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ABSTRACT

On the Complexity of Market Equilibria and
Revenue Maximization

Dimitris Paparas

This thesis consists of two parts. In the first part, we concentrate on the computation of

Market Equilibria and settle the long-standing open problem regarding the computation of

an approximate Arrow-Debreu market equilibrium in markets with CES utilities. We prove

that the problem is PPAD-complete when the Constant Elasticity of Substitution parameter

ρ is any constant less than −1. Building on this result, we introduce the notion of non-

monotone utilities, which covers a wide variety of utility functions in economic theory, and

prove that it is PPAD-hard to compute an approximate Arrow-Debreu market equilibrium

in markets with linear and non-monotone utilities.

In the second part, we study Revenue Maximization. We begin by resolving the complex-

ity of the revenue-optimal Bayesian Unit-demand Item Pricing problem when the buyer’s

values for the items are independent. We show that the problem can be solved in poly-

nomial time for distributions of support size 2; but its decision version is NP-complete for

distributions of support size 3. Next, we study the optimal mechanism design problem for a

single unit-demand buyer with item values drawn from independent distributions. We show

that, for distributions of support-size 2 and the same high value, Item Pricing can achieve

the same revenue as any menu of lotteries. On the other hand, we provide simple examples

where randomization improves revenue. Finally, we show that unless the polynomial-time

hierarchy collapses, namely PNP = P#P, there is no universal efficient randomized algorithm

that implements an optimal mechanism even when distributions have support size 3.
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1 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Over the last 15 years, both the Theoretical Computer Science and the Artificial Intelli-

gence communities have been systematically studying problems of Economic Theory from

a computational point of view, giving rise to the area of Algorithmic Game Theory and

Computational Economics. Two of the most fundamental notions in Economic Theory are

those of Revenue Maximization and of Equilibrium and, naturally, they have drawn a lot

of attention from the Computational Economics community. To what extent those notions

are computationally tractable is the topic of this thesis.

1.1 Market Equilibria

Perhaps the cornerstone in Economic Theory is that of Equilibrium; a state in which: 1)

agents behave rationally and 2) no one has an incentive to deviate. A particular type of

equilibrium is that of Market Equilibrium; first defined by Walras [Walras, 1874] and shown

to always exist under mild assumptions in the celebrated theorem of Arrow and Debreu

[Arrow and Debreu, 1954], both of whom received the Nobel Prize in economics.

Formally, an Arrow–Debreu market M consists of n ≥ 1 traders and a set of divisible

goods {G1, . . . , Gm} for some m ≥ 1. Each trader comes to M with an initial endowment

w ∈ Rm+ of goods, where wj denotes the amount of Gj , and also has a real-valued utility

function u. Given a bundle x ∈ Rm+ of goods, u(x) is her utility from bundle x. If we assign

prices p to the goods, where we use pj to denote the price per unit of Gj , then each trader
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will sell her endowment w at prices p to obtain a budget of w · p and then will spend this

amount to purchase from the market a bundle of goods x that maximize her utility. We say

that p is a market equilibrium of M if we can assign to each trader a utility maximizing

bundle with respect to p such that the total demand equals the total supply and the market

clears. Unfortunately, the proof of existence provided by the Arrow–Debreu theorem is

based on Kakutani’s fixed point theorem [Kakutani, 1941] and, hence, it is non-constructive.

Therefore, although the existence of an equilibrium is usually guaranteed under some mild

conditions, how to efficiently find one is a highly non-trivial, and in many cases open,

problem of high importance that has received a lot of attention by the community; after

all, if it is a good model for a world where rational entities interact, the equilibrium state

should be reached quickly and, therefore, it should be algorithmically possible to find it

quickly as well.

As it turns out, the tractability of the problem relies heavily on the type of utilities that

the traders have. For example, market equilibrium prices in markets with Linear utility

functions can be described as solutions to a convex program [Jain, 2007] and it is possible

to recover them efficiently. This is not an isolated case; convexity plays an important role in

equilibrium computation. Indeed, Codenotti and Varadarajan [Codenotti and Varadarajan,

2007] applied convex programming techniques on markets with CES (Constant Elasticity of

Substitution) utilities. This is one of the most important families of utilities, parameterized

by a parameter ρ ∈ (−∞, 1] \ {0}, that is widely used by economists because it nicely

incorporates the notion of elasticity of substitution: the ratio of the proportionate change

in the relative demand for two goods to the proportionate change in their relative prices (see

3.1.1 for details). Their convex programming formulations apply to the problem when ρ ∈
(−1, 1] \ {0}, making this case solvable in polynomial time. Nevertheless, the complexity of

the problem when ρ < −1 remained a major open question for more than a decade. Another

property that has played a critical role in the area is WGS (Weak Gross Substitutability):

increasing the price of one good while keeping all other prices fixed cannot cause a decrease

in the demand of any other good. Codenotti, McCune, and Varadarajan showed [Codenotti

et al., 2005b] that, for markets that satisfy WGS, a discrete price-adjustment algorithm

converges to an approximate equilibrium in polynomial time, nevertheless, this property
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does not cover all types of markets that admit efficient algorithms. For example, the family

of CES utilities with parameter −1 ≤ ρ < 0 does not satisfy WGS.

On the other hand, it is known that the general case of the problem is hard for the class

PPAD, a suitable complexity class defined by Papadimitriou [Papadimitriou, 1994]. For

example, markets with Leontief utilities [Codenotti et al., 2006] are PPAD-hard. Notice

however that these results only hold for a few specific and isolated families of utilities and

the reduction techniques developed in these proofs are all different, each fine tuned for

the family of utilities under consideration. Therefore, unlike other classes of problems in

complexity theory, what is the structural property that makes an equilibrium hard to find

is not well-understood yet and partially addressing this question is one of the goals of this

thesis.

Our Results. In more details, we take a systematic approach towards completely charac-

terizing the complexity of finding a Market Equilibrium by providing a sufficient contition

for PPAD-hardness. To this direction, we settle [Chen et al., 2013] the complexity of CES

markets when ρ < −1 by proving that the problem is PPAD-hard, thus resolving this long-

standing open question. As it turns out, the main structural property that our proof of

hardness exploits is the following: It is possible to use CES utilities with ρ < −1 to construct

a market in which for some particular tuple of prices there is an over-demanded product

and, furthermore, the demand for this product will increase if its price increases without

changing the prices of the other products. Inspired by this observation, we introduce the

notion of non-monotonicity. A family of utilities U is non-monotone if it is possible to use

utilities from U and construct a market with the behavior described above. Our second

result shows that, for any fixed non-monotone family U of utilities, it is PPAD-hard to

find a market equilibrium for markets where each trader’s utility is either a linear function

or belongs to U . This is the first result in the literature providing a sufficient condition

for PPAD-hardness that is not fine-tuned to a specific family of utility functions. It is

worth mentioning, for instance, that a corollary of our result is PPAD-hardness for markets

with SPLC utilities (Separable, Piece-wise Linear, and Concave). This family of markets

was already known to be PPAD-hard [Vazirani and Yannakakis, 2011], nevertheless, that

reduction relied on properties specific to SPLC utilities.
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1.2 Revenue Maximization

One major goal in auction theory is maximizing revenue. The work of Myerson [Myerson,

1981] provides an efficient auction that maximizes the expected revenue from selling one

product to many buyers. A nice property of Myerson’s result is that it introduces the notion

of virtual valuations, a closed-form characterization (and thus an efficient algorithm) of the

optimal auction. A widely studied setting, complementary to the one of Myerson’s, known

as the Multi-dimensional Bayesian Item Pricing or Deterministic setting, is the following:

Deterministic Setting. There is one seller, one buyer, and n items. The seller has

Bayesian knowledge about the buyer’s valuations, namely a discrete product distribution D
on possible values for each item. His purpose is to assign a price pi to each item i in a way

that maximizes her expected revenue, that is, the money that the buyer spends to buy an

item when her values are drawn from D. Given prices for the items, the buyer will pay pi

dollars to buy the item i that maximizes her payoff vi − pi, where vi is her actual value for

item i. The computational problem here is to find revenue maximizing prices for the items

when D is given as input.

Although the deterministic setting favours simplicity, it turns out that it is possible to

improve the seller’s expected revenue [Thanassoulis, 2004] using randomization. This is

achieved through a generalization known as the Multi-dimensional Mechanism Design or

Randomized setting which is defined as follows:

Randomized Setting. Here, the seller offers a menu of lotteries {L1, . . . , Lk} where Li

consists of a tuple of probabilities (xi1, . . . , xin) and a price pi, with
∑

j∈[n] xij ≤ 1. To buy

lottery Li the buyer must pay pi dollars and then she receives item j with probability xij .

Given a menu of lotteries, the buyer will buy the lottery Li that maximizes her expected

payoff
∑

j xijvj − pi, where vj is her actual value for item j. As before, the computational

problem is to find a revenue maximizing menu of lotteries when D is given as input.

Notice that the deterministic setting is the special case of the randomized setting where

xij ∈ {0, 1}. These two setting can be further divided in terms of the buyer’s preference:

A Unit-demand buyer is interested in at most one item; as in the settings described above.

This corresponds to items that are perfect substitutes of each other, e.g. when the seller is
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a car dealer. On the other hand, an Additive buyer is interested in obtaining any number

of items, e.g. when visiting a mall. This is equivalent to offering lotteries where 0 ≤ xij ≤ 1

for all i and j in the randomized setting and offering a menu of subsets of items in the

deterministic setting. In this thesis, we will concentrate on Unit-demand buyers.

Of main interest to economists is whether there is a closed form characterization of

the optimal auction for the above settings, similar to Myerson’s result. Relaxing this re-

quirement, the algorithmic game theory community focused its interest on whether there

exists an efficient algorithm that implements the optimal auction for the multi-item set-

ting. A lot of work has been done towards this direction, both algorithmic and complexity

theoretic. Daskalakis and Tzamos [Daskalakis et al., 2014a] proved that finding a revenue

maximizing menu for the Randomized setting with an Additive buyer is #P-hard. On the

positive side, Chawla et al [Chawla et al., 2007] gave a constant factor approximation algo-

rithm for the Deterministic setting with a Unit-demand buyer and Cai and Daskalakis [Cai

and Daskalakis, 2011] obtained a PTAS for the same setting when distributions satisfy the

monotone hazard rate condition. Nevertheless, the existence of an exact efficient algorithm

for both the randomized and the deterministic settings remained a major open question for

the case of a Unit-demand buyer [Chawla et al., 2007], [Cai and Daskalakis, 2011], [McAfee

and Mc-Millan, 1988], [Manelli and Vincent, 2007]. In the second part of this thesis we

resolve this question in the negative for both problems.

Our Results. We begin with the deterministic unit-demand setting and initially approach

it trying to upper-bound its complexity, obtaining NP membership through a partition of the

pricing space into well-behaved cells. An implication of this characterization is a polynomial-

time algorithm for arbitrary distributions when the number of items is constant. Building

on this result, we also obtain a polynomial-time algorithm for distributions of support size

2. To complement this, we show NP-completeness for the general case of the problem, even

for distributions of support size 3. Finally, we study the randomized unit-demand setting

and prove that the problem does not admit polynomial-time algorithms unless PNP = P#P .

Furthermore, we prove that for distributions of support size 2 and the same high value for

all items offering lotteries does not improve revenue when compared to the deterministic

setting, implying a polynomial-time algorithm [Chen et al., 2014]. On the other hand, we
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present simple examples where randomization strictly improves revenue.

1.3 Organization of this Thesis

The rest of this thesis consists of three parts. In Part I, we study the problem of finding a

Market Equilibrium. We start by providing all the necessary definitions and related work

in Chapter 2. We then prove PPAD-hardness for markets with CES utilities in Chapter

3. Building on this result, we prove PPAD-hardness for markets where each trader has

either a linear or a non-monotone utility function in Chapter 4. In Part II, we study

the problem of revenue maximization. After introducing all concepts and related work in

Chapter 5 we proceed presenting our results. In Chapters 6 and 7 we study the deterministic

and randomized settings respectively, obtaining the results described above. Finally, we

conclude in Part III where we summarize the results obtained in this thesis and discuss

open problems and future directions.
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Chapter 2

Preliminaries

2.1 Introduction

General equilibrium theory [Debreu, 1959; Ellickson, 1994] is perhaps the cornerstone of

Mathematical Economics. A model central to this field is that of the Arrow–Debreu market

[Arrow and Debreu, 1954], which studies the interactions of price, demand and supply, and

is established on the demand-equal-supply principle of Walras [Walras, 1874].

In an Arrow–Debreu market M , traders exchange goods to maximize their utilities1.

Formally, M consists of a n ≥ 1 traders and a set of divisible goods {G1, . . . , Gm} for some

m ≥ 1. Each trader comes to the market with an initial endowment w ∈ Rm+ of goods,

where wj denotes the amount of Gj , and also has a real-valued utility function u. Given a

bundle x ∈ Rm+ of goods, u(x) is her utility from bundle x.

Assume now that we assign prices to the goods according to a price vector p ∈ Rm+ ,

where we use pj to denote the price of Gj . In that occasion, each trader sells her endowment

w at p to obtain a budget of w ·p and then spends this amount to purchase from the market

a bundle of goods x that maximize her utility. We say p is a market equilibrium of M if we

can assign to each trader a utility maximizing bundle with respect to p such that the total

demand equals the total supply and the market clears2.

1Arrow and Debreu also considered firms with production plans. Here we focus on the exchange setting.

2If the price of a good is 0 the total demand for that good is allowed to be less than the supply.
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2.2 Related Work

Arrow and Debreu, in their celebrated theorem [Arrow and Debreu, 1954], proved that

every market has an equilibrium, under some mild3 conditions. Their proof, however, uses

Kakutani’s fixed point theorem [Kakutani, 1941] and, hence, is non-constructive and doesn’t

suggest any algorithms; since no efficient general fixed-point algorithm is known so far.

The computational aspect of the problem was first discussed in the pioneering work

of Scarf [Scarf, 1973]. Since then, it has been studied extensively and several general

schemes have been proposed. Under suitable sufficient conditions, those schemes converge

to an equilibrium, alas, there is no efficient general algorithm known. The difficulty of the

problem is evidenced by exponential lower bounds on both the query complexity of the

discrete Brouwer fixed-point problem [Hirsch et al., 1989; Chen and Deng, 2008; Chen and

Teng, 2007; Chen et al., 2008] and the number of steps of general price adjustment schemes

for market equilibria [Papadimitriou and Yannakakis, 2010], implying that any efficient

algorithm for the general problem would require novel techniques.

On the complexity-theoretic aspect of the problem, Papadimitriou [Papadimitriou, 1994]

defined PPAD, a complexity class that captures those problems that can be reduced in poly-

nomial time to the problem of finding a source or a sink in a succinctly represented graph of

special form. In this graph every node has both in-degree and out-degree at most one and

there is also a dedicated source that cannot be accepted as a solution and its purpose is to

guarantee the existence of a solution somewhere else in the graph. The graph is described

succinctly by a boolean circuit C which takes as input a node n and outputs a tuple of

(possibly null) nodes (x, y), where x and y are respectively the predecessor and the sucessor

of n. The graph induced by C is defined as follows: edge (s, t) exists iff C(s) = (a, t) and

C(t) = (s, b) for some a and b. Papadimitriou proved PPAD-completeness for a number of

archetypical total4 problems and conjectured that finding a Market Equilibrium is PPAD-

hard. His conjecture has been confirmed the last fifteen years when, in a sequence of papers,

many versions of the Market Equilibrium problem were shown to be in PPAD and/or PPAD-

3The term ‘mild’ is widely used in the literature and, hence, we adopt it.

4A problem is total if it always accepts a solution.
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hard [Codenotti et al., 2006; Huang and Teng, 2007; Deng and Du, 2008; Chen et al., 2009a;

Vazirani and Yannakakis, 2011; Papadimitriou and Wilkens, 2011; Chen and Teng, 2009;

Chen and Teng, 2011]. Nevertheless, the Market Equilibrium problem in its general case,

even when the necessary conditions for existence of equilibrium are satisfied, is unlikely to

lie in PPAD due to the algebraic nature of its solutions. To address this, Etessami and

Yannakakis [Etessami and Yannakakis, 2010] defined FIXP, a more general class capturing

all problems that can be reduced in polynomial time to the problem of finding a fixed point

of a Brouwer function that is provided in the form of an algebraic circuit over operators

{+,−, ∗, /,max,
√·}, and proved that the Market Equilibrium problem with algebraic de-

mand functions as well as a number of other important problems are FIXP-complete. Their

work has recently been extended by more FIXP completeness and membership results [Chen

et al., 2013; Garg et al., 2014; Garg et al., 2016]. The above results imply that, unless stan-

dard complexity assumptions are refuted, the problem of finding a Market Equilibrium

does not admit an efficient algorithm in its general case. Notice however, that these results

only hold for a few specific and isolated families of utilities and the reduction techniques

developed in these proofs are all different, each fine tuned for the family of utilities under

consideration. Therefore, unlike other classes of problems in complexity theory, what is the

structural property that makes an equilibrium hard to find is not well-understood yet and

partially addressing this question is one of the goals of this thesis.

On the algorithmic aspect of the problem, Deng, Papadimitriou, and Safra [Deng et

al., 2003] initiated a line of work on the computation and approximation of equilibria that,

during the last fifteen years, has led to numerous results and a lot of progress for vari-

ous market models. This includes efficient algorithms for the market equilibrium problem

for various utility functions and notions of approximation [Jain et al., 2003; Devanur and

Vazirani, 2003; Chen et al., 2004; Devanur and Vazirani, 2004; Garg and Kapoor, 2004;

Garg et al., 2004; Codenotti et al., 2005b; Codenotti et al., 2005a; Codenotti et al., 2005c;

Jain et al., 2005; Jain and Mahdian, 2005; Jain and Varadarajan, 2006; Chen et al., 2006;

Jain, 2007; Ye, 2007; Devanur and Kannan, 2008; Devanur et al., 2008; Ye, 2008], many

of which are based on the convex-programming approach of [Eisenberg and Gale, 1959;

Nenakov and Primak, 1983].
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A property that has played a critical role in the above work is WGS (Weak Gross

Substitutability). A family U of utilities satisfies WGS if for any market consisting of

traders with utilities from U , increasing the price of one good while keeping all other prices

fixed cannot cause a decrease in the demand of any other good. WGS implies that the set

of equilibria is convex. Arrow, Block, and Hurwicz [Arrow et al., 1959] showed that the

continuous tatonnement process [Walras, 1874; Samuelson, 1947] converges for any market

satisfying WGS. Recently, Codenotti, McCune, and Varadarajan [Codenotti et al., 2005b]

showed that a discrete tatonnement algorithm converges to an approximate equilibrium in

polynomial time, if equipped with an excess demand oracle; an algorithm that takes as

input a set of prices and outputs the total demand for each of the goods under those prices.

Another general property that implies convexity of equilibria is WARP (Weak Axiom of

Revealed Preference [Mas-Colell et al., 1995]). While many families of utilities satisfy WGS

or WARP, they do not seem to cover all the efficiently solvable market problems, e.g., the

family of CES utilities with parameter −1 ≤ ρ < 0 (see chapter 3 for definition) does not

satisfy WGS or WARP but has a convex formulation [Codenotti et al., 2005a].

2.3 Basic Definitions

Notation. We use R+ and Q+ to denote the sets of nonnegative reals and nonnegative

rationals respectively. Given an integer n > 0, we use [n] to denote the set {1, . . . , n}. Given

two integers m and n, where m ≤ n, we use [m : n] to denote the set {m,m + 1, . . . , n}.
Given a vector y ∈ Rm and c > 0, we use B(y, c) to denote the set of x with ‖x−y‖∞ ≤ c.

2.3.1 Arrow–Debreu Markets and Market Equilibria

An Arrow–Debreu exchange market M consists of a finite set {T1, . . . , Tn} of n > 0 traders

and a finite set {G1, . . . , Gm} of m > 0 divisible goods. Each trader Ti owns an initial

endowment wi ∈ Rm+ , where wi,j denotes her initial amount of good Gj . Each trader Ti

also has a utility function ui : Rm
+ → R+, where ui(xi,1, . . . , xi,m) represents the utility she

derives if for each j ∈ [m] she owns xi,j units of Gj . In the rest of the paper, we will refer

to an Arrow–Debreu exchange market simply as a market for convenience.
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Assume now that we assign prices to the goods according to a nonnegative price vector

p = (π1, . . . , πm) 6= 0, where we use πj to denote the price of Gj . Each trader Ti will then

sell her initial endowment wi at prices p and obtain a budget
∑

j∈[m]wi,j · πj . She will then

spend this amount to purchase from the market a bundle of goods xi ∈ Rm+ that maximize

her utility. We say p is a market equilibrium of M if we can assign to each trader an optimal

(a utility maximizing) bundle with respect to p such that the total demand of each good

equals the total supply (or is at most the total supply for goods priced at 0) and the market

clears. Formally, given p we let OPTi(p) be the set of optimal bundles of Ti with respect

to p, that is, OPTi(p) is the set of solutions to the program

maxui(x)

s.t.
∑
j∈[m]

xj · πj ≤
∑
j∈[m]

wi,j · πj

Next we define the (aggregate) excess demand of a good with respect to a price vector p:

Definition 1 (Excess Demand). Given p, the excess demand Z(p) consists of all vectors z

of the form z = x1 + · · ·+ xm− (w1 + · · ·+ wm), where xi is an optimal bundle in OPTi(p)

for each i ∈ [n]. For each good Gj we also use Zj(p) to denote the projection of Z(p) on

the jth coordinate.

In general, Z(p) is a set and Z is a correspondence. We usually refer to a subset of

traders in a market as a submarket, and sometimes we are interested in the excess demand

of a submarket, for which the sums of xi’s and wi’s are only taken over traders in the subset.

Finally we define market equilibria:

Definition 2 (Market Equilibria). We say p is a market equilibrium of M if Z(p) contains

a vector z such that zj ≤ 0 for all j ∈ [m] and zj < 0 implies that πj = 0.

