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SUMMARY

An Arlequin poromechanics model is introduced to simulate the hydro-mechanical coupling effects of fluid-
infiltrated porous media across different spatial scales within a concurrent computational framework. A two-
field poromechanics problem is first recast as the twofold saddle point of an incremental energy functional. We
then introduce Lagrange multipliers and compatibility energy functionals to enforce the weak compatibility
of hydro-mechanical responses in the overlapped domain. To examine the numerical stability of this hydro-
mechanical Arlequin model, we derive a necessary condition for stability, the twofold inf–sup condition for
multi-field problems, and establish a modified inf–sup test formulated in the product space of the solution
field. We verify the implementation of the Arlequin poromechanics model through benchmark problems
covering the entire range of drainage conditions. Through these numerical examples, we demonstrate the
performance, robustness, and numerical stability of the Arlequin poromechanics model. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mechanical behavior of a fluid-infiltrated porous solid is significantly influenced by the presence
and flow of fluid in the pores. While the flow of the pore fluid may introduce rate dependence to the
mechanical responses of a porous medium, the deformation of solid skeleton may also displace pore
fluid and lead to build up of excess pore pressure. This hydro-mechanical coupling appears in a vari-
ety of natural and engineered materials, ranging from rocks, soils, and concretes to bones and soft
tissues. Reliable and efficient modeling of coupled hydro-mechanical processes in porous materials
is thus crucial to address many engineering problems, such as unconventional energy recovery, haz-
ards mitigation, and biomedical treatment [1–3]. Oftentimes, a major challenge in modeling these
coupled hydro-mechanical processes is the demand to capture physical phenomena occurring at mul-
tiple length scales that span several orders of magnitude. As an example, let us consider hydraulic
fractures in shale reservoirs. While these fractures are driven by fluid infiltration in nanometer-scale
pores, the information crucial for engineering application is the impact of these fractures on the
behavior and performance of kilometer-scale reservoirs. Nevertheless, due to its enormous compu-
tational costs, an explicit simulation of every grain-scale solid–fluid interaction in such a large-scale
problem is impractical.

One feasible approach to incorporate small-scale dynamics into large-scale modeling is to make
use of multiscale coupling techniques [4–6]. A variety of multiscale modeling methods have been
developed and advanced over the past few decades in order to address interactions between micro-
scopic and macroscopic responses. According to Aubertin et al. [7], these multiscale methods can be
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classified into three categories. The first category pertains to methods that model inherent multiscale
characteristics by introducing a length scale through phenomenological laws. For instance, Fleck
and Hutchinson [8] incorporate a strain gradient term into constitutive models such that multiple
material length parameters can be defined for the field equations corresponding to different domi-
nant mechanisms. Also, for capturing deformation bands much thinner than feasible mesh sizes, one
can insert enhanced basis functions or localization elements to embed strong or weak discontinuous
displacement fields [9–12].

The second category of multiscale methods is a class of hierarchical methods that incorporate
micro-structural information from unit cells to compute effective (homogenized) properties of coarse
(macroscopic) domains [13–18]. Kouznetsova et al. [19] present a gradient-enhanced homogeniza-
tion scheme which obtains macroscopic stress, strain measure, and their gradients from solutions of
boundary-value problems applied on representative volume elements. Ehlers et al. [20] describe a
homogenization procedure that upscales higher-order kinematics of particle ensembles to both con-
vectional stress measures and higher-order couple stresses. Liu et al. [15] apply a staggered nonlocal
scheme to introduce a physical length scale for hierarchically coupled discrete elements–finite ele-
ments modeling of granular materials in a corotational framework. Another related application of
homogenization-based multiscale methods has also been developed by several studies [4,5,21–23]
to conduct large-scale flow simulations using tomographic images. The performance of these hier-
archical multiscale methods relies on the existence of a representative elementary volume and the
design of sequential coupling schemes to establish an exchange of information across scales.

Multiscale methods in the third category are concurrent methods that apply fine-scale, computa-
tionally demanding models to local region(s) of high interest (e.g., crack tip), while use coarse-scale,
cost-efficient models elsewhere. Then, these methods extract high-resolution information in critical
region(s) performing concurrent simulations of physical processes across length scales. In these con-
current simulations, the fine, critical domain is connected to the coarse, non-critical domain either via
non-overlapped mortar interfaces (e.g., [24,25]) or overlapped handshaking domains (e.g., [26–30]).
Previous work has successfully developed concurrent methods for coupling discrete and continuum
models (e.g., [7,28,31]), classical local and non-local elastic continua (e.g., [32,33]), and structural
elements with various mesh refinements (e.g., [27]).

The major upshot of concurrent multiscale approach is that it enables computational resources
to be concentrated on region(s) of interest where important and complicated processes take place,
without neglecting the far-field influence. Such efficient allocation of computational resources can
significantly improve our modeling capabilities for a wide spectrum of problems whereby cou-
pled hydro-mechanical processes occur across multiple spatial scales. Examples of these problems
range from needle insertion into biological tissues [34], bone fractures [2], to hydraulic fracturing
in unconventional reservoirs [35], and injection-induced seismic events [36]. Engineering designs
and predictions for those applications can be substantially improved if numerical models can effi-
ciently allocate computational resources to resolve the fine-scale information in the localized region
of interest without neglecting the far-field influences.

In this work, we extend a concurrent multiscale method to simulate the coupled hydro-mechanical
processes in fluid-infiltrated porous media across spatial scales. The proposed numerical model is
based on the Arlequin framework, which was first proposed by Ben Dhia [26] as a general framework
for coupling different domains and models. The Arlequin framework has been successfully applied
to multiscale, multimodel simulations of a wide spectrum of multiscale solid mechanics problems
(e.g., [27,29,33,37,38]). The theoretical basis and numerical tools to predict the spatial stability have
been proposed in a few studies [28,33,38]. Each of these studies has proposed inf–sup tests for the
corresponding boundary value problems. However, to the best of our knowledge, there is not yet
any contribution dedicated to the extension of the Arlequin method to coupled hydro-mechanical
problems. The new contributions of this work include a compatibility energy functional for spatial
coupling of multiphase porous materials, a stability condition in the presence of both pore pressure
and domain coupling constraints, a combined inf–sup test derived to examine the spatial stability
using the product spaces of the displacement and pore pressure field, and numerical experiments that
verify and demonstrate the robustness and accuracy of the Arlequin poromechanics model.
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The rest of this paper is organized as follows. In Section 2, we formulate the Arlequin poromechan-
ics model, introducing a time-discrete variational statement and Lagrange multipliers for domain
coupling. Subsequently, in Section 3, we derive a necessary condition for spatial stability of the
developed method as a twofold inf–sup condition, and propose a new type of inf–sup test to evaluate
the stability. In Section 4, we verify the developed Arlequin method in the entire range of drainage
condition through two numerical examples. Then, we present a more complex example that show-
cases the performance of the method for coupling different models—particularly an isogeometric
extended finite element model and a standard finite element model.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single
contraction of adjacent indices of two tensors (e.g., a · b= aibi or c · d= cijdjk); the symbol ‘:’ denotes
a double contraction of adjacent indices of tensor of rank two or higher (e.g., C ∶ 𝝐e = Cijkl𝜖

e
kl);

the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g., a ⊗ b = aibj) or two symmetric second
order tensors (e.g., (𝜶 ⊗ 𝜷) = 𝛼ij𝛽kl). Following the standard sign convention in mechanics, stress is
positive in tension.

2. MIXED ARLEQUIN FORMULATION FOR POROMECHANICS

This section presents a mixed Arlequin formulation for poromechanics problems. We begin by intro-
ducing the notion of domain partitioning that allows for the use of the Arlequin method. Governing
equations of a coupled poromechanics problem are then reviewed briefly. To enforce the compat-
ibility of solid and fluid motions between the sub-domains, we recast the coupled poromechanics
problem as a saddle point problem of an incremental energy functional, and then apply partition of
unity to the incremental energy density functional. Lastly, we derive the weak form and the matrix
form of the Arlequin formulation.

2.1. Domain partitioning

Consider a two-phase porous medium that occupies a domain B ∈ R3. To model critical and non-
critical regions differently, we partition the domain B into a coarse sub-domain B and a sub-domain
B̃ such that B = B ∪ B̃, see Figure 1. Note that the two domains are overlapped in Bc = B ∩ B̃.
The coarse domain B involves non-critical processes that can be well simulated by relatively simple
models. Conversely, the fine domain B̃ contains critical regions and it is usually (much) smaller than
the coarse domain B. Therefore, we will concentrate more expensive, but more accurate models
(e.g., a more advanced constitutive model, finer/higher-order discretization) on the fine domain. It
is noted that even though the two models in the coarse and fine domains simulate the same physical
processes in the overlapped domain, they do not need to be identical. For notational consistency, we
shall denote quantities pertaining to B and B̃ by (·) and ̃(·), respectively (see Sun and Mota [33] for
the same notation).

Figure 1. Partitioning of the domain B into a coarse domain B and a fine domain B̃. The coarse and fine
domains are overlapped in Bc.
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The boundary of the entire porous medium 𝜕B is also partitioned as

𝜕B = 𝜕B ∪ 𝜕B̃, (2.1)

where 𝜕B denotes the boundary of the coarse domain with the unit normal vector n, and 𝜕B̃
the boundary of fine domain with the unit normal vector ñ. Depending on the type of boundary
conditions, the coarse domain boundary 𝜕B is further decomposed as:

− 𝜕uB : solid displacement boundary (Dirichlet).
− 𝜕tB : solid traction boundary (Neumann).
− 𝜕pB : fluid pressure boundary (Dirichlet).
− 𝜕qB : fluid flux boundary (Neumann).

Similarly, the fine domain boundary 𝜕B̃ is also decomposed as

− 𝜕ũB̃ : solid displacement boundary (Dirichlet).
− 𝜕t̃B̃ : solid traction boundary (Neumann).
− 𝜕p̃B̃ : fluid pressure boundary (Dirichlet).
− 𝜕q̃B̃ : fluid flux boundary (Neumann).

The decompositions of 𝜕B and 𝜕B̃ are subjected to the following restrictions

𝜕B = 𝜕uB ∪ 𝜕tB = 𝜕pB ∪ 𝜕qB, (2.2)

𝜕B̃ = 𝜕ũB̃ ∪ 𝜕t̃B̃ = 𝜕p̃B̃ ∪ 𝜕q̃B̃, (2.3)

∅ = 𝜕uB ∩ 𝜕tB = 𝜕pB ∩ 𝜕qB, (2.4)

∅ = 𝜕ũB̃ ∩ 𝜕t̃B̃ = 𝜕p̃B̃ ∩ 𝜕q̃B̃. (2.5)

The solid displacement boundary of the entire domain is the union of the solid displacement bound-
aries of the coarse and fine domains, that is, 𝜕uB = 𝜕uB ∪ 𝜕ũB̃. Similarly, the union of the fluid
pressure boundaries of the coarse and fine domains forms the entire fluid pressure boundary, that is,
𝜕pB = 𝜕pB∪𝜕p̃B̃. Note that in both cases, the coarse and fine domains can have overlapped Dirichlet
boundaries, that is, 𝜕uBc = 𝜕uB ∩ 𝜕ũB̃ ≠ ∅ and 𝜕pBc = 𝜕pB ∩ 𝜕p̃B̃ ≠ ∅. Similarly, the solid trac-
tion boundary of the entire domain is partitioned as 𝜕tB = 𝜕tB ∪ 𝜕t̃B̃ with an overlapped boundary
𝜕tBc = 𝜕tB ∩ 𝜕t̃B̃, and the fluid flux boundary as 𝜕qB = 𝜕qB ∪ 𝜕q̃B̃ with an overlapped boundary
𝜕qBc = 𝜕qB ∩ 𝜕q̃B̃. To enforce the compatibility between the fluid and solid motions of the coarse
and fine domains, we will introduce Lagrange multipliers to the sub-domains B ⧵ 𝜕uB (for the solid
displacement) and B ⧵ 𝜕pB (for the fluid pressure).

