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Abstract

Mining gene expression profiles has proven valuable for identifying signatures serving as surrogates of cancer phenotypes.
However, the similarities of such signatures across different cancer types have not been strong enough to conclude that
they represent a universal biological mechanism shared among multiple cancer types. Here we present a computational
method for generating signatures using an iterative process that converges to one of several precise attractors defining
signatures representing biomolecular events, such as cell transdifferentiation or the presence of an amplicon. By analyzing
rich gene expression datasets from different cancer types, we identified several such biomolecular events, some of which
are universally present in all tested cancer types in nearly identical form. Although the method is unsupervised, we show
that it often leads to attractors with strong phenotypic associations. We present several such multi-cancer attractors,
focusing on three that are prominent and sharply defined in all cases: a mesenchymal transition attractor strongly
associated with tumor stage, a mitotic chromosomal instability attractor strongly associated with tumor grade, and a
lymphocyte-specific attractor.
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Introduction

Despite their type-specific features, cancers share some common

traits, or ‘‘hallmarks,’’ related to, e.g., the abilities of some cancer

cells to divide uncontrollably or to invade surrounding tissues [1].

Furthermore, it has been recognized that gene expression

signatures resulting from analysis of cancer datasets can serve as

surrogates of cancer phenotypes [2]. Therefore, it is reasonable to

hypothesize that computational analysis of rich biomolecular

cancer datasets may reveal signatures that are shared across many

cancer types and are associated with specific cancer phenotypes.

Such rich datasets become publicly available at an increasing rate

from many sources, such as The Cancer Genome Atlas (TCGA).

However, attempts to identify any such robust ‘‘bioinformatic

hallmarks’’ of cancer have so far been largely unsuccessful.

Gene signatures may occasionally be found to exhibit similar-

ities across multiple cancer types. However, to our knowledge no

algorithm has ever produced a set of nearly identical signatures

after independently and separately analyzing datasets from

different cancer types.

There are various ways by which modules of co-expressed genes

can be identified from rich datasets, some of which may be within

the context of regulatory network discovery [3]. Clustering

approaches can classify a selected set of genes into subsets each

of which contains mutually related genes. Related techniques can

also be used to classify samples into cancer subtypes [4–6], each

characterized by a set of characteristic genes. One of the most

powerful computational approaches for this task has been

nonnegative matrix factorization (NMF) [7] combined with

consensus clustering [8], resulting in successful subtype identifica-

tion in several types of cancer.

The main objective addressed by techniques such as NMF is to

reduce dimensionality by identifying a number of metagenes

jointly representing the gene expression dataset as accurately as

possible, in lieu of the whole set of individual genes. Each

metagene in NMF is defined as a positive linear combination of

the individual genes, so that its expression level is an accordingly

weighted average of the expression levels of the individual genes.

The identity of each resulting metagene is influenced by the

presence of other metagenes within the objective of overall

dimensionality reduction achieved by joint optimization.

By contrast, if the aim is exclusively to identify metagenes as

surrogates of biomolecular events, then a fully unconstrained

algorithm should be devised, without any effort to achieve

dimensionality reduction, classification, mutual exclusivity, or-

thogonality, regulatory interaction inference, etc.

We can consider, for example, a hypothetical case in which we

have found a cluster consisting of a number of co-expressed genes

in a rich gene expression dataset. We may wish to scrutinize and

‘‘sharpen’’ this co-expression trying to identify the ‘‘heart’’ (core) of

the genes that are most strongly co-expressed in that case. In the

absence of a defining phenotype, we can continue applying an

unsupervised methodology, as follows: We can first define a

consensus metagene from the average expression levels of all genes

in the cluster, and rank all the individual genes in terms of their

association (defined numerically by some form of correlation) with

that metagene. We can then replace the member genes of the

cluster with an equal number of the top-ranked genes. Some of the
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original genes may naturally remain as members of the cluster, but

some may be replaced, as this process will ‘‘attract’’ some other

genes that are more strongly correlated with the cluster. We can

now define a new metagene defined by the average expression

levels of the genes in the newly defined cluster, and re-rank all the

individual genes in terms of their association with that new

metagene; and so on. It is intuitively reasonable to expect that this

iterative process will eventually converge to a cluster that contains

precisely the genes that are most associated with the metagene of

the same cluster, so that any other individual genes will be less

strongly associated with the metagene. We can think of this

particular cluster defined by the convergence of this iterative

process as an ‘‘attractor,’’ i.e., a module of co-expressed genes to

which many other gene sets with close but not identical

membership will converge using the same computational meth-

odology.

The above description represents a simplified conceptual

introduction of the computational methodology presented in this

paper. Rather than using the average of the expression values in

gene clusters of a particular size, the ‘‘attractors’’ are metagenes

defined as weighted averages of all genes where each individual

gene has a nonnegative weight, just like the metagenes defined

using NMF [7]. We found that, given a rich (loosely defined as

containing at least 200 samples) dataset represented by a gene

expression matrix, such metagenes can be naturally identified as

stable and precise attractors using a simple iterative approach. We

experimentally verified these nice convergence properties without

any exception after trying numerous times the method described

in this paper on such rich datasets.

This methodology is totally unsupervised, as it does not make

use of any phenotypic association. As we show in this paper,

however, once identified, a metagene attractor is likely to be found

associated with a phenotype.

We found that several attractor metagenes are present in nearly

identical form in multiple cancer types. This provides an

additional opportunity to combine the powers of a large number

of rich datasets to focus, at an even sharper level, on the core genes

of the underlying mechanism. For example, this methodology can

precisely point to the causal (driver) oncogenes within amplicons to

be among very few candidate genes. Importantly, this can be done

from rich gene expression data, which already exist in abundance,

without making any use of sequencing data.

We identified several attractors, each of which has the potential

to lead to corresponding testable biological hypotheses after

scrutinizing their top-ranked genes and finding a putative

underlying mechanism. For the purposes of this paper we present

the general methodology for the benefit of the research

community together with a listing of the attractors in six datasets

from three cancer types (ovarian, colon, breast).

Here, we focus on a few interesting cancer-associated attractors

that we found present in multiple cancer types. Particular

emphasis is given to what we consider to be three key

‘‘bioinformatic hallmarks’’ of cancer, related to the ability of

cancer cells to invade surrounding tissues; to divide uncontrollably;

and the ability of the organism to recruit the immune system to

fight cancer: a tumor stage-associated mesenchymal transition

attractor, a tumor grade-associated mitotic chromosomal instabil-

ity (mitotic CIN) attractor, and a lymphocyte-specific attractor.

Results

Derivation of Attractor Metagenes
Given a nonnegative measure J(Gi,Gj) of pairwise association

between genes Gi and Gj , we define an attractor metagene

M~
P

i wiGi to be a linear combination of the individual genes

with weights wi~J(Gi,M). The association measure J is assumed

to have minimum possible value 0 and maximum possible value 1,

so the same is true for the weights. It is also assumed to be scale-

invariant, therefore it is not necessary for the weights to be

normalized so that they add to 1, and the metagenes can still be

thought of as expressing a normalized weighted average of the

expression levels of the individual genes. See Materials and

Methods for the choice of the measure J .

According to this definition, the genes with the highest weights

in an attractor metagene will have the highest association with the

metagene (and, by implication, they will tend to be highly

associated among themselves) and so they will often represent a

biomolecular event reflected by the co-expression of these top

genes. This can happen, e.g., when a biological mechanism is

activated, or when a copy number variation (CNV), such as an

amplicon, is present, in some of the samples included in the

expression matrix. In the following we use the term ‘‘attractor’’ for

simplicity to refer to an attractor metagene, and the term ‘‘top

genes’’ to refer to the genes with the highest weights in the

attractor. The definition of an attractor metagene can readily be

generalized to include features other than gene expression, such as

methylation values. It can also be used in datasets of any objects

(not necessarily genes) characterized by any type of feature vectors,

with applications in other disciplines, such as social and economic

sciences.

The computational problem of identifying attractor metagenes

given an expression matrix can be addressed heuristically using a

simple iterative process: Starting from a particular seed (or

‘‘attractee’’) metagene M, a new metagene is defined in which the

new weights are wi~J(Gi,M). The same process is then repeated

in the next iteration resulting in a new set of weights, and so forth.

In all gene expression datasets that we tried we found that this

process converges to a limited number of stable attractors. Each

attractor is defined by a precise set of weights, which are reached

with high accuracy typically within 10 or 20 iterations.

This algorithmic behavior with nice convergence properties is

not surprising, because if a metagene represents co-expressed

Author Summary

Cancer is known to be characterized by several unifying
biological capabilities or ‘‘hallmarks.’’ However, attempts
to computationally identify patterns, such as gene expres-
sion signatures, shared across many different cancer types
have been largely unsuccessful. A typical approach has
been to classify samples into mutually exclusive subtypes,
each of which is characterized by a particular gene
signature. Although occasional similarities of such signa-
tures in different cancer types exist, these similarities have
not been sufficiently strong to conclude that they reflect
the same biological event. By contrast, we have developed
a computational methodology that has identified some
signatures of co-expressed genes exhibiting remarkable
similarity across many different cancer types. These
signatures appear as stable ‘‘attractors’’ of an iterative
computational procedure that tends to collect mutually
associated genes, so that its convergence can point to the
core (‘‘heart’’) of the underlying biological co-expression
mechanism. One of these ‘‘pan-cancer’’ attractors corre-
sponds to a transdifferentiation of cancer cells empower-
ing them with invasiveness and motility. Another repre-
sents a mitotic chromosomal instability of cancer cells. A
third attractor is lymphocyte-specific.

Attractor Metagenes in Cancer
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genes, then the next iteration will naturally ‘‘attract’’ other

similarly co-expressed genes, and so forth, until there are no other

genes more associated with the top genes than those genes

themselves. Furthermore, the set of the few genes with the highest

weight are likely to represent the ‘‘heart’’ (core) of the underlying

biomolecular event. In support of this concept, the association of

any of the top-ranked individual genes with the attractor metagene

is consistently and significantly higher than the pairwise associa-

tion between any of these genes, suggesting that the set of these top

genes jointly comprise a proxy representing a biomolecular event

better than each of the individual genes would.

Indeed, related versions of the signatures identified by attractors

in this paper have been previously identified in various contexts in

individual cancer types, often intermingled with additional genes.

However, the contribution of our work is that these signatures are

found as pan-cancer biomolecular events, sharply pointing to the

underlying mechanism. Therefore the top genes of the attractors

will be appropriate for being used as biomarkers or for

understanding the underlying biology. For example, one of the

attractors that we identified (the ‘‘mitotic chromosomal instability’’

attractor, described below) has previously been found in approx-

imate forms among sets of genes described generally [9] as

‘‘proliferation’’ or ‘‘cell cycle related’’ markers, while the actual

attractor points much more sharply to particular elements in the

structure of the kinetochore-microtubule interface.

A reasonable implementation of an ‘‘exhaustive’’ search of

attractor metagenes is to start from each individual gene as a seed

(‘‘attractee’’) assigning a weight of 1 to that gene, and 0 to all the

other genes. Each gene participating in a particular co-expression

event will then lead to the same attractor when used as attractee.

The computational implementation of the algorithm is described

in Materials and Methods. We note that a dual method can be

used to identify attractor ‘‘metasamples’’ as representatives of

subtypes, and we can also combine such metasamples with the

attractor metagenes in various ways to achieve biclustering, but

this topic is not examined in this paper.

We analyzed six datasets, two from ovarian cancer, two from

breast cancer and two from colon cancer (Supplementary Text

S1). In each case, we identified general (Supplementary Table S1)

and genomically localized (Supplementary Table S2) attractors

and we found that many among them appear in similar forms in

all six datasets using particular merging and ranking criteria in

each case (Materials and Methods and Supplementary Text S1).

Following are descriptions of some of our results, starting with the

three strongest multi-cancer attractors.

Mesenchymal Transition Attractor Metagene
This attractor contains mostly epithelial-mesenchymal transition

(EMT)-associated genes. Table 1 provides a listing of the top 100

genes based on their average mutual information (Materials and

Methods) with their corresponding attractor metagenes.

The consistency of the attractor is established by the fact

(Supplementary Table S1) that there are many genes (COL5A2,

COL1A2, SPARC, CTSK, FBN1, VCAN, AEBP1, SERPINF1)

that are among the top 50 genes in the attractors of all six datasets.

Table 1. Top 100 genes of the mesenchymal transition
attractor based on six datasets.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

1 COL5A2 0.814 51 SULF1 0.505

2 VCAN 0.775 52 LOXL1 0.502

3 SPARC 0.766 53 PRRX1 0.502

4 THBS2 0.758 54 PPAPDC1A 0.499

5 FBN1 0.749 55 COL10A1 0.498

6 COL1A2 0.749 56 ITGA11 0.495

7 COL5A1 0.747 57 NTM 0.494

8 FAP 0.734 58 MXRA8 0.494

9 AEBP1 0.711 59 FIBIN 0.493

10 CTSK 0.709 60 WISP1 0.483

11 COL3A1 0.688 61 RCN3 0.483

12 COL1A1 0.683 62 TNFAIP6 0.481

13 SERPINF1 0.674 63 ECM2 0.480

14 COL6A3 0.669 64 HTRA1 0.480

15 CDH11 0.663 65 EFEMP2 0.478

16 GLT8D2 0.658 66 MXRA5 0.474

17 LUM 0.654 67 ACTA2 0.472

18 MMP2 0.654 68 LOX 0.470

19 DCN 0.650 69 ITGBL1 0.466

20 CCDC80 0.637 70 PMP22 0.465

21 POSTN 0.631 71 P4HA3 0.464

22 CTHRC1 0.616 72 PTRF 0.463

23 ADAM12 0.613 73 CALD1 0.460

24 COL6A2 0.608 74 HEG1 0.458

25 MSRB3 0.608 75 NEXN 0.455

26 OLFML2B 0.607 76 NID2 0.455

27 INHBA 0.600 77 TAGLN 0.455

28 FSTL1 0.600 78 FAM26E 0.452

29 SFRP2 0.596 79 ZNF521 0.452

30 SNAI2 0.577 80 SFRP4 0.451

31 CRISPLD2 0.574 81 PALLD 0.450

32 PCOLCE 0.571 82 OLFML1 0.447

33 PDGFRB 0.567 83 FILIP1L 0.447

34 BGN 0.565 84 TIMP3 0.445

35 COL12A1 0.560 85 SPON2 0.443

36 ANGPTL2 0.555 86 SPOCK1 0.443

37 COPZ2 0.553 87 COL8A2 0.441

38 CMTM3 0.549 88 GPC6 0.438

39 ASPN 0.547 89 PDPN 0.437

40 FN1 0.545 90 GFPT2 0.436

41 CNRIP1 0.540 91 LHFP 0.436

42 FNDC1 0.538 92 GREM1 0.436

43 LRRC15 0.533 93 TGFB1I1 0.435

44 COL11A1 0.529 94 C1S 0.433

45 ANTXR1 0.528 95 EDNRA 0.432

46 RAB31 0.527 96 GAS1 0.431

47 FRMD6 0.524 97 NOX4 0.431

48 TSHZ3 0.520 98 FBLN2 0.428

49 THY1 0.519 99 TCF4 0.428

Table 1. Cont.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

50 NNMT 0.519 100 NUAK1 0.427

doi:10.1371/journal.pcbi.1002920.t001
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The corresponding P value is less than 1027 by permutation test

(Materials and Methods). Similar results are found in other solid

cancer types in all cases that we tried.

This is a stage-associated attractor, in which the signature is

significantly present only when a particular level of invasive stage,

specific to each cancer type, has been reached. Supplementary

Table S3 demonstrates this phenomenon in three cancer datasets

from different types (breast, ovarian and colon) that were

annotated with clinical staging information, by providing a listing

of differentially expressed genes, ranked by fold change, when

ductal carcinoma in situ (DCIS) progresses to invasive ductal

carcinoma; ovarian cancer progresses to stage III; and colon

cancer progresses to stage II. In all three cases, the attractor is

highly enriched among the top genes. Specifically, among the top

100 differentially expressed genes, the number of attractor genes

included in Table 1 is 47 in breast cancer, 42 in ovarian cancer

and 37 in colon cancer. The corresponding P values are 2610293,

4610280 and 8610278, respectively.

This attractor has been previously identified with remarkable

accuracy as representing a particular kind of mesenchymal

transition of cancer cells present in all types of solid cancers tested

leading to a published list of top 64 genes [10,11]. This list was

generated using a supervised algorithm using association with

tumor stage. Indeed 52 of these top 64 genes also appear in Table 1

(P,102114), and furthermore all top 19 genes of Table 1 are

among the 64. We found that most of the genes of the signature

were expressed by the cancer cells themselves, and not by the

surrounding stroma, at least in a neuroblastoma xenograft model

that we tried [11]. We also found that the signature is associated

with prolonged time to recurrence in glioblastoma [12]. Related

versions of the same signature were previously found to be

associated with resistance to neoadjuvant therapy in breast cancer

[13]. These results are consistent with the finding that EMT

induces cancer cells to acquire stem cell properties [14]. It has

been hypothesized that EMT is a key mechanism for cancer cell

invasiveness and motility [15–17]. The attractor, however, appears

to represent a more general phenomenon of transdifferentiation

present even in nonepithelial cancers such as neuroblastoma,

glioblastoma and Ewing’s sarcoma.

Although similar signatures are often labeled as ‘‘stromal,’’

because they contain many stromal markers such as a-SMA and

fibroblast activation protein, the fact that most of the genes of the

signature were expressed by xenografted cancer cells [11], and not

by mouse stromal cells, suggests that this particular attractor of

coordinately expressed genes represents cancer cells having

undergone a mesenchymal transition. The signature may indicate

a non-fibroblastic transition, as occurs in glioblastoma, in which

case collagen COL11A1 is not co-expressed with the other genes of

the attractor. We have hypothesized that a full fibroblastic

transition of the cancer cells occurs when cancer cells encounter

adipocytes [11], in which case they may well assume the duties of

cancer-associated fibroblasts (CAFs) in some tumors [1]. In that

case, the best proxy of the signature [10] is COL11A1 and the

strongly co-expressed genes THBS2 and INHBA. Indeed, the 64

genes of the previously identified signature were found from multi-

cancer analysis [10] as the genes whose expression is consistently

most associated with that of COL11A1.

The only EMT-inducing transcription factor found upregulated

in the xenograft model [11] is SNAI2 (Slug), and it is also the one

most associated with the signature in publicly available datasets.

We also found that the microRNAs most highly associated with

this attractor are miR-214, miR-199a, and miR-199b. Interest-

ingly, miR-214 and miR-199a were found to be jointly regulated

by another EMT-inducing transcription factor, TWIST1 [18].

The expression of the mesenchymal transition attractor

indicates that the tumor is actively invasive at the specific sample

site, so its prognostic value is cancer type and stage specific. As an

example, we analyzed an oral squamous cell carcinoma dataset

deposited in the Gene Expression Omnibus (GEO) under

accession number GSE25104. The corresponding Kaplan-Meier

survival curve (P = 0.0066) is shown in Figure 1.

Mitotic CIN Attractor Metagene
This attractor contains mostly kinetochore-associated genes.

Table 2 provides a listing of the top 100 genes based on their

average mutual information (Materials and Methods) with their

corresponding attractor metagenes, starting from CENPA, which

encodes for a histone H3-like centromeric protein.

The consistency of the attractor is established by the fact

(Supplementary Table S1) that there are many genes (CENPA,

DLGAP5, KIF2C, CCNB2, MELK, CCNA2, KIF20A, HJURP,

NUSAP1, BUB1, TTK, KIF11, NCAPH) that are among the top

50 genes in the attractors of all six datasets. The corresponding P

value is less than 1027 by permutation test (Materials and

Methods). Similar results are found in other solid cancer types in

all cases that we tried.

Contrary to the stage-associated mesenchymal transition

attractor, this is a grade-associated attractor, in which the

signature is significantly present only when an intermediate level

of tumor grade is reached. Supplementary Table S4 demonstrates

this phenomenon in three cancer datasets from different types

(breast, ovarian and bladder) that were annotated with tumor

grade information, by providing a listing of differentially expressed

genes, ranked by fold change, when grade G2 is reached. In all

three cases, the attractor is highly enriched among the top genes.

Specifically, among the top 100 differentially expressed genes, the

number of attractor genes included Table 2 is 40 in breast cancer,

38 in ovarian cancer and 27 in colon cancer. The corresponding P

Figure 1. Kaplan-Meier curves of mesenchymal transition
attractor metagene in oral squamous cell carcinoma dataset.
Gene expression data from 57 patients (GSE25104) were divided into
two groups: high mesenchymal transition metagene level and low
mesenchymal transition metagene level depending on whether the
metagene expression value exceeding the mean of the 57 patients. The
P value of the association was determined by log-rank test.
doi:10.1371/journal.pcbi.1002920.g001
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values are 4610274, 3610269 and 3610249, respectively.

Consistently, a similar ‘‘gene expression grade index’’ signature

[19] was previously found differentially expressed between

histologic grade 3 and histologic grade 1 breast cancer samples.

Furthermore, that same signature [19] was found capable of

reclassifying patients with histologic grade 2 tumors into two

groups with high versus low risks of recurrence.

This attractor is associated with chromosomal instability (CIN),

as evidenced from the fact that another similar gene set comprising

a ‘‘signature of chromosomal instability’’ [20] was previously

derived from multiple cancer datasets purely by identifying the

genes that are most correlated with a measure of aneuploidy in

tumor samples. This led to a 70-gene signature referred to as

‘‘CIN70.’’ Indeed 31 of these 70 genes appear in Table 2

(P,10253). However, several top genes of the attractor, such as

CENPA, DLGAP5, KIF2C, BUB1 and CCNA2 are not present in the

CIN70 list. Mitotic CIN is increasingly recognized [21] as a

widespread multi-cancer phenomenon.