Notice that if zj > 0, then the traders request more than the total available amount

of Gj and if zj ≤ 0 then they request at most as much amount of it as is available in the

market. As OPTi(p) is invariant under scaling of p (by a positive factor), it is easy to see

that the set of market equilibria is closed under scaling.
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In general, a market equilibrium may not exist. The pioneering existence theorem of

Arrow and Debreu [Arrow and Debreu, 1954] states that if all the utility functions are quasi-

concave, then under certain mild conditions a market always has an equilibrium. Here, we

use the weaker sufficient condition of Maxfield [Maxfield, 1997].

Definition 3 (Local Non-Satiation). We say a utility function u : Rm+ → R+ is locally

non-satiated if for any x ∈ Rm+ and any ε > 0, there exists a y ∈ B(x, ε) ∩ Rm+ such that

u(y) > u(x). We say u is non-satiated with respect to the kth good, if for any x ∈ Rm+ ,

there exists a y ∈ Rm+ such that u(y) > u(x) and yj = xj for all j 6= k.

If the utility of a trader is locally non-satiated, then her optimal bundle must exhaust

her budget. Therefore, if every trader in M has a non-satiated utility then Walras’ law

holds: z · p = 0 for all z ∈ Z(p).

Definition 4 (Economy Graphs). Given a market M , we define a directed graph as follows.

Each vertex of the graph corresponds to a good Gj in M . For two goods Gi and Gj in M , we

add an edge from Gi to Gj if there is a trader Tk such that wk,i > 0 and uk is non-satiated

with respect to Gj, i.e., Tk owns a positive amount of Gi and is interested in Gj. We call

this graph the economy graph of M [Maxfield, 1997].5

We then say a marketM is strongly connected if its economy graph is strongly connected.

A simplified version of Maxfield’s existence theorem [Maxfield, 1997] is the following:

Theorem 1 (Maxfield [Maxfield, 1997]). If the following two conditions hold, then M has

a market equilibrium: 1) Every utility function is continuous, quasi-concave, and locally

non-satiated; and 2) M is strongly connected. Moreover, the price of every good is positive

in a market equilibrium.

Clearly, when a market satisfies the conditions of Theorem 1, p is an equilibrium if and

only if 0 ∈ Z(p). Here, we are also interested in the problem of finding an approximate

equilibrium in a market that satisfies the conditions of Theorem 1. For this we define two

notions of approximate equilibria:

5 Maxfield defines this as a graph between the traders instead of the goods, but it is easy to see that the

sufficient condition of strong connectivity is equivalent between the two versions.
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Definition 5 (ε-Approximate Market Equilibria). We call p an ε-approximate market

equilibrium of M for some ε > 0 if there exists a vector z ∈ Z(p) such that zj ≤ ε
∑

i∈[n]wi,j

for all j ∈ [m].

Definition 6 (ε-Tight Approximate Market Equilibria). We say p is an ε-tight approx-

imate market equilibrium of M for some ε > 0 if there exists z ∈ Z(p) such that |zj | ≤
ε
∑

i∈[n]wi,j for all j ∈ [m].

Both notions of approximate equilibria have been used in the literature. Although the

two-sided notion of tight approximate market equilibria is more commonly used, in our work

[Chen et al., 2013] we present an unexpected market for which any (1/2)-tight approximate

market equilibrium p must have a doubly exponentially small entry when
∑

j πj = 1.

Finally, because we have to deal with real numbers, we need the following definition to

make formal statements:

Definition 7. We say a real number β is moderately computable if there is an algorithm

that, given a rational number γ > 0, outputs a γ-rational approximation β′ of β: |β′−β | ≤ γ,

in time polynomial in 1/γ.

2.3.2 Polymatrix Games and Nash Equilibria

To obtain our results in Chapters 3 and 4, we provide polynomial-time reductions from the

problem of computing an approximate Nash equilibrium in a polymatrix game [Janovskaya,

1968] with two pure strategies for each player. Such a game with n players can be described

by a 2n × 2n rational matrix P, with all entries between 0 and 1,
∑

i∈[2n] Pi,j = ξ, and

P2i−1,2i−1 = P2i−1,2i = P2i,2i−1 = P2i,2i = ψ for all j and some constants ξ > ψ > 0. An

ε-well-supported Nash equilibrium is a vector x ∈ R2n
+ such that for all i ∈ [n], we have

x2i−1 + x2i = 1 and

xT ·P2i−1 > xT ·P2i + ε ⇒ x2i = 0

xT ·P2i > xT ·P2i−1 + ε ⇒ x2i−1 = 0,

where P2i−1 and P2i denote the (2i− 1)th and (2i)th column vectors of P, respectively.
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Normalization. For convenience, we normalize P into a 2n× 2n matrix P′ by setting

P ′i,2j−1 = 1/2 + (Pi,2j−1 − Pi,2j)/2 and P ′i,2j = 1/2− (Pi,2j−1 − Pi,2j)/2

for all i ∈ [2n], j ∈ [n]. It is clear that P′ is also a rational matrix with entries between 0

and 1 and in addition

P ′i,2j−1 + P ′i,2j = 1, for all i ∈ [2n] and j ∈ [n]. (2.1)

From the definition of ε-well-supported Nash equilibria, it is easy to show that P and

P′ have the same set of ε-well-supported equilibria for any ε ≥ 0.

Let POLYMATRIX denote the following problem:

Definition 8. Given a normalized polymatrix game P (i.e. the entries of P satisfy (2.1)),

find an ε-well-supported Nash equilibrium with ε = 1/n.

It was shown in [Daskalakis et al., 2009] that finding an exact Nash equilibrium of a

polymatrix game with two pure strategies for each player is PPAD-hard (it is not stated

explicitly there but follows from the proof of Lemma 6.3). It turns out that POLYMATRIX

is PPAD-hard as well. The proof uses techniques developed in previous work on Nash

equilibria [Daskalakis et al., 2009; Chen et al., 2009b]. While its PPAD-hardness is used here

as a bridge to establish Theorem 3 and Theorem 6, we think the result on POLYMATRIX

is interesting for its own right and refer the interested reader to the original paper [Chen et

al., 2013] for its proof.

Theorem 2. POLYMATRIX is PPAD-complete.6

2.3.3 Organization of the rest of this part

In the remaining of this part we prove hardness of finding a market equilibrium for some

interesting types of exchange markets. In Chapter 3 we study markets with CES utilities

and prove that, for any constant ρ < −1, finding an ε-approximate Market Equilibrium is

PPAD-hard for a suitable chosen ε. In Chapter 4, we extend this result to all families of

utilities that satisfy a property that we call non-monotonicity.

6Rubinstein [Rubinstein, 2015] has subsequently shown the PPAD-hardness of the ε-approximate equi-

librium problem for a polymatrix game even for some constant ε > 0.
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Chapter 3

The Complexity of Markets with

CES utilities

3.1 Introduction

In this chapter, we study the complexity of approximating market equilibria in markets

with CES (constant elasticity of substitution) utility functions [Mas-Colell et al., 1995].

Definition 9 (CES utility function). We call u : Rm+ → R+ a CES function with parameter

ρ < 1, ρ 6= 0, if it is of the form

u(x1, . . . , xm) =

∑
j∈[m]

αj · xρj

 1
ρ

where the coefficients α1, . . . , αm ∈ R+.

The family of CES utility functions was first introduced in [Solow, 1956; Dickinson,

1954]. It was then used in [Arrow et al., 1961] to model production functions and predict

economic growth. It has been one of the most widely used families of utility functions in

economics literature [Shoven and Whalley, 1992; de La Grandville, 2009] due to its versatility

and flexibility in economic modeling. For example, the popular modeling language MPSGE

[Rutherford, 1999] for equilibrium analysis uses CES functions (and their generalization to

nested CES functions) to model consumption and production.
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Consider a trader T with a CES utility function u in which αj > 0 iff j ∈ S ⊆ [m].

Let w denote the initial endowment of T and let p denote a price vector with πj > 0 for

all j ∈ [m]. Then using the KKT conditions (on the optimization problem of maximizing

T ’s utility subject to the budget constraint), we have the following folklore formula for the

unique optimal bundle of T :

xj =

(
αj
πj

)1/(1−ρ)

× w · p∑
k∈S α

1/(1−ρ)
k · π−ρ/(1−ρ)

k

, for each j ∈ S (3.1)

It is also clear that if πj = 0 for some j ∈ S then T would demand an infinite amount of

Gj . This implies that when a CES market is strongly connected πj must be positive for all

j ∈ [m] in any (exact or approximate) market equilibrium of M .

3.1.1 Elasticity of Substitution

The parameter ρ of a CES utility function is related to the elasticity of substitution σ,

which measures the percentage change in the ratio of the demands of two goods in response

to a percentage change in their prices, or intuitively, how easy it is to substitute different

goods or resources [Hicks, 1932; Robinson, 1933] (namely ρ = (σ− 1)/σ). Selecting specific

values for ρ between 1 and −∞ yields various basic utility functions and models different

points in the substitutes-complements spectrum. This ranges from the perfect substitutes

case when ρ = 1, which corresponds to linear utilities

u(x1, . . . , xm) =
∑
j∈[m]

αjxj ,

to the intermediate case when ρ→ 0, which corresponds to Cobb-Douglas utilities

u(x1, . . . , xm) =
∏
j∈[m]

x
αj
j ,

in which case the trader spends a fixed proportion of her budget on each of the goods, to

the perfect complements case when ρ → −∞, which corresponds to Leontief utilities. A

Leontief utility function has the form

u(x1, . . . , xm) = min
j∈S

{
xj/cj

}
,
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for some subset S ⊆ [m] of goods and positive constants cj > 0 for all j ∈ S. This represents

the utility of a trader who wants to acquire goods in S in quantities proportional to the

cj . This function is the limit of the functions (
∑

j∈S(xj/cj)
ρ)1/ρ as ρ→ −∞; that is, the

Leontief function is the limit of CES functions with coefficients αj = 1/cρj for j ∈ S and

αj = 0 for j /∈ S.

3.1.2 Problem Definitions and Related Work

Markets with CES utilities may not have any rational equilibria in general, even when ρ

and all the coefficients are rational, therefore we need to study the approximation of market

equilibria. For this purpose we define the following three computational problems:

1. CES: The input of the problem is a pair (k,M), where k is a positive integer

encoded in unary (k represents the desired number of bits of precision), and M is a

strongly connected market in which all utilities are CES, with the parameter ρi < 1

of each trader Ti being rational and given in unary (because ρ appears in the

exponent of the utility and demand functions). The ρi parameters may be the same

or different for different traders, and there may be a mixture of positive and negative

parameters. The endowments wi,j and coefficients αi,j are rational and encoded in

binary. The goal is to find a price vector p that is within 1/2k of some equilibrium

in every coordinate, i.e., such that there exists an (exact) equilibrium p∗ of M with

‖p− p∗‖∞ ≤ 1/2k.

2. CES-APPROX: The input of the problem is the same as CES. The goal is to find

an ε-approximate market equilibrium of M , where ε = 1/2k.

3. ρ-CES-APPROX for any fixed rational number ρ < −1: The input is the same as

CES, except that the utilities of all the traders have the same fixed parameter ρ,

which is considered as a constant, not part of the input. The goal is to find an

ε-approximate market equilibrium of M , where ε = 1/k.

The output of the first problem (CES) is usually referred to in the literature as a

strongly approximate equilibrium. It is also possible to define CES under a model of real
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computation and ask for an exact equilibrium. Finally, to justify the use of ε-approximate

market equilibria instead of ε-tight approximate market equilibria, in both CES-APPROX

and ρ-CES-APPROX, we refer the interested reader to [Chen et al., 2013] for an example

of a market for which an exponential number of bits is required to represent any of its

(1/2)-tight approximate equilibria. By contrast, in the same paper we show that for the

one-sided notion there is always an ε-approximate equilibrium with a polynomial number

of bits and, in fact, CES-APPROX is in PPAD and CES is in FIXP.

Nenakov and Primak [Nenakov and Primak, 1983] gave a convex program that char-

acterizes the set of equilibria when ρ = 1, i.e. all utilities are linear. Jain [Jain, 2007]

discovered the same convex program independently and used the ellipsoid algorithm to give

a polynomial-time exact algorithm for the linear case. It turns out that this convex program

can also be applied to characterize the set of equilibria in CES markets with ρ > 0. Co-

denotti, McCune, Penumatcha, and Varadarajan [Codenotti et al., 2005a] gave a different

convex formulation for the set of equilibria in CES markets with ρ ∈ [−1, 0). The range

of ρ < −1 however has remained an intriguing open problem. For this range, it is known

that the set of equilibria can be disconnected, and thus one cannot hope for a direct convex

formulation. For example, the following market has three disconnected equilibria.

Example 3.1.1. Consider the following market M with two goods G1, G2 and two traders

T1, T2. T1 has 1 unit of G1, T2 has 1 unit of G2, and the utilities are

u1(x1, x2) = (α · xρ1 + xρ2)1/ρ and u2(x1, x2) = (xρ1 + α · xρ2)1/ρ

respectively. When ρ < −1 and α is large enough, [Gjerstad, 1996] shows that M has three

disconnected equilibria (1, 1), (1−θ, 1+θ), and (1+θ, 1−θ) for some θ > 0, and furthermore,

the excess demand function of both goods is increasing at (1, 1). We will carefully study this

market in Section 3.2 since it plays an important role in the proof of Theorem 3.

The failure of the convex-programming approach seems to suggest that the problem

might be hard. In fact, when ρ → −∞, CES utilities converge to Leontief utilities for

which finding an approximate equilibrium is PPAD-complete [Codenotti et al., 2006] and

computing an actual equilibrium (to a desired precision) is FIXP-complete [Garg et al.,

2014]. This argument, however, is less compelling due to the fact that a market with CES
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utilities converging to a Leontief market, as ρ→ −∞, does not mean that the equilibria of

the CES market converge to an equilibrium of the Leontief market at the limit. Actually,

in [Chen et al., 2013], we construct an example demonstrating that it is possible that CES

markets have equilibria that converge but the Leontief market at the limit does not even

have any (approximate) equilibrium.

Moreover, with respect to the problem of determining whether a market equilibrium

exists, CES utilities do not behave like the Leontief limit but rather like tractable utili-

ties. Typically, the tractability of the equilibrium existence problem conforms with that of

the equilibrium computation problem (under standard sufficient conditions for existence).

For example, the existence problem for linear utilities can be solved in polynomial time

[Gale, 1976] (as can the computation problem [Jain, 2007]), and the same holds for Cobb-

Douglas utilities [Eaves, 1985], whereas the existence problem is NP-hard for Leontief util-

ities [Codenotti et al., 2006] and for separable piecewise-linear utilities [Vazirani and Yan-

nakakis, 2011] (and their equilibrium computation problem under standard sufficient condi-

tions for existence is PPAD-hard or FIXP-hard [Codenotti et al., 2006; Chen et al., 2009a;

Vazirani and Yannakakis, 2011; Garg et al., 2014]). However, the problem of whether there

exists an equilibrium in a CES market can be solved in polynomial time for all (finite)

values of ρ: a simple necessary and sufficient condition for the existence of an equilibrium

in a CES market is based [Codenotti et al., 2005a] on the decomposition of the economy

graph into strongly connected components. In the same paper it was also proved that the

computation of an equilibrium for the whole market (if the condition is satisfied) amounts

to the computation of equilibria for the submarkets induced by the strongly connected com-

ponents. Hence in this chapter we will focus on CES markets with a strongly connected

economy graph.

3.1.3 Main Challenges and Statement of Results

The difficulty in resolving the complexity of the equilibrium computation problem for CES

markets with a constant ρ < −1 is mainly due to the continuous nature of the problem.

Most, if not all, of the problems shown to be PPAD-hard have a rich underlying combina-

torial structure, whether it is to find an approximate Nash equilibrium in a normal-form
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game [Daskalakis et al., 2009; Chen et al., 2009b] or to compute an approximate equilibrium

in a market with Leontief utilities [Codenotti et al., 2006] or with additively separable and

concave piecewise-linear utilities [Chen et al., 2009a; Vazirani and Yannakakis, 2011]. In

contrast, given a price vector p, the optimal bundle x of a CES trader is a continuous func-

tion over p, with an explicit algebraic form. This closed form for the demand implies that

the problem of finding a market equilibrium now boils down to solving a system of poly-

nomial equations over variables p, and it is not clear how to extract a useful combinatorial

structure from it.

Our main result in this chapter shows how to address this challenge and settles the

complexity of finding approximate equilibria in CES markets for all values of ρ < −1:

Theorem 3 (Main Result). For any rational number ρ < −1, ρ-CES-APPROX is

PPAD-hard.

Combining Theorem 3 with the PPAD membership that we also obtain in [Chen et al.,

2013], we have

Corollary 1. For any rational number ρ < −1, ρ-CES-APPROX is PPAD-complete.

3.1.4 Main Ideas behind our Reduction

Example 3.1.1 has a crucial, counter-intuitive, property:

Property 1. At and around prices (1, 1), although the supply of at least one good is ex-

hausted, increasing the price of this good by a very small value while decreasing the other

good’s price by the same amount will increase the demand for the most expensive good.

We will use this property to embed combinatorial structure in a market and simulate

a polymatrix game. In more details, given a 2n × 2n polymatrix game P we construct a

market MP in which each trader owns at most two goods, is interested in one or two goods,

and her utility is one of the following functions:

u(x) = x, u(x1, x2) = (xρ1 + xρ2)1/ρ, or u(x1, x2) = (α · xρ1 + xρ2)1/ρ (3.2)

where α is a positive rational constant that depends on ρ only. We then show that from

any ε-approximate equilibrium p of MP, for some polynomially small ε, we can recover a

(1/n)-well-supported Nash equilibrium in polynomial time.
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3.1.4.1 Ingredients of the market

The main building blocks in the construction of MP are the following:

Main Block. Given a positive rational number µ, we use CES(µ,Gi, Gj) to denote the

addition to MP of a sub-market that consists of two traders Ti and Tj . Ti and Tj are only

interested in Gi and Gj and have the same utility functions as those of the two traders in

example 3.1.1. Ti has µ units of Gi and Tj has µ units of Gj .

Regulating Trader. We use REG(Gi, Gj) to denote a trader that owns n4 units of each

of goods Gi and Gj and her utility is u(xi, xj) = (xρi + xρj )
1/ρ.

Single-minded traders. We say a trader is a (r,Gi : Gj)-trader, if her endowment

consists of r units of Gi and she is only interested in Gj .

3.1.4.2 Setting up the market

We will now describe how MP is built. Let m = n7 be a parameter (we will justify its use

when we construct the “gap amplification” part of the market).

Types of goods. The market MP consists of the following O(nm) = O(n8) goods:

G2i−1,j and G2i,j , for i ∈ [n] and j ∈ [0 : m].

To make the presentation easier to follow, we use Gi and Hi to denote Gi,0 and Gi,m

respectively and divide the goods into n(m + 1) groups: Ri,j = {G2i−1,j , G2i,j}, for each

i ∈ [n] and j ∈ [0 : m]. Finally, we use π(G) to denote the price of good G. We will omit

for now some auxiliary goods that are not crucial for the exposition of our ideas.

Encoding the mixed strategies. We start with the part of the market that encodes 1)

a vector x of 2n variables and 2) the 2n linear forms xT ·P∗,j , j ∈ [2n]. Those correspond

to 1) the mixed strategies and 2) the expected pay-offs of the players in polymatrix. Here

is the construction:

1. We use π(H1), . . . , π(H2n) to encode (a non-normalized version of) x.
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2. To encode the linear forms, we set up the market in such a way that the amount of

money spent on good Gj corresponds to
∑2n

i=1 π(Hi)Pi,j which is a non-normalized

version of xT ·P∗,j . In particular, for each pair i, j ∈ [n], we add to MP the following

four traders who trade from groupRi,m to groupRj,0: one (P2i−1,2j−1, H2i−1 : G2j−1)-

trader, one (P2i−1,2j , H2i−1 : G2j)-trader, one (P2i,2j−1, H2i : G2j−1) trader, and one

(P2i,2j , H2i : G2j)-trader.

Consider the amount of money those traders spend on Gj . Since they are single-

minded, they spend their whole endowment on Gj , that is,
∑2n

i=1 π(Hi)Pi,j ; which is

what we wanted to achieve.

Converting prices to mixed strategies. We will set up the rest of the market in such

a way that, after appropriately scaling the prices, it holds

π(H2i−1) + π(H2i) = 2 + γi

for some very small γi > 0 and all i ∈ [n]. In that case, one can write π(H2i−1) and π(H2i)

in the form π(H2i−1) = 1 + yi and π(H2i) = 1 − yi + γi, for some (possibly negative) yi.

Then, for a carefully chosen threshold θ > 0, we can extract a vector x from p as follows:

x2i−1 =


1 , if yi ≥ θ
0 , if yi ≤ −θ

θ+yi
2θ , otherwise

and x2i = 1 − x2i−1 for all i ∈ [2n]. From this, it is clear that x is non-negative and

x2i−1 + x2i = 1 for all i ∈ [n], as required by polymatrix.

To achieve π(H2i−1) + π(H2i) = 2 + γi, we add a market CES(µ,H2i−1, H2i) for

an appropriate µ that only depends on n. Even though there are more traders in the

market, as long as their total endowment of H2i−1 and H2i is negligible compared to

µ, block CES(µ,H2i−1, H2i) dominates the sub-market that contains goods H2i−1 and

H2i and any equilibrium of the whole market must be very close to one of the equilib-

ria of CES(µ,H2i−1, H2i). Since the latter are of the form (1 + θ, 1 − θ) for some small

|θ| ≥ 0, any ε-approximate market equilibrium of MP must satisfy π(H2i−1) + π(H2i) =
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2 + γi for a polynomially small γi (after appropriately scaling all the prices to achieve

mini{π(H2i−1) + π(H2i)} = 2).

Enforcing equilibrium conditions. To complete the market, we must make sure that if

for the recovered x it holds that xT ·P∗,2j−1 > xT ·P∗,2j +1/n then x2j = 0, or equivalently,

π(H2i−1) ≥ 1 + θ. To achieve this, we are going to enforce the following two conditions for

some 0 < α < θ:

Condition 1: xT ·P∗,2j−1 > xT ·P∗,2j + 1/n implies π(G2j−1) ≈ 1 + α.

Condition 2: π(G2j−1) ≈ 1 + α implies π(H2i−1) ≥ 1 + θ.

Enforcing Condition 1. Since x is a normalization of the prices of goods Hk, if we

carefully choose θ when recovering x then whenever xT ·P∗,2j−1 > xT ·P∗,2j + 1/n it must

also hold that
∑

i∈[2n] π(Hi)Pi,2j−1 >
∑

i∈[2n] π(Hi)Pi,2j + 1
Θ(n) . Therefore, the single-

minded type-(Pi,j , Hi : Gj)-traders spend at least 1
Θ(n) more money on G2j−1 than on

G2j . Since the supplies of G2j−1 and G2j are the same, it follows that in any approximate

equilibrium we must have π(G2j−1) ≥ π(G2j) + 1
Θ(n) . Hence, all we need is to enforce that

in this case π(G2j−1) ≈ 1+α ≈ π(G2j)+ 1
Θ(n) . For this purpose, we add a REG(G2i−1, G2i)

trader for all i ∈ [n]. According to equation 3.1, such a trader will buy goods G2i−1 and G2i

in a ratio of
(
π(G2i−1)
π(G2i)

) 1
1−ρ

to 1. By definition of ε-approximate equilibrium, and because

her initial supply dominates that of the rest of the traders, it must therefore hold that

1− α ≤ π(G2j−1), π(G2j) ≤ 1 + α (3.3)

for a polynomially small 0 < α < θ. Combining this with π(G2j−1) ≥ π(G2j) + 1
Θ(n) we get

that π(G2j−1) ≈ 1 + α which is what we wanted.

Enforcing Condition 2. It now remains to enforce that π(G2j−1) ≈ 1 + α implies

π(H2i−1) ≥ 1 + θ. We achieve that through a sequence of connected sub-markets over

groups Ri,j . In particular, to finish the construction of the market, we set m = 4t = n7 and

for each i ∈ [n] and j ∈ [m]:

1. We add two traders who trade from group Ri,j−1 to group Ri,j :
one (n,G2i−1,j−1 : G2i−1,j)-trader and one (n,G2i,j−1 : G2i,j)-trader
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Ri,0

G2i,0

G2i−1,0

Ri,1

G2i,1

G2i−1,1

Ri,4t−1

G2i,4t−1

G2i−1,4t−1

Ri,4t

G2i,4t

G2i−1,4t

Figure 3.1: A chain of markets over groupsRi,j of goods. Arrows correspond to (n,Gi : Gj)-

traders.

2. We add a market CES(µ,G2i−1,j , G2i,j)

This part of the construction is shown in figure 3.1.

Assume now that for group Ri,j−1 it is the case that π(G2i−1,j−1) ≈ 1 + αj−1 and

π(G2i,j−1) ≈ 1−αj−1 for some αj−1. Notice that in any equilibrium π(G2i−1,j) and π(G2i,j)

must be close to (1, 1), otherwise one of the single-minded traders from Ri,j−1 to Ri,j will

ask for a large amount of the cheapest of G2i−1,j and G2i,j . This is where property 1 comes

into play. Since π(G2i−1,j) and π(G2i,j) are close to (1, 1), sub-market CES(µ,G2i−1,j , G2i,j)

has two options: Either push towards prices (1 − αj , 1 + αj) or towards (1 + αj , 1 − αj)
for some small αj > 0. If it pushes towards prices (1 − αj , 1 + αj) then from property

1 the demand for good G2i−1,j from CES(µ,G2i−1,j , G2i,j) will go down; but because it

will now be cheaper, the demand from the single-minded traders from Ri,j−1 to Ri,j will

increase far more and equilibrium constraints will be violated. On the other hand, if prices

are pushed towards (1 + αj , 1 − αj) then, because of property 1 again, the demand from

CES(µ,G2i−1,j , G2i,j) will increase a lot and go above the amount of G2i−1,j it brings

in initially. To maintain equilibrium constraints, the demand for G2i−1,j from the single-

minded traders from Ri,j−1 to Ri,j must decrease significantly bellow the supply of G2i−1,j

that comes from traders from Ri,j to Ri,j+1. The only way for this to happen is to set

αj−1 � αj so that π(G2i−1,j) ≈ 1 + αj � 1 + αj−1 ≈ π(G2i−1,j−1). This argument implies

the following lemma that is essentially condition 2 and concludes the sketch of our reduction.

Figure 3.2 shows the completed MP.
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G1

G2

G2i−1

G2i

G2n−1

G2n

H1

H2

H2i−1

H2i

H2n−1

H2n

Figure 3.2: Market MP: Black (solid) arrows correspond to single minded-traders from Hi’s

to Gj ’s. Blue (dashed) arrows correspond to the chains of Ri,j markets of Figure 3.1.

Lemma 1. For all j ∈ [0 : m] there are values α = α0 � α1 � . . . � αm, with θ � αm

such that whenever π(G2i−1,j) ≈ 1 + αj and π(G2i,j) ≈ 1 − αj then it must hold that

π(G2i−1,j+1) ≈ 1 + αj+1 and π(G2i,j+1) ≈ 1− αj+1 in any ε-approximate equilibrium.

3.2 Analysing the Market of Example 3.1.1

In this section we analyse example 3.1.1 and prove many useful properties that play an

important role in our reduction. This section is very technical and a reader who only aims

to a high-level understanding of our reduction should feel free to proceed to Section 3.3 and

use this section as reference for the statement of the lemmas, whenever they are used.

3.2.1 The Excess Spending Function

We need the following notion of excess spending. Let S denote a subset of traders. Given p

and a good G, the excess spending on G from traders in S is the product of π(G) and the

excess demand of G from S:
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(
total demand of G from S − total supply of G from S

)
× π(G)

For convenience we always use r > 1 to denote −ρ.

Let M denote the following market described in Example 3.1.1 with two goods G1, G2

and two traders T1, T2: T1 has 1 unit of G1, T2 has 1 unit of G2, and their utilities are

u1(x1, x2) =
(
α · xρ1 + xρ2

)1/ρ
and u2(x1, x2) =

(
xρ1 + α · xρ2

)1/ρ
for some rational number α > 0. By (3.1), one can show that given any positive prices π1

and π2, the optimal bundles (x1,1, x1,2) and (x2,1, x2,2) are unique and must satisfy

x1,1

x1,2
=

(
α · π2

π1

)1/(1+r)

and
x2,1

x2,2
=

(
1

α
· π2

π1

)1/(1+r)

(3.4)

It is clear that (1, 1) is a market equilibrium of M .

From now on we assume that α is a positive rational number such that a = α1/(r+1) is

rational as well. We are interested in the excess spending f(x) on G1 from T1 and T2 when

the prices π1 = 1 + x and π2 = 1 − x with x ∈ (−1, 1). Let mi,j denote the amount of

money Ti spends on Gj , then

m1,1

m1,2
= a

(
π1

π2

)r/(1+r)

and
m2,1

m2,2
=

1

a

(
π1

π2

)r/(1+r)

We also have m1,1 +m1,2 = π1. This gives us an explicit form of m1,1 as a function of x:

m1,1(x) =
π1

1 + 1
a

(
π2
π1

) r
1+r

=
1 + x

1 + 1
a

(
1−x
1+x

) r
1+r

Similarly, we have the following explicit form of m2,1, as a function of x:

m2,1(x) =
π2

1 + a
(
π2
π1

) r
1+r

=
1− x

1 + a
(

1−x
1+x

) r
1+r

The excess spending function f(x) on G1 from T1 and T2 is then

f(x) = m1,1(x) +m2,1(x)− (1 + x), for x ∈ (−1, 1).

It is easy to show that f(0) = 0 and f(x) = −f(−x) for any x ∈ (−1, 1). By symmetry,

f(x) = −f(−x) ⇒ f ′(x) = f ′(−x) ⇒ f ′′(x) = −f ′′(−x) ⇒ f ′′(0) = 0
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-1.0 - 0.5 0.5 1.0

- 0.005

0.005

Figure 3.3: The excess spending function f .

3.2.2 Properties of the Excess Spending function

Our first goal is to prove the following properties about f :

Lemma 3.2.1. When a > (r + 1)/(r − 1) is rational, f ′(0) > 0 is also rational, and f has

three roots in (−1, 1). Let {−θ, 0, θ} denote these roots, with θ > 0. Then f ′(θ) < 0.

Proof. First we replace x by the following variable y. Let

y1+r =
1− x
1 + x

and x =
1− y1+r

1 + y1+r
(3.5)

It suffices to show that, when a > (r + 1)/(r − 1), the following function p(y) has three

roots over (0,+∞):

p(y) =
2

(1 + y1+r)(1 + yr/a)
+

2y1+r

(1 + y1+r)(1 + ayr)
− 2

1 + y1+r

Let q(y) = (1 + y1+r)(1 + yr/a)(1 + ayr) · p(y). Then it suffices to show that

q(y) = 2(1 + ayr) + 2y1+r(1 + yr/a)− 2(1 + yr/a)(1 + ayr) =
2

a
yr(y1+r − ayr + ay − 1)

has three roots. Taking the derivative of h(y) = y1+r − ayr + ay − 1, we get

h′(y) = (r + 1)yr − aryr−1 + a

It is easy to see that h(0) = −1 < 0, h(1) = 0, and h(y)→ +∞ when y → +∞. Moreover,

h′(1) = (r + 1)− ar + a = (r + 1)− a(r − 1) < 0
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when a > (r+ 1)/(r− 1). This implies that h has at least three roots in (0,+∞) and thus,

f has at least three roots in (−1, 1). Next we show that h has at most three roots. Indeed:

h′′(y) = r(r + 1)yr−1 − ar(r − 1)yr−2 = ryr−2((r + 1)y − a(r − 1))

Therefore, there is a threshold b = a(r − 1)/(r + 1) > 0 such that h′′(y) > 0 when y > b;

and h′′(y) < 0 when y < b. This implies that h′(b) is the minimum of h′ over [0,+∞). It

follows from h′(b) ≤ h′(1) < 0 that h′ has exactly one root in (0, b) and exactly one root in

(b,+∞). This implies that h has at most three roots in (0,+∞) and thus, f has at most

three roots in (−1, 1). As a result, f has exactly three roots.

Let {−θ, 0, θ} denote the three roots of f with θ > 0. Then {y(−θ), 1, y(θ)} are exactly

the three roots of h. From the proof we also have f ′(0) > 0 and f ′(θ) < 0. To see this,

f(x) = p
(
y(x)

)
⇒ f ′(x) = p′(y) ·

(
1

1 + r

)
·
(

1− x
1 + x

) −r
1+r

· −2

(1 + x)2

This implies that f ′(0) = −2p′(1)/(1 + r). Taking the derivative of

(1 + y1+r)(1 + yr/a)(1 + ayr) · p(y) = 2yrh(y)
/
a

and plugging in h(1) = p(1) = 0, we get

p′(1) = h′(1)/(1 + a)2 < 0

and thus, f ′(0) > 0 is rational. By using h(y(θ)) = 0 and h′(y(θ)) > 0, we can similarly

show that f ′(θ) < 0. The lemma follows.

From now on, we assume that a > (r + 1)/(r − 1), and let {−θ, 0, θ} denote the three

roots of f over (−1, 1), with θ > 0. Let λ = f ′(0), which is rational and positive. Let

g(x) = f(x)− λx, for x ∈ (−1, 1).

From the definition of g(x), we have g(0) = 0, g′(0) = 0, and g′′(0) = 0.

Next we show that when a is chosen carefully, g satisfies the following property:

Lemma 3.2.2. Given any rational number r > 1, there is a rational number a such that

a > (r+1)/(r−1), α = a1+r is rational, and g(x) < 0 for all x ∈ (0, 1). From the symmetry

of g, g(x) > 0 for all x ∈ (−1, 0).
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-1.0 - 0.5 0.5 1.0

- 0.02

- 0.01

0.01

0.02

Figure 3.4: The function g and the line −λx, where λ = f ′(0).

Proof. Assume for contradiction that there is an x∗ ∈ (0, 1) such that g(x∗) ≥ 0, and

g(−x∗) ≤ 0. Similar to the proof of Lemma 3.2.1, we use y in (3.5) to replace x. We are

interested in p(y) over y ∈ (0,+∞):

p(y) =
2

(1 + y1+r)(1 + yr/a)
+

2y1+r

(1 + y1+r)(1 + ayr)
− 2

1 + y1+r
− λ · 1− y1+r

1 + y1+r

By the definition of p(y), we have

g(x) = p
(
y(x)

)
⇒ p(1) = 0, p′(1) = 0 and p′′(1) = 0 (3.6)

using the chain rule as well as the fact that y′(x) is nonzero at x = 0. Let y1 = y(x∗) and

y2 = y(−x∗). Then we have 0 < y1 < 1 < y2, p(y1) ≥ 0 and p(y2) ≤ 0. Next we use q(y) to

denote the following function:

q(y) = (1 + y1+r)(1 + yr/a)(1 + ayr) · p(y)
/

2.

Then we have

q(y) = (1 + ayr) + y1+r(1 + yr/a)− (1 + yr/a)(1 + ayr)− (λ/2)(1− y1+r)(1 + yr/a)(1 + ayr)

By the definition of q(y), we have q(y1) ≥ 0 and q(y2) ≤ 0. We use u, v, w > 0 to denote

u =
λ

2
, v =

aλ

2
+

λ

2a
+

1

a
and w = 1 +

λ

2

then we can rewrite q(y) as follows:

q(y) = u · y1+3r + v · y1+2r − w · y2r + w · y1+r − v · yr − u
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Taking its derivative, we get

q′(y) = u(1 + 3r) · y3r + v(1 + 2r) · y2r − 2wr · y2r−1 + w(1 + r) · yr − vr · yr−1

Let q′(y) = yr−1 · s(y), then we have

s(y) = u(1 + 3r) · y1+2r + v(1 + 2r) · y1+r − 2wr · yr + w(1 + r) · y − vr

Taking its derivative, we get

s′(y) = u(1 + 3r)(1 + 2r) · y2r + v(1 + 2r)(1 + r) · yr − 2wr2 · yr−1 + w(1 + r) (3.7)

and its second-order derivative

s′′(y) = 2ur(1 + 3r)(1 + 2r) · y2r−1 + vr(1 + 2r)(1 + r) · yr−1 − 2wr2(r − 1) · yr−2

Let s′′(y) = yr−2 · t(y), then we have

t(y) = 2ur(1 + 3r)(1 + 2r) · yr+1 + vr(1 + 2r)(1 + r) · y − 2wr2(r − 1) (3.8)

We prove some useful properties about these functions. First, we show that s′′(1) is

indeed positive when a is close enough to (r + 1)/(r − 1). By (3.7), we have

s′′(1) = 2ur(1 + 3r)(1 + 2r) + vr(1 + 2r)(1 + r)− 2wr2(r − 1)

Let c = a+ 1/a. Plugging in v = cu+ 1/a and w = 1 + u, we have

s′′(1) = 2ur(1 + 3r)(1 + 2r) + (cu+ 1/a)(1 + 2r)(1 + r)r − 2(1 + u)r2(r − 1)

The trouble here is that λ (and u) depends on the choice of a. But note that the coefficient

of u in s′′(1) is

2r(1 + 3r)(1 + 2r) + cr(1 + 2r)(1 + r)− 2r2(r − 1) > 0

and u is positive when a > (r + 1)/(r − 1). The rest of s′′(1) is the following:

(1/a)(1 + 2r)(1 + r)r − 2r2(r − 1)

Let a = (1 + ε)(r + 1)/(r − 1). When ε goes to 0, the expression above converges to

r(r − 1)(1 + 2r)− 2r2(r − 1) = r(r − 1)(1 + 2r − 2r) = r(r − 1) > 0
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Therefore there exists a positive rational number a > (r + 1)/(r − 1) such that s′′(1) > 0

and α = a1+r is rational (note that we do not care about the number of bits needed to

encode it). We use such an a from now on. From the definition of q and s from p as well

as the chain rule, one can show that p(1) = p′(1) = p′′(1) = 0 (equation 3.6) implies that

q(1) = q′(1) = q′′(1) = 0 and s(1) = s′(1) = 0; Furthermore, since s′′(1) > 0 we have

p′′′(1) > 0. Together with (3.6), we know there is a small enough ε > 0 that satisfies:

p(1 + ε) > 0, p(1− ε) < 0 and y1 < 1− ε < 1 + ε < y2

Recall that p(y1) ≥ 0 and p(y2) ≤ 0. By the definition of q(y) from p(y), we have

q(y1) ≥ 0, q(1− ε) < 0, q(1 + ε) > 0 and q(y2) ≤ 0 (3.9)

In the rest of the proof we show that this cannot happen.

First it is easy to check that t(0) < 0; t(y) > 0 when y → +∞; and t′(y) > 0 for any

y > 0. This shows that there is a unique b ∈ (0,∞) such that t(y) < 0 for any y < b,

t(b) = 0, and t(y) > 0 for any y > b. Using s′′(y) = yr−2 · t(y), the same holds for s′′(y).

Now we examine s′(y). Note that s′(0) > 0 and s′(y) > 0 when y →∞. It follows from

the property of s′′(y) that going from y = 0 to +∞, the sign of s′(y) can change at most

twice from positive to negative and then back to positive.

Finally regarding s(y), we have s(0) < 0 and s(y) > 0 when y → +∞. By the property

of s′(y) we know s(y) can have at most three roots in (0,+∞). From q′(y) = yr−1 · s(y),

the same statement also holds for q′(y). However, this contradicts with (3.9) because

1. From q(0) < 0 and q(y1) ≥ 0, there exists a y ∈ (0, y1) such that q′(y) > 0;

2. From q(y1) ≥ 0 and q(1− ε) < 0, there exists a y ∈ (y1, 1− ε) such that q′(y) < 0;

3. From q(1− ε) < 0 and q(1+ ε) > 0, there exists a y ∈ (1− ε, 1+ ε) such that q′(y) > 0;

4. From q(1 + ε) > 0 and q(y2) ≤ 0, there exists a y ∈ (1 + ε, y2) such that q′(y) < 0;

5. From q(y2) ≤ 0 and q(y) > 0 when y → +∞, there exists a y ∈ (y2,+∞) such that

q′(y) > 0.

It follows that q′(y) has at least four roots in (0,+∞), a contradiction.
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From now on we always assume that a is positive and rational such that α = a1+r is

rational, f satisfies conditions of Lemma 3.2.1, and g satisfies conditions of Lemma 3.2.2.

We remind the reader that λ denotes f ′(0), a positive rational number. We also use θ to

denote the positive root of f . While θ is not rational in general, we can use f (and h in the

proof of Lemma 3.2.1) to compute a γ-rational approximation θ∗ of θ, i.e. |θ∗ − θ| ≤ γ, in

time polynomial in 1/γ. Let σ be f ′(θ) < 0. The following corollaries follow from Lemma

3.2.1 and 3.2.2.

Corollary 3.2.1. We have g(x) < −λx < −λθ for any x ∈ (θ, 1); g(x) > −λx > −λθ for

any x ∈ (0, θ).

Proof. By Lemma 3.2.1 we have f(x) < 0 for any x ∈ (θ, 1) thus, g(x) = f(x)−λx < −λx.

By Lemma 3.2.1 we have f(x) > 0 for any x ∈ (0, θ) thus, g(x) = f(x)− λx > −λx.

Corollary 3.2.2. g(θ) = −λθ and g′(θ) = σ − λ < −λ, where σ = f ′(θ).

Corollary 3.2.3. There exists a positive constant c such that for any x ∈ [−c, c]:∣∣f(x)− λx
∣∣ ≤ |λx/2| and

∣∣f(θ + x)− σx
∣∣ ≤ |σx/2|

Given a sufficiently large positive integer N , we are interested in f and g over:

AN = [−δ, δ], BN = [δ, θ − δ], CN = [θ − δ, θ + δ] (3.10)

B′N = [−θ + δ,−δ], C ′N = [−θ − δ,−θ + δ] and SN = [−θ − δ, θ + δ]

where δ = 1/N . We use Lemma 3.2.1 and Lemma 3.2.2 to prove the following lemmas:

Lemma 3.2.3. When N is sufficiently large, we have |g(x)| ≤ |λx/2| for any x ∈ AN .

Proof. The lemma follows directly from the first part of Corollary 3.2.3.

Lemma 3.2.4. When N is sufficiently large, f(x) ≥ min(λ, |σ|)δ
/

2 for all x ∈ BN .

Proof. Assume for contradiction that this is not the case, meaning that there is an infinite

sequence of N and xN such that xN ∈ BN but f(xN ) < min(λ, |σ|)δ/2. As xN ∈ [0, θ] is

compact, there is a subsequence of xN that converges to a root x∗ of f in [0, θ]. As 0 and

θ are the only nonnegative roots of f , x∗ = 0 or θ. But no matter which case it is, the

derivative of f at x∗ is smaller than we expect and we get a contradiction.
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Using Lemma 3.2.4, we prove the following lemma:

Lemma 3.2.5. Assume that N is sufficiently large. If

g(x) = −λθ ±∆

where ∆ = δ(λ− σ/2), then we must have that x ∈ CN .

Proof. First g(x) < 0 when N is sufficiently large. From Lemma 3.2.2 we have x > 0.

Replacing x by θ + y, we have

f(θ + y)− λ(θ + y) = −λθ ±∆ ⇒ f(θ + y) = λy ±∆

As f(θ + y) < 0 when y > 0, and f(θ + y) > 0 when y < 0 (and x = θ + y > 0), we have

|y| < ∆/λ and thus Corollary 3.2.3 applies when N is sufficiently large: If y > 0 we have

3σy/2 ≤ λy ±∆ = f(θ + y) ≤ σy/2,

which implies 0 < y ≤ ∆/(λ− σ/2) = δ. The case when y < 0 is similar.

Note that by the symmetry of f and g, similar lemmas can be proved for B′N , C
′
N .

3.3 Markets with CES Utilities are PPAD-hard

In this section we prove Theorem 3. Let ρ < −1 be a fixed rational number, and let r = |ρ|.
Given any normalized 2n × 2n polymatrix game P, we construct a market MP in which

each trader has a CES utility function of parameter ρ.

3.3.1 Our Construction

The main building block in the construction is the following:

CES Market Block: We use M to denote the CES market discussed in Example 3.1.1 and

Section 3.2, with rational constants α and a satisfying all conditions of Lemma 3.2.1 and

Lemma 3.2.2. We use the following notation. Given a positive rational number µ, we use

CES(µ,G1, G2) to denote the addition to MP of a sub-market that consists of two traders

Ti and Tj . T1 and T2 are only interested in G1 and G2 and have the same utility functions
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as those of the two traders in M . T1 has µ units of G1 and T2 has µ units of G2. We let

fµ(x) denote the excess spending function (see section 3.2) on G1 from these two traders

when the prices of G1 and G2 are 1 + x and 1− x. Then fµ(x) = µ · f(x).

Recall λ = f ′(0) is positive and rational, θ is the positive root of f , and σ = f ′(θ) < 0.

Let m = n7.

Construction of MP. The market MP consists of the following O(nm) = O(n8) goods:

AUXi, G2i−1,j and G2i,j , for i ∈ [n] and j ∈ [0 : m].

We divide the goods into n(m+ 1) groups: Ri,j = {G2i−1,j , G2i,j}, i ∈ [n] and j ∈ [0 : m].

First for each i ∈ [n], we add a trader with τ = n4 units of G2i−1,0 and G2i,0 each, and

set her utility to be

u(x1, x2) = (xρ1 + xρ2 )1/ρ

where x1 (or x2) denotes the amount of G2i−1,0 (or G2i,0, respectively) she obtains.

Next for each Ri,j , i ∈ [n] and j ∈ [m], we create a market CES(µ,G2i−1,j , G2i,j) with

µ = n/λ.

Now we add a number of single-minded traders who trade between different groups. We

say a trader is a (r,G1 : G2)-trader, if her endowment consists of r units of G1 and she

is only interested in G2. We say a trader is a (r,G1, G2 : G3)-trader, if her endowment

consists of r units of G1 and G2 each, and she is only interested in G3.

At the same time we construct a weighted directed graph G = (V,E) which will be used

in the proof of correctness only. Here each group of goods Ri,j corresponds to a vertex in

the graph G so |V | = n(m+ 1). Given two groups Ri,j and Ri′,j′ , we add an edge from Ri,j
to Ri′,j′ in G whenever we create a set of traders who trade from Ri,j to Ri′,j′ .

Our construction below always makes sure that, whenever we create a set of traders

who trade from Ri,j to Ri′,j′ , the total initial endowment of these traders consists of the

same amount, say w > 0, of G2i−1,j and G2i,j . We then set w as the weight of this edge.

We will prove by the end of the construction that G is a strongly connected graph and for

each group Ri,j the total in-weight is the same as its total out-weight.

Here is the construction:
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1. For each i ∈ [2n], we use Gi to denote Gi,0 and Hi to denote Gi,m for convenience.

For each pair i, j ∈ [n], we add to MP the following four traders who trade from

group Ri,m to group Rj,0: one (P2i−1,2j−1, H2i−1 : G2j−1)-trader, one

(P2i−1,2j , H2i−1 : G2j)-trader, one (P2i,2j−1, H2i : G2j−1)-trader, and one

(P2i,2j , H2i : G2j)-trader. Since P is normalized, we have

P2i−1,2j−1 + P2i−1,2j = P2i,2j−1 + P2i,2j = 1

Thus, the total endowment of these four traders consists of one unit of H2i−1 and

H2i each, so we add an edge in G from Ri,m to Rj,0 with weight 1. At this moment,

the total out-weight of each Ri,m in G (a complete bipartite graph) is n, and the

total in-weight of each Rj,0 in G is n.

2. Next for each i ∈ [n] and j ∈ [m], we add two traders who trade from group Ri,j−1

to group Ri,j : one (n,G2i−1,j−1 : G2i−1,j)-trader and one (n,G2i,j−1 : G2i,j)-trader.

As their total endowment consists of n units of G2i−1,j−1 and G2i,j−1 each, we add

an edge from Ri,j−1 to Ri,j of weight n.

This finishes the construction of G. It is also easy to verify that G is strongly connected

and each vertex has both its total in-weight and out-weight equal to n.

Finally, we add traders between AUXj and Rj,0 for each j ∈ [n]. Let

r2j−1 = 2n−∑i∈[2n] Pi,2j−1 > 0 and r2j = 2n−∑i∈[2n] Pi,2j > 0 (3.11)

Because the polymatrix game P is normalized, note that

r2j−1 + r2j = 2n, for any j ∈ [n].

Let θ∗ denote a γ-rational approximation of θ (see definition 7), the positive root of f , where

γ = 1/n7. Then we add the following three traders: one ((1 − θ∗)r2j−1, AUXj : G2j−1)-

trader, one ((1−θ∗)r2j , AUXj : G2j) trader, and one ((1−θ∗)n,G2j−1, G2j : AUXj)-trader.

Note that r2j−1 + r2j = 2n as P is normalized.

This finishes the construction ofMP. It follows immediately from the strong connectivity

of G that the economy graph of MP is strongly connected as well. Thus, MP is a valid input
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of problem ρ-CES-APPROX and can be constructed from P in polynomial time. We also

record the following properties of MP:

Lemma 3.3.1. For each i ∈ [n], the total supply of good AUXi is 2n(1− θ∗);
For each i ∈ [2n], the total supply of good Gi,0 is τ + (2− θ∗)n; and

For each i ∈ [2n] and j ∈ [m], the total supply of good Gi,j is µ+ n = Θ(n).

Finally, we give some intuition about the choice of m = n7 here. The key challenge for

the reduction is to make sure that in any approximate equilibrium, a gap between the prices

of G2i−1,0 and G2i,0 gets amplified in prices of G2i−1,m and G2i,m. More precisely, whenever

the ratio of the price of G2i−1,0 to that of G2i,0 is large (or small), the ratio of the price of

G2i−1,m to that of G2i,m must be even larger (or smaller). This is achieved in our construc-

tion by m = n7 rounds of minor amplifications, from G2i−1,j , G2i,j to G2i−1,j+1, G2i,j+1, for

each j ∈ [0 : m].

3.3.2 Proof of Correctness

We introduce additively approximate market equilibria to simplify the presentation:

Definition 10. We say p is an ε-additively approximate market equilibrium of a market

M , for some ε ≥ 0, if there exists a vector z ∈ Z(p) such that zj ≤ ε for all j.

From the definitions, if the total supply of each good in M is bounded from above

by L, then any ε-approximate equilibrium of M must be an (εL)-additively approximate

equilibrium as well.

Now let p denote an ε-additively approximate market equilibrium of MP where ε =

1/n14. We show in the rest of this section that given p, one can compute a (1/n)-well-

supported Nash equilibrium of P efficiently in polynomial time. Theorem 3 then follows.

In the proof below we use π(G) to denote the price of a good G in the price vector p. For

each Ri,j , we let πi,j = π(G2i−1,j) + π(G2i,j). Finally, we use a = b ± c, where c > 0, to

denote the inequality b− c ≤ a ≤ b+ c.

Moving on with the proof, note that only one trader is interested in AUXj and thus we

obtain the following lower bound.
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Lemma 3.3.2. Let p denote an ε-additively approximate equilibrium of MP, where ε =

1/n14. If we scale p so that πj,0 = π(G2j−1) + π(G2j) = 2 for some j ∈ [n], then we have

π(AUXj) ≥ 1−O(ε/n).

Second, by using the strong connectivity of G and the property that every vertex in G
has the same total in-weight and out-weight, we get the following lemma:

Lemma 3.3.3. Let p denote an ε-additively approximate equilibrium of MP. Let

πmax = max
i,j

πi,j and πmin = min
i,j

πi,j

both over i ∈ [n] and j ∈ [0 : m]. If we scale p so that πmin = 2, then πmax = 2 +O(mε).

Proof. For convenience, we use u and v to denote vertices (groups) in G. For each u in G,

we use πu to denote πi,j if u corresponds to Ri,j . An edge from u to v of weight w means

traders from u to v spend wπu on v.

Now fix a vertex v and let R denote its corresponding group of goods. As p is an

ε-approximate market equilibrium, we must have

total money spent on goods in R− total worth of goods in R ≤ O(επv) (3.12)

For those traders in the closed economy over R, the money they spend on R is equal to the

total worth of their initial endowments of R. So they cancel each other in (3.12). Below

we enumerate all other traders in MP who either own goods in R at the beginning or are

interested in goods in R:

1. Let N−(v) denote the set of predecessors of v. Then for each u ∈ N−(v), the

amount of money that traders from u to v spend on R is wu,v · πu, where wu,v

denotes the weight of edge (u, v).

2. Let N+(v) denote the set of successors of v. Then for each u ∈ N+(v), the total

worth of goods in R owned by traders from v to u at the beginning is wv,u · πv.

3. For the special case when R = Rj,0 for some j ∈ [n], we have three more traders:

one ((1− θ∗)r2j−1, AUXj : G2j−1)-trader, one ((1− θ∗)r2j , AUXj : G2j)-trader, and

one ((1− θ∗)n,G2j−1, G2j : AUXj)-trader.
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Since these are all the traders in MP relevant to goods in R, from Lemma 3.3.2 and (3.12),

∑
u∈N−(v)

wu,v · πu −
∑

u∈N+(v)

wv,u · πv ≤ O(επv), for each v ∈ V . (3.13)

Now we use (3.13) to prove the lemma:

1. First, each group Ri,j , where i ∈ [n] and j ∈ [m− 1], has exactly one predecessor

Ri,j−1 and one successor Ri,j+1, both with weight n. From (3.13), we have

πi,j−1 − πi,j ≤ O(επi,j/n), for all i ∈ [n] and j ∈ [m− 1]. (3.14)

2. Next, each group Ri,m, where i ∈ [n], has only one predecessor Ri,m−1 with weight

n, and n successors each with weight 1. From (3.13), we have

πi,m−1 − πi,m ≤ O(επi,m/n), for all i ∈ [n]. (3.15)

3. Finally, each group Ri,0, where i ∈ [n], has n predecessors {R`,m}`∈[n], all of weight

1, and has one successor Ri,1 with weight n. From (3.13), we have

∑
`∈[n] π`,m − nπi,0 ≤ O(επi,0), for all i ∈ [n]. (3.16)

Let πi,j = πmin = 2 after scaling and πx,y = πmax. Using (3.14) and (3.15), we have

πi,0 ≤
(
1 +O(ε/n)

)m · πi,j = 2
(
1 +O(εm/n)

)
= 2 +O(εm/n),

where we used the fact that εm/n = 1/n8 � 1. Similarly, we also have

πx,m ≥
(
1 +O(ε/n)

)−m · πmax ≥
(
1−O(εm/n)

)
πmax.

Combining these two bounds with (3.16), we get

(n+O(ε))(2 +O(εm/n)) ≥ (n+O(ε))πi,0 ≥
∑
`∈[n]

π`,m ≥ 2(n− 1) +
(
1−O(εm/n)

)
πmax

Solving it for πmax gives us

πmax ≤
2n+O(ε) +O(εm) +O(ε2m/n)− 2(n− 1)

1−O(εm/n)
=

2 +O(εm)

1−O(εm/n)
= 2 +O(εm).

This finishes the proof of the lemma.
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We can now prove the following bound on π(AUXj):

Lemma 3.3.4. Let p denote an ε-additively approximate equilibrium of MP with ε = 1/n14.

If we scale p so that πj,0 = 2 for some j ∈ [n], then we have π(AUXj) ≤ 1 +O(mε).

Proof. We revisit (3.12). Let v denote the vertex that corresponds to Rj,0.

Plugging in (3.12) the list of traders enumerated in the proof of Lemma 3.3.3, we have

∑
`∈[n]

π`,m + 2n(1− β) · π(AUXj)− nπj,0 − (1− β)nπj,0 ≤ O(επj,0)

The lemma then follows directly from Lemma 3.3.3.

From now on, we use xi,j to denote the unique number that satisfies

1 + xi,j
1− xi,j

=
π(G2i−1,j)

π(G2i,j)
, for each i ∈ [n] and j ∈ [0 : m].

Note that the xi,j ’s are invariant under scaling of p. If we scale p so that πi,j = 2, for some

i and j, then we must have π(G2i−1,j) = 1 + xi,j and π(G2i,j) = 1− xi,j . Moreover, even if

we scale p so that the sum of prices of another group becomes 2, we still have the following

estimations by Lemma 3.3.2, 3.3.3 and 3.3.4:

π(G2i−1,j) = 1 + xi,j ±O(mε), π(G2i,j) = 1− xi,j ±O(mε) and π(AUXj) = 1±O(mε)

(3.17)

Next we show that xi,0 must be very close to 0 for all i ∈ [n].

Lemma 3.3.5. If p is an ε-additively approximate equilibrium, then |xi,0 | = O(1/n3) for

all i ∈ [n].

Proof. Fix an i ∈ [n]. We first scale p so that πi,0 = 2, and use x to denote xi,0. Let T

denote the trader with τ units of G2i−1 and G2i each. We let y1 denote the demand of

G2i−1, and y2 to denote the demand of G2i from T . Then

y1(1 + x) + y2(1− x) = 2τ

and by (3.4) we have

y1

y2
=

(
1− x
1 + x

)1/(1+r)
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Assume without loss of generality x > 0, we will show that x = O(1/n3). To this end,

y2 =
2τ

(1− x) + (1− x)1/(1+r)(1 + x)r/(1+r)
≤ τ +O(n),

which follows from p being an additively approximate equilibrium. It implies that

(1− x)1/(1+r) ≥ (1 + x)1/(1+r) −O(1/n3) > 1−O(1/n3).

Since r is a positive constant, we have x = O(1/n3) and the lemma follows.

From now on we set N = n6. Recall the definition of AN , BN , CN , B
′
N , C

′
N , SN in (3.10).

Using Lemma 3.3.5, we have xi,0 ∈ SN . Next we show that xi,j ∈ SN for all i and j.

Lemma 3.3.6. If p is an ε-additively approximate equilibrium, then xi,j ∈ SN for all i ∈ [n]

and j ∈ [m].

Lemma 3.3.6 follows directly from the following three lemmas by induction:

Lemma 3.3.7. For any i ∈ [n] and j ∈ [m], if xi,j−1 ∈ AN , then xi,j ∈ AN ∪BN ∪B′N .

Lemma 3.3.8. For any i ∈ [n] and j ∈ [m], if xi,j−1 ∈ BN , then xi,j ∈ BN ∪ CN ; and

if xi,j−1 ∈ B′N then xi,j ∈ B′N ∪ C ′N

Lemma 3.3.9. For any i ∈ [n] and j ∈ [m], if xi,j−1 ∈ CN , then xi,j ∈ CN ; and if

xi,j−1 ∈ C ′N , then xi,j ∈ C ′N .

Proof of Lemma 3.3.7. First we scale p so that πi,j = 2. We use x to denote xi,j so that

the prices of π(G2i−1,j) and π(G2i,j) are 1 + x and 1− x, respectively. We also let

y = xi,j−1, π(G2i−1,j−1) = 1 + y1 and π(G2i,j−1) = 1− y2.

From Lemma 3.3.3, y1 and y2 are both y ± O(mε). The excess spending of G2i−1,j of the

whole market is

µ · f(x) + n(1 + y1)− n(1 + x) = n(1/λ)(f(x)− λx+ λy1) = n(1/λ)(g(x) + λy1) (3.18)

while the excess spending of G2i,j of the whole market is

− µ · f(x) + n(1− y2)− n(1− x) = −n(1/λ)(g(x) + λy2) (3.19)
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As πi,j = 2 and p is an ε-additively approximate equilibrium, both (3.18) and (3.19) are at

most O(ε). As a result, we have∣∣n(1/λ)(g(x) + λy)
∣∣ = O(nmε) ⇒ |g(x) + λy | = O(mε) (3.20)

since λ is a positive constant. As |y| = |xi,j−1| ≤ 1/N = 1/n6 and mε = 1/n7, we have

|g(x)| = O(1/N). The lemma now follows from Corollary 3.2.1 and 3.2.3.

Proof of Lemma 3.3.8. Assume xi,j−1 ∈ BN ; the proof of the other case is similar. Using

the same notation and argument of Lemma 3.3.7, we start with (3.20) and get

g(x) ≥ −λy −O(mε) ≥ −λ(θ − 1/N +O(mε)) > −λθ,

where the second inequality used y = xi,j−1 ∈ BN and thus, y ≤ θ − 1/N . We also have

g(x) ≤ −λy +O(mε) ≤ −λ/N +O(mε) < 0,

where the second inequality used y = xi,j−1 ≥ 1/N . By Corollary 3.2.1 x ∈ AN ∪BN ∪CN .

Assume for contradiction that x ∈ AN . Then by Corollary 3.2.3 we have

−λ/N +O(mε) ≥ g(x) ≥ −λx/2

Thus, x ≥ 2/N −O(mε) /∈ AN and we get a contradiction.

Proof of Lemma 3.3.9. Assume xi,j−1 ∈ CN ; the proof of the other case is similar.

Using the same notation and argument of Lemma 3.3.7, we start with (3.20) and get

O(mε) = |g(x) + λy | = |g(x) + λθ ± λ/N |, which implies

|g(x) + λθ| ≤ λ/N +O(mε)

The right side is smaller than (λ − σ/2)/N as N = n6, ε = 1/n14 and m = n7. It follows

from Lemma 3.2.5 that x ∈ CN . The lemma follows directly.

We construct a 2n-dimensional vector y from p as follows. Recall θ∗ is a γ-rational

approximation of θ with γ = 1/n7. Let δ = 1/N . For each i ∈ [n], if xi,m ≥ θ∗ − 2δ, then

we set y2i−1 = 1 and y2i = 0; if xi,m ≤ −(θ∗ − 2δ), then we set y2i−1 = 0 and y2i = 1;

otherwise, we set y2i−1 and y2i to be

y2i−1 =
θ∗ + xi,m

2θ∗
and y2i =

θ∗ − xi,m
2θ∗

.
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By definition, y is a nonnegative vector and y2i−1 + y2i = 1 for all i ∈ [n]. Note that

when xi,m ∈ CN , we have xi,m ≥ θ∗ − 2δ since γ < δ, and hence y2i−1 = 1 and y2i = 0.

Similarly, if xi,m ∈ C ′N then y2i−1 = 0 and y2i = 1. By Lemma 3.3.3, for every i ∈ [2n],

yi =
θ∗ + π(Gi)− 1

2θ∗
±
(
O(γ +mε+ 1/N)

)
⇒ π(Gi) = 2θ∗yi + (1− θ∗)±O(1/N).

To finish the proof of Theorem 3, we prove the following theorem:

Theorem 4. When n is sufficiently large, y built above is a (1/n)-well-supported Nash

equilibrium of P.

To prove the theorem we will need the following two lemmas.

Lemma 3.3.10. For any j ∈ [m], if xi,j−1, xi,j ∈ BN , then xi,j = xi,j−1 + Ω(1/N).

Proof. Using the same notation and argument of Lemma 3.3.7, we start with (3.20) and get

g(xi,j) = −λxi,j−1 ± O(mε). From Lemma 3.2.4, g(xi,j) + λxi,j = f(xi,j) = Ω(1/N) since

xi,j ∈ BN . As a result, we have

−λxi,j + Ω(1/N) = g(xi,j) = −λxi,j−1 ±O(mε)

and thus, xi,j = xi,j−1 + Ω(1/N) using m = n7 and ε = 1/n14. The lemma follows.

We are now ready to prove the following key lemma.

Lemma 3.3.11. For every i ∈ [n], if xi,0 ∈ BN ∪ CN , then we have xi,m ∈ CN and

y2i−1 = 1, y2i = 0. Similarly if xi,0 ∈ B′N ∪ C ′N , then xi,m ∈ C ′N and y2i−1 = 0, y2i = 1.

Proof. By Lemma 3.3.9, we assume that xi,0 ∈ BN without loss of generality.

Now assume for contradiction that xi,m /∈ CN . By Lemma 3.3.9 again, we have xi,j ∈ BN
for all j ∈ [m]. This contradicts Lemma 3.3.10 as m = n7, N = n6. Lemma 3.3.11

follows.

Finally we prove Theorem 4:

Proof of Theorem 4. We assume for contradiction that y is not a (1/n)-well-supported Nash

equilibrium of P. Without loss of generality, we assume that

yT ·P1 > yT ·P2 + 1/n (3.21)
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where P1 and P2 denote the first and second columns of P, but y2 > 0. For a contradiction,

by Lemma 3.3.11, it suffices to show that (3.21) implies that x1,0 ∈ BN ∪ CN .

To this end, we first scale p so that π(G1) + π(G2) = 2, and use x to denote x1,0.

By Lemma 3.3.5, we have π(G1), π(G2) = 1 ± O(1/n3) are very close to 1. By applying

Walras’ law over the whole market MP and using the assumption that p is an ε-additively

approximate equilibrium, we have

ε ≥ the excess demand of G1 (or G2) ≥ −O(mnε). (3.22)

Now we compare the total money spent on G1 and G2, by all traders in MP except the

one, denoted by T , who owns τ units of G1 and G2 each. We list all such traders:

1. For each i ∈ [2n], there is a (Pi,1, Hi : G1)-trader. The total money these traders

spend on G1 is∑
i∈[2n]

Pi,1 · π(Hi) =
∑
i∈[2n]

Pi,1 ·
(

2θ∗yi + (1− θ∗)±O(1/N)
)

2. For each i ∈ [2n], there is a (Pi,2, Hi : G2)-trader. The total money these traders

spend on G2 is∑
i∈[2n]

Pi,2 · π(Hi) =
∑
i∈[2n]

Pi,2 ·
(

2θ∗yi + (1− θ∗)±O(1/N)
)

3. There is one ((1− θ∗)r1, AUX1 : G1)-trader and one ((1− θ∗)r2, AUX1 : G2) trader.

Recall r1 and r2 in (3.11). The total money these traders spend on G1 is

M1 = 2θ∗ · yT ·P1 + 2n(1− θ∗)±O(n/N)

using N = n6 and mε = 1/n7, and the total money these traders spend on G2 is

M2 = 2θ∗ · yT ·P2 + 2n(1− θ∗)±O(n/N)

Thus M1 −M2 = Ω(1/n) and the demand for G1 is larger than the demand for G2, from

these traders, by

M1

π(G1)
− M2

π(G2)
≥ M2 + Ω(1/n)

π(G1)
− M2

(1−O(1/n3)) · π(G1)
= Ω(1/n)
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where both inequalities used π(G1), π(G2) = 1±O(1/n3) and M1,M2 = O(n).

Let d1 (or d2) denote the demand of G1 (or G2, respectively) from T . Using (3.22) and

mnε� 1/n we must have d2 − d1 = Ω(1/n). On the other hand, we have from (3.4):

d1

d2
=

(
1− x
1 + x

)1/(1+r)

As π(G1), π(G2) are close to 1, d1 and d2 are O(τ) even if T spends all the budget on one

of them. As a result, we have(
1 + x

1− x

)1/(1+r)

=
d2

d1
= 1 +

d2 − d1

d1
= 1 + Ω(1/n5)

and thus, x = Ω(1/n5). It follows from Lemma 3.3.5 and N = n6 that x ∈ BN . This

finishes the proof of the theorem.
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Chapter 4

The Complexity of Non-Monotone

Markets

4.1 Introduction

As mentioned earlier, several market equilibrium problems have been shown to be PPAD-

hard, however, the reduction techniques developed in these proofs make heavy use of the

properties of the particular utilities under consideration. On the other hand, our PPAD-

hardness proof for CES markets is not really fine-tuned to CES utilities. Although it

uses properties of the CES utilities to ensure that no spurious equilibria appear, the main

building block of the reduction relies on an interesting behavior of example 3.1.1.

Crucial Behaviour. There is a special good (in example 3.1.1 either G1 or G2) and a

price vector p > 0 (in example 3.1.1 p = (1, 1)) such that at p, the excess demand of G

is nonnegative and raising the price of G, while keeping all other prices the same, strictly

increases the demand of G.

This observation inspired us to ask the following question:

Can we prove a complexity dichotomy for any given family of utility functions?

In more details, let U denote a generic family of utilities that satisfy certain mild conditions

(e.g., they are continuous, quasi-concave). The question now becomes the following:
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Does there exist a mathematically well-defined property of families of functions

such that: For any U satisfying this property the equilibrium problem it defines

is in polynomial time, while for any U that violates this property the problem is

hard, e.g., PPAD-hard?

In this section, we obtain a PPAD-hardness result that is widely applicable to any

generic family U of utility functions, as long as it satisfies the following condition:

[ Informal ]: There exists a market M with utilities from U , a special good

G in M , and a price vector p > 0 such that at p, the excess demand of G is

nonnegative and raising the price of G, while keeping all other prices the same,

strictly increases the demand of G.

If such a market exists, we call it non-monotone and U a non-monotone family.

In Section 4.2 we provide examples of simple non-monotone markets, constructed from

various families of utilities. All families for which we have hardness results for the (ap-

proximate) equilibrium problem are non-monotone. This includes in particular the family

of separable piecewise-linear functions, the family of Leontief functions, and the family of

CES functions for any value of the parameter ρ < −1. Of course, if a family U is non-

monotone, then so is any superset of U . We show that the existence of a non-monotone

market implies the following hardness result:

Theorem 5 (Informal). If U is non-monotone, then the following problem is PPAD-hard:

Given a market in which the utility of each trader is either linear or from U , find an

approximate market equilibrium.

The theorem implies in particular the known PPAD-hardness of the (approximate) equi-

librium problem for Arrow-Debreu markets with separable piecewise-linear utility functions

[Chen et al., 2009a]. In fact the proof shows that the problem is hard even in the special

case where the utility function of every trader for each good is either linear or linear with a

threshold after which it gets saturated and stops increasing. The theorem by itself, however,

does not imply the hardness result for CES markets (Theorem 3) or for Leontief markets

[Codenotti et al., 2006] (even though these families are non-monotone), because of the use

of linear functions.
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Comparing Theorem 5 with the major known positive case of WGS, it is easy to see that

if a market satisfies WGS then it cannot be non-monotone: raising the price of a good G

causes the demands for all other goods to increase or stay the same, and hence by Walras’

law, the demand for G cannot also increase. There remains a gap however between WGS

and the complement of non-monotonicity, mainly for two reasons: 1) in the definition of

non-monotone markets, the excess demand of G is required to be nonnegative at p but WGS

does not make such an assumption, and 2) the definition of non-monotonicity constrains the

change in the demand of the good G whose price is increased whereas WGS constrains the

change in the demand of all other goods. If there are only two goods the two constraints are

related both ways (by Walras’ law), but if there are more than two goods the implication is

only in one direction. It remains an open problem whether we can further reduce the gap,

and whether we can remove the use of linear functions in the theorem.

The rest of this chapter is organized as follows. In Section 4.2, we give all the necessary

definitions and state formally our results. Section 4.3 contains the PPAD-hardness proof

for general non-monotone utilities.

4.2 Definitions and Statement of Results

We use U to denote a generic family of continuous, quasi-concave and locally non-satiated

functions, e.g., linear functions, piecewise-linear functions (see Example 4.2.3), CES func-

tions for a specific parameter of ρ, e.g. ρ = −3, or even the finite set of three functions

given in (3.2). Throughout this chapter we will make the following two assumptions for U .

Assumption 1. U is countable and each function g ∈ U corresponds to a unique binary

string s so that a trader can specify a function g ∈ U using s. In a market with m goods,

we say a trader “applies” a function g ∈ U if her utility function u is of the form

u(x1, . . . , xm) = g

(
x`1
b1
, . . . ,

x`k
bk

)
,

where g ∈ U has k ≤ m variables; `1, . . . , `k ∈ [m] are distinct indices; and b1, . . . , bk are

positive rational numbers used to change the units. In this way, each trader can be described

by a finite binary string.



CHAPTER 4. THE COMPLEXITY OF NON-MONOTONE MARKETS 50

Assumption 2. There exists a univariate function g∗ ∈ U that is strictly monotone.

Remark. These two assumptions seem to be natural and we only need them for technical

reasons that will become clear later. When a trader applies a function from U , she can always

change units by scaling with the appropriate values for b1, . . . , bk. The second assumption

allows us to add single-minded traders who spend all their budget on one specific good.

We use MU to denote the set of all markets in which every trader has a rational initial

endowment and applies a utility function from U . We also use M∗U to denote the set of

markets in which every trader has a rational initial endowment and applies either a utility

function from U or a linear utility with rational coefficients.

Next, we define non-monotone markets as well as non-monotone families of utilities:

Definition 11 (Non-monotone Markets and Families of Utilities). Let M be a market with

k ≥ 2 goods. We say M is non-monotone at a price vector p if the following conditions

hold:

1. πj > 0 for all j ∈ [k]

2. For some c > 0, the excess demand Z1(y1, . . . , yk) of G1 is a continuous function over

y ∈ B(p, c) with Z1(p) ≥ 0. The partial derivative of Z1 with respect to y1 exists and

is continuous over B(p, c) and is (strictly) positive at p.

We call M a non-monotone market if there exists such a price vector p. We also call U
a non-monotone family of utilities if there exists a non-monotone market in MU .

Remark. By definition, M being non-monotone at p means that raising the price of G1,

while keeping the prices of all other goods the same, would actually increase the total

demand of G1. Also note that using the continuity of Z1 as well as its partial derivative

with respect to y1, we can indeed require, without loss of generality, the price vector p to be

rational in Definition 11: if M is a non-monotone market at p but p is not rational, then a

rational vector p∗ close enough to p would have the same property. Therefore, whenever U
is non-monotone, there is a market M ∈ MU that is non-monotone at a rational price

vector p. We would like to mention that M is not necessarily strongly connected and the



51 CHAPTER 4. THE COMPLEXITY OF NON-MONOTONE MARKETS

excess demand Z1(p) of G1 and the partial derivative of Z1 with respect to y1 at p do not

have to be rational.

We now state the main result of this chapter, a PPAD-hardness reduction to any non-

monotone family U of functions. We use U-MARKET to denote the following problem: the

input is a pair (k,M), where k is a positive integer in unary and M is a strongly connected

market from M∗U encoded in binary. The goal is to output an ε-approximate equilibrium

of M with ε = 1/k. Here is the formal statement.

Theorem 6 (Main Result). Let U denote a non-monotone family of utility functions. If

there exists a market M ∈ MU such that M is non-monotone at a rational price vector p

and the excess demand Z1(p) of G1 at p is moderately computable, then U-MARKET is

PPAD-hard.

Remark. By definition, U being non-monotone implies the existence of M and p. The

other assumption made in Theorem 6 only requires that there exists one such pair (M,p)

for which Z1(p) as a specific positive number is moderately computable. We also point

out that, when the assumptions of Theorem 6 hold, such a pair M and p is considered a

constant, therefore, we can later use it in the proof of Theorem 6 as a gadget to give a

polynomial-time reduction from Polymatrix to U-MARKET. As a result, all components

of M are considered constants encoded by binary strings of constant length. This includes

the number of goods and traders, the endowments of traders, the binary strings that specify

their utility functions from U , and the positive rational vector p.

4.2.1 Examples of non-monotone Markets

Now we present three examples of non-monotone markets, one with CES utilities (see 3.1.1)

of parameter ρ < −1, one with Leontief utilities, and one with additively separable and

piecewise-linear utilities.

Example 4.2.1 (A Non-Monotone Market with CES Utilities of ρ < −1 [Gjerstad, 1996]).

Recall the market from example 3.1.1. There are two goods G1 and G2 and two traders

T1 and T2, each with 1 unit of G1 and G2 respectively and their utilities are u1(x1, x2) =

(α · xρ1 + xρ2)1/ρ and u2(x1, x2) = (xρ1 + α · xρ2)1/ρ.
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Figure 4.1: The excess demand function Z1(x) of Example 3.1.1.

From 3.1, it follows that the excess demand function and its derivative is defined and

continuous anywhere except for 0. When ρ < −1 and α is large enough, this market is

non-monotone at (1, 1). To see this, we let Z1(x) denote the excess demand function of G1,

when the price of G1 is 1 + x and the price of G2 is 1− x and plot Z1 in Figure 4.1. From

the picture, it is clear that the curve has three roots (equilibria) and is non-monotone at

(1, 1), or equivalently, when x = 0.

Example 4.2.2 (A Non-Monotone Market with Leontief Utilities). Let M denote the Leon-

tief market consisting of two traders T1 and T2. T1 has 1 unit of G1, T2 has 1 unit of G2,

and their utility functions are

u1(x1, x2) = min
{
x1/2, x2

}
and u2(x1, x2) = min

{
x1, x2/2

}
respectively. It is easy to show that M is non-monotone at (1, 1).

Example 4.2.3. (A Non-Monotone Market with Additively Separable and Piecewise-Linear

Utilities) We say u is additively separable and piecewise-linear if

u(x1, . . . , xk) = f1(x1) + · · ·+ fk(xk) (4.1)

where f1, . . . , fk are all piecewise-linear functions. Consider the following market M with

two goods G1, G2 and two traders T1, T2. T1 has 1 unit of G1 and T2 has 1 unit of G2.
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Their utility functions are

u1(x1, x2) = x1 + f(x2) and u2(x1, x2) = f(x1) + x2 with f(x) =


2x if x ≤ 1/3

2/3 if x > 1/3

It can be shown that M has (1, 1) as an equilibrium and is non-monotone at (1, 1). Note that

in general, the excess demand of a market with such utilities is a correspondence instead of

a map, and partial derivatives may not always exist. But in the definition of non-monotone

markets, we only need these properties in a local neighborhood of p, like (1, 1) here.

Since linear functions are special cases of additively separable and piecewise-linear func-

tions, a corollary of Theorem 6 and Example 4.2.3 is that finding an approximate equilibrium

in a market with additively separable and concave piecewise-linear utilities is PPAD-hard.

This result was shown earlier in [Chen et al., 2009a] but with the use of three-segment

piecewise-linear utilities. Combining this with the membership in PPAD [Vazirani and

Yannakakis, 2011], we have:

Corollary 4.2.1. The problem of computing an approximate market equilibrium in a market

with additively separable and concave piecewise-linear utilities is PPAD-complete, even when

each univariate function fj in (4.1) is either linear or a linear function with a threshold.1

4.3 Markets with Non-Monotone and Linear Utilities are

PPAD-hard

We prove Theorem 6 in this section. Let U denote a non-monotone family of utilities and

M ∈MU denote a market that is non-monotone at a rational price vector p. We let k ≥ 2

denote the number of goods in M . We also assume that the excess demand Z1(p) of G1 at p

is moderately computable. As discussed earlier, M , k, p, Z1(p) (including the total supply

of each good in M) are all considered constants, independent of the size of the polymatrix

game we reduce from.

1The second part of the statement follows from the construction used in the proof of Theorem 6.
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4.3.1 Normalized Non-Monotone Markets

Note that in examples 3.1.1, 4.2.2, and 4.2.3, the market we construct not only is non-

monotone at 1 = (1, 1) but also has Z1(1) = 0 (indeed 1 is an equilibrium in all three

examples). The lemma below shows that this is not really a coincidence since we can always

convert a non-monotone market into one that is non-monotone at 1, as shown below. Recall

that M ∈ MU is a market that is non-monotone at a rational vector p, with k ≥ 2 goods,

such that Z1(p) is moderately computable. We use M and p to prove the following lemma:

Lemma 4.3.1 (Normalized Non-Monotone Markets). There exist two (not necessarily ra-

tional) positive constants c and d such that, given any γ > 0, one can build a market

Mγ ∈ MU with k ≥ 2 goods G1, . . . , Gk, in time polynomial in 1/γ with the following

properties.

1. Let fγ(x) denote the excess demand function of G1 when the price of G1 is 1 + x and

the prices of all other (k−1) goods are 1−x. Then fγ is well defined over [−c, c] with

|fγ(0)| ≤ γ and its derivative f ′γ(0) = d > 0. For any x ∈ [−c, c], fγ(x) satisfies

∣∣fγ(x)− fγ(0)− dx
∣∣ ≤ |x/D|, where D = max

{
20, 20/d

}
.2

2. The total supply of each of the k goods in Mγ is O(1).

Proof. First we construct M ′ from M by scaling: For each trader with utility u and initial

endowment vector w ∈ Qk
+, replace them by w′j = wj · πj for every j ∈ [k] and

u′(x1, . . . , xk) = u

(
x1

π1
, . . . ,

xk
πk

)
Since p is rational and positive, we have M ′ ∈MU . It is also easy to verify that M ′ now is

non-monotone at 1. Let g(x) denote the excess demand function of G1 when the price of G1

is 1+x and the prices of all other goods are 1−x. Then, by the definition of non-monotone

markets, there exist two positive constants c and d such that g is well defined over [−c, c],
g(0) ≥ 0 and g′(0) = d > 0. The latter follows from the fact that the excess demand at

2As it will become clear in the proof of Lemma 4.3.1, one can choose D to be any positive constant (by

picking a small enough constant c accordingly). Our choice of D = max{20, 20/d} (and the constant 20)

just makes sure that D is large enough for the proof of correctness of our reduction to work later.
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(1 + x, 1 − x, . . . , 1 − x) is the same as that at ((1 + x)/(1 − x), 1, . . . , 1). As d (and thus,

D) is a constant, setting c to be a small enough constant, it follows from g′(0) = d that:

∣∣g(x)− g(0)− dx
∣∣ ≤ |x/D|, for all x ∈ [−c, c].

Next, let Z ′1 = g(0) denote the excess demand of G1 in M ′ at 1. Then Z ′1 = π1 · Z1(p)

and thus, Z ′1 is also moderately computable. Given any γ > 0, we compute a γ-rational

approximation z of Z ′1. We assume, without loss of generality, that z is nonnegative;

otherwise, simply set z = 0. Finally, we construct Mγ from M ′ by adding a trader with z

units of G1 who is only interested in Gk. It is clear that the total supply of each good in

Mγ remains O(1) as both p and Z1(p) are constants.

Let fγ(x) denote the excess demand function of G1 in Mγ when the price of G1 is

1 + x and all other goods have price 1 − x. The construction of Mγ then implies that

fγ(x) = g(x) − z and thus, |fγ(0)| ≤ γ. It follows that Mγ and fγ satisfy all the desired

properties with respect to constants c and d above.

4.3.2 Our Construction

Given a normalized 2n × 2n polymatrix game P, we construct a market MP ∈ M∗U in

polynomial time. We begin by describing the two building blocks of MP and introduce

some useful notation for them.

Normalized Non-Monotone Market: Given two positive rational numbers µ and γ, we

use NM (µ, γ,G1, . . . , Gk) to denote the addition to MP of the following sub-market. First,

we make a copy of Mγ in which the k goods that they are interested in are G1, . . . , Gk. Then

for each trader in Mγ with utility function u(x1, . . . , xk) and endowment w = (w1, . . . , wk),

we replace w by µw and u by

u′(x1, . . . , xk) = u

(
x1

µ
, . . . ,

xk
µ

)
When both parameters µ and 1/γ are bounded from above by a polynomial in n, it takes

time polynomial in n to create these traders. Let fµ,γ(x) denote the excess demand of G1

when the price of G1 is 1 + x and the prices of all other goods are 1 − x, then we have
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fµ,γ(x) = µ · fγ(x). From the properties of fγ stated in Lemma 4.3.1, fµ,γ is well defined

over [−c, c], satisfies |fµ,γ(0)| ≤ µγ, and

∣∣fµ,γ(x)− fµ,γ(0)− µdx
∣∣ ≤ |µx/D|, for x ∈ [−c, c], with D = max

{
20, 20/d

}
. (4.2)

Recall that c and d are positive constants from Lemma 4.3.1, which do not depend on γ or

µ. Also note that the total supply of each good in NM (µ, γ,G1, . . . , Gk) is O(µ).

Price-Regulating Market: Let G1, . . . , G` denote ` ≥ 2 goods in MP (where ` is k

or 2 below), and let λ and α denote two positive rational numbers, where α < 1. We

use PR(λ, α,G1, . . . , G`) below to denote the creation of two traders T1, T2, and refer to

the submarket they form as a price-regulating market [Chen et al., 2009a; Vazirani and

Yannakakis, 2011].

The endowment of T1 is (`− 1)λ units of G1 and the endowment of T2 is λ units of each

of G2, . . . , G`. We set their utility functions u1 and u2, both of which are linear, as follows:

u1(x1, . . . , x`) = (1 + α)x1 +
∑

2≤j≤`
(1− α)xj and

u2(x1, . . . , x`) = (1− α)x1 +
∑

2≤j≤`
(1 + α)xj

We will see that in any approximate market equilibrium, when λ is large enough and

certain conditions are satisfied, a price-regulating market basically requires the prices of

G2, . . . , G` to be the same when ` > 2; and the ratio of prices of G1 and G2 to be between

(1− α)/(1 + α) and (1 + α)/(1− α).

Except for these two building blocks, all other traders in MP are indeed single-minded :

Each of them is only interested in one specific good and spends all her budget on it. We

use the following notation. First we say a trader is a (τ,G1 : G2)-trader if her endowment

consists of τ units of G1 and she is only interested in G2. Second we say a trader is a

(τ,G1, G2 : G3)-trader if her endowment consists of τ units of G1 and G2 each, and she is

only interested in G3.

Now we describe the construction of MP. We start with its set of goods. Without loss of

generality, we always assume that n = 2t for some integer t. Then the market MP consists
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of the following O(ntk) = O(n log n) goods:

AUXi, G2i−1,j , G2i,j , and Si,`,r, for i ∈ [n], j ∈ [0 : 4t], ` ∈ [4t] and r ∈ [3 : k].

Recall that k is the number of goods in the non-monotone market M . The main goods

in MP are G2i−1,j and G2i,j , while AUXi and Si,`,r are auxiliary. Informally, AUXi’s are

introduced to balance the total money spent on G2i−1,0 and G2i,0 (see the proof of Theorem

7). On the other hand, we need Si,`,r’s only when k ≥ 3: When we need to add an NM

market with G2i−1,` and G2i,` as its goods 1 and 2 we use Si,`,3, . . . , Si,`,k as goods 3, . . . , k.

When k = 2, we do not need Si,`,r’s in MP.

We divide all the goods, except the AUXi’s, into the following n(4t+ 1) groups {Ri,j},
where i ∈ [n] and j ∈ [0 : 4t]. For each i ∈ [n] and j ∈ [4t], we use Ri,j to denote

Ri,j =
{
G2i−1,j , G2i,j , Si,j,3, . . . , Si,j,k

}
,

a group of k goods; for each i ∈ [n], we use Ri,0 to denote {G2i−1,0, G2i,0}.
Next we list all the parameters used in the construction. We use αj to denote 2j/n5,

for each j ∈ [0 : 4t] (thus α0 = 1/n5 and α4t = 1/n). Recall the positive constant d from

Lemma 4.3.1. We let d∗ denote a positive rational number (a constant) that satisfies

1− 1/D ≤ d∗d ≤ 1, where D = max
{

20, 20/d
}
.

The rest of the parameters are

β = α4t = 1/n, µ = d∗n, τ = n2, γ = 1/n6, ξ = εnt, δ = εt and ε = 1/n8.

We explain some of the key parameters. First, ε is the approximation parameter of

market equilibria we are interested in. Next, as for CES utilities, we need to amplify the

gap between couples of prices over a chain of goods; each αj specifies the gap between prices

of G2i−1,j and G2i,j in this amplification. In more details, if the ratio of the price of G2i−1,j

to that of G2i,j is (1 + αj)/(1 − αj) (or (1 − αj)/(1 + αj)), then the ratio of G2i−1,j+1 to

G2i,j+1 must be (1 + αj+1)/(1− αj+1) (or (1− αj+1)/(1 + αj+1)). So if there is an α0-gap

between G2i−1,0 and G2i,0, it would be amplified to a β-gap between G2i−1,4t and G2i,4t.

Finally, µ, τ and γ are parameters used in the NM and PR markets that we add to MP; ξ

and δ are parameters used in the proof of correctness only.
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Construction of MP. The construction follows closely the one for CES markets. The

difference here is that we use the non-monotone market as a black-box and, therefore, we

cannot prove properties similar to the ones proved for example 3.1.1 in Section 3.2. To

overcome this, we use PR to ensure that all equilibria are within the range of prices that

NM is non-monotone.

First we use NM and PR to build a closed economy over each group Ri,j . Here by a

closed economy over a group of goods, we mean a set of traders whose endowments consist

of goods from this group only and they are interested in goods from this group only.

1. For each group Ri,j , where i ∈ [n] and j ∈ [4t], we add a price-regulating market

PR
(
τ, αj , G2i−1,j , G2i,j , Si,j,3, . . . , Si,j,k

)
We also add a non-monotone market

NM
(
µ, γ,G2i−1,j , G2i,j , Si,j,3, . . . , Si,j,k

)
We will refer to them as the PR market and the NM market over Ri,j , respectively.

2. For each group Ri,0 of {G2i−1,0, G2i,0}, i ∈ [n], we add a price-regulating market

PR
(
τ, α0, G2i−1,0, G2i,0

)
We will refer to it as the PR market over Ri,0.

Next we add a number of single-minded traders who trade between different groups.

The initial endowment of each such trader consists of G2i−1,j and G2i,j of a group Ri,j (one

of them or both) and she is only interested in either G2i′−1,j′ or G2i′,j′ of another group

Ri′.j′ , where (i, j) 6= (i′, j′). We will refer to her as a trader who trades from Ri,j to Ri′,j′ .
At the same time we construct a weighted directed graph G = (V,E) as defined in

Section 3.3. Here is the construction:

1. For each i ∈ [2n], we use Gi to denote Gi,0 and Hi to denote Gi,4t for convenience.

For each pair i, j ∈ [n], we add to MP the following four traders who trade from

group Ri,4t to group Rj,0: one (P2i−1,2j−1, H2i−1 : G2j−1)-trader, one (P2i−1,2j ,
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H2i−1 : G2j)-trader, one (P2i,2j−1, H2i : G2j−1)-trader, and one (P2i,2j , H2i : G2j)-

trader. Since P is normalized, we have

P2i−1,2j−1 + P2i−1,2j = P2i,2j−1 + P2i,2j = 1

Thus, the total endowment of these four traders consists of one unit of H2i−1 and H2i

each, so we add an edge in G from Ri,4t to Rj,0 with weight 1. At this moment, the

total out-weight of each Ri,4t in G is n, and the total in-weight of each Ri,0 in G is n.

2. For each i ∈ [n] and j ∈ [0 : 4t− 1], we add two traders who trade from group Ri,j to

Ri,j+1: one (n,G2i−1,j : G2i−1,j+1)-trader and one (n,G2i,j : G2i,j+1)-trader. We also

add an edge in graph G from Ri,j to Ri,j+1 with weight n.

This finishes the construction of G. It is also easy to check that G is strongly connected and

every vertex (group) has both its total in-weight and out-weight equal to n.

Finally, we add traders between AUXj and Rj,0 for each j ∈ [n]. Let r2j−1 and r2j

be the two numbers defined in (3.11). Recall that β = α4t = 1/n. We add to MP three

traders: one ((1− β)r2j−1, AUXj : G2j−1)-trader, one ((1− β)r2j , AUXj : G2j)-trader, and

one ((1− β)n,G2j−1, G2j : AUXj)-trader.

This finishes the construction ofMP. It follows immediately from the strong connectivity

of G that the economy graph of MP is strongly connected and thus, MP is a valid input of

problem U-MARKET and can be constructed from P in polynomial time. We also record

the following properties of MP:

Lemma 4.3.2. For each i ∈ [n], the total supply of AUXi is 2(1− β)n;

For each i ∈ [2n], the total supply of Gi,0 is n2 +O(n);

For each i ∈ [n] and j ∈ [4t], the total supply of G2i−1,j is (k − 1)n2 +O(n); and

For each i ∈ [n], j ∈ [4t] and ` ∈ [3 : k], the total supply of G2i,j and Si,j,` is n2 +O(n).

4.3.3 Proof of Correctness

In this section, we prove in that given an ε-additively approximate equilibrium p of MP, we

can compute a (1/n)-well-supported Nash equilibrium of P in polynomial time. Theorem

6 then follows.
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First, from the PR markets in MP, we prove the following lemma:

Lemma 4.3.3. Let p denote an ε-additively approximate equilibrium of MP. Then

1− αj
1 + αj

≤ π(G2i−1,j)

π(G2i,j)
≤ 1 + αj

1− αj
, for all i ∈ [n] and j ∈ [0 : 4t].

Furthermore, we have π(G2i,j) = π(Si,j,3) = · · · = π(Si,j,k) for all i ∈ [n] and j ∈ [4t].

Proof. We consider the case when i ∈ [n] and j ∈ [4t] since the case j = 0 is simpler. We

denote the two traders in the PR market over Ri,j by T1 and T2 and let

pmin = min
{
π(G2i,j), π(Si,j,3), . . . , π(Si,j,k)

}
pmax = max

{
π(G2i,j), π(Si,j,3), . . . , π(Si,j,k)

}
First, assume for contradiction that

1 + αj
π(G2i−1,j)

<
1− αj
pmin

It follows that neither T1 nor T2 is interested in G2i−1,j and they only buy goods from

Ri,j that are priced at pmin. Let Fmin ⊂ Ri,j denote the set of such goods, then we have

G2i−1,j /∈ Fmin. On the other hand, by the definition of pmin, the budget of both T1 and T2 is

at least (k−1)τ pmin. It follows that the total demand for goods in Fmin is at least 2(k−1)τ .

However, the total supply of goods in Fmin is at most (k − 1)τ + O(n), contradicting with

the assumption that p is an ε-additively approximate equilibrium.

Next, assume for contradiction that

1− αj
π(G2i−1,j)

>
1 + αj
pmax

and we let Fmax ⊂ Ri,j denote the set of goods priced at pmax. Then neither T1 nor T2 is

interested in goods from Fmax and they only buy goods from Ri,j − Fmax. In particular,

T2 spends the part of budget she earns from selling Fmax on goods in Ri,j − Fmax as well.

As goods in Fmax are the most expensive among Ri,j , the demand for one of the goods in

Ri,j − Fmax must be larger than the supply by Ω(τ), contradicting with the assumption

that p is an ε-additively approximate equilibrium.

Combining these two steps, we immediately get

1− αj
1 + αj

≤ π(G2i−1,j)

pmax
≤ π(G2i−1,j)

π(G2i,j)
≤ π(G2i−1,j)

pmin
≤ 1 + αj

1− αj
(4.3)
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In the rest of the proof, we show that π(G2i,j) = π(Si,j,3) = · · · = π(Si,j,k).

Assume for contradiction that this is not the case. Then pmax > pmin which implies that

neither T1 nor T2 is interested in Fmax. This leads us to the same contradiction, following

the argument of the second step. The only difference is that π(G2i−1,j) now might be larger

than pmax but can be bounded using (4.3).

Combining Lemma 4.3.3 (both π(G2i,j) = π(Si,j,3) = · · · = π(Si,j,k) and the bounds on

the ratio of π(G2i−1,j) to π(G2i,j)) and αj = o(1) � c, we can now use fµ,λ to derive the

excess demand of G2i−1,j from the NM market over Ri,j , given π(G2i−1,j) and π(G2i,j).

From now on, for each group Ri,j , i ∈ [n] and j ∈ [0 : 4t], we let

πi,j = π(G2i−1,j) + π(G2i,j).

Next note that only one trader is interested in AUXj and her budget is (1 − β)nπj,0.

From this we have the following lemma.

Lemma 4.3.4. Let p be an ε-additively approximate market equilibrium of MP with ε =

1/n8. If we scale p so that πj,0 = 2 for some j ∈ [n], then π(AUXj) ≥ 1−O(ε/n).

Proof. As the total supply of AUXj is 2n(1− β), we have

2n(1− β) ≤ (2n(1− β) + ε)π(AUXj).

This finishes the proof of the lemma.

Second, by using the strong connectivity of G and the property that every vertex in

G has the same total in-weight and out-weight, we can follow the proof of Lemma 3.3.3

(replacing m with 4t) to prove the following.

Lemma 4.3.5. Let p denote an ε-additively approximate equilibrium of MP. Let

πmax = max
i,j

πi,j and πmin = min
i,j

πi,j

where the max and min are both taken over all i ∈ [n] and j ∈ [0 : 4t]. If we scale p so that

πmin = 2, then we must have πmax = 2 +O(εt).

Then we can follow the proof of Lemma 3.3.4 to prove the following bound on π(AUXj):
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Lemma 4.3.6. Let p denote an ε-additively approximate market equilibrium of MP with

ε = 1/n8. If we scale p so that πj,0 = 2 for some j ∈ [n], then π(AUXj) ≤ 1 +O(εt).

From now on, we always use p to denote the scaled price vector with πmin = 2. Using

Lemma 4.3.4, 4.3.5 and 4.3.6 together, we have

2 ≤ πi,j = π(G2i−1,j) + π(G2i,j) ≤ 2 +O(εt) and π(AUXi) = 1±O(εt), (4.4)

for all i ∈ [n] and j ∈ [0 : 4t], where the last equation follows from

(πi,0/2)(1−O(ε/n)) ≤ π(AUXi) ≤ (πi,0/2)(1 +O(εt)).

For convenience, we let δ = εt.

Recall that we use Hi to denote the good Gi,4t. For each i ∈ [n], we let

θi =
π(H2i−1) + π(H2i)

2

From (4.4) we get the following corollary:

Corollary 4.3.1. For every i ∈ [n], we have 1 ≤ θi ≤ 1 +O(δ).

Next we use Walras’ law to show that the excess demand of each good is close to 0 from

both sides:

Lemma 4.3.7. If p is an ε-additively approximate equilibrium of MP. Then there is a

vector z ∈ Z(p) such that |z|∞ ≤ O(εnt).

Proof. Given a vector z ∈ Z(p) and a good G in MP, we let z(G) denote the excess demand

of G in z. By definition, we know there is a vector z ∈ Z(p) such that z(G) ≤ ε for all

G, thus |z(G)| ≤ ε for goods G with positive excess demand. By Walras’ law we also have

z · p = 0. By Lemma 4.3.3, 4.3.4, 4.3.5 and 4.3.6, we know that all prices are close to each

other. As the total number of goods in MP is O(nt) and z(G) ≤ ε for all G, it follows from

Walras’ law that |z(G)| ≤ O(εnt) for all G with negative excess demand.

From now on, we let ξ = εnt = log n/n7. Now we are ready to recover a (1/n)-well-

supported Nash equilibrium of the polymatrix game P from the price vector p. Set x to be

the following 2n-dimensional nonnegative vector:

x2i−1 =
π(H2i−1)− (1− β)θi

2βθi
and x2i =

π(H2i)− (1− β)θi
2βθi

(4.5)
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Recall that β = α4t = 1/n. It is easy to verify that x2i−1 + x2i = 1 for each i ∈ [n]. Here

xi ≥ 0 follows from Lemma 4.3.3. To finish the proof, we prove the following theorem:

Theorem 7. When n is sufficiently large, x from (4.5) is a (1/n)-well-supported Nash

equilibrium of P.

We need the following key lemma to establish Theorem 7. Recall that Gi is Gi,0.

Lemma 4.3.8. For every i ∈ [n], we have

1 + α0

π(G2i−1)
=

1− α0

π(G2i)
⇒ 1 + β

π(H2i−1)
=

1− β
π(H2i)

and

1− α0

π(G2i−1)
=

1 + α0

π(G2i)
⇒ 1− β

π(H2i−1)
=

1 + β

π(H2i)

Before proving Lemma 4.3.8, we use it to prove Theorem 7:

Proof of Theorem 7. Assume for contradiction that the vector x we construct from p in

(4.5) is not a (1/n) well-supported Nash equilibrium of P. Then without loss of generality,

we assume that

xT ·P1 > xT ·P2 + 1/n (4.6)

where P1 and P2 denote the first and second columns of P, respectively, but x2 > 0.

To reach a contradiction, by Lemma 4.3.8, it suffices to show that (4.6) implies that

1 + α0

π(G1)
=

1− α0

π(G2)
(4.7)

because it then implies that (1 + β)/π(H1) = (1− β)/π(H2) and thus, x2 = 0 by (4.5).

To prove (4.7), we first compare the total money spent on goods G1 and G2 from all

traders in MP except the two traders in the PR market over G1 and G2, and show that

the money spent on G1 is considerably larger. Given that the prices of G1 and G2 are very

close, it implies that the demand of G1 from these traders is strictly larger than that of G2.

As p is an approximate market equilibrium and G1, G2 have the same total supply in MP,

we have that the PR market over G1 and G2 must demand strictly more G2 than G1 to

have things balanced, which can happen only when (4.7) holds.

We start by enumerating all traders that are interested in G1 and G2 except the two

traders in the PR market over G1 and G2:
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1. For each i ∈ [2n], there is a (Pi,1, Hi : G1)-trader. The total money these traders

spend on G1 is given by

∑
i∈[2n]

Pi,1 · π(Hi) =
∑
i∈[2n]

Pi,1 · (1− β + 2β · xi) · θdi/2e

2. For each i ∈ [2n], there is a (Pi,2, Hi : G2)-trader. The total money these traders

spend on G2 is given by

∑
i∈[2n]

Pi,2 · π(Hi) =
∑
i∈[2n]

Pi,2 · (1− β + 2β · xi) · θdi/2e

3. Recall r2j−1 and r2j in (3.11). There is one ((1− β)r1, AUX1 : G1)-trader, who

spends her budget (1− β)r1 · π(AUX1) on G1. There is one

((1− β)r2, AUX1 : G2)-trader, who spends her budget (1− β)r2 · π(AUX1) on G2.

We denote by M1 (respectively, M2) the total money these traders spend on G1 (resp. G2).

Then

M1 =
∑
i∈[2n]

Pi,1 · (1− β + 2β · xi) · θdi/2e + (1− β)r1 · π(AUX1)

Plugging in θdi/2e ≥ 1, π(AUX1) ≥ 1−O(δ) and the definition of r1, we get

M1 ≥ 2n(1− β) + 2β · xT ·P1 −O(nδ)

Similarly, we also have the total money spent on G2 is

M2 =
∑
i∈[2n]

Pi,2 · (1− β + 2β · xi) · θdi/2e + (1− β)r2 · π(AUX1)

Plugging in θdi/2e ≤ 1 +O(δ), π(AUX2) ≤ 1 +O(δ) and the definition of r2, we get

M2 ≤ 2n(1− β) + 2β · xT ·P2 +O(nδ)

Combining these two bounds with (4.6), we get

M1 ≥M2 + 2β · (1/n)−O(nδ) = M2 + Θ(β/n)

since β/n = 1/n2 � nδ. Hence the difference between the demands for G1 and G2 from

these traders is:
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M1

π(G1)
− M2

π(G2)
≥ M2 + Θ(β/n)

π(G1)
− M2(1 + α0)

π(G1)(1− α0)
=

Θ(β/n)

π(G1)
− M2

π(G1)
· 2α0

1− α0
= ω(ξ)

where the last inequality used M2 = O(n), α0 = 1/n5, β = 1/n, and ξ = log n/n7.

The only other traders that are interested in G1, G2 are the two traders in the price-

regulating market over R1,0 denoted by T1 and T2. Also from the construction of MP, the

total supply of G1 is exactly the same as that of G2. By Lemma 4.3.7, we know that the

total demand of G1 from T1 and T2 must be strictly smaller than the total demand of G2

from them, which in turn implies that the total demand of G1 from T1 and T2 must be

strictly smaller than the total supply of G1 from T1 and T2 by Walras’ law.

Assume (4.7) does not hold, then by Lemma 4.3.3 we must have

1 + α0

π(G1)
>

1− α0

π(G2)

This implies that the (unique) optimal bundle of T1 is to buy back her initial endowment of

G1 and thus, the total demand of T1 and T2 for G1 is at least as much as the total supply

of G1 from T1 and T2, contradicting with Lemma 4.3.7. The theorem then follows.

Finally we prove Lemma 4.3.8, which crucially relies on properties (the function fµ,γ in

particular) of the NM markets added in MP. By induction it suffices to prove

Lemma 4.3.9. For every i ∈ [n] and j ∈ [4t], we have

1 + αj−1

π(G2i−1,j−1)
=

1− αj−1

π(G2i,j−1)
⇒ 1 + αj

π(G2i−1,j)
=

1− αj
π(G2i,j)

and

1− αj−1

π(G2i−1,j−1)
=

1 + αj−1

π(G2i,j−1)
⇒ 1− αj

π(G2i−1,j)
=

1 + αj
π(G2i,j)

To this end, we examine a group Ri,j , i ∈ [n] and j ∈ [4t], more closely. For convenience,

we scale the price vector p again so that πi,j = π(G2i−1,j)+π(G2i,j) = 2. Note that what we

need to prove in Lemma 4.3.9 remains the same after scaling. We are interested in the total

demand of G2i−1,j from all traders in MP except those two traders in the price-regulating

market PR over Ri,j .
First of all, for the NM market over Ri,j , we use f(x) to denote the excess demand

(within the NM market only) for G2i−1,j when the price of G2i−1,j is 1 + x and the prices
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of G2i,j , Si,j,3, . . . , Si,j,k are 1 − x. Let µ = d∗n = O(n) and γ = 1/n6. Then f ≡ fµ,γ in

(4.2) and hence has the following properties:

|f(0)| = O(µγ) and
∣∣f(x)− f(0)− µdx

∣∣ ≤ |µx/D|, for all x ∈ [−c, c] (4.8)

where D = max{20, 20/d} and c > 0 are both constants independent of n. So when n is

sufficiently large, we have β = α4t = 1/n� c. Next we use h(x, y) to denote

h(x, y) = excess demand of G2i−1,j from all traders except those in the PR over Ri,j

when the price of G2i−1,j−1 is 1 + y, the price of G2i−1,j is 1 + x, and the prices of G2i,j ,

Si,j,3, . . . , Si,j,k are 1− x. By Lemma 4.3.3 and 4.3.5, we are interested in x, y satisfying

|x| ≤ αj and |y| ≤ αj−1 +O(δ).

Using f , we obtain the following more explicit form of h since other than the NM and PR

markets over Ri,j , there are n units of G2i−1,j and only one (n,G2i−1,j−1 : G2i−1,j)-trader

interested in G2i−1,j :

h(x, y) = f(x) +
n(1 + y)

1 + x
− n = f(x)− nx

1 + x
+

ny

1 + x

We now use (4.8) to prove the following useful lemma about h(x, y):

Lemma 4.3.10. For all x and y with |x| ≤ 3|y| and |y| = αj−1 ±O(δ), we have

h(x, y) > ny/2 if y > 0 and h(x, y) < ny/2 if y < 0

Proof. For x/(1 + x), we can approximate it by x when |x| is small:

|x/(1 + x)− x| = x2/(1 + x) ≤ 2x2

For f(x), by (4.8) we can approximate it by µdx:

|f(x)− µdx| ≤ |f(0)|+ |µx/D| = O(µγ) + |nx/20|

where we used D = max{20, 20/d} and the assumption that 1− 1/D ≤ d∗d ≤ 1.

Thus, we can approximate f(x)− nx/(1 + x) using (µd− n)x where the absolute value

of error is bounded by 2nx2 +O(µγ) + |nx/20|. On the other hand, by the choice of d∗,

−nx/20 ≤ −nx/D ≤ (µd− n)x ≤ 0



67 CHAPTER 4. THE COMPLEXITY OF NON-MONOTONE MARKETS

Therefore, we can bound the absolute value |f(x)− nx/(1 + x)| by

2nx2 +O(µγ) + |nx/10|

From µ = O(n), γ = 1/n6, |x| ≤ 3|y| and |y| = αj−1 ± O(δ), this can be trivially bounded

from above by |ny/3|. The lemma then follows since |ny/(1 + x)| > |5ny/6|.

We are now ready to prove Lemma 4.3.9:

Proof of Lemma 4.3.9. We scale p so that π(G2i−1,j) + π(G2i,j) = 2. Assume that

1 + αj−1

π(G2i−1,j−1)
=

1− αj−1

π(G2i,j−1)
or

1− αj−1

π(G2i−1,j−1)
=

1 + αj−1

π(G2i,j−1)
. (4.9)

We refer to the case that the first equation of (4.9) holds as Case 1, and the case that the

second equation holds as Case 2. In Case 1 we have y = αj−1±O(δ) and in Case 2 we have

y = −αj−1±O(δ) by Lemma 4.3.3 and Lemma 4.3.5. Moreover, from Lemma 4.3.3 we have

|x| ≤ αj and thus, it always holds that |x| ≤ 3|y|, since αj = 2αj−1 = ω(δ). Therefore, we

can conclude from Lemma 4.3.10 that

h(x, y) > ny/2 (in Case 1) or h(x, y) < ny/2 (in Case 2)

holds respectively. Because nαj−1 ≥ nα4t � ξ, Lemma 4.3.7 implies that the excess demand

of G2i−1,j , within the price-regulating market PR over Ri,j , is either strictly negative or

strictly positive, respectively.

When it is strictly negative (i.e. in Case 1), we know that the first trader T1 of the price-

regulating market does not spend all her budget on G2i−1,j . This combined with Lemma

4.3.3 implies
1 + αj

π(G2i−1,j)
=

1− αj
π(G2i,j)

Similarly when it is strictly positive (in Case 2), we conclude that the second trader T2

must be interested in G2i−1,j as well. This combined with Lemma 4.3.3 implies that

1− αj
π(G2i−1,j)

=
1 + αj
π(G2i,j)

This finishes the proof of the lemma.
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Chapter 5

Preliminaries

5.1 Introduction

Revenue Maximization is a major goal in mathematical economics; and a central problem

of the field relevant to this goal is Multi-dimensional Bayesian Item Pricing.

Item Pricing. There is a buyer interested in obtaining one of n heterogeneous items

offered by a seller, indexed by [n] = {1, . . . , n}. We focus on the case of a quasi-linear

buyer; her utility if she buys item i is vi− pi, where vi and pi are respectively her value and

the price for item i ∈ S. Given prices p1, . . . , pn for the items, the buyer will receive an item

that maximizes her utility, or nothing if all items have negative utility. The seller has full

access to a probability distribution D from which the buyer’s valuations v = (v1, . . . , vn) for

the items are drawn, and wants to assign prices to the items in a way that maximizes her

expected revenue (payment from the buyer). Given D as input, our goal is to find prices

for the items that maximize the seller’s expected revenue.

Although the deterministic setting favours simplicity, it turns out that it is possible to

improve the seller’s expected revenue [Thanassoulis, 2004] using randomization. This is

achieved through a generalization known as the Multi-dimensional Mechanism Design or

Lottery Pricing setting which is defined as follows:

Lottery Pricing. Here, the seller, instead of prices, offers a menu (set) M of lotteries.

A lottery is of the form (x, p), where p ∈ R+ is its price and x = (x1, . . . , xn) is a non-



CHAPTER 5. PRELIMINARIES 72

negative allocation vector with each xi being the probability that the buyer receives item

i and
∑

i∈[n] xi ≤ 1. After a menu M is chosen, the buyer draws a valuation v from D
and receives a lottery that maximizes her expected utility

∑
i xi · vi− p, or nothing if every

lottery in M has a negative utility. Let Pr[v] be the probability of v ∼ D; and RevM (v)

be the price of the lottery the buyer receives when her valuation is v. Given D as input,

our goal is to find a menu M of lotteries that maximizes the seller’s expected revenue

Rev(M) =
∑

v∈D Pr[v] ·RevM (v).

Notice that Item Pricing is the special case of Lottery Pricing where xij ∈ {0, 1}. These

two settings can be further divided in terms of the buyer’s preference: A Unit-demand buyer

is interested in at most one item; as in the settings described above. This corresponds to

items that are perfect substitutes of each other, e.g. when the seller is a car dealer. On the

other hand, an Additive buyer is interested in obtaining any number of items, e.g. when

visiting a mall. This is equivalent to offering lotteries where 0 ≤ xij ≤ 1 for all i and j in

the randomized setting and offering a menu of subsets of items in the deterministic setting.

In this thesis, we will concentrate on Unit-demand buyers.

For the rest of this part, we focus on the well-studied case [Chawla et al., 2007; Chawla

et al., 2010a; Cai and Daskalakis, 2011] that D = ×ni=1Di is a product distribution, i.e., the

buyer’s valuations for the items are mutually independent random variables. We assume

that the n (marginal) distributions Di are discrete and the values of their supports with

the corresponding probabilities are rational numbers given explicitly in the input. This

seemingly simple computational problem exhibits a very rich underlying structure that was

not well understood prior to our work. For example, even for Item Pricing, the optimal

prices are not necessarily in the support of D (see [Cai and Daskalakis, 2011] for a simple

example with two items and distributions of support 2). So, a priori, it is not even clear if

optimal prices can be described with polynomially many bits in the size of the input.

5.2 Related Work

Optimal mechanism design is well-understood in single-parameter settings, where there is

only one item for sale, for which the seminal work of Myerson [Myerson, 1981] gives a
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closed-form characterization for the optimal prices and proves that it can achieve as much

revenue as any sophisticated, randomized mechanism, therefore randomization does not

improve revenue in this case. However, the general case with multiple items turns out to be

more complex. The latter, has been extensively studied by economists (see, e.g., [Wilson,

1996] for a survey and [McAfee et al., 1989] for a simple additive case with two items)

and recently has also drawn the attention of the theoretical computer science community;

which concentrated on understanding both the structure and the complexity of optimal

mechanisms, as well as developing simple and computationally efficient mechanisms that

are approximately optimal.

5.2.1 Work on Item Pricing

For the Unit-demand Item Pricing setting, Chawla, Hartline and Kleinberg [Chawla et al.,

2007] show that techniques from Myerson’s work can be used to obtain an analogous closed-

form characterization for prices that extract a factor 3 approximation of the optimal ex-

pected revenue (subsequently improved to 2 [Chawla et al., 2010a]). Cai and Daskalakis [Cai

and Daskalakis, 2011] study the case that the distributions are restricted to be monotone

hazard-rate and obtain a polynomial-time approximation scheme. On the lower bound side,

Guruswami et al. [Guruswami et al., 2005] and subsequently Briest [Briest, 2008] studied

Unit-demand Item Pricing when the values for the items are correlated, respectively ob-

taining APX-hardness and Ω(nε) inapproximability, for some constant ε > 0. Similarly,

Papadimitriou and Pierrakos [Papadimitriou and Pierrakos, 2011] show that the extension

of Myerson’s single-parameter setting to bidders with correlated valuations is APX-hard,

even for the case of 3 bidders. However, unlike the Myerson setting, randomization im-

proves revenue and the optimal menu can be found in polynomial time via linear program-

ming [Dobzinski et al., 2011]. Regarding Unit-demand item pricing with product distribu-

tions, Daskalakis, Deckelbaum and Tzamos [Daskalakis et al., 2014a] obtain SQRT-SUM-

hardness when either the support values or the probabilities are irrational. Notice that their

reduction relies on the fact that, if irrationality is allowed, it is SQRT-SUM-hard to compare

the revenue of two price-vectors. This does not extend to the standard discrete model we

consider, for which the exact revenue of a price-vector can be computed efficiently. Prior to
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the work presented in this thesis, the existence of closed-form characterizations, or efficient

algorithms, for the optimal pricing was a well-known open problem [Chawla et al., 2007;

Cai and Daskalakis, 2011].

A different line of work considers the case of an additive buyer. Hart and Nisan [Hart

and Nisan, 2012] studied two simple deterministic mechanisms for product distributions:

selling items separately or selling a full bundle (grand bundling). They showed that selling

items separately and grand bundling are respectively Ω(1/ log2 n) and Ω(1/ log n) approx-

imations of the optimal revenue (later improved by Li and Yao [Li and Yao, 2013] to

Ω(1/ log n) for both schemes, which is tight [Hart and Nisan, 2012]). Although neither of

these two mechanisms can achieve a constant factor approximation of the optimal revenue

for product distributions, Babaioff et al. [Babaioff et al., 2014] showed that the best of

selling separately and grand bundling, gives a (1/6)-approximation. Extending this work,

Daskalakis et al. [Daskalakis et al., 2013; Daskalakis et al., 2014b] studied conditions for

grand-bundling mechanisms to be optimal, and showed that this happens if and only if

two stochastic dominance conditions hold. Considering the case of many buyers, Yao [Yao,

2015] introduced a new approach for reducing the k-item n-bidder auction to k-item 1-

bidder auctions. He gave a deterministic mechanism that yields at least a constant fraction

of the optimal revenue for k-item n-bidder auctions with arbitrary independent valuation

distributions; and a closed form for the optimal revenue when all the nk values are i.i.d..

Finally, Rubinstein [Rubinstein, 2016] considered the restriction of the problem to simple

mechanisms and defined the notion of partition mechanisms, where the seller partitions the

items into disjoint bundles and posts a price for each bundle; allowing the buyer to buy any

number of bundles. He obtained a PTAS for the problem of finding a revenue maximizing

partition mechanism (and also proved that the problem is strongly NP-hard).

5.2.2 Work on Lottery Pricing

A lot of work has also been done for the general setting of Lottery Pricing. For the Unit-

demand case, Thanassoulis [Thanassoulis, 2004] showed that unlike the single-parameter

setting, where the optimal mechanism is deterministic [Myerson, 1981], an optimal mecha-

nism for two items drawn uniformly and independently from [5, 6] must involve randomiza-



75 CHAPTER 5. PRELIMINARIES

tion. However, Chawla et al. [Chawla et al., 2010b] showed that for independent valuations

randomization can improve the optimal revenue by at most a factor of 4. In contrast, Briest

et al. [Briest et al., 2010] showed that when D is correlated the improvement in revenue

by randomization can be unbounded even for instances with four items; they also showed

that if D is given explicitly, by listing the probability of every valuation vector, then one

can solve a linear program and find an optimal mechanism in polynomial time. Pavlov

[Pavlov, 2010] completely characterized optimal mechanisms under both the unit-demand

and additive settings when there are two items and their values are drawn independently

from distributions that meet certain conditions. On a similar note, Wang and Tang [Wang

and Tang, 2014] studied conditions under which the optimal randomized mechanism has

“simple” menus, i.e., menus that either satisfy a monotonicity property (allocation proba-

bilities of items increase along with their prices), or consist of a small number of lotteries.

For the additive setting, Manelli and Vincent [Manelli and Vincent, 2006] gave an example

where randomization strictly improves revenue and also provided certain sufficient condi-

tions under which deterministic mechanisms are optimal.

On the other hand, work on lower-bounds is limited. Hart and Nisan [Hart and Nisan,

2013] introduced the notion of menu size, the minimum number of lotteries needed to achieve

the optimal revenue. They showed that for an additive buyer there exists a correlated

continuous distribution for which no mechanism of finite menu size can achieve a positive

fraction of the optimal revenue. In our work [Chen et al., 2015], we obtain a similar

result for a unit-demand buyer and prove that, even for discrete product distributions with

support size 2 for each of the items, there are instances that require an exponential number

of lotteries to achieve the optimal revenue. These results do not preclude the existence

of an efficient algorithm for the mechanism design problem, as we will see in chapter 7.

However, for an additive buyer, Daskalakis et al. [Daskalakis et al., 2014a] showed that,

unless P#P ⊆ ZPP, there is no efficient algorithm that implements an optimal mechanism

for product distributions. Note that this result does not extend to the unit-demand case,

which prior to the work presented in this thesis remained a well-known open problem.

We close this section with table 5.1, where we summarize the computational landscape

of Revenue Maximization prior to our work and indicate the problems resolved by us.
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Problem Best Algorithm Complexity Menu-Size

Additive Lottery Pricing 1/6-Approximation #P-hard Exponential

Unit-demand Lottery Pricing Open Open (R) Open (R)

Additive Item Pricing 1/6-Approximation Open Open

Unit-demand Item Pricing 1/2-Approximation Open (R) n

Table 5.1: Computational landscape of Revenue Maximization before this thesis. We use

“R” to indicate that the problem is resolved in this thesis.

5.3 Our Results and Organization of this part

For the rest of this part, we concentrate on the Computational Complexity of both Item

and Lottery Pricing with a Unit-demand buyer. Furthermore, we are also interested in the

Menu-size Complexity of Unit-demand Lottery pricing.

In Chapter 6, we resolve the computational complexity of Unit-demand Item Pricing

and prove that the problem is NP-hard even for distributions of support size at most 3.

Furthermore, we obtain a structural characterization for the optimal prices as solutions

to a Linear Program restricted to cells of a partition of the price space. This yields NP-

membership for the problem; the previous upper-bound being NEXP. Finally, we obtain a

polynomial time algorithm for the case that all marginal distributions have support 2.

In Chapter 7 we resolve the computational complexity of Unit-demand Lottery Pricing.

We note that there is [Chen et al., 2015] an interesting family D∗ of distributions with

support size 2 where randomization not only improves revenue but an exponential number

of lotteries is required to achieve optimality. Although D∗ trivially rules out any efficient

algorithm that lists explicitly all lotteries in an optimal menu, there is a deterministic

polynomial-time algorithm that, given any v ∈ D∗, outputs a lottery `v such that {`v : v ∈
D∗} is an optimal menu for D∗. We prove that no universal efficient (possibly randomized)

algorithm that computes an optimal menu in this fashion exists for product distributions,

unless PNP = P#P. We also prove that for the special case of support-size 2 and the same

high value for all items randomization does not improve revenue, and therefore one can use

our algorithm for Item Pricing and distributions of support size 2.
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Chapter 6

The Complexity of Optimal

Multidimensional Pricing

6.1 Introduction

In this chapter, we concentrate on Unit-demand Item Pricing with discrete product distri-

butions. As we mentioned in Chapter 5, this seemingly simple computational problem has

a very rich underlying structure. Prior to our work, the complexity of the problem was a

well-known open problem [Chawla et al., 2007; Cai and Daskalakis, 2011; Daskalakis et al.,

2014a]. In fact, it was not even known whether the optimal prices can be described with

polynomially many bits in the size of the input; or whether the problem is in NP.

Here, we address this by proving NP membership for arbitrary distributions and NP-

hardness for distributions of support-size 3. To complement this result, we present a poly-

nomial time algorithm for arbitrary distributions of support-size 2.

6.2 Preliminaries

6.2.1 Problem Definition and Main Results

Recall that in the Unit-demand Item Pricing setting, there is one buyer and one seller with

n items indexed by [n] = {1, 2, . . . , n}. The buyer is interested in buying at most one item

(unit demand), and her valuations of the items are drawn from n independent discrete
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distributions. In particular, we use Vi = {vi,1, . . . , vi,|Vi|}, i ∈ [n], to denote the support of

the value distribution of item i, where 0 ≤ vi,1 < · · · < vi,|Vi|. We also use qi,j > 0, j ∈ [|Vi|],
to denote the probability of item i having value vi,j , with

∑
j qi,j = 1. Let V = ×ni=1Vi. We

use Pr[v] to denote the probability of the valuation vector being v = (v1, . . . , vn) ∈ V , i.e.,

the product of qi,j ’s over i, j such that i ∈ [n] and vi = vi,j .

The n distributions, i.e., Vi and qi,j , are given to the seller explicitly and she then assigns

a price pi ≥ 0 to each item. Once the price vector p = (p1, . . . , pn) ∈ Rn+ is fixed, the buyer

draws her values v = (v1, . . . , vn) from the n distributions independently, i.e., v ∈ V with

probability Pr[v]. The buyer is quasi-linear, i.e., her utility for item i equals vi − pi. Let

U(v,p) = maxi∈[n] (vi − pi) .

If U(v,p) ≥ 0, the buyer selects an item i ∈ [n] that maximizes her utility vi − pi, and the

seller has revenue pi. Otherwise, she does not select any item and the seller has revenue 0.

Knowing the value distributions and the buyer’s behaviour described above, the seller’s

objective is to compute a price vector p ∈ Rn+ that maximizes the expected revenue

R(p) =
∑
i∈[n]

pi · Pr
[

buyer selects item i
]
.

We use Item-Pricing to denote the following decision problem: The input consists of

n discrete distributions, with vi,j and qi,j all being rational and encoded in binary, and a

rational number t ≥ 0. The problem asks whether the supremum of the expected revenue

R(p) over all price vectors p ∈ Rn+ is at least t, where we use R+ to denote the set of

nonnegative real numbers.

For the aforementioned decision problem to be well-defined, we need a tie-breaking rule

that specifies which item the buyer selects when there are multiple items with maximum

nonnegative utility. Here, we will use the maximum price1 tie-breaking rule for convenience:

when there are multiple items with maximum nonnegative utility, the buyer selects the item

with the smallest index among items with the highest price. Notice that the critical part is

to select an item with the highest price — any such selection results in the same revenue.

1It may also be called the maximum value tie-breaking rule, since an item with the maximum price among

a set of items with the same utility must also have the maximum value.
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However we need to make such a choice so that we can talk about “the” item selected by the

buyer in the proofs. We show in Section 6.2.2 that the choice of tie-breaking rule does not

affect the supremum of the expected revenue (and hence, the complexity of the problem).

We are now ready to state our main results. First, we show in Section 6.3 that Item-

Pricing is in NP.

Theorem 8. Item-Pricing is in NP.

Second, we present in Section 6.4 a polynomial-time algorithm for Item-Pricing when

all the distributions have support size at most 2.

Theorem 9. Item-Pricing is in P when every distribution has support size at most 2.

As our main result, we resolve the computational complexity of the problem. We show

that it is NP-hard even when all distributions have support size at most 3 (Section 6.5). In

fact, in our paper [Chen et al., 2014] we obtain the same result for identical independent

distributions.

Theorem 10. Item-Pricing is NP-hard even when every distribution has support size 3.

6.2.2 Tie-Breaking Rules

In this section, we show that the supremum of the expected revenue over p ∈ Rn+ is invariant

to tie-breaking rules. Formally, a tie-breaking rule is a mapping from the set of pairs (v,p)

with U(v,p) ≥ 0 to an item k such that vk − pk = U(v,p).

We need some notation. Let B be the maximum price tie-breaking rule described earlier.

We will denote by R(p) the expected revenue of p under B, and by R(v,p) the seller’s

revenue under B when the valuation vector is v ∈ V . Given a price vector p and a valuation

vector v ∈ V , we also denote by T (v,p) the set of items with maximum nonnegative utility

(so T (v,p) = ∅ iff U(v,p) < 0).

We show the following:

Lemma 6.2.1. The supremum of the expected revenue over p ∈ Rn+ is invariant to tie-

breaking rules.
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Proof. Let vi,j and qi,j denote the numbers that specify the distributions. Let B′ be a

tie-breaking rule. We will use R′(p) to denote the expected revenue of p under B′ and use

R′(v,p) to denote the seller’s revenue under B′ when the valuation vector is v ∈ V .

It is clear that for any p ∈ Rn+ and v ∈ V , we have R(v,p) ≥ R′(v,p) since B picks an

item with the highest price among those that maximize the utility. Hence, it follows that

suppR(p) ≥ suppR′(p).

On the other hand, given any price vector p ∈ Rn+, we consider

pε =
(

max(0, p1 − r1ε), . . . ,max(0, pn − rnε)
)
∈ Rn+,

where ε > 0 and ri is the rank of pi sorted in increasing order (when there are ties, the item

with the smaller index is ranked higher). We claim that

lim
ε→0+

R′(pε) = R(p). (6.1)

It then follows from (6.1) that suppR′(p) ≥ suppR(p), which gives the proof of the lemma.

To prove (6.1), we show that the following holds for any valuation vector v ∈ V :

lim
ε→0+

R′(v,pε) = R(v,p). (6.2)

Observe that (6.1) follows from (6.2) since

R(p) =
∑
v∈V
R(v,p) · Pr[v] and R′(pε) =

∑
v∈V
R′(v,pε) · Pr[v].

To prove (6.2), we consider two cases. If U(v,p) < 0, then we have U(v,pε) < 0 when

ε is sufficiently small, and thus, R(v,p) = R′(v,pε) = 0. When U(v,p) ≥ 0, we make the

following three observations. First, the utility of an item i ∈ [n] under pε is at least as high

as that under p. Second, if vi − pi > vj − pj for some items i, j ∈ [n], then under pε the

utility of item i remains strictly higher than that of item j, for ε sufficiently small. Third,

if vi − pi = vj − pj and pi > pj (in particular, pi > 0) for some i, j ∈ [n], then under pε the

utility of item i is strictly higher than that of item j when ε � pi, as ri > rj . It follows

from these observations that when ε is sufficiently small, B′ must pick, given v and pε, an

item k ∈ [n] such that pk = R(v,p). (6.2) then follows from the definition of pε.
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We will henceforth always adopt the maximum price tie-breaking rule, and use R(v,p)

to denote the revenue of the seller with respect to this rule. One of the advantages of this

rule is that the supremum of the expected revenue R(p) is always achievable, so it makes

sense to talk about whether p is optimal or not. In the following example, we point out

that this does not hold for general tie-breaking rules.

Example: Suppose item 1 has value 10 with probability 1, item 2 has value 8 with prob-

ability 1/2 and value 12 with probability 1/2, and in case of tie the buyer prefers item 1.

The supremum in this example is 11: set p1 = 10 for item 1 and p2 = 12 − ε for item 2.

The buyer will buy item 1 with probability 1/2 (if her value for item 2 is 8) and item 2

with probability 1/2 (if her value for item 2 is 12). However, an expected revenue of 11 is

not achievable: if we give price 12 to item 2, then the buyer will always buy item 1 and the

revenue is 10. Note that the expected revenue for this tie-breaking rule is not a continuous

function of the prices.

Before proving that the supremum is indeed always achievable under the maximum price

rule, we start by showing that without loss of generality, we may focus the search for an

optimal price vector in the set P = ×ni=1[ai, bi], where ai = minj vi,j and bi = maxj vi,j

denote the minimum and maximum values in the support Vi, respectively.

Lemma 6.2.2. For any price vector p ∈ Rn+, there exists a p′ ∈ P such that R(p′) ≥ R(p).

Proof. First, it is straightforward that no price pi should be above bi; if such a price exists,

we can simply replace it by bi and this will not decrease the expected revenue.

The non-trivial part is to argue that it is no loss of generality to assume that no price

pi is below ai. Let p ∈ ×ni=1[0, bi]. Suppose that there exists i ∈ [n] such that pi < ai, i.e.,

the set L(p) = {i ∈ [n] : pi < ai} is nonempty; otherwise, there is nothing to prove.

Fix an i ∈ L(p) arbitrarily and let Si = {j ∈ [n] : pj < ai}. We consider the price vector

p̃ defined by p̃j = min{bj , ai} for j ∈ Si and p̃j = pj otherwise. As i ∈ Si, it follows that

Si 6= ∅ and therefore p̃ 6= p (in particular, p̃i = ai now). It is also clear that p̃ ∈ ×ni=1[0, bi].

It suffices to show that R(p̃) ≥ R(p).

Indeed, note that |L(p̃)| < |L(p)| so this process will terminate in at most n stages.

After the last stage we will obtain a vector p′ ∈ P whose expected revenue is lower bounded
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by all the previous ones.

To prove that R(p̃) ≥ R(p), we proceed as follows. Given any valuation vector v ∈ V ,

we compare the revenue R(v,p) to R(v, p̃) and consider the following two cases:

• Case 1: On input (v,p), the item selected by the buyer is not from Si. We claim

that the same item is selected on input (v, p̃). Indeed, we did not decrease prices of

items in Si, hence their utilities did not go up, while the utilities of the remaining

items did not change. Therefore, the revenue does not change in this case, i.e.,

R(v, p̃) = R(v,p).

• Case 2: On input (v,p), the item selected is from Si. Then by the definition of Si,

the revenue R(v,p) we get is certainly less than ai. On input (v, p̃), we know that

U(v, p̃) ≥ 0 (since item i must have nonnegative utility, i.e., vi− p̃i = vi−ai ≥ 0) and

thus, T (v, p̃) 6= ∅. We claim that R(v, p̃) ≥ ai > R(v,p). To see this, we consider

two sub-cases. If U(v, p̃) = 0, then we must have i ∈ T (v, p̃) and the claim follows

from our choice of the maximum price tie-breaking rule. If U(v, p̃) > 0, then every

j ∈ T (v, p̃) must satisfy p̃j ≥ ai; otherwise, by definition of p̃ we have p̃j = bj and

vj − p̃j ≤ 0, a contradiction. From p̃j ≥ ai and j ∈ T (v, p̃), we have R(v, p̃) ≥ ai.

The lemma follows by combining the two cases.

Now we show that the supremum is always achievable under the maximum price rule B.

Lemma 6.2.3. There exists a price vector p∗ ∈ P such that R(p∗) = suppR(p).

Proof. By the compactness of P , it suffices to show that if a sequence of vectors {pi}
approaches p, then

R(p) ≥ lim
i→∞
R(pi).

To this end, it suffices to show that, for any valuation vector v ∈ V ,

R(v,p) ≥ lim
i→∞
R(v,pi). (6.3)

Given any valuation v ∈ V , it is easy to check that T (v,pi) ⊆ T (v,p) when i is sufficiently

large. (Again consider two cases: U(v,p) < 0 and U(v,p) ≥ 0.) (6.3) then follows, since

R(v,p) is the highest price of all items in T (v,p) under the maximum price tie-breaking

rule.
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6.3 Membership in NP

In this section we prove Theorem 8, i.e., Item-Pricing is in NP.

Proof of Theorem 8. We start with some notation. Given a price vector p ∈ Rn+ and a

valuation v ∈ V , let I(v,p) ∈ [n] ∪ {nil} denote the item picked by the buyer under the

maximum price tie-breaking rule, with I(v,p) = nil iff U(v,p) < 0. We will partition

P = ×ni=1[ai, bi] into equivalence classes so that two price vectors p,p′ from the same class

yield the same outcome for all valuations: I(v,p) = I(v,p′) for all v.

Consider the partition of P induced by the following set of hyperplanes. For each item

i ∈ [n] and each value si ∈ Vi, we have a hyperplane pi = si. For each pair of items

i, j ∈ [n] and pair of values si ∈ Vi and tj ∈ Vj , we have a hyperplane si − pi = tj − pj , i.e.,

pi−pj = si−tj . These hyperplanes partition our search space P into polyhedral cells, where

the points in each cell lie on the same side of each hyperplane (either on the hyperplane or

in one of the two open-halfspaces).

We claim that, for every valuation v ∈ V , all the vectors in each cell yield the same

outcome. Consider any cell C. It is defined by a set of equations and inequalities. Given

any price vector p ∈ C and any value si ∈ Vi, let V (p, si) be the set of valuation vectors

v ∈ V such that vi = si and the buyer ends up buying item i on (v,p). We claim that

V (p, si) does not depend on p, i.e., it is the same set V (si) = V (p, si) over all p ∈ C.

To this end, first, if the points of C satisfy pi > si then V (p, si) = ∅. So suppose that C

satisfies p ≤ si. Consider any valuation vector v ∈ V with vi = si. The valuation v is in

V (p, si) iff for all j 6= i, we have si−pi ≥ vj−pj , and in case of equality we have si ≥ vj (iff

pi ≥ pj due to the equality), and in case of further equality si = vj we have i < j. Because

all points of the cell C lie on the same side of each hyperplane si − pi = vj − pj , it follows

that V (p, si) does not depend on p. As a result, for any cell C and any v ∈ V , all the

points p ∈ C yield the same outcome I(v,p).

Next, we show that it is easy to compute the supremum of the expected revenue R(p)

over p ∈ C, for each cell C. To this end, let Wi = ∪si∈ViV (si) ⊆ V denote the set of

valuations for which the buyer picks item i if the prices lie in the cell C, and let γi be the

probability of Wi: γi =
∑

v∈Wi
Pr[v]. It turns out that γi can be computed efficiently, since
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the probability of V (si) can be computed efficiently as shown below (and Wi is the disjoint

union of V (si), si ∈ Vi).
Given si ∈ Vi, to compute the probability of V (si), we note that V (si) is actually the

Cartesian product of subsets of Vj , j ∈ [n]. For each j 6= i, we can determine efficiently the

subset of values Lj ⊆ Vj such that the buyer prefers item i to j if i has value si and j has

value from Lj . As a result, we have

V (si) = L1 × · · · × Li−1 × {si} × Li+1 × · · · × Ln,

and thus, we multiply the probabilities of these subsets Lj , for all j, and the probability of

si. Summing up the probabilities of V (si) over si ∈ Vi gives us γi, the probability of Wi.

Finally, the supremum of the expected revenue R(p) over all p ∈ C is the maximum

of
∑

i∈[n] γi · pi over all p in the closure of C. Let C ′ denote the closure of C; this is the

polyhedron obtained by changing all the strict inequalities of C into weak inequalities. The

supremum of
∑

i γi ·pi over all points p ∈ C can be computed in polynomial time by solving

the linear program that maximizes
∑
γi · pi subject to p ∈ C ′. In fact, as we will show

below after the proof of Theorem 8, this LP has a special form: The question of whether a

set of equations and inequalities with respect to a set of hyperplanes of the form pi = si and

pi− pj = si− tj is consistent, i.e., defines a nonempty cell, can be formulated as a negative

weight cycle problem, and the optimal solution for a nonempty cell can be computed by

solving a single-source shortest path problem. It follows that the specification of a cell C

in the partition is an appropriate yes certificate for the decision problem Item-Pricing ,

and the theorem is proved.

Next we describe in more detail how to determine whether a set of equations and inequal-

ities defines a nonempty cell, and how to compute the optimal solution over a nonempty

cell. The description of a (candidate) cell C consists of equations and inequalities specifying

(1) for each item i, the relation of pi to every value si ∈ Vi, and (2) for each pair of items

i, j and each pair of values si ∈ Vi and tj ∈ Vj , the relation of pi− pj to si− tj . Construct a

weighted directed graph G = (N,E) over n+1 nodes N = {0, 1, . . . , n} where nodes 1, . . . , n

correspond to the n items. For each inequality of the form pi < si or pi ≤ si, include an

edge (0, i) with weight si, and call the edge strict or weak accordingly as the inequality is
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strict or weak. In fact, there is a tightest such inequality (i.e., with the smallest value si)

since the cell is in P , and it suffices to include the edge for this inequality only. Similarly,

for each inequality of the form pi > si or pi ≥ si (or only for the tightest such inequality, i.e.

the one with the largest value si) include an edge (i, 0) with weight −si. For each inequality

of the form pi − pj < si − tj or pi − pj ≤ si − tj (or only for the tightest such inequality)

include a (strict or weak) edge (j, i) with weight si − tj . Similarly, for every inequality of

the form pi−pj > si− tj or pi−pj ≥ si− tj (or only for the tightest such inequality) include

a (strict or weak) edge (i, j) with weight tj − si.
We prove the following connections between G = (N,E) and the cell C:

Lemma 6.3.1. 1. A set of equations and inequalities defines a nonempty cell if and only

if the corresponding graph G does not contain a negative weight cycle or a zero weight cycle

with a strict edge.

2. The supremum of the expected revenue for a nonempty cell is achieved by the price

vector p that consists of the distances from node 0 to the other nodes of the graph G.

Proof. 1. Considering node 0 as having an associated variable p0 with fixed value 0, the

given set of equations (i.e., pairs of weak inequalities) and (strict) inequalities can be viewed

as a set of difference constraints on the variables (p0, p1, . . . , pn), and it is well known that the

feasibility of such a set of constraints can be formulated as a negative weight cycle problem.

If there is a cycle with negative weight w, then adding all the inequalities corresponding to

the edges of the cycle yields the constraint 0 ≤ w (which is false); if there is a cycle with

zero weight but also a strict edge, then summing the inequalities yields 0 < 0.

Conversely, suppose that G does not contain a negative weight cycle or a zero weight

cycle with a strict edge. For each strict edge e, replace its weight w(e) by w′(e) = w(e)−ε for

a sufficiently small ε > 0 (we can treat ε symbolically), and let G(ε) be the resulting weighted

graph. Note that G(ε) does not contain any negative weight cycle, hence all shortest paths

are well-defined in G(ε). Compute the shortest (minimum weight) paths from node 0 to all

the other nodes in G(ε), and let p(ε) be the vector of distances from 0. For each edge (i, j)

the distances pi(ε) and pj(ε) (where p0(ε) = 0) must satisfy pj(ε) ≤ pi(ε) + w′(i, j), hence

all the (weak and strict) inequalities are satisfied.

To determine if a set of equations and inequalities defines a nonempty cell, we can form
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the graph G(ε) and test for the existence of a negative weight cycle using for example the

Bellman-Ford algorithm.

2. Suppose that cell C specified by the constraints is nonempty. Then we claim that

the vector p = p(0) of distances from node 0 to the other nodes in the graph G is greater

than or equal to any vector p′ ∈ C in all coordinates. We can show this by induction on

the depth of a node in the shortest path tree T of G rooted at node 0. Letting p′0 = p0 = 0,

the basis is trivial. For the induction step, consider a node j with parent i in T . By the

inductive hypothesis p′i ≤ pi. The edge (i, j) implies that p′j − p′i ≤ w(i, j) or < w(i, j),

and the presence of the edge (i, j) in the shortest path tree implies that pj = pi + w(i, j).

Therefore, p′j ≤ pj .
The supremum of the expected revenue R(p′) over the cell C is given by the optimal

value of the linear program that maximizes
∑

i∈[n] γi · p′i subject to p′ ∈ C ′, where C ′ is

the closure of the cell C. Observe that all the coefficients γi of the objective function are

nonnegative, and clearly p is in the closure C ′. Therefore p achieves the supremum of the

expected revenue over C.

The NP characterization of Item-Pricing and the corresponding structural charac-

terization of the optimal price vector p = p(0) of each cell have several easy and useful

consequences.

First, we get an alternative proof of Lemma 6.2.3 for the maximum tie-breaking rule:

Second Proof of Lemma 6.2.3. Suppose that the supremum of the expected revenue is achi-

eved in cell C. Let G be the corresponding graph, and let p be the price vector of the

distances from node 0 to the other nodes. If p ∈ C then the conclusion is immediate, so

assume p /∈ C. From the proof of the above lemma we have that p ≥ p′ coordinate-wise

for all p′ ∈ C.

We claim that for any valuation v ∈ V , the revenue R(v,p) is at least as large as the

revenue R(v,p′) under any p′ ∈ C. Suppose that the buyer selects item i under v for prices

p′. Then p′i ≤ vi and thus also pi ≤ vi (since p is in the closure of C) and thus i is also

eligible for selection under p. If the buyer selects i under p then we know that pi ≥ p′i and

the conclusion follows. Suppose that the buyer selects another item j under p and that
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p′i > pj and hence pi > pj . Then we must have vj−pj > vi−pi due to the tie-breaking rule.

The facts that p is in the closure of C and vj − pj > vi − pi imply that vj − p′j > vi − p′i
for all p′ ∈ C, and therefore the buyer should have picked j instead of i under prices p′, a

contradiction.

We conclude that for any v ∈ V , R(v,p) ≥ R(v,p′) for any p′ ∈ C, and the lemma

follows.

Another consequence suggested by the structural characterization of Lemma 6.3.1 is

that the maximum of expected revenue can always be achieved by a price vector p in which

all prices pi are sums of a value and differences between pairs of values of items. This

implies for example the following useful corollary.

Corollary 6.3.1. If all the values in Vi, i ∈ [n], are integers, then there must exist an

optimal price vector p ∈ P with integer coordinates.

6.4 A polynomial-time Algorithm for support size 2

In this section, we present a polynomial-time algorithm for the case that each distribution

has support size at most 2. In Section 6.4.1, we give a polynomial-time algorithm under

a certain “non-degeneracy” assumption on the values. In Section 6.4.2 we generalize this

algorithm to handle the general case.

6.4.1 An Interesting Special case.

In this subsection, we assume that every item has support size 2, where Vi = {ai, bi} satisfies

bi > ai > 0, for all i ∈ [n]. Let qi : 0 < qi < 1 denote the probability of the value of item

i being bi. For convenience, we also let ti = bi − ai > 0. In addition, we assume in this

subsection that the value-vectors a = (a1, . . . , an) and b = (b1, . . . , bn) satisfy the following

“non-degeneracy” assumption:

Non-degeneracy assumption: b1 < b2 < · · · < bn, ai 6= aj and ti 6= tj for all i, j ∈ [n].

As we show next in Section 6.4.2, this special case encapsulates the essential difficulty

of the problem.
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Let OPT denote the set of optimal price vectors in P = ×ni=1[ai, bi] that maximize the

expected revenue R(p). Next we prove a sequence of lemmas to show that, given a and

b that satisfy all the conditions above one can compute efficiently a set A ⊆ P of price

vectors such that |A| = O(n2) and OPT ⊆ A. Hence, by computing R(p) for all p ∈ A, we

get both the maximum of expected revenue and an optimal price vector.

We start with the following lemma:

Lemma 6.4.1. If p ∈ P satisfies pi > ai for all i ∈ [n], then either p = b or we have

p /∈ OPT.

Proof. Assume for contradiction that p ∈ P satisfies pi > ai, for all i ∈ [n] but p 6= b.

It then follows from the maximum price tie-breaking rule that R(v,b) ≥ R(v,p) for all

v ∈ V . Moreover, there is at least one v∗ ∈ V such that R(v∗,b) > R(v∗,p): If pi < bi,

then consider v∗ with v∗i = bi and v∗j = aj for all other j. It follows that R(b) > R(p) as

we assumed that 0 < qi < 1 for all i ∈ [n] and thus, p /∈ OPT.

Next we show that there can be at most one i such that pi = ai; otherwise p /∈ OPT.

We emphasize that all the conditions on Vi are assumed in the lemmas below, the non-

degeneracy assumption in particular.

Lemma 6.4.2. If p ∈ P has more than one i ∈ [n] such that pi = ai, then we have

p /∈ OPT.

Proof. Assume for contradiction that p ∈ P has more than one i such that pi = ai. We

prove the lemma by explicitly constructing a new price vector p′ ∈ P from p such that

R(v,p′) ≥ R(v,p) for all v ∈ V and R(v∗,p′) > R(v∗,p) for at least one v∗ ∈ V . This

implies that R(p′) > R(p) and thus, p is not optimal. We will be using this simple strategy

in most of the proofs of this section.

Let k ∈ [n] denote the item with the smallest ak among all i ∈ [n] with pi = ai. By

the non-degeneracy assumption, k is unique. Recall that tk = bk − ak = bk − pk. We let S

denote the set of i ∈ [n] such that bi−pi = tk, so k ∈ S. By the non-degeneracy assumption

again, we have pi > ai for all i ∈ S − {k}. We now construct p′ ∈ P as follows: For each

i ∈ [n], set p′i = pi if i /∈ S; otherwise set p′i = pi + ε for some sufficiently small ε > 0. Next
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we show that R(v,p′) ≥ R(v,p) for all v ∈ V . Fix a v ∈ V . We consider the following

three cases:

1. If U(v,p) = tk, then T (v,p) ⊆ S by the definition of S. When ε is sufficiently small,

we have

T (v,p′) = T (v,p) and R(v,p′) = R(v,p) + ε > R(v,p).

2. If U(v,p) = 0 and k ∈ T (v,p), then we have T (v,p) ∩ S = {k} since bi > pi > ai

for all other i ∈ S. We claim that R(v,p) > pk in this case. To see this, note that

there exists an item ` ∈ [n] such that p` = a` and p` > pk by our choice of k. As

U(v,p) = 0, we must have v` = a` and thus, ` ∈ T (v,p) and R(v,p) ≥ p` is not

obtained from selling item k. Therefore, we have

U(v,p′) = 0, T (v,p′) = T (v,p)− {k} and R(v,p′) = R(v,p).

3. Finally, if neither of the cases above happens, then we have T (v,p) ∩ S = ∅ (note

that this includes the case when T (v,p) = ∅). For this case we have

T (v,p′) = T (v,p) and R(v,p′) = R(v,p).

The lemma then follows because in the second case above, we indeed showed that the

following valuation vector v∗ in V satisfies R(v∗,p′) > R(v∗,p): vk = bk and vi = ai for

all i 6= k.

Lemma 6.4.2 reduces our search space to p such that either p = b or p ∈ Pk for some

k ∈ [n], where we use Pk to denote the set of price vectors p ∈ P such that pk = ak and

pi > ai for all other i ∈ [n].

The next lemma further restricts our attention to p ∈ Pk such that pi ∈ {bi, bi − tk} for

all i 6= k.

Lemma 6.4.3. If p ∈ Pk but pi /∈ {bi, bi − tk} for some i 6= k, then we have p /∈ OPT.

Proof. Assume for contradiction that p` /∈ {b`, b` − tk}. As p ∈ Pk, we also have p` > a`.

Now we use S to denote the set of all i ∈ [n] such that bi − pi = b` − p`. It is clear that

k /∈ S. We use p′ to denote the following new price vector: p′i = pi for all i /∈ S, and
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p′i = pi + ε for all i ∈ S, where ε > 0 is sufficiently small. We use the same proof strategy

to show that R(p′) > R(p). Fix any v ∈ V . We have

1. If U(v,p) < 0, then clearly U(v,p′) < 0 as well and thus, R(v,p′) = R(v,p) = 0.

2. If U(v,p) = b` − p`, then T (v,p) ⊆ S by the definition of S. When ε is sufficiently

small,

T (v,p′) = T (v,p) and R(v,p′) = R(v,p) + ε > R(v,p).

3. If U(v,p) ≥ 0 but U(v,p) 6= b` − p`, then it is easy to see that T (v,p) ∩ S = ∅,
because pi > ai and bi − pi = b` − p` for all i ∈ S. It follows that T (v,p′) = T (v,p)

and R(v,p′) = R(v,p).

The lemma follows by combining all three cases.

As suggested by Lemma 6.4.3, for each k ∈ [n], we use P ′k to denote the set of p ∈ Pk
such that pk = ak and pi ∈ {bi, bi − tk} for all other i. In particular, pi must be bi if ti < tk

(ti 6= tk, by the non-degeneracy assumption). The next lemma shows that we only need to

consider p ∈ P ′k such that pi = bi for all i < k.

Lemma 6.4.4. If p ∈ P ′k satisfies p` = b`− tk > a` for some ` < k, then we have p /∈ OPT.

Proof. We construct p′ from p as follows. Let S denote the set of all i < k such that

pi = bi − tk > ai. By our assumption, S is nonempty. Then set p′i = pi for all i /∈ S

and p′i = pi + ε for all i ∈ S, where ε > 0 is sufficiently small. Similarly we show that

R(p′) > R(p) by considering the following cases:

1. If U(v,p) = tk and T (v,p) ∩ S 6= ∅, we consider the following cases. If T (v,p) ⊆ S,

then

T (v,p′) = T (v,p) and R(v,p′) = R(v,p) + ε > R(v,p).

Otherwise, there exists a j ≥ k such that j ∈ T (v,p). This implies that

R(v,p) ≥ pj = bj − tk is not obtained from any item in S. As a result,

T (v,p′) = T (v,p)− S and R(v,p′) = R(v,p).
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2. If the case above does not happen, then we must have T (v,p) ∩ S = ∅ (this includes

the case when T (v,p) = ∅). As a result, we have T (v,p′) = T (v,p) and

R(v,p′) = R(v,p).

The lemma follows by combining the two cases.

Finally, we use P ∗k for each k ∈ [n] to denote the set of p ∈ P such that pk = ak; pi = bi

for all i < k; pi = bi, for all i > k such that ti < tk; and pi ∈ {bi, bi − tk}, for all other

i > k. However, P ∗k may still be exponentially large in general. Let Tk denote the set of

i > k such that ti > tk. Given p ∈ P ∗k , our last lemma below implies that, if i is the

smallest index in Tk such that pi = bi − tk, then pj = bj − tk for all j ∈ Tk larger than i;

otherwise p is not optimal. In other words, p has to be monotone in setting pj , j ∈ Tk, to

be bj − tk; otherwise p is not optimal. As a result, there are only O(n2) many price vectors

that we need to check, and the best one among them is optimal. We use A ⊆ ∪kP ∗k to

denote this set of price vectors. In other words, A contains all the price-vectors of the form

p = (b1, . . . , bk−1, ak, bk+1, . . . , bi−1, pi, . . . , . . . , pn) for some k and i > k, where pi = bi if

ti < tk and pi = bi − tk otherwise.

Lemma 6.4.5. Given k ∈ [n] and p ∈ P ∗k , if there exist two indices c, d ∈ Tk such that

c < d, pc = bc − tk but pd = bd, then we must have p /∈ OPT.

Proof. We use t to denote tk for convenience. Also we may assume, without loss of generality,

that there is no index between c and d in Tk; otherwise we can use it to replace either c or

d, depending on its price.

We define two vectors from p. First, let p′ denote the vector obtained from p by

replacing pd = bd by p′d = bd − t. Let p∗ denote the vector obtained from p by replacing

pc = bc−t by p∗c = bc. In other words, the cth and dth entries of p,p′,p∗ are (bc−t, bd), (bc−
t, bd− t), (bc, bd), respectively, while all other n−2 entries are the same. Our plan is to show

that if R(p) ≥ R(p′), then R(p∗) > R(p). This implies that p cannot be optimal and the

lemma follows.

We need some notation. Let V ′ denote the projection of V onto all but the cth and dth

coordinates:

V ′ = ×i∈[n]−{c,d}Vi.
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We use [n]−{c, d} to index entries of vectors u in V ′. Let U ⊆ V ′ denote the set of vectors

u ∈ V ′ such that ui−pi < t for all i > d. (This just means that for each i ∈ Tk, if i > d and

pi = bi − t, then ui = ai.) Given u ∈ V ′, vc ∈ {ac, bc} and vd ∈ {ad, bd}, we use (u, vc, vd)

to denote a n-dimensional price vector in V . Now we compare the expected revenue R(p),

R(p′) and R(p∗).

First, we claim that, if v = (u, vc, vd) ∈ V but u /∈ U , then we have R(v,p) =

R(v,p′) = R(v,p∗). This is simply because there exists an item i > d such that vi−pi = t,

so it always dominates both items c and d. As a result, the difference among p,p′ and

p∗ no longer matters. Second, it is easy to show that for any v = (u, ac, ad) ∈ V , then

R(v,p) = R(v,p′) = R(v,p∗) as the utility from c and d are negative.

Now we consider a vector v = (u, vc, vd) ∈ V such that u ∈ U and (vc, vd) is either

(ac, bd), (bc, ad), or (bc, bd). For convenience, for each u ∈ U we use u+
1 to denote (u, ac, bd);

u+
2 to denote (u, bc, ad); and u+

3 to denote (u, bc, bd). By the definition of U , we have the

following simple cases:

1. For p, we have R(u+
2 ,p) = bc − t and R(u+

3 ,p) = bc − t;

2. For p′, we have R(u+
1 ,p

′) = bd − t, R(u+
2 ,p

′) = bc − t and R(u+
3 ,p

′) = bd − t.

We need the following equation:

R(u+
1 ,p) = R(u+

1 ,p
∗) = R(u+

3 ,p
∗) (6.4)

as well as the following two inequalities:

R(u+
1 ,p

∗)− (bd − bc) ