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ABSTRACT

Flexible Sparse Learning
of Feature Subspaces

Yuting Ma

It is widely observed that the performances of many traditional statistical learn-

ing methods degenerate when confronted with high-dimensional data. One promising

approach to prevent this downfall is to identify the intrinsic low-dimensional spaces

where the true signals embed and to pursue the learning process on these informative

feature subspaces. This thesis focuses on the development of flexible sparse learning

methods of feature subspaces for classification. Motivated by the success of some ex-

isting methods, we aim at learning informative feature subspaces for high-dimensional

data of complex nature with better flexibility, sparsity and scalability.

The first part of this thesis is inspired by the success of distance metric learning

in casting flexible feature transformations by utilizing local information. We propose

a nonlinear sparse metric learning algorithm using a boosting-based nonparametric

solution to address metric learning problem for high-dimensional data, named as

the sDist algorithm. Leveraged a rank-one decomposition of the symmetric posi-

tive semi-definite weight matrix of the Mahalanobis distance metric, we restructure

a hard global optimization problem into a forward stage-wise learning of weak learn-

ers through a gradient boosting algorithm. In each step, the algorithm progressively

learns a sparse rank-one update of the weight matrix by imposing an L1 regulariza-

tion. Nonlinear feature mappings are adaptively learned by a hierarchical expansion

of interactions integrated within the boosting framework. Meanwhile, an early stop-



ping rule is imposed to control the overall complexity of the learned metric. As a

result, without relying on computationally intensive tools, our approach automatically

guarantees three desirable properties of the final metric: positive semi-definiteness,

low rank and element-wise sparsity. Numerical experiments show that our learning

model compares favorably with the state-of-the-art methods in the current literature

of metric learning.

The second problem arises from the observation of high instability and feature

selection bias when applying online methods to highly sparse data of large dimen-

sionality for sparse learning problem. Due to the heterogeneity in feature sparsity,

existing truncation-based methods incur slow convergence and high variance. To mit-

igate this problem, we introduce a stabilized truncated stochastic gradient descent

algorithm. We employ a soft-thresholding scheme on the weight vector where the

imposed shrinkage is adaptive to the amount of information available in each feature.

The variability in the resulted sparse weight vector is further controlled by stability

selection integrated with the informative truncation. To facilitate better convergence,

we adopt an annealing strategy on the truncation rate. We show that, when the true

parameter space is of low dimension, the stabilization with annealing strategy helps

to achieve lower regret bound in expectation.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

With advances in modern technology, an unprecedentedly large number of data are

produced and stored. The dimensionalities of these datasets have exploded, usually

in the exponential order of sample sizes, which makes extracting patterns from them

a challenging problem for traditional statistical methods. Due to the large dimen-

sionality, it is difficult to attain the generalizability and computational efficiency as in

the low-dimensional counterparts. One consensus is that, instead of being truly high-

dimensional, the data are embedded in a noisy high-dimensional space and thus can

be efficiently summarized in feature subspaces of much lower dimensions. In order to

improve accuracy and interpretability of the estimations, learning informative feature

subspaces has become a necessary step for learning tasks in high dimensions. In this

thesis, we dedicate to develop efficient learning algorithms for supervised learning

of informative feature subspaces with high-dimensional data. Based on established

learning schemes, we propose to induce sparsity via shrinkage for extracting low-

dimensional informative feature subspaces. We construct flexible classifiers that are

nonparametric and adapt to local variations with the ability to consider the potential

nonlinear interactions among features. The learning processes are made possible and

scalable by employing stochastic learning and boosting framework.
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1.1 Background

The performances of many popular learning methods in low dimensional setting de-

generate when confronted with high-dimensional data. One promising approach to

lift this barrier is to learn intrinsic low-dimensional spaces where the true signal lie

and pursue the learning process on these feature subspaces. The benefits of doing it

can be seen from both theoretical and practical perspectives. First, learning a low-

dimensional representation alleviates the renown problem of curse of dimensionality.

Secondly, learning on a reduced feature subspace increases the interpretability of the

resulted model for more transparent scientific explanations. Last but not the least,

with a much smaller number of dimensions in consideration, the computations can

be drastically accelerated with manageable storage.

The main reason that traditional learning methods in low-dimensional setting

suffers in high dimensionality is due to the curse of dimensionality [Bellman, 1961].

Their performances deteriorate quickly as the dimension of the search space increases

in terms of estimation accuracy, stability and computational efficiency. Particularly,

distances, such as the Euclidean distance, serve as the foundations of many statistical

learning algorithms that quantify the notion of similarity. However, it is shown in

[Hastie et al., 2009] that, as dimension increases, the differences in the Euclidean

distances between pairs of data points diminish with finite sample size. Consider a

simple scenario where n data points uniformly distribute in a p-dimensional unit ball

centered at the origin. We can compute the median distance from the origin to the

closet data point as follows:

d(p, n) =

(
1− 1

2

1/n
)1/p

. (1.1)

From (1.1), it is easy to see that when p is large, most data points lie on the boundary

of the unit ball, making them indistinguishable in terms of distances. The situation

is worsened by the rising computational costs for calculating the pairwise distances.

As a result, many classical distance-based learning algorithms are not applicable for
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high-dimensional data, including the k-Nearest Neighbor classifier (kNN) [Marimont

and Shapiro, 1979], the kernel-based methods such as Support Vector Machine (SVM)

[Cortes and Vapnik, 1995] and the kernel regression [Nadaraya, 1964], etc.. Moreover,

it is discussed in [Hughes, 1968] that, with finite sample sizes, the predictive power di-

minishes as the dimensionality increases, which is known as the Hugues phenomenon.

Therefore, in a high-dimensional feature space, when each feature only has a finite

number of possible values, an enormously large training sample is required to achieve

similar performance as in low-dimensional feature space. From the computational

perspective, the algorithms need to search within an exponentially increasing space

for closest neighbors. Some methods require amounts of time and memory that are

exponential in the number of dimensions of the data. To resolve the curse of dimen-

sionality, researchers usually assume that there are some intrinsic low-dimensional

feature subspaces where lie the true signal of the data. With low-dimensionality,

distances maintain their functionality as measures of similarity on these feature sub-

spaces. Since less irrelevant and noisy features are used in the model, the estimations

based on feature subspaces are less subject to noise and to over-fitting.

Not only are the data growing in volume and in dimensionality, but the under-

standing that people wish to gain from them is increasingly sophisticated. For exam-

ple, in genetic studies, while predictive models could be based on the expression of

more than a few thousands of genes, it is motivated to search for short lists of predic-

tive genes that can concisely explain the observed patterns. The ability of interpreting

the resulted model based on small sets of genes may shed lights on decoding biolog-

ical processes involved in the disease and suggest novel findings for curing [Haury et

al., 2011]. Therefore, learning informative feature subspaces is also meaningful for

real scientific applications to bring transparent interpretations. Unlike the mysterious

“blackbox” algorithms, it provides tangible insights for scientific research. When the

dimensions of feature subspaces are reduced to two- or three-dimensional, they also

facilitate straightforward visualization of the data to reveal their complex structures.
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The computational advantage with low-dimensional feature subspaces is rather

obvious after previous discussions. The computational costs for matrix computa-

tions exponentially decrease as the dimensionalites are shrunkened. Using feature

subpaces makes nonparametric distance-based learning algorithms possible even with

large sample sizes. It also requires less intermediate storage spaces and a much smaller

number of parameters. For instance, in the distance metric learning literature [Bellet

et al., 2013], to obtain an adaptive distance metric, one needs to store a p× p dense

matrix to treat each feature discretionarily, where p is the data dimension. The com-

putations between any pair of data points involve O(p2) complexity. Instead, in sparse

metric learning, the distances are computed by considering only a d-dimensional fea-

ture subspace, where d << p. The needs of storage and distance computation are

both quadratically cut down.

There exists voluminous works on feature subspace learning. From a different

perspective, feature subspace learning is an analogy to dimension reduction, which has

attracted much attention in statistics and machine learning communities during the

past decades. In addition to reduce dimensions to manageable sizes, we contemplate

more on the meanings of the reduced subspaces and the patterns of data points unfold

on them, which is the reason we focus on the learning of feature subspaces. By and

large, feature subspace learning methods can be classified into two categories: feature

selection methods and feature transformation methods.

Feature selection methods focus on identifying a subset of individual features that

are considered to be significant for the learning objectives. Usually, they are catego-

rized into the following two types or their mixture depending on how the selection

procedure is combined with the model building [Guyon and Elisseeff, 2003].The filter

methods evaluate the intrinsic characteristics of the features regardless of the learners

used. This group of methods includes the siginificance-test-based methods such as

the Golub’s weighted voting method [Golub et al., 1999], the significance analysis

[Tusher et al., 2001] and information theoretic methods [Ding and Peng, 2005]. On
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the controrary, the wrapper methods are embedded within the specific learners, in

which the feature selection criteria is related to the learning performance, such as

LASSO [Tibshirani, 1996a], Recursive Support Vector Machine (R-SVM) [Zhang et

al., 2006] and Random Forest [Breiman, 2001], etc.. Depending on how the selected

features would be used, the resulted feature subspaces can be formed either by treat-

ing each selected feature as an one-dimensional feature subspace or by concatenating

the entire set of selected features as one multi-dimensional feature subspace.

On the other hand, feature transformation methods seek for transformations of the

original input feature space to spaces of lower dimensions. Unsupervised learning and

supervised learning are two different setups for this kind of methods. In unsupervised

problems, as no response variable is given, the algorithms pursue the goal of extracing

low-dimensional embedding while preserving the original spatial relationships among

data points as they are in the original high-dimensional space. Among unsupervised

feature transformation methods, the most famous linear approaches should be the

Principal Component Analysis (PCA) [Pearson, 1901]. Nonlinear unsupervised fea-

ture transformation is often referred to as manifold learning. Popular methods include

ISOMAP [Tenenbaum et al., 2000], locally linear embedding [Roweis and Saul, 2000],

laplacian eigenmaps [Belkin and Niyogi, 2002], stochastic neighborhood embedding

[Hinton and Roweis, 2002], etc.. In the context of supervised learning, the goal can

be translated as to searching for feature subspaces on which data points with similar

response variable are drawn closer to each other while dissimilar ones are dispelled

further away. Linear discriminant analysis [Fisher, 1936] is a classical example of

linear approaches for supervised learning. Additive models, such as multiplicative

adaptive regression splines (MARS) [Friedman and others, 1991], learn a set of fea-

ture subspaces which can be either linear or nonlinear transformations of the original

features. In the extensions, multilinear subspace learning and its counterparts con-

struct low-dimensional subspaces for tensor data [Vasilescu and Terzopoulos, 2003].

Metric learning [Yang and Jin, 2006], [Bellet et al., 2013] is a general class of methods
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that offers a variety of flexible methods for learning linear transformations of the in-

put features with extensions to nonlinear ones. It is seen in the literature that feature

transformation is overall more effective than feature selection for high-dimensional

data. However, without sparsity regularization, the learned feature subspaces are

subject to the lack of interpretability if either the number of involved input features

or the number of subspaces is large.

1.2 Motivation

Inspired by the success of various feature subspace learning methods, we are motivated

to extend the state-of-the-art methods with some characteristics which we believe

can help to accommodate high-dimensional data of more complex nature with better

efficiency: flexibility, sparsity and scalability.

In the mainstream of statistical research, linear models retain their popularity

despite of their simplicity. In both regression and classification problems, they enjoy

theoretical soundness, practical effectiveness, and easy interpretation. However, with

growing complexity in modern data, linear models are no longer capable of fulfilling

the needs of modeling and predictions. It is very unlikely that the true relationships

between the response variable and the input features are simply linear, especially in

the high-dimensional settings. For instance, in microarray data, co-expressions of

genes are often observed in biological conditions and processes which cannot be cap-

tured by linear model. Some crucial genes are only influential when jointly considered

with others. Therefore, it is desirable to have the ability of modeling complex data

with greater flexibility. In order to achieve flexibility, there are several approaches

that can be utilized. Firstly, we can leverage information of local structures. With a

reasonably large set of training data, we can always approximate theoretically optimal

conditional expectations by nearest-neighbors averages. Relying on local information,

it requires no assumption on the underlying global model, which, regardless of the
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form, is very likely to be wrong for high-dimensional data. Local methods, such as the

simple yet effective k-Nearest Neighbor (kNN) [Cover and Hart, 1967], have gained

lasting popularity owning to their nature adaptions to irregular and local variations.

Nevertheless, local methods are based on a foundamental assumption that data points

that are close in Euclidean distance are similar to each other, which might not be

valid for high dimensional data due to the curse of dimensionality on distance, ar-

ticulated in Section 1.1. The question remains in how local information shall be

used with the presense of a large amount of noises and how spatial information can

be translated into semantical similarity. Another vehicle is to include nonlinearity

in order to evolving from linear models. Polynomials, splines [Craven and Wahba,

1978] and kernel methods [Nadaraya, 1964] are widely used elements for achieving

nonlinearity. With a large number of input features, learning with all polynomial

terms is impractical subject to prohibitively high computational costs. The selection

of significant polynomial terms is an NP-hard problem. Alternatively, kernel meth-

ods are extensively studied for their power of modeling highly nonlinear data and

for the “kernel trick” that enables manageable computation [Hofmann et al., 2008].

Whearas with kernel functions, the basis feature space is expanded to possibly infinite

dimension. The interpretation of the resulted model becomes unclear in the original

feature space. Moreover, it is noted that many kernel-based methods do not scale

with large sample sizes [Rahimi and Recht, 2007]. In all, for high-dimensional data, it

is still very challenging to cast a flexible model with desired properties, such as local-

ity and nonlinearity, and with manageable computational costs and straightforward

interpretations.

On the other hand, in the recent years we have witnessed an explosion of research

interests in deep architectures based on neural network. Deep architectures learn com-

plex mapping by transforming inputs through multiple layers of nonlinear processing

with millions or even billions parameters. However, for the sake of its overwhelming

complications, deep learning methods are often seen as “blackbox” algorithms whose
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results cannot be easily interpreted. They involve difficult nonlinear optimization

and many heuristics that conceal the underlying mechanism from discovery. Like

many, we are intrigued by the success of models with complex structure yet drawn to

the principle of parsimony: the simplest explanation of a given phenomenon should

be preferred over more complicated ones. Hence, it is our motivation to steer the

feature engineering adaptively with the learning process to achieve both sparsity in

parameter space and good interpretation. We aim at casting a strategy that learns

a low-dimensional informative features subspace even when flexible approaches are

adopted.

Another major bottleneck that obstructs high-dimensional data modeling is the

high computational costs. As mentioned in Section 1.1, learning low-dimensional

feature subspaces in high-dimensional data leads to hard combinatorial problems

[Natarajan, 1995]. The flexibility merits that we are looking for, such as locality and

nonlinearity, are usually computationally expensive in traditional methods. For ex-

ample, metric learning methods exploit local information, using distance as measure

of similarity. However, they often involve the burdensome semi-definite programming,

which has worst-case complexity of O(p6.5), where p is the data dimension. Kernel

methods is a classical option to introduce nonlinearity that take advantage of the “ker-

nel trick”. Yet it is not scalable as the storage and computation of the kernel matrix

take O(n2) and O(n2p) respectively, where n is the sample size. Another computa-

tional concern rises when there are too many tuning parameters. Normally the final

decision is made based on cross-validations by searching over a grid of parameter com-

binations. If an algorithm is not designed to automatically tailor to the data at hand,

the computational cost might be multiplied for a scrutiny of the optimal parameter

values. Consequently, in real applications, it is unrealistic to pursue good performance

without constraining computational complexity for high-dimensional data. Whereas,

the tradeoff between performance and computational efficiency is not straighforward

and can be task-specific. Moreover, for many high-dimensional data, it is often ob-
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served that the data matrices are highly sparse. It remains unclear of how one can

exploit the data sparsity to devise efficient computation at the same time as stream-

lining the search of informative feature subspaces.

1.3 A Brief Overview

In this thesis, we address the problem of feature subspace learning for classification.

The goal is to develop flexible frameworks to induce sparsity in feature space. We

incorporate local information under a non-parametric framework such that the algo-

rithm adapts to local variations. We further extend to nonlinear feature subspaces

to consider potential higher-order interactions among features and to increase model

flexibility. We resort to boosting algorithm and online learning framework to ensure

scalability for data with both high dimensionality and massive sample size. These

techniques not only provide wheels for increasing computational efficiency but also

controls on over-fitting.

In the first part of this thesis, Chapter 2, is inspired by the success of distance

metric learning in casting flexible linear transformation of feature space. We propose

a nonlinear sparse metric learning algorithm using a boosting-based non-parametric

solution to address metric learning problem for high-dimensional data, named as the

sDist algorithm. In distance metric learning, we consider the Mahalanobis distance

as a generalization of the Euclidean distance. The Mahalanobis distance between

any two points xi and xj is parametrized by a symmetric and positive semi-definite

weight matrix W :

dW (xi,xj) =
√

(xi − xj)TW (xi − xj).

From a supervised learning perspective, a “good” Mahalanobis distance metric is

supposed to draw similar points closer in distance and to pull dissimilar points fur-

ther away. A major challenge of distance metric learning is the optimization for the

weight matrix W based on the given similarity/dissimilarity constraints while retain-
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ing its symmetry and positive semi-definiteness. Traditional methods may incur up

to O(p6.5) computational complexity by using semi-definite programming. The novel

contribution of our approach is that we mathematically convert a hard global op-

timization problem into a sequence of simple local optimization via boosting. By

recognizing a rank-one decomposition of the weight matrix W , the additive structure

of forward stagewise learning automatically guarantees the required properties of

symmetry and positive semi-definiteness of W without resorting computationally in-

tensive tools. A gradient boosting algorithm is devised to obtain a feature-wise sparse

rank-one update of the weight matrix at each step. To extend from linear distance

metric, nonlinear features are progressively and adaptively learned by a hierarchical

expansion of interactions incorporated within the boosting algorithm. By including

solely the interactions that appear to be necessary with respect to the learning objec-

tive, we manage to identify significant nonlinear feature subspaces while maintaining

low computational costs and good interpretability. Meanwhile, an early stopping

rule is imposed to control the overall complexity of the learned metric. As a result,

our approach guarantees three desirable properties of the final metric: positive semi-

definiteness, low rank and element-wise sparsity. Feature selection might be carried

out as a spontaneous by-product of our algorithm that provides insights of variable

importance not only marginally but also jointly in higher orders. Numerical exper-

iments show that our learning model compares favorably with the state-of-the-art

methods in the current literature of metric learning.

Although the sDist algorithm achieves preferable performances for learning infor-

mative feature subspaces in high-dimensional space, it is not yet effective if the data

is not only of large dimenaionality but also highly sparse. High-dimensional sparse

data are observed in many important applications, such as the bag-of-word features

in text mining and mass-spectrometric data in chemical analysis. Different from data

with dense features, learning with sparse data is notoriously hard. Since the locations

of nonzero entries are covered up by the predominant number of zero entries, learning
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with highly sparse data usually incurs severe instability and computational difficul-

ties. Particularly, online learning is subject to high fluctuations of the occurrences of

nonzero entries. It requires extra efforts to identify the locations of nonzero entries.

In the second part of this thesis, Chapter 3, we will address this particular computa-

tional issue of high-dimensional sparse data for sparse online learning problem. We

develop a novel tool based on stochastic gradient descent (SGD), which is one of the

most commonly used optimization methods in large-scale machine learning problems.

[Langford et al., 2009] introduce a sparse online learning method to induce sparsity

via truncated gradient. With high-dimensional sparse data, however, this method

suffers from slow convergence and high variance due to the heterogeneity in feature

sparsity. To mitigate this issue, we introduce a stabilized truncated stochastic gra-

dient descent algorithm. We employ a soft-thresholding scheme on the weight vector

where the imposed shrinkage is adaptive to the amount of information available in

each feature during the online learning process. The variability in the resulted sparse

weight vector is further controlled by stability selection integrated with the informa-

tive truncation. To facilitate better convergence, we adopt an annealing strategy on

the truncation rate. This technique leads to a balanced trade-off between exploration

and exploitation in learning a sparse weight vector. We show that, in expectation, the

stabilization with annealed rejection rate helps attain lower regret bound the orig-

inal non-stabilized algorithm as well as faster convergence. Numerical experiments

show that our algorithm compares favorably with the original algorithm in terms

of prediction accuracy, attained sparsity and stability. The proposed method is not

only beneficial for improving the sDist algorithm but also other sparsity-inducing

algorithms for high-dimensional sparse data.

In the last chapter of this thesis, Chapter 4, we present potential applications of

the proposed algorithms in machine learning, particularly in computer vision. In the

applications, we integrate the stabilized truncated stochastic gradient descent algo-

rithm of Chapter 3 into the sparse metric learning framework of Chapter 2 as the
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computational engine. Such a combination boosts the performance of sDist frame-

work and makes it applicable for high-dimensional applications with highly sparse

entries. In computer vision applications, the resulted feature subspaces provide visi-

ble interpretation of the key factors for distinguishing different classes. On the other

hand, by recognizing kernel as a generalized distance measure, we can further improve

the flexibility of the proposed method by exploring a greater, even infinitely dimen-

sional, feature space. To this end, we extend the distance metric learning framework

of the sDist algorithm in Chapter 2 to kernel machine. Existing kernelized distance

metric learning methods rely on the “kernel trick” and are obstructed by the pro-

hibitively large kernel matrix applied on data with large sample sizes. Instead, we

identify a random process associated with a positive-definite translation-invariant ker-

nel function. By constructing random feature vectors with tractable computational

cost, we obtain an unbiased estimation of the kernel function which is used to decode

the kernel learning problem. The random features are sparsified by imposing a first-

order Markov chain prior on the nonzero atoms to identify low-dimensional feature

subspaces. This part of works directs our future research. At last, we conclude this

thesis by summarizing distinctive characteristics and common merits of the proposed

methods.
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Chapter 2

Boosted Sparse Nonlinear Distance

Metric Learning

2.1 Introduction

Beyond its physical interpretation, distance can be generalized to quantify the notion

of similarity, which puts it at the heart of many learning methods, including the

k-Nearest Neighbors (kNN) method, the k-means clustering method and the kernel

regressions. The conventional Euclidean distance treats all dimensions equally. With

the growing complexity of modern datasets, however, Euclidean distance is no longer

efficient in capturing the intrinsic similarity among individuals given a large number

of heterogeneous input variables. This increasing scale of data also poses a curse of

dimensionality such that, with limited sample size, the unit density of data points is

largely diluted, rendering high variance and high computational cost for Euclidean-

distance-based learning methods. On the other hand, it is believed that the true

informative structure with respect to the learning task is embedded within an intrinsic

low-dimensional manifold [Johnson and Lindenstrauss, 1984], on which model-free

distance-based methods, such as kNN, are capable of taking advantage of the inherent

structure. It is therefore desirable to construct a generalized measure of distance in
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a low-dimensional nonlinear feature space for improving the performance of classical

distance-based learning methods when applied to complex and high dimensional data.

We first consider the Mahalanobis distance as a generalization of the Euclidean

distance. Let {x1,x2, . . . ,xn} be a set of points in a feature space X ⊆ Rp. The

Mahalanobis distance metric between any two points xi and xj parameterized by a

weight matrix W is given by:

dW (xi,xj) =
√

(xi − xj)TW (xi − xj), (2.1)

where W ∈ Rp×p is symmetric positive semi-definite (PSD), denoted as W � 0. The

Mahalanobis distance can also be interpreted as the Euclidean distance between the

points in a new (sub)space that are linearly projected by L:

dW (xi,xj) = ||L(xi − xj)||2, (2.2)

where LLT = W can be found by the Cholesky Decomposition. From a general

supervised learning perspective, a “good” Mahalanobis distance metric for an outcome

y at x is supposed to draw samples with similar y values closer in distance based on

x, referred to as the similarity objective, and to pull dissimilar samples further away,

referred to as the dissimilarity objective, in the projected space.

There has been considerable research on the data-driven learning of a proper

weight matrix W for the Mahalanobis distance metric in the field of distance metric

learning. A comprehensive survey [Yang and Jin, 2006] pointed out that both accu-

racy and efficiency of distance-based learning methods can significantly benefit from

using the Mahalanobis distance with a proper W . A detailed comparison with related

methods is presented in Section 2.5. While existing algorithms for metric learning

have been shown perform well across various learning tasks, each is not sufficient in

dealing with some basic requirements. First, a desired metric should be flexible in

adapting local variations as well as capturing nonlinearity in the data. Second, in

high-dimensional settings, it is preferred to have a sparse and low-rank weight matrix

W for better generalization with noisy inputs and for increasing interpretability of the
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fitting model. Finally, the algorithm should be efficient in preserving all properties

of a distance metric and be scalable with both sample size and the number of input

variables.