Finally, the initial conditions at t = 0 are given by {uo, po} for the coarse domain and {ũo, p̃o} for
the fine domain.

2.2. Field equations for poromechanics problems

In this work, our goal is to model coupled fluid-diffusion–solid-deformation processes in fluid-
saturated porous media. The formulation of the poromechanics model for fluid-saturated porous
media has been well established in the literature. Readers interested in the details of the porome-
chanics theory are referred to standard texts such as [1,3,39]. Here, we provide a brief overview of
the subject for completeness.

In a nutshell, the continuum poromechanics model conceptualizes the fluid-infiltrated porous
media as a continuum mixture of the solid and fluid constituents, each occupies a fraction of volume
in the macroscopic body. Provided that a representative elementary volume exists, the behavior of
porous media can be predicted by introducing proper constitutive laws for the solid skeleton and pore
fluid flow as well as imposing conservation laws for linear momentum and mass as field equations.
For simplicity, here we consider the case in which the pore space is filled up with a single-phase
fluid (e.g., water). Therefore, in what follows, we consider a two-phase continuum composed of one
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solid and one fluid constituents. In addition, the following assumptions are made to further simplify
the problem:

1. The isothermal condition holds.
2. The inertial effect is negligible.
3. There is no mass exchange between the solid and fluid constituents.
4. Reynold’s number of the flow in the pore space is sufficiently low such that convection is

negligible.
5. Darcy’s law is valid.
6. The deformation of the solid skeleton is elastic, isotropic, and infinitesimal.
7. The effective stress principle is valid.
8. The pore space is fully saturated by a single type of fluid.

The balance of linear momentum of the two-phase porous media then reads

𝛻 · (𝝈′ − Bp) + 𝜸 = 𝟎, (2.6)

where 𝝈′ is the effective stress, p is the pore pressure, and 𝜸 is the body force vector. The second-
order tensor B is a generalization of Biot’s coefficient in the isotropic elasticity case. For the linear
elasticity case, B may read (cf. [40]),

B = I − 1
3Ks

Csk ∶ I, (2.7)

where Ks is the intrinsic bulk modulus of the solid constituent,Csk is the fourth-order elasticity tensor,
and I is the second-order identity tensor. Note that in the isotropic case, this expression simplifies to
the classical expression of Biots coefficient B = BI = (1 − K∕Ks)I where K is the bulk modulus of
the solid matrix (cf. [3,41–43]). Thus, in this work, we consider the effective stress of the form

𝝈′ = 𝝈 + BpI, (2.8)

where 𝝈 is the total stress in the porous medium. When the solid deformation is infinitesimal and
hyperelastic, constitutive law for the solid skeleton can be expressed as

𝝈′ = 𝜕W(𝝐)
𝜕𝝐

, (2.9)

where W(𝝐) is the stored energy function of the solid skeleton. The infinitesimal strain tensor of the
solid skeleton 𝝐 reads,

𝝐 = 𝛻symu = 1
2
(𝛻u + 𝛻Tu). (2.10)

The corresponding incremental form of the solid constitutive relation in (2.9) is given by

Δ𝝈′ = D ∶ Δ𝝐 (2.11)

where D is a fourth-order tensor of tangent stiffness tensor. If the solid skeleton exhibits linear
isotropic elastic behavior, then D = Csk. For soils and soft rocks Biot’s coefficient B ≈ 1, whereas
for hard rocks or biological materials B is usually less than one. Finally, the body force 𝜸 acting on
the mixture of the solid matrix and the pore fluid is given by

𝜸 = 𝜸s + 𝜸f = (1 − 𝜙f )𝜌sg + 𝜙f 𝜌f g, (2.12)

where 𝜙f is the porosity (the volume fraction of the pore fluid), 𝜌s and 𝜌f are the intrinsic densities
of the solid and fluid constituents, respectively, and g is the gravitational acceleration. The balance
of mass with compressible fluid and solid constituents reads,

1
M

ṗ + B𝛻 · u̇ + 𝛻 · q = 0, (2.13)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
DOI: 10.1002/nme



W. SUN, Z. CAI AND J. CHOO

where M is Biot’s modulus and q is the seepage velocity. For fully saturated, isotropic porous
materials, M may be related to the intrinsic bulk moduli and porosity as follows [40,42,43]:

M =
KsKf

Kf (B − 𝜙f ) + Ks𝜙f
. (2.14)

If the flow in the pore space remains laminar and the fluid movement is dominated by viscous forces,
then the seepage velocity and the gradient of the pore pressure can be related by Darcy’s law,

q = −1
μ

k · (𝛻p − 𝜌f g), (2.15)

where k is the effective permeability and μ is the dynamic viscosity of the pore fluid. In this
work, we shall assume isotropic permeability, that is, k = kI. Substituting this equation into (2.13)
leads to

1
M

ṗ + B𝛻 · u̇ − 𝛻 · 1
μ

k(𝛻p − 𝜌f g) = 0. (2.16)

Observe that the two governing Eqs. (2.6) and (2.16) have two unknowns—the solid displacement
u and the pore pressure p. For this reason, this formulation is often referred to as a u∕p formulation
(cf. [1,16,44,45]). Alternatively, it is also possible to formulate a poromechanics problem in terms of
fluid mass flux vector and solid displacement unknowns (cf. [46,47]) or in terms of Darcy’s velocity,
solid displacement, and pore pressure (cf. [1,48,49]). The application of the Arlequin framework for
the latter two formulations (i.e., u∕v and u∕v∕p) is not considered herein, and will be considered in
future studies.

2.3. Variational statement for poromechanics

The goal of this section is to derive a time-discrete weak form of the poromechanics problem, which
will then serve as the basis for the derivation of the Arlequin poromechanics model presented in
Section 2.4. In previous works, such as [1,45,50–52], the finite element model for the poromechan-
ics problem is often formulated via a weight-residual argument. An alternative approach has been
explored by Biot [53] and Armero and Callari [10] who consider the porous medium an open sys-
tem in which field equations can be recast as the Euler–Lagrange equation from a generalization
of d’Alembert’s principle. While both approaches may lead to the same set of field equations, here
we adopt the latter approach in order to obtain an equivalent static problem between two incremen-
tal time steps before discretizing the spatial domain. An upshot of this approach is that it makes the
solutions of the equivalent static problem corresponding to an incremental saddle point energy func-
tional, hence allowing us to formulate the Arlequin poromechanics model via the energy blending
approach. Nevertheless, it should be noted that the Arlequin formulation may also be introduced by
using virtual work principle as the starting point, as performed in the pioneering work by Ben Dhia
[26] which first introduced the Arlequin method. Our goal here is to derive a time-discrete energy
functional of which the corresponding Euler–Lagrange equation is the time-discrete weak form
of the field equation presented in (2.6) and (2.16). In Section 2.4, we will show that the Arlequin
poromechanics problem can be formulated by applying partition of unity to the incremental energy
functional and introducing an additional energy functional to impose compatibility constraints in the
overlapped domain(s).

To derive a variational statement, we first introduce two spaces for the trial functions for the
displacement and pore pressure fields, that is,

Vu = {u ∶ B → R
3|u ∈ [H1(B)]3,u|𝜕uB = upred}, (2.17)

Vp = {p ∶ B → R|p ∈ [H1(B)], p|𝜕pB = ppred}, (2.18)
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where H1 denotes the Sobolev space of degree one, upred and ppred represent the prescribed bound-
ary values of the solid displacement and pore pressure, respectively. Accordingly, we also define
admissible variations of displacement 𝛿u and pore pressure 𝛿p as

V𝛿u = {𝛿u ∶ B → R
3|𝛿u ∈ [H1(B)]3, 𝛿u|𝜕uB = 0}, (2.19)

V𝛿p = {𝛿p ∶ B → R|𝛿p ∈ [H1(B)], 𝛿p|𝜕pB = 0}. (2.20)

To obtain an incremental energy functional of the poromechanics problem, we adopt an approach
used in other variational frameworks [54–57] that performs temporal discretization first and then
spatial discretization. In fact, this discretization sequence is the opposite to the typical sequence in
poromechanics formulations (e.g., [16,50,58–60]) whereby the spatial domain is discretized first.
Yet, this typical sequence does not allow us to derive an incremental energy functional necessary for
the Arlequin formulation. Therefore, we first discretize the time domain as [0,T] = ∪N

n=0[tn, tn+1] ∈
R+. Then, our objective is the following: Given variables at the previous time step tn, obtain an
incremental update for the solid displacement and fluid pressure at time step tn+1. Hereafter, we will
use the backward Euler method and assume that Biot’s coefficient B, Biot’s modulus M, and the
permeability k are constant.

We formulate a discrete Lagrangian such that the updated solid displacement and fluid pressure
(un+1, pn+1) satisfying the time-discrete versions of (2.6) and (2.16) are the saddle point of the the
discrete energy functional. The total (discrete) free energy functional of the solid matrix Πs at time
tn+1 is the total free energy of the porous media subtracted by the total free energy contributed by the
pore fluid of the same control volume [61],

𝛱[un+1, pn+1]n+1 = 𝛱 s[un+1, pn+1]n+1 −𝛱 f [un+1, pn+1]n+1 +𝛱ext[un+1, pn+1]n+1. (2.21)

Under the quasi-static and isothermal conditions, the internal energy of the solid matrix at time
t = tn+1 is given by [62,63]

𝛱 s[un+1, pn+1]n+1 = 1
2∫B

(𝝈′
n+1) ∶ 𝛻symun+1 dV , (2.22)

where Δt = tn+1 − tn is the time increment. The energy contribution of the pore fluid at time t = tn+1

is given by

𝛱 f [un+1, pn+1]n+1 = 𝛱 f [un, pn]n + ∫B

(pn+1 − pn)2

2M
+ Bpn+1I ∶ (𝛻symun+1 − 𝛻symun) dV , (2.23)

and the external work at t = tn+1 is

𝛱ext[un+1, pn+1]n+1 = −∫𝜕qB
q̂ · n pn+1d𝛤 − ∫𝜕tB

t̂ · un+1d𝛤 − ∫B
𝜸 · un+1 dV , (2.24)

where q̂ and t̂ are the prescribed fluid flux and traction, respectively. The dissipation due to seepage
of the pore fluid at time t = tn+1 is approximated by the backward Euler method, that is,

𝛺[pn+1]|n+1
n ≈ ∫B

Δt
2μ

(𝛻pn+1 − 𝜌f g) · k · (𝛻pn+1 − 𝜌f g) dV , (2.25)

where the effective permeability tensor k is assumed to be symmetric and positive semi-definite. The
discrete Lagrangian H[un+1, pn+1]n+1 is therefore given by

H[un+1, pn+1]n+1 = 𝛱[un+1, pn+1]n+1 −𝛱[un, pn]n − 𝛺[pn+1]|n+1
n . (2.26)
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The first variation that corresponds to the saddle point of the incremental energy functional with
respect to the incremental solution field (un+1, pn+1) reads,

D H[𝛿u]n+1 = ∫B
(𝝈′

n+1 ∶ 𝛻sym𝛿u − Bpn+1𝛻 · 𝛿u − 𝜸𝛿u) dV − ∫𝜕tB
t̂ · 𝛿u d𝛤 , (2.27)

D H[𝛿p]n+1 = ∫B

(
1
M
(pn+1 − pn)𝛿p + B𝛻 · (un+1 − un)𝛿p − Δt𝛻 · 1

μ
k · (𝛻pn+1 + 𝜌g)𝛿p

)
dV

− ∫𝜕qB
q̂ · n 𝛿p d𝛤 = 0,

(2.28)
where the operator D(·) denotes the Gateaux derivative, that is, DH(𝛿u) = d

d𝜂
H(u + 𝜂𝛿u)|𝜂=0. Note

that the system of equations listed in (2.27)–(2.28) may also be obtained by the weight-residual
method. In this case, the starting point is to use (2.6) and (2.16) as the strong form. Then, a weak form
of the linear momentum and mass conservation equations can be obtained using a weight-residual
argument and integration by parts with testing functions (𝜹u, 𝛿p), followed by a discretization in the
temporal domain typically performed by a one-step or linear multi-step method (cf. [64]). For brevity,
this derivation is not repeated in this work. Interested readers may refer to [1,2,45,51,52,64,65] for
details.

2.4. Variational statement for Arlequin poromechanics

We now enforce the compatibility of the mechanical and hydrological states in the overlapped
domain. The Arlequin framework enforces the compatibility by suitably partitioning the energy of
the overlapped domain into the associated sub-domains. Following this approach, here we formu-
late a variational statement for the Arlequin poromechanics. For simplicity, we restrict our focus on
a sub-class of the Arlequin poromechanics problem where the overlapped domain consists of only
two models, which are referred to as coarse and fine models. In this case, the Arlequin model for the
poromechanics problem can be established by: (1) applying partition of unity to the coarse and fine
incremental energy functionals, and (2) introducing constraints and Lagrange multipliers to enforce
compatibility.

Recall the notation (·) for the coarse domain and ̃(·) for the fine domain. We define the trial
spaces as

Vu = {u ∶ B → R
3|u ∈ [H1(B)]3,u|𝜕uB = upred} (2.29)

Vp = {p ∶ B → R|p ∈ [H1(B)], p|𝜕pB = ppred} (2.30)

Vũ = {ũ ∶ B → R
3|ũ ∈ [H1(B)]3, ũ|𝜕ũB = ũpred} (2.31)

Vp̃ = {p̃ ∶ B → R|p̃ ∈ [H1(B)], p̃|𝜕p̃B = p̃pred}. (2.32)

The admissible variations of displacement and pore pressure for the coarse and fine domains are
defined as

V𝛿u = {𝛿u ∶ B → R
3|𝛿u ∈ [H1(B)]3, 𝛿u|𝜕uB = 0} (2.33)

V𝛿p = {𝛿p ∶ B → R|𝛿p ∈ [H1(B)], 𝛿p|𝜕pB = 0} (2.34)

V𝛿ũ = {𝛿ũ ∶ B → R
3|𝛿ũ ∈ [H1(B)]3, 𝛿ũ|𝜕ũB = 0} (2.35)

V𝛿p̃ = {𝛿p̃ ∶ B → R|𝛿p̃ ∈ [H1(B)], 𝛿p̃|𝜕p̃B = 0}. (2.36)
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In the Arlequin framework, multiple models are used to simulate the same physical processes in
the overlapped domain. Accordingly, the energy of the system in the overlapped domain is partitioned
into the sub-domains by a weighting function 𝜒 ∶ B → [0, 1]. This weighting function can be chosen
as discontinuous, piece-wise constant or polynomials of various orders of completeness in space,
provided that partition of unity is satisfied [27,33]. For instance, in a one-dimensional problem, if
Bc = [a, b] ∈ B and B ⧵ Bc = [0, a[∈ B, then the weighting function 𝜒 can be defined as:

𝜒(x) =
⎧⎪⎨⎪⎩

0 , for x ∈ B ⧵ Bc ,
x

b−a
− a

b−a
, for x ∈ Bc ,

1 , for x ∈ B̃ ⧵ Bc .

(2.37)

For notational brevity, we define𝝋u = {u, ũ} and𝝋p = {p, p̃}. Then, the total free energy and viscous
dissipation are the linear combination of the coarse and fine energy functionals that are partitioned
via the weighting function 𝜒 , that is,

𝛱 s
Ar[𝝋u,n+1,𝝋p,n+1]n+1 = (1 − 𝜒)𝛱

s
[un+1, pn+1]n+1 + 𝜒�̃� s[ũn+1, p̃n+1]n+1, (2.38)

𝛱
f
Ar[𝝋u,n+1,𝝋p,n+1]n+1 = (1 − 𝜒)𝛱

f
[un+1, pn+1]n+1 + 𝜒�̃� f [ũn+1, p̃n+1]n+1, (2.39)

𝛱ext
Ar [𝝋u,n+1,𝝋p,n+1]n+1 = (1 − 𝜒)𝛱

ext
[un+1, pn+1]n+1 + 𝜒�̃�ext[ũn+1, p̃n+1]n+1, (2.40)

𝛺[pn+1]|n+1 = (1 − 𝜒)D[pn+1]|n+1 + (𝜒)D̃[p̃n+1]|n+1. (2.41)

Note that in previous work such as [27,66], the weighting functions of the external work and
the internal work are not necessarily identical. Nevertheless, we choose to use the same weighting
function 𝜒 to simplify the formulation. Therefore, we can write the expression for the total energy
of the porous medium in the context of the Arlequin framework as

𝛱Ar[𝝋u,n+1,𝝋p,n+1]n+1 = 𝛱 s
Ar −𝛱

f
Ar +𝛱ext

Ar

= 𝜒𝛱Ar[un+1, pn+1]n+1 + (1 − 𝜒)�̃�Ar[ũn+1, p̃n+1]n+1.
(2.42)

To enforce the compatibility between the coarse and fine solutions in the overlapped domain,
the Arlequin incremental energy functionals must be augmented by constraints that minimize
the discrepancies of the coarse and fine solutions. The pioneering work by Ben Dhia [67] and
follow-up analyses such as [28,33,66] have analyzed various ways to enforce the compatibility for
displacement-based finite element models. These studies have commonly found that a constraint that
minimizes the displacement discrepancy measured by the H1 norm seems to yield the most stable
and accurate formulation. In this work, we extend this H1 coupling scheme to multiphase porous
media in which solid and fluid motions at the same material point are not identical.

To enforce weak compatibility in the overlapped domain, we introduce Lagrange multipliers for
the solid displacement 𝝀u ∈ V𝝀u and fluid pressure 𝜆p ∈ V𝜆p defined in the spaces of

V𝝀u = {𝝀u ∶ B → R3|𝝀u ∈ [H1(B)]3}, (2.43)

V𝜆p = {𝜆p ∶ B → R|𝜆p ∈ [H1(B)]}. (2.44)

The admissible variations of the Lagrange multipliers belong to 𝛿𝝀u ∈ V𝝀u and 𝛿𝜆p ∈ V𝜆p. Then,
constraints that minimize the discrepancies between the solid displacement fields as well as those
between the fluid pressure fields lead to the following compatibility energy functionals

𝜙[𝝋u,n+1,𝝋p,n+1,𝝀u,n+1, 𝜆p,n+1]n+1 = 𝜙u[𝝋u,n+1,𝝀u,n+1]n+1 + 𝜙p[𝝋p,n+1, 𝜆p,n+1]n+1 (2.45)
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where

𝜙u[𝝋u,n+1,𝝀u,n+1]n+1 = ∫Bc

[
𝝀u,n+1 · (un+1 − ũn+1)+𝛽l2𝛻sym𝝀u ∶ (𝛻symun+1 −𝛻symũn+1)

]
dV (2.46)

𝜙p[𝝋p,n+1, 𝜆p,n+1]n+1 = ∫Bc

[
𝜆p(pn+1 − p̃n+1) + 𝜅l2𝛻𝜆p,n+1 · (𝛻pn+1 − 𝛻p̃n+1)

]
dV . (2.47)

Here, 𝛽 ∈ [0,1] and 𝜅 ∈ [0,1] are non-dimensional parameters and l is a scaling factor that has the
dimension of length. When both 𝛽 and 𝜅 are zero, the compatibility energy functionals minimize the
L2 norm of the discrepancies between the coarse and fine solution fields. Otherwise, they minimize
the H1 norm of the discrepancies.

Augmenting these compatibility functionals, we now state the incremental energy functional for
the Arlequin poromechanics as follows:

HAr[𝝋u,n+1,𝝋p,n+1,𝝀u,n+1, 𝜆p,n+1]n+1 = (1 − 𝜒)H[un+1, pn+1]n+1 + 𝜒H̃[ũn+1, p̃n+1]n+1

− (1 − 𝜒)𝛺[pn+1]|n+1
n + 𝜒�̃�[p̃n+1]|n+1

n

+ 𝜙[𝝋u,n+1,𝝋p,n+1,𝝀u,n+1, 𝜆p,n+1]n+1.

(2.48)

The saddle point of the incremental Arlequin energy functional (2.48) results in the following set of
time-discrete governing equations that give incremental updates of the displacement, pore pressure,
and Lagrange multipliers:

DHAr[𝛿u] = 𝜒

(
∫B

𝝈
′
n+1 ∶ 𝛻sym𝛿u − Bpn+1𝛻 · 𝛿u − 𝜸𝛿u dV − ∫𝜕tB

t̂ · 𝛿u d𝛤

)
+ ∫Bc

[
𝝀u,n+1 · (𝛿u) + 𝛽l2𝛻sym𝝀u,n+1 ∶ (𝛻sym𝛿u)

]
dV = 0,

(2.49)

DHAr[𝛿ũ] = (1 − 𝜒)
(
∫B̃

�̃�′
n+1 ∶ 𝛻sym𝛿ũ − Bp̃n+1𝛻 · 𝛿ũ − �̃�𝛿ũ dV − ∫𝜕tB̃

t̂ · 𝛿ũ d𝛤

)
− ∫Bc

[
𝝀u,n+1 · (𝛿ũ) + 𝛽l2𝛻sym𝝀u,n+1 ∶ (𝛻sym𝛿ũ)

]
dV = 0,

(2.50)

DHAr[𝛿p] = 𝜒

(
∫B

1
M
(pn+1 − pn) 𝛿p + B𝛻 · (un+1 − un)𝛿p dV

− Δt∫B
𝛻 · 1

μ
k · (𝛻pn+1 − 𝜌f g)𝛿p dV − ∫𝜕qB

q̂ · n 𝛿p d𝛤

)
+ ∫Bc

[
𝜆p,n+1𝛿p + 𝜅l2𝛻𝜆p,n+1 · 𝛻𝛿p

]
dV = 0,

(2.51)

DHAr[𝛿p̃] = (1 − 𝜒)
(
∫B̃

1
M
(p̃n+1 − p̃n) 𝛿p̃ + B𝛻 · (ũn+1 − ũn)𝛿p̃ dV

− Δt∫B̃
𝛻 · 1

μ
k · (𝛻p̃n+1 − 𝜌f g)𝛿p̃ dV − ∫𝜕qB

q̂ · ñ 𝛿p̃ d𝛤

)
+ ∫Bc

[
𝜆p,n+1𝛿p̃ + 𝜅l2𝛻𝜆p,n+1 · (𝛻𝛿p̃)

]
dV = 0,

(2.52)

DHAr[𝛿𝝀u] = ∫Bc

[
𝛿𝝀u · (un+1 − ũn+1) + 𝛽l2𝛻sym𝛿𝝀u ∶ (𝛻symun+1 − 𝛻symũn+1)

]
dV = 0, (2.53)

DHAr[𝛿𝜆p] = ∫Bc

[
𝛿𝜆p(pn+1 − p̃n+1) + 𝜅l2𝛻𝛿𝜆p,n+1 · (𝛻pn+1 − 𝛻p̃n+1)

]
dV = 0, (2.54)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
DOI: 10.1002/nme



MIXED ARLEQUIN METHOD FOR MULTISCALE POROMECHANICS PROBLEMS

where the variations of solid displacement, (𝛿u, 𝛿ũ), fluid pressure (𝛿p, 𝛿p̃), and Lagrange multipliers
(𝛿𝝀u, 𝛿𝜆p) are arbitrary fields.