The attractor is characterized by overexpression of kinetochore-

associated genes, which is known [22] to induce CIN. Overex-

pression of several of the genes of the attractor, such as the top

gene CENPA [23], as well as MAD2L1 [24] and TPX2 [25], has

also been independently previously found associated with CIN.

Included in the mitotic CIN attractor are key components of

mitotic checkpoint signaling [26], such as BUB1B, MAD2L1 (aka

MAD2), CDC20, and TTK (aka MSP1). Also among the genes in

the attractor is MKI67 (aka Ki-67), which has been widely used as a

proliferation rate marker in cancer.

Among transcription factors, we found MYBL2 (aka B-Myb) and

FOXM1 to be strongly associated with the attractor. They are

already known to be sequentially recruited to promote late cell

cycle gene expression [27] to prepare for mitosis.

Inactivation of the retinoblastoma (RB) tumor suppressor

promotes CIN [28] and the expression of the attractor signature.

Indeed, a similar expression of a ‘‘proliferation gene cluster [29]’’

was found strongly associated with the human papillomavirus E7

oncogene, which abrogates RB protein function and activates

E2F-regulated genes. Consistently, many among the genes of the

attractor correspond to E2F pathway genes controlling cell

division or proliferation. Among the E2F transcription factors,

we found that E2F8 and E2F7 are most strongly associated with

the attractor.

Lymphocyte-Specific Attractor Metagene
This attractor consists mainly of lymphocyte-specific genes with

prominent presence of CD53, PTPRC, LAPTM5, DOCK2, LCP2

and IL10RA. It is strongly associated with the expression of

microRNA miR-142 as well as with particular hypermethylated

and hypomethylated gene signatures [30]. There is also significant

overlap between the sets of hypomethylated and overexpressed

genes, suggesting that their expression is triggered by hypomethy-

lation. Gene set enrichment analysis reveals that the attractor is

found enriched in genes known to be preferentially expressed in

differentiation into lymphocytes [31]. Table 3 provides a listing of

the top 100 genes of the lymphocyte-specific attractor based on

Table 2. Top 100 genes of the mitotic CIN attractor based on
six datasets.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

1 CENPA 0.720 51 CDCA8 0.532

2 DLGAP5 0.693 52 CDC45 0.528

3 MELK 0.684 53 KIF18A 0.524

4 BUB1 0.674 54 HMMR 0.506

5 KIF2C 0.660 55 TOP2A 0.505

6 KIF20A 0.658 56 CENPF 0.503

7 KIF4A 0.656 57 ZWINT 0.503

8 CCNA2 0.654 58 PLK1 0.501

9 CCNB2 0.652 59 RAD51AP1 0.501

10 NCAPG 0.649 60 FAM83D 0.498

11 TTK 0.642 61 E2F8 0.497

12 CEP55 0.638 62 CENPE 0.497

13 CCNB1 0.632 63 MKI67 0.492

14 CDK1 0.629 64 CENPN 0.491

15 HJURP 0.626 65 MAD2L1 0.489

16 CDC20 0.624 66 CHEK1 0.486

17 CDCA5 0.615 67 GTSE1 0.477

18 NCAPH 0.615 68 RAD51 0.475

19 BUB1B 0.609 69 SGOL2 0.474

20 KIF23 0.592 70 PARPBP 0.469

21 KIF11 0.591 71 TRIP13 0.467

22 BIRC5 0.589 72 SHCBP1 0.465

23 NUF2 0.587 73 DTL 0.465

24 TPX2 0.586 74 CENPL 0.462

25 AURKB 0.582 75 FEN1 0.461

26 RACGAP1 0.580 76 FANCI 0.461

27 NUSAP1 0.580 77 FBXO5 0.459

28 ASPM 0.579 78 ECT2 0.457

29 MCM10 0.579 79 MND1 0.456

30 PRC1 0.576 80 CDC25C 0.456

31 DEPDC1B 0.572 81 PBK 0.456

32 UBE2C 0.569 82 KPNA2 0.452

33 UBE2T 0.567 83 RAD54L 0.452

34 NEK2 0.566 84 ESPL1 0.447

35 FOXM1 0.565 85 CDCA2 0.446

36 NDC80 0.556 86 FAM64A 0.440

37 CDCA3 0.556 87 CENPK 0.436

38 FAM54A 0.553 88 MYBL2 0.435

39 ANLN 0.551 89 SPAG5 0.434

40 KIF15 0.548 90 EZH2 0.431

41 STIL 0.547 91 SMC4 0.430

42 EXO1 0.542 92 TACC3 0.428

43 AURKA 0.540 93 C11orf82 0.427

44 PTTG1 0.539 94 MASTL 0.426

45 OIP5 0.539 95 ASF1B 0.426

46 RRM2 0.539 96 PTTG3P 0.425

47 DEPDC1 0.539 97 CENPW 0.424

48 CDKN3 0.538 98 ORC1 0.424

49 KIF14 0.537 99 HELLS 0.422

Table 2. Cont.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

50 SPC25 0.534 100 TK1 0.421

doi:10.1371/journal.pcbi.1002920.t002
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their average mutual information (Materials and Methods) with

their corresponding attractor metagenes.

The gene membership of the attractor provides hints about the

underlying immune mechanism, which could be valuable towards

generating hypotheses for potential immunotherapies such as

adoptive transfer of lymphocytes. For example, the presence of the

signal-transducing LCP2 (aka SLP-76) gene, together with the

adaptor FYB (aka ADAP), suggests the formation of the SLP-76-

ADAP adaptor module, which is known to regulate lymphocyte

co-stimulation mediated by integrin ITGB2 (aka LFA-1), another

prominent gene in the attractor [32].

Association of the Three Main Attractor Metagenes with
Prognosis in Breast Cancer

We found that each of the above three main attractors under

particular conditions is highly prognostic in breast cancer by

analysing the METABRIC discovery breast cancer dataset [33]

which includes both expression as well as survival data.

Mesenchymal transition attractor. In breast cancer, the

mesenchymal transition attractor is expressed very early, as cancer

becomes invasive. The presence of the attractor in a particular

sample of high-stage tumor in not as informative, because of

heterogeneity. On the other hand we found that the presence of

the attractor in early-stage tumors is highly prognostic, consistent

with the hypothesis that it indicates increased invasiveness. As

shown in Figure 2, the Kaplan-Meier 15-year survival curves of

the mesenchymal transition attractor using all samples does not

show any significance. However, when we restrict the samples to

early stage patients, defined as having no positive lymph nodes and

tumor size less than 30 mm, the association between the attractor

and survival became significant (P = 0.032).

Mitotic CIN attractor. The expression of the mitotic CIN

attractor indicates that the tumor is dividing uncontrollably and

therefore, in all cases, the attractor is highly prognostic for survival.

The corresponding Kaplan-Meier 15-year survival curve

(P,261028) is shown in Figure 3. Furthermore, we ranked all

the genes in terms of the concordance index [34] between the

survival and the individual gene’s expression value from the same

rich dataset. Table 4 shows the top 100 genes, within which 47

(indicated by underline and boldface), including the top six, are

also among the genes shown in Table 2 (P = 2610298 by Fisher’s

exact test). This extraordinary enrichment (also note that eight

among the top ten genes, including the top three, are among the

genes of Table 2) demonstrates that the members of the mitotic

CIN attractor are, among all genes, the most prognostic ones, at

least in breast cancer.