In this chapter, we propose a novel method for a local sparse metric in a nonlinear

feature subspace for binary classification, which will be referred to as sDist. Our ap-

proach constructs the weight matrix W through a gradient boosting algorithm that

produces a sparse and low-rank weight matrix in a stage-wise manner. Nonlinear

features are adaptively constructed within the boosting algorithm using a hierarchi-

cal expansion of interactions. The main and novel contribution of our approach is

that we mathematically convert a global optimization problem into a sequence of

simple local optimization via boosting, while efficiently guaranteeing the symmetry

and the positive semi-definiteness of W without resorting to the computationally in-

tensive semi-definite programming. Instead of directly penalizing on the sparsity of

W , sDist imposes a sparsity regularization at each step of the boosting algorithm

that builds a rank-one decomposition of W . The rank of the learned weight matrix

is further controlled by the sparse boosting method proposed in [Bühlmann and Yu,

2006]. Hence, three important attributes of a desirable sparse distance metric are

automatically guaranteed in the resulting weight matrix: positive semi-definiteness,

low rank and element-wise sparisty. Moreover, our proposed algorithm is capable

of learning a sparse metric on nonlinear feature space, which leads to a flexible yet

highly interpretable solution. Feature selection might be carried out as a spontaneous

by-product of our algorithm that provides insights of variable importance not only

marginally but also jointly in higher orders.

This chapter is organized as follows. In Section 2 we briefly illustrate the motiva-

tion for our method using a toy example. Section 3 dissects the global optimization

for linear sparse metric learning into a stage-wise learning via gradient boosting al-

gorithm. Section 4 extends the framework in Section 3 to the nonlinear sparse metric

learning by hierarchical expansion of interactions. Section 5 provides some practical
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remarks on implementing the proposed method in practice. Results from numerical

experiments are presented in Section 6. Finally, Section 7 concludes by summarizing

our main contributions and sketching several directions of future research.
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2.2 An Illustrative Example
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Figure 2.1: An illustrative example of the XOR binary classification problem. Left :

Training dataset is consisted of sample points from two classes that are distributed on

four clusters aligned at the crossing diagonals on a three-dimensional plane. 200 data

points are generated from four bivariate Gaussian distributions and are projected

into the designated three-dimensional plane as illustrated in the figure. Right : The

transformed subspace learned by the sDist algorithm. Two horizontal dimensions

are the first two input variables selected by sDist, that is, x1 and x2 in this case.

The vertical dimension z is the first principal component of the transformed subspace

defined as Lφ(x), LLT = W , which displays the overall shape of the surface on which

new distances are computed. The colors on the grid indicates the true class probability

of each class on the log scale. The yellow color indicates high probability in the class

generative probability distribution and the red color indicates low probability. Since

it is difficult to visualize two overlapping probability distributions in one plane, we

use the same color scale for both classes and just focus on the magnitude of class

generative probability distributions in each area.

Before introducing the details of sDist, we offer here a toy example in Figure 2.1

to illustrate the problem of interest. The left panel of Figure 2.1 demonstrates the
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classical binary classification problem XOR (Exclusive OR) in a 3-dimensional space,

in which sample points with the same class label are distributed in two clusters

positioned diagonally from each other. The XOR example is commonly used as a

classical setting for nonlinear classification in the literature. In the original space,

sample points cannot be linearly separated. It is also observed that the vertical

dimension x3 is redundant, as it provides no additional information regarding the

class membership aside from x1 and x2. Hence, it is anticipated that there exists a

nonlinear subspace on which points on the opposite diagonals of the tilted surface are

closer to each other. The subspace is also expected to be constructed solely based on

a minimum set of variables that are informative about the class membership. The

right panel of Figure 2.1 is the transformed subspace learned by the proposed sDist

algorithm, which is only based on the informative variables x1 and x2. In particular,

the curved shape of the resulted surface ensures that sample points with the same

class label are drawn closer and those with opposite label are pulled further apart.

2.3 Boosted Linear Sparse Metric Learning

In this section, we first discuss the case of learning a linear sparse metric. Extension

to nonlinear metric is discussed in Section 4. Assume that we are given a dataset

S = {xi, yi}, i = 1, . . . , N , xi ∈ X ⊆ Rp, where X is the input feature space and

p is the number of dimensions of the input vector1 and the class label yi ∈ {−1, 1}.

The original feature space consists of all input variables x1, . . . , xp. Consider an

ideal scenario where there exists a metric parametrized by W such that, in the W -

transformed space, classes are separable. Then a point should, on average, be closer

to the points from the same class than to the ones from the other class in its local

neighborhood. Under this proposition, we propose a simple but intuitive discriminant

1For simplicity, we only consider datasets with numerical features in this chapter, on which

distances are naturally defined.
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function at xi between classes characterized by W :

fW,k(xi) = d−W,k(xi)− d
+
W,k(xi) (2.3)

with

d−W,k(xi) =
1

k

∑
j∈S−k (xi)

(xi − xj)
TW (xi − xj)

d+
W,k(xi) =

1

k

∑
j∈S+

k (xi)

(xi − xj)
TW (xi − xj)

where S+
k (xi) and S−k (xi) are the set of k nearest neighbors of xi with the same class

labels and with the opposite class labels as yi, respectively. The predicted class label

is obtained by ŷ = 1 if f̂W (x) > 0 and ŷ = −1 otherwise. For simplicity, we will now

drop k in the notations d−W,k and d+
W,k as k is fixed throughout the algorithm.

The base classifier in (2.3) serves as a continuous surrogate function of the kNN

classifier, which is differentiable with respect to the weight matrix W . Instead of using

the counts of the negative and the positive sample points in local neighborhoods, we

adopt the continuous value of distances between two class to indicate the affinity to

the negative and the positive classes. In Figure 2.2, we present a detailed comparison

of the performance of the proposed classifier (2.3) with the kNN classifier at different

values of k on the real dataset Ionosphere. It suggests that, with small k (k ≤ 11)

which is normally used in neighborhood-based method, fW consistently outperforms

kNN classifier with aligned pattern in terms of the average test errors based on 20

randomly partitioned cross-validations.
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Figure 2.2: Comparison between fW in (2.3) and the kNN classifier in terms of the

average test errors based on 20 randomly partitioned 5-fold cross-validations using

the real dataset Ionosphere.

Without any prior information , the local neighborhoods are first identified using

the Euclidean distance. As we will introduce later in the gradient boosting algorithm,

the local neighborhoods can be updated according to the learned distance metric

regularly as the algorithm proceeds. The frequency of local neighborhood updates

is determined based on the tradeoff between accuracy and computational costs in

various applications. When the domain knowledge of local similarity relationships

are available, local neighborhoods can be constructed with better precision.

Alternatively, fW (xi) can be represented as a inner product between the weight

matrix W and the data information matrix D defined below which contains all infor-
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mation of training sample point xi for classification:

f̂W (xi) = 〈Di,W 〉, (2.4)

where

Di =
1

k

 ∑
j∈S−k (xi)

(xi − xj)(xi − xj)
T −

∑
j∈S+

k (xi)

(xi − xj)(xi − xj)
T


and 〈·, ·〉 stands for the inner product for vectorized matrices. This alternative for-

mulation of f̂W (xi) suggests an effective strategy for improving the computation of

W since Di can be pre-calcuated and remains fixed when updating W .

For learning W , we evaluate the performance of this classifier fW (xi) using the

exponential loss, which is commonly used as a smooth objective function in binary

classification:

L(y, fW ) =
N∑
i=1

L(yi, fW (xi)) =
N∑
i=1

exp(−yi〈Di,W 〉) (2.5)

Our learning task is then translated to derive a weight matrix W on the original

feature space that minimizes the loss function in (2.5). The optimization of this

objective function, however, is generally intractable for high dimensional data. Our

proposed method, sDist, seeks optimization of the objective function via optimizing

adaptable sub-problems such that a feasible solution can be achieved. In short, the

building block of sDist are: a gradient boosting algorithm which learns a rank-one

update of the weight matrix W at each step; a sparsity regularity on each rank-one

update to enforce the element-wise sparsity and reduced rank of weight matrix with

simultaneous preservation of the positive semi-definiteness, and a sparse boosting

criterion that regularizes over the total number of boosting steps to achieve sparsity

in the overall complexity of the final weight matrix.

2.3.1 Metric Learning via Boosting

In the distance metric learning literature, much effort has been put forward to learn

the weight matrix W by solving a single optimization problem globally, as in PGDM
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[Xing et al., 2002] and LMNN [Blitzer et al., 2005]. However, this optimization task

turns out to be either computationally intractable or susceptible to local optima.

Boosting [Freund, 1995] offers a stagewise alternative to a single optimization.

The motivation for boosting is that one can use a sequence of small improvements to

derive a better global solution. Under the classification setting, boosting combines

the outputs of many weak learners trained sequentially to produce a final aggregated

classifier. Here, a weak learner is a classifier that is constructed to be only modestly

better than a random guess. Subsequent weak learners are trained with more weights

on previously mis-classified cases, which reduces dependence among the trained learn-

ers and produces a final learner that is both stable and accurate. Such an ensemble

of weak learners has been proven to be more powerful than a single complex classi-

fier and has better generalization performance [Hastie et al., 2009]. In [Shen et al.,

2009] and [Bi et al., 2011], a boosting algorithm has been implemented for learning

a full distance metric, which has motivated the proposed algorithm in this chapter.

More specifically, their important theorem on trace-one semi-definite matrices is also

central to the theoretical basis of our approach.

Adopting a boosting scheme, sDist is proposed to learn a weight matrix W in a

stepwise fashion to avoid over-fitting to the training data in one optimization process.

To construct the gradient boosting algorithm, we first decompose the learning problem

into a sequence of weak learners. It is shown in [Shen et al., 2009] that for any

symmetric positive semi-definite matrix W ∈ Rp×p with trace 1, it can be decomposed

into a linear convex span of symmetric positive semi-definite rank-one matrices:

W =
M∑
m=1

wmZm, rank(Zm) = 1 and tr(Zm) = 1, (2.6)

where wm ≥ 0, m = 1, . . . ,M , and
M∑
i=1

wm = 1. The parameter M ∈ Z+ is the number

of boosting iterations. Since any symmetric rank-one matrix can be written as an
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outer product of a vector to itself. We further decompose W as

W =
M∑
m=1

wmξm ⊗ ξm, ||ξm||2 = 1 for all m = 1, 2, . . . ,M. (2.7)

Based on this decomposition, we propose a gradient boosting algorithm that,

within each step m, learns a rank-one matrix Zm = ξm ⊗ ξm and its non-negative

weight wm. Each learned Zm can be regarded as a small transformation of the feature

space in terms of scaling and rotation. We use the following base learner in the

gradient boosting algorithm:

gm(xi) = 〈Di, Zm〉. (2.8)

In consecutive boosting steps, the target discriminant function is constructed as a

stage-wise additive expansion. At the mth step, the estimated discriminant function

is updated by adding the base learner gm(·) with weight wm to the existing weight

matrix Ŵm−1 that is learned from the previous m− 1 steps:

fWm(xi) = fWm−1(xi) + wmgm(xi)

= 〈Di,
m−1∑
j=1

wjZj〉+ wm〈Di, Zm〉

= 〈Di, Ŵm−1 + wmZm〉 = 〈Di, Ŵm〉

where the resulted composite Ŵm is shown to be a weighted sum of Zm’s learned from

all previous steps. Therefore, the rank-one matrices obtained at each boosting step

are assembled to construct the desired weight matrix, reversing the decomposition

in (2.7). In this process, the required symmetry and positive semi-definiteness of

weight matrix are automatically preserved without imposing any constraint on the

base learners. Moreover, the number of total boosting steps M caps the overall rank

of the final weight matrix. Thus, by selecting an appropriate M , we can achieve an

optimal reduced rank distance metric that we will discuss with more detail in Section

3.3.
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In the gradient boosting algorithm, the learning goal is to attain the minimum

of the loss function in (2.5). We achieve it by using a steepest-descent minimization

in the functional space of fW in (2.3), which is characterized by the weight matrix

W . The optimization problem in each boosting step is divided into two substeps, for

m = 1, . . . ,M :

• Finding the rank-one matrix Zm given the previous aggregation Ŵm−1.

The residuals from the previous m− 1 steps are:

r
(m)
i =

[
−∂L(yi, f)

∂f

]
f=fŴm−1

= yi exp(−yifŴm−1
(xi)) (2.9)

for i = 1, . . . , n. Then the next rank-one matrix Zm is obtained by minimizing

the loss function on the current residuals for a new weak learner of the form,

that is,

Zm = arg min
Z∈Rp×p, rank(Z)=1

n∑
i=1

L(r
(m)
i , g(xi)) = arg min

Z

n∑
i=1

exp(−r(m)
i 〈Di, Z〉).

(2.10)

Recall that

r
(m)
i gm(xi) = r

(m)
i 〈Di, Zm〉 = r

(m)
i 〈Di, ξm ⊗ ξm〉 = ξTm(r

(m)
i Di)ξm.

Hence (2.10) is equivalent to identifying

ξm = arg min
ξ∈Rp, ||ξ||2=1

n∑
i=1

exp(−ξT r(m)
i Diξ). (2.11)

The rank-one update of weight matrix is calculated as Zm = ξm ⊗ ξm.

Optimization in (2.11) with the corresponding residuals r
(m)
i ’s weight heavier

on sample points with small margins in the feature space transformed by the

distance metric learned from all previous steps. Thus, the boosting algorithm

progressively improves over the “difficult” points in terms of discerning its class

membership.
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However, (2.11) is non-convex and suffers from local minima and instability.

Instead of pursuing the direct optimization on the objective function in (2.11),

we resort to an approximation of it by the first order Taylor expansion, which

is commonly used in optimizing non-convex exponential objective functions. It

allow us to take advantage of the exponential loss in the binary classification

task as well as avoid the expensive computational cost of considering a higher

order of expansion. This approximation results in a simpler convex minimization

problem :

ξm = arg min
ξ∈Rp, ||ξ||2=1

− ξTAmξ (2.12)

where Am =
n∑
i=1

r
(m)
i Di.

It is worthnoting that solving (2.12) is equivalent to computing the the eigen-

vector associated with the largest eigenvalue of Am via eigen-decomposition.

• Finding the positive weight wm given Zm: The optimal weight in the mth

step minimizes (2.5) given the learned Zm from the previous step. Specifically,

with gm(xi) = 〈Di, Zm〉

w̃m = arg min
w≥0

n∑
i=1

L(yi, fŴm−1+wZm
(xi)). (2.13)

w̃m in (2.13) is obtained by solving

∂L

∂ω
= −

n∑
i=1

r
(m)
i gm(xi) exp(−wyigm(xi)) = 0

with simple algorithms such as the bisection algorithm [Boyd and Vanden-

berghe, 2004].Then w is obtained by normalizing w = w̃
||w̃||2 .

At the end of the mth step, the weight matrix for the learned Mahalanobis distance

metric is updated by

Ŵm = Ŵm−1 + wmZm (2.14)

The full algorithm is summarized in Algorithm 2.2 in Section 4.
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2.3.2 Sparse Learning and Feature Selection

In the current literature of sparse distance metric learning, a penalty of sparsity is

usually imposed on the columns of the weight matrix W or L, which is inefficient in

achieving both element-wise sparsity and low rank in the resulting W . For instance,

Sparse Metric Learning via Linear Programming (SMLlp) [Rosales and Fung, 2006] is

able to obtain a low-rank W but the resulting W is dense, rendering it not applicable

to high-dimensional datasets and being lack of feature interpretability. Other meth-

ods, such as Sparse Metric Learning via Smooth Optimization (SMLsm) [Ying et al.,

2009], cannot preserve the positive semidefiniteness of W while imposing constraints

for element-wise sparsity and low rank. These methods often rely on computationally

intensive projection to the positive-semidefinite cone in their optimization steps. With

the rank-one decomposition of W , we can achieve element-wise sparsity and low rank

of the resulted weight matrix simultaneously by regularizing both ξ at each boosting

step and the total number of boosting steps M . First, we enforce the element-wise

sparsity by penalizing on the l1 norm of ξ. This measure not only renders a sparse lin-

ear transformation of the input space but also performs feature selection and provides

a small subset of features relevant to the class difference as output at each step. Then

every Z = ξξT is a sparse rank-one matrix that contributes to a final sparse weight

matrix. Here the sparse transformation corresponds to a sparse approximation of the

true weight matrix W , by which dimensions with zero weights are implicitly discarded

in the space transformation. The positive-semidefiniteness of W is preserved by the

non-negative summation of rank-one updates. Specifically, (2.12) is replaced by a

penalized minimization problem:

ξm = arg min
ξ∈Rp, ||ξ||2=1

− ξTAmξ + λξ

p∑
j=1

|ξj| (2.15)

where λξ > 0 is the regularizing parameter on ξ.

As pointed out in Section 3.1, (2.12) can be solved as a eigen-decomposition prob-

lem. The optimization problem in (2.15), appended with a single sparsity constraint
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on the eigenvector associated with the largest eigenvalue, is shown in [Yuan and

Zhang, 2013] as a sparse eigenvalue problem. We adopt a simple yet effective solution

that adapts the truncated iterative power method introduced in [Yuan and Zhang,

2013] for obtaining the largest sparse eigenvectors with at most κ nonzero entries.

Power methods provide a scalable solution to compute the largest eigenvalue and the

corresponding eigenvector of high-dimensional matrices without using the computa-

tionally intensive matrix decomposition. The truncated power iteration applies the

hard-thresholding shrinkage method on the largest eigenvector of Am. At each boost-

ing step, we solve the constrained optimization problem in (2.15) using the truncated

power method as given in Algorithm 2.

Algorithm 2.1 Truncated power method for solving (2.15) at the mth boosting step

Input: Am ∈ Rpm×pm , κ ∈ {1, 2, . . . , pm}, and the regularizing parameter λ0 > 0

1) Initialization: A0 = Am, ξ0 = 1pm√
pm

2) Iteration: For t = 1, 2, . . . , repeat until convergence

(a) Update λt = 10λ0 until At = At−1 + λtIp becomes positive semi-definite.

(b) Compute ξ̂t = Atξt−1

||Atξt−1|| .

(c) Let Ft = supp(ξ̂t, κ) be the indices of ξ̂t with the largest κ absolute values.

Compute ξ̃t = Truncate(ξ̂t, Ft).

(d) Normalize ξt = ξ̃t
||ξ̃t||

.

Output: ξm = ξt

It is worth noting that Am in each step of gradient boosting is not guaranteed

to be positive semi-definite. Thus, to ensure that the objective function to be non-

decreasing, we add a positive diagonal matrix λ̃Ip to the matrix A for λ̃ large enough

such that Ã = A + λ̃Ip is positive semi-definite and symmetric. Such change only

adds a constant term to the objective function, which produces a different sequence

of iterations, and there is a clear tradeoff. If λ̃ dominates A, the objective function

becomes approximately a squared norm, and the algorithm tends to terminate in
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only a few iterations. In the limiting case of λ̃ → ∞, the method will not move

away from the initial iterate. To handle this issue, we adapt a stochastic method that

gradually increase λ̃ during the iterations and we do so only when the monotonicity

is violated, as shown in the step 1 of Algorithm 2.1. This truncated power method

allows fast computation of the largest κ-sparse eigenvalue. For s high-dimensional

but sparse matrix Am, it also supports sparse matrix computation, which decreases

the complexity from O(p3) to O(κpT ), where T is the number of iterations.

Using parameter κ in the sparse eigenvalue problem spares the effort of tuning

the regularizing parameter λξ to achieve the desirable level of sparsity. Under the

context of sDist, κ indeed controls the level of module effect among input variables,

namely, the joint effect of selected variables on the class membership. Inputs that are

marginally insignificant can have substantial influence when joined with others. The

very nature of the truncated iterative power method enables us to identify informa-

tive variables in groups within each step. These variables are very likely to constitute

influential interaction terms that explain the underlying structure of decision bound-

ary which are hard to discern marginally. This characteristic is deliberately utilized

in the construction of nonlinear feature mapping adaptively, which will be discussed

in detail in Section 2.4. In practice, the value of κ can be chosen based on domain

knowledge, depending on the order of potential interactions among variables in the

application. Otherwise, we use cross-validation to select the ratio between κ and the

number of features p, denoted as ρ, at each boosting step as it is often assumed that

the number of significant features is relatively proportional to the total number of

features in real applications.

2.3.3 Sparse Boosting

The number of boosting steps M , or equivalently the number of rank-one matri-

ces, bounds the overall sparsity and the rank of resulted weight matrix. Without

controlling over M from infinitely large, the resulted metric may fail to capture the
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low-dimensional informative representation of the input variable space. Fitting with

infinitely many weak learners without regularization will produce an over-complicated

model that causes over-fitting and poor generalization performance. Hence, in addi-

tion to sparsity control over ξ, we incorporate an automatic selection of the number

of weak learners M into the boosting algorithm by formulating it as an optimization

problem. This optimization impose a further regularization on the weight matrix W

to enforce a low-rank structure. Therefore, the resulting W is ensured to have reduced

rank if the true signal lies in a low dimensional subspace as well as guaranteeing the

overall element-wise sparsity.

To introduce the sparse boosting for choosing an M , we first rewrite the output

discriminant function as a hat operator Υm, mapping the feature space to the reduced

and transformed space, i.e., Υm : X → X̃m, in which X̃m is the transformed space by

L̂m, L̂mL̂
T
m = Ŵm. Therefore, we have

fŴm
(x) = 〈D, Ŵm〉 = f(Υm(X)).

Here Υm is uniquely defined by the positive semi-definiteness of Ŵm. Hence, we define

the complexity measure of the boosting process at the mth step by the generalized

definition of degrees of freedom in [Green et al., 1994]:

Cm = tr(Υm) = tr(L̂m). (2.16)

With the complexity measure in (2.16), we adopt the sparse boosting strategy intro-

duced in [Bühlmann and Yu, 2006]. First, let the process carry on for a large number,

M , of iterations; then the optimal stopping time m̂ is the minimizer of the stopping

criterion

m̂ = arg min
1≤m≤M

{
N∑
i=1

L(yi, fŴm
(xi))

}
+ λCCm (2.17)

where λC > 0 is the regularizing parameter for the overall complexity of W .

This objective is rather intuitive: ξm’s are learned as sparse vectors and thus

Zm = ξm⊗ ξm has nonzero entries mostly on the diagonal at variables selected in ξm.
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Therefore, tr(L̂m) is a good approximation of the number of selected variables that

explicitly indicates the level of complexity of the transformed space at step m.

2.4 Boosted Nonlinear Sparse Metric Learning

The classifier defined in (2.3) only works when the signal of class membership is

inherited within a linear transformation of the original input variable space, which

is rarely the case in practice. In this section, we introduce nonlinearity via feature

mapping of X so that the Mahalanobis distance metric is learned on a nonlinearly

transformed feature space and then incorporated with the classifier in (2.3). That is,

we map the original input data x ∈ X ⊆ Rp to a nonlinear feature vector φ(x) ∈ Rp̃,

where p̃ ≥ p, and then learn a linear transformation defined by W in Rp̃ corresponding

to a nonlinear transformation in Rp. The new discriminant function brings is then

defined as

fφW (xi) = 〈Dφ
i ,Wm〉 (2.18)

where

Dφ
i = 1

k

∑
j∈S−k (xi)

[φ(m)(xi)− φ(m)(xj)][φ
(m)(xi)− φ(m)(xj)]

T (2.19)

− 1
k

∑
j∈S+

k (xi)
[φ(m)(xi)− φ(m)(xj)][φ

(m)(xi)− φ(m)(xj)]
T

Learning a “good” feature mapping in the entire infinite nonlinear feature space is

infeasible. In [Torresani and Lee, 2006], Torresani and Lee resort to the “kernel”

trick and construct the Mahalanobis distance metric on the basis expansion of kernel

functions in RKHS. Taking a different route, Kedem et al [Kedem et al., 2012] abort

the reliance on the Mahalanobis distance metric and learn a distance metric on the

non-linear basis functions constructed by regression trees. Although these methods

provide easy-to-use “black box” algorithms that offers extensive flexibility in modeling

a nonlinear manifold, they are sensitive to the choices of model parameters and are

subject to the risk of overfitting. The superfluous set of basis functions also hinders
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the interpretability of the resulting metric model with respect to the relevant factors

of class separation.

In this chapter, we restrict the feature mapping φ(x) to the space of polynomial

functions of the original input variables x1, . . . , xp. The construction of nonlinear

features is tightly incorporated in the boosted metric learning algorithm introduced

in Section 3. Accordingly, a proper metric is learned in concert with the building of

essential nonlinear mappings suggested in the data.

Our choice of the polynomial feature mapping enables a straightforward incorpo-

ration into the adaptive learning algorithm. We initialized φ(x) = (x1, x2, . . . , xp)
T

as the identity mapping at step 0. In the subsequent steps, based on solution the

regularized optimization problem (2.15), we expand the feature space by including

interaction terms and polynomial terms among the selected variables. This allows

the boosting algorithm to benefit from the consideration of interactions without run-

ning into overwhelming computational burden and storage need. The full polynomial

expansion will result in (2p)2 dimensions for a single Dφ
i .

