007; Bian et al. , 2010a), initial efforts at stimulation via MATE used this

approach.

To evaluate the ability of MATE to stimulate tissues with EY near day 0 values, soft tissue
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engineered constructs (Ø 4 mm, EY = ∼10 kPa) were stimulated with a 3% test strain for 60 cycles

(1.0 Hz, 2% pre strain). These parameters were informed by manufacturer guidelines. Within 4

cycles (Figure 3.3), on average, the strain differential (maximum strain - minimum strain) reached

an infinitesimal strain, at which point the system disengaged the voice coil motors (VCMs) as a

protective measure.

Figure 3.3: Stimulation of immature tissue-engineered cartilage constructs at 3% test strain resulted
in system power down within 4 cycles. The solid line indicates the minimum strain at each cycle.
The line with symbols at each cycle indicates the maximum strain.

The response seen from immature tissues is the combined result of creep within the tissue and

thickness measurements acquired by the MATE. At each cycle, the MATE reevaluates the thickness

of the tissue using a 10 gram load to determine the load strain required for subsequent cycles. An

extension of previous characterization results (Chapter 4), this 10 gram pre-load is prohibitively

high in the context of small diameter, soft hydrogels.

To determine if this outcome can be remedied by an increase in sample diameter, a sample

of similar stiffness (EY = ∼10 kPa) but larger diameter (Ø 6 mm) was submitted to the same

stimulation regimen (2% pre strain, 3% test strain, 1.0 Hz for 60 cycles) (Figure 3.4). As understood

from mechanics, and demonstrated in Chapter 4, a constant load applied to a larger cross-sectional

area will reduce the strain experienced in the sample.

Following 10 cycles, on average, the strain differential neared zero and the VCMs were disen-

gaged. This improvement in loading duration, compared with a 4 mm diameter sample of similar

EY , indicates that a successful loading protocol for relatively soft hydrogels should consider using

larger sample geometries.

To evaluate the applicability of MATE stimulation for mature samples, cartilage explants (Ø
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Figure 3.4: Stimulation of 6 mm diameter, acellular 2% agarose constructs at 3% test strain resulted
in system power down within 10 cycles. The solid line indicates the minimum strain at each cycle.
The line with symbols at each cycle indicates the maximum strain.

3 mm, EY = ∼500 kPa) isolated from juvenile calf knees were subjected to the identical protocol

as above (2% pre strain, 3% test strain, 1.0 Hz for 60 cycles) (Figure 3.5). Following 15 cycles, on

average, the strain differential neared zero and the VCMs were disengaged. These results, however,

indicate that the mechanical properties of the tissue play a substantial role in success of the loading

protocol and suggests that mature samples improve chances for successful, continuous stimulation.

Figure 3.5: Stimulation of 3 mm diameter, juvenile bovine explant at 3% test strain resulted in
system power down within 15 cycles. The solid line indicates the minimum strain at each cycle.
The line with symbols at each cycle indicates the maximum strain.

Building on the results discovered with both large, soft hydrogels and small, stiff hydrogels, the

final evaluation of strain-controlled stimulation involved a mature (∼75 kPa), large diameter (Ø 6

mm) engineered cartilage construct. Stimulation of these samples was similar to previous efforts.

Unlike previous attempts with softer and smaller samples, stimulation of mature, large diameter

constructs was able to proceed for nearly 4 minutes (Figure 3.6). Like previous attempts, however,

strain-controlled stimulation resulted in a shortened loading program (compared with 3 hours for
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Figure 3.6: Stimulation of 6 mm diameter, mature tissue-engineered cartilage constructs at 3% test
strain resulted system power down following 240 cycles. The solid line indicates the minimum strain
at each cycle. The line with symbols at each cycle indicates the maximum strain.

established protocols (Lima et al. , 2007; Mauck et al. , 2000b)) and a diminished tissue thickness.

Prior to subsequent stimulation, complete relaxation of the sample must occur. Because of this, a

strain-controlled loading approach to tissue-engineered or explant cartilage becomes impractical, as

the time necessary for full equilibration of the sample results in a maximum of 12 daily sequences.

This fact, along with conclusions regarding tissue diameter and stiffness, formed the baseline for

evaluation of the MATE via force-controlled stimulation.

Beginning with a 6 mm diameter sample of sufficient stiffness (∼75 kPa), force parameters (0

N pre load, 0 N → 10 N test load), loading frequency (1 Hz → 10 Hz), and cycle duration were

modified to optimize the force-controlled stimulation protocol. Working within the limitations of

the MATE (each station can only apply 10 N), the determination was made to select the loading

frequency that allowed for the largest force to be applied without disengaging the VCMs. The

use of a 5 N test load applied at 10 Hz for 3 cycles allowed for near ’elastic’ tissue deformation

that was able to recover within a 20 minute rest period. Moreover, the real strain observed in the

tissue with these parameters was ∼10%, similar to the strain applied in our previously established

dynamic loading model (Mauck et al. , 2000b). Using the MATE, this force-controlled protocol can

be employed for continuous loading of engineered tissues, 24 hours a day, with no input from the

user.
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3.4 Application

Now optimized, this force-controlled protocol was applied to our cartilage tissue engineering system

to evaluate its potential to produce mechanically superior tissues when compared to free-swelling

controls. As described above (Chapter 3.2.2), two different cell sources were used in this work.

Initial application of the MATE utilized juvenile bovine chondrocytes. Following 35 days of

culture, the average proteoglycan content of the engineered tissues was 3.59 ± 0.27% GAG/ww.

Following 21 days of force-controlled stimulation, the proteoglycan content of both free-swelling (FS)

and dynamically stimulated (DS) tissues reached near-native values (4.97 ± 0.57% for FS, 5.93 ±

0.39% for DS), showing a significant improvement in the proteoglycan content of DS tissues (p<0.01)

(Figure 3.7a). As verification that tissue growth was a function of direct tissue deformation and

not fluid flow, MATE tissues not directly stimulated contained biochemical properties statistically

similar to FS controls (p=0.21 for GAG, p=0.32 for DNA, p=0.61 for collagen). This increase in

proteoglycan content in DS tissues was reflected in the ’elastic’ modulus as measured by the MATE.

Following 3 weeks of stimulation, the ’elastic’ modulus of DS tissues was significantly higher than

FS tissues, reaching 825.21 ± 139.19 kPa compared with 640.53 ± 60.44 kPa (p<0.05). As a

validation measure, this increasing trend in ’elastic’ modulus was preserved in EY of DS and FS

tissues, with DS tissues reaching nearly 160 kPa by the final time point. While there was no change

in the collagen content of these tissues, as was seen in previous studies of strain-controlled samples

(Chapter 2), a significant change in cellularity was observed in response to dynamic stimulation.

Following stimulation, DS tissues contained significantly more chondrocytes than did FS controls,

proliferating to 1.5x the cellular content of FS tissues by day 56 in culture (p<0.05). As a proof of

concept, these results demonstrated that MATE stimulated tissues can, under an optimized loading

protocol, cultivate mechanically superior engineered tissues.
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Figure 3.7: Analysis of juvenile bovine chondrocyte engineered tissues following MATE stimulation.
GAG concentration (a) was significantly increased in DS tissues by day 56 in culture (p<0.01). While
the ’elastic’ modulus of DS tissues was significantly higher than FS controls (p<0.05), substantial
sample variance during testing resulted in only trending differences in EY of these tissues.

Following successful application of MATE to a juvenile population of cells, this DS protocol was

extended to a clinically relevant cell source, adult human chondrocytes. Following culture for 35

days, a subset of these tissues was dynamically stimulated for the following 4 weeks. At the onset

of DS, the MT-measured equilibrium modulus of all tissues was 54.15 ± 16.65 kPa. Significant

growth (p<0.05) occurred over the next 4 weeks in both FS and DS tissues. By day 64, the GAG

content in all groups developed to nearly 4% GAG/ww. Notably, the GAG content of dynamically

stimulated tissues was significantly higher than the GAG content of free-swelling tissues (p<0.05)

(Figure 3.8a).

Figure 3.8: Analysis of adult human chondrocyte engineered tissues following MATE stimulation.
GAG concentration (a) was significantly higher in DS tissue by day 64 in culture (p<0.05). Likewise,
there was a significant increase (p<0.05) in EY (b) measured in DS samples at the final time point.
Of note, the thickness (c) of stimulated tissues was significantly reduced following 4 weeks of force-
controlled loading.

This relationship in GAG content was preserved in the mechanical properties of the tissue. By

day 64, dynamically stimulated tissues measured 167.96 ± 31.56 kPa compared with 113.13 ± 44.31
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kPa for free-swelling tissues, a significant increase in EY (p<0.05). This robust response in adult

human engineered cartilage is promising for future applications of the MATE for clinically-relevant

cartilage tissue engineering applications.

3.5 Conclusion

The results of this work demonstrate the potential benefits of the MATE bioreactor for tissue

engineering applications.

Because of the specifications of the device, however, there are important factors to consider

when using the MATE. If a strain-controlled protocol is desired, the sample being stimulated must

be of sufficient stiffness and diameter (Figure 3.6) to prevent substantial compression following

application of load for thickness measurement. Even so, as cartilage is viscoelastic, the tissue will

creep away from the loading surface as stimulation is applied. This reduction in sample height,

along with sample diameter, should be considered in determining the time allowed between loading

sequences. Modifications of the loading chamber itself may allow for continuous strain-controlled

stimulation similar to established protocols (Mauck et al. , 2000b; Kelly et al. , 2006; Lima et al.

, 2007), producing a sinusoidal loading pattern (10% peak-to-peak strain) that operates within

the load and travel limitations of the device (Figure 3.9). The use of an elastic spring obviates

the complication of thickness measurement, as the spring returns instantaneously to its original

length following the release of load. The use of a spring is not practical in all cases, however, and

requires maximum effort from the MATE, leading to excess heat production and potentially negative

impacts on chondrocyte viability. More investigation should be performed prior to implementing

this strategy for cellular work.

While the use of an elastic spring would produce an effective 10% strain in tissue-engineered

samples, the merits of a global zero, strain-controlled approach are debated. Stimulation of carti-

lage, a viscoelastic material, will result in creep upon continued stimulation. In certain situations,

this may lead to compaction of the tissue, as illustrated in this work (Figure 3.8c). This may

improve mechanical and normalized biochemical properties of the tissue, as the same biochemical

constituents are now occupying a smaller volume. Concurrent with compaction, the use of a global

zero leads to lift-off (Mauck et al. , 2000b) from the surface during unloading, a phenomenon some-

times experienced in vivo in the lateral compartment of patients with OA (Kumar et al. , 2013).
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Figure 3.9: Following the addition of a spring, displacement could be controlled so that the force
response in the spring was the primary driver of VCM action. Matching the length with the correct
spring constant, the tissue sample is compressed to 90% of the original thickness. The waveform
under ’Current Cycle’ indicates the shape of each cycle. The two sets of lines under ’Stimulation
History’ indicate the measured maximum and minimum strain values for each cycle it has completed.

In contrast, the MATE provides continuous monitoring of tissue geometry, ensuring sample con-

tact throughout stimulation. The advantages and disadvantages of both approaches merit further

investigation.

Using the MATE in force-controlled mode offers a more broadly applicable approach. In contrast

to strain-controlled loading, a force-controlled approach allows the tissue to strain as much or as little

as necessary, and is not constrained by peak strain optimization during stimulation. Importantly, the

optimized force-controlled approach used in the tissue engineering studies described above (Figure

3.7, 3.8) improved the mechanical and biochemical properties of these tissues. Moreover, this is the

first report, to our knowledge, of clinically-sized (Ø 8 mm) engineered cartilage, developed from

primary adult human chondrocytes, to achieve near native EY values.

As a bioreactor, the MATE provides the opportunity to continuously, and independently, stimu-

late and monitor tissue growth in vitro. Unlike standard tissue culture practices, this eliminates the

need for tissue sacrifice at study time points. Further, the ability to analyze and stimulate tissues

within the same device may allow for bioreactor cultivation of clinical tissues prior to implantation,

using the MATE to assess individual tissue properties and select tissues best suited for in vivo ap-

plication. Together with the work presented in Parts II and III of this dissertation, the MATE may

one day allow for cultivation of the ideal osteochondral plug, impregnated with chondroprotective

dexamethasone-loaded MS, and exhibiting anatomically-shaped, patient-specific contours optimized

for clinical success.
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Part II

Dexamethasone-Loaded PLGA Microspheres
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Chapter 4 Fabrication and Characterization of

Dexamethasone-Loaded Poly(lactic-co-glycolic acid)

Microspheres

4.1 Introduction

Poly(lactic-co-glycolic acid) (PLGA) was first introduced in the 1970s as a material for bioresorbable

sutures. Comprised of poly(lactic acid) and poly(glycolic acid) linked by a hydrolyzable ester bond

(Figure 4.1), this physically strong and biocompatible material is currently employed clinically in

a number of FDA-approved products. In vitro, PLGA has been extensively explored as a vehicle

for drug delivery and as a scaffold for tissue engineering, having been used to encapsulate a variety

of drugs, proteins and other macromolecules such as DNA, RNA, and peptides (Bouissou et al. ,

2006; Jain, 2000; Ruhe et al. , 2003). The ability to optimize loading efficiency and the rate of

payload release via modification of manufacturing parameters (e.g., microsphere size, copolymer

composition, polymer molecular weight, excipients) make PLGA an attractive material for drug

delivery applications. Therapeutic strategies using PLGA as a drug-delivery system are currently

being developed for osteoarthritis (Elsaid et al. , 2016; Kumar et al. , 2015), eye disorders such as a

age-related macular degeneration (Rodríguez Villanueva et al. , 2016), neurodegenerative disorders

(Kim & Martin, 2006), and malignant lymphomas (Alimohammadi & Joo, 2014), among others.