2.5. Galerkin and matrix forms

We now apply the standard Galerkin method to discretize (2.49)–(2.54) in space. In doing so, we
employ equal-order spatial discretization for the solid displacement and fluid pressure variables for
both the fine and coarse domains [52]. The rationale behind employing equal-order mixed finite
elements instead of inf–sup stable higher-order elements is to reduce the minimum number of
finite-dimensional spaces required for the Arlequin method from 4 to 2. This reduction significantly
simplifies the formulation.

Let the Lagrange multiplier for solid displacement 𝝀u(x) be spanned by the same set of basis
functions that interpolate the coarse displacement field. Similarly, let the Lagrange multiplier for the
fluid pressure 𝜆p(x) be also spanned by the same set of basis functions that interpolate by the coarse
fluid pressure field. This arrangement is motivated by the finding of Guidault and Belytschko [66]
that the use of the same basis functions for interpolating the Lagrange multiplier and fine displace-
ment field would lead to severe locking. This treatment also simplifies the setup of the boundary
value problem, because there is no need to generate extra meshes for the Lagrange multiplier. Thus,
we have

uh(x) = NA(x)UA ∈ Vh
u
, 𝛿u

h
(x) = NB(x)𝛿UB ∈ Vh

u
,

ũh(x) = Ña(x)Ũa ∈ Vh
ũ , 𝛿u

h
(x) = Ñb(x)𝛿Ũb ∈ Vh

ũ ,

ph(x) = NA(x)PA ∈ Vh
p
, 𝛿p

h
(x) = NB(x)𝛿PB ∈ Vh

p
,

p̃h(x) = Ña(x)P̃b ∈ Vh
p̃ , 𝛿p

h
(x) = Ñb(x)𝛿P̃b ∈ Vh

p̃ ,

𝝀h
u(x) = NA(x)𝜦A ∈ Vh

𝝀u
, 𝛿𝝀h

u(x) = NB(x)𝛿𝜦B ∈ Vh
𝝀u
,

𝜆h
p(x) = NA(x)𝛯A ∈ Vh

𝜆p
, 𝛿𝜆h

p(x) = NB(x)𝛿𝛯B ∈ Vh
𝜆p
,

(2.55)

where (NA,NB) are the basis functions for the interpolated solutions and admissible variations of the
coarse displacement and pore pressure, whereas (Ña, Ñb) are the basis functions for the interpolated
solutions and admissible variations of the fine displacement and pore pressure. Also, (Na,Nb) are the
basis functions for the Lagrange multipliers, which are the same as those for the coarse displacement
and pore pressure except that they are confined in the overlapped domain. In addition, Vh

u
⊂ Vu,

Vh
ũ ⊂ Vũ, Vh

p
⊂ Vp, Vh

p̃ ⊂ Vp̃, Vh
𝝀u

⊂ V𝝀u
, and Vh

𝝀p
⊂ V𝝀p

are finite-dimensional subspaces spanned by
the corresponding interpolation functions.

We now develop the matrix form of the problem. Following the standard finite element proce-
dure, we first insert the interpolated solutions and variations in (2.55) into (2.49)–(2.54), and then
eliminate the nodal arbitrary variables for the trial functions. This leads to the following matrix form,⎡⎢⎢⎢⎢⎢⎢⎢⎣

K 0 G
T

0 C
T
u 0

0 K̃ 0 G̃
T −C̃

T
u 0

G 0 𝜣 0 0 C
T
p

0 G̃ 0 �̃� 0 −C̃
T
p

Cu −C̃u 0 0 0 0
0 0 Cp −C̃p 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝛥U
𝛥Ũ
𝛥P
𝛥P̃
𝛥𝜦U

𝛥𝜦P

⎤⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎣

Ru
Rũ

Rp

Rp̃

R𝝀u

R𝜆p

⎤⎥⎥⎥⎥⎥⎥⎦
, (2.56)

where 𝛥U, 𝛥Ũ, 𝛥P, 𝛥P̃, 𝛥𝚲U, 𝛥𝚲P are the solution increments during iterations. The residual vectors
in the right hand side are given by:

Ru = 𝜒

(
∫B

B
T
· (𝝈′

n+1 − BIpn+1) − N
T
𝜸 dV − ∫𝜕TB

N
T
t̂ d𝛤

)
+ ∫Bc

[
N

T
𝝀u,n+1 + 𝛽l2B

T
𝝀u,n+1

]
dV = 0,

(2.57)
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Rũ = (1 − 𝜒)
(
∫B̃

B̃
T · (�̃�′

n+1 − BIp̃n+1) − Ñ
T
𝜸 dV − ∫𝜕TB̃

Ñ
T
t̂ d𝛤

)
− ∫Bc

[
Ñ

T
𝝀u,n+1 + 𝛽l2B̃

T
𝝀u,n+1

]
dV = 0,

(2.58)

Rp = 𝜒

(
∫B

N
T 1

M
(pn+1 − pn) + N

T
B𝛻 · (un+1 − un) dV

− Δt∫B
𝛻N

T
· 1
μ

k(𝛻pn+1 − 𝜌f g) dV − Δt ∫𝜕qB
N

T
q d𝛤

)
+ ∫Bc

[
N

T
𝝀p,n+1 + 𝛻N

T
𝜅l2k𝛻𝝀p,n+1

]
dV = 0,

(2.59)

Rp̃ = (1 − 𝜒)
(
∫B̃

Ñ
T 1

M
(p̃n+1 − p̃n) + Ñ

T
B𝛻 · (ũn+1 − ũn) dV

− Δt∫B̃
𝛻ÑT · 1

μ
k(𝛻p̃n+1 − 𝜌f g) dV − Δt∫𝜕qB

ÑTq d𝛤

)
− ∫Bc

[
ÑT𝝀p,n+1 + 𝛻ÑT𝜅l2𝛻𝝀p,n+1

]
dV = 0,

(2.60)

R𝝀u
= ∫Bc

[
N

T
· (un+1 − ũn+1) + 𝛽l2B

T
· (𝛻symun+1 − 𝛻symũn+1)

]
dV = 0, (2.61)

R𝜆p
= ∫Bc

[
N

T
(pn+1 − p̃n+1) + 𝜅l2𝛻N

T
(𝛻pn+1 − 𝛻p̃n+1)

]
dV = 0, (2.62)

where N = [N1,N2, … ,Nnu] and Ñ = [Ñ1, Ñ2, … , Ñnũ] are the N matrices for the coarse and fine
domains where the basis function are stored in the matrix form (nu and nũ are the numbers of nodes
in the coarse and fine domains). Also, B = [B1,B2, … ,Bnu] and B̃ = [B̃1, B̃2, … , B̃nũ] are the B
matrices for the coarse and fine domains, given by

BA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

NA,1 0 0
0 NA,2 0
0 0 NA,3

NA,2 NA,1 0
0 NA,3 NA,2

NA,1 0 NA,3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; B̃a =

⎡⎢⎢⎢⎢⎢⎢⎣

Ña,1 0 0
0 Ña,2 0
0 0 Ña,3

Ña,2 Ña,1 0
0 Ña,3 Ña,2

Ña,1 0 Ña,3

⎤⎥⎥⎥⎥⎥⎥⎦
(2.63)

The submatrices of the tangent (Jacobian) matrix in (2.56) are obtained as follows. First, the
tangential stiffness matrices of the solid skeleton in the coarse and fine domains are given by

K =
𝜕Ru

𝜕U
= ∫B

𝜒B
T
D B dV , K̃ = 𝜕Rũ

𝜕Ũ
= ∫B̃

(1 − 𝜒)B̃T
D̃ B̃ dV , (2.64)

where D and D̃ are the tangential stiffness tensors defined in (2.11), corresponding to the models
used in the coarse and fine domains. Once again, we emphasize that while these two models capture
the same physical processes in the overlapped domain, but the choices of the mesh size, constitutive
laws and basis functions used to interpolate the solution can be different.
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The two non-zero components of the 2-by-2 block at the center of the Jacobian matrix are the
hydraulic components that consist of two terms—one for the fluid mass changes due to local changes
of pore pressure and another for the fluid diffusion. For instance, if the effective permeability and
Biot’s modulus are constant, then the two matrices read,

𝜣 =
𝜕Rp

𝜕P
= −𝛥tE −𝜱, �̃� =

𝜕Rp̃

𝜕P̃
= −𝛥tẼ − �̃�, (2.65)

where

E = ∫B
𝜒𝛻N

T 1
μ

k𝛻N dV , Ẽ = ∫B̃
(1 − 𝜒)𝛻Ñ

T k
μ
𝛻Ñ dV , (2.66)

𝜱 = ∫B
𝜒N

T 1
M

N dV , �̃� = ∫B̃
(1 − 𝜒)ÑT 1

M
Ñ dV . (2.67)

The coupling matrices that represent the hydro-mechanical coupling are defined as

G =
𝜕Rp

𝜕U
= ∫B

N
T
b dV , G̃ =

𝜕Rp̃

𝜕Ũ
= ∫B̃

Ñ
T
b̃ dV , (2.68)

where b = B · 𝟏 and b̃ = B̃ · 𝟏 with 1 = [1 1 1 0 0 0]T B, again, is Biot’s coefficient. The coupling
matrices that enforce the compatibility of the solid displacement are defined as

Cu =
𝜕R𝝀u

𝜕U
= ∫Bc

N
T
N + 𝛽l2B

T
B dV , C̃u =

𝜕R𝝀u

𝜕Ũ
= ∫Bc

N
T
Ñ + 𝛽l2B

T
B̃ dV . (2.69)

Lastly, the coupling matrices that enforce the compatibility of the fluid pressure are defined as

Cp =
𝜕R𝜆p

𝜕P̃
= ∫Bc

N
T
N + 𝜅l2𝛻N

T
𝛻N dV , C̃p =

𝜕R𝜆p

𝜕P̃
= ∫Bc

N
T
Ñ + 𝜅l2𝛻N

T
𝛻Ñ dV . (2.70)

Because we use the basis function of the coarse solution field to interpolate the Lagrange multipliers,
the numerical integration of all block matrices—except C̃u and C̃p—can be performed via standard
Gauss quadrature rules. The calculation of C̃u and C̃p can be more complicated, as the C̃u and C̃p

matrices consist of expressions in terms of both the coarse and fine basis functions. Here, we numer-
ically integrate the integrand expressed in the isoparametric (natural) coordinates of the fine mesh
and perform the standard full integration over the fine mesh elements. This approach requires one
to evaluate the coarse basis function at non-standard locations in the isoparametric coordinates of
the fine mesh. 𝛽 and 𝜅 are dimensionless parameters that control the weight of the gradient term in
the norms used to measure the discrepancies. If 𝛽 = 𝜅 = 0, then the L2 error of displacement and
pore pressure is minimized. l is a parameter which makes the constraint dimensionless. Our analysis
indicates that introducing the gradient term in the compatibility functionals may improve numerical
stability. This result is explained further in the next section.