The polynomial feature mapping also permits selection of significant nonlinear

features. Kernel methods are often preferred in nonlinear classification problems

due to its flexible infinite-dimensional basis functions. However, for the purpose of

achieving sparsity in the weight matrix, each basis function need to be evaluated

for making the selection toward a sparse solution. Hence, using kernel methods in

such a case is computationally infeasible due to its infinite dimensionality of basis

functions. With adaptively expanding polynomial features, optimizing (2.15) on the

expanded feature space is able to identify not only significant input variables but also

informative interaction terms and polynomial terms.

Before we layout the details of the adaptive feature expansion algorithm, we define

the following notions: Let Cm = {x̃1, . . . , x̃pm} be the set of candidate variables at

step m, where x̃ represents the candidate feature, and p̃m is the cardinality of the

set Cm, that is, the number of features at step m. The set Cm includes the entire set
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of original variables as well as added interaction terms that we consider in the next

step. Denote Sm as the cumulative set of unique variables selected up to step m, and

Am be the set of variables newly selected in step m. Then,

Step 0 : Set C0 = {x̃1 = x1, . . . , x̃p = xp}, the set of the original variables.

Step 1 : Select A1 ⊂ C0 by the regularized optimization in (2.15) with prespecifed

|A1| = κ.

Set S1 = A1; C1 = C0 ∪ (S1 ⊗A1)

where the operator “⊗” is defined as

S1 ⊗A1 = {x̃ix̃j : x̃i ∈ S1, x̃j ∈ A1}

Step m , m = 2, . . . ,M : Select Am ⊂ Cm−1. Then

Sm = Sm−1 ∪ Am, Cm = Cm−1 ∪ (Sm ⊗Am) (2.20)

Then φ(x) at the mth step of the algorithm is defined as φ(m)(x) , XCm−1 , the vector2

whose components are elements in Cm−1

It is worth noting that, in updating Dφ(m)

i , there is no need to compute the entire

matrix, the cost of which is on the order of np3
m. Instead, taking advantage of the

existing Dφ(m−1)

i , it is only required to add δm , (pm−pm−1) rows of pairwise products

between the newly added terms and currently selected ones and make the resulting

matrix symmetric. The extra computational cost is reduced to O(nδ3
m) and δm � pm

when p is large. Therefore, the method of expanding the feature space in the step-

wise manner is tractable even when p is large. Since we only increase the dimension

of feature space by a degree less than 1
2
(δmκ+κ) at each step and M is controlled by

the sparse boosting, the proposed hierarchical expansion is computationally feasible

even with high-dimensional input data.

2Here X = [x1,x2, . . . ,xn]T . When C is a set of variable or interactions of variables, XC represents

the columns of X (or products of columns of X) listed in C.
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We integrate the adaptive feature expansion for nonlinear metric learning into

the boosted sparse metric learning algorithm in Section 3. The final algorithm is

summarized in Algorithm 2.2. The details of how to choose the value of parameters

κ, λC and M are elaborated in Section 5.
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Algorithm 2.2 sDist : Boosted Nonlinear Sparse Metric Learning

Input Parameters: κ, M , and λC

1) Initialization: Ŵ0 = Ip×p; C0 = {x̃1 = x1, . . . , x̃p = xp}; residuals r
(0)
i = yi,

i = 1, 2, . . . , n.

2) For m = 1 to M :

(a) Define the nonlinear feature mapping φ(m)(x) = XCm−1 ; Update Dφ(m)

i according

to (2.19)

(b) Am =
n∑
i=1

r
(m)
i Dφ(m)

i .

(c) Get ξm from the regularized minimization problem:

ξm = arg min
ξ∈Rpm ,||ξ||2=1

− ξTAmξ + λξ

pm∑
j=1

|ξj|, (2.21)

by the truncated iterative power method (Algorithm 2.1) with corresponding κ.

(d) Based on the sparse solution of ξm,update Am,Sm and Cm. gm(xi) = ξTmD
φ(m)

i ξm

for i = 1, 2, . . . , n.

(e) Get wm from (2.13) by the bisection algorithm.

(f) Compute residuals r
(m)
i based on (2.9):

r
(m+1)
i = r

(m)
i exp(−yiωmgm(xi)), for i = 1, . . . , n.

(g) Update the weight matrix:

Ŵm = ITmŴm−1Im + wmξmξ
T
m

where Im = (Ipm−1×pm−1 ,0pm−1×pm−pm−1), where Ip×p is the p by p identity matrix

and 0p×q is the zero matrix of dimension p by q.

3) Determine the optimal stopping time by solving

m̂ = arg min
1≤m≤M

N∑
i=1

L(yi, Ŵm) + λCCm.

Then set the output Ŵ = Ŵm̂.
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2.5 Related Works

There is an extensive literature devoted on the problem of learning a proper W for the

Mahalanobis distance. In this chapter, we focus on the problem of supervised metric

learning for classification in which class labels are given in the training sample. In the

following, we categorize current related methods in the literature into four groups:

1) global metric learning, 2) local metric learning, 3) sparse metric learning, and 4)

nonlinear metric learning.

Global metric learning aims to learn a W that addresses the similarity and dissim-

ilarity objectives at all sample points. Probability Global Distance Metric (PGDM)

learning [Xing et al., 2002] is an early representative method of this group. In PGDM,

the class label (y) is converted into pairwise constraints on the metric values between

pairs of data points in the feature (x) space: equivalence (similarity) constraints that

similar pairs (in y) should be close (in x) by the learned metric; and in-equivalence

(dissimilarity) constraints that dissimilar ones (in y) should be far away (in x). The

distance metric is then derived to minimize the sum of squared distances between data

points with the equivalence constraints, while maintaining a lower bound for the ones

with the in-equivalence constraints. The global optimum for this convex optimization

problem is derived using Semi-Definite Programming (SDP). However, the standard

SDP by the interior point method requires O(p4) storage and has a worst-case compu-

tational complexity of approximatelyO(p6.5), rendering it computationally prohibitive

for large p. Flexible Metric Nearest Neighbor (FMNN) [Friedman, 1994] is another

method of this group, which, instead, adapts a probability framework for learning

a distance metric with global optimality. It assumes a logistic regression model in

estimating the probability for pairs of observations being similar or dissimilar based

on the learned metric, yet suffering poor scalability as well.

The second group of methods, local metric learning methods, learn W by pursuing

similarity objective within the local neighborhoods of observations and a large mar-

gin at the boundaries between different classes. For examples, see the Neighborhood
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Component Analysis (NCA) [Goldberger et al., 2005] and the Large Margin Nearest

Neighbor (LMNN) [Blitzer et al., 2005]. NCA learns a distance metric by stochasti-

cally maximizing the probability of correct class-assignment in the space transformed

by L. The probability is estimated locally by the Leave-One-Out (LOO) kernel den-

sity estimation with a distance-based kernel. LMNN, on the other hand, learns W

deterministically by maximizing the margin at class boundary in local neighborhoods.

Adapting the idea of PGDM while focusing on local structures, it penalizes on small

margins in distance from the query point to its similar neighbors using a hinge loss.

It has been shown in [Blitzer et al., 2005] that LMNN delivers the state-of-the-art

performance among most distance metric learning algorithms. Despite its good per-

formance, LMNN and its extensions suffers from high computational cost due to their

reliance on SDP similar to PGDM. Therefore, they always require data pre-processing

for dimension reduction, using ad-hoc tools, such as the Principal Component Anal-

ysis (PCA), when applied to high-dimensional data.

When the data dimension increases, learning a full distance metric becomes ex-

tremely computationally expensive and may easily run into over-fitting on high-

dimensional data contaminated with noises. It is expected that a sparse distance

matrix would produce a better generalization performance than its dense counter-

parts and afford a much faster and efficient distance calculation. Sparse metric

learning is motivated by the demand of learning appropriate distance measures in

high-dimensional space and can also lead to supervised dimension reduction. In the

sparse metric learning literature, sparsity regularization can be introduced in three

different ways: on the rank of W for learning a low-rank W , (e.g., [Torresani and Lee,

2006], [Hong et al., 2011], [Rosales and Fung, 2006], [Liu et al., 2010]), on the elements

of W for learning an element-wise sparse W [Qi et al., 2009], and the combination of

the two [Ying et al., 2009]. All these current strategies suffer from various limitations

and computational challenges. First, a low-rank W is not necessarily sparse, as it may

still involve all input variables. Methods such as [Rosales and Fung, 2006] impose
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penalty on the trace norm of W as the proxy of the non-convex non-differentiable rank

function, which usually involves heavy computation and approximation in maintain-

ing both the status of low rank and the positive semi-definiteness of W . Searching

for an element-wise sparse solution as in [Qi et al., 2009] places the l1 penalty on

the off-diagonal elements of W . Again, the PSD of the resulting sparse W is hard

to maintain in a computationally efficient way. Based on the framework of LMNN,

Ying et al. [Ying et al., 2009] combine the first two strategies and penalize on the

l(2,1) norm3 of W to regularize the number of non-zero columns in W . Huang et

al. [Huang et al., 2009] proposed a general framework of sparse metric learning. It

adapts several well recognized sparse metric learning methods with a common form

of sparsity regularization tr(SW ), where S varies among methods serving different

purposes. As a limitation of the regularization, it is hard to impose further constraint

on S to guarantee PSD in the learned metric.

As suggested in (2.2), the Mahalanobis distance metric implies a linear transfor-

mation of the original feature space. This linearity inherently limits the applicability

of distance metric learning in discovering the potentially nonlinear decision bound-

aries. It is also common that some variables are relevant to the learning task only

through interactions with others. As a result, linear metric learning is at the risk of

ignoring useful information carried by the features beyond the marginal distributional

differences between classes. Nonlinear metric learning identifies a Mahalanobis dis-

tance metric on a nonlinear mappings of the input variables, introducing nonlinearity

via well-designed basis functions on which the distances are computed. Large Margin

Component Analysis (LMCA )[Torresani and Lee, 2006] maps the input variables

onto a high-dimensional feature space F by a nonlinear map φ : X → F , which

is restricted to the eigen-functions of a Reproducing Kernel Hilbert Space (RKHS)

[Aronszajn, 1950]. Then the learning objective is carried out using the “kernel trick”

without explicitly compute the inner product. LMCA involves optimizing over a

3The l(2,1) norm of W is given by: ||W ||(2,1) =
p∑

h=1

(
p∑

k=1

W 2
hk)

1
2 [Ying et al., 2009]
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non-convex objective function and is slow in convergence. Such heavy computation

limits its scalability to relatively large datasets. Kedem et al. [Kedem et al., 2012]

introduce two methods for nonlinear metric learning, both of which derived from ex-

tending LMNN. χ2-LMNN uses a nonlinear χ2-distances for learning a distance metric

for histogram data. The other method, GB-LMNN, exploits the gradient boosting

algorithm that learns regression trees as the nonlinear basis functions. GB-LMNN

relies on the Euclidean distance in the nonlinearly expanded features space without

an explicit weight matrix W . This limits the interpretability of its results. Current

methods in nonlinear metric learning are mostly based on black-box algorithms which

are prone to over-fitting and have limited interpretability.

2.6 Practical Remarks

When implementing Algorithm 2.2 in practice, the performance of the sDist algorithm

can be further improved in terms of both accuracy and computational efficiency by

a few practical techniques, including local neighborhood updates, shrinkage, bagging

and feature sub-sampling. We numerically evaluate the effect of the following param-

eters on a synthetic dataset in Section 6.

As stated in Section 3, the base classifier fW,k(xi) in (2.3) is constructed based on

local neighborhoods. Without additional domain knowledge about the local similar-

ity structure, we search for local neighbors of each sample point using the Euclidean

distance. While the actual neighbors found in the truly informative feature subspace

may not be well approximated by the neighbors found in the Euclidean space of all

features, the learned distance metrics in the process of the boosting algorithm can be

used to construct a better approximation of the true local neighborhoods.The revised

local neighborhoods are helpful in preventing the learned metric from overfitting to

the neighborhoods found in the Euclidean distance and thus reduce overfitting to

the training samples. In practice, we update local neighborhoods using the learned
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metric at different steps of the booting algorithm. The frequency of the local neigh-

borhood updates is determined by the trade-off between the predictive accuracy and

the computational cost for re-computing distances between pairs of sample points.

The actual value of updating frequency varies in real data applications and can be

tuned by cross-validation.

Our solution is to update local neighborhoods using the learned metric during

the boosting algorithm. Since the metric updated at each boosting step is trained to

approximate the true similarity relationship, they can be used to construct a more

accurate distance function for searching for the true local neighbors. The revised

local neighborhoods are helpful in preventing the learned metric from overfitting to

the neighborhoods found in the Euclidean distance and thus reduce overfitting to the

training samples. In practice, the frequency of the local neighborhood updates is

determined by the trade-off between the predictive accuracy and the computational

cost for re-computing distances between pairs of sample points. The actual value

of updating frequency varies in real data applications and can be tuned by cross-

validation.

In addition to the sparse boosting in which the number of boosting steps is con-

trolled, we can further regularize the learning process by imposing a shrinkage on the

rank-one update at each boosting step. The contribution of Zm is scaled by a factor

0 < ν ≤ 1 when it is added to the current weight matrix Wm−1. That is, step 2g in

Algorithm 2.2 is replaced by

Ŵm = ITmŴm−1Im + νwmξmξ
T
m. (2.22)

The parameter ν can be regarded as controlling the learning rate of the boosting

procedure. Such a shrinkage helps circumventing the case that individual rank-one

updates of the weight matrix fit too closely to the training samples. It has been

empirically shown that smaller values of ν favor better generalization performance

and require correspondingly larger values of M [Friedman, 2001]. In practice, we use

cross-validation to determine the value of ν.
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Bootstrap Aggregating (bagging) has been demonstrated to improve the perfor-

mance of a noisy classifier by averaging over weakly correlated classifiers [Hastie et

al., 2009]. Correlations between classifiers are weakened by random subsampling. In

our gradient boosting algorithm, we use the same technique of randomly sampling a

fraction η4, 0 < η ≤ 1, of the training observations to build each weak learner for

learning the rank-one update. This idea has been well exploited in [Friedman, 2002]

with tree classifiers, and it is shown that both accuracy and execution speed of the

gradient boosting can be substantially improved by incorporating randomization into

the procedure. The value of η is usually taken to be 0.5 or smaller if the sample size is

large, which is tuned by cross-validation in our numerical experiments. In particular

to our algorithm, bagging substantially reduces the training set size for individual

rank-one updates so that Di can be computed on the fly much more quickly without

being pre-calculated, avoiding the need of computational memory. As a result, in

applications with large sample sizes, bagging not only benefits the test error but also

improves better computational efficiency.

In high-dimensional applications, it is likely that the input variables are correlated,

which translates to high variance in the estimation. As sDist can be viewed as learning

an ensemble of nonlinear classifiers, high correlation among features can deteriorate

the performance of the aggregated classifier. To resolve this, we employ the same idea

as in random forests [Breiman, 2001] of random subsampling on features to reduce

the correlation among weak learners without greatly increasing the variance. At each

boosting step m, we randomly select a subset of features of size p̃m from the candidate

set Cm, where κ < p̃m ≤ pm, on which Di’s is constructed with dimension p̃m × p̃m.

The optimization in (2.15) is then executed on a much smaller scale and select κ

significant features from the random subset. As with bagging, feature subsampling

enables fast computation of Di’s without pre-calculation. As suggested in [Breiman,

2001], we use p̃m =
√
pm at the mth boosting step. Although feature subsampling

4The parameter η is referred as the “bagging fraction” in the following.
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will reduce the chance of selecting out the significant features at each boosting step,

it shall be emphasized that bagging on training samples and feature subsampling

should be accompanied by shrinkage and thus more boosting steps correspondingly.

It is shown in [Hastie et al., 2009] that subsampling without shrinkage leads to poor

performance in test samples. With sufficient number of boosting steps, the algorithm

manages to select out significant features from a dominant number of irrelevant ones.

Since the computational complexity of the proposed algorithm is linearly scalable in

the number of boosting steps M while quadratic in the feature dimension p, feature

subsampling is more computationally efficient even with large M . Hence, in high-

dimensional setting, reducing the dimension of feature set to
√
p makes the algorithm

sufficiently faster.

However, there is no closed rule for choosing the value of M in advance. Since

each application has different underlying structure of its significant feature subspace

as well as involving with different level of noise, the actual value of M varies case by

case. However in general, we suggest a large number of M , from 500 to 2000, that

is proportional the number of features p. When feature subsampling is applied, M

should be increase in an order of
√
p to cover all significant features in the random sub-

sampling. Since the sparse boosting process is implemented, overfitting is effectively

controlled even with large M and thus it is recommended to start with considerably

large value of M . Otherwise, we use cross-validation to evaluate different choices of

M ’s.

2.7 Numerical Experiments

In this section, we present both simulation studies and real-data applications to illus-

trate the proposed sDist algorithm. The algorithm is implemented with the following

specifications. We use 5-fold cross-validations to determine the degree of sparsity for

each rank-one update ρ, choosing from candidate values {0.05, 0.1, 0.2}. The same
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cross-validation is also applied to the tune overall complexity regularizing parameter

λC ∈ {0.001, 0.01, 0.1, 1, 10}. In order to control the computation cost and to ensure

interpretability of the selected variables and polynomial features, we impose an up-

per limit on the maximum order of polynomial of the expanded features. That is,

when the polynomial has an order greater than a cap value, we stop adding it to the

candidate feature set. For our experiments, the cap order is set to be 4. Namely, we

expect to see maximally four-way interactions. The total number of boosting steps

M is set to be 2000 for all simulation experiments. While by sparse boosting, the

actual numbers of weak learners used vary from case to case. Throughout the numer-

ical experiments, the reported test errors are estimated using the k-Nearest Neighbor

classifier with k = 3 under the tuned parameter configuration.

The performance of sDist is compared with several other distance metric learning

methods, with the k-Nearest Neighbor (kNN) representing the baseline method with

no metric learning, Probability Global Distance Metric (PGDM)[Xing et al., 2002],

Large Margin Nearest Neighbor (LMNN) [Blitzer et al., 2005], Sparse Metric Learn-

ing via Linear Programming (SMLlp) [Rosales and Fung, 2006], and Sparse Metric

Learning via Smooth Optimization (SMLsm) [Ying et al., 2009]. PGDM 5 [Xing et

al., 2002] is a global distance metric learning method that solves the optimization

problem:

min
W�0

∑
yi=yj

(xi − xj)
TW (xi − xj)

s.t.
∑
yi 6=yl

(xi − xl)
TW (xi − xl) ≥ 1.

LMNN 6 learns the weight matrix W by maximizing the margin between classes in

local neighborhoods with a semi-definite programming. That is, W is obtained by

5Source of Matlab codes: http://www.cs.cmu.edu/%7Eepxing/papers/Old_papers/code_

Metric_online.tar.gz

6Source of Matlab codes: http://www.cse.wustl.edu/~kilian/code/code.html

http://www.cs.cmu.edu/%7Eepxing/papers/Old_papers/code_Metric_online.tar.gz
http://www.cs.cmu.edu/%7Eepxing/papers/Old_papers/code_Metric_online.tar.gz
 http://www.cse.wustl.edu/~kilian/code/code.html
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solving:

min
W�0, ξijl≥0

(1− µ)
n∑
i=1

∑
j∈S+k (xi)

(xi − xj)
TW (xi − xj) + µ

n∑
i=1

∑
j∈S+k (xi)

∑
l∈S̃−(xi)

ξijl,

s.t. (xi − xl)
TW (xi − xl)− (xi − xj)

TW (xi − xj) ≥ 1− ξijl,

where ξijl’s are slack variables and S̃−(xi) , {l|yl 6= yi and dI(xi,xl) ≤ max
j∈S+k (xi)

dI(xi,xj)}.

In the experiments, we use µ = 0.5 as suggested in [Blitzer et al., 2005]. SMLlp aims

at learning a low rank weight matrix W by optimizing over the linear projection

L ∈ Rp×D with D ≤ p in (2.2):

min
L∈Rp×D, ξijl≥0

∑
(i,j,l)∈T

ξijl + µ

p∑
r=1

D∑
s=1

|Lrs|,

s.t. ‖Lxi − Lxj‖2
2 ≤ ‖Lxi − Lxl‖2

2 + ξijl, ∀ (i, j, l) ∈ T ,

where T ∈ {(i, j, l) | j = S+
1 (xi), l = S−1 (xi)}. In a similar manner, SMLsm7 learns

a low-rank weight matrix W by employing a l(2,1) norm on the weight matrix W to

enforce column-wise sparsity. It is cast into the minimization problem:

min
U∈Op

min
W�0, ξijl≥0

∑
(i,j,l)∈T

ξijl + µ

p∑
r=1

(
D∑
s=1

W 2
rs

) 1
2

,

s.t. 1 + (xi − xj)
TUTWU(xi − xj) ≤ (xi − xl)

TUTWU(xi − xl) + ξijl,

∀(i, j, l) ∈ T ,

where Op is the set of p−dimensional orthonormal matrices.

The effectiveness of distance metric learning in high-dimensional datasets heav-

ily depends on the computational complexity of the learning method. PGDM de-

ploys a semi-definite programming in the optimization for W which is in the order of

O(p2 +p3 +n2p2) for each gradient update. LMNN requires a computation complexity

of O(p4) for optimization. SMLsm converges in O(p3/ε), where ε is the stopping cri-

terion for convergence. In comparison, sDist runs with a computational complexity

7Source of Matlab codes: http://www.albany.edu/~yy298919/software.html

http://www.albany.edu/~yy298919/software.html
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of approximately O(M [(κp + p)κ log p + np2]) where M is the number of boosting

iterations and κ is the number of nonzero entries in rank-one updates. In practice,

sDist can be significantly accelerated by applying the modifications in the Section 5,

in which p is substituted by p̃ and n is substituted by ηn.

We construct two simulations settings that are commonly used as classical ex-

amples for nonlinear classification problems in the literature, the “double ring” case

and the “XOR” case. In Figure 2, the left most column of the figures indicates the

contour plots of class probability for generating sample points in a 3-dimensional sur-

face, whereas the input variable space is expanded to a much greater space of p = 50,

where irrelevant input variables represent pure noises. Figure 2.3 (top row) shows

a simulation study in which sample points with opposite class labels interwine in a

double rings, and Figure 2.3 (bottom row) borrows the illustrative example of “XOR”

classification in Section 2. The columns 2-4 in Figure 2.3 illustrate the transformed

subspaces learned in sDist algorithm at selected iterations. Since the optimal number

of iterations is not static and due to the space limit, we show only the first iteration,

the last iteration determined by sparse boosting, and the middle iteration, which is

rounded half of the optimal number of iterations. It is clearly shown in Figure 2.3

that the surfaces transformed by the learned distance metric correctly capture the

structures of the generative distributions. In the “double ring” example (top row),

the learned surface sinks in the center of the plane while the rim bends upward so

that sample points in the “outer ring” are drawn closer in the transformed surface.

The particular shape owes to the quadratic polynomial of the two informative vari-

ables chosen in constructing W , shown as the parabola in cross-sectional grid lines.

In the “XOR” example (bottom row), the diagonal corners are curved toward the

same directions. The interaction between the two informative variables is selected

in additional to original input variable, which is essential in describing this particu-

lar crossing nonlinear decision boundary. sDist also proves highly computationally

efficient, achieving approximate optimality within a few iterations.
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Figure 2.3: Transformed subspaces corresponding to metrics learned for nonlinear

binary classification problems. The first column shows the simulations setups. Upper :

Sample points are drawn from a “double rings” distribution. Shown are the contour

plot of the generative class probability on a 3-dimensional surface. Lower : Sample

points are drawn from the classical XOR scenario. Columns 2-4 demonstrate how

the metric learning algorithm transofrm the feature space at selected iterations. The

vertical dimensions is computed as the first principle components of the transformed

feature space Lφ(x), where LLT = W . Note that the solid lines in the contour plots

only show the geodesic lines of high probabilities in the class generation probability

distributions. The generated class labels are not separable.

We also compare the performance of sDist with other metric learning methods

under different values of dimensions p and sample sizes N to demonstrate its scal-
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“Double Ring” Scenario

N=100 N=500 N=5000

p 50 500 1000 50 500 1000 50 500 1000

kNN 0.310 0.40 0.488 0.311 0.426 0.478 0.308 0.475 0.489

PGDM 0.320 0.355 0.389 0.312 0.356 0.377 0.337 0.340 0.412

LMNN 0.230 0.280 0.290 0.245 0.291 0.289 0.246 0.303 0.315

SMLsm 0.222 0.289 0.250 0.169 0.200 0.249 0.199 0.276 0.330

sDist 0.143 0.189 0.192 0.177 0.183 0.191 0.168 0.179 0.202

Bayes Rate 0.130 0.150 0.160 0.154 0.156 0.144 0.160 0.154 0.156

Table 2.1: Comparison of distance metric learning methods in the simulated scenario

of “Double Rings” as illustrated in Figure 2.3 (Upper panel). Recorded are average

test error over 20 simulations with varying sample size (N) and different total number

of variables (p). Averaged Bayes rates are also given for reference.

ability and its strength in obtaining essentially sparse solution in high-dimensional

datasets. In this case, we generate the sample points from the “double ring ” example

and the “XOR” example with the numbers of informative variables being 10% of the

total dimensions, ranging from 100 to 5000. The results of these two cases are shown

in Table 2.1 and Table 2.2 respectively. It is noted that sDist achieves relatively low

test errors as compared to the competing methods, especially in high dimensional

settings. sDist is also proved to be scalable to datasets with large sample sizes and

with high-dimensional inputs.

The performance of sDist is also evaluated on three public datasets, presented in

Table 2.3. For each dataset, we randomly split the original data into a 70% training

set and a 30% testing set, and repeat for 20 times. Parameter values are tuned by

cross-validation similarly as the simulation studies. The reported test errors in Table

2.4 are the averages over 20 random splits on the datasets. The reported running
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“XOR” Scenario

N=100 N=500 N=5000

p 50 500 1000 50 500 1000 50 500 1000

kNN 0.355 0.410 0.491 0.420 0.446 0.499 0.397 0.500 0.500

PGDM 0.221 0.355 0.383 0.289 0.356 0.360 0.354 0.350 0.403

LMNN 0.145 0.280 0.274 0.188 0.213 0.239 0.198 0.231 0.299

SMLsm 0.207 0.307 0.333 0.277 0.291 0.337 0.242 0.378 0.420

sDist 0.157 0.199 0.192 0.169 0.183 0.225 0.193 0.187 0.221

Bayes Rate 0.130 0.160 0.160 0.133 0.177 0.181 0.155 0.144 0.138

Table 2.2: Comparison of distance metric learning methods in the simulated scenario

of “XOR” as illustrated in Figure 2.3 (Lower panel). Average test error is evalu-

ated over 20 simulations with varying sample size (N) and different total number of

variables (p). Averaged Bayes rates are also given for reference.

Data Statistics Ionosphere SECOM Madelon

Input Dimension (p) 33 590 500

Training Size (N) 351 1567 2600

Table 2.3: Data Statistics of 3 public real datasets.

times are the average CPU times for one execution8. We also obtain the average

percentage of features selected by various sparse metric learning methods in Figure

2.4.

We first compare various distance metric learning methods on the Iononsphere

8Running time of sDist for datasets ionosphere, SECOM, Madelon are based on M = 100, 500,

and 500 respectively with the configurations that achieve the best predictive performance. The

sDist algorithm is implemented on R (version 3.1.3) on x86 64 Redhat Linux GNU system. Other

competing algorithms are implemented on Matlab (R2014a) on the same operating system.
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Figure 2.4: The average percentages of variables (features) selected in the final metrics

learned by different algorithms as well as the average running times. The percentage

of sDist is calculated as the ratio of the total number of selected features over pm∗,

where pm∗ is the dimension of the candidate set defined in (2.16) at the optimal

stopping iteration m∗ selected by the sparse boosting method in Section 3.3.
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Data Ionosphere SECOM Madelon

Methods
Test

Error

Running

Time (sec)

Test

Error

Running

Time (sec)

Test

Error

Running

Time (sec)

kNN 0.13 0.01 0.14 2.07 0.46 9.05

PGDM 0.07 37.80 0.09 960.47 0.31 2527.82

LMNN 0.06 20.06 0.08 1960.94 0.39 1323.64

SMLsm 0.09 173.19 0.09 1293.97 0.41 2993.97

sDist 0.05 27.49 0.07 473.07 0.09 689.64

Table 2.4: Comparison of distance metric learning methods on three real public

datasets. The test errors are computed using k-Nearest Neighbor classifier with k = 3

based on the learned metrics from the methods under comparisons averaged over 20

random cross-validations. The recorded running times are the average CPU time for

one execution.

dataset [Lichman, 2013] 9. This radar dataset represents a typical small dataset. It

contains mixed data types, which poses a challenge to most of the distance-based

classifiers. From Table 2.4, we see that sDist and other metric learning methods

significantly reduce the test errors by learning a nonlinear transformation of the input

space, as compared to the ordinary kNN classifier. sDist particularly achieves the

best performance by screening out a large proportion of noises. The marginal features

selected by different methods are compared in Figure 2.4. Features selected by sDist

are mostly interactions within a single group of variables, suggesting an interesting

underlying structure of the data for better interpretation.

SECOM [Lichman, 2013] 10 contains measurements from sensors for monitoring

9Available at https://archive.ics.uci.edu/ml/datasets/Ionosphere

10 The data is available at https://archive.ics.uci.edu/ml/datasets/SECOM. The original

data is trimmed by taking out variables with constant values and variables with more than 10% of

missing values so that the dimension is reduced from 591 to 414. Observations with missing value

https://archive.ics.uci.edu/ml/datasets/SECOM
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the function of a modern semi-conductor manufacturing process. This dataset is a

representative real-data application in which not all input variables are equally valu-

able. The measured signals from the sensors contain irrelevant information and high

noise which mask the true information from being discovered. Under such scenario,

accurate feature selection methods are proven to be effective in reducing test error sig-

nificantly as well as identifying the most relevant signals [Lichman, 2013]. As shown in

Table 2.4, sDist 11 demonstrates dominant performance over the other three methods

with an improvement about 33% over the original kNN using the Euclidean distance.

As compared to SMLsm, another sparse metric learning method, sDist shows much

better scalability with a large number of input variables in terms of CPU time.

MADELON is an artificial dataset used in the NIPS 2003 challenge on feature

selection 12 [Lichman, 2013] [Guyon et al., 2006][Guyon et al., 2007]. It contains sam-

ple points with binary labels that are clustered on the vertices of a five dimensional

hypercube, in which these five dimensions constitute 5 informative variables. Fifteen

linear combinations of these five variables were added to form a set of 20 (redundant)

informative variables while the other 480 variables have no predictive power on class

label. In Table 2.4, sDist shows excellent performance compared to the other com-

peting methods in terms of both predictive accuracy and computational efficiency.

The test error achieved by sDist also outperforms states-of-the-art methods beyond

the distance metric learning literature on the Madelon dataset [Kursa et al., 2010]

[Suarez et al., 2014] [Turki and Roshan, 2014]. sDist also attains the sparsest solution

after the trimming on variables are discarded in this experiment, which reduces the sample size to

1436.

11Due to the heterogeneity in the input variables, we standardized the input variable matrix before

implementing the sDist algorithm. In the nonlinear expansions, selected interaction terms are also

scaled before being added to the candidate set C.
12 The data is available at https://archive.ics.uci.edu/ml/datasets/Madelon. We use both

the train data and the validation data. The 5-fold cross-validation is performed on the combined

dataset.

https://archive.ics.uci.edu/ml/datasets/Madelon
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as shown in Figure 2.4, with 15.2% of features selected in the final weight matrix.

Its outstanding performance indicates the importance of learning the low-dimensional

manifold in high-dimensional data, particularly for the cases with low signal-to-noise

ratio.

We also experimented different configurations of the tuning parameters introduced

in the algorithm and the practical remarks on the Madelon dataset, including the fre-

quency of local neighborhood updates, bagging fraction η, and the degree of sparsity

for rank-one updates ρ. The performances in terms of both training error and valida-

tion error are shown in Figure 2.5 for both the kNN classifier and the base classifier

fW defined in (2.3). Particularly, it is evident that updating neighborhood more fre-

quently seems to reduce validation error. The gain in performance diminishes as the

frequency increases beyond a certain level. In practice, we suggest updating the local

neighborhood every 50 steps as a tradeoff between the accuracy and the computa-

tional cost. In this example, the best performances of both classifiers are achieved at

the bagging fraction 0.3 or 0.5 when the degree of sparsity ρ is small. While as ρ is

large, the errors monotonically decrease as the bagging fraction increases. In prac-

tice, we suggest a bagging fraction 0.5 for moderate-size datasets and 0.3 for large

datasets. When the true informative subspace is of relatively low-dimensional, as in

the case of the Madelon dataset, both training errors and validation errors are reduced

with small values of ρ. Sparse rank-one updates benefit the most from the boosting

algorithm for progressive learning and prevent overfitting at each single step, while

in other cases, the optimal value of ρ depends on the underlying sparsity structure.

2.8 Conclusion

In this chapter, we propose an adaptive learning algorithm for finding a sparse Maha-

lanobis distance metric on a nonlinear feature space via a gradient boosting algorithm

for binary classification. We especially introduced sparsity control that results in au-
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Figure 2.5: Sensitivity analysis of different configurations of the tuning parameters in

the sDist algorithm: frequency of local neighborhood updates, the bagging fraction

η, and the degree of sparsity ρ using the Madelon dataset. Training errors and testing

errors are reported for both kNN classifier and the base classifier fW in (2.3) based

on 20 randomly partitioned 5-fold cross-validations.
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tomatic feature selection. The sDist framework can be further extended in several

directions. First, our framework can be generalized to multiclass problems. The base

discriminant function in (2.3) can be extended for a multi-class response variable as in

[Zhu et al., 2009] for multi-class AdaBoost. More specifically, the class label ci is re-

coded as a K-dimensional vector yi = {yi,1, yi,2, . . . , yi,K}T with K being the number

of classes. Here yij = 1 if ci = j and − 1
K−1

otherwise. Then a natural generalization

of loss function in (2.5) is given by:

L(y, fφW ) =
n∑
i=1

exp

(
− 1

K
yTi f

φ
W (xi)

)
.

The other way is to redefine the local positive/negative neighborhood as the local

similar/dissimilar neighborhood as in [Blitzer et al., 2005], where the similar points

refer to sample points with the same class label and the dissimilar ones are those

with different class labels. However, a rigorous discussion on extension to muticlass

problems requires extensive analysis. It is not straightforward in how to exactly

address multiclass labels in metric learning, or whether the learning goal is to deter-

mine a common metric for all classes or to construct different metrics between pairs

of classes. Due to the limited scope of this chapter, we will leave these questions in

future studies.

Furthermore, in the proposed sDist algorithm, we approached the fitting of non-

linear decision boundary through interaction expansion and local neighborhoods. It

has been noted that distance measures have close connections with kernel functions,

which is commonly used for nonlinear learning methods in the literature. Integrating

the nonlinear distance metric learning with kernel methods will lead to more flexible

and powerful classifiers.
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Chapter 3

Stabilized Sparse Online Learning

for Sparse Data

3.1 Introduction

Although the sDist algorithm in Chapter 2 attains favorable results for learning in-

formative feature subspaces for high-dimensional data, it is not yet effective if the

data is not only of large dimenaionality but also highly sparse.Modern datasets pose

many challenges for existing learning algorithms due to their unprecedented large

scales in both sample sizes and input dimensions. It demands both efficient process-

ing of massive data and effective extraction of crucial information from an enormous

pool of heterogeneous features. In response to these challenges, a promising approach

is to exploit online learning methodologies that performs incremental learning over

the training samples in a sequential manner. In an online learning algorithm, one

sample instance is processed at a time to obtain a simple update, and the process is

repeated via multiple passes over the entire training set. In comparison with batch

learning algorithms in which all sample points are scrutinized at every single step,

online learning algorithms have been shown to be more efficient and scalable for data

of large size that cannot fit into the limited memory of a single computer. As a result,
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online learning algorithms have been widely adopted for solving large-scale machine

learning tasks [Bottou, 1998].

In this chapter, we focus on first-order subgradient-based online learning algo-

rithms, which have been studied extensively in the literature for dense data.1 Among

these algorithms, popular methods include the Stochastic Gradient Descent (SGD)

algorithm [Zhang, 2004] [Bottou, 2010], the mirror descent algorithm [Beck and

Teboulle, 2003] and the dual averaging algorithm [Nesterov, 2009]. Since these meth-

ods only require the computation of a (sub)gradient for each incoming sample, they

can be scaled efficiently to high-dimensional inputs by taking advantage of the finite-

ness of the training sample. In particular, the stochastic gradient descent algorithm

is the most commonly used algorithm in the literature of subgradient-based online

learning. It enjoys an exceptionally low computational complexity while attaining

steady convergence under mild conditions [Bottou, 1998], even for cases where the

loss function is not everywhere differentiable.

Despite of their computational efficiency, online learning algorithms without fur-

ther constraint on the parameter space suffers the “curse of dimensionality” to the

same extent as their non-online counterparts. Embedded in a dense high-dimensional

parameter space, not only does the resulted model lack interpretability, its variance is

also inflated. As a solution, sparse online learning was introduced to induce sparsity

in the parameter space under the online learning framework [Langford et al., 2009].

It aims at learning a linear classifier with a sparse weight vector, which has been an

active topic in this area. For most efforts in the literature, sparsity is introduced by

applying L1 regularization on a loss function as in the classific LASSO method [Tib-

shirani, 1996b] [Shalev-Shwartz and Tewari, 2011]. For example, [Duchi and Singer,

2009] extend the framework of Forward-Backward splitting [Lions and Mercier, 1979]

1Dense data is defined as a dataset in which the number of nonzero entries in all columns of its

design matrix are in the order of O(n) while the ones of sparse data are in the order of O(log(n)) or

less.
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by alternating between an unconstrained truncation step on the sample gradient and

an optimization step on the loss function with a penalty on the distance from the

truncated weight vector. [Langford et al., 2009] and [Carpenter, 2008] both explore

the idea of imposing a soft-threshold on the weight vector w ∈ Rp updated by the

stochastic gradient descent algorithm:

wj = sign(wj) max(|wj| − λ, 0), j = 1, . . . , p.

This class of methods is known as the truncated gradient algorithm. For every K stan-

dard SGD updates, the weight vector is shrunk by a fixed amount to induce sparsity.

In the work of [Duchi et al., 2010], the same strategy has also been combined with a

variant of the mirror descent algorithm [Beck and Teboulle, 2003]. [Wang et al., 2015]

further extends the truncated gradient framework to adjust for cost-effectiveness.

This simple yet efficient method of truncated gradients particularly motivates the

algorithm proposed in this chapter. Strategies different from the truncation-based

algorithm have also been proposed. For example, [Xiao, 2009] proposes the Regular-

ized Dual-Averaging (RDA) algorithm which builds upon the primal-dual subgradient

method by [Nesterov, 2009]. The RDA algorithm learns a sparse weight vector by

solving an optimization problem using the running average over all preceding gradi-

ents, instead of a single gradient at each iteration.

Closely related to sparse online learning is another area of active research, online

feature selection. Instead of enforcing just a shrinkage on the weight vectors via L1

regularization, online feature selection algorithms explicitly invoke feature selection

by imposing a hard L0 constraint on the weight vector, such as [Wang et al., 2014] [Wu

et al., 2014]. In other words, online feature selection algorithms focus on generating

a resulted weight vector that has a high sparsity level by directly shrinking a large

proportion of the weights directly to zero (also referred to as a hard thresholding).

In practice, L0 regularization is computationally expensive to solve due to its non-

differentiability. The set of selected features also suffers from high variability as

the decisions of hard-thresholding are based on single random samples in an online
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learning setting. Therefore, important features can be discarded simply owing to

random perturbations.

Most current subgradient-based online learning algorithms do not consider poten-

tial structures or heterogeneity in the input features. As pointed out by [Duchi et

al., 2011], current methods largely follow a predetermined procedural scheme that is

oblivious to the characteristics of data being used at each iteration. In large-scale

applications, a common and important structure is heterogeneity in sparsity levels of

the input features, i.e., the variability in the number of nonzero entries among fea-

tures. For instance, consider the bag-of-word features in text mining applications.2

For a learning task, the importance of a feature is not necessarily associated with

the frequencies of its values. In genetics, for example, rare variants (≤ 1% in the

population) have been found to be associated with disease risks [ref]. Both dense and

sparse features may contain important information for the learning task. However, in

the presence of heterogeneity in sparsity levels, using a simple L1 regularization in an

online setting will predispose rare features to be truncated more than necessary. The

resulted sparse weight vectors usually exhibit high variance in terms of both weight

values and the membership in the set of features with nonzero weights. As a result,

the convergence of the standard truncation-based framework may also be hampered

by this high variability. When the amount of information is scarce due to sparsity

at each iteration, the convergence of the weight vector would understandably take a

large number of iterations to approach the optimum. In two recent papers, [Oiwa et

al., 2011] and [Oiwa et al., 2012] tackle this problem via L1 penalty weighted by the

accumulated norm of subgradients for extending several basic frameworks in sparse

online learning. Their results suggest that, by acknowledging the sparsity structure

in the features, both prediction accuracy and sparsity are improved over the origi-

2Here, by sparse features, we refer to features for which most samples assume a constant value

(e.g., 0) and a few samples take on other values. Without loss of generality, we assume the majority

constant is 0 throughout this chapter.
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nal algorithms while maintaining the same convergence rate. However, their resulted

weight vectors are unstable as the imposed subgradient-based regularization are ex-

cessively noisy due to the randomness of incoming samples in online learning. The

membership in the set of selected features with nonzero weights is also very sensitive

to the orderings of the training samples.

In this chapter, we propose a stabilized truncated stochastic gradient descent al-

gorithm for high-dimensional sparse data. The learning framework is motivated by

that of the Truncated Gradient SGD algorithm proposed by [Langford et al., 2009].

To deal with the aforementioned issues with sparse online learning methods applied

to high-dimensional sparse data, we introduce three innovative components to reduce

variability in the learned weight vector and stabilize the selected features. First,

when applying the soft-thresholding, instead of a uniform truncation on all features,

we perform only informative truncations, based on actual information from individ-

ual features during the preceding computation window of K updates. By doing so,

we eliminate the heterogeneous truncation bias associated with feature sparsity. The

key idea here is to ensure that each truncation for each feature is based on sufficient

information, and the amount of shrinkage is adjusted for the information available

on each feature. Second, beyond the soft-thresholding corresponding to the ordinary

L1 regularization, the resulted weight vector is stabilized by staged purges of irrele-

vant features permanently from the active set of features. Here, irrelevant features

are defined as features whose weights have been repeatedly truncated. Motivated

by stability selection introduced in [Meinshausen and Bühlmann, 2010], these per-

manent purges prevent irrelevant features from oscillating between the active and

non-active set of features, The “purging” process also resembles hard-thresholding

in online feature selection and results in a stabler sparse solution than other sparse

online learning algorithms. Results on the theoretical regret bound in 3.4 show that

this stabilization step helps improve over the original truncated gradient algorithm,

especially when the target weight vector is notably sparse. To attune the proposed
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learning algorithm to the sparsity of the remaining active features, the third compo-

nent of our algorithm is adjusting the amount of shrinkage progressively instead of

fixing it at a predetermined value across all stages of the learning process. A novel

hyperparameter, rejection rate, is introduced to balance between exploration of dif-

ferent sparse combinations of features at the beginning and the exploitation of the

selected features to construct accurate estimate at a later stage. Our method gradu-

ally anneal the rejection rate to acquire the necessary amount of shrinkage on the fly

for achieving the desired balance.

The rest of paper is organized as follows. Section 3.2 reviews the truncated

Stochastic Gradient Descent (SGD) framework for sparse learning proposed in [Lang-

ford et al., 2009]. In Section 3.3, we introduce, in details, the three novel components

of our proposed algorithm. Theoretical analysis of the expected online regret bound

is given in Section 3.4, along with the computational complexity. Section 3.5 gives

practical remarks for efficient implementation. In Section 3.6, we evaluate the perfor-

mance of the proposed algorithm on several real-world high-dimensional datasets with

varying sparsity levels. We illustrate that the proposed method leads to improved

stability and prediction performance for both sparse and dense data, with the most

improvement observed in data with the highest average sparsity level. Section 3.7

concludes with further discussion on the proposed algorithm.

3.2 Truncated Stochastic Gradient Descent for Sparse

Learning

Assume that we have a set of training data D = {zi = (xi, yi), i = 1, . . . , n}, where

the feature vector xi ∈ Rp and the scalar output yi ∈ R. In the following, we use xi

to represent the vector of the ith sample of length p and x·,j for the jth feature vector

of all samples of length n. In this chapter, we are interested in the case that both p

and n are large and the feature vectors x·,j’s, j = 1, . . . , p, are sparse. We consider a
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loss function l(ŷ, y) that measures the cost of predicting ŷ when the truth is y. The

prediction ŷ is given by function fw(x) from a family F parametrized by a weight

vector w. Denote L(w, z)
def
== l(fw(x), y). The learning goal is to obtain an optimal

weight vector ŵ that minimize the loss function
n∑
i=1

L(w, zi) over the training data,

with sparsity in the weight vector induced by a regularization term Ψ(w). We can

then formulate the learning task as a regularized minimization problem:

ŵ = arg min
w∈Rp

n∑
i=1

L(w, zi) + Ψ(w). (3.1)

The above optimization problem is often solved using some version of gradient

descent. When both p and n are large, the computation becomes very demanding.

To address this computational complexity, the Stochastic Gradient Descent (SGD)

algorithm was proposed [Bottou, 1998] as a stochastic approximation of the full gra-

dient algorithm. Instead of computing the gradient over the entire training set as

under the batch setting, the stochastic gradient descent algorithm uses approximate

gradients based on subsets of the training data. This is particularly attractive to

large scale problems as it leads to a substantial reduction in computing complexity

and potentially distributed implementation.

For applications with large data sets or streaming data feeds, SGD has also been

used as a subgradient-based online learning method. Online learning and stochastic

optimization are closely related and interchangeable most of the time [Cesa-Bianchi

et al., 2004]. For simplicity, in the following, we focus our discussion and algorithmic

description under the online learning framework with regret bound models. Nonethe-

less, our results can be readily generalized to stochastic optimization as well.

In online learning, the algorithm receives a training sample zt = (xt, yt) at a time

from a continuous feed. Without sparsity regularization, at time t, the weight vector

is updated in an online fashion with a single training sample zt ∈ D drawn randomly,

ht = wt − ηL′(wt, zt), (3.2)

wt+1 = ht, (3.3)
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where η > 0 is the learning rate and L′(wt, zt) ∈ ∂wtL(wt, zt) is a subgradient of

the loss function L(wt, zt) with respect to wt. The set of subgradients of f at the

point x is called the subdifferential of f at x, and is denoted ∂f(x). A function f

is called subdifferentiable if it is subdifferentiable at all x ∈ dom f . When L(w, ·)

is differentiable at w, ∂wL(w, ·) = {∇wL(w, ·)}. At the same time, a sequence of

decisions wt is generated at t = 1, 2, . . . , that encounters a loss L(wt, zt) respectively.

Given an optimal decision w ∈ Rp, the goal of online learning with regularization

is to achieve low regret defined as

RT (w) ,
T∑
t=1

(L(wt, zt) + Ψ(wt))−
T∑
t=1

(L(w, zt) + Ψ(w)) . (3.4)

In this chapter, we focus on the L1 regularization where Ψ(w) = g||w||1 and g is

the regularizing parameter. When adopted in an online learning framework, standard

SGD algorithm does not work well in addressing (3.1) with L1 penalty. Firstly, a

simple online update requires the projection of the weight vector w onto a L1-ball

at each step, which is computationally expensive with a large number of features.

Secondly, with noisy approximate subgradient computed using a single sample, the

weights can easily deviate from zero due to the random fluctuations in zt’s. Such a

scheme is therefore inefficient to maintain a sufficiently sparse weight vector.

To address this issue, [Langford et al., 2009] induced sparsity in w by subjecting

the stochastic gradient descent algorithm to soft-thresholding. For every K ∈ N+

iterations at step t, each of which is as defined in (3.2), the weight vector is shrunk

by a soft-threshold operator T with a gravity parameter g ∈ Rp with gj ≥ 0 for

j = 1, . . . , p. For a vector h = [h1, . . . , hp] ∈ Rp,

ŵt+1 = T (ht,g), (3.5)
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where T (h,g) = [T (h1, g1), . . . , T (hp, gp)] with the operator T defined by

T (hj, gj) ,

 max(hj − gj, 0), if hj > 0;

min(hj + gj, 0), if hj ≤ 0.
(3.6)

= sign(hj) max(|hj| − gj, 0).

As one can see, the sequence of K SGD updates can be treated as a unit com-

putational block, which will be referred to as a burst hereafter. Here the word burst

indicates that it is a sequence of repetitive actions, e.g., the standard SGD updates

as defined in (3.2), without interruption. Each burst is followed by a soft-thresholding

truncation defined in (3.5), which puts a shrinkage on the learned weight vector.

A burst can be viewed as a base feature selection realized on a set of random

samples with L1 regularization as in the classical LASSO [Tibshirani, 1996b]. Within

a burst, let XK be the set of K random samples on which the weight vector ŵ is

stochastically learned. We define the set of features with nonzero weights in ŵ as its

active (feature) set :

Ŝg(ŵ;XK) = {j : |ŵj| > 0}, (3.7)

with a corresponding gravity g. The steps within a truncated burst are summarized

in Algorithm 3.1.

In the truncated gradient algorithm of [Langford et al., 2009], the gravity param-

eter is a constant across all dimensions as g = g0K1p, where g0 ∈ R ≥ 0 is a base

gravity for each update in a burst and 1p , (1, . . . , 1) ∈ Rp. In general, with greater

parameter g0 and smaller burst size K, more sparsity is attained. When g0 = 0, the

update in (3.5) becomes identical to the standard stochastic gradient descent update

in (3.2). [Langford et al., 2009] showed that this updating process can be regarded as

an online counterpart of L1 regularization in the sense that it approximately solves

(3.1) in the limit as as K →∞ and η → 0.
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Algorithm 3.1 B0(w0, g0): Truncated burst of K updates with universal gravity.

Input: w0 at initialization and the base gravity g0.

Parameters: K, η.

for t = 1 to K do

Draw zt ∈ D uniformly at random.

wt = wt−1 − ηL′ (wt−1, zt), where L′ (wt−1, zt) ∈ ∂wt−1L (wt−1, zt).

end for

ŵ = T (wK , g0K1p).

Return: ŵ.

3.3 Stabilized Truncated SGD for Sparse Learning

Truncated SGD [Langford et al., 2009] works well for dense data. When it comes to

high-dimensional sparse inputs, however, it suffers from a number of issues. [Shalev-

Shwartz and Tewari, 2011] observe that the truncated gradient algorithm is incapable

of maintaining sparsity of the weight vector as it iterates. Recall that, under the

online learning setting, the weight vector w is updated with a noisy approximation

of the true expected gradient using one sample at a time, from a random ordering

of the data. With sparse inputs, it is highly probable that an important feature

does not have a nonzero entry for many consequent samples, and is meaningfully

updated for only a few times out of the K updates in a burst. As a result, it would

be truncated after a few iterations and brought back to nonzero after another few

updates. At the same time, sparsity in inputs will also give rise to sporadic large

nonzero updates for irrelevant features, which cannot be fully resolved by the soft-

threshold operator. The derived weight vector w’s are of high variance, inadequate

sparsity and poor generalizability. As an example, the number of nonzero variables in

the weight vector during the last 1000 stochastic updates from the truncated gradient

algorithm implemented on a high-dimensional sparse dataset (Dexter text mining

data set; see Section 3.6 for details.) are shown in Figure 3.1. It can be seen that
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the numbers of nonzero features in the weight vectors learned by the truncated SGD

algorithm (K = 5) remain large and highly unstable throughout these 1000 iterations,

oscillating within 10% of the total number of features. As a comparison, also in

Figure 3.1, we plot the results from our proposed stabilized truncated SGD applied

to the same data. During these last 1000 updates, the proposed algorithm is using a

less frequent truncation schedule due to our annealed reject rate. It attains both high

sparsity in the weight vector and high stability with high-dimensional sparse data.
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Figure 3.1: An example of the truncated gradient algorithm and the proposed stabi-

lized truncated SGD algorithm applied to a high-dimensional sparse data set. Here

we compare the percentage of nonzero variables in the resulted weight vector at each

iterration during the last 1000 iterations of both algorithms. The underlying data set

is the text mining dataset, Dexter, with 10, 000 features and 0.48% of sparsity, which

is described in details in Section 3.6.
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In this section, we introduce the stabilized truncated Stochastic Gradient Descent

(SGD) algorithm. It attains a truly sparse weight vector that is stable and gives

generalizable performance. Our proposed method attunes to the sparsity of each

feature and adopts informative truncation. The algorithm keeps track of whether

individual features have had enough information to be confidently subject to soft-

thresholding. Based on the truncation results, we systematically reduce the active

feature set by permanently discarding features that are truncated to zero with high

probability via stability selection. We further improve the efficiency of our algorithm

by adapting gravity to the sparsity of the current active feature set as the algorithm

proceeds.

3.3.1 Informative Truncation

For the truncated SGD algorithm, [Langford et al., 2009] suggest a general guideline

for determining gravity in the batch mode by scaling a base gravity g0 by K, the

number of updates, for a single truncation after a burst. A direct online adaptation

of a L1 regularization would shrinks the weight vector at every iteration. The above

batch mode operation is to delay the shrinkage for K iterations so that the truncation

is executed based on information collected from K random samples instead of from

a single instance. This guideline implicitly assumes that the K SGD updates in a

burst are equally informative, which is in general true for dense features. For sparse

features, however, under the online learning setting, not every update is informative

about every feature due to the scarcity of nonzero entries. The original uniform for-

mula, g = Kg01p, for gravity would then create an undesirable differential treatment

for features with different levels of sparsity. With a relatively small K, it is very

likely that a substantial proportion of features would have no non-zero values on a

size-K subsample used in a particular burst. The weights for these features remain

unchanged after K updates. Consequently, the set of sparse features run the risk

of being truncated to zero based on very few informative updates. The truncation
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Algorithm 3.2 B1(w0, g0): A burst of K updates with informative truncation.

Input: w0 at initialization and the base gravity g0.

Initialization: k̃ = 0p ∈ Rp.

Parameters: K, η.

for t = 1 to K do

Draw zt = (xt, yt) ∈ D uniformly at random.

wt = wt−1 − ηL′ (wt−1, zt), where L′ (wt−1, zt) ∈ ∂wt−1L (wt−1, zt).

k̃← k̃ + 1(|xt| > 0).

end for

ŵ = T (wK , g0k̃).

Return: ŵ, k̃.

decision is therefore mostly determined by a feature’s sparsity level, rather than its

relevance to the class boundary.

To make the learning be informed of the heterogeneity in sparsity level among

features, we introduce the informative truncation step, extended from the idea of base

gradient used in Algorithm 3.1. Instead of applying a universal gravity proportional

to K to all features, the amount of shrinkage is set proportional to the number of

times that a feature is actually updated with nonzero values in the size-K subsample,

i.e., the number of informative updates. Specifically, within each burst, the algorithm

keeps a vector of counters, k̃ ∈ Rp, of the numbers of informative updates for the

features x·,j, j = 1, . . . , p. Let g0 ∈ R ≥ 0 be the base gravity parameter that serves

as the unit amount of shrinkage for each informative update on each feature. At the

end of each burst, we shrink feature x·,j by g0k̃j. In other words, here we set g = g0k̃.

The computational steps for a burst with informative truncation in summarized in

Algorithm 3.2.

A theoretical justification of informative truncation can be found in Lemma 2

(Section 3.4). This feature-specific gravity attunes to the sparsity structure incurred

at each burst without ad-hoc adjustment. It also avoids data pre-processing for
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locating sparse entries, which can be computationally expensive and compromises the

advantage of online computation. In comparison to the truncated gradient algorithm

in [Langford et al., 2009] that quickly shrinks many features to zero indiscriminately,

informative truncation keeps sparse features until enough evaluation is conducted. In

doing so, sparse yet important features will be retained. The proposed approach also

reduce the variability in the resulted sparse weight vector during the training process.

[Duchi et al., 2011] uses a similar strategy that allows the learning algorithm to

adaptively adjust its learning rates for different features based on cumulative update

history. They use the L2 norm of accumulated gradients to regulate the learning rate.

By adapting the gravity with the counter k̃ within each burst, our proposed strategy

here can be viewed as applying the L0 norm to the accumulated gradients that is

refreshed every K steps.

3.3.2 Stability Selection

Despite of its scalability, subgradient-based online learning algorithms commonly suf-

fer from instability. It has been shown both theoretically and empirically that stochas-

tic gradient descent algorithms are sensitive to random perturbations in training data

as well as specifications of learning rate [Toulis et al., 2015] [Hardt et al., 2015]. This

instability is particularly pronounced in sparse online learning with sparse data, as

discussed in Section 1. Under an online learning setting, using random ordering of

the training sample as inputs, the algorithm would produce distinct weight vectors

and unstable memberships of the final active feature set. Moreover, there has been a

lot of discussion, in the literature, on the link between the instability of an learning

algorithm and its deteriorated generalizability [Bousquet and Elisseeff, 2002], [Kutin

and Niyogi, 2002], [Rakhlin et al., 2005], [Shalev-Shwartz et al., 2010].

To tackle this instability issue, in the proposed algorithm, we exploit the method

of stability selection to improve its robustness to random perturbation in the training

data. Stability selection [Meinshausen and Bühlmann, 2010] does not launch a new
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feature selection method. Rather, its aim is to enhance and improve a sparse learning

method via subsampling. The key idea of stability selection is similar to the generic

bootstrap [Meinshausen and Bühlmann, 2010]. It feeds the base feature selection

procedure with multiple random subsamples to derive an empirical selection proba-

bility. Based on aggregated results from subsamples, a subset of features is selected

with low variability across different subsamples. With proven consistency in variable

selection, stability selection helps remove noisy irrelevant features and thus reduce

the variability in learning a sparse weight vector.

Incorporating stability selection into our proposed framework, each truncated

burst with gravity parameter g is treated as an individual sparse learning engine.

It takes K random samples and carries out a feature selection to obtain a sparse

weight vector. In the following, we define first the notion of selection probability for

the stability selection step in our proposed algorithm.

Definition 3.1 (Selection Probability). Let XK be a random subsample of {1, . . . , n}

of size K, drawn without placement. Parametrized by the gravity parameter g, the

probability of the feature x·,j being in the active set of a truncated burst that returns

ŵ is

Πg
j = P ∗

(
j ∈ Ŝg(ŵ;XK)

)
= ED [1(|ŵj| > 0)] ,

where the probability P ∗ is with respect to the random subsampling of XK. Let Πg =

[Πg
1 , . . . ,Π

g
p ].

For simplicity, we drop the superscript g of Πg in later discussions. For the rest of

the paper, the selection probability Π always refers to Πg that corresponds to weight

vector ŵ with gravity parameter g.

Under unknown data distribution, the selection probabilities cannot be computed

explicitly. Instead, they are estimated empirically. Since each truncation burst per-

forms a screening on all features, the frequency of each feature being selected by a

sequence of bursts can be used to derive an estimator of the selection probability. We
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denote a sequence of nK > 0 truncated bursts as a stage. A preliminary empirical

estimate of the selection probability is given by

Π̂j =


∑
τ :k̃j,τ>0 1(|ŵj,τ |>0)

nk∑
τ=1

1(k̃j,τ>0)

, for j s.t.
nK∑
τ=1

k̃j,τ > 0

1, otherwise

, (3.8)

where k̃τ are returned counters of informative updates by each bursts for τ = 1, . . . , nK .

Different from the conventional stability selection setting, ŵτ ’s are obtained se-

quentially and thus are dependent with each other. When nK is small, different

subsamples produce selection probability estimates using (3.8) exhibit high variabil-

ity, even when initialized with the same weight vector at τ = 1. On the other hand, a

large value of nK requires a prohibitively large number of iterations for convergence.

To resolve the issues of estimating selection probability using a single sequence of SGD

updates, we introduce a multi-thread framework of updating paths. Multiple threads

of sequential SGD updates are executed in a distributed fashion, which readily uti-

lizes modern multi-core computer architecture. With M processors, we initialize the

algorithm on each path of SGD updates with a random permutation of the training

data, D, denoted as D(1), . . . ,D(m). Then independently, M stages of bursts run in

parallel along M paths, which return with ŵ
(m)
τ , τ = 1, . . . , nK , m = 1, . . . ,M . The

joint estimate of selection probability with gravity g is obtained as

Π̂j =


M∑
m=1

∑
τ :k̃

(m)
j,τ

>0
1(|ŵ(m)

j,τ |>0)

M∑
m=1

nk∑
τ=1

1(k̃
(m)
j,τ >0)

, for j s.t.
M∑
m=1

nK∑
τ=1

k̃
(m)
j,τ > 0

1, otherwise

, (3.9)

When more processors are available, a smaller nK is required for the algorithm

to obtain a stable estimate of selection probability. The dependence among ŵτ ’s

is also attenuated when M random subsets of samples are used for the estimation.

This strategy falls under parallelized stochastic gradient descent methods, which is

discussed in detail by [Zinkevich et al., 2010].
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Under the framework of stability selection, each stage on every path uses a random

subsample. The estimated selection probability quantifies the chance that a feature

is found to have high relevance to class differences given a random subsample. At

the end of each stage, stable features are identified as those that belong to a large

fraction of active sets incurred during this stage of bursts.

Definition 3.2 (Stable Features). For a purging threshold π0 ∈ [0, 1], the set of stable

features with gravity parameter g is defined as

Ω̂g = {j : Πg
j ≥ π0}.

For simplicity, we write the stable set Ω̂g as Ω̂ when there is no ambiguity.

Stability selection retains features that have high selection probabilities and dis-

card those with low selection probabilities. At the end of a stage of M paths, we

purge the features that are not in the set of stable features by permanently setting

their corresponding weights to zero, and remove them from subsequent updates. We

define the stabilized weight vector as

w̃ = ŵ · 1Ω̂. (3.10)

As discussed earlier, due to the nature of online learning with sparse data, there

are two undesirable learning setbacks in a single truncated burst. The first occurs

when an important feature has its weight stuck at zero due to inadequate information

in the subsample used, while the second case is when a noise feature’s weight gets

sporadic large updates by chance. Using informative bursts (counted by), we can

avert the first type of setbacks and using selection probability based on multiple

bursts, we can spot noisy features more easily. In the presence of a large number of

noisy features, the learned weights for important features suffer from high variance.

Via stability selection, we systematically remove noisy features permanently from

the feature pool. Furthermore, the choice of a proper regularization parameter is

crucial yet known to be difficult for sparse learning, especially due to the unknown
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Algorithm 3.3 B2(w0, g0, Ω̂,D(m)): Informative truncated burst with stability se-

lection in thread m.

Input: w0, g0, the input data D(m) and the current set of stable features Ω̂, which

is the output of equation (3.7) using (3.9) with predetermined threshold π0.

Parameters: K, η.

Initialize v0 = (w0,j)j∈Ω̂ , k̃ = 0|Ω̂|.

for t = 1 to K do

Draw zt = (xt, yt) sequentially drawn from D(m).

z̃t = (zt,j)j∈Ω̂.

vt = vt−1 − ηL′ (vt−1, z̃t), , where L′ (vt−1, zt) ∈ ∂vt−1L (vt−1, zt).

k̃← k̃ + 1(|xt| > 0).

end for

û = T (vK , g0k̃).

ŵj =

 ûj′ , if j ∈ Ω̂ and Ω̂j′ = j

0, if j /∈ Ω̂
.

Return: ŵ, k̃.

noise level. Applying stability selection renders the algorithm less sensitive to choice

of the base gravity parameter g0 in learning a sparse weight vector via truncated

gradient. As we will show using results from our numerical experiments, this purging

by stability selection leads to a notable reduction in the estimation variance of the

weight vector. Here, π0 is a tuning parameter in practice. We have found that the

learning results in the numerical experiments are not sensitive to different values

of π0 within a reasonable range. Under mild assumptions discussed in Section 3.4,

we derive a lower bound of the expected improvement in convergence by employing

stability selection in the learning process in Lemma 1.
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3.3.3 Adaptive Gravity with Annealed Rejection Rate

The truncated gradient algorithm [Langford et al., 2009] adopts a universal and fixed

base gravity parameter at all truncations. As pointed out in [Langford et al., 2009]

, a large value of the base gravity g0 achieves more sparsity but the accuracy is

compromised, while a small value of g0 leads to less sparse weight vector yet attaining

better performance. In other words, different extents of shrinkage serve different

purposes of a learning algorithm. The needs for shrinkage also changes as the weight

vector (and the stable set) evolves. Intuitively, the truncation is expected to be greedy

at the beginning so that the number of nonzero feature can be quickly reduced for

better computational efficiency and learning performance. As the algorithm proceeds,

fewer features remain in the stable set. We should then be careful not to shrink

important features with a truncation that is too harsh.

A large base gravity g0 is effective in inducing sparsity at the beginning of the

algorithm when the weight vector ŵ is dense. As the algorithm proceeds, the same

value of gravity is likely to impose too much shrinkage when the learned weight vector

ŵ becomes very sparse, exposing some truly important features at the risk of being

purged. On the other hand, a small fixed gravity is over-conservative so that the

algorithm will not shrink irrelevant features effectively, leading to slow convergence

and a dense weight vector overridden by noise. Tuning a reasonable fixed base gravity

parameter for a particular data set does not only creates additional computational

burden, but also inadequate in addressing different learning needs during different

stages of the algorithm.

As the role of gravity in a learning algorithm is to induce sparse estimates, in

this paper, we propose an adaptive gravity scheme that delivers the right amount

of shrinkage at each stage of the algorithm towards a desirable level of sparsity for

the learned weight vector. We propose to control sparsity by a target rejection rate

β, that is, the proportion of updates that are expected to be truncated. Guided by

this target rejection rate, we derive the necessary shrinkage amount and the corre-
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sponding gravity. As we discussed in Section 3.3.1, a base gravity g0 is used in our

learning algorithms to create gravity values for individual features that are attuned

to their data sparsity levels. Therefore our adaptive gravity scheme is carried out

by adjusting g0. At the beginning of a particular stage, we examine the truncation

carried out during the previous stage. The base gravity g0 is then adjusted to project

the target rejection rate during the current stage. Specifically, at stage s, we look at

the pooled set of non-truncated weight vectors and informative truncation counters{
w

(m)
τ , k̃

(m)
τ , τ = 1, . . . , nK ,m = 1, . . . ,M

}
from all the bursts conducted in the pre-

vious stages on multiple threads. The adaptive base gravity g0 for a target rejection

rate βs ∈ [0, 1] is then obtained as

g0,s(βs) , sup{g0 ≥ 0 : p̂s(g0) ≤ βs}. (3.11)

Here p̂s(g0) is the empirical probability, i.e.,

p̂s(g0) ,

M∑
m=1

nk∑
τ=1

∑
{j:j∈Ω̂s,k̃

(m)
j,τ >0} 1

(∣∣∣∣∆w(m)
j,τ

k̃
(m)
j,τ

∣∣∣∣ > g0

)
M∑
m=1

nk∑
τ=1

∑
j∈Ω̂s

1

(
k̃

(m)
j,τ > 0

) ,

where ∆w
(m)
j,τ , w

(m)
j,τ −w

(m)
j,τ−1 is the amount of updates on feature x·,j during the τ th

burst.

In other words, we pool the updates in weight vectors learned from previous

iterations within one stage and concatenate the scaled weights in the stable set with

nonzero counter values as a single vector ṽs of length dṽs , where

ṽs =

(
∆w

(m)
j,τ

k̃
(m)
j,τ

)
{
j∈{j′:j′∈Ω̂s and k̃

(m)
j,τ >0},τ=1,...,nK ,m=1,...,M

} . (3.12)

The base gravity is set to be the βs percentile of ṽs. Since the vector ṽs is composed

of discrete values, the adaptive base gravity g0,s can also be written as the lth order

statistics of ṽs where l = βsdṽs .

In other words, we pool the updates in weight vectors learned from previous
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iterations within one stage and concatenate the scaled weights in the stable set with

nonzero counter values as a single vector ṽs of length dṽs , where

ṽs =

(
∆w

(m)
j,τ

k̃
(m)
j,τ

)
{
j∈{j′:j′∈Ω̂s and k̃

(m)
j,τ >0},τ=1,...,nK ,m=1,...,M

} . (3.13)

The base gravity is set to be the βs percentile of ṽs. Since the vector ṽs is composed

of discrete values, the adaptive base gravity g0,s can also be written as the lth order

statistics of ṽs where l = βsdṽs .

We initialize the algorithm with a high rejection rate so that a large proportion of

the weight vector can be reduced to zero at the end of each burst during the early stage

of the algorithm. It allows the algorithm to explore as many sparse combination of

features as possible at the early stage of the learning process. Along with the stability

selection, the set of stable features can be quickly reduced to a manageable size by

removing the majority of noises. When the weight vector becomes sparse, we decrease

the rejection rate proportionally. With a lower rejection rate, and consequently a

lower gravity, the algorithm can better exploit the subsequent standard SGD updates

for a more accurate estimate of the true weight vector. As the rejection rate decreases

to 0, the algorithm converges to the standard stochastic gradient descent algorithm

on a small subset of stable features.

To achieve the balance between exploration and exploitation, we construct an

annealing function for the rejection rate that decreases monotonically as the level of

sparsity decreases. Let β0 ∈ [0, 1] be the maximum rejection rate at initialization and

let γ be the annealing rate. The annealing function φ for the rejection rate at stage

s+ 1 is given by

βs+1 = φ(ds; β0, γ)

=

 β0 [exp (−γds)− dse−γ] γ ≥ 0

β0
log(1−γ(1−ds))

log(1−γ)
, γ < 0

, (3.14)

where ds = |Ω̂s|
p

assesses the level of sparsity at the end of stage s. The greater the
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Figure 3.2: Examples of the rejection rate annealing function with different values of

γ as defined in (3.14). Here γ = −5, 0, and 5 respectively. A positive annealing rate

would reduce the rejection rate quickly as the proportion of non-zeros weight values,

ds, decreases, whereas a negative annealing rate would maintain it at a relatively high

level.

value γ is, the faster the rejection rate is annealed to zero as the number of stable

features decreases.

A positive, zero and negative value of γ corresponds to exponential decay, linear

decay and logarithmic decay of the rejection rate, respectively. Figure 3.2 presents

examples of the rejection rate anneal function with γ = −5, 0, and 5 respectively.

By using adaptive gravity (3.11) with annealed rejection rate (3.14), the amount

of shrinkage is adjusted to the current level of sparsity of the weight vector quantified

by the size of the stable set |Ω̂s| or the L0 norm of the purged w̃. Instead of tuning a

fixed gravity parameter as in [Langford et al., 2009], for our proposed algorithm, we

tune the annealing rate γ and the maximum rejection rate β0. Here γ balances the

trade-off between exploration and exploitation and β0 determines the initial intensity

of truncation. It enables the tuning process to be tailored to the data at hand as

well as being comparable across different datasets. In Section 3.6, the tuning results

instantiate that a negative annealing rate is preferred for highly sparse data, such
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as the RCV1 dataset, since the a high rejection rate needs to be maintained longer

allowing sufficient information of sparse features to be evaluated by the learning

process. On the other hand, a positive annealing rate is chosen for relatively dense

data, such as the Arcene dataset, where the high frequency of nonzero values permit

fast reduction of the active set. The complete algorithm of the stabilized truncated

stochastic gradient descent algorithm is summarized in Algorithm 3.4.

3.4 Properties of the Stabilized Truncated Stochas-

tic Gradient Descent Algorithm

The learning goal of sparse online learning is to achieve a low regret as defined in

(3.4). In this section, we analyze the online regret bound of the proposed stabilized

truncated SGD algorithm in Algorithm 3.4 with convex loss. For simplicity, the effect

of adaptive gravity with annealed rejection rate is not considered here. To achieve

viable result, we make the following assumptions.

Assumption 1. The absolute values of the weight vector w are bounded above, that

is, |wj| ≤ C for some C ∈ [0,∞), j = 1, . . . , p.

Assumption 2. The loss function L(w, z) is convex in w, and there exist non-

negative constants A and B such that, for all w ∈ Rp and z ∈ Rp+1, ||∇wL(w, z)||2 ≤

AL(w, z) +B.

For linear prediction problems, the class of loss function that satisfies Assumption

2 includes some common loss functions used in machine learning problems, such as

the L2 loss, the hinge loss and the logistic loss, with the condition that supx ||x|| ≤ Cx

for some constant Cx > 0.

Assumption 3. For τ = 1, 2, . . . , the average number of active selected features from

each truncated bursts, qg, given a gravity g, is greater than or equal to the number of

nonzero weights in the target weight vector w∗, denoted as d∗.
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Assumption 3 posits that the true parameter space of interest is substantially

sparse, which is the main focus of sparse learning and of this chapter. Nevertheless,

this condition does not confine the applicable scenarios of the proposed method to

a fixed subclass of problems. It suggests a balance between the model sparsity and

the value of the gravity parameter that is implicitly embedded within the parameter

tuning process.

Lemma 1. Let w̃ be the stabilized weight vector after the non-stabilized dense weight

vector ŵ being purged by the stability selection in (3.10) with a set of stable features

Ω̂. Let w∗ be the target sparse weight vector and d∗ be the number of nonzero weights

in w∗. Let qg be the average number of selected features from the truncated bursts on

which the set of stability selection is constructed with the gravity parameter g. Then,

if Assumption 1 holds, there exists an ε ∈
(

0, π0C(p−|Ω̂|)
|Ω̂|

)
with Ŝε = {j : E(|ŵj|) > ε}

such that the bound on the expected difference between the distance from the non-

stabilized weight vector to the target and the distance from the stabilized weight vector

to the target is given by

E
(
||ŵ −w∗||2 − ||w̃ −w∗||2

)
≥ ε2(|Ŝε| − |Ω̂|) + 2π0C

2

[(
1− qg

2π0p− p

)
qg − d

]
≥ 0. (3.15)

Proof. Let Ω∗ = {j : |w∗j | > 0} be the set of nonzero features in the target weight

vector w∗. So w∗ can also be written as w∗1Ω∗ . Based on the stability selection in

(3.10), we have w̃ = ŵ1Ω̂.

Let Ω = {1, . . . , p}. The full set Ω can be further divided into four disjoint sets:

S1 = Ω \ (Ω∗ ∪ Ω̂), S2 = Ω∗ \ Ω̂, S3 = Ω̂ \ Ω∗, and S4 = Ω∗ ∩ Ω̂, respectively.