Exploiting the tunability of this system, PLGA-based micro- and nanoparticles have been devel-

Figure 4.1: The chemical structure of PLGA. Hydrolyzed via water penetration at the ester link-
age, the rate of degradation of PLGA is governed fundamentally by the ratio of the co-polymer,
PLA:PGA. The higher the percentage of PLA in the copolymer (PLA contains a hydrophobic methyl
side group), the less rapid the rate of degradation.
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oped to encapsulate anti-inflammatory compounds for a variety of applications (Dang et al. , 2011;

Galeska et al. , 2005; Tang et al. , 2010; Bae et al. , 2010; Hickey et al. , 2002b; Hickey et al. , 2002a;

Rubin et al. , 2009; Kelmendi-Doko et al. , 2014; Elsaid et al. , 2016). Hickey et al. employed PLGA

microspheres for continuous delivery of dexamethasone to inhibit the inflammatory host response to

implantable medical devices (Hickey et al. , 2002a; Dawes et al. , 2010; Dang et al. , 2011; Galeska

et al. , 2005). Addressing the issue of inflammation in the myocardium, Fargnoli et al. employed

PLGA nanoparticles for the delivery of aspirin and prednisolone, a synthetic glucocorticoid, offering

a potential clinical approach to maximize cardiac gene therapy while minimizing the risk of host

response (Fargnoli et al. , 2014). Gu, et al. evaluated the in vivo and in vitro performance of

dexamethasone-loaded PLGA microspheres as a strategy for mitigation of the foreign body reac-

tion. In this study, dex-loaded microspheres demonstrated 4.5 months of anti-inflammatory efficacy

in vivo, ameliorating a major cause of dysfunction and extending the usable lifetime of implanted

glucose biosensors (Gu & Burgess, 2015; Gu et al. , 2015).

In the context of the knee joint, sustained delivery systems are an attractive alternative to intra-

articular (IA) injections of corticosteroids. While shown effective in reducing pain in some patients

for up to 2 years (Raynauld et al. , 2003), rapid clearance from the joint space necessitates highly

concentrated injections, upwards of 2 mg/mL (MacMahon et al. , 2009). This dosage increases

the risk of local cartilage damage (Wernecke et al. , 2015), can negatively impact gastrointestinal

function (Singh, 1996), and reduces the body’s ability to respond to infection (Singh, 1996; Glaser &

Kiecolt-Glaser, 2005). To this end, PLGA-based delivery systems have been employed in articular

cartilage applications to deliver anti-inflammatory molecules at safe but effective doses. Interleukin

1 receptor antagonist (IL-1ra) (Morisset et al. , 2007), an FDA-approved therapy for the treatment

of rheumatoid arthritis (Kimmerling et al. , 2015), has been encapsulated in PLGA microspheres

and shown to inhibit lymphocyte activity and cartilage degeneration (Elsaid et al. , 2016). Higaki

et al. demonstrated that the continuous administration of betamethasone sodium phosphate via

PLGA nanoparticles inhibited inflammation in an experimental model of osteoarthritis (Higaki et al.

, 2005).

While glucocorticoids, and dexamethasone specifically, demonstrate anti-catabolic effects in vitro

(Lima et al. , 2008a) and in vivo (DeRijk et al. , 1997), these steroids are also employed in cartilage

tissue engineering for their prochondrogenic and proanabolic effects (Florine et al. , 2012; Bian
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et al. , 2010b; Lima et al. , 2004; Lima et al. , 2008a; Huang et al. , 2016b; Wang et al. , 2005).

Dexamethasone has been used in the differentiation of adipose derived stem cells and mesenchymal

stem cells (Diekman et al. , 2010; Johnstone et al. , 1998; Yoon et al. , 2012), has been implicated in

the integrity of collagen crosslinks (Roach et al. , 2016; Athens et al. , 2013; Bian et al. , 2010b), and

is instrumental for the development and maturation of functional tissue-engineered cartilage (Lima

et al. , 2008a; Henderson et al. , 2007; Ng et al. , 2010; Tan et al. , 2015; Bian et al. , 2009a; Huang

et al. , 2016b). Used in our laboratory for the culture of tissue-engineered cartilage derived from

human chondrocytes, dexamethasone catalyzes tissue growth, with constructs reaching near-native

values of mechanical properties and proteoglycan content by only 4 weeks in culture (Cigan et al. ,

2016).

Informed by the combined benefits of PLGA MS and dexamethasone, and work performed by

the Adipose Stem Cell Research Laboratory at the University of Pittsburgh (Kelmendi-Doko et al.

, 2014; Rubin et al. , 2009), led by Dr. Kacey Marra, the following methodologies describe the fab-

rication of dexamethasone-loaded PLGA microspheres for cartilage tissue engineering applications.

4.2 Methods

4.2.1 Dexamethasone 21-phosphate phosphate disodium salt encapsulation

Dexamethasone-loaded PLGA microspheres (MS) were prepared using a double emulsion (water-

oil-water) technique. First, a 0.2% poly(vinyl alcohol) (PVA; Sigma 360627), 150 mM sodium

chloride (NaCl, Sigma S6191) solution was prepared in 700 mL distilled, de-ionized water (ddH20)

and stirred at 550 rpm. 100 mg of PLGA (75:25) (Sigma P1941), under vigorous vortexing, was

dissolved in 4.5 mL dichloromethane. Dexamethasone 21-phosphate disodium salt (dex; Sigma

D1159) was dissolved in 0.5 mL methanol and added to the PLGA solution. Following vortex of

the PLGA-dex mixture, the resulting emulsion was slowly added to the stirring PVA/NaCl bath.

Following 3 hours of stirring, the microspheres were collected by centrifugation (3,000 rpm for 5

minutes) and frozen at -20°C overnight. Following freezing, collected microspheres were freeze-dried

for at least 48 hours prior to use. Unloaded MS were prepared similarly, omitting the addition of

dex.
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4.2.2 Dexamethasone release and loading capacity measurement

The release of dex from the MS was analyzed both as free-floating MS and as encapsulated within

an acellular agarose hydrogel. In both cases, releasates were analyzed spectrophotometrically at

242 nm, a natural absorbance wavelength for most compounds, dex included. The amount of dex

released was determined via comparison with standard curve. Preparation of standards is described

in Appendix A.2.

For free-floating MS, microspheres (10 mg) were placed in a microcentrifuge tube containing 1

mL phosphate buffered saline (PBS) (n=5). At various time points the tubes were centrifuged, the

supernatant collected, and then frozen at -20°C until analysis. The samples were refreshed with 1

mL PBS and vortexed.

For encapsulated MS, acellular agarose hydrogel constructs (Ø 6.0 x 2.34 mm) were produced by

preparing a 2% agarose (Sigma A9414) hydrogel containing 5.33 mg MS/mL agarose. Constructs

were isolated in a microcentrifuge tube in 1 mL (PBS) (n=4). At various time points the supernatant

collected and then frozen at -20°C until analysis.

Loading capacity was determined via complete polymer hydrolysis. Briefly, 1 mL dimethyl-

sulfoxide (DMSO) was added to 5 mg MS. The mixture was briefly vortexed and allowed to rest

for 1 hour. Following rest, the mixture was vortexed again for 30 seconds and then 5 mL of 0.05

NaOH containing 0.05% w/v sodium dodecyl sulfate was added. The mixture was vortexed and

allowed to rest for an additional hour. Following rest, aliquots of this mixture were assessed via

spectrophotometry at 242 nm and results were compared to a standard curve.

Discussed in more detail in Appendix A.1, high pressure liquid chromatography, not necessary for

these in vitro release studies, is ideal for assessing small concentrations (<100 ng) of dexamethasone.

4.2.3 Microsphere characterization

Morphological characterization of the MS was performed using scanning electron microscopy (SEM).

MS were were coated for 45 seconds with gold-paladium using a Cressington 108auto (Cressington).

MS were then viewed using an EVO LS SEM (Zeiss) operated at 2 kV extra high tension voltage

level. Images were acquired from 250 X-1.5k X for morphological analysis and to allow for particle

sizing during post-processing.
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Figure 4.2: Dexamethasone release curves for (a) free-floating and (b) agarose encapsulated dex
PLGA MS. The red hyphenated line indicates 100% release.

4.3 Results

4.3.1 Dexamethasone release and loading capacity measurement

Dexamethasone release was similar between free-floating and agarose encapsulated MS. For free-

floating MS (Figure 4.2a), a burst release of 10.2% was observed after 24 hours. A linear fit of

subsequent release data (R2=0.97) yielded a daily release rate of 250 ng dex per mg MS. After 28

days in culture, 32.8% of dex had been released. The loading capacity was 19.9 mg dex per mg

MS. For agarose encapsulated MS (Figure 4.2b), a minimal burst release of 12.37% was observed in

the first 24 hours. Fitting the subsequent release data to a line (R2=0.97) over the next 90 days,

a daily release rate of 284 ng dex per mg MS, equivalent to 46.24 ng dex/construct/day (for a Ø 4

mm construct), was measured. The loading capacity of the agarose encapsulated MS, determined

via DMSO hydrolysis, was measured to be 63.31 µg dex/mg MS.

4.3.2 Microsphere characterization

Morphological characterization of dex MS can be seen in Figure 4.3. The average diameter of

dex-loaded microspheres was 46.03 ± 16.67 µm (n=543). The average diameter for unloaded mi-

crospheres was 25.02 ± 15.39 µm (n=411).
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Figure 4.3: Scanning electron micrograph of (a) dex-loaded and (b) unloaded PLGA MS. Inset:
PLGA MS prepared with 0 mM NaCl.

4.4 Conclusions

4.4.1 Manufacturing parameters

As alluded to in the introduction, there are many parameters that affect PLGA MS fabrication.

The potential pharmacokinetic impact of a change in even one parameter can be significant. Sev-

eral studies have illustrated the impact of these parameters (e.g., drug hydrophilicity, surfactant

concentration, bath osmolarity, molecular weight of PLGA, viscosity of PLGA) on the resulting

paricle size, loading efficiency, and release kinetics of PLGA MS (Ito et al. , 2007; Gasparini et al.

, 2008; Mao et al. , 2007; Siegel et al. , 2006; Gu & Burgess, 2015; Rodríguez Villanueva et al.

, 2016). In our investigations, changing the osmolarity of the bath from 0 mM NaCl to 150 mM

NaCl improved the loading efficiency of dexamethasone by 50%. This change in bath osmolarity

improved the salt balance inside and outside the PLGA MS, preventing the rapid osmotic flux that

can result in pitting (Figure 4.3, Inset). A function of stirring speed and polymer addition rate,

particle size, along with previously mentioned parameters, greatly influences degradation rate and

drug release kinetics. While slowing the stirring speed of the bath may allow for increased loading

efficiency of the drug in some cases, the resulting size increase of the particle will likely lead to

expedited release of the drug, as carboxylic acid end groups, a result of biodegradation, accumulate

inside the particle and create an acidic environment that autocatalyses the degradation process.

Because of the many parameters involved, it is critical, especially for cellular-based studies, that
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MS fabrication be consistent and reliable. In this investigation, the current parameters allow for

fabrication of MS of a controlled size with zero-order release kinetics to nearly 100 days. A controlled,

linear release makes it possible to use dex-loaded MS at concentrations within the hydrogel that are

equivalent to those used via exogenous supplementation (100 nM, (Lima et al. , 2008a)). Reliable

fabrication makes direct comparisons of tissue growth possible and allows for improved accuracy in

modeling of dex release kinetics.

4.4.2 Clinical relevance

A controlled release approach to steroid administration is advantageous in the context of current

therapies for early intervention in OA. The inherently short duration of therapeutic action for cor-

ticosteroids (Goodman, 1996), and dex (6–8 days (Wernecke et al. , 2015)) in particular, suggest

that more frequent injections may improve joint pain. The accumulated availability of glucocorti-

coids through repeated injections, however, has been shown to lead to gross morphological cartilage

changes (Breuner & Orchinik, 2002) along with lowered viability and biosynthetic activity of chon-

drocytes (Song et al. , 2012). Successively elevated systemic levels of glucocorticoid can also impact

the hypothalamus–pituitary–adrenal axis, (Habib, 2009) inhibiting the immune system’s ability to

respond to infection. Low dose, sustained delivery of glucocorticoids, as presented in this work, pro-

vides a forward thinking strategy for improving cartilage repair while minimizing negative systemic

effects. The fabrication protocol described here produces dex-loaded MS with narrowly-distributed

particle sizes (:45 µm) and a sustained release profile of up to 90 days (Figure 4.2b), maintaining

a consistent level of drug release throughout. Daily release of the drug is measured at only :46 ng

per construct, a level 17.5x lower than the amount used in standard tissue culture (Lima et al. ,

2008a) and 5.5x lower than commonly used triamcinolone acetonide IA injection dosages (Wilusz

et al. , 2008; Wernecke et al. , 2015; Shepherd & Seedhom, 1999; Parma et al. , 1988). While

the dex-loaded MS detailed here are meant for incorporation into tissue-engineered cartilage, Flex-

ion Therapeutics, a specialty pharmaceutical company, has recently completed a Phase III clinical

trial evaluating the pain reduction potential of FX006 (ZilrettaTM ), a PLGA-based delivery system

for the sustained release of low levels of triamcinolone acetonide (Kumar et al. , 2015). Early re-

sults have shown clinically significant improvement of pain, stiffness, and function in patients with

moderate to severe osteoarthritis, suggesting that our approach to tissue-engineered cartilage has
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therapeutic translatability in a human population.

In addition, as an alternative to strategies that target specific pro-inflammatory cytokines, dex

has broad potential to mitigate the deleterious effects of IL-1, TNF-α, and other cytokines asso-

ciated with inflammation. Once internalized, dex acts directly and indirectly by activating anti-

inflammatory proteins (Hafezi-Moghadam et al. , 2002; Cato et al. , 2002), upregulating their

production through glucocorticoid-responsive elements on DNA (Nagaich et al. , 2004; McKay &

Cidlowski, 1999), and by interfering with the translocation of other transcriptional factors, such as

nuclear factor-kappa B (McKay & Cidlowski, 1999; McKay & Cidlowski, 1998; De Bosscher et al.