We note that this matrix system may be ill-conditioned for two reasons. One reason is the intro-
duction of Lagrange multipliers for domain coupling [33], and another is the coupling between solid
deformation and fluid flow [68,69]. Therefore, making the use of an iterative solver for this linear sys-
tem requires a preconditioning strategy that effectively handles these two sources of ill-conditioning.
White et al. [70] have recently developed a framework for block-partitioned solvers for coupled
poromechanics problems, whereas Sun and Mota [33] present a block solver for overlapped domain
problems in solid mechanics problem. In the former case, the condition number of the matrix system
of the poromechanics problem may increase significantly when a smaller time step is used. While
we use direct solvers in this work and hence the usage of preconditioner is less critical, the usage of
direct solvers is rarely a practical option for large-scale problems due to the relatively high compu-
tational demands and lower speed of the direct solver. As a result, a proper design for preconditioner
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for the Arlequin poromechanics problems is an important future work, especially for solving large-
scale problems that require an efficient iterative solver. The design of such a preconditioner is outside
the scope of this work but will be considered in future studies.

3. NUMERICAL STABILITY

The objective of this section is to derive a numerical test that examines the spatial stability of the
Arlequin poromechanics formulation. A necessary (but not sufficient) condition for the convergence
of an implicit solution method for nonlinear problems is the stability of the linearized system of
equations such as (2.56). For single-field finite elements, well-posedness and numerical stability of
an incremental update can be guaranteed if the tangent operator is both coercive and consistent. How-
ever, a tangent operator in mixed finite elements, such as those for solving multiphysical problems
like poromechanics, may lack coercivity. In such cases, one must ensure that at least one diagonal
block of the block-partitioned Jacobian matrix is positive definite [71,72].

Mixed finite elements for constrained multi-field problems should satisfy the inf–sup condition to
maintain the spatial stability of numerical solutions [71–74]. When the inf–sup condition is not sat-
isfied, the kernel space of the coupling operator(s) in the governing equation is spanned by non-trivial
basis, which in turn gives rise to spurious (physically meaningless) oscillations in the numerical
solutions. In poromechanics, it is well known that the inf–sup condition arises when the pore fluid
imposes an incompressibility constraint in the solid deformation—which is common especially in
the early stages of loading. As such, mixed finite elements that employ equal-order interpolations
for the displacement and pore pressure fields may result in spurious oscillations in the pore pressure
field, see [1,51,52,75–78] for example.

The introduction of the Arlequin method for poromechanics problems complicates the analysis of
spatial stability because it adds additional type of constraints. Hence, multiple Lagrange multipliers
are used in the overlapping domains to enforce compatibility for both the solid and fluid constituents.
As shown in (2.56), the Arlequin method embeds the hydro-mechanical coupling blocks into another
block system that incorporates constraints enforcing domain compatibility. Previous studies have
analyzed the inf–sup condition of the Arlequin method for single-physics solid mechanics problems
[28,33]. Furthermore, Jamond and Ben Dhia [38] have analyzed, within the Arlequin framework,
critical zones for an incompressible medium modeled via a two-field mixed formulation. To avoid
redundancy in the overlapped domain that may lead to pathological results, they weakly enforce the
incompressibility for only one of the two super-imposed models. Interestingly, the poromechanics
theory may also lead to a two-field u∕p mixed finite element formulation and a similar block matrix
system that resembles the incompressible elasticity counterpart at the undrained limit. However,
because the flow of the pore fluid is related to the gradient of pore pressure, the pore pressure field
must exist in all sub-domains to capture the hydro-mechanical coupling effects. As a result, the anal-
ysis of spatial stability of the Arlequin method for poromechanics requires a further endeavor and
examination. In particular, this analysis requires us to tackle the spatial stability of the Arlequin cou-
pling model whereby two primary fields are both constrained, which has not yet been attempted to
the best of the authors’ knowledge. Our new contribution in this work is to address the inf–sup con-
dition that arises from the multiscale coupling of the mixed Arlequin poromechanics model. In doing
so, we ensure the spatial stability in non-overlapped domains by using the polynomial projection
stabilization procedure, which has been successfully applied to various constrained problems includ-
ing poromechanics [45,51,52,75,77]. In essence, the stabilization procedure augments the following
additional term to the incremental energy functional HAr[𝝋u,n+1, 𝝋p,n+1, 𝝀u,n+1, 𝝀p,n+1]n+1 in (2.48)

Wstab(Δph
,Δp̃h) = 1

2∫B
𝜒𝛼(Δp −𝛱Δp̃)2 dV + 1

2∫B
(1 − 𝜒)𝛼(Δp̃ −𝛱Δp̃)2 dV , (3.1)

where 𝛱(·) denotes a projection operator that project the interpolated pore pressure field onto an
element-wise constant, and 𝛼 is the stabilization parameter whose optimal value depends on both the
effective diffusivity and the element size.

Lastly, we emphasize that it is also possible to couple finite elements that are individually inf–sup
stable within the Arlequin framework. However, this approach requires selecting multiple finite

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
DOI: 10.1002/nme



MIXED ARLEQUIN METHOD FOR MULTISCALE POROMECHANICS PROBLEMS

dimensional spaces for the coarse and fine displacements, pore pressures, and Lagrangian multipliers.
Consequently, more elaborated efforts must be spent for the implementation, without any guaran-
tee that the coupling of two inf–sup stable mixed finite elements through Lagrangian multipliers
remains stable in the overlapped domain.

3.1. Twofold inf–sup condition for Arlequin poromechanics problems

Here, we show that one can analyze the spatial stability of the Arlequin poromechanics problem by
checking the twofold inf–sup condition, the inf–sup condition arising from a twofold saddle point
problem. Howell and Walkington [79] derived this condition, and Sun [52] and Choo and Borja [77]
developed stabilization methods for this condition in the contexts of thermo-poro-mechanics and
two-scale poromechanics, respectively.

The key idea of this work is to analyze the multi-field Arlequin problem with the product spaces
equipped with weighted product norms. For instance, one may group the solution of the system of
equations in (2.56) in the following three product spaces: Vh

u × Vh
ũ, Vh

p
× Vh

p̃, and Vh
𝝀u

× Vh
𝜆p

. The
corresponding matrix form therefore reads

⎡⎢⎢⎣
K GT C

T
u

G D C
T
p

Cu Cp 0

⎤⎥⎥⎦
⎡⎢⎢⎣
ΔÛ
ΔP̂
Δ𝜦

⎤⎥⎥⎦ = −
⎡⎢⎢⎣

Ru

Rp

R𝜆

⎤⎥⎥⎦ , (3.2)

where the block matrices in (3.2) are given by

K =
[

K 0
0 K̃

]
, D =

[
𝜣 0
0 �̃�

]
,G =

[
G 0
0 G̃

]
,Cu =

[
Cu −C̃u

0 0

]
,Cp =

[
0 0

Cp −C̃p

]
, (3.3)

and ΔÛ, ΔP̂, and 𝛥𝜦 are the column vectors of the solution fields, that is,

ΔÛ =
[
ΔU
ΔŨ

]
, ΔP̂ =

[
ΔP
ΔP̃

]
,Δ𝜦 =

[
Δ𝜦U

Δ𝜦P

]
. (3.4)

The product spaces of the solutions for the combined solid displacement, pore pressure, and Lagrange
multipliers therefore read

û ∈ Vh
û = Vh

u × Vh
ũ, p̂ ∈ Vh

p̂ = Vh
p
× Vh

p̃, 𝝀 ∈ V𝝀 = Vh
𝝀u
× Vh

𝜆p
, (3.5)

which are equipped with the following product norms,

||û||
Vû

=
√||u||2 + ||ũ||2 ; ||p̂||

V
P̂
=
√||p||2 + ||p̃||2 ; ||𝝀||

W
=
√

wu||𝝀u||2 + wp||𝝀p||2, (3.6)

where ||·||2 denotes the L2 norm, and wu and wp are the weighting functions for Lagrange multipliers.
Following Auricchio et al. [80], we further condense the system of equations as a problem coupled
by a composite coupling operator B, that is,[

A BT

B 0

] [
x
y

]
=
[

f
g

]
(3.7)

where:

A =
[
K GT

G D

]
, B =

[
Cu Cp

]
, x =

[
ΔÛ
ΔP̂

]
, y = Δ𝜦. (3.8)
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The kernel of coupling operator is made by (ΔÛ, ΔP̂) such that:

CuΔÛ + CpΔP̂ = 0. (3.9)

The key step to simplify the analysis is to take advantage of the fact that the spaces Vh
u, Vh

p, and
V𝝀 are all finite dimensional and spanned by the basis function (cf. [74,80]). This fact allows
us to construct a bijective map from the finite dimensional spaces Vh

u, Vh
p, and V𝝀 onto the

Euclidean space of the nodal solution. Let Nu, Np, and N𝜆 be the dimensions of the nodal solu-
tion Û ∈ RNu , P̂ ∈ R

Np , and 𝚲 ∈ RN𝜆 . Then, we can express the twofold inf–sup condition
as follows:

Twofold inf–sup condition. There exists a positive constant 𝛽s, independent of the mesh size,
such that:

sup
(Û∈RNu⧵{0},P̂∈RNp⧵{0},)

𝜦T
CuÛ +𝜦T

CpP̂||P̂||VP
+ ||Û||VU

⩾ 𝛽s ∀ ||𝜦||V
𝜦
> 0, ∀ 𝜦 ∈ V𝜦, (3.10)

where || · ||VU
, || · ||VP

, and || · ||V𝚲 are the norms of the product spaces of the nodal displace-
ment, pore pressure, and Lagrange multipliers, respectively. Notice that if 𝛽s does not exist, then
the kernel space of B may contain non-trivial basis. This non-trivial basis may cause spurious
oscillations in the solution fields.

3.2. Discrete twofold inf–sup test

Having formulated the stability requirement as the twofold inf–sup condition (3.10), we now intro-
duce a simple numerical procedure that can determine whether this condition is satisfied. The
numerical procedure we propose here is an extension of the inf–sup test used in [73,74,81]. We
emphasize that this numerical test by no means supersedes the analytical proof of the stability of
nonlinear boundary value problems. However, because the analytical proof is notoriously difficult,
here we aim at developing a practical means for investigating the existence of spurious modes at a
given incremental step.