Firstly, we consider the L2 distance from the non-stabilized weight vector ŵ to

the target weight vector w∗ and the L2 distance from the stabilized weight vector w̃
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to w∗:

||ŵ −w∗|| = ||ŵ −w∗1Ω∗||2

=
∑
j∈Ω∗

(ŵj − w∗j )2 +
∑
j /∈Ω∗

ŵ2
j ,

=
∑

j∈S2∪S4

(ŵj − w∗j )2 +
∑

j∈S1∪S3

ŵ2
j .

Since

(ŵ1Ω̂ −w∗1Ω∗)
2
j =



0, if j /∈ Ω∗ and j /∈ Ω̂;

(w∗j )
2, if j ∈ Ω∗ and j /∈ Ω̂;

(ŵj)
2, if j /∈ Ω∗ and j ∈ Ω̂;

(ŵj − w∗j )2, if j ∈ Ω∗ and j ∈ Ω̂,

||w̃ −w∗||2 = ||ŵ1Ω̂ −w∗1Ω∗ ||2

=
∑
j∈S2

(w∗j )
2 +

∑
j∈S3

(ŵj)
2 +

∑
j∈S4

(ŵj − w∗j )2.

Then

||ŵ −w∗||2 − ||w̃ −w∗|| =
∑
j∈S2

(ŵj − w∗j )2 +
∑
j∈S1

ŵ2
j −

∑
j∈S2

(w∗j )
2

=
∑
j∈S2

ŵ2
j +

∑
j∈S2

(w∗j )
2 − 2

∑
j∈S2

w∗j ŵj −
∑
j∈S2

(w∗j )
2 +

∑
j∈S1

ŵ2
j

=
∑

j∈S1∪S2

ŵ2
j − 2

∑
j∈S2

w∗j ŵj

= ||ŵ(1− 1Ω̂)||2 − 2
∑
j∈S2

w∗j ŵj

≥ ŵ2
min(p− |Ω̂|)− 2

∑
j∈S2

w∗j ŵj. (3.16)

For the first part in (3.16), there exists some small ε ∈
(

0, π0C(p−|Ω̂|
|Ω̂|

)
with Ŝε =

{j : E(|ŵj|) > ε} such that
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E
(
||ŵ(1− 1Ω̂)||2

)
=E

(
p∑
j=1

ŵ2
j1(p̂j ≤ π0)

)

=E

(
p∑
j=1

ŵ2
j1(p̂j ≤ π0)1(|ŵj| ≤ ε)

)
+ E

(
p∑
j=1

ŵ2
j1(p̂j ≤ π0)1(|ŵj| > ε)

)

≥0 + ε2E

(
p∑
j=1

1(p̂j ≤ π0)1(|ŵj| ≤ ε)

)

≥ε2(|Ŝε| − |Ω̂|) > 0,

where the last inequality is due to |Ŝε| > |Ω̂| with the specified range of ε.

For the second part in (3.16), from on Theorem 1 of [Meinshausen and Bühlmann,

2010] in stability selection, we have

E(|S2|) ≤
(

qg

2π0p− p
− 1

)
qg + d.

And, since, for any j ∈ Ω \ Ω̂, Pr(|ŵj| > 0) ≤ π0,

E(|ŵj|) =

∫ C

0

Pr(|ŵj| ≥ u)du ≤ Pr(|ŵj| > 0)C ≤ π0C.

Then,

E

(∑
j∈S2

w∗j ŵj

)
≤ π0C

2|S2| ≤ π0C
2|S2|

[(
qg

2π0p− p
− 1

)
qg + d

]
.

Thus we have

E
(
||ŵ −w∗||2 − ||w̃ −w∗||2

)
≥ ε2(|Ŝε| − |Ω̂|) + 2π0C

2

[(
1− qg

2π0p− p

)
qg − d

]
.

Lemma 1 quantifies the gain of using stabilization when the true weight vec-

tor is highly sparse. When the purging threshold π0 is sufficiently large such that

π0 ∈
(

1
2

+ (qg)2

2p(qg−d∗) , 1
)

, the lower bound achieved by (??) is guaranteed to be posi-

tive. Furthermore, this result also indicates that the expected difference in distances
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to the sparse target weight vector between the non-stabilized and stabilized weight

vector depends on the differences between the sizes of the temporary nonzero set of

features before purging, |Ŝε|, and the size of the stable features after purging. In

expectation, the stabilized weight vector is much closer to target sparse weight vector

if the operation of purging can efficiently reduce the size of stable features. This

suggests a much faster convergence with stabilization. Lemma 1 also provides an

insight on the benefit from using adaptive gravity with annealed rejection rate. At

the beginning of the algorithm, the gap between the size of |Ŝε| and the size of the

set of stable features ˆ|Ω| is large when aiming for extensive exploration of different

sparse combination of features. Hence, the improvement brought by stabilization is

more substantial during the early state of learning period. As the algorithm proceeds

and the set of stable features becomes smaller, it dwindles the leeway that allows

the aforementioned two sets to be different. Consequently, deviation from the stan-

dard stochastic gradient descent algorithm is gradually reduced to facilitate better

convergence at the later period of the learning process.

Lemma 2. Let w0 be the weight vector at initialization. After the first burst, let w̄1

be the truncated weight vector using universal gravity g0K as in Algorithm ?? and let

ŵ1 be the truncated weight vector with informative truncation as in Algorithm ??. Let

w∗ ∈ Rp be the target sparse weight vector. Assume features x1, . . . ,xp has various

sparsity distribution that Pr(|xi,j| > 0) = λj, where λj ∈ [0, 1], for i = 1, . . . , n, and

λj = 0 if w∗j = 0, for j = 1, . . . , p. Then,

E
(
||w̄1 −w∗||2 − ||ŵ1 −w∗||2

)
≥ 2g0

K∑
t=1

‖ζtw∗‖1 ≥ 0 (3.17)

where ζt,j = 1(|xt,j| = 0) for j = 1, . . . , p.

Proof. Based on Algorithm 3.1 and Algorithm 3.2, we have the following relationships:

w̄1 =T (h1, Kg0) = sign(h1) max(|h1| − g01pK, 0), (3.18)

ŵ1 =T (h1, k̃g0) = sign(h1) max(|ht| − g0k̃1, 0), (3.19)
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where

h1 = w0 −
K∑
t=1

ηL′ (wt−1, zt) .

Without loss of generality, we consider the difference in the squared errors to the

optimal weight w∗ betweenw̄1 and ŵ1:

||w̄1 −w∗||2 − ||ŵ1 −w∗||2

=||(w̄1 − h1)− (w∗ − h1)||2 − ||(ŵ1 − h1)− (w∗ − h1)||2

=
(
||w̄1 − h1||2 − ||ŵ1 − h1||2

)
− 2

[
(w̄1 − h1)T (w∗ − h1)− (ŵ1 − h1)T (w∗ − h1)

]
(3.20)

In the first part of (3.20), based on (3.18) and (3.19), we have

||w̄1 − h1||2 = pK2g2
0,

||ŵ1 − h1||2 = ||k̃1||2g2
0,

where k̃1 is the counter of informative updates in the first burst with k̃1,j ≤ K for

j = 1, . . . , p. Hence,

||w̄1 − h1||2 − ||ŵ1 − h1||2 ≥ 0 (3.21)

Based on (3.18) and (3.19),

(w̄1 − ht)
Th1 =− g0

p∑
j=1

sign(h1,j)Kh1,j = −g0K||ht||1,

(ŵ1 − ht)
Th1 =− g0

p∑
j=1

sign(h1,j)k̃1,jh1,j = −g0||k̃1ht||1.

Thus in the second part of (3.20), we have

− 2
[
(w̄1 − h1)T (w∗ − h1)− (ŵ1 − h1)T (w∗ − h1)

]
=
[
(w̄1 − h1)Th1 − (ŵ1 − h1)Th1

]
−
[
(w̄1 − h1)Tw∗ − (ŵ1 − h1)Tw∗

]
=2g0

[(
K‖h1‖1 − ‖k̃1h1‖1

)
− (w̄1 − ŵ1)Tw∗

]
(3.22)



CHAPTER 3. STABILIZED SPARSE ONLINE LEARNING FOR SPARSE
DATA 82

Since K ≥ k̃1,j for j = 1, . . . , p, the first part of (3.22) is guaranteed to be nonnegative.

In the second part of (3.22) , let ŵ1,j = v̂1,j1(|h1,j| > k̃1,jg0) and w̄1,j = v̄1,j1(|h1,j| >

Kg0). Denote δt = L(wt−1, zt) to be the gradient of the loss function at a certain

iteration. Since in this chapter we consider linear prediction model,

δt = L′(wt−1, zt) = G(fwt−1(xt))xt.

Hence, δt,j = δt,j1(|xt,j| > 0).

Again based on relationships in (3.18) and (3.19), we consider the following two

scenarios:

• When h1,j > 0:

v̂1,j =
K∑
t=1

[1(|xt,j| > 0)(δt,j − g0)] ,

v̄1,j =
K∑
t=1

[1(|xt,j| > 0)δt,j − g0] .

Thus,

v̄1,j − v̂1,j =−
K∑
t=1

1(|xt,j| = 0)g0,

w̄1,j − ŵ1,j =−
K∑
t=1

1(|xt,j| = 0)g01(h1,j > Kg0)−
K∑
t=1

(h1,j − k̃1,jg0)1(k̃1,jg0 < h1,j < Kg0)

≤−
K∑
t=1

1(|xt,j| = 0)g01(h1,j > Kg0). (3.23)

• When h1,j < 0, similarly, we get

v̄1,j − v̂1,j =
K∑
t=1

1(|xt,j| = 0)g0,

w̄1,j − ŵ1,j =
K∑
t=1

1(|xt,j| = 0)g01(h1,j < −Kg0) +
K∑
t=1

(h1,j + k̃1,jg0)1(−Kg0 < h1,j < −k̃1,jg0)

≥
K∑
t=1

1(|xt,j| = 0)g01(h1,j < −Kg0). (3.24)
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Hence, based on jointly we have

E
(
(w̄1 − ŵ1)Tw∗

)
=

p∑
j=1

E((w̄1,j − ŵ1,j)w
∗
j |h1,j > 0) Pr(h1,j > 0) + E((w̄1,j − ŵ1,j)w

∗
j |h1,j < 0) Pr(h1,j < 0)

≤− g0

K∑
t=1

p∑
j=1

1(|xt,j| = 0)|w∗j | ≤ 0

The second inequality is derived from the condition that λj = 0 if w∗j = 0 and the

following fact. Since h1 is the sum of K stochastic gradients descent steps and each

one of the stochastic gradient which is an unbiased estimator of the true gradient

[Bottou, 1998], we have

E(1(h1,j < 0)w∗j ) < 0,

E(1(h1,j > 0)w∗j ) > 0.

Hence, together with (3.21) and (3.22), we have

||w̄1 −w∗||2 − ||ŵ1 −w∗||2 ≥ 0.

In Lemma 2, we compare the distances towards the optimal weight vector w∗ from

1) the weight vector with uniform gravity and 2) the weight vector with informative

truncation that depends on the number of zero entries occurred in a burst. Such

a gap suggests the effectiveness of informative truncation on sparse data in which

feature sparsity is highly heterogeneous. In the scenarios that very few nonzero entries

appear in a burst, the informative truncation imposes gravity that is proportional to

the information presented in a burst. It is a fairer treatment than uniform truncation

and leads to a large improvement in expectation. When features are all considerably

dense in a burst, the informative truncation is equivalent to the uniform truncation.

In short, Lemma 1 demonstrates the improvement in expected squared error due

to stabilization on the weight vector. Lemma 2, on the other hand, quantifies the
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improvements in reduce truncation bias when implementing informative truncation

on sparse features with heterogeneous sparsity levels.

Given Lemma 1 and Lemma 2, we have the expected regret bound of the proposed

Algorithm 3.4 in Theorem 1.

Theorem 3.1. Consider the updating rules for the weight vector in Algorithm 3. On

an arbitrary path, with w0 = 0 and η > 0, let {wt}
T
t=1 be the resulted weight vector and{

g
t

}T
t=1

be the gravity values applied to the weight vectors generated by Algorithm ??,

along with the base gravity parameters
{
g

0,t

}T
t=1

. Let w∗ ∈ Rp be the target sparse

weight vector with d∗ = ||w∗||0. Set the purging threshold π0 to be sufficiently large

such that π0 ∈
(

1
2

+ (qg)2

2p(qg−d∗) , 1
)

. If Assumption 1, 2, and 3 hold, then there exists

a sequence of εt ∈
(

0, π0C(p−|Ω̂t|)
|Ω̂t|

)
at each stability selection with the set of stable

features Ω̂t such that

E

(
T∑
t=1

[
L(wt, zt) +Kg

t
||wt||1

]
−

T∑
t=1

[
L(w∗, zt) +Kg

t
||w∗||1

])

≤ ηA

2− ηA

(
E

[
T∑
t=1

L(w∗, zt) +Kg
0,t

(||w∗||1 − ||wt||1)

])
+

1

2− ηA

(
ηTB +

1

η
||w∗||2

)

− 1

2η − η2A

T∑
t=1

ε2
t1

(
t

KnK
∈ Z

)
(|Ŝεt,t| − |Ω̂t|) (3.25)

where Ŝε,t = {j : E(|ŵt,j|) > εt} and ŵt is the weight vector at time t before stabiliza-

tion.

Proof. At a given time t when truncation is performed, let ht = wt−1−η∇wt−1L(wt−1, z)

and let ŵt be the truncated but non-stabilized weight vector based on the truncation

in (3.5) that ŵt = T (ht, g0,tk̃t) with the base gravity g0,t. Let Ω̂ be the current set of

stable features and the stabilized weight vector is obtained as w̃t = ŵt1Ω̂.

Firstly, we have

||ŵt −w∗|| ≤ ||w∗ − ŵt||2 + ||ŵt − ht||2 (3.26)

= ||w∗ − ht||2 − 2(w∗ − ŵt)
T (ŵt − ht).
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In the first part of (3.26),

||w∗ − ht||2 =||w∗ −wt−1 + wt−1 − ht||2

=||w∗ −wt−1||2 + ||wt−1 − ht||2 + 2(w∗ −wt−1)T (wt−1 − ht)

=||w∗ −wt−1||2 + ||wt−1 − η∇wt−1L(wt−1, z)−wt−1||2

+ 2(w∗ −wt−1)T (wt−1 −wt−1 + η∇wt−1L(wt−1, z))

=||w∗ −wt−1||2 + η2||∇wt−1L(wt−1, z)||2 + 2η(w∗ −wt−1)T∇wt−1L(wt−1, z).

(3.27)

Since L(w, z) is convex,

(w∗ −wt−1)T∇wt−1L(wt−1, z) ≤ L(w∗, z)− L(wt−1, z).

And based on Assumption 1,

||∇wt−1L(wt−1, z)||2 ≤ AL(wt−1, z) +B.

Thus (3.27) has the upper bound

||w∗ − ht||2 ≤ ||w∗ −wt−1||2 + η2(AL(wt−1, z) +B) + 2η [L(w∗, z)− L(wt−1, z)] .

In the second part of (3.26), since ŵt = T (ht, gt), ŵt = sign(ht) max(|ht|−g0,tk̃t, 0)

and thus

(ŵt − ht)
T ŵt = −g0,t

p∑
j=1

sign(ht,j)k̃t,jŵt,j = −g0,t||k̃tŵt||1.

Then

−(w∗ − ŵt)
T (ŵt − ht) = −(w∗)T (ŵt − ht) + ŵT

t (ŵt − ht)

≤ −
p∑
j=1

|w∗j ||ŵt,j − ht,j| − g0,t||k̃tŵt||1

≤ −g0,t

p∑
j=1

|k̃t,jw∗j | − g0,t||k̃tŵt||1

≤ −Kg0,t

p∑
j=1

|w∗j | −Kg0,t||ŵt||1

= −Kg0,t (||w∗||1 − ||ŵt||1) .
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The second last inequality is due to k̃j,t ≤ K for all j = 1, . . . , p. Thus, in total,

equation (3.26) has the upper bound

||ŵt −w∗||2 ≤ ||w∗ −wt−1||2 + η2(AL(wt−1, z) +B)

+ 2η [L(w∗, z)− L(wt−1, z)] + 2Kg0,t (||w∗||1 − ||ŵt||1) . (3.28)

On the other hand, from Lemma 1 we have

E
(
||ŵt −w∗||2 − ||w̃t −w∗||2

)
≥ ε2(|Ŝε| − |Ω̂|) + 2π0C

2

[(
1− qgt

2π0p− p

)
qgt − d

]
,

(3.29)

where gt = g0,tk̃t. Since π0 ∈
(

1
2

+ (qg)2

2p(qg−d∗) , 1
)

and, by Assumption 3, qg > d for

t = 1, . . . , T , we have

2π0C
2

[(
1− qgt

2π0p− p

)
qgt − d

]
≥ 0, for t = 1, . . . , T.

Thus, we can further write (3.29) as

E
(
||w̃t −w∗||2

)
≤ E

(
||ŵt −w∗||2

)
− ε2(|Ŝε| − |Ω̂|). (3.30)

By rearranging (3.30) and combining it with (3.28), we get

E
((

1− 1

2
ηA

)
L(wt−1, zt) +

Kg0,t

η
||wt−1||1

)
≤E

(
L(w∗, zt) +

Kg0,t

η
||w∗||1

)
+

1

2η
E
(
||w∗ −wt−1||2 − ||w∗ − w̃t||2

)
+
ηB

2

− ε2

2η
(|Ŝεt | − |Ω̂|). (3.31)

Based on Algorithm 3, let wt be the output weight vector at the end of time t

and let g
t

be the applied gravity parameter at time t, where

g
0,t

=


g0,t
η
, if t/K is an integer,

0, otherwise.
,

g
t

=

 k̃g0,t
η
, if t/K is an integer,

0, otherwise.
,
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and,

wt =

 w̃t, if t/(KnK) is an integer,

ŵt, otherwise.
.

By initializing the weight vector as a vector of zeros of length p, we sum up (3.31)

over t = 1, . . . , T with telescoping to obtain the following result:(
1− 1

2
ηA

)
E

(
T∑
t=1

[
L(wt, zt) +

Kg
0,t

1− 1/2ηA
||wt||1

])

≤E

(
T∑
t=1

L(w∗, zt) +Kg
0,t
||w∗||1

)
+

1

2η
E
(
||w∗ −w1||2 − ||w∗ −wT ||2

)
+
ηBT

2

− 1

2η

T∑
t=1

ε2
t1(

t

KnK
∈ Z)(|Ŝε,t| − |Ω̂t|)

≤E

(
T∑
t=1

L(w∗, zt) +Kg
0,t
||w∗||1

)
+
||w∗||2

2η
+
ηBT

2

− 1

2η

T∑
t=1

ε2
t1(

t

KnK
∈ Z)(|Ŝε,t| − |Ω̂t|). (3.32)

The theorem follows by rearrange terms in (3.32) and that k̃t,j ≤ K for j = 1, . . . , p

and t = 1, . . . , T .

In the result of Theorem 1, the first two parts of the right-hand-side of the expected

regret bound (3.25) is similar to the bound obtained in [Langford et al., 2009]. It

implies the trade-off between attained sparsity in the resulted weight vector and the

regret performance. When the applied gravity is small under the joint effect of the

base gravity g0 and the size of each burst K, the sparsity is less but the expected regret

bound is lower. On the other hand, when the applied gravity is large, the resulted

weight vector is more sparse but at the risk of higher regret. Based on Lemma 1,

the proposed algorithm is guaranteed to achieve lower regret bound in expectation

when the target weight vector is highly sparse. As quantified in the third term of the

right-hand-side of (3.25), the improvement comes from the reduction of the active
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set at each purging. By its virtue, noisy features are removed from the set of stable

features and thus are absent in later SGD updates and truncations.

Theorem 1 is stated with a constant learning rate η. It is possible to obtain a

lower regret bound in expectation with adaptive learning rate ηt decaying with t, such

as ηt = 1√
t
, which is commonly used in the literature of online learning and stochastic

optimization. However, the discussion of using an varying learning rate is not a main

focus of this paper and adds extra complexity of the analysis. Without knowing T in

advance, this may lead to a no-regret bound as suggested in [Langford et al., 2009].

Instead, in Corollary 1, we show that the convergence rate of the proposed algorithm

is O(
√
T ) with η = 1√

T
.

Corollary 1. Assume that all conditions of Theorem 1 are satisfied. Let the learning

rate η be 1√
T

. The upper bound of the expected regret is

E

(
T∑
t=1

[
L(wt, zt) + g

t
||wt||1

]
−

T∑
t=1

[
L(w∗, zt) + g

t
||w∗||1

])
≤ O(

√
T ),

where g
t

= Kg
0,t

.

Proof. By plugging in η = 1√
T

to the result from Theorem 1, we get

E

(
T∑
t=1

[
L(wt, zt) + g

t
||wt||1

]
−

T∑
t=1

[
L(w∗, zt) + g

t
||w∗||1

])

≤ A

2
√
T − A

(
E

[
T∑
t=1

L(w∗, zt) + g
t
(||w∗||1 − ||wt||1

])

+
T

2
√
T − A

(
ηTB +

1

η
||w∗||2

)
− T

2
√
T − A

T∑
t=1

ε2
t1(

t

KnK
∈ Z)(|Ŝε,t| − |Ω̂t|).

The result is then straightforward.

Assume that the input features have d nonzero entries on average. With linear

prediction model fw(x) = wTx, the computational complexity at each iteration is
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O(d). Leveraging the sparse structure, the informative truncation only requires an

additional O(Kd) space for recording the counters. The purging process of stability

selection consumes O(δ), δ = KnKMd, space for storing the generated intermediate

weight vectors and O(δ log(δ)) computational complexity. Both storage and com-

putational cost decrease when the set of stable features diminishes as the algorithm

proceeds. Since the parameters K, nK , and M is normally set to be small values,

the complexity mostly depends on O(d log(d)). In summary, the proposed algorithm

scales with the number of nonzero entries instead of the total dimensions, making it

appealing to high-dimensional applications.

3.5 Practical Remarks

When implementing Algorithm 3.4 in practice, the performance can be further im-

proved in terms of both accuracy and computational efficiency by employing a couple

of practical techniques. It includes applying informative purging and attenuating the

truncation frequency to achieve more accurate sparse learning and steadier conver-

gence.

The first improvement can be implemented by better addressing the issue of

scarcity of incoming samples. For computing selection probabilities, instead of us-

ing only information from the current stage, we can inherit information from previous

stages for features that are too scarce to accumulate enough updates during one stage.

Specifically, we introduce an accumulated counter κs at stage s as the total number

of times that a feature is updated within a burst during this stage:

κj,s =
M∑
m=1

nK∑
τ=1

k̃
(m)
j,τ , j = 1, . . . , p,

which is essentially the denominator of the selection probability in (3.9). Similarly,

we define an accumulated truncation indicator bs at stage s as the total number of
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times that a feature is truncated to zero given valid update(s):

bj,s =
M∑
m=1

∑
τ :k̃

(m)
j,τ >0

1(|ŵ(m)
j,τ | > 0), j = 1, . . . , p.

A feature is then evaluated in the stability selection only if there are enough

updates from the present stage and from any unused information carried over from

previous stages. Given a threshold δK ≥ 0, let κ̃j,s , κ̃j,s−11(κ̃j,s−1 < δK) + κj,s and

b̃j,s , b̃j,s−11(κ̃j,s−1 < δK) + bj,s. The selection probability is modified as

Π̂j,s =


b̃j,s
κ̃s
, for j s.t.κ̃s > δK

1, otherwise
, for j = 1, . . . , p. (3.33)

This strategy extends the key idea in Section 3.3.1 that, with sparse data, each

decision need to be based on sufficient evidence. Using the “carried-over” information

allows the algorithm to utilize information available in a sequence of SGD updates

while attuned to the needs of features with different levels of sparsity. In practice,

this modification facilitates faster convergence especially for ultra-sparse data.

The second practical strategy is that the size of each burst, K, can be adaptively

adjusted in a similar fashion as the rejection rate β in (3.14). At the end of each

stage, the burst size Ks is updated as

Ks =
⌈
K0 log

(
1

αds−1

)⌉
,

whereK0 > 0 is the initial burst size and, as in (3.14), ds = |Ω̂s|
p

. The tuning parameter

α > 0 adjusts the annealing rate of the truncation frequency. Although the result in

Theorem 1 is based on a fixed K, it can be easily shown that the same upper bound

can also be attained with an increasing Ks. By increasing K in the later stage of

the algorithm, when the majority of irrelevant features have been removed from the

stable set, the chance of erroneous truncation is reduced. Such scheme further steers

the algorithm from the mode of exploring potential sparse combination of features in

the early stage toward the fine tuning of the weight vector by exploiting information
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from more samples in a sequence. It also facilitates faster convergence as the size of

the stable set approaches to a sufficiently small number, as the algorithm converges

to the standard stochastic gradient descent approximately.