Lymphocyte-specific attractor. We found the attractor to

be strongly protective in ER-negative breast cancers. As shown

in Figure 4, the Kaplan-Meier 15-year survival curve restricted

to ER-negative reveals association with longer survival

(P = 0.004). Although the precise underlying biological mech-

anisms are unclear, it appears that this effect is due to some

type of immune system recruitment to fight cancer. Interest-

ingly, however, this effect is reversed in the presence of

multiple positive lymph nodes. Indeed, the corresponding

Table 3. Top 100 genes of the lymphocyte-specific attractor
based on six datasets.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

1 PTPRC 0.782 51 NCF1 0.560

2 CD53 0.768 52 CCL5 0.557

3 LCP2 0.739 53 LST1 0.557

4 LAPTM5 0.708 54 CD3D 0.553

5 DOCK2 0.699 55 RCSD1 0.548

6 IL10RA 0.699 56 FGL2 0.538

7 CYBB 0.698 57 HCST 0.538

8 CD48 0.691 58 MARCH1 0.538

9 ITGB2 0.679 59 FERMT3 0.536

10 EVI2B 0.675 60 FCGR2B 0.533

11 MS4A6A 0.673 61 GIMAP5 0.530

12 TFEC 0.659 62 MYO1F 0.530

13 SLA 0.657 63 KLHL6 0.530

14 TNFSF13B 0.657 64 GIMAP1 0.527

15 C1orf162 0.656 65 CD163 0.524

16 SAMSN1 0.652 66 CLEC7A 0.522

17 PLEK 0.649 67 CCR1 0.518

18 GMFG 0.647 68 GBP5 0.517

19 GIMAP4 0.647 69 NCF2 0.516

20 SASH3 0.645 70 HLA-DPA1 0.516

21 EVI2A 0.638 71 RNASE6 0.515

22 SRGN 0.638 72 CD14 0.515

23 AIF1 0.636 73 FAM26F 0.511

24 LAIR1 0.627 74 CD4 0.510

25 FYB 0.625 75 FCGR1A 0.506

26 FCER1G 0.623 76 GZMA 0.506

27 MPEG1 0.621 77 GPR183 0.505

28 CD86 0.621 78 CD84 0.505

29 C3AR1 0.611 79 NKG7 0.504

30 C1QB 0.608 80 C1QA 0.502

31 CD2 0.606 81 CD300LF 0.500

32 HCLS1 0.599 82 FPR3 0.499

33 HCK 0.592 83 PARVG 0.496

34 MNDA 0.587 84 TRAF3IP3 0.494

35 CD37 0.587 85 TYROBP 0.492

36 LY96 0.585 86 LPXN 0.492

37 CCR5 0.585 87 GIMAP8 0.492

38 ARHGAP9 0.580 88 MS4A7 0.490

39 CD52 0.580 89 IL2RB 0.489

40 GPR65 0.580 90 CD300A 0.488

41 GIMAP6 0.578 91 IGSF6 0.488

42 SLAMF8 0.577 92 SELPLG 0.488

43 WIPF1 0.577 93 FCGR2A 0.487

44 MS4A4A 0.574 94 NCKAP1L 0.483

45 ARHGAP15 0.573 95 DOK2 0.483

46 HAVCR2 0.567 96 CD247 0.481

47 ARHGAP30 0.566 97 SELL 0.480

48 CLEC4A 0.566 98 GZMK 0.479

49 TAGAP 0.564 99 CCR2 0.479

Table 3. Cont.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

50 CYTIP 0.563 100 LY86 0.479

doi:10.1371/journal.pcbi.1002920.t003
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Kaplan-Meier curve shown on the right side of Figure 4 when

restricted to patients with more than five positive lymph nodes

demonstrates that the presence of the signature is associated

with bad prognosis. This reversal may be explained by the fact

that the presence of the lymphocyte-specific signature when

lymph nodes are already affected implies that the cancer has

obtained a (devastating for the patient) tolerance to this type of

immune system recruitment.

Other Attractors
Chr8q24.3 amplicon attractor. Amplification in chr8q24 is

often considered to be associated with cancer because of the

presence of the MYC (aka c-Myc) oncogene at location 8q24.21.

Indeed, MYC is one of 157 genes in ‘‘amplicon 8q23-q24’’

previously identified [35] in an extensive study of the breast cancer

‘‘amplicome’’ derived from 191 samples.

We found, however, that the core of the amplified genes occurs at

location 8q24.3 and this is, in fact, our most prominent multi-cancer

amplicon attractor. Core genes of the attractor are PUF60 (aka FIR),

EXOSC4, SHARPIN, HSF1, BOP1, SLC52A2. It is known that

PUF60 can repress c-Myc via its far upstream element (FUSE),

although a particular isoform was found to have the opposite effect

[36]. The other genes may also play important roles. For example,

HSF1 (heat shock transcription factor 1) has been associated with

cancer in various ways [37]. It was found [38] that HSF1 can induce

genomic instability through direct interaction with CDC20, a key

gene of the mitotic CIN attractor mentioned above (listed in

Table 2). Furthermore, HSF1 was found [39] required for the cell

transformation and tumorigenesis induced by the ERBB2 (aka

HER2) oncogene (see subsequent discussion of HER2 amplicon)

responsible for aggressive breast tumors.

The top ten genes of the chr8q24.3 attractor, ranked by the

average of the highest five values of mutual information (Materials

and Methods), are shown in Table 5. Interestingly, as shown in

one of the attractors in Supplementary Table S1, an aneuploidy

attractor involving a whole arm amplification of chr8q is also

occasionally present in multiple cancer types, and this 8q whole

arm amplification is the most prominent such aneuploidy attractor

among all chromosomes.

Furthermore, prognostic associations involving the 8q24.3

amplicon have recently been recognized in various cancers [40,41].

Figure 3. Kaplan-Meier curve of mitotic CIN attractor metagene
in breast cancer dataset. To evaluate the association between the
mitotic CIN metagene expression and the 15-year survival, patients
were divided into two groups: high mitotic CIN and low mitotic CIN.
This binary expression level was determined by whether the mitotic CIN
metagene expression value exceeding the mean of the patients. The P
value of the association based on log-rank test is 1.861028.
doi:10.1371/journal.pcbi.1002920.g003

Figure 2. Kaplan-Meier curve of mesenchymal transition attractor metagenes in breast cancer dataset. The mesenchymal transition
attractor metagene is most prominent in the early stage of breast cancer. The survival curve of the full dataset is insignificant (left). However, when
the samples are restricted to only those at early stage (with no positive lymph nodes and tumor size less than 30 mm), the association between the
mesenchymal transition attractor and the survival becomes significant (right), with P = 0.032.
doi:10.1371/journal.pcbi.1002920.g002
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Table 4. List of top-ranked genes in terms of survival concordance index of the METABRIC discovery dataset demonstrating
enrichment of the mitotic CIN attractor.