, 2003). These cell-independent mechanisms of action allow this strategy for dex delivery to be

considered as a therapeutic approach for inflammation in other tissues and organ systems.

4.4.3 Future work

4.4.3.1 Modeling drug release It is important to know and be able to control the rate of

drug release, and thus local drug concentration, from PLGA MS. Nearly fitting a simple zero-order

model of release (Hines & Kaplan, 2013), the current MS can be used and a linear rate of drug

release can be expected. Changes to any number of the manufacturing parameters, however, may

alter these drug release kinetics and lead to temporally unpredictable local drug concentrations. In

the case of cartilage tissue engineering applications, this may lead lower than expected doses of dex,

and thus an inability to provide chondroprotection in the face of inflammatory cytokines.

Drug release assays, which can last up to 3 months (Figure 4.3), make continuous modification

and improvement of the PLGA MS system impractical. For this reason, drug release models should

be investigated and incorporated into PLGA MS design so that improvements in MS fabrication

can be made concurrently with advances in cartilage tissue engineering.

4.4.3.2 Cartilage tissue engineering The parameters selected for dex-loaded MS fabrication

provide a drug release profile appropriate for cartilage tissue engineering applications (Lima et al.

, 2008a). Initial studies using these MS will confirm the activity and ability of internally released

dex to foster tissue growth at a rate comparable to exogenously supplemented dex. Moreover, the

internal delivery of dex allows for consideration of in vivo applications. One component of the

knee’s harsh environment, chemical insult via pro-inflammatory cytokines can be detrimental to
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the biochemical and mechanical properties of tissue-engineered cartilage. This, in turn, decreases

the chances for implant survival in vivo. Capitalizing on the anti-inflammatory properties of dex

described above and in work from our lab (Lima et al. , 2008a), dex-loaded MS may be considered as

a strategy to provide chondroprotection to engineered cartilage following implantation. Continued

dex delivery in vivo, an approach discussed further in Chapter 5, may increase the chances for

implant survival via chondroprotection, improved integration with host tissue (Djouad et al. , 2009),

and maintain mechanical sufficiency of the implanted tissue.
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Chapter 5 Dexamethasone Release from Within Engineered

Cartilage as a Chondroprotective Strategy Against

Interleukin-1α

5.1 Abstract

While significant progress has been made toward engineering functional cartilage constructs with

mechanical properties suitable for in vivo loading (see Chapters 2 and 3), the impact on these grafts

of inflammatory cytokines, chemical factors that are elevated with trauma or osteoarthritis, is poorly

understood. Previous work has shown dexamethasone to be a critical compound for cultivating car-

tilage with functional properties, while also providing chondroprotection from pro-inflammatory

cytokines. This study tested the hypothesis that the incorporation of poly(lactic-co-glycolic acid)

(PLGA) (75:25) microspheres that release dexamethasone from within chondrocyte-seeded agarose

hydrogel constructs would promote development of constructs with functional properties and pro-

tect constructs from the deleterious effects of interleukin-1α (IL-1α). After 28 days of growth

culture, experimental groups were treated with IL-1α (10 ng/mL) for 7 days. Reaching native

equilibrium moduli and proteoglycan levels, dexamethasone-loaded microsphere constructs exhib-

ited tissue properties similar to microsphere-free control constructs cultured in dexamethasone-

supplemented culture media and were insensitive to IL-1α exposure. These findings are in stark

contrast to constructs containing dexamethasone-free microspheres or no microspheres, cultured

without dexamethasone, where IL-1α exposure led to significant tissue degradation. These results

support the use of dexamethasone delivery from within engineered cartilage, through biodegradable

microspheres, as a strategy to produce mechanically functional tissues that can also combat the

deleterious effects of local pro-inflammatory cytokine exposure.

5.2 Introduction

Joint injury, especially in younger patients, dramatically increases the risk of developing OA (Roos

et al. , 1995; Gelber et al. , 2000; Roos, 2005) and has been shown to produce radiological evidence

of cartilage degeneration in 50–78% of patients within 20 years of the event (von Porat, 2004;

Lohmander et al. , 2007). Restoration of damaged cartilage is performed in an effort to arrest or slow
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the progression of joint degeneration. Living osteochondral allografts represent the gold standard

for repair of joint defects greater than 2–3 cm2 (Williams et al. , 2007). As the availability of suitable

allografts is insufficient to meet the clinical demand, intensive research efforts are focused on the

development of strategies to grow living replacement cartilage tissues. Our laboratory has focused

on growing tissues appropriate for repair of focal defects and entire articular surfaces (Ateshian &

Hung, 2005; Hung et al. , 2003; Hung et al. , 2004; Ng et al. , 2010; Roach et al. , 2015). The

impacts of cytokines that contribute to joint inflammation and pain, however, which are elevated

with iatrogenic injury (Amin et al. , 2009; Amin et al. , 2010; Houston et al. , 2013; Lotz & Kraus,

2010; Patwari et al. , 2003; D’Lima et al. , 2006; Goldring & Goldring, 2004), trauma, or OA, on

joint repair are not often considered.

In clinical patients following acute ACL injury (Irie et al. , 2003), cytokines such as tumor

necrosis factor α (TNF-α) and interleukin-1β (IL-1β) were significantly elevated from baseline 24

hours after injury. At 1 week, while reduced, these cytokines remained elevated above chronic

levels. Tsuchida et al. analyzed the synovial cytokine profiles of patients undergoing microfracture

or autologous cell implantation (ACI) for focal defect repair (Tsuchida et al. , 2014) and observed

increased concentrations of inflammatory cytokines in the synovial fluid of injured as compared with

healthy joints. The increased presence of cytokines in injured joints may contribute to the inferior

clinical results observed for ACI in some patients (Vanlauwe et al. , 2011; Filardo et al. , 2013;

Saris et al. , 2003; Ozsoy et al. , 2009), as elevated levels of inflammatory mediators have previously

been shown to hamper cartilage regeneration (Yang et al. , 2006; Beekhuizen et al. , 2013; Rodrigo

et al. , 1995). To this end, data from animal studies and early clinical trials suggest that early

inhibition of the IA inflammatory response (e.g., 4 weeks) and posttraumatic injury of the knee

may improve clinical outcomes (Olson et al. , 2014). Morisset et al. reported an improvement in

cartilage repair following IA injection of an adenoviral vector carrying an IL-1ra gene (Morisset

et al. , 2007), indicating that modulation of the joint’s chemical environment may be beneficial for

chondrocyte and tissue health (Elsaid et al. , 2015).

Palliative strategies for managing joint pain include anti-inflammatory analgesics such as non-

steroidal anti-inflammatory drugs alongside IA injections of glucocorticoids or hyaluronan (Zhang

et al. , 2008). IA glucocorticoid injections have proven effective in reducing pain in patients for up

to 2 years with no deleterious effects to joint morphology (Raynauld et al. , 2003). A residence time
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of only 36–72 hours, however, mandates that the concentration of injected solutions and suspensions

be high, upwards of 2 mg/mL (MacMahon et al. , 2009). Rapid clearance from the joint space re-

sults in excess circulating glucocorticoids, which leads to increased susceptibility to viral infections

and delayed wound healing (Glaser & Kiecolt-Glaser, 2005; Singh et al. , 1996) systemically, as

glucocorticoids are effective in suppressing IL-β and TNF production by leukocytes (DeRijk et al.

, 1997).

Complementary to its use in IA injections, dex, a synthetic glucocorticoid, has been reported

to inhibit collagen degradation of cultured cartilage explants in response to interleukin-1α (IL-1α)

(Saito et al. , 1999). Work in our laboratory has found that engineered bovine cartilage constructs

with native properties can be protected from the deleterious effects of IL-1α by culture supple-

mentation with dex, in a manner similar to native cartilage explants (Lima et al. , 2008a; Lima

et al. , 2008b; Lu et al. , 2011). Additionally, preexposure to dex has been reported to prevent

proteoglycan degradation and restore biosynthesis of cartilage explants exposed to TNF-α and me-

chanical injury (Lu et al. , 2011). Several in vivo studies have demonstrated the chondroprotective

effects of dex as well. Repeated IA injection of high-dose dex, for instance, was observed to protect

cartilage from damage in a lapine posttraumatic model of OA (Huebner et al. , 2014; Huebner et al.

, 2013). Malfait et al. have demonstrated that dex inhibited proteoglycan degradation induced by

IA injection of TNF-α (Malfait et al. , 2009). While effective, the continuous administration of

drug through IA injection is not recommended, as this increases the risk of infection and patient

discomfort, emphasizing the need for sustained release formulations (Gerwin et al. , 2006).

Recent work has exploited poly(lactic-co-glycolic acid) (PLGA) systems for the delivery of anti-

inflammatory drugs (Dang et al. , 2011; Galeska et al. , 2005; Tang et al. , 2010; Bae et al. , 2010;

Hickey et al. , 2002a; Hickey et al. , 2002b; Rubin et al. , 2009; Kelmendi-Doko et al. , 2014; Defail

et al. , 2006). Higaki et al. demonstrated that the continuous administration of betamethasone

sodium phosphate through PLGA nanoparticles provided increased inhibition of inflammation in

an experimental model of OA when compared with the same dosage of betamethasone sodium phos-

phate delivered three times through IA injection (Higaki et al. , 2005). Dang et al. demonstrated

that dex releasing PLGA microparticles are capable of suppressing the host response to implanted

polymer materials in a mouse model. Notably, animals that received a higher drug loading treat-

ment suffered an increased incidence of death within 7–10 days after administration, while a low
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drug loading group maintained healthy body conditions, but still benefited from the drug’s anti-

inflammatory properties (Dang et al. , 2011). These studies demonstrate that locally delivered,

low concentrations of anti-inflammatory steroids are capable of suppressing the local host response

without the systemic impact observed with higher drug concentrations.

In the context of cartilage tissue engineering, our laboratory has broadly employed dex for its

proanabolic and anticatabolic effects in cartilage tissue engineering systems (Florine et al. , 2012),

its proven importance for cultivation of tissues with native properties, and its ability to confer

chondroprotection against inflammatory cytokines (Lima et al. , 2008a; Lima et al. , 2008b; Dvorak

et al. , 2002; Kuroki et al. , 2005). As these factors can impact clinical success of cartilage tissue

engineering strategies, we sought to develop a more clinically focused cartilage tissue engineering

approach utilizing the FDA-approved steroid dex. An ideal therapy would retain the benefits of dex

on engineered cartilage without the requirement for its exogenous supplementation, obviating the

systemic (Neustadt, 2006) and joint level complications associated with clinical injections of steroids

(Backes et al. , 2013; Ikeuchi et al. , 2013). As such, the current study tested the hypothesis

that the incorporation of PLGA microspheres (MS), with the ability to release dex from within

chondrocyte-seeded agarose hydrogel constructs, would promote development of constructs with

native mechanical properties and protect constructs from the deleterious effects of IL-1α, laying the

foundation for future, clinically focused studies.

5.3 Materials and methods

5.3.1 Experimental design

To assess the potential for chondroprotection through internally released dex, PLGA MS, loaded

with the steroid, were embedded in the tissue construct during gelation (Figure 5.1). Tissues were

cultured in chondrogenic medium for 4 weeks before cytokine exposure to allow for sufficient tissue

maturation (Miot et al. , 2012).

Following 4 weeks of culture in a chondrogenic medium, a subset of these tissues were treated

with supraphysiological levels of inflammatory cytokine for 1 week (Figure 5.2). Following 1 week

of treatment, tissues were evaluated for their mechanical and biochemical properties.
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Figure 5.1: Representative schematic of the dex-loaded microsphere strategy employed in this study.
PLGA microspheres are embedded alongside chondrocytes in an agarose hydrogel. In this way,
dexamethasone is available locally to the cell to optimize the chondroprotective effects of the glu-
cocorticoid against pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor α.
dex, dexamethasone; PLGA, poly(lactic-co-glycolic acid).

Figure 5.2: (a) Schematic of experimental design. ctrl and dex-loaded microsphere (LMS) tissues
were treated with interleukin-1α (10 ng/ mL) after 4 weeks of culture. Unloaded microsphere
(ULMS) samples, untreated, were cultured as a negative control for the duration of the study. (b)
ctrl–dex tissues were cultured for the first 28 days of culture as a microsphere-free, dex-free control.
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5.3.2 Microsphere fabrication and preparation

Dex-loaded PLGA MS were fabricated and characterized as described previously (Rubin et al. ,

2009) and in detail in Chapter 4. Prior to use in the experiment, 8 mg of dex-loaded and empty

MS were weighed and sterilized through ultraviolet light. Quantification of dex was performed as

described for free-floating MS in Chapter 4.2.2.

5.3.3 Cell culture and sample preparation

As described previously (Lima et al. , 2007) and in Chapter 2.3.1, articular cartilage was harvested

from stifles of freshly slaughtered 2- to 4-week-old calves. Three joints were used for the experiment

and cells were pooled from all joints. Cartilage chunks were digested in 390 U/mL collagenase

type IV (Worthington) for 11h with agitation. Isolated chondrocytes were passaged in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% fetal bovine serum, 1 ng/mL TGF-β1, 5 ng/mL

FGF-2, and 1% antibiotics/antimycotics. Following two passages, cells were prepared for encap-

sulation in an agarose (type VII; Sigma) hydrogel. For MS-free controls (ctrl, ctrl+IL, ctrl-dex),

chondrocytes were seeded at 30 x 106 cells/mL in 2% agarose. For MS-containing samples (dex-

loaded (LMS), LMS+IL, and empty microspheres (ULMS)), 1.5 mL of concentrated cell solution

was combined with previously prepared MS. This cell/MS suspension was combined with 1.5 mL

agarose and cast between glass slides for a final concentration of 2.66 mg MS per milliliter and 30

x 106 cells/mL in a 2% agarose hydrogel. This concentration of MS was selected as it has been

previously shown to positively impact biosynthetic activity of human adipose stem cells (Rubin

et al. , 2009). Cylindrical constructs (Ø 4.0 x 2.34 mm) were cored and cultured in chondrogenic

medium as described previously (Chapter 2.3.1). MS-loaded tissues effectively received 21.9 ng

dex/construct/day. MS-free controls received 100 nM dex at each media change (26.9 ng dex/ con-

struct/day). MS-containing samples received no exogenous dex. A subset of MS-free tissues was

cultured without dex for the first 28 days of culture to determine any adverse or beneficial effects

of the PLGA on tissue development.
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5.3.4 Cytokine insult

Following 28 days in growth culture, a subset of ctrl and LMS samples were subjected to 10 ng/mL

IL-1α. IL-1α was added at each media change for 7 days. During this period, MS-free samples were

starved of dex so as to isolate the potential impact of internally released dex in MS-loaded samples.