Let IS denote the matrix associated with the the scalar product of a finite element space S [38].
Following the standard procedure to establish an inf–sup test [33,74], we rewrite the twofold inf–sup
condition (3.10) as

[
𝜳 u 𝜳 p

] [
Cu Cp

] [ IVU 0
0 IVP

] [
C

T
u

C
T
p

] [
𝜳 u

𝜳 p

]
⩾ 𝛽s

[
𝜳 u 𝜳 p

] [𝜳 u

𝜳 p

]
, (3.11)

where 𝜳 u ∈ RNu ⧵ {0} and 𝜳 p ∈ R
Np ⧵ {0}. The existence of the positive constant 𝛽s is there-

fore guaranteed if the smallest eigenvalue of the following generalized eigenvalue problem is larger
than zero:

[
Cu Cp

] [ IVU 0
0 IVP

] [
C

T
u

C
T
p

] [
𝜳 u

𝜳 p

]
= 𝜆𝛽

[
𝜳 u

𝜳 p

]
. (3.12)

The square root of the minimum eigenvalue value of (3.12) is commonly referred to as the inf–sup
value [33,73,74,81]. The inf–sup value is crucial and widely used in computational mechanics
problems, as it enables one to easily detect the onset of spurious modes by checking whether the
inf–sup value becomes zero. This procedure—checking the existence of a positive non-zero inf–sup
value—is called the inf–sup test. This test involves the calculation of inf–sup values correspond-
ing to the same boundary value problems discretized by typically at least four successively refined
meshes. In the next section, we will conduct inf–sup tests for multiscale coupling operators [Cu Cp]
in various numerical examples to examine whether spurious oscillation mode(s) may occur in the
overlapped domain(s).
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4. NUMERICAL EXAMPLES

This section presents numerical examples to verify the proposed multiscale hydro-mechanical model
and demonstrate its performance. For verification of the model in terms of hydro-mechanical cou-
pling, we first use the classical Terzaghi’s consolidation problem of which an analytical solution
exists. Subsequently, to verify the model under incompressible/compressible deformations in the
undrained/drained conditions, we extend Cook’s membrane problem to poroelasticity and compare
the results with benchmark values of incompressible and compressible cases. Lastly, to demonstrate
the performance of the Arlequin model whereby different models are coupled, we simulate fluid
injection into a pre-existing crack of a porous medium coupling an isogeometric extend finite ele-
ment model with a polynomial-based standard finite element model. In this example, the fluid–solid
interactions in both the near-field and far-field of a pre-existing crack are concurrently simulated. To
investigate the spatial stability of the model, in every example, we perform the inf–sup test described
in the previous section.

4.1. Terzaghi’s 1D consolidation problem

Terzaghi’s 1D consolidation problem is one of the few poromechanics problems of which analytical
solutions exist [82]. As such, this problem has been widely used as benchmark to verify porome-
chanical models in the literature [1,3,16,65]. In this study, we use this problem as the first benchmark
problem to verify the proposed Arlequin formulation for coupled hydro-mechanical problems.

Figure 2 illustrates the domain configuration and boundary conditions of the boundary value prob-
lem. As for the boundary conditions for fluid flow, the top boundary is a zero pressure boundary
where drainage is allowed. On the other hand, the bottom and lateral boundaries are impermeable,
that is, no flux boundaries. The solid boundary conditions are imposed such that the material deforms
in the vertical direction only: the top boundary is subjected to compressive stress of 90 kPa while
the bottom boundary is fixed and the lateral boundaries are constrained horizontally. As a result, the
problem is essentially one-dimensional, allowing for an analytical solution.

Figure 2. Domain configuration and boundary conditions of the 1D consolidation problem.
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We model the problem by overlapping two domains, as shown in Figure 2. Specifically, we dis-
cretize upper 45% of the domain by a finer mesh (fine domain) while discretize lower 65% by a
coarser mesh (coarse domain). Both the coarse and fine domains are modeled by stabilized finite
elements that use linear polynomials to interpolate the displacement and pore pressure fields and pro-
jection based strategy to stabilize the pore pressure field [45,51,52,75,77]. In the overlapped domain,
each coarse-scale finite element is coupled with eight fine-scale finite elements. The H1 coupling
scheme is used throughout the verification simulations. The material parameters used in this problem
are summarized in Table I.

The simulations are performed using two types of weighting functions: (1) constant weighting
function and (2) linear weighting function. Figure 3 presents the results of the two cases in terms of
the normalized pore pressure p∕p0 along the normalized location z∕h where p0 = 90 kPa. Here, we
observe that the numerical solutions agree with the analytical solutions irrespective of the weighting
functions.

Additional numerical experiments are conducted to investigate whether it is necessary to introduce
constraints for both the displacement and pore pressure fields, not just for one of them. Figure 4(a)
and 4(b) show the results when a constraint is applied to either the pore pressure or the displacement,
respectively. As shown in Figure 4(a), the use of the pore pressure constraint alone is able to enforce
the compatibility of pore pressures in the two domains, but it produces incorrect results. On the other
hand, Figure 4(b) indicates that if the pore pressure constraint is not enforced, the coarse and fine
pore pressure fields are not compatible with each other. These results demonstrate that both of the
pore pressure and displacement constraints are essential to ensure the compatibility between the two
domains.

Table I. Parameters for the 1D consolidation problem.

Parameter Value Unit

Young’s modulus E 70 MPa

Poisson’s ratio 𝜈 0.4 −
Biot coefficient B 1.0 −
Porosity n 0.3 −
Permeability k 1.57 × 10−13 m2

Viscosity of pore fluid μ 1.0 × 10−3 Pa · s

Bulk modulus of pore fluid Kf 2.2 GPa

Figure 3. Pore pressure profiles of the 1D consolidation problem at 250, 500, 750, and 1000 s (from right
to left in each figure), from the simulations employing: (a) constant weighting function and (b) linear

weighting function.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
DOI: 10.1002/nme



MIXED ARLEQUIN METHOD FOR MULTISCALE POROMECHANICS PROBLEMS

Figure 4. Results of the consolidation problem (at time = 250 s) with different constraints: (a) Pressure
constraint only and (b) Displacement constraint only.

Figure 5. Inf–sup test results of the 1D consolidation problem.

4.1.1. Numerical inf–sup test for the 1D consolidation problem. To investigate the spatial stabil-
ity of the proposed Arlequin method, we perform a numerical inf–sup test for this consolidation
problem and present the results in Figure 5. We test both H1 and L2 coupling systems with a linear
weighting function, and obtain the inf–sup values refining both the fine and coarse meshes. In this
figure, Nc stands for the number of finite elements in the coarse domain. The results indicate that
the H1 coupling system always yields higher inf–sup values than the L2 counterpart. Note that this
observation is consistent with previous finding from a single-physics displacement-based Arlequin
model [33]. The inf–sup values decrease with mesh refinement in both simulations. However, it is
clear that the inf–sup value of the H1 coupling performs better. As mentioned in [81], the inf–sup
test is only considered successful when a lower bound of inf–sup values is likely to be found from
underneath. However, in practice, the effectiveness of the inf–sup test, as explained and demon-
strated through numerical examples in Bathe et al. [83], is highly sensitive to the norm one used
to constructed in the inf–sup test. This is particularly true for problems that may exhibit boundary
layer effect, such as Terzaghi’s consolidation problem and convection–diffusion problems [84]. The
difficulty of these problems is that at near time when the time step is small, the solution in the inte-
rior domain is smooth, while the solution near the boundary may exhibit sharp gradient. Hence, as
mentioned in Bathe et al. [83], an ideal norm must be able to measure equally well in the smooth
and non-smooth parts of the solution. This effective norm has not yet been found, according to the
best knowledge of the authors, but we may consider it for future research. As a result, we may only
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draw the conclusion that the H1 coupling strategy seems to generate more stable results than the L2

counterpart, but it is not clear whether the inf–sup values will be bounded in either cases.

4.2. Modified Cook’s membrane problem for poroelasticity

In the second example, we investigate the accuracy of the proposed Arlequin method when it is used
to capture the transition from undrained to drained behaviors of a poroelastic medium. According to
poroelasticity theory, a fluid-saturated porous solid may deform isochorically even if the solid matrix
is compressible. This is possible if: (1) an incompressible fluid is trapped in the pore space because
the loading rate is much higher than the hydraulic diffusivity, and (2) the solid and fluid constituents
are both incompressible [51,85]. In other words, incompressibility can arise when the undrained bulk
modulus approaches infinity despite the fact that the drained bulk modulus remains finite [86]. In the
poromechanics and geotechnical engineering literature, this condition is usually referred to as the
undrained condition, as opposed to the drained condition in which the pore fluid is free to migrate
and the excess pore pressure is dissipated such that the presence of fluid in the pore space does not
lead to an incompressibility constraint. These two distinctive types of isochoric or nearly isochoric
deformation of porous media have been extensively studied and compared in Levenston et al. [87]
and Sun et al. [51]. In the context of mixed finite elements for poromechanics, this incompressibility
can trigger volumetric locking as well as spurious oscillations in the pore pressure field which was
discussed in Section 3. However, how this incompressibility in the undrained condition can affect
the convergence and stability of the proposed Arlequin coupling model is elusive, as the Arlequin
framework has not yet been applied to a poromecahanics problem.

The specific purpose of this example is to investigate whether any convergence or stability problem
arises during the transition from the undrained condition to the drained condition. For this purpose,
we modify Cook’s membrane problem [88], which has served as a benchmark problem in many
studies to assess a numerical technique designed to prevent volumetric locking in solid mechanics
problems. Figure 6 depicts the mesh and boundary conditions of the modified Cook’s problem which
is modeled by two overlapped domains as in the previous example. For our purpose, we model
the membrane as a porous solid fully saturated by a (nearly) incompressible fluid. This allows the

Figure 6. Domain configuration and boundary conditions of the modified Cook’s membrane problem.
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membrane to be incompressible at the undrained limit without setting the Poisson ratio approaching
1/2. Meanwhile, the membrane may exhibit volumetric deformation as the excess pore pressure
dissipates in time and eventually reaches the drained condition under which the membrane again
behaves like a compressible material. The boundary conditions for the solid are identical to those of
the original problem, and the traction applied to the right edge is 1 N. However, for the pore fluid, we
introduce additional boundary conditions: the left edge is a zero pressure boundary while all other
edges are no-flux boundaries.

The parameters for this problem are summarized in Table II. The material parameters for the solid
are the same as those used in the classical Cook’s membrane benchmark. On the other hand, the
material parameters for the fluid (e.g., permeability) are chosen such that the material is subjected to
the undrained condition after the first time step. We set the Poisson ratio of the solid matrix 𝜈 = 0.3
so as to compare (1) the tip displacement in the undrained condition with the benchmark value in
the incompressible case, and (2) the tip displacement in the drained condition with the benchmark
value in the compressible case with 𝜈 = 0.3.

Figure 7 presents the time evolution of the tip displacement after the loading. We observe that the
displacement is about 16.5 m at the first time step and it converges to about 21.5 m with time. Note
that the first time step is in the undrained condition while the final step is in the drained condition.
The benchmark values of the tip displacement, which can be computed by Richardson’s extrapola-
tion [88], are found to be 16.43258437 m for the incompressible case (𝜈 = 0.5) and 21.5234479 m
for the compressible case (𝜈 = 0.3). Figure 8 shows that the tip displacement converges to the bench-
mark values for both the incompressible (undrained) and compressible (drained) cases. In Figure 9,
we also plot pore pressure fields in three time steps during the simulation. These contours indicate
that the pore pressure developed by the tip loading is dissipated as time increases. The fact that
both the deformation and pressure match well in the overlapped domain again demonstrates that the
constraints used in the Arlequin model are appropriate.