Rank Gene Symbol Concordance Index Rank Gene Symbol Concordance Index

1 CDCA5 0.670 51 PRR11 0.639

2 AURKA 0.663 52 LOC651816 0.638

3 KIF20A 0.662 53 KRT80 0.638

4 TROAP 0.661 54 C15orf42 0.637

5 UBE2C 0.659 55 SGOL1 0.637

6 AURKA 0.658 56 GPI 0.637

7 FAM83D 0.657 57 CEP55 0.637

8 SHMT2 0.655 58 MCM10 0.636

9 UBE2C 0.655 59 PKMYT1 0.635

10 CCNB2 0.653 60 CENPN 0.635

11 TPX2 0.653 61 C20orf24 0.635

12 EXO1 0.653 62 SPC24 0.635

13 ORC6 0.653 63 RIPK4 0.635

14 CENPA 0.653 64 TOMM40 0.634

15 C1orf106 0.652 65 ANLN 0.634

16 GTSE1 0.652 66 ADRM1 0.634

17 MELK 0.651 67 NCAPG 0.633

18 STIP1 0.651 68 CDCA8 0.633

19 SPC25 0.649 69 AIF1L 0.633

20 CENPA 0.649 70 MRPS5 0.633

21 GARS 0.649 71 GPR56 0.633

22 MELK 0.649 72 PEX13 0.633

23 UCK2 0.648 73 ENO1 0.633

24 HJURP 0.648 74 NUTF2 0.633

25 PTTG1 0.647 75 MEMO1 0.632

26 CBX2 0.646 76 TXNRD1 0.632

27 CCNE1 0.646 77 SLC7A5 0.631

28 PLK1 0.646 78 FOXM1 0.631

29 KIF2C 0.645 79 KIF14 0.631

30 CCNA2 0.645 80 PPP1R14B 0.631

31 GMPSP1 0.645 81 FAM54A 0.630

32 AURKB 0.645 82 C20orf24 0.630

33 BUB1 0.644 83 SGOL1 0.630

34 TRIP13 0.643 84 NUP93 0.630

35 FOXM1 0.643 85 ZNF695 0.630

36 CDC20 0.643 86 BIRC5 0.630

37 LOC731049 0.642 87 CENPL 0.630

38 POLQ 0.642 88 SOX11 0.630

39 GSK3B 0.642 89 KIF23 0.629

40 CCNE1 0.642 90 SLC52A2 0.629

41 KIF4A 0.641 91 AIF1L 0.629

42 PRC1 0.641 92 FEN1 0.629

43 LAD1 0.641 93 CDC25A 0.629

44 FAM64A 0.641 94 CDCA3 0.628

45 SAPCD2 0.641 95 TMEM132A 0.628

46 RACGAP1 0.641 96 CENPE 0.628

47 POLR2D 0.641 97 NACC2 0.628

48 CKAP2L 0.640 98 TTK 0.628
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Chr17q12 HER2 amplicon attractor. This amplicon is

prominent in breast cancer [42] and we also found it present in

some samples of ovarian cancer, but not as much in colon cancer.

So we initially used the four datasets of breast and ovarian cancer

for deriving the attractor. We found that ERBB2 (aka HER2),

STAR3, GRB7 and PGAP3 were the top-ranked genes, consistent

with their known presence in the amplicon. We also found that

gene MIEN1 (aka C17orf37) was very highly ranked in the two

datasets in which its probe set was present. MIEN1 has recently

been identified as an important gene within the 17q12 amplicon in

various cancers including prostate cancer [43]. Therefore, we

augmented the choice of datasets to the following seven, of which

MIEN1 is included in five: breast GSE2034, breast GSE32646,

breast GSE36771, breast TCGA, ovarian GSE9891, ovarian

GSE26193, ovarian TCGA. Table 5 shows the top ten genes

ranked by the average of the top five scores of mutual information

(Materials and Methods) in the seven datasets for each gene. The

results suggest that the above-mentioned five genes, including

MIEN1, are consistently strongly co-expressed, and therefore are

likely ‘‘driver’’ genes in the amplicon.

In addition to the narrow HER2 amplicon, it is known that

sometimes a large amplicon extends to more than a million bases

containing both HER2 as well as TOP2A (one of the genes of the

mitotic CIN attractor) at 17q21 [44]. We have observed that TOP2A

indeed appears among the top 50 genes in terms of its association

with the attractor in breast cancer. HER2/TOP2A co-amplification

has been linked with better clinical response to therapy.

Estrogen receptor breast cancer attractor. We found this

attractor clearly present only in breast cancer, and therefore we

derived it using six breast cancer datasets (GSE2034, GSE3494,

GSE31448, GSE32646, GSE36771, breast TCGA). Table 6

shows the top 50 genes ranked by the average mutual information

(Materials and Methods) in these datasets, revealing that genes

AGR3, CA12, AGR2, GATA3, FOXA1, MLPH and TBC1D9 are

strongly co-expressed with the estrogen receptor ESR1 in the

attractor. However, this co-expression is not as uniform as in the

other attractors. For example, the progesterone receptor PGR

appear in the list, but in reality it can be underexpressed even if the

estrogen receptor ESR1 is not.

Comparison with Other Unsupervised Algorithms
The scope of the algorithm identifying attractor metagenes is

different from that of other unsupervised methods, which are

usually aimed at identifying subtypes or mutually exclusive

clusters. Nevertheless, it is interesting to find to what extent other

algorithms can produce multiple cancer signatures each of which

appears in nearly identical form across different types. We applied

three widely used methods, k-means clustering, principal component

Figure 4. Kaplan-Meier curve of lymphocyte-specific attractor metagenes in breast cancer dataset. For ER-negative patients, the
expression of the attractor is highly protective (high expression implies longer survival, left). However, when multiple lymph nodes are already
affected, the expression of the attractor has a reversed effect on survival. When we restrict the samples to those with more than five positive lymph
nodes, higher expression of the lymphocyte-specific attractor implies shorter survival (right), although the association is not significant due to the
limited number of samples (76).
doi:10.1371/journal.pcbi.1002920.g004

Table 4. Cont.

Rank Gene Symbol Concordance Index Rank Gene Symbol Concordance Index

49 PTTG1 0.640 99 SNRPA1 0.628

50 ECE2 0.639 100 MMP15 0.628

The 47 underlined genes are also among the top 100 genes of the mitotic CIN attractor (Table 2).
doi:10.1371/journal.pcbi.1002920.t004
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analysis and hierarchical clustering on the six cancer datasets used in

this paper. In all cases, we listed the top fifty genes in each cluster and

applied the same clustering algorithm as in the main text to find

common genes among them and group them together. The results

are shown in Supplementary Text S2 and Supplementary Tables S5,

S6, S7. We found that, in all cases, these well-established methods

cannot identify multiple universal metagenes common in all six

tested datasets.

Using Attractor Metagenes as Proxies of Biomolecular
Events

A biomolecular event, whether it is present in multiple cancer

types or it is cancer specific, can be represented by a ‘‘consensus

attractor metagene’’ after analyzing multiple datasets. To generate

such consensus attractors, we use genes that were profiled by at

least three of the six datasets, then rank individual genes in terms

of their average mutual information (Materials and Methods) with

the corresponding attractor metagenes across all datasets in which

the gene was profiled.

For example, Figure 5 contains scatter plots from four different

rich breast cancer datasets connecting the mitotic CIN and

estrogen receptor attractors. It has previously been reported [45]

that breast tumors with high chromosomal instability are

predominantly of the estrogen receptor negative phenotype.

Although these scatter plots cannot be used for precise conclusions,

they do suggest in all cases that ER-negative tumors have high

mitotic chromosomal instability (or equivalently that low chromo-

somal instability implies that the tumor is ER-positive). The

reverse relationship, however, is not as clear.