5.3.5 Mechanical characterization

A custom unconfined compression device was used to determine the equilibrium compressive modu-

lus (EY ) of whole samples at days 0, 14, 28, and 35 (n = 5), as described in Chapter 2.3.2. A custom

glass-bottom device mounted on the stage of an inverted microscope (Wang et al. , 2001; Chahine

et al. , 2004) was used to determine depth-dependent properties of ctrl and LMS samples on day 35.

Before testing, samples were halved and maintained in a sterile PBS solution containing calcein-AM

(Life Technologies). Following staining, samples were positioned with the cross-section facing the

objective and initial measurements of thickness were performed digitally. As described in detail

in Chapter 2.3.4, initial images of the cross-section were acquired followed by compression of the

samples at nominal 5% strain increments to a final compression of 15%. Digital image correlation

was used to obtain accurate axial and lateral strains (Wang et al. , 2001; Chahine et al. , 2004),

which were combined with incremental compressive loading data to determine depth-dependent

mechanical properties.

5.3.6 Biochemical characterization

Samples were thawed, lyophilized, weighted dry, and digested with 0.5 mg/mL proteinase K in 50

mM Tris-buffered saline containing 1 mM EDTA and 1 mM iodoacetamide. Biochemical assessement

of GAG, DNA, and collagen, as well as histology for the same, were performed via established

protocols (Stegemann & Stalder, 1967; Farndale et al. , 1986), as described in Chapter 2.3.5. The

swelling ratio was also determined from tissue volumes at each time point normalized to average day

0 tissue volumes. Tissue maturity was assessed qualitatively and quantitatively (ImageJ) through

histology, before freezing, and day 35 samples were fixed in acid formalin ethanol for histological

staining.
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Figure 5.3: (a) SEM image. This image demonstrates consistent shape and size of the PLGA
microspheres used in this study. Scale bar = 10 mm. (b) Cumulative release curve of dexamethasone
released from 10 mg PLGA microspheres. By 70 days in culture, all dexamethasone had been
released from within the microspheres. Dotted line indicates 100% release.

5.4 Results

5.4.1 Microsphere fabrication and preparation

MS were observed through scanning electron microscopy (Figure 5.3a) and determined to have an

average diameter of 10 µm. A burst release of 10.2% ± 0.8% of initial dex content was observed

after 24h. A linear fit of subsequent release data (R2=0.97) yielded a daily release rate of 250 ng dex

per milligram MS (Figure 5.3b). After 28 days in culture, 32.8% ± 1.1% of dex had been released.

The loading capacity was 19.9 ± 1.9 mg dex per milligram MS. These results have been confirmed

through high-performance liquid chromatography (Hickey et al. , 2002b; Lamiable et al. , 1986).

5.4.2 Bulk mechanical characterization

At day 0, there were no significant differences between MS and ctrl samples (4.8 ± 2.5 kPa vs. 2.7

± 1.7 kPa). All groups displayed significant growth from day 0 to 28 ( p<0.05) (Figure 5.4). By

day 28, EY of all groups achieved ∼200 kPa (Figure 5.4a). ULMS and ctrl-dex samples developed

similarly to this time point, indicating minimal negative or positive impact from PLGA degradation.

Following treatment with IL-1α, the equilibrium modulus of ctrl+IL tissues dropped significantly

(p<0.05). At day 35, ctrl tissues reached 527 ± 74 kPa, whereas ctrl+IL tissues dropped to 194 ±

98 kPa from 297 ± 101 kPa at day 28 (Figure 5.4d). LMS tissues reached 387 ± 80 kPa at day

28. Following cytokine exposure, LMS+IL tissues continued to mature to 645 ± 136 kPa, similar to
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Figure 5.4: Mechanical and biochemical development of tissue-engineered cartilage throughout cul-
ture. ctrl-dex is provided as a reference for the first 28 days of growth. ULMS tissues exhibited poor
growth at day 35 and were not included in other metrics. (a, d) Illustrate equilibrium moduli. (b, e)
Illustrate the GAG content of engineered tissues throughout the study. (c, f) Illustrate the collagen
content of engineered tissues throughout the study. * Indicates p<0.05 when compared with ctrl+IL
at the same time point. ^ Indicates p<0.05 between LMS and ULMS. GAG, glycosaminoglycan;
IL, interleukin.

LMS tissues that grew to 717 ± 99 kPa at the same time point. ULMS tissues, those that received

neither dex nor IL-1α, reached 269 ± 49 kPa by day 35. As a result of its inferior mechanical

properties at day 35, ULMS tissues were excluded from analysis in Figure 5.4e and Figure 5.4f.

5.4.3 Depth-dependent mechanical characterization

MS remained visible in the tissue at day 35 (Figure 5.5a). At day 35, strain distributions from both

ctrl and LMS samples displayed tissue inhomogeneity consistent with previous work (Kelly et al. ,

2006; Kelly et al. , 2013) (Figure 5.5b). While LMS tissues displayed a significantly higher (p<0.05)

local equilibrium modulus than ctrl in 67% of the thickness of the tissue, tissue inhomogeneity does

not appear to be impacted by the local delivery of dex.
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Figure 5.5: Cross-section of samples prepared for depth-dependent mechanical testing using a cus-
tom designed microscope testing device. (a) Transmitted light image of the cross-sectional area of
LMS tissues at day 35. The amorphous shape of certain microspheres indicates the degradation
of the polymer. Scale bar = 250 mm. (b) Following testing, digital image correlation was per-
formed to determine strain patterns throughout the tissue. A gradient along the horizontal axis
indicates higher strain in the central region of the tissue and lower strain at the edges, indicating
depth-dependent changes in stiffness.

5.4.4 Biochemical characterization

5.4.4.1 Cellularity. The DNA content of all tissues increased throughout time in culture (Fig.

6a). At day 28, ctrl tissues contained 2.04 ± 0.20 million cells per construct. Following IL-1α treat-

ment, the number of cells in ctrl+IL tissues was significantly lower (1.53 ± 0.19 million) compared

to ctrl tissues (1.96 ± 0.23 million cells, p < 0.05). Similarly, LMS tissues contained 2.09 ± 0.17

million cells at day 28. Unlike ctrl+IL tissues, the cellularity of LMS+IL tissues was pre- served at

day 35 (1.92 ± 0.15 million cells) as compared to LMS samples (2.01 ± 0.10 million cells). Uniquely,

by day 35, the number of cells in ULMS tissues increased to 3.49 ± 0.52 million cells per construct,

a 2.76-fold increase above day 0 values.

5.4.4.2 GAG incorporation. At day 28 in culture, all tissues contained at least 4.69% ±

1.07% GAG per wet weight (GAG/ww) (Figure 5.4b). Following IL-1α treatment, GAG content of

ctrl+IL samples (5.07% ± 1.15% GAG/ww) was significantly lower than respective controls (7.91%

± 0.46% GAG/ww, p<0.05) (Figure 5.4e). In contrast, LMS+IL tissues continued to grow following
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Figure 5.6: Cellular proliferation and tissue swelling throughout the entire culture period. (a) Cellu-
lar proliferation was experienced in all groups. Samples cultured without dex (ULMS) experienced
significant cellular proliferation by day 35 in culture. * Indicates p < 0.05 for all samples compared
with ctrl+IL at the same time point. ** Indicates p < 0.05 for ULMS samples compared to all
others at the same time point. (b) As expected, all samples swelled to day 35. Samples cultured
without dex (ULMS) swelled significantly compared to all other groups at day 35. * Indicates p <
0.05 for ULMS samples compared with all other groups at the same time point. ** Indicates p <
0.05 for LMS samples compared to ctrl, ctrl+IL at the same time point. ^ Indicates p < 0.05 for
LMS+IL samples compared with ctrl+IL at the same time point.

the initiation of cytokine treatment, reaching 9.29% ± 1.26% GAG/ww by day 35, similar to LMS

controls that achieved 10.99% ± 1.32% GAG/ww at the same time point. ULMS tissues reached

7.65% ± 1.17% GAG/ww by day 35 in culture.

5.4.4.3 Collagen content. Collagen content of ctrl and LMS tissues reached 1.43% ± 0.33%

collagen normalized to wet weight (collagen/ww) and 1.53% ± 0.34% collagen/ww, respectively, at

day 28 (Figure 5.4c). ULMS tissues contained 1.86% ± 0.18% collagen/ww at the same time point.

Following cytokine insult, collagen content significantly decreased in ctrl+IL tissues (p<0.05) when

compared with ctrl, LMS+IL (Figure 5.4f), and ULMS tissues.

5.4.4.4 Swelling ratio. All tissues exhibited significant swelling by day 35 in culture (Figure

5.6b). ULMS displayed a significantly greater (p<0.05) swelling ratio at day 35 when compared

with all other groups, swelling to nearly 2x its original volume.

5.4.5 Histological/morphological characterization

Histology (Figure 5.7a–i), through ImageJ analysis, indicates weaker staining for GAGs in ctrl+IL

samples (Figure 5.7b) when compared with other groups at day 35. Weaker intercellular staining
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Figure 5.7: Histological sections from day 35. Alcian Blue staining indicates loss of GAGs following
treatment with IL (b). Picrosirius Red displays inferior intercellular staining for collagen in controls
treated with IL (f). In LMS tissues treated with IL, the same decrease in proteoglycan and collagen
intensity is not observed (d, h). (a, e) Correspond to control. (b, f) Correspond to control+IL. (c,
g) Correspond to LMS. (d, h) Correspond to LMS+IL. (i) Illustrates the gross differences at day
35 between samples cultured ± LMS and ±IL. Opacity is conserved between LMS and LMS+IL
groups at this time point. Scale bar = 4 mm.

was observed in ctrl+IL samples (Figure 5.7f) at the same time point when compared with other

groups. This response is contrasted with LMS+IL samples (Figure 5.7d, h), which maintain the

intensity of their staining following treatment with IL-1α.

5.5 Discussion

This study demonstrated that dex-loaded PLGA MS embedded in chondrocyte-seeded agarose hy-

drogels promote development of mechanically functional cartilage tissue in culture. This local

dex-delivery system also provides chondroprotection against the deleterious effects of IL-1α, a ubiq-

uitous cytokine known to play a major role in the innate immune response and articular cartilage

degeneration.

By releasing dex from within engineered cartilage, our therapeutic strategy targets the com-

plicated autocrine control system of chondrolysis, through which cartilage damage is triggered by

pro-inflammatory cytokines produced from leukocytes and the synovium (Shinmei et al. , 1989;
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Shinmei et al. , 1991). Compared to strategies that target specific pro-inflammatory cytokines,

such as IL-1 receptor antagonist (Kimmerling et al. , 2015; Olson et al. , 2015), dex has been shown

to mitigate the deleterious effects of IL, TNF-α, and other cytokines associated with inflammation.

As a culture supplement, dex is known to perform a variety of roles, including as a promoter

of chondrogenesis in mesenchymal stem cell populations (Mackay et al. , 1998; Sekiya et al. , 2002;

Wang et al. , 2005). Additionally, as reiterated in this study, dex is a critical element in the

development and maturation of tissue-engineered cartilage. Here, all tissues developed similarly

for the first 2 weeks of culture (Figure 5.4a), regardless of dex supplementation. Tissues receiving

dex achieved an EY within the native range (Kiviranta et al. , 2008) by the end of culture and

were ∼2-fold higher than tissues receiving no dex (ULMS) (Figure 5.4d). Moreover, dex-loaded MS

expedited this tissue development (day 35).

While delivery of dex from within constructs cultivates tissues with EY in the range of native

values, the internal delivery of dex from homogeneously distributed MS was not observed to modu-

late the axial inhomogeneity of tissue properties reported in chondrocyte-seeded agarose constructs

of similar dimensions (Kelly et al. , 2006). This inhomogeneity, described in Chapter 2, resembles

a U-shape, with stiffer regions of tissue located at the periphery (Kelly et al. , 2009; Nims et al.

, 2015). (Figure 5.5b), and is thought to reflect nutrient gradients associated with free swelling

culture. This finding suggests that dex is not responsible for the nonuniform tissue development

observed in our current study. Recent work suggests that other media components, such as insulin

and glucose, may play a role in this phenomenon (Cigan et al. , 2013; Nims et al. , 2014). The

high binding affinity of active TGF-β3, an ∼25kDa molecule (compared with 400 Da for dex), to

agarose and cartilage matrix has also been implicated in contributing some part to the development

of tissue heterogeneity (Albro et al. , 2016).

The EY values observed here are interestingly in tandem with cellular density and swelling ratio.

With respect to cellularity, tissues that received no dex throughout the study (ULMS) proliferated

to a cellular density ∼2.75-fold higher than those that did (ctrl, LMS) (Figure 5.6a). The antipro-

liferative effects of dex seen here are consistent with work in 2D chondrocyte cultures (Hainque

et al. , 1987). While a higher cellularity yielded near-native GAG levels (∼7% GAG/ww, data

not shown) and GAG levels comparable to those in ctrl tissues, EY remained significantly lower

at the final time point (Figure 5.4d), despite minimal variation in collagen content across tissue
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groups. Furthermore, ULMS tissues experience greater swelling and inferior mechanical properties

compared to LMS, attributed to the absence of dex. We speculate that dex influences the biosyn-

thetic behavior of chondrocytes that dictates the structural organization of the collagen network

and collagen–proteoglycan interactions that serve to combat tissue swelling (Williams et al. , 2007;

Olson & Guilak, 2015; Bastiaansen-Jenniskens et al. , 2008).

In addition to the physical demands of the joint, its harsh inflammatory environment will likely

impact the performance of engineered cartilage. The presence of IL-1β upregulates the expression

of aggrecanases, the primary proteases identified in pathological aggrecan degradation in human

OA (Song et al. , 2007), and has a predominant effect on the GAG content of engineered cartilage.

Previous studies have shown that GAG content of IL-1-treated engineered cartilage is depleted

∼4-fold as compared with controls (Lima et al. , 2008a). It is also known, however, that dex

supplementation reduces sulfated GAG loss and rescues proteoglycan synthesis in cartilage explants

exposed to inflammatory cytokines (Lu et al. , 2011). In the study presented here, LMS and ctrl

tissues were treated with IL-1α beginning at day 28 in culture. The time point selected for cytokine

insult was informed by work in our laboratory and others suggesting that construct maturity plays

an important role in the tissue’s response to cytokine and in vivo outcomes (Lima et al. , 2008a;

Miot et al. , 2012; Francioli et al. , 2011), with delayed exposure to insult being beneficial to tissue

health. Following 7-day treatment of IL-1α, ctrl+IL tissues contained ∼36% less GAG than their

respective controls (Figure 5.4e), resulting in an inferior tissue with equilibrium moduli measuring

∼2.75-fold lower than ctrl tissues. LMS tissues, however, did not experience a similar depletion of

GAGs. In fact, LMS tissues exposed to cytokine continued to elaborate their extracellular matrix

beyond day 28, increasing GAG content nearly 2-fold by day 35 (Figure 5.4d). The continued

biosynthetic activity of LMS tissues in the presence of a supraphysiological dose of IL-1α (10ng/mL

vs. 0.288ng/mL (McNulty et al. , 2013) in moderate OA joints), compared with the significant

decline in synthesis by ctrl+IL tissues, is encouraging in the context of using dex-loaded MS as a

strategy to promote cartilage repair in vivo (Miot et al. , 2012).

Recent work demonstrates the successful translation of this dex microsphere strategy to en-

gineered constructs seeded with adult human chondrocytes (O’Connell et al. , 2015) from three

donors (Figure 5.8), supporting the need for continued research efforts pursuing dex-loaded MS.

Similar to constructs derived from juvenile bovine chondrocytes, co-encapsulation of adult human
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chondrocytes and dex-loaded MS were able to promote cartilaginous tissue development similar to

exogenous dex supplementation of the culture media and afforded chondroprotection against IL-1α.

While simplistic, the use of a single pro-inflammatory cytokine, IL-1α, is a well-established

culture model for OA (Lima et al. , 2008a; Lu et al. , 2011; Shinmei et al. , 1989; Kimmerling et al.

, 2015; Kumar et al. , 2015; Wilusz et al. , 2008; McNulty et al. , 2007) proven to provide valuable

insight on the impact of cytokines on articular cartilage. The use of IL-1, specifically, exploits

the cytokine’s importance in inflammation (Rhen & Cidlowski, 2005). IL-1, along with TNF-α,

is responsible for the majority of degradation of the extracellular matrix in vivo (Wojdasiewicz

et al. , 2014) and both cytokines share a common set of pathways, including the activation of

nuclear factor-kappa B (NF-kB) (Kawai & Akira, 2006). The utilization of dex is therefore unique,

as glucocorticoids have been shown to physically interact with the p65 sub-unit of NF-kB and

transrepress its function (McKay & Cidlowski, 1998). While anti-inflammatory cytokines such as

IL-4 and IL-13 are known to directly regulate IL-1 function in the joint (Joosten et al. , 1999;

Cleaver, 2001; Joosten et al. , 1997), the use of dex in the context of cartilage tissue engineering is

critical for functional maturation of the tissue (as shown in this work) and has been demonstrated

to confer chondroprotection against both IL-1α and TNF-α (Lu et al. , 2011).

This study demonstrates the ability of dex-loaded MS to cultivate tissues that are mechanically

viable (within native levels of compressive modulus) while simultaneously providing chondropro-

tection. In addition to the benefits of dex-loaded MS in culture, a controlled release approach to

steroid administration is particularly advantageous in the context of current therapies for early

intervention in OA. While it has been reported that IA injections lead to improved outcomes at

2-year follow-ups (Raynauld et al. , 2003), the inherently short duration of therapeutic action for

corticosteroids (Goodman, 1996) and dex (6–8 days (Wernecke et al. , 2015)), in particular, the re-

sult of rapid systemic absorption suggests that more frequent injections may obtain ideal joint pain

outcomes. The accumulated availability of glucocorticoids through repeated injections, however,

has been shown to lead to gross morphological cartilage changes (Breuner & Orchinik, 2002) along-

side lowered viability and biosynthetic activity of chondrocytes (Song et al. , 2012). Successively

elevated systemic levels of glucocorticoid also impact the hypothalamus–pituitary–adrenal (HPA)

axis (Habib, 2009), inhibiting the immune system’s ability to respond to infection. The dual impact

of rapid systemic absorption, both inside and outside the joint, suggests that sustained delivery of
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Figure 5.8: GAG content from preliminary study using adult human chondrocytes. Chondrocytes
were isolated from the femoral articular cartilage of three donors. Following casting at 40 million
cells per milliliter in 2% agarose hydrogels, tissues were cultured as described previously. At day 28,
samples were divided and a portion was treated with 0.1 ng/mL IL-1. (a) As expected, there was no
change in collagen content among treatment groups following cytokine insult. (b) It was observed,
however, that GAG levels in LMS+IL tissues increased from ∼5% at day 28 to ∼8% GAG/ww at
day 35, a value within the range of native tissues and significantly higher than all other groups (
p<0.05). At the same time, ctrl tissues experienced a significant decrease in GAG content (p<0.05)
from ∼6% GAG/ww at day 28 to ∼4% GAG/ww at day 35. This biochemical profile suggests that
the chondroprotective effect of dex-loaded microspheres observed in juvenile bovine chondrocyte
constructs is applicable to adult human chondrocyte constructs, as well, providing motivation for
further investigation into the role that dex-loaded microspheres may play clinically. * Indicates
p<0.05 when compared with all other tissues. ** Indicates p<0.05 when compared with ctrl, LMS,
LMS+IL, and ULMS+IL. ^ Indicates p<0.05 when compared with ctrl+IL, LMS+IL, ULMS, and
ULMS+IL. # Indicates p<0.05 when compared with ctrl, LMS, LMS+IL, and ULMS. GAG/ww,
GAG per wet weight.
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low levels of glucocorticoids may address these concerns while improving patient outcomes.

Low dose, sustained delivery of glucocorticoids, as presented in this work, provides a forward

thinking strategy for improved cartilage repair and healing. The MS used in this study have been

shown to release drug for up to 70 days (Figure 5.2b), maintaining a consistent level of drug release

throughout culture and ensuring local availability of the steroid beyond the 5 weeks observed in

this study. Daily release of the drug is measured at only ∼19 ng per construct. This amount is

35x lower than the amount used in standard tissue culture (Lima et al. , 2008a) and 11x lower

than commonly used triamcinolone acetonide IA injection dosages (Wilusz et al. , 2008; Wernecke

et al. , 2015; Shepherd & Seedhom, 1999; Parma et al. , 1988). Additionally, this strategy has been

shown to minimize the potential effects on the HPA axis, having been employed in vivo and shown

to promote tissue formation with minimal systemic impact (Kelmendi-Doko et al. , 2014).

We further anticipate a strategy of chondroprotection where a glucocorticoid, administered from

the locale of the injury/repair site in a manner that provides its sustained release at much lower

levels than clinical injections, can also impact tissue healing and repair of the engineered graft

upon implantation (Huebner et al. , 2014; Huebner et al. , 2013). While future plans are aimed at

further optimization of the dex microsphere strategy, including the testing of other pro-inflammatory

cytokines such as TNF-α and the evaluation of tissue integrative repair in a cartilage explant ring

model (Theodoropoulos et al. , 2011; Gilbert et al. , 2009; Hunter & Levenston, 2004), the efficacy

of our approach on cartilage repair will necessarily have to be evaluated in vivo.

5.6 Conclusion

In this study, we have demonstrated that the internal release of dexamethasone, an anti-inflammatory

and FDA-approved synthetic glucocorticoid, can promote the development of mechanically func-

tional engineered cartilage and simultaneously provide protection against a supraphysiologic dosage

of the pro-inflammatory cytokine IL-1α. As such, this study presents a strategy for delivery of

dexamethasone from within engineered cartilage as a potential strategy for improving the success

of cartilage repair in vivo.
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Part III

Fabrication Process for Anatomical Resurfacing
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Chapter 6 Fabrication of tissue engineered osteochondral grafts

for restoring the articular surface of diarthrodial joints

6.1 Abstract

Osteochondral allograft implantation is an effective cartilage restoration technique for large defects

(>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large

bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours,

thickness, architecture) could be beneficial in replacing damaged tissue. While progress has been

made in improving the mechanical and biochemical properties of engineered cartilage (see Chapters

2, 3, and 5), it is pertinent to also maintain biofidelity to restore full functionality. Here, we describe

a step-by-step framework for the fabrication of a large osteochondral construct with correct anatom-

ical architecture and topology through a combination of high-resolution imaging, rapid prototyping,

impression molding, and injection molding.

6.2 Introduction

Articular cartilage, a white, dense connective tissue that lines diarthrodial joints, serves as the

load-bearing material of joints, and is characterized by excellent friction, lubrication, and wear

properties (Mow & Lai, 1990). When damaged due to injury or osteoarthritis, the tissue undergoes

degeneration resulting in pain and dysfunction. Upon becoming symptomatic, this discomfort

necessitates surgical intervention. Treatment options, however, are dependent on the joint involved,

the location, size and severity of the defect, and patient-related factors.

Endstage, global joint pathology often warrants total joint arthroplasty to replace the articu-

lating surfaces and underlying bone. Total joint arthroplasty is associated with a relatively high

need for revision surgery due to implant wear, subsidence, and/or loosening (Ayers, 1997; Bradley

et al. , 1993; Mowery et al. , 1987; Whiteside, 1989). For focal articular cartilage lesions (<2 cm2),

minimally invasive reconstructive surgical approaches including microfracture (Steadman et al. ,

2001), autograft cell/tissue transfer via periosteal grafts (O’Driscoll et al. , 2001), autologous os-

teochondral grafting such as mosaicplasty (Hangody et al. , 1997), and autologous chondrocyte

implantation (Brittberg et al. , 1994) are currently utilized. While these surgical treatment options
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can address symptoms of pain and improve function, they have not shown long-term durability and

are associated with a number of limitations and potential complications. Cell-based therapies and

osteochondral autograft harvesting are limited by the availability of healthy cartilage from which

to harvest tissue or cells. Furthermore, autologous osteochondral grafts are harvested from non

load-bearing regions that may provide tissue of sub-optimal material properties for use in load-

bearing recipient sites (Ahmad et al. , 2001). Additionally, the harvest procedure itself can induce

significant donor site morbidity (Lee et al. , 2000a; Lee et al. , 2000b), leading to further structural

and biochemical breakdown in the joint.

For larger lesions, greater than 10 cm2, when articular cartilage loss has distorted the morphol-

ogy of the condyle, fresh osteochondral allografts may be indicated (Bugbee, 2002). The technical

demands associated with this procedure and the limited supply of suitable grafts to meet clinical de-

mand have prompted pursuit of cell-based therapies for cartilage repair, including tissue-engineered

constructs of cultured cells on three-dimensional scaffolds (Lima et al. , 2004; Mauck et al. , 2000a;

Pazzano et al. , 2000; Vunjak-Novakovic et al. , 1999).

For engineered constructs to functionally bear the loads experienced in vivo, it is necessary

to recreate the natural topology of the articular surface to fully recapitulate the normal contact

geometry and load distribution across the joint (Cooney & Chao, 1977; Ateshian et al. , 1992;

Ateshian et al. , 1995; Eberhardt et al. , 1990; Huberti & Hayes, 1984; Hung et al. , 2003). To

capture the complete 3D geometry of articular cartilage, the topography of the cartilage surface as

well as the underlying subchondral bone must be quantified. A number of models derived directly

from the target tissue have been used for the purpose of quantifying the articular joint surface. These

include mechanical as well as optical techniques; the geometry of the articular layer of cartilage

surfaces has been quantified using cryosectioning (Stäubli et al. , 1999), stereophotogrammetry

(Ateshian et al. , 1991; Ghosh, 1983; Huiskes et al. , 1985), A-mode ultrasound (Adam et al. ,

1998), and magnetic resonance imaging (MRI) (Cohen et al. , 1999; Eckstein et al. , 1994). Many

of these same techniques, in addition to computed tomography (CT), can be used to quantify the

subchondral bone. Once acquired, these data are used to create negative templates for the desired

tissue via computer aided design (CAD) and stereolithography, such as for the temporomandibular

joint (TMJ) (Undt et al. , 2000; Weng et al. , 2001), the auricular cartilage of human ear (Cao

et al. , 1997), or to recreate iatrogenic defects on the articular surface of the femur (Koo et al. ,
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2010). Through the combination of CAD and injection molding, our previous work has created

entire articular layers, successfully replicating the human patellar articular layer and trapeziocarpal

articular layer of the thumb joint (Hung et al. , 2003). These large, full surface replications need

only to integrate with the underlying subchondral bone and can be exposed to a milieu of chemical

and physical stimuli (Vunjak-Novakovic et al. , 1999; Gooch et al. , 2001; Kaysen et al. , 1999; Freed

et al. , 1997; Ateshian et al. , 2003; Mauck et al. , 2002; Byers, 2006; Mauck, 2003; Bian et al. ,

2010b) in vitro to optimize the functional properties of developing constructs.