Table II. Parameters for the modified Cook’s membrane problem.

Parameter Value Unit

Young’s modulus E 1 Pa

Poisson’s ratio 𝜈 0.3 −
Biot coefficient B 1.0 −
Porosity n 0.3 −
Permeability k 1.57 × 10−10 m2

Viscosity of pore fluid μ 1.0 × 10−3 Pa · s

Bulk modulus of pore fluid Kf 2.2 GPa

Figure 7. Tip displacement with time in the modified Cook’s membrane problem.
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Figure 8. Normalized error of the tip displacement with mesh refinement: (a) Initial time step (incompress-
ible/undrained) and (b) Final time step (compressible/drained).

Figure 9. Pore pressure fields in the deformed membrane (magnification: 1x) at various time steps: (a) Step
#100, (b) Step #200, and (c) Step #750.

4.2.1. Numerical inf–sup test for the modified Cook’s membrane problem. We conduct two inf–sup
tests for the modified Cook’s membrane to investigate the effect of mesh ratio on the inf–sup values.
In the first inf–sup test, we refine both the coarse and fine meshes three times and compute the
inf–sup values for both the L2 and H1 coupling models. In all four simulations, the coarse-to-fine
mesh ratio remains the same. Figure 10 shows the results of this constant mesh ratio inf–sup test.
In this test, the inf–sup value decreases upon mesh refinement, similar to what we observed in the
previous inf–sup test conducted for Terzaghi’s problem.

In the second inf–sup test, we refine the fine mesh consecutively three times while keeping the
coarse mesh size constant. As a result, upon the refinement, the coarse-to-fine mesh ratio decreases
from 1:1 to 1:8. The inf–sup value of this changing-mesh-ratio inf–sup test is shown in Figure 11,
where Nf represents the number of fine elements of the model. Surprisingly, the result suggests that
the inf–sup value is not sensitive to the mesh ratio. This result suggests that the mesh ratio may have
little influence on the spatial stability of the Arlequin poromechanics model. Further studies must
be conducted to check whether this observation can be applied to other problems, but the relatively
small changes in the inf–sup test indicate that coupling between models designed for significantly
different length scales can be numerically stable.
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Figure 10. Inf–sup test results of the modified Cook’s membrane problem with a constant mesh ratio.

Figure 11. Inf–sup test results of the modified Cook’s membrane problem with various coarse-to-fine mesh
size ratios ranging from 1:1 to 1:8.

4.3. Fluid injection into a pre-existing crack of a porous medium

We consider the problem of fluid injection into a pre-existing crack of a porous medium, which arises
in many applications including hydraulic fracturing, geological sequestration of fluidized green-
house gases, and geological disposal of contaminants and hazardous wastes [89,90]. As pointed
out recently by Kim and Selvadurai [90], previous work on the fluid injection problem often treats
injection activities as a static process where the geological material is assumed to be elastic and the
injection process is simulated by a distribution of dilatation acting inside the geological formation.
A more rigorous treatment of this important problem is to simulate the fluid injection problem in
the framework of poroelasticity, such that transient effect induced by the pore fluid diffusion inside
the pre-existing crack and the porous medium and the undrained and drained behaviors at t = 0 and
t → ∞ are properly captured.

Unlike the previous examples in which the solutions in the coarse and fine domains are both
interpolated by polynomial basis functions, in this example, we purposely assign different finite
dimensional spaces to interpolate solution field in different regions. Having verified the Arlequin
poromechanics model through two numerical examples that couple different meshes together, this
setup provides us an opportunity to assess the robustness and stability of the Arlequin coupling
techniques when the coupling domains are represented by different numerical methods.

In this problem, complicated processes are expected to be concentrated on a local region around
the crack, whereas relatively simple processes may occur in regions far from the pre-existing crack.
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These treatments render the Arlequin method an efficient, attractive strategy for a fluid injection
problem. For the same reasons, the Arlequin method is also an appealing choice for modeling other
problems where one can easily identify a domain of interest (e.g., existing fault and flow barrier).

Figure 12 illustrates the configuration of the fluid injection problem. Here we inject a constant
flux of 0.1 mm/s into a 4.5 m long horizontal crack, which is located at the center of the left edge of
a poroelastic domain. While no flow is allowed through the rest of the left edge, drainage is allowed
through all other boundaries where pore pressure is zero. As for the solid boundary conditions, the
left edge is supported by horizontal rollers except the bottom node which is fixed for stability. Using
symmetry, we model a half of the domain. Table III summarizes the material parameters.

We partition the domain into three sub-domains: one domain that accommodates the crack
(fine domain) while the other domains that are continuous porous media (intermediate and coarse
domains). As shown in Figure 12, the level of spatial discretization is highest in the cracked
fine domain and gradually decreases with the distance from the crack. There are two overlapped

Figure 12. Domain configuration and boundary conditions for the fluid injection problem. The finest domain
(zoomed mesh) is modeled by the isogeometric extended finite element method. Symbols in the zoomed mesh
denote enriched nodes. Other domains are modeled by the polynomial-based standard finite element method.
Because of the axial symmetry, only half of the domain is discretized and a zero horizontal displacement

boundary condition is applied on the left side of the domain.

Table III. Parameters for the fluid injection problem.

Parameter Value Unit

Young’s Modulus E 144 MPa

Poisson’s ratio 𝜈 0.2 -

Biot coefficient B 1.0 -

Porosity n 0.3 -

Permeability k 2 × 10−11 m2

Viscosity of pore fluid μ 1.0 × 10−3 Pa · s

Bulk modulus of pore fluid Kf 3.0 GPa
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domains—one linking the fine and the intermediate domains, and the other linking the intermedi-
ate and coarse domains. In these two overlapped domains, the finer meshes are conformal with the
coarser meshes, and each coarser element is overlapped with nine finer elements in the gluing zone.

To take further advantage of the Arlequin method and to test the robustness of the Arlequin frame-
work for coupling models of different natures, we employ different numerical methods and meshes
of different sizes for the sub-domains in this last numerical example. For the cracked domain, we use
the extended finite element method (XFEM) [91]—which allows one to capture strong discontinuity
in the interior of finite elements without re-meshing—in conjunction with the isogeometric anal-
ysis (IGA) [92]—which interpolates solutions by non-uniform rational basis spline (NURBS) that
can lead to higher-order accuracy than polynomial basis functions. It is worth noting that De Luy-
cker et al. [93] and Verhoosel et al. [94] have pointed out IGA employing XFEM to represent strong
discontinuities lead to higher asymptotic convergence rate and accuracy with the same amount of
degree of freedoms, in comparison with XFEM with conventional finite elements of equal degree.
Because of these appealing features, we combine XFEM and IGA to model the cracked fine domain.
Meanwhile, we use only polynomial-based finite elements to model the far-field domain, as the sharp
gradient is absent there. Therefore, we purposely use the standard, polynomial-based finite elements
for these non-cracked sub-domains and test whether the coupling in the overlapped domain is stable
during the simulation. Once again, we emphasize that the capability of applying different numerical
methods in different regions—which in turn allows the modelers to confine highly sophisticated, yet
cost-demanding models to the domains of interest—is a major advantage of the Arlequin method as
previously pointed out in [27,28,33,38]. As demonstrated in this numerical example, this advantage
is also extended to multi-physical problems if a proper coupling strategy is used.

Hydro-mechanical processes in the cavity are modeled following standard approaches in the liter-
ature (e.g., [95]). Using XFEM, we introduce additional global degrees of freedom to the elements
that accommodate the crack (these enriched nodes are denoted by red symbols in Figure 12). The
fluid flow along the crack is modeled by the cubic law, which assumes that the transmissivity of
a flow channel is proportional to the cube of the hydraulic aperture in 3D and the square of the
hydraulic aperture in plane strain 2D problem [96–99]. In this numerical example, we assume that
the mechanical and hydraulic apertures are identical. Hence, the hydraulic aperture (denoted as h
herein) is defined as the separation distance between the upper and lower surfaces of the crack. In a
2D plane strain setting, the intrinsic permeability of the fracture along the crack reads,

kf =
1
f

h2

3μ
, (4.1)

where f is a coefficient, which is typically within the range of (1.04, 1.65), according to Moham-
madnejad and Khoei [98]. In this numerical example, we set f = 1. For brevity, the details of the
formulation and implementation are included in Appendix A. Our main focus here is to demon-
strate the possibility of using the Arlequin method to couple domains modeled by the isogeometric
XFEM and the classical polynomial-based finite element. As a result, the boundary value problem we
intended to solve is simplified such that the pre-existing crack would not propagate and the deforma-
tion of the solid skeleton is infinitesimal. More complex problems close to the setup of a field-scale
operation problem will be considered in the future. In addition, we acknowledge that the Arlequin
coupling framework is sufficiently flexible to accommodate other numerical methods for modeling
localized phenomena in porous media, such as the strong discontinuity approach that enhances local
shape functions for strain and flow [10,12]. In other words, the use of XFEM in this example is just
one of the many possible ways to capture localized displacement jump and fluid flow within the
multi-model Arlequin framework.

Figures 13 and 14 show pore pressure and Darcy velocity fields at t = 2 and t = 10 s in deformed
domains (deformations are magnified by 6000 times). The overall pressure and flow patterns indicate
that the injection drives flow of the pore fluid into the drainage boundaries of the porous media.
Because of the relatively high effective permeability of the the host matrix, the pore pressure field
appears to be continuous and without sharp gradient. As the boundary layer of the pressure plume
penetrates into the bulk materials, the pore pressure jump has not been observed even though the
extended finite element formulation we adopted does include enhancement in the pore pressure field.
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Figure 13. Pore pressure field in the deformed domain (magnification: 6000x) modeled by the three-level
mesh.

Further discussion on various modeling techniques for the fluid flow in embedded discontinuity can
be found in [10,12,94], and in the recent review in de Borst [99], but it is out of the scope of this study
which mainly focuses on Arlequin coupling models. We note that these injection-induced pressure
build-up and flow are significant in near-fields of the crack but they are marginal in far-fields. In
Figure 15, we show engineering shear strains at the same time instants. We observe that shear strains
are developed in near-fields of the crack due to hydro-mechanical coupling between fluid injection
and crack opening. Again, we see that shear strains are marginal in far-fields. These contrasting
complexities of physical processes in the near and far-fields clearly justify the use of the Arlequin
method for introducing different models to the near and far-fields.

To investigate the effects of hydro-mechanical interactions among near-fields and far-fields, we
repeat the problem employing three levels of meshes, namely one-level, two-level, and three-level
meshes. In the one-level mesh model, we simulate the fluid injection simulation only in the finest
mesh. Then, we conduct the two-level mesh model by placing an additional (intermediate) mesh
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Figure 14. Darcy velocity field in the deformed domain (magnification: 6000x) modeled by the three-level
mesh.

and bundling it with the fine mesh to enlarge the domain. Finally, in the three-level mesh model,
we continue to enlarge the domain by introducing the coarse mesh such that it coincides the model
we have considered so far. In other words, all three models share the fine domain with the extended
isogeometric finite element, and the two-level and three-level mesh models commonly employ the
intermediate domain of the three-level mesh. Note that while the Arlequin method is not essential to
place more degree of freedoms near the crack tip, it enables coupling different numerical methods
(in this case NURBS-based XFEM and polynomial-based standard FEM), which is very challenging
otherwise.