Discussion

Gene expression analysis has resulted in several cancer types

being further classified into subtypes labeled, e.g. as ‘‘mesenchy-

mal’’ or ‘‘proliferative.’’ Such characterizations, however, may

sometimes simply reflect the presence of the mesenchymal

transition attractor or the mitotic chromosomal instability

attractor, respectively, in some of the analyzed samples. Similar

subtype characterizations across cancer types often share several

common genes, but the consistency of these similarities has not

been significantly high.

By contrast, using an unconstrained algorithm independent of

subtype classification or dimensionality reduction, we identified

several attractors exhibiting remarkable consistency across many

cancer types, suggesting that each of them represents a precise

biological phenomenon present in multiple cancers.

We found that the mesenchymal transition attractor is

significantly present only in samples whose stage designation has

exceeded a threshold, but not in all of such samples. On the other

hand, the absence of the mesenchymal transition attractor in a

profiled high-stage sample (or the absence of the mitotic

chromosomal instability attractor in a profiled high-grade sample)

does not necessarily mean that the attractor is not present in other

locations of the same tumor. Indeed, it is increasingly appreciated

[46] that tumors are highly heterogeneous. Therefore it is possible

for the same tumor to contain components, in which, e.g., some

are migratory having undergone mesenchymal transition, some

other ones are highly proliferative, etc. If so, attempts for subtype

classification based on one particular site in a sample may be

confusing.

Existing molecular marker products make use of multigene

assays that have been derived from phenotypic associations in

particular cancer types. For breast cancer, biomarkers such as

Oncotype DX [47] and Mammaprint [48] contain several genes

highly ranked in our attractors. For example, most of the genes

used for the Oncotype DX breast cancer recurrence score directly

converge to one of our identified attractors: MMP11 to the

mesenchymal transition attractor; MKI67 (aka Ki-67), AURKA (aka

STK15), BIRC5 (aka Survivin), CCNB1, and MYBL2 to the mitotic

CIN attractor; CD68 to the lymphocyte-specific attractor; ERBB2

and GRB7 to the HER2 amplicon attractor; and ESR1, SCUBE2,

PGR to the estrogen receptor attractor.

We envision, instead, a multi-cancer biomarker product that will

include detection of the level of expression of each of the key attractor

metagenes. These levels would need to be combined in different ways

in different cancer types, but each of the metagenes would indicate

the same attribute and the contributions of each component will be

cleanly distinguished. Even though molecular marker genes in some

existing products are already separated into groups that are related to

our attractor designation, any improvement in diagnostic, prognostic,

or predictive accuracy resulting from better such group designation

and better choice of genes in each group would be highly desirable.

Table 5. List of top ten genes in the chr8q24.3 and HER2 amplicons.

chr8q24.3 HER2

Rank Gene Symbol
Avg MI of Top 4
Datasets Rank Gene Symbol

Avg MI of Top 4
Datasets

1 EXOSC4 0.716 1 PGAP3 0.794

2 PUF60 0.659 2 ERBB2 0.793

3 BOP1 0.653 3 STARD3 0.768

4 SLC52A2 0.639 4 MIEN1 0.764

5 SHARPIN 0.634 5 GRB7 0.718

6 HSF1 0.616 6 PSMD3 0.602

7 FBXL6 0.615 7 GSDMB 0.539

8 CYC1 0.608 8 ORMDL3 0.498

9 SCRIB 0.552 9 MED24 0.414

10 GPAA1 0.551 10 MED1 0.400

doi:10.1371/journal.pcbi.1002920.t005
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We hope that the identification of the attractors of cancer, as

presented here, will be valuable in that regard.

Materials and Methods

The full code of the attractor finding algorithm is publicly

available in the Sage Bionetworks Synapse platform at https://

synapse.sagebase.org/#Synapse:syn1446295. In addition, we

provide a pseudo-code in Supplementary Text S3.

General Attractor Finding Algorithm
We chose the association measure J(Gi,Gj) between genes to be a

power function with exponent a of a normalized estimated

information theoretic measure of the mutual information [49]

I(Gi,Gj) with minimum value 0 and maximum value 1 (see

‘‘Mutual information estimation’’ below; more sophisticated related

association measures [50] can also be used, but computational

complexity will be prohibitive). In other words, J(Gi,Gj)~

Ia(Gi,Gj), in which the exponent acan be any nonnegative number.

The value of I(Gi,Gj) is set to zero if the Pearson correlation

between the two genes is negative. Each iteration defines a new

metagene in which the weightwi for gene Gi is equal to

wi~J(Gi,M) where M is the immediately preceding metagene.

The process is repeated until the magnitude of the difference

between two consecutive weight vectors is less than a threshold,

which we chose to be equal to 1027.

At one extreme, if a is sufficiently large then each of the seeds

will create its own single-gene attractor because all other genes will

always have near-zero weights. In that case, the total number of

attractors will be equal to the number of genes. At the other

extreme, if a is zero then all weights will remain equal to each

other representing the average of all genes, so there will only be

one attractor. The higher the value of a, the ‘‘sharper’’ (more

focused on its top gene) each attractor will be and the higher the

total number of attractors will be. As the value of a is gradually

decreased, the attractor from a particular seed will transform itself,

occasionally in a discontinuous manner, thus providing insight into

potential related biological mechanisms.

We empirically found that an appropriate choice of a (in the

sense of maximizing the strength of the attractor, as defined below)

for general attractors is around 5, in which case there will typically

be approximately 50 to 150 resulting attractors, each resulting

from many attractee genes. An alternative to the power function

can be a sigmoid function with varying steepness, but we found

that the consistency of the resulting attractors was worse in that

case.

As mentioned in the Introduction, an attractor metagene can

also be interpreted as a set of the top genes of the attractor, i.e., a

gene set that includes only the genes that are significantly

associated with the attractor. One empirical choice for such a

gene set would be to include only the genes whose mutual

information (or the z-score thereof) with the attractor metagene

exceeds a particular threshold. In fact, the attractor finding

algorithm itself can be designed to discover ‘‘attractor gene sets,’’

without assigning weights to genes. In that case, metagenes are

defined as simple averages of the genes in a gene set, and each

iteration leads to a new gene set consisting of the new set of top-

ranked genes in terms of their association with the previous

metagene (gene set sizes can be constant or adaptively changing in

various ways). We found, however, that such a method has the

disadvantage of occasionally leading to attractors with significant

overlap, which requires additional post-processing steps.

Identified attractors can be ranked in various ways. The

‘‘strength of an attractor’’ can be defined as the mutual

information between the nth top gene of the attractor and the

attractor metagene. Indeed, if this measure is high, this implies

that at least the top n genes of the attractor are strongly co-

expressed. We selected n = 10 as a reasonable choice, not too large,

but sufficiently so to represent a real complex biological

phenomenon of co-expression of at least ten genes. For amplicons,

n = 5 is sufficient to ensure that the oncogenes are included in the

co-expression). We use these choices when referring to the strength

of an attractor.

The top genes of many among the found attractors are

genomically localized. In that case the biomolecular event that

they represent is often the presence of a particular copy number

variation. In the cancer datasets that we tried, this phenomenon

almost always corresponds to a local amplification event known as

an amplicon. We therefore also devised a related amplicon-finding

algorithm, custom-designed to identify localized amplicon-repre-

senting attractor metagenes, described below.

Genomically Localized Attractor Finding Algorithm
To identify genomically localized attractors – almost always

amplicons – we use the same algorithm but for each seed gene we

restrict the set of candidate attractor genes to only include those in

the local genomic neighbourhood of the gene, and we optimize the

exponent a so that the strength of the attractor is maximized.

Specifically, we sort the genes in each chromosome in terms of

their genomic location and we only consider the genes within a

Table 6. Top 50 genes of the estrogen receptor breast cancer
attractor.

Rank Gene Symbol Avg MI Rank Gene Symbol Avg MI

1 AGR3 0.847 26 ERBB4 0.393

2 CA12 0.616 27 AR 0.383

3 FOXA1 0.613 28 P4HTM 0.383

4 GATA3 0.585 29 SLC44A4 0.380

5 MLPH 0.580 30 KDM4B 0.375

6 AGR2 0.570 31 GFRA1 0.374

7 ESR1 0.543 32 MAPT 0.370

8 TBC1D9 0.540 33 MYB 0.364

9 XBP1 0.460 34 DACH1 0.359

10 ANXA9 0.456 35 SLC7A8 0.359

11 PRR15 0.452 36 MAGED2 0.358

12 SCUBE2 0.444 37 FBP1 0.357

13 FSIP1 0.438 38 SLC22A5 0.355

14 TFF3 0.429 39 CMBL 0.346

15 SPDEF 0.429 40 DYNLRB2 0.346

16 NAT1 0.428 41 C6orf211 0.342

17 ABAT 0.423 42 GREB1 0.342

18 CCDC170 0.422 43 SIDT1 0.338

19 DNALI1 0.418 44 TTC39A 0.330

20 DEGS2 0.415 45 FAM214A 0.326

21 DNAJC12 0.411 46 IL6ST 0.324

22 SLC39A6 0.406 47 CXXC5 0.323

23 CAPN8 0.399 48 ACADSB 0.323

24 TFF1 0.397 49 CELSR1 0.322

25 THSD4 0.395 50 CLSTN2 0.322

doi:10.1371/journal.pcbi.1002920.t006
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window of size 51, i.e., with 25 genes on each side of the seed gene.

We further optimize the choice of the exponent a for each seed, by

allowing a to range from 1.0 to 6.0 with step size of 0.5 and

selecting the attractor with the highest strength.

Because the set of allowed genes is different for each seed, the

attractors will be different from each other, but ‘‘neighbouring’’

attractors will usually be very similar to each other. Therefore,

following exhaustive attractor finding from each seed gene in a

chromosome, we apply a filtering algorithm to only select the

highest-strength attractor in each local genomic region, as follows:

For each attractor, we rank all the genes in terms of their mutual

information with the corresponding attractor metagene and we

define the range of the attractor to be the chromosomal range of

its top 15 genes. If there is any other attractor with overlapping

range and higher strength, then the former attractor is filtered out.

This filtering is done in parallel, so elimination of attractors occurs

simultaneously.

Mutual Information Estimation
Assuming that the continuous expression levels of two genes G1

and G2 are governed by a joint probability density p12 with

corresponding marginal p1 and p2, the mutual information

I(G1,G2) is defined as the expected value of log(p12=p1p2). It is

a non-negative quantity representing the information that each

Figure 5. Scatter plots demonstrating the relationship between mitotic CIN attractor and estrogen receptor attractor in breast
cancer. The two metagenes were defined to be ‘‘consensus attractors’’ after ranking individual genes in terms of their average mutual information
with the corresponding attractor metagenes, across all datasets, and selecting the genes having average mutual information greater than 0.5. These
criteria led to 59 genes in the consensus mitotic CIN attractor (the top 59 genes in Table 2), and AGR3, ESR1, CA12, AGR2, GATA3, FOXA1, MLPH and
TBC1D9 (the top eight genes in Table 6) in the consensus estrogen receptor breast cancer attractor. These scatter plots reveal that ER-negative breast
tumors have high mitotic chromosomal instability, but not necessarily vice versa.
doi:10.1371/journal.pcbi.1002920.g005
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one of the variables provides about the other. The pairwise mutual

information has successfully been used as a general measure of the

correlation between two random variables. We compute mutual

information with a spline-based estimator [51] using six bins in

each dimension. This method divides the observation space into

equally spaced bins and blurs the boundaries between the bins

with spline basis functions using third-order B-splines. We further

normalize the estimated mutual information by dividing by the

maximum of the estimated I(G1,G1) and I(G2,G2), so the

maximum possible value of I(G1,G2) is 1.

Pre-processing Gene Expression Datasets
We used Level 3 data when directly available, and imputed

missing values using a k-nearest-neighbour algorithm with k = 10,

as implemented in R [52]. We normalized the other datasets on

the Affymetrix platform using the RMA algorithm as implemented

in the affy package in Bioconductor [53]. To avoid biasing

attractor convergence with multiple correlated probe sets of the

same gene, we summarized the probe set-level expression values

into the gene-level expression values by taking the mean of the

expression values of probe sets for the same genes. We used the

annotations for the probe sets given in the jetset package [54].

To investigate the associations between the attractor metagene

expression and the tumor stage and grade, we used the following

annotated gene expression datasets. For stage association: Breast

(GSE3893), TCGA Ovarian, Colon (GSE14333). For grade

association: Breast (GSE3494), TCGA Ovarian, Bladder

(GSE13507). For Breast GSE3494 we used only the samples

profiled by U133A arrays. For Breast GSE3893 we combined two

platforms by taking the intersections of the probes in the U133A

and the U133Plus 2.0 arrays. For datasets profiled by Affymetrix

platforms all the datasets were normalized using the RMA

algorithm. For Bladder GSE13507 normalization was done as

provided in the GEO.

P Value Evaluation
P values for gene set enrichment were evaluated with the

cumulative hypergeometric distribution using the total number of

genes in each dataset.

The significance of the consistency of the mesenchymal

transition and mitotic CIN attractors was evaluated as follows:

Supplementary Table S1 contains 210 gene sets from six cancer

datasets. Each of the gene sets contains 50 genes. The

mesenchymal transition metagene has eight genes (COL5A2,

COL1A2, SPARC, CTSK, FBN1, VCAN, AEBP1, SERPINF1)

common across all six datasets. The mitotic CIN metagene has 13

common genes (CENPA, DLGAP5, KIF2C, CCNB2, MELK,

CCNA2, KIF20A, HJURP, NUSAP1, BUB1, TTK, KIF11,

NCAPH) across all six datasets. To evaluate the significance of the

consistency across the six datasets, we randomly generated 210

gene sets with the same sizes as those in the Table. In other words,

we randomly selected 50 genes out of the 11,395 common genes to

generate a random gene set. We created 210 such random gene

sets, and then assigned them to six different datasets according to

the settings in the Table. We then performed the clustering

algorithm described in Materials and Methods. Each time, we

counted the maximum number of genes common in all six

datasets, and we repeated this process ten million times. This

constitutes a conservative way of evaluating consistency, in the

sense that for each random experiment we only record the

maximum number of common genes in the gene set cluster, and

we created random gene sets using only the common genes in the

six datasets. In these ten million experiments, it never occurred

that more than one gene was common in all six datasets.

Therefore, the corresponding P value for both the mesenchymal

transition metagene as well as the mitotic CIN metagene is less

than 1027, and is in fact much lower than that given the large

number (8 and 13 respectively) of the common genes.
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