While the replication of full articular surfaces highlights one potential application of this technol-

ogy, for clinical management of cartilage injuries, it may be more relevant to fabricate osteochondral

constructs for large defects that exhibit anatomically defined surfaces matching the native architec-

ture of both the cartilage surface and subchondral bone. As such, in this paper, we follow a general

protocol for generating tissues with biofidelic shape (Figure 6.1a), and detail how this principle may

be applied to a specific embodiment, the fabrication of an osteochondral graft (Figure 6.1b).

6.3 Materials and methods

For proof of concept, we performed this technique to generate a graft suitable for restoring a large

femoral condyle defect in the dog. The use of adult canine tissue represents a large preclinical animal

model with clinically relevant similarities to humans, notably in anatomy of the knee joint, pathol-

ogy, and treatment. Surgical interventions such as arthroplasty, autologous chondrocyte transplan-

tation, and osteochondral grafting, as well as postoperative care including bandages, braces, and

physical rehabilitation, can be readily performed. Here, we created a large osteochondral implant

for the medial femoral condyle. An intact canine stifle joint from a 2–5 year-old mongrel canine was

dissected via removal of integument, fascia, muscle, and excision of capsular ligaments to expose

the joint surface of the distal femur for 3D data acquisition.

6.3.1 3D laser scanning

Surface morphology was acquired with a NextEngineTM HD Desktop 3D Scanner (NextEngine, Inc.,

California, USA), a portable device equipped with twin 3.0 megapixel CMOS image sensors. First,

a transverse cut was made through the thickness of the femur 4 cm proximal to the patellofemoral

joint to allow for mounting of the joint to a 6 cm x 6 cm 1 cm block supplemented with an alignment
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Figure 6.1: Schematic of (a) general design protocol and (b) detailed implementation of steps for
fabrication of an anatomical osteochondral graft.
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Figure 6.2: (a) A mounting setup was used for 360° imaging of the intact articular surface and
subchondral bone in the sagittal (b and d) and transverse (c and e) planes. A matrix of fiduciary
markers, including an alignment cube positioned on the surface of the mounting block, was used to
globally align scans of the two surfaces during image processing.

cube for proper positioning of the joint in three axes (Figure 6.2a). A matrix of fiduciary markers

on the mount was created using a white paint pen. Both joint and mounting block were placed

within the field of view for image acquisition to allow for digitization of the joint surface over 360°

with simultaneous fiduciary marker capture. Utilizing the NextEngineTM 3D ScanStudioTM HD

software package, 3D scans were acquired in macro mode with optimized settings (360°, 7 divisions,

17,000 points/in.2, neutral surface). To obtain the full curvature of the surface, 2 panels of images

were acquired from varying angles in both the sagittal (Figure 6.2b) and transverse plane (Figure

6.2c). During imaging, phosphate buffered saline was administered to the cartilage as necessary to

maintain tissue hydration. Following capture of the articular cartilage surface, while still secured

to the mounting jig, the distal femur was submerged in bleach (5–10% sodium hypochlorite) for

45 minutes to expose the subchondral bone. The same 2 panels of images were then acquired in a

similar manner as the articular cartilage surface (Figure 6.2d and Figure 6.2e).

The ScanStudioTM HD software package was then used to process the acquired point clouds,

aligning and trimming the reconstruction. Articular cartilage surface and subchondral bone layers

were aligned relative to their global markers to ensure that any model manipulations were confidently
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Figure 6.3: Manipulation of reconstructed models to isolate desired region. (a) Both cartilage and
bony reconstructed surfaces were rendered in color, (b) trimmed to expose only the medial femoral
condyle, and (c) modeled by 2001 surfaces for CAD manipulation. (d) A representative silhouette
of the articular cartilage thickness following subtraction of the subchondral bone from the intact
articular cartilage model (changing thickness marked by arrows).

consistent. For this proof of concept, we focused on creating a large osteochondral construct on the

medial condyle, the most common site of unicompartmental osteoarthritis in the joint; accordingly,

the models (Figure 6.3a) were trimmed to expose only this region (Figure 6.3b). Once the desired

surface was isolated, a water-tight model was fused, simplifying the point cloud where advantageous

without losing accuracy (63.5 μm tolerance), resulting in a 38,980 point model. Before the models

could be manipulated via CAD, surfaces were created from the fused models using ScanStudioTM HD

CAD Tools (Figure 6.3c), and when superimposed upon one another, resulted in the identification

of the articular cartilage layer alone (Figure 6.3d). Each model was approximated by 2001 surfaces.

Once complete, these surfaces were exported as SolidWorks (Dassault Systemes, France) compatible

IGES files.

6.3.2 CAD modeling

The solid surface models for the intact articular cartilage layer and underlying subchondral bone

were then manipulated to produce three pieces: (1) an intact articular cartilage model for a negative

mold, suitable for biological contact; (2) a defect template that allows for scaffold delivery, and (3) a

scaffold model with the contour of the subchondral bone (Figure 6.3a). To create an artificial defect
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Figure 6.4: Fabrication process for creating a large anatomical osteochondral construct. (a) Solid
surface models were manipulated to create three pieces (intact articular layer, defect mold, sub-
chondral bone) that were (b) rapid prototyped via 3D printing. (c) A PDMS negative mold was
formed from the intact cartilage mold and (d) all components were positioned together to create an
osteochondral graft with anatomical topology and architecture.

on the medial condyle, a large ellipsoid covering 70% of the cartilage surface was imposed on the

intact articular cartilage model to produce the defect template. This large defect size on the canine

condyle was chosen to reflect a critical size defect when scaled up for the size of the human medial

condyle (Parma et al. , 1988). Following completion of the defect template, the same defect geometry

was mirrored on the subchondral bone model, creating an implant geometry identical to the defect

site and with the surface topology of the underlying bone. This scaffold model was then modified

with a multi-axis series of channels (Figure 6.4a; 500 μm diameter, 1250 μm center-to-center) to

mimic the networked trabecular structure of the subchondral bone. Following CAD modeling of

these three pieces, the models were converted to rapid-prototyping ready stereolithography (.stl)

files and imported into Objet StudioTM for transformation into 3D modeling slices.

6.3.3 Rapid prototyping

An Objet24 (Stratasys, Ltd., USA) desktop 3D printing system was used for rapid prototyping

(Figure 6.4b). In particular, the 28 μm print layers allowed for modeling and implementation of

precision design features, including the accurate modeling of articular cartilage thickness. Following

3D fabrication, support material was removed from the models with a high-pressure water pick,
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which was further facilitated by submerging the pieces in an ultrasonic 1% alkali detergent bath for

1 hour.

6.3.4 Negative mold fabrication

In order to recapitulate the morphology of the articular surface in a tissue-engineered osteochondral

implant, a mold was created from the intact articular cartilage model. To allow for contact with

biological tissues, a biocompatible silicone elastomer (Sylgard 184, Corning, USA) was selected for

the mold material. 80 mL of polydimethylsiloxane (PDMS) mixture was produced according to

the manufacturers instructions in 2–50mL conical tubes and centrifuged to remove air pockets. A

polyoxymethylene cylinder (1” OD; 3/4” ID), used to stabilize the intact articular cartilage model

once submerged in PDMS, was placed in the bottom of a hollow plastic rectangular container (with

one face removed). Cylinder- and container-size was dependent on the size of the model. PDMS

was added to the cylinder until cresting. The intact articular cartilage model was then inserted,

allowing the base to rest on the polyoxymethylene cylinder. The remainder of the PDMS was

added, ensuring the model was completely submerged. This container was then placed in a vacuum

chamber for 20 minutes to remove any remaining air pockets. Once a homogenous mixture was

achieved, the container was transferred to a 60°C oven overnight (16 hours) to ensure complete

curing. Once cured, the plastic container was removed with a band saw, taking care not to damage

the PDMS. The mold was then trimmed as necessary to expose the base of the intact articular

cartilage model, which was removed from the PDMS mold (Figure 6.4c), leaving behind a negative

mold of the medial condyle.

6.3.5 Osteochondral implant fabrication

As described previously (Ng et al. , 2010) and in Chapter 2.3.1, chondrocytes were isolated from

the femoral condyles of canine stifles, passaged twice, and suspended in chondrogenic medium at

a concentration of 60 million cells/mL for implant fabrication. Concurrently, agarose (4%, Type

VII, Sigma, USA), was prepared and maintained in molten state at 40°C until use. Equal parts cell

solution and agarose were then mixed in a separate conical tube and 500 μL of this mixture (30

million cells/mL; 2% agarose) was deposited into the defect. Using the directional aids, the scaffold

was then placed into the defect and pressed until flush with the base of the defect template, ensuring
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proper cartilage thickness. After allowing 10 minutes for gelation, both the defect template and

osteochondral implant were removed from the negative mold. Using the easy access ports in the

rear of the defect template, the osteochondral implant was carefully removed to reveal an anatomi-

cally shaped construct with accurate cartilage thickness (Figure 6.4d) and placed into chondrogenic

medium (CM) at a ratio of 10 mL CM per OC implant. This well-established agarose-based system

has been shown to encourage favorable cell morphology and foster tissue growth over time (Knight

et al. , 1998; Lee et al. , 1998; Lee et al. , 2000c; Bian et al. , 2009a; Kelly et al. , 2013; Mauck

et al. , 2000a; Vacanti et al. , 2001).

6.4 Conlusion

The process described here represents the integration of several established techniques in an inno-

vative manner to produce a large clinically relevant osteochondral graft with appropriate surface

topologies and cartilage thickness.

Maintaining biofidelity of anatomical surfaces has long been a goal of tissue engineering, with

impression molds of cadaveric tissues used as models to produce negative molds of curved tissues.

To date, extensive work has been done to replicate complex geometries such as a human ear (Cao

et al. , 1997), mandibular joint (Weng et al. , 2001), and avulsed phalanx (Vacanti et al. , 2001).

Stereophotogrammetry, in combination with CNC milling and injection molding, has been used

to quantify, model, and replicate the articular surface of the human patella (Hung et al. , 2003;

Ateshian et al. , 1991; Ghosh, 1983; Huiskes et al. , 1985). CAD-based injection molds have been

used for a variety of applications including cardiovascular (Baudis et al. , 2011; Neidert & Tranquillo,

2006) and musculoskeletal tissues (Hung et al. , 2003; Ballyns et al. , 2008). With a focus on

clinical feasibility, the field has recently shifted to the utilization of medical imaging modalities

to inform the creation of anatomically shaped engineered tissues. These imaging modalities, such

as fluoroscopy, MRI, CT, and ultrasound enable the replication of patient specific architectures

and have greatly facilitated the use of additive manufacturing in the biomedical sciences. In the

time since, medical imagining modalities have been used to partially or fully recreate the specific

geometries of the tissue of interest. MRI and μCT of bovine knees have been used to inform

CAD models of meniscal architecture (Ballyns et al. , 2008; Ballyns & Bonassar, 2011). Rapid

prototyping (solid free form fabrication, 3D printing, etc.) has allowed the widespread realization
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of digital models. First introduced in the early 2000s as researchers looked for a way to create 3D

organs with shape fidelity (Mironov et al. , 2003), new advances in 3D printing have been applied to

osteochondral composites, allowing for spatial control of material and chemical properties through

the depth of a tissue (Sherwood et al. , 2002; Schek et al. , 2004; Zhang et al. , 2014), as well as

TMJ reconstruction (Feinberg et al. , 2001; Grayson et al. , 2010), humeral head regeneration (Lee

et al. , 2010), and tissue-engineered epiglottis (Brown et al. , 2013). Recent advances include hybrid

printing, allowing the simultaneous deposition of electrospun fibers with cell-seeded hydrogels to

provide optimal mechanical and biological properties layer by layer (Xu et al. , 2013).

The protocol outlined herein exploits several of these established technologies to provide a

blueprint for tissue reconstruction and replacement as it pertains to the knee joint (Figure 6.1).

While we have shown utility of this protocol through 3D data acquisition from an ex vivo knee

joint, similar patient-specific information acquired through clinically used medical imaging (e.g.

MRI, CT (Cohen et al. , 1999; Eckstein et al. , 1994; Ateshian & Hung, 2005)) can be incorpo-

rated via commercially available and open-sourced software platforms (via Mimics®, TurtleSeg,

Geomagic, etc.). Further, the framework of this process can be tailored to the equipment avail-

able, however, the ability to capture the anatomical geometry of the articular cartilage layer and

underlying subchondral bone [57] is critical, as the success of osteochondral graft replacement is

heavily dependent on the surgeon’s ability to restore native joint congruency (Cooney & Chao,

1977; Ateshian et al. , 1992; Ateshian et al. , 1995; Eberhardt et al. , 1990; Huberti & Hayes, 1984;

Hung et al. , 2003), which inherently includes cartilage thickness. Additionally, once the articular

geometry is obtained for the entire diarthrodial joint (Figure 6.5a), any sub-region of interest (e.g.,

distal femoral condyle, trochlear groove, etc.) can be generated. For comparison, we have illustrated

this by producing engineered constructs in the form of a cylindrical osteochondral plug suitable for

repair of focal defects (Figure 6.5b) and, as described here, as a larger construct able to replace an

entire condyle (Figure 6.5c).

The choice of method of acquisition of 3D data, from laser scanning technologies in the laboratory

to clinical MRI or CT scans, is dictated by the goal at hand (modeling purposes vs. creation of

tissue engineered constructs) and perhaps by the desired resolution. For the current application of

replacing damaged cartilage, anatomically shaped osteochondral constructs could be personalized

for an individual by acquiring pertinent 3D geometry data to create a custom mold, or obtained
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Figure 6.5: Example of how (a) 3D reconstruction of the articular surface can be used to generate
osteochondral constructs for a range of defect sites: (b) focal defects and (c) large surface defects.

from a plurality of a population for a given set of biometrics (e.g. height, weight, gender). For

the former, the accuracy of currently available clinical imaging modalities may pose a limitation in

the near future. Accuracy of the cartilage thickness derived from a cartilage model from 1.5 Tesla

MR images (B-spline snake method for segmentation) has been shown to be to be affected by the

actual thickness of the tissue; thin cartilage is overestimated while thick cartilage is underestimated

(Koo et al. , 2009). The use of 3.0 Tesla magnets capable of higher in-plane resolution (0.31 mm or

less (Eckstein et al. , 2007)) along with additional segmentation techniques may provide for more

accurate cartilage thicknesses. With this in mind, it may be more useful to produce a variety of

available sizes and shapes based on a plurality of the population, providing the possibility for an

off-the-shelf graft.