3.6 Results

In this section, we present experimental results evaluating the performance of the

proposed stabilized truncated SGD algorithm in high-dimensional classification prob-

lems with sparsity regularization. In this paper, we focus on linear prediction model

for binary classification where fw(x) = wTx and ŷ = sign(fw(x)) with the observed

class label y ∈ {−1, 1}. We consider two commonly used convex loss functions in

machine learning tasks that both satisfy Assumption 1:

• Hinge loss: l(f, y) = max(1− fy, 0)

• Logistic loss: l(f, y) = log (1 + exp(−fy))

Using five datasets from different domains, the performance of our algorithm and

other algorithms for comparison are evaluated on classification performance and fea-

ture selection stability and sparsity. We first define measure of feature stability in

Section 3.6.1.

3.6.1 Feature Selection Stability

The goal of sparse learning is to select a subset of truly informative features with

stabilized estimation variance as well as increased classification accuracy and model

interpretability. Subgradient-based online learning methods depend heavily by the

random ordering of samples on which they are fed to the algorithm. Such dependence

leads to much deteriorated performance when it comes to high-dimensional sparse

inputs. For a particular feature, the positions of its nonzero occurrences in a random

ordering of samples greatly affect its learning outcome, in terms of learnt weight and
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membership in the set of selected features. Therefore, in addition to attaining a low

generalization error, a desirable sparse online learning method should also produce

an informative feature subset that is stable and robust to random permutations of

input data. To evaluate feature selection stability of subgradient-based sparse learning

methods, we define in the following a numerical measure of similarity between selected

feature subsets resulted from different random permutations of data. Given an output

weight vector w from a subgradient-based algorithm with input data D, similarly as

in (3.7), we denote the selected feature subset as

S(w;D) = {j : |wj| > 0,w = Ψ(D}.

Given two random permutations of the training data D, D(1) and D(2), the sim-

ilarity between the two sets of selected feature subsets S1 = S(w1;D(1)) and S2 =

S(w2;D(2)) is measured by the Cohen’s kappa coefficient [Cohen, 1960],

κ(S1,S2) =
qo − qe
1− qe

,

where qo is the relative observed agreement between S1 and S2:

qo =
p11 + p22

p
,

and qe is the hypothetical probability of change agreement : S1 and S2

qe =
(p11 + p12)(p11 + p21)

p2
+

(p12 + p22)(p21 + p22)

p2

with p11 = |S1 ∩ S2|, p12 = |S1 ∩ SC2 |, p21 = |SC1 ∩ S2|, p22 = |SC1 ∩ SC2 |, and

p = p11 + p12 + p21 + p22 is the size of variable pool.

Note that κ(S1,S2) ∈ [−1, 1], where κ(S1,S2) = 1 if S1 and S2 completely overlap

with each other and κ(S1,S2) = −1 when S1 and S2 are in complete disagreement

with S1 ∩ S2 = ∅ and SC1 ∩ SC2 = ∅.

Based on Cohen’s kappa coefficient, we define the measure of feature selection

stability of S(w; ·) returned by a procedure Ψ using randomly ordered data D(1) and

D(2) as

s(Ψ) = ED(1),D(2)

[
κ(S(w1;D(1)),S(w2;D(2))

]
,
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which is motivated by [Sun et al., 2013].

In practice, we use the empirical average ŝ(Ψ) over B random permutations of

the training data to measure the stability of the a subgradient-based online learning

algorithm Ψ(·):

ŝ(Ψ) =
1

B(B − 1)

D∑
i=1

∑
j 6=i

[
κ(Swi;D(i)),S(wj;D(j))

]
. (3.34)

3.6.2 Experiment Setup

We evaluate the performance of our algorithm on several real-world classification

datasets with up to 100, 000 features. These datasets have different levels of sparsity

with various sample sizes. The information of experiment datasets are summarized in

Table 3.1. The first four datasets were constructed for NIPS 2003 Feature Selection

Challenge3 [Guyon et al., 2004], which were preprocessed with added “probes” as

random features distributed similarly to the real features. Thus, a good performance

does not only lie in low generalization error rates, but also in sparse weight vectors

that identify the truly important features. Reuters CV1 (RCV1) is a popular text

classification dataset with a bag-of-words representation. We use the binary version

from the LIBSVM dataset collection4 introduced in [Cai and He, 2012]. We create the

training and validation set using a 70-30 random splits. All datasets are normalized

such that each feature has variance 1.

3Data source: https://archive.ics.uci.edu/ml/index.html

4Data source: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://archive.ics.uci.edu/ml/index.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Dataset Domain Dimensions
Data Density

(Sparsity)

Training

Size

Validation

Size

RCV1 Text Mining 47,236 0.16% 14169 6073

Dexter Text Mining 20,000 0.48% 300 300

Dorothea Drug Discovery 100,000 0.91% 800 350

Gisette Digits Recognition 5000 13% 6000 1000

Arcene Mass-Spectrometry 10,000 50% 100 100

Table 3.1: Datasets used in the numerical experiments. Sparsity is defined as the

average feature sparsity levels, which is the column-wise average percentage of nonzero

entries, in the training data.

We compare the proposed algorithm with the standard stochastic gradient de-

scent algorithm [Bottou, 1998] and another three other sparsity-inducing stochastic

methods, including the truncated gradient algorithm [Langford et al., 2009], the Reg-

ularized Dual Averaging (RDA) algorithm [Xiao, 2009], and the forward backward

splitting (FOBOS) algorithm [Duchi and Singer, 2009]. The RDA algorithm updates

the weight vector at each step based on a running average ḡt of all subgradients

{gτ = L′ (wτ , zτ ) ∈ ∂wτL (wτ , zτ ) , τ = 1, . . . , t} in previous iterations as

ḡt =
t− 1

t
gt−1 +

1

t
gt

Given the average subgradient , the next weight vector is computed by solving the

minimization problem

wt+1 = arg min
w

{
1

t

t∑
τ

〈L′(wt, zt),w〉+ Ψ(w) +
βt
t
h(w)

}
, (3.35)

where Ψ(w) is the regularizer, h(w) is an auxiliary strongly convex function, and

{βt}t≥1 is a nonnegative and nondecreasing input sequence, which determines the

convergence properties of the algorithm.
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In the context of L1 regularization, the RDA algorithm is derived by setting

Ψ(w) = λ||w||1, βt = γ
√
t, and replacing h(w) with a parametrized version:

hρ =
1

2
||w||22 + ρ||w||1,

where ρ ≥ 0 is a sparsity-enhancing parameter. Hence, the minimization problem in

(3.35) has a explicit solution as, for j = 1, . . . , p,

w
(j)
t+1 =

 0, if |ḡ(j)
t | ≤ λRDA

t

−
√
t
γ

(
ḡ

(j)
t − λRDA

t sgn(ḡ
(j)
t )
)
, otherwise,

which is equivalent to

wt+1 = T (ḡt, λ
RDA
t ),

where λRDA
t = λ+ γρ/

√
t.

The FOBOS algorithm alternates between two phases. On each iteration, it first

perform an unconstrained gradient descent step as in the standard SGD algorithm,

whose output is denoted as wt+ 1
2
. Then it cast and solve an instantaneous optimiza-

tion problems that trades off between minimization of a regularization term and a

close proximity to the result of the first phase:

wt+1 = arg min
w

{
1

2
||w −wt+ 1

2
||2 + ηt+ 1

2
Ψ(w)

}
, (3.36)

where the regularization function is scaled by an interim step size ηt+ 1
2
.

With L1 regularization where Ψ(w) = λ||w||1, the second-phase update can be

computed as

wt+1 = T (wt+ 1
2
, ηt+ 1

2
λ).

To evaluate the stability of resulted weight vectors, we randomly permute the

indices of the training samples for B = 50 times to produce stochastic samples that

are fed to the algorithms. Such randomization helps identify the instability in learning

results in terms of both error rate and the selected features.

For implementing all five stochastic methods, we allow the algorithms to run

on the training data for {5, 10, 20, 30, 40, 50, 60} passes. In the standard stochastic
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gradient descent algorithm, we choose the optimal learning rate between 0.1 to 0.5.

The base gravity parameter in the truncated gradient algorithm is chosen from the

range [0.001, 0.01]. For RDA, we follow the suggestions in [Xiao, 2009] which sets

γ = 5000 and ρ = 0.005 (effectively γρ = 25). We tune the parameter λ from the set

of values {5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1, 0.5, 1, 5, 10} for both

RDA and FOBOS. As instructed in [Duchi and Singer, 2009], ηt is set to be 1√
t

in

FOBOS. For the proposed stabilized truncated SGD algorithm, the size of each burst

(the truncation frequency) is fixed at K = 5 and nK = 5 for all datasets. In the

proposed algorithm, we initiate the rejection rate at β0 = 0.7 with annealing rate

chosen from {−7,−5,−3,−1, 0, 1, 3}. The stability selection threshold π0 is tuned

within the range [0.5, 0.6, . . . , 0.9]. For multi-thread implementation in Algorithm 3.4,

M = 16 is used running in parallel on a high-performance computing cluster.

3.6.3 Results

3.6.3.1 Classification Performance

As shown in Table 3.2, the proposed algorithm shows improvement over the truncated

gradient algorithm over all datasets and has better performances than RDA and

FOBOS in most of the experiments. As data density increases, the truncated gradient

algorithm performs better with hinge loss than with logistic loss. With hinge loss,

the algorithm updates the weight vector only for samples within a small margin from

the boundary. With logistic loss, the algorithm updates with continuous increments

for all incoming samples and favors dense features in sparse learning. With highly

sparse samples sequentially feed to the algorithm, the truncation in every K iterations

is conducted with insufficient information about the true gradient due to the lack

of nonzero entries in sparse features. Truncation with logistic loss leads to over

selection of dense features and overfitting. The other two sparsity-inducing methods

for comparison, RDA and FOBOS, also have large fluctuations across data sets with

different levels of sparsity over these two loss functions, especially when data is highly
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sparse. In comparison, the performance of the proposed algorithm is consistent for

various dimensions and sparsity levels. Our algorithm is also shown to be robust

to different choices of loss function. The comparatively lower test errors, especially

for highly sparse data, mainly owes to the proposed algorithm’s fairer treatments of

features with heterogeneous sparsity.

From Table 3.2 we also observe substantially lower variances in test errors under

random permutations of samples. The proposed algorithm has the lowest standard

deviations of test errors across all datasets and under both loss functions. Such

an improvement over truncated gradient algorithm and other comparing methods

comes from both informative truncation with adaptive gravity and stability selection.

Based on these selection probabilities we carry out feature purging. Our selection

probability is computed based on multiple bursts whose truncation is guided by fair

amounts of shrinkage. Hence, the removal decisions of features from the set of stable

variables are grounded in reliable information on feature importance, which is more

likely to be shared across different permutations of the data. The accumulations of

sufficient information for all features help the proposed algorithm to be robust to

random fluctuations in online setting.

3.6.3.2 Feature Selection and Sparsity

As far as sparse learning for feature selection goes, the proposed algorithm, as shown

in Table 3.3, is the only method that delivers sparse weight vectors across five example

datasets with various sparsity levels. It is shown in Table 3.3 that the resulted weight

vectors are far more sparse than the truncated gradient algorithm in all datasets

with both loss functions. When comparing these two algorithms, the distinction in

attained sparsity levels is particularly striking with logistic loss function and when

the sparsity level of the input data is low, such as the case of the Arcene dataset.

These results also indicate that the truncate gradient algorithm fails to extract sig-

nificant features and to obtain sparse solutions, which motivates the development of
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techniques discussed in this paper. On the other hand, the variances in the percent-

age of nonzero features of the proposed algorithm are reduced by approximately a

magnitude of 10. The contribution of stabilization is demonstrated again in terms

of feature selection. Although RDA achieves very low sparsity in Dorothea, such a

behavior is not observed in other datasets. It is shown to result in particularly denser

weight vector with highly sparse data, such as RCV1, indicating its weakness in iden-

tifying truly informative features when information is scarce. FOBOS demonstrates

overall poorer performance in terms of inducing sparse weight vector as compared to

RDA and the proposed algorithm. Similar to its performance in terms of test error,

the proposed algorithm delivers highly stable results in feature selection regardless of

the choice of loss function and of random permutations of the data. We also achieve

sufficient sparse result owing to stability selection which prevent noisy features from

adding back to the stable set of variables in the online setting. On the other hand, the

high sparsity in weight vector does not overshadow the generalizability performance

as the informative truncation with unbiased shrinkage underlies a better estimation

of the selection probability for the construction of the set of stable variables.

We further compare the data sparsity levels of the features selected by both sparse

online learning algorithms. In Figure 3.3, using the Dorothea dataset as an example,

we show the fraction of selected features at different data density levels. It is shown

that truncated gradient algorithm is more likely to select dense features over sparse

ones with both loss functions. The majority of the sparse features are truncated to

zero regardless of their importance. Moreover, the fraction of selected feature ex-

hibits a linear relationship with the level of feature density in truncated gradient

algorithm. This pattern suggests that the amount of shrinkage applied to features

should be approximately proportional to their data density, on the probability of

having informative updates. This provides an independent justification of the in-

formative truncation introduced in Section 3.3.1. In contrast, features selected by

the proposed algorithm have approximately uniform distribution of sparsity levels.
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This improvement over the truncated gradient algorithm mostly owes to the use of

informative truncation. With the crucial treatment on the heterogeneity in feature

sparsity, the proposed algorithm is effective in keeping rare but important features

from premature truncations.

Based on the measure of feature selection stability defined in (3.34), the perfor-

mance of the original truncated gradient algorithm [Langford et al., 2009] and the

proposed algorithm are summarized in Table 3.4. The proposed algorithm demon-

strates its excellent stability as compared to the truncated gradient algorithm. It

shows greater overlap in selected features among different permutations of the train-

ing data. This result also echos with the lower standard deviations in the test error

(Table 3.2) and in the number of selected features (Table 3.3). As discussed in Sec-

tion 3.6.3.1, the insensitivity to data perturbation is mainly due to the fair shrinkage

applied on each feature by using informative truncation and to the sufficient accu-

mulations of information in selection probabilities before applying stability selection.

These measures suggest that the proposed algorithm is particularly favorable for

high-dimensional sparse data.

3.6.3.3 Convergence

Our main motivation of the proposed method stems from observing the slow and

unstable convergence of the truncated gradient algorithm as shown in Figure 3.1

in Section 3.2. In this sub-section, we show the proposed algorithm significantly im-

proves the condition with fast and stable convergence in both test errors and numbers

of nonzero weights. The test erros and number of selected variables over iteractions

are shown in Figure 3.4 and Figure 3.5, respectively.

As compared to Figure 3.1, the test error of the stablized truncated SGD algorithm

is quickly reduced after a few bursts and remains relatively stable as the algorithm

proceeds around a low value. The path of test error in Figure 3.4 also implies that the

stabilized algorithm resists over-fitting after convergence. Figure 3.5 indicates a fast
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Figure 3.3: The fraction of features selection at different sparsity levels by the trun-

cated gradient algorithm and the proposed algorithm respectively with the Dorothea

dataset as an example. The selected features are extracted as the features with

nonzero entries in the resulted weight vector from the algorithms with a single fixed

ordering of the training data. The x-axis represents the sparsity level, which is the

proportion of nonzero entries in a feature in the training sample. The y-axis indicates

the fraction of selected features among features with a discretized sparsity level. The

size of each point scales with the proportion of features that fall in level of sparsity. It

can be seen that the truncated gradient algorithm over-selects denser features. The

proposed algorithm does not have a pre-exposed preference towards any density level.
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Figure 3.4: The error rates of the proposed stabilized truncated SGD algorithm along

with the number of iterations on the example Dexter dataset with M = 16 threads

of SGD updating paths.

and efficient elimination of most irrelevant features. The numbers of selected variable

only have small variations between two stability selections. Unlike the truncated gra-

dient algorithm, there is no large jump back to dense weight vector. The effectiveness

of detecting and purging of irrelevant features also explains the good generalizability

in Figure 3.4.

3.7 Conclusion

In this chapter, we address the problem of inducing sparsity in subgradient-based

online learning algorithm when applied to high-dimensional sparse data. Based on
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Figure 3.5: The number of nonzero features in the resulted weight vector learned by

the proposed stabilized truncated SGD algorithm along with the number of iterations

on the example Dexter dataset with M = 16 threads of SGD updating paths.

the truncated gradient framework, we reduce truncation bias due to heterogeneity in

feature sparsity via informative truncation. Integrated with soft-thresholding trunca-

tion, stability selection helps eliminate irrelevant features along the learning process

in order to achieve stable and sufficiently sparse results. The adaptive gravity method

dynamically adjusts the shrinkage at different stages of the learning process to balance

between the exploration of sparse combination of nonzero weights and the exploitation

of finite updates for better convergence. This strategy also consolidates the tuning

needs of the proposed algorithm into two major parameters, the annealing rate γ and

the purging threshold π0. We present a theoretical analysis of the expected regret
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bound, which offered a quantification of the potential improvement attained by the

proposed algorithm. At last, we use extensive experimental studies to evaluate the

performance of the proposed algorithm. The results demonstrate that our algorithm

achieve favorable results in terms of both prediction accuracy and feature selection,

compared to the original truncated gradient algorithm. The proposed algorithm can

serves as the computational engine for not only the sDist algorithm discussed in Chap-

ter 2 but a broad class of learning methods, in both classification and regression, for

inducing sparse solution in feature space.
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Algorithm 3.4 Ψ(D): Stabilized truncated stochastic gradient descent for sparse

learning.

Input: the training data D.

Parameters: β0, γ, π0, K, nK , M , η.

Initialization: ∀m ∈ {1, . . . ,M}, initialize w
(m)
0 = 0p, k̃ = 0p and D(m) is a

random permutation of D; Ω̂0 = {1, . . . , p}.

For s = 1, 2, . . . ,

repeat

Obtain g0,s(βs) as in (??).

for all m ∈ {1, . . . ,M} parallel do

for τ = 1 to nK do

ŵ
(m)
τ = B2

(
w

(m)
0 , g0,s(βs), Ω̂s−1,D(m)

)
.

w
(m)
0 = ŵ

(m)
τ .

end for

end for

Compute Π̂s as in(3.9) and update the set of stable features Ω̂s =
{
j : Π̂s,j ≥ π0

}
.

w̃
(m)
s = ŵ

(m)
nK 1Ω̂s

, m = 1, . . . ,M .

w
(m)
0 = w̃

(m)
s .

βs+1 = φ(ds; β0, γ) where ds = |Ω̂s|
p

.

Aggregation: w = 1
M

M∑
m=1

w̃
(m)
s .

until w converges.

Return: w.
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Table 3.2: Mean test errors (%) and the corresponding standard deviations with hinge

loss and logistic loss over 50 random ordering of the training samples.

Dataset Standard SGD

Trun-

cated

Gradient

RDA FOBOS

Stabilized

Trun-

cated

SGD

RCV1 2.86 6.59 4.62 8.44 3.01

.08 .09 .10 .15 .04

Dexter 7.77 8.37 11.42 10.91 6.58

.96 .91 .59 1.21 .57

Hinge Loss Dorothea 6.11 6.83 6.83 8.51 5.14

.60 1.23 .18 1.96 0.43

Gisette 2.71 6.32 2.40 5.50 3.05

.43 3.02 .45 1.20 .30

Arcene 19.26 22.06 22.10 18.72 17.60

3.67 8.08 4.00 3.26 2.62

RCV1 3.68 18.55 5.69 14.18 3.19

.07 .78 .08 .39 .05

Dexter 7.91 10.25 9.41 10.45 6.41

.36 .58 .68 .81 .43

Logistic Loss Dorothea 6.26 7.29 6.87 7.15 5.47

.62 1.28 .31 1.35 .35

Gisette 2.52 6.35 2.21 5.98 2.11

.29 4.08 .20 .85 .26

Arcene 17.38 19.48 21.62 18.44 13.38

2.93 5.01 2.05 3.11 1.26
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Table 3.3: The average percentages (%) of nonzero features selected in the resulted

weight vector and the corresponding standard deviations with hinge loss and logistic

loss over 50 random permutations of the training samples.

Dataset
Standard

SGD

Trun-

cated

Gradient

RDA FOBOS

Stabilized

Truncated

SGD

RCV1 63.68 6.95 11.38 5.01 0.86

.34 .42 .10 .28 .10

Dexter 29.46 14.74 1.61 37.69 1.98

.35 .82 .06 2.43 .15

Hinge Loss Dorothea 39.84 18.62 0.55 14.89 6.68

.62 5.94 .02 3.37 .09

Gisette 90.88 63.8 17.45 61.81 3.84

.21 3.72 .43 3.94 .34

Arcene 98.22 61.08 12.15 54.5 3.67

.07 25.55 .90 13.37 .40

RCV1 82.31 2.75 6.98 2.89 1.44

.00 .35 .05 .29 .12

Dexter 38.76 13.91 4.84 30.21 1.32

.00 .71 .14 1.87 .13

Logistic Loss Dorothea 68.63 19.31 0.43 20.4 1.67

.00 3.00 .01 3.51 .47

Gisette 93.96 66.31 14.99 58.83 3.22

.00 3.31 .34 3.44 .49

Arcene 98.36 88.34 12.71 45.96 5.35

.00 4.38 .27 9.76 .24
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Table 3.4: Summary of feature selection stability performance of the resulted weight

vector measured by (3.34) based on Cohen’s kappa coefficient.

Hinge Loss Logistic Loss

Dataset Truncated

Gradient

Stabilized

Truncated

SGD

Truncated

Gradient

Stabilized

Truncated

SGD

RCV1 0.38 0.44 0.29 0.60

Dexter 0.46 0.61 0.23 0.58

Dorothea 0.19 0.52 0.19 0.33

Gisette 0.48 0.60 0.54 0.54

Arcene 0.26 0.55 0.35 0.69
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Chapter 4

Extensions and Conclusion

In Chapter 2 and Chapter 3, we introduce two methods aiming at inducing sparsity

in feature space. They provide vehicles for efficiently extracting low-dimensional fea-

ture subspaces on which the patterns embedded in the data are revealed with much

better definition to facilitate building good classifiers. In this section, based on these

proposed frameworks, we make further extensions, which provide future directions for

both theoretical and application-oriented developments. The ability of handling high-

dimensional data makes both of the proposed methods pertinent for some popular

machine learning applications, such as computer vision. Unlike the state-of-art meth-

ods with formidable complexity, through the proposed method, the learned feature

subspaces can help identify and visualize the key factors for distinguishing different

class labels. Such an advantage can be availed to reduce computational costs and

to interpret or diagnose observed patterns. On the other hand, we generalize the

distance-based framework in Chapter 2 to the kernel machine. By recognizing kernel

as a generalized distance measure and the duality between kernel functions and ran-

dom process, we approximate kernels by random features to overcome the scalability

issue of kernel machine. Such a technique not only aborts the reliance on the pro-

hibitively large kernel matrices but also suggests a way to configure feature subspace

learning via inducing sparsity on coefficients of random features. At last, we conclude
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this thesis by summarizing the commonalities and distinctive characteristics of each

method proposed.

4.1 Potential Applications in Machine Learning:

Computer Vision

The capability of automating object recognition has always been a top goal of arti-

ficial intelligence research. In recent years, a panoply of sophisticated methods are

developed to counter this challenge. As the methods become provably effective, they

have evolved as giant models with hundreds of thousands parameters that are no

longer fathomable. Despite of the good performances, people cannot understand the

model’s functionality and decipher what are the scientific interpretations of the re-

sults. What is advocated in the proposed sparse learning methods in this thesis is not

only about good generalizability but about straightforward interpretation of models

on high-dimensional data with complex structure. In this section we demonstrate

how our methods of flexible feature subspace learning work on computer vision ap-

plications, particularly for image classification. Although our method cannot achieve

test errors that match with complicated black-box methods, such as the popular deep

learning methods, our models manage to identify and to visualize the driven forces

behind computer vision applications, which might help better understanding of the

problems at hand and fostering further improvements.

4.1.1 ZIP Code Digits Recognition

We first consider a toy example of digits recognition in ZIP code1 [Le Cun et al., 1990].

This problem captured the attention of the machine learning community for many

years, and has remained a benchmark problem in the field. Since we mainly concern

1Data source: http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/
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Figure 4.1: Examples of training cases of digit 7 and digit 9 from ZIP code data.

Each image is a 16× 16 8-bit grayscale representation of a handwritten digit.

about binary classification, we only take digit 7 and digit 9 in this example, which

are generally considered as the most difficult pair to discern. Figure 4.1 shows some

examples of handwritten digits, automatically scanned from envelopes by the U.S

Postal Service. The scanned digits are normalized to a uniform size and orientation

such that each pixel represents the same spatial feature across images, rendering in

16× 16 grayscale images.