In Figure 16, we compare results of the three models in terms of opening displacements along
the crack in the fine domain. Generally, models with larger domains tend to predict larger crack
openings. This trend can be attributed to the fact that larger domains are less affected by bound-
ary effects and thus closer to a poroelastic half space. At t = 2 s, the opening cracks of the
two-level and three-level mesh models are almost identical; however, they become different as
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Figure 15. Shear strain field in the deformed domain (magnification: 6000x) modeled by the three-level mesh.

time proceeds to t = 10 s. This observation indicates that the opening crack displacement
grows faster in the model with the far-field than in the model with only the fine isogeometric
domain.

Figure 17 shows the von Mises stress distribution behind the pre-existing crack (along the hori-
zontal line that separate the upper and lower domains evenly). Because there is no traction-separation
law employed at the interface, the von Mises stress is zero inside the crack. Unlike the pore pres-
sure and displacement fields of which the existence of nodal values allows one to interpolate via the
basis function, the stress tensor is only evaluated at the Gauss point. Hence, we use a L2 projection
scheme to project the discrete data point to the interpolated field spanned by the same basis functions
we used to interpolate displacement and pore pressure [100,101]. For brevity, we will not provide
details of the projection scheme. Interested readers are referred to Mota et al. [101] for details. As
expected, the von Mises stress is concentrated near the crack tip and gradually decreases.

Figures 18 present the results of the three models in terms of the pore pressure along the crack.
Note that as each coarse mesh is added, the numerical solution behaves closer to a poro-elastic half
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Figure 16. Opening displacement along the crack: (a) t = 2 s and (b) t = 10 s.

Figure 17. Variation of von Mises stress behind the crack tip: (a) t = 2 s and (b) t = 10 s

space. While the pore pressure and the von Mises stress are different in all three cases, they show
consistent trends with the increase of the level of meshes.

These findings from the three-level mesh study indicate that incorporating far-field effects can
enhance the resolution of near field solutions. Yet in practical problems such incorporation of far-field
can be prohibitively expensive without an efficient concurrent multiscale, multimodel approach like
the Arlequin method. In this example, we just added 778 polynomial-based standard finite elements
for incorporating far-field effects to the one-level mesh model. The added computational cost is a
fraction of the pre-existing cost from the NURBS-based extended finite elements in the fine domain,
let alone the cost of a naive extension that uses the same NURBS-based finite elements for far-fields.
This minimized cost showcases the advantage of the Arlequin method for concurrent multiscale
modeling.

4.3.1. Numerical inf–sup test for the fluid injection problem. For this fluid injection problem, we
perform four inf–sup tests refining only the fine domain modeled by NURBS-based XFEM. During
the test, the fine-to-coarse mesh ratio varies from 16:1 to 1:1. Figure 19 shows the results of the
inf–sup tests for L2 and H1 coupling cases. We observe that H1 coupling results in higher inf–sup
values, consistent with previous findings [33,66]. More importantly, the absence of any significant
drop in the inf–sup values confirms the stability of our Arlequin poromechanics model. This result
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Figure 18. Variation of pore pressure from the injection point: (a) t = 2 s and (b) t = 10 s.

Figure 19. Inf–sup test results of the fluid injection problem.

is particularly encouraging, as it suggests that the numerical stability is insensitive to the mesh size
ratio (in this case from 16:1 to 1:1) as well as the numerical methods (in this case from NURBS-
based to polynomial-based finite elements) in the overlapped region. Generalizing this conclusion to
other hydro-mechanical problems via a more rigorous mathematical analysis deserves future work.

5. CONCLUSION

A concurrent multiscale model for coupled poromechanics has been developed. Built on the Arlequin
framework, this model enforces weak compatibility of displacement and pore pressure fields between
domains by distributing energies. We have derived a necessary condition for spatial stability as a
twofold inf–sup condition, and proposed a discrete twofold inf–sup test to check the numerical
stability. Through two benchmark problems, we have verified the developed model under various
refinement levels, mesh ratios, and drainage conditions. We have also presented a numerical example
that couples NURBS-based and polynomial-based finite element models to simulate fluid injection
into a cracked porous material. This example has demonstrated how the Arlequin model can cou-
ple different poromechanics models of multiple length scales in an efficient manner. This feature
can significantly advance our modeling capabilities of emerging and complicated hydro-mechanical
problems whereby highly contrasting processes take place at multiple scales and regions, such as
those involving injection, shear banding, faulting, or fractures.
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APPENDIX A: FORMULATION OF THE ISOGEOMETRIC EXTENDED FINITE ELEMENTS
IN THE FLUID INJECTION PROBLEM

This appendix describes the formulation of the isogeometric extended finite element model used
in the fluid injection problem (Section 4.3). For more details, we refer to Nguyen et al. [102] and the
open-source code base igafem with which we implement the Arlequin poromechanics model. In
the following, we adopt the notation in Nguyen et al. [102]. First, let us construct a B-spline with a
knot vector

𝛯 = {𝜉1, 𝜉2, … , 𝜉n+p+1}, 𝜉n ⩽ 𝜉n+1, (A1)

where 𝜉 is the i-th knot, n is the number of B-spline basis function and p is the polynomial order.
Then, the corresponding set of B-spline basis functions can be defined by the Cox-de-Boor formula,
for the zeroth order basis function (p = 0):

Ni,0(𝜉) =
{

1 , if 𝜉i ⩽ 𝜉 ⩽ 𝜉i+1,
0 , otherwise,

(A2)

and for a polynomial order p ⩾ 1

Ni,p(𝜉) =
𝜉 − 𝜉i

𝜉i+p − 𝜉i
Ni,p−1(𝜉) +

𝜉i+p+1 − 𝜉

𝜉i+p+1 − 𝜉i+1
Ni+1,p−1(𝜉), (A3)

where the fractions with the form 0∕0 are defined as zero. Therefore, the NURBS basis function can
be defined as follows:

Ri,p(𝜉) =
Ni,p(𝜉)𝜔i

W(𝜉)
=

Ni,p(𝜉)𝜔i∑n
î=1 𝜔î

, (A4)

where 𝜔i > 0 is the set of NURBS weights.
Employing these NURBS shape functions and the extended finite element method, we express the

two-dimensional displacement field in the cracked elements as follows:

uh(x) =
∑
I∈S

RI(x)uI +
∑
J∈Sc

RJ(x)H(x)aJ +
∑

K∈Sf

RK(x)

(
4∑

𝛼=1

B𝛼b𝛼K

)
, (A5)

where RI,J,K are the NURBS basis functions defined previously, uI represents the standard degrees
of freedom for the displacement, aJ the enrichment degrees of freedom for the crack, and b𝛼

K the
enrichment degrees of freedom for the crack tip. The set S includes the standard points, while the set
Sc includes the control points/nodes whose supports are cut by the crack and the set Sf are control
points with the crack tip. H(x) is the Heaviside function given by:

H(x) =
{

+1 , if (x − x∗) · n ⩾ 0,
−1 , otherwise,

(A6)

where n is the outward normal vector to the crack and x* denotes the projection of point x on the
crack. The branch functions B𝛼 , which span the crack tip displacement field, are defined as follows:

[B1,B2,B3,B4](r, 𝜃) =
[√

r sin
𝜃

2
,
√

r cos
𝜃

2
,
√

r sin
𝜃

2
cos 𝜃,

√
r cos

𝜃

2
cos 𝜃

]
, (A7)

Here r and 𝜃 are the polar coordinates in the local crack front. Accordingly, now the
strain–displacement matrix B accommodates the enrichment degrees of freedom as follows:

B = [Bstd | Benr], (A8)

where Bstd is the B matrix related to the standard degrees of freedom while Benr is that related to
the enrichment degree of freedoms. This enriched strain–displacement matrix is thus a function
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of both the NURBS basis functions and the global enrichment introduced to represent the strong
discontinuity (crack). In two-dimensional case, this enriched strain–displacement matrix is given by

Benr
I =

⎡⎢⎢⎣
(RI),x𝛹I + RI(𝛹I),x 0

0 (RI),y𝛹I + RI(𝛹I),y
(RI),y𝛹I + RI(𝛹I),y (RI),x𝛹I + RI(𝛹I),x

⎤⎥⎥⎦ . (A9)

Depending on whether control point I near the tip is enriched, 𝛹I can be either the branch functions
B𝛼 or the Heaviside function H. In Armero and Callari [10] and Réthoré et al. [96], the pore pressure
is assumed to remain continuous, while a jump may exist in the Darcy’s velocity component normal
to the crack faces. As recently explained in de Borst [99], this assumption can be relaxed such that
the pore pressure itself can be discontinuous within the content of extended finite elements [99,103].
This approach is adopted in this study. To accommodate the strong discontinuity in the pore pressure
field, we also introduce global enrichment to the pore pressure solution field. In the element where
the strong discontinuity exists, the discrete gradient operator Bp is replaced by an enriched discrete
gradient operator given by

BP = [Bstd,P | Benr,P], (A10)

where Bstd,P is the standard gradient matrix BP while Benr,P is the enriched BP matrix for the enriched
pore pressure degree of freedom, that is,

Benr,P
I =

[
(RI),x𝛹I + RI(𝛹I),x
(RI),y𝛹I + RI(𝛹I),y

]
. (A11)

The permeability inside the crack is modeled by the cubic law which relates the intrinsic permeability
along the crack to cubic of the crack aperture. In this work, we employ an implicit scheme and defines
the residual vector Ri at the i-th iteration as follows:

Rn+1
i =

⎡⎢⎢⎣
0 0 C

T
u

G D(1) CT
p

Cu Cp 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
𝛥Û

n+1
i

𝛥P̂
n+1
i

𝛥𝜦n+1
i

⎤⎥⎥⎥⎦i

+
⎡⎢⎢⎣
K GT C

T
u

0 ΔtD(2) CT
p

Cu Cp 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

Û
n+1
i

P̂
n+1
i

𝜦n+1
i

⎤⎥⎥⎥⎦i

+
⎡⎢⎢⎣

Fn
inter

ΔtQn
inter

0

⎤⎥⎥⎦i

−
⎡⎢⎢⎣

Fn
ext

ΔtQn
ext

0

⎤⎥⎥⎦i

, (A12)

where the subscript i in (A12) denotes the iteration, and D1 and D2 refer to the terms related to the
local change of pore pressure and the diffusion-induced change of pore pressure, respectively. Here,
the traction across the interior discontinuity is given by

Finter = ∫𝛤d

𝜒[|N|]Ttdd𝛤 − 𝜒

(
∫𝛤d

[|N|]Tn𝛤dNd𝛤

)
P

+ ∫𝛤d

(1 − 𝜒)[|Ñ|]T t̃dd𝛤 − (1 − 𝜒)
(
∫𝛤d

[|Ñ|]Tn𝛤dÑd𝛤

)
P̃,

(A13)

along 𝛤d where enriched nodes exist. Similarly, the interfacial flux vector is given by

Qinter = ∫𝛤d

𝜒N
T
n𝛤dqdd𝛤 + ∫𝛤d

(1 − 𝜒)ÑT
n𝛤dq̃dd𝛤 , (A14)

where n𝛤d
denotes the unit normal vector of the interface 𝛤d, td and t̃d denote the cohesive tractions

across the interface between the coarse and fine sub-domains, which vanish for a open crack, qd and
q̃d are the fluid fluxes along the interface in the coarse and fine sub-domains.
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