The osteochondral constructs created here not only demonstrate a process for digitizing, model-

ing, and fabricating accurate scaffolds for cartilage repair, but also the cultivation of biofidelic living

engineered cartilage grafts. In combination with our laboratory’s experience in the fabrication and

storage of osteochondral grafts (Nover et al. , 2015; Nover et al. , 2016), these anatomically-shaped

engineered tissues can be further improved via mechanical and chemical stimulation, as described

in Chapters 2, 3, and 5. Using the surfaces already modeled from acquired 3D data, loading platens
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can be developed to apply mechanical loading across the entire articular surface in vitro (Figure 6.6).

Together with the incorporation of dex-loaded PLGA microspheres, these osteochondral constructs

will be prepared for the harsh mechanochemical environment of the knee.

Figure 6.6: Platen fabricated from 3D acquisition of articular surface and used for mechanical
stimulation of osteochondral construct.

The work presented herein provides a framework for fabrication of a complex, multi-layered con-

struct through a combination of high-resolution imaging, rapid prototyping, impression molding,

and injection molding. Our approach has accurately recreated, for the first time, a large, anatomi-

cally shaped osteochondral graft to meet the rapidly increasing demand of allografts for large area

cartilage repair.
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Chapter 7 Conclusions and Future Directions

This dissertation is built on several key underpinnings of cartilage functional tissue engineering

adopted by the Cellular Engineering Laboratory. The use of the clinically-relevant agarose hydrogel

scaffold, chondrogenic media supplemented with TGF-β, as well as native chondrocytes provides a

robust platform in which to develop a chondroprotection strategy against the inflammatory cytokine

environment of the injured or diseased diarthrodial joint. To confer this new dimension of function

to our engineered cartilage, established protocols for drug delivery via polymer microspheres were

incorporated. As a consequence, the collective work described in this dissertation has provided a

holistic strategy for functional tissue engineering of articular cartilage. Moving forward, there are

several avenues that should be explored to further this work in regard to optimization and clinical

translation. Future studies will include those aimed at providing a more comprehensive under-

standing of the benefits of local dexamethasone delivery from within engineered cartilage constructs

on tissue development and chondroprotection against pro-inflammatory cytokines. Complementary

studies will look to better understand the underlying cellular mechanisms that mediate the ben-

eficial effects of dexamethasone, including dexamethasone transport behavior in tissue as well as

ligand-receptor interactions within cells.

First, the key findings for each major study of this dissertation are summarized in the context

of the tissue engineering paradigm adopted by our laboratory (Figure 7.1). A brief overview of the

complementary research areas described above follows.

7.1 Conclusions

Each Part of this dissertation is intended to address an aspect of the imperative our lab subscribes

to. In doing so, we evaluate the global hypothesis of this work, that a combination of 1) optimized

dynamic compressive loading and the 2) incorporation of polymer microspheres that release dexam-

ethasone from within cell-seeded hydrogel constructs will prepare and protect constructs from the

deleterious effects of mechanical and chemical exposure in the diarthrodial joint.
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Figure 7.1: Schematic of work described in this thesis in the context of the larger tissue engineering
paradigm, with the intent to employ these combined approaches in an in vivo model.

7.1.1 Characterizing and optimizing physiologic application of dynamic loading

We begin this dissertation in Part I, by examining the role of mechanical stimulation in the func-

tional maturation of engineered cartilage, specifically evaluating tension-compression nonlinearity

in tissue-engineered cartilage (Chapter 2) and demonstrating the utility of a commercially avail-

able bioreactor to dynamically stimulate and evaluate engineered tissues (Chapter 3). Tension-

compression nonlinearity is the phenomenon used to describe articular cartilage’s varied response

to tensile and compressive forces. Critical to its function as a dynamic load bearing surface, this

phenomenon is characterized by a higher stiffness in tension versus compression, allowing cartilage

to resist radial expansion under axial compressive loading and resulting in increased fluid pressur-

ization and dynamic stiffness (Huang et al. , 2001; Soltz & Ateshian, 2000; Soulhat et al. , 1999).

While this phenomenon had previously been investigated in native explant cartilage tissues (Chahine

et al. , 2004; Huang et al. , 2001; Huang et al. , 2003; Huang et al. , 2005; Huang & Gu, 2006),

our findings reveal, for the first time, the presence of tension compression nonlinearity in tissue-
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engineered cartilage. Similar to native explants, the mechanical properties of engineered cartilage

are significantly higher in tension than compression, decreasing exponentially as the transition from

tensile loading (during osmotic swelling) to compressive loading occurs. Further quantification of

the proteoglycan-collagen interactions responsible for this varied response may also be indicative of

cartilage health in vivo and be used as a diagnostic model to investigate tissue degradation. The

utility of dynamic compressive loading for cartilage tissue engineering was further investigated in

the context of the Mechanoactive Tissue Engineering bioreactor (MATE), a commercially available

bioreactor system. In contrast to traditional single actuator, batch loading approaches ((Aufder-

heide & Athanasiou, 2006; Cassino et al. , 2007; Mauck et al. , 2000b; Lima et al. , 2007)), the

MATE allows for simultaneous stimulation of 6 samples, independently, and the subsequent analysis

thereof. In this way, the MATE makes possible continuous mechanical stimulation of engineered

cartilage with active monitoring of sample mechanical properties. Chapter 3 characterized and opti-

mized MATE stimulation for engineered cartilage, identifying a loading protocol suitable for nascent

and mature tissues. Subsequent application of this protocol demonstrate the beneficial effects of

force-controlled deformational loading on the functional development of tissue-engineered cartilage.

Following four weeks of MATE stimulation, clinically sized engineered cartilage derived from adult

human chondrocytes achieved near native levels of compressive equilibrium moduli (∼175 kPa), the

highest properties reported to date. Together, we’ve confirmed the benefits of dynamic compressive

loading in vitro and provided an avenue for clinical translation of large diameter, adult human

chondrocyte based tissues via MATE bioreactor cultivation.

7.1.2 Chondroprotection via internal delivery of dexamethasone

In Part II, we sought an approach to prepare tissue-engineered cartilage for the rigors of the in-

flammatory environment in vivo. In doing so, we developed a drug delivery system for the anti-

inflammatory glucocorticoid (GC) dexamethasone (Chapter 3) and demonstrated its ability to pro-

mote cartilage growth and provide protection from pro-inflammatory cytokines in vitro (Chapter

4). A biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA) was used to encapsulate dex-

amethasone and provide for a predictable release of the steroid. Unlike intra-articular (IA) injec-

tions often used in the clinic, these microspheres released dexamethasone at a concentration nearly

200,000x lower than bolus IA injections used clinically (Goodman, 1996; Sherman et al. , 2015b;
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Sherman et al. , 2015a), minimizing the negative effects typically associated with GCs (Habib, 2009;

Habib et al. , 2010), and comparable to the concentrations used in standard chondrogenic culture

mediums (Bian et al. , 2010a; Lima et al. , 2007; Lima et al. , 2008a). Characterization of the

release profile of these microspheres indicate a zero order, sustained release of dexamethasone for

at least 90 days. In light of recent work indicating that implant maturity plays a significant role

in clinical tissue success (Miot et al. , 2012), this prolonged release of dexamethasone may serve to

provide construct protection against pro-inflammatory cytokines following implantation, in addition

to fostering development of functional tissues in vitro. To this end, Chapter 4 demonstrates the

chondroprotective capacity of dexamethasone-loaded microspheres in vitro. Following four weeks of

culture, during which internal delivery of dexamethasone promoted the development of near native

levels of mechanical and biochemical properties, tissues were challenged with a supraphysiologic

level of pro-inflammatory cytokine. Tissues containing dexamethasone-releasing microspheres were

able to maintain tissue properties during chemical insult, while the impact on unprotected tissues

was detrimental. These results suggest an approach utilizing dexamethasone-releasing microspheres

may be successful in protecting tissue-engineered cartilage in a pre-clinical model of OA and improve

gross cartilage repair.

7.1.3 Fabrication process for anatomical resurfacing

In Part III of this dissertation, we developed a universal approach for digitizing, modeling, and

fabricating biofidelic osteochondral tissue-engineered constructs. While fresh osteochondral allo-

grafts are the gold-standard for large defect cartilage repair, limited availability of suitable grafts

and technical demands of the procedure have prompted the search for a cell-based alternative. In

addressing this need, the work presented in Chapter 5 developed a general strategy for producing

tissue-engineered cartilage with biofidelic shape and detailed how this principle might be applied

to the fabrication of an osteochondral allograft. This bilayered structure combined high-resolution

laser scanning technology, modeling software, injection molding, and 3D printing to create a highly

resolved graft with anatomically-accurate curvatures. In restoring congruency of articulating sur-

faces, this approach aims to recapitulate normal loading stress and patterns, allowing for improved

kinematic function of the joint and improving quality of life for patients.

The work presented in this dissertation leads us to accept our Global Hypothesis. In doing so,
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this work provides a strategy for the cultivation of biofidelic, tissue-engineered cartilage well-suited

to the mechanical and chemical rigors of everyday life in vivo.

7.2 Future Directions

This dissertation presents a holistic strategy for functional tissue engineering of articular cartilage.

Moving forward, several avenues should be explored to further this work and address other foci

currently investigated in the laboratory. A brief overview of these complementary research areas is

below.

7.2.1 Cartilage-cartilage integration in an inflammatory model of focal defect repair

The integration of cartilage tissue grafts with their surrounding host cartilage has a profound impact

on the stability of tissue repair as well as viability and functionality of the restored joint surface.

As such, the impact of pro-inflammatory cytokines on tissue integration can be detrimental to the

success of graft implantation procedures. In a meniscal injury model in vitro, IL-1 has been shown to

inhibit integrative repair (Wilusz et al. , 2008; McNulty et al. , 2010; Hennerbichler et al. , 2007), and

in an established in vitro cartilage defect model (Theodoropoulos et al. , 2011; Hunter & Levenston,

2004; Gilbert et al. , 2009; Djouad et al. , 2009; Reindel et al. , 1995; Hunter et al. , 2004; Hunter

& Levenston, 2002), the integration of tissue-engineered, chondrocyte-laden agarose constructs into

native articular cartilage was observed to be inhibited by exposure to pro-inflammatory cytokines

and the subsequent activation of extracellular regulated kinase 1/2 (Djouad et al. , 2009). Further,

inhibition of inflammatory pathways has been shown to improve cartilage repair outcomes in vivo

(Kimmerling et al. , 2015; Olson et al. , 2015), with GC injection being shown to improve integration

between cartilage surfaces (Englert et al. , 2006). These results indicate that suppression of the

inflammatory environment in the joint, potentially via GCs (as described in Chapter 4), is vital to

successful integration of engineered cartilage in vivo (Morisset et al. , 2007).

We have done preliminary work in this effort to investigate the impact of tissue maturity and

the influence of pro-inflammatory cytokines on integration of tissue-engineered constructs with na-

tive cartilage explants. Tissue-engineered constructs (derived from juvenile bovine chondrocytes)

containing either (a) no microspheres, (b) dexamethasone-loaded microspheres, or (c) empty micro-

spheres were implanted in cartilage explant rings at three time points and a supraphysiologic dose
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of pro-inflammatory cytokine was applied for the following week. Following this week in culture,

push-out testing results indicate (Tam et al. , 2007; Tan et al. , 2009; Dhert et al. , 1992; Gilbert

et al. , 2009; Hunter & Levenston, 2004), as expected, that periods of increased biosynthetic activity

in culture lead to improved integration along the construct-explant interface. Moreover, these re-

sults indicate that dexamethasone release internally from tissue-engineered constructs significantly

improves construct-explant integration in a pro-inflammatory environment (Figure 7.2).

Figure 7.2: LMS tissues, containing dexamethasone-loaded microspheres, demonstrated significantly
improved integration when compared with CTRL tissues without microspheres. ULMS tissues,
containing empty microspheres, performed similarly to CTRL tissues early in culture, but quickly
declined after the cessation of TGF-β3. * indicates a statistically significant difference compared to
other tissues.

Additional work is needed to ensure maintenance of tissue properties during cytokine treatment,

determine the role of tissue swelling in tissue integration, and explore the likelihood that similar

results will be observed in a clinically relevant, adult chondrocyte cell source.

7.2.2 Acellular, microsphere-laden hydrogel for combination therapy with

osteochondral autograft transfer system (OATS)

Chapter 4 investigates dexamethasone-loaded PLGA microspheres for applications in cellular-based

therapies to protect nascent tissues against the pro-inflammatory environment of the knee joint. As

an extension of that work, our laboratory is investigating the use of these microspheres within acellu-

lar hydrogels as a pure drug delivery strategy to mitigate the deleterious effect of pro-inflammatory

cytokines following surgery. OATS, a common procedure to replace focal defects with cartilage

from non-weight bearing areas of the patient’s own joint, suffers from exposure to the cytokine rich
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synovial environment following surgery. These chemical factors negatively effect graft incorporation

and integrity (Amin et al. , 2009; Amin et al. , 2010; D’Lima et al. , 2006; Goldring & Goldring,

2004; Houston et al. , 2013; Lotz & Kraus, 2010; Patwari et al. , 2003), leading to tissue degradation

and failure of the graft to integrate with host tissue (Wilusz et al. , 2008; Djouad et al. , 2009).

Building from discoveries made during microsphere development in this dissertation (Chapter 3),

we propose to backfill the donor site with a dexamethasone-loaded PLGA laden hydrogel plug that

serves to 1) prevent donor site morbidity (LaPrade & Botker, 2004) and 2) to deliver a therapeutic

level of dexamethasone to the joint space (Lu et al. , 2011) to promote tissue repair at the recipient

site.

In recognition of osteoarthritis as a disease of the entire knee joint, parallel strategies are being

developed to deliver dexamethasone-loaded microspheres via acellular (and cellular) patches affixed

to the synovium (Figure 7.3) . In doing so, we intend to treat the articular cartilage as well as the

synovial lining of the joint, an often overlooked but integral component to the success of cartilage

repair.

Figure 7.3: Schematic of envisaged synovial patch (a) with dexamethasone releasing microspheres
in engineered synovium affixed to inner synovial lining (b) of the knee joint (c). Inset confocal
image of canine synovial cells (orange) and fluorescently-labeled dexamethasone microspheres (dex-
fluorescein, blue).

7.2.3 Dexamethasone fluorescein for single cell analysis

Motivated by Chapter 4 of this dissertation, our laboratory has recently developed an interest

in using dexamethasone fluorescein for studies of GC activation and binding in chondrocytes and
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fibroblast-like synoviocytes (FLS). The use of dexamethasone, and GCs more generally, as an anti-

inflammatory agent in IA injections is well established (Habib, 2009; Habib et al. , 2010; Dragoo

et al. , 2012; Wernecke et al. , 2015; Mader et al. , 2005). Dexamethasone, a lipid, can enter the

cell where it acts directly and indirectly by activating anti-inflammatory proteins in the cytosol

(Hafezi-Moghadam et al. , 2002; Cato et al. , 2002), upregulating pro-anabolic protein production

via GC-responsive elements on DNA (Hebbar & Archer, 2003; Nagaich et al. , 2004), and by

interfering with translocation of other transcriptional factors, namely nuclear factor-kappa B, to

the nucleus (McKay & Cidlowski, 1998; McKay & Cidlowski, 1999; De Bosscher et al. , 2003). A

better understanding of steroid binding kinetics, however, may shed light to the variable responses of

patients who receive IA steroid injections. To this end, we have performed preliminary experiments

to assess the feasibility of identifying GC-responsive elements in chondrocytes via dexamethasone

fluorescein. Early results indicate that binding within the nucleus (Figure 7.4b) and within the

cytosol (Figure 7.4c) can be captured.

Figure 7.4: Application of dexamethasone fluorescein for single cell analysis of glucocorticoid re-
ceptor binding. (a) 0 µM DEX. (b), (c) 1 µM images from different levels within z-stack. Green
indicates dexamethasone fluorescein binding the GC-receptor. (b) is nuclear translocation of the
GC-complex while (c) is binding in the cytosol. Images acquired with 100x objective.

Using this technique, future investigations should explore the following questions: Is there a delay

to onset of benefits from glucocorticoid binding? What is the stability of dexamethasone following

binding and activation of the GC-complex? What is the impact of GC receptor antagonist on the

anti-inflammatory capacity of dexamethasone?

Moreover, for 3D applications, we have successfully encapsulated dexamethasone fluorescein

with PLGA microspheres and embedded them within agarose hydrogels. In this way, mechanistic

investigations of chondrocyte response to GCs may more accurately reflect how chondrocytes will
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respond in vivo.

Figure 7.5: (a) Dexamethasone fluorescein-loaded PLGA microspheres (b) embedded within agarose
hydrogels. Scale bar = 200 µm.
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Appendix A Dexamethasone Concentration Determination

A.1 High pressure liquid chromatographic (HPLC) analyses of corticosteroids

The HPLC system is located in Dr. Nuckolls’ lab in the Department of Chemistry. Our contact

is Dr. Brandon Fowler. Future work with the HPLC will require training on the device, however,

there were no costs, aside from raw materials, involved in previous use of the system.

A.1.1 Sample preparation

Several protocols for sample preparation can be found in the literature (Hickey et al. , 2002b; Hickey

et al. , 2002a; Lamiable et al. , 1986; Zolnik & Burgess, 2008).

Dexamethasone is insoluble in water in its most common form. Dexamethasone 21-phosphate

disodium salt (Sigma D1159) is the compound used in our laboratory for encapsulation in PLGA

microspheres. Although poorly water soluble, dexamethasone 21-phosphate disodium salt is soluble

in methanol, serving as one part of water in the water-oil-water double emulsion technique used for

MS fabrication. Dexamethasone (Sigma D4902) used in our laboratory for standard cell culture is

less water soluble than its salt variant. The solubility characteristics of these two compounds should

be considered when preparing the sample for analysis.

While HPLC can be used to identify the concentration of multiple compounds within the same

sample, to improve the accuracy of results, dexamethasone should be the lone constituent of sam-

ples prior to analysis. Identification of either dexamethasone variant from phosphate buffered saline

(PBS), chondrogenic medium (CM), or synovial fluid (SF) first requires isolation (extraction) of

the compound to remove proteinaceous matter such as collagens and proteoglycans that have been

synthesized by the cells and release into the medium. The optimal strategy for isolation of dex-

amethasone from these fluids has yet to be identified. Collaborating with Dr. Brandon Fowler in

Dr. Colin Nuckolls’ lab in Columbia University’s Department of Chemistry, a current best strategy

has been identified. This approach exploits the water solubility of various proteins and molecules

within the sample. By diluting the PBS, CM, or SF sample 10-fold in methanol (containing 25

ng equilenin as internal standard), proteins and other water soluble matter will ’crash’ out of so-

lution, while less water soluble molecules, such as dexamethasone, will remain preferentially in the
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methanol phase. Water and methanol are miscible, meaning that water soluble proteins (collagens

and proteoglycans) will come out of solution and form a solid phase. The supernatant, containing

dexamethasone (or cortisol), can be removed. This volume can then be evaporated under a stream

of nitrogen. The remaining matter can be concentrated in a small volume of methanol (160 µL in

this embodiment, but can be changed for injection volume and # of repeats) for HPLC analysis1.

A.1.2 Standard curve for dexamethasone

The use of HPLC for dexamethasone measurement is predicated on the need to measure the molecule

at masses below that which can be determined using a standard spectrophotometer. A protocol for

preparation of standard curve is detailed below.

Figure A.1: Preparation of working solutions of dexamethasone and equilenin for HPLC standards
and analysis.

The above table (Figure A.1) should be followed to develop 1x working solutions of both dex-

amethasone and equilenin. Both 1x working solutions should be used in the standards (prepare

duplicates) below (Figure A.2).

1Although not explored here, the same extraction protocol may be applied for use with a UV-Vis spectrophotome-
ter.
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Figure A.2: Preparation of standards for HPLC analysis.

The standards should be prepared in microcentrifuge tubes. For HPLC analysis, 160 µL of the

sample should be transferred to glass vials (Sigma 29652-U; package of 100, certified vial kit, 2 mL)

with small-volume glass inserts (Sigma 24707; package of 100, insert for 2 mL standard vial, up to

150 µL). Glass vial caps contain a silicone septa (with slit) to allow the machine to enter the vial

during injection.

A.1.3 Theory and use of Agilent Infinity LC system

HPLC is a technique to separate, identify, and quantify compounds of interest within a mixture. The

sample is injected into a mobile phase, typically comprised of a miscible combination of aqueous

and organic solvents, passed through a solid absorbent material (stationary phase) containing a

specific particle size, packing structure, and polarity. Understanding the properties of the sample

(size, polarity) allows for optimization of the stationary and mobile phase to expedite sample elution

from the column. A detector, at the end of the column, will measure absorbance of the sample at

a given wavelength (245 nm in this case).

For dexamethasone identification and quantification, we have used a reverse phase set up in

which the stationary phase is a C-18 column (non-polar) and the mobile phase (moderately polar)

comprises (60:40) 4 mM ammonium acetate buffer:acetonitrile. This arrangement is selected because

of the only slightly-polar nature of the dexamethasone (or hydrocortisone) molecule.

Using the above context and below protocol, dexamethasone will elute from the column in ∼5

minutes while the internal standard, equilenin, elutes in ∼12 minutes.
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• Samples reconstituted in 160 µL methanol.

• Check miscibility of reagents. (Aqueous solutions versus others.) Replace reagents, if neces-
sary.

• Remove line from previous reagents and clean frit with compressed air. Replace frit on barb
and insert to new reagent.

• Select ‘BR-DEXAMSETHASONE.mtd’ as the method.

– Select ‘Set Up Pump’ and indicate which reagent is on what line.

– Flush the line you just put the frit in to.

∗ 100% channel at 5 mL/min with the ‘prime valve’ open (full counterclockwise turn).
Do this for both reagents separately. System can only add channels to 100% and
cannot ON OFF pump faster than 5 mL/min because of line pressures.

∗ Start the priming by closing out the window and selecting the ‘on’ box.
∗ Monitor line for first air bubbles that come through. Allow five minutes of additional

time before switching to the next line.

• During flush, set up ‘Sequence Parameters’. (Left click on tray.)

– Enter the subdirectory ‘Brendan’.

– Select 60 minute wait after loading method.

– Check the box for post-sequence and ‘macro “SHUTDOWN.MAC,go’ from the dropdown
menu.

– Select ok to close the window.

– Delete any values in the ‘Fraction Start Location’ field. 2

• Set up ‘Sample List’ via left click on tray.

– Create table where vial number reflects position of the vial in the tray.

– Sample name can be as desired.

– The method here should be the method chosen above.

– The # of injections may vary, but in our case is 3.

– Select okay. Do not run sequence.

• Once lines are flushed, set flow to 0 mL/min. Close the primer knob by rotating all the way
to the right.

• Remove and cap any column that is on the instrument. Insert blank (connecting) column
and flush the system at 2 mL/min with 100% acetonitrile (~5 mins), then with the prescribed
protocol settings (~5 mins). (This is in part because of the use of reverse phase.)

2This is because of an error from a previous run. The Fraction Start Location indicates the vial at which the
sampler should begin to collect fractions into. We are not purifying sample so we do not need a value here. This is
doubly ensuring that the system is not confused.
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• Set the flow to 0 mL/min and replace blank column with C-18 column, ensuring that ‘flow’ is
in the correct direction (from the right of the system to the left). In the ‘Set up pump’ screen,
enter protocol settings (solvent ratios, run time, and flow rate), and click ‘OK’. 3

• Place samples in chamber and select ‘Start’. Click ‘OK’ for the 3 windows that pop up.

• Following the end of the runs, cleanse the system with acetonitrile at 100% and 1 mL/min
for 10-15 minutes. This will flush the system and leave the column in 100% acetonitrile for
storage.

• If possible, remove the column and store (with end caps secure).

A.1.4 Analysis of Agilent Infinity LC System .txt files - .m file

The companion software package for the HPLC system is effective in processing single files, especially

when baseline is not on the horizontal. The output plots time on the x-axis and absorbance units

(measured at 245 nm) on the y-axis, with the area under the curve of interest being comparable

to a curve of a known area. For the purposes of measuring dexamethasone, a standard curve was

created for direct comparison of absorbance measurements.

Figure A.3: Chromatographs output from custom .m file. (a) A full set of standards ’running the
column’ at ∼4 minutes, the length of time required for dex elution. Equilenin, the internal standard,
runs the column at ∼12.5 minutes. (b) Depicts a single concentration of dex (500 ng) with equilenin
standard (25 ng).

The .m files necessary to process .txt files from the HPLC can be found here. Example output

curves, generated by the .m file, are above for the dexamethasone standard curve (Figure A.3a)
3While the solvent ratios will be previously entered, run time and flow rate will need to be changed. These values

determine the experimental values. For dexamethasone, that means 1 mL/min, 20 min run, and 60/40 C:D (acetate
buffer:acetonitrile).
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and a sample dexamethasone run, with internal standard equilenin (Figure A.3b). NOTE: This

code works only when the baseline is on the horizontal. If there is a shift in the baseline from the

beginning of a peak to the end of the peak, the most accurate way to evaluate the area under the

curve is via the Agilent Infinity LC system companion software. (With effort, this .m file can be

modified to allow for baseline correction. I suggest trying to implement the BEADS package.)

A.2 Spectrophotometric analyses of dexamethasone concentration

Similar to the above protocol for HPLC applications, the protocol below describes preparation of

the working solution and standards for spectrophotometric analysis. Standards should be prepared

in duplicate, and the buffer should be consistent with the buffer in which the dexamethasone is in.

Figure A.4: Preparation of working reagents (top) and standards (bottom) for absorbance detection
of dexamethasone concentration.

Following preparation of the standards (Figure A.4), 100 µL of each standard should be measured

at 242 nm in a UV-Vis 96-well plate. Normal assay plates do not allow light in the ultraviolet range
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to pass through, necessitating UV-Vis 96-well plates for this assay. Using a UV-Vis capable plate

reader, such as the Synergy 2 multi-mode reader, measure the absorbance at 242 nm and plot the

absorbance against the concentration. A linear fit should be possible. Most recent efforts fit a line

described by (absorbance) = 6 x 10−5 x (concentration) + 0.0831, with an R2= 0.99968.

A.3 Fluorometric analyses of dexamethasone concentration

Similar to the above protocols for HPLC and spectrophotometric applications, the protocol below

describes preparation of the working solution and standards for fluorometric analysis. For this

assay, dexamethasone fluorescein should be used (Life-Technologies D1383). Note that the working

compound is light sensitive.

Figure A.5: Preparation of working reagents (top) and standards (bottom) for fluorescent detection
of dexamethasone concentration.
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Standards should be prepared in duplicate (Figure A.5), and the buffer should be consistent

with the buffer in which the dexamethasone is in. Following preparation of the standards, 100 µL of

each standard should be measured in a 96-well plate. If a black plate is available, that is preferable,

otherwise, a standard 96-well plate is acceptable. The Synergy 2 multi-mode reader allows for

fluorescent analysis of the sample. Excitation wavelength of 493 nm and emission wavelength of 519

nm. Plot the fluorescence against the concentration and a linear fit of the data should be possible.

Most recent efforts fit a line described by (absorbance) = 447.19 x (concentration) + 1513, with an

R2= 0.9942.

Appendix B Mechanical Evaluation of Cartilage Integration

B.1 Analysis of push out testing .txt files - .m file

The .m files necessary to process .txt files from the push out testing device can be found here.
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