Because of the normalization of image sizes and orientations, the raw pixels can

be directly used as input feature vectors since they basically describe the same visual

meanings. We train the sDist algorithm in Chapter 2 on the subsample of digits

7 and 9, which results in a feature subspace defined by the sparse weight matrix

W and the learned nonlinear feature mapping φ(·). In Figure 4.2, we visualize the
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First PC of L*X

Figure 4.2: The percentage of digit 7 minus the percentage of digit 9 in each bin of

the values the first principle component (PC) of the transformed feature subspace

LX̃, where W = LTL and W is the resulted weight matrix from the sDist algorithm

proposed in Chapter 2. A positive percentage indicates a cluster of digit 7’s and a

negative percentage indicates a cluster of digit 9’s. This figure implies that the first

PC of the transformed feature vectors concisely summarizes the information of the

class difference as an one-dimensional feature.

distributions of digit 7 and digit 9 on the one-dimensional subspace defined as the

first principle component of the transformed matrix LX̃, where W = LTL and X̃ is

the training data matrix transformed by φ(·). As we can see from the figure, different

digits are well separated on the learned nonlinear feature subspace. Digit 7’s are

mostly clustered on the left of the x-axis while digit 9’s on the right of the x-axis.

The first principle component of LX̃ captures the signal of class differences such that

two classes of digits are almost linearly separable on this one-dimensional line. It can

also be considered as a discriminant between classes.

Unlike other complex methods for object recognition, we can directly visualize

which features make up the feature subspace on which the digits are mostly separable.

In Figure 4.3, we highlight the selected features (pixels) in the sparse weight matrix W

in randomly sampled image of digit 7. It is shown that the main signal are composed
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Figure 4.3: The selected pixels by the sDist algorithm highlighted on a randomly

sampled digit 7.

of almost all the relevant pixels that visually distinguish digit 7 and 9. Our algorithm

provides a short list of features that matters the most to the classification task without

redundancy. Although this example is of moderate dimensionality, it instantiates a

case that how our method can contribute to particular computer vision tasks by

identifying a compact solution. Based on the sparse result, future applications may

be saved by a considerable amount of computation time and may achieve better

generalizability.

4.1.2 Cats Vs. Dog Classification

Another example is the classification of cats and dogs in pictures2 [Parkhi et al.,

2012]. In this dataset, there are 7390 images, including 4990 of dogs and 2400 of

cats, of different breeds. As an example, we extract a subsample that is known to

be difficult to classify: all images of the pomeranian dogs, which are small in size

2Data source: http://www.robots.ox.ac.uk/~vgg/data/pets/

http://www.robots.ox.ac.uk/~vgg/data/pets/
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and are often misrecognized as cats, and a randomly sampled cat images of the same

count. Figure 4.4 shows a small subset of the figures. We randomly split the original

data into a 70% training set and a 30% testing set. Different from the zip code

example, the pictures in this set are taken in real circumstances in which objects

appear in various positions, gestures, light conditions with complicated backgrounds.

Moreover, there is no uniform size for these pictures. Hence, pixels are not aligned to

consistently represent the same visual meanings across images, making them invalid

to be input features. Instead, to represent textures, we extract visual bag-of-word

features from the training image set [Fei-Fei and Perona, 2005], which provides a

histogram representation of the image based on independent features. Based on the

visual bag-of-word model, visual words [Sivic and Zisserman, 2003] are computed

densely on the image by extracting scale-invariant feature transform (SIFT) feature

descriptor [Lowe, 2004]. An example of extracted SIFT keypoints along with the

corresponding graphical descriptors is shown in Figure 4.5. The descriptors are then

quantized to create a codebook by using the k-means clustering algorithm with a

given vocabulary size. At last, the normalized frequency of the codebook elements in

each image are generated as the final input features. The resulted features have an

average feature-wise sparsity of 17.6%.

Given the head bounding boxes, we extract a total of 31,000 features by concate-

nating the following features:

• SIFT visual words with vocabulary size 5,000 using the spatial histogram [Lazeb-

nik et al., 2006]. The layout of spatial histogram consists of five spatial bins

organized as a 1× 1 and a 2× 2 grids of uniform sizes;

• SIFT visual words with vocabulary size 5,000 on the head image along without

using the spatial histogram’

• Color histogram features using 10 bins in each of the three color channels.

Using these features, we implement a modified sDist algorithm by substituting
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Figure 4.4: An example of figures for cats and dogs classification: pomeranian dogs

in the upper panel and randomly selected cats in the lower panel.
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Figure 4.5: A example of extracted SIFT keypoints and along with the corresponding

graphical descriptors on a sample pomeranian image in the training data.
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(a) X1 (b) X1

Figure 4.6: An example of extracted feature by using the proposed algorithm. Be-

sides of being identified as informative features as individuals, these two features

compose of an interaction feature in the learned nonlinear feature mapping by the

sDist algorithm.

step (c) of Algorithm 2.2 in Section 2.4 by the stabilized truncated stochastic gradient

descent algorithm in Algorithm 3.4 in Section 3.3. It allows the sDist algorithm to

be generalized to data with higher dimensionality, high degree of sparsity and large

dimensionality by using the informative truncation and stability selection introduced

in Chapter 3. We go through the same tuning procedure as introduced in Chapter 2

and constrain the maximum order of interaction as 2, that is, by considering potential

pairwise interactions. Although the performance not yet outperforms that of the

highly complex deep learning framework, such as CAFFE [Jia et al., 2014]. Unlike

the “blackbox” algorithms, the learned low-dimensional feature subspaces allow us

to investigate and to visualize what kind of visual factors really make a difference

between classes. In Figure 4.6, we show an example of extracted features that are

selected by the proposed algorithm.

The visualization is generated as follows: since each feature corresponds to a code
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in the codebook learned from the training data, that is, a cluster center in the result

of the k-means clustering, we retrieve the key points in all training images that fall

into the selected cluster center. Then, we plot the patches around all the relevant key

points with widths equal to twice of the widths of the detected key points.

In Figure 4.6, we can recognize that feature (a) roughly represents the shape of

an upright ear and feature (b) captures the texture of grass lawn. Besides of being

identified as informative features as individuals, these two features compose of an

interaction feature in the learned nonlinear feature mapping by the sDist algorithm.

So the co-appearance of these two features indicates that the visual components of an

upright ear shape and of grass lawn jointly construct an informative feature subspace

on which cats and dogs can be separated with larger margin. So besides of the ability

of making good prediction, the proposed algorithm also provide valuable insights of

the driving factors that helps researchers understand the underlying mechanism of

computer vision applications. This functionality is one of the most crucial motiva-

tion of the proposed methods and also of this thesis for learning informative feature

subspaces.

4.2 Extension to Kernel Machine

Kernel machines, such as Support Vector Machine (SVM), are widely used in machine

learning to achieve nonlinear decision boundary [Hofmann et al., 2008]. The kernel

methods uses a positive-definite kernel function to induce an implicit nonlinear feature

mapping, which could potentially be infinitely dimensional. The well-known “kernel

trick” allows one to exploit these rich feature spaces without explicitly working on such

high dimensions. Moreover, it is known that positive-definite translation-invariant

kernels can be used to generalize the notion of distances in feature space [Schiilkopf,

2001]. Hence, the nonlinear feature space induced by kernel functions can be used to

generalized distance metric learning for greater flexibility.
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However, a caveat is that, despite of their popularity, kernel machines are not

scalable with the number of training samples. At training time, they require the

computations of the n×n kernel matrix, where n is the sample size. Another drawback

of kernel machine is mentioned in Chapter 2 Section 2.4 that, for the purpose of

obtaining sparse and interpretable results, one cannot rely on the “kernel trick” since

evaluating each feature is too costly to be implemented.

A solution might be found by using kernel approximation with sparse learning.

Kernel approximation via explicit nonlinear maps has became a popular strategy for

speeding up kernel machines. Among these, Random Features has attracted consid-

erable recent interest due to its simplicity and efficiency [Rahimi and Recht, 2007].

In this section, we first recognize the Mahalanobis distance on a nonlinear feature

space as a positive-definite translation-invariant kernel. Therefore, we can extend the

distance metric learning framework of sDist algorithm in Chapter 2 to the domain

of kernel machine for improved flexibility. By using kernel approximation via random

features, it enables scalable computations for data with both high dimensionality and

large sample size.

4.2.1 Kernel as Generalized Distance Measure

We begin the discussion by reviewing the positive definite translation-invariant ker-

nels.

Definition 4.1. A kernel k(x,x′) : X × X → R is translation-invariant if

k(x,x′) = k′(x− x′).

Definition 4.2 (Positive-Definite Kernel). A symmetric kernel k(x,x′) : X ×X → R

is called positive definite if, for all m > 1, and x1, . . . ,xm ∈ X , and c1, . . . , cm ∈ R,

m∑
i=1

m∑
j=1

cicjk(xi,xj) > 0. (4.1)
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Beyond learning a linear transformation of the feature space using the Mahalanobis

distance, we introduce a distance metric based on a nonlinear feature mapping φ(x) :

X → F in Section 2.4. We limit the discussion within a class of polynomial feature

mappings to retain tractable computation and interpretation. In this extension, we

consider a broader class of nonlinear feature mapping from the kernel point of view.

Given a nonlinear feature mapping φ, the squared Euclidean distance on the nonlinear

feature space can be written as

dφ(x,x′)2 , ||φ(x)− φ(x′)||2

= 〈φ(x), φ(x)〉+ 〈φ(x′), φ(x′)〉 − 2〈φ(x), φ(x′)〉

= k(x,x) + k(x′,x′)− 2k(x,x′),

with the kernel trick k(x,x′) = 〈φ(x), φ(x′)〉.

Hence if the kernel k is definite-positive and translation invariant, the distance

can be computed from a kernel function:

dφ(x,x′) =
√
−2k(x,x′). (4.2)

The Mahalanobis distance on the nonlinear feature space with weight matrix W can

be written in a equivalent form as (4.2) by using the kernel k̃(x,x′) = 〈φ̃(x), φ̃(x′)〉,

where φ̃(x) , Lφ(x) and W = LTL.

On the other hand, it is shown that kernel can be treated as a generalized measure

of similarity as distance metrics [Schiilkopf, 2001]:

Proposition 4.1 (Hilbert Space Representation of Positive Definite Kernels [Schi-

ilkopf, 2001]). Let k be a real-valued positive-definite kernel on X , satisfying k(x,x)

for all x ∈ X . Then there exists a Hilbert space H of real-valued functions on X ,

and a mapping φ : X → H, such that

||φ(x)− φ(x′)||2 = −k(x,x′).

It can be shown that if k(x,x) = 0 for all x ∈ X , then

dk(x,x
′) , ||φ(x)− φ(x′)|| =

√
−k(x,x)
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is a semi-metric [Cowling, 1983].

Based on above observations, the discriminant function with nonlinear feature

mapping φ is constructed in the similar fashion as in (2.3):

fφ(xi) = k(xi,xj)− k(xi,xk), (4.3)

where, by using 1-nearest neighbor, xj is the nearest sample point in positive class to

xi and xj is the nearest sample point in negative class to xi. Hence, the local-distance-

based discriminant function for distance metric learning problem in Chapter 2 is

transformed into a kernel machine. The goal is then to search for an optimal kernel

function that maximizes the margin in terms of kernel between two classes in local

neighborhoods.

Existing works in the literature of distance metric learning have explored the

possibilities of incorporating kernels into the Euclidean/Mahalanobis distance metric

[Kedem et al., 2012] [Wang et al., 2011] [Jain et al., 2012]. However, these methods

exclusively rely on the “kernel trick” by which the entire n × n Gram matrix needs

to be computed and stored. In such a case, kernelized distance metric learning can-

not be applied on data with large sample size due to excessive computational cost.

The “kernel trick” also prevents one to identify low-dimensional feature subspaces.

Instead, a integral representation of kernel function provides an alternative to ap-

proximate kernel function. It enables tractable computation as well as an additive

structure that facilitates sparse learning.

Theorem 4.1 (Integral Representation of Kernel Function). If k(x,x′) is a positive

definite kernel, then there exists a set Ω, a measure P on Ω, and random feature

φω(x) : X → R from L2(R), such that

k(x,x′) =

∫
Ω

φω(x)Tφω(x′)dP(ω).

Essentially, the above integral representation relates kernel functions to a random

process ω with measure P(ω). Note that the integral representation of a kernel func-

tion may not be unique. If the kernel is also continuous and translation-invariant,
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the integral representation specializes into a form characterized by inverse Fourier

transform stated in the Bochner’s Lemma [Rudin, 2011]:

Theorem 4.2 (Bochner’s Lemma [Rudin, 2011]). A continuous, real valued, sym-

metric and translation-invariant function k(x−x′) is a positive definite kernel if and

only if k(x − x′) is the Fourier transform of a non-negative measure. That is, there

exists a non-negative measure P(ω) on Ω, such that

k(x− x′) =

∫
Ω

eiω(x−x′)dP(ω)

=

∫
Ω×[0,2π]

2
[
cos(ωTx + b) cos(ωTx′ + b) + sin(ωTx + b) sin(ωTx′ + b)

]
· d(P(ω)× P(b))

=

∫
Ω×[0,2π]

2 cos(ωTx + b) cos(ωTx′ + b)d(P(ω)× P(b))

=Ew

[
φω(x)Tφω(x′)

]
,

where P(b) is a uniform distribution on [0, 2π], and φω(x) =
√

2 cos(ωTx+b). The

imaginary part is dropped since the kernel function is real. The measure P(ω) is also

known as the spectral density of k(·).

Therefore, the kernel has an unbiased estimation using the inner product of the

random feature vector:

φ̂(x) =
1√
D

(φω1(x), . . . , φωD(x))T

=

√
2

D

(
cos(ωT1 x), . . . , cos(ωTDx)

)T
.

One can use Monte Carlo methods to approximate the kernel k(x,x′) by sampling

D vectors ω’s i.i.d from P(ω) Hence,

k(x,x′) ≈ φ̂(x)T φ̂(x) =
1

D

D∑
l=1

φωl(x)Tφωl(x
′),

which has an additive structure.
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The advantage of this approximation is that we may now approximate the dis-

criminant function in (4.3) as

f(xi) ≈ [φ̂(xj)− φ̂(xk)]
T φ̂(xi). (4.4)

Hence, the objective becomes the search for an optimal random feature vector

φ̂(·).

4.2.2 Duality between Kernel and Random Process

On the other hand, Bochner’s Lemma also allows one to work in the other direction.

Instead of finding the random process P(ω) and the mapping φω(x), one can go the

reverse direction by constructing kernels from given random processes and feature

mappings.

Theorem 4.3 ([Dai et al., 2014]). If k(x,x′) =
∫

Ω
φω(x)Tφω(x′)dP(ω) for a non-

negative measure P(ω) on Ω and φw(x) : X → Rd, each component from L2(Ω,P),

then k(x,x′) is a positive definite kernel.

Hence, we can learn a random process for a customized approximation for a kernel.

Such a kernel would define a nonlinear transformation φ(·) by which the margin

between classes is locally maximized.

4.2.3 Hierarchical Sparse Learning Via First-Order Markov

Process

To achieve sparsity in feature space, we propose to induce sparsity in ωl of random

features. Let zl be the set of feature indices with nonzero values in ωl, which we

refer as to the “atoms”. We treat zl be an infinitely long stochastic process, where

zl,t ∈ I
⋃
{0} for t = 1, 2, . . . and zl,0 = 0. The set I = {1, . . . , p} is the feature index

set and 0 indexes the “absorbing state”, or the “null state”. The generative process

sequentially picks features until the process returns to the null state 0.
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In Section 2.4, we propose a hierarchical nonlinear expansion for polynomial fea-

tures. In this extension, we hold a similar belief that higher-order interactions shall be

considered if and only if lower-order features/interactions are included in the model.

To generalize this idea to the kernel machine via random features, we impose a first-

order Markov chain prior on the atoms zl:

P(zl,t = j′|zl,t−1 = j, π0,Θ) = θj,j′ , j, j′ ∈ {0, 1, . . . , p}, t = 1, 2, . . . (4.5)

With this prior, features are sequentially selected such that the subsequent selec-

tion of needed feature depends on previous selections to form a interaction term that

is informative to the learning task. The prior in (4.5) generalizes the stepwise hierar-

chical expansion in Section 2.4 to a random process. It also permits sparse learning

that keeps the list of involved features to minimum, which makes it promising for

nonlinear sparse learning problems.

We consider a logistic distribution on the binary class label Y . The generative

process is summarized as follows:

• Global variables:

– Draw an initial-state distribution π0 ∼ Dir(γ
p
1p) or [all start from the null

state]

– For each input variable index j = 0, 1, . . . , p, draw transition distribution

θj ∼ Dir(α), whereα ∈ Rp+1 and
p∑
j=0

αj = 1. Θ =
[
(1, 0, . . . , 0)T ; θT1 ; . . . ; θTp

]
.

– Draw the number of random features D ∼ Unif(1, 2, . . . ,∞)

• Local variables:

For each random feature l ∈ {1, 2, . . . , D}:

– Draw a Markov chain of atoms for combination of variable indices zl ∼

MC(π0,Θ). That is,

P(zl,t = j′|zl,t−1 = j, π0,Θ) = θj,j′ , j, j′ ∈ {0, 1, . . . , p}, t = 1, 2, . . .
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– The active feature set is expanded as At = At−1

⋃
{xzl,t ⊗ At−1}, that is,

include all the interaction terms of the newly selected feature and the fea-

tures in the existing candidate set. Expand the candidate set by including

the interaction term

ul,t =
t∏

τ=1

xzl,τ

– Draw the distribution for random frequencies (or embedding coefficients)

∗ µl ∼ N (µ0,Σ0)

∗ Σl ∼ W−1(Ψ0, ν0)

– Draw the corresponding random frequency vector ωl,zl ∼ N (µl,zl ,Σl,zl,zl)

• Response variable:

– For each data point index i = 1, . . . , n:

∗ Construct the random features

φ̂(xi) =

√
2

D

(
cos(ωT1 xi), . . . , cos(ωTDxi)

)
∗ Construct discriminant function f(·) as in (4.3).

∗ Draw the binary response variable Yi ∼ Bernoulli
(

1
1+exp(−f(xi)

)
We can learn the optimal random features, and thus the corresponding kernel

function, by using Markov Chain Monte Carlo (MCMC) to obtain the posterior dis-

tribution p(ω1,...,D, D|X, Y ). However, since the number of random features can be

infinite, the dimensionality of feature space is indefinite. To resolve this difficulties in

inference, we can apply the Reversible-Jump MCMC [Green, 1995].

4.2.4 Connection to Deep Learning

By collecting the randomly sampled ω’s in a matrix W = (ω1, . . . ,ωD)T , it is easy

to see that φ(Wx) is a neural network module, consisting of a linear layer Wx and
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entry-wise nonlinearities introduced by the cosine function. Such neural network

corresponds to a specific kernel function.

4.3 Conclusion

In this thesis, we proposed two methods for flexible sparse learning of feature sub-

spaces. In Chapter 2, the sparse learning is constructed based on the distance metric

learning framework. In the pursuit of sparse distance metric, we are able to extract

feature subspaces that maximize the margin between classes in local neighborhoods.

In this method, flexibility is achieved by two approaches: the exploitation of local

information and the exploration of potential polynomial features via nonlinear hier-

archical expansion. In Chapter 3, we focus on the sparse learning in online setting

based on the stochastic gradient descent algorithm. After identifying the unstable na-

ture of SGD algorithm on highly sparse data, we improve its flexibility by employing

informative truncation to accommodate heterogeneous sparsity levels of features. Sta-

bility selection and annealing rejection rate are applied to enhance efficiency. At last,

an extension to kernel machine is briefly discussed in Chapter 4 for further possibilities

in even more flexible solutions with tractable computations. In all proposed meth-

ods, we focus on obtaining generalizable sparse solutions while maintaining tractable

computational cost. Flexibility is highly valued in our designs. We strive to devise

algorithms that are nonparametric, nonlinear and adaptive to local variations. Our

approaches are demonstrated to be effective and computationally efficient in several

simulation studies and real data analysis.
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variable and feature selection. Journal of Machine Learning Research, 3(Mar):1157–

1182, 2003.

[Guyon et al., 2004] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror.

Result analysis of the nips 2003 feature selection challenge. In Advances in Neural

Information Processing Systems, pages 545–552, 2004.

[Guyon et al., 2006] Isabelle Guyon, Jiwen Li, Theodor Mader, Patrick A Pletscher,

Georg Schneider, and Markus Uhr. Feature selection with the clop package. Tech-

nical report, Technical Report, 2006.

[Guyon et al., 2007] Isabelle Guyon, Jiwen Li, Theodor Mader, Patrick A Pletscher,

Georg Schneider, and Markus Uhr. Competitive baseline methods set new stan-

dards for the nips 2003 feature selection benchmark. Pattern recognition letters,

28(12):1438–1444, 2007.

[Hardt et al., 2015] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train

faster, generalize better: Stability of stochastic gradient descent. arXiv preprint

arXiv:1509.01240, 2015.



BIBLIOGRAPHY 131

[Hastie et al., 2009] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie,

J Friedman, and R Tibshirani. The Elements of Statistical Learning, volume 2.

Springer, 2009.

[Haury et al., 2011] Anne-Claire Haury, Pierre Gestraud, and Jean-Philippe Vert.

The influence of feature selection methods on accuracy, stability and interpretabil-

ity of molecular signatures. PloS one, 6(12):e28210, 2011.

[Hinton and Roweis, 2002] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor

embedding. In Advances in Neural Information Processing Systems, pages 833–840,

2002.

[Hofmann et al., 2008] Thomas Hofmann, Bernhard Schölkopf, and Alexander J

Smola. Kernel methods in machine learning. The Annals of Statistics, pages 1171–

1220, 2008.

[Hong et al., 2011] Yi Hong, Quannan Li, Jiayan Jiang, and Zhuowen Tu. Learning a

mixture of sparse distance metrics for classification and dimensionality reduction.

In IEEE International Conference on Computer Vision (ICCV), pages 906–913.

IEEE, 2011.

[Huang et al., 2009] Kaizhu Huang, Yiming Ying, and Colin Campbell. Gsml: A uni-

fied framework for sparse metric learning. In Ninth IEEE International Conference

on Data Mining, pages 189–198. IEEE, 2009.

[Hughes, 1968] G. Hughes. On the mean accuracy of statistical pattern recognizers.

IEEE Transactions on Information Theory, 14(1):55–63, Jan 1968.

[Jain et al., 2012] Prateek Jain, Brian Kulis, Jason V Davis, and Inderjit S Dhillon.

Metric and kernel learning using a linear transformation. Journal of Machine

Learning Research, 13:519–547, 3 2012.



BIBLIOGRAPHY 132

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,

Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-

volutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093,

2014.

[Johnson and Lindenstrauss, 1984] William B Johnson and Joram Lindenstrauss. Ex-

tensions of lipschitz mappings into a hilbert space. Contemporary Mathematics,

26(189-206):1, 1984.

[Kedem et al., 2012] Dor Kedem, Stephen Tyree, Fei Sha, Gert R Lanckriet, and Kil-

ian Q Weinberger. Non-linear metric learning. In Advances in Neural Information

Processing Systems, pages 2573–2581, 2012.

[Kursa et al., 2010] Miron B Kursa, Witold R Rudnicki, et al. Feature selection with

the boruta package. Journal of Statistical Software, 36(i11), 2010.

[Kutin and Niyogi, 2002] Samuel Kutin and Partha Niyogi. Almost-everywhere algo-

rithmic stability and generalization error. In Proceedings of the Eighteenth Confer-

ence on Uncertainty in Artificial Intelligence, pages 275–282. Morgan Kaufmann

Publishers Inc., 2002.

[Langford et al., 2009] John Langford, Lihong Li, and Tong Zhang. Sparse online

learning via truncated gradient. In Advances in Neural Information Processing

Systems, pages 905–912, 2009.

[Lazebnik et al., 2006] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Be-

yond bags of features: Spatial pyramid matching for recognizing natural scene

categories. In 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), volume 2, pages 2169–2178. IEEE, 2006.

[Le Cun et al., 1990] B Boser Le Cun, John S Denker, D Henderson, Richard E

Howard, W Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a



BIBLIOGRAPHY 133

back-propagation network. In Advances in Neural Information Processing Systems,

1990.

[Lichman, 2013] M. Lichman. UCI machine learning repository. http://archive.

ics.uci.edu/ml, 2013. University of California, Irvine, School of Information and

Computer Sciences.

[Lions and Mercier, 1979] Pierre-Louis Lions and Bertrand Mercier. Splitting algo-

rithms for the sum of two nonlinear operators. SIAM Journal on Numerical Anal-

ysis, 16(6):964–979, 1979.

[Liu et al., 2010] Wei Liu, Shiqian Ma, Dacheng Tao, Jianzhuang Liu, and Peng Liu.

Semi-supervised sparse metric learning using alternating linearization optimization.

In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1139–1148. ACM, 2010.

[Lowe, 2004] David G Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2):91–110, 2004.

[Marimont and Shapiro, 1979] R. B. Marimont and M. B. Shapiro. Nearest neighbour

searches and the curse of dimensionality. IMA Journal of Applied Mathematics,

24(1):59–70, 1979.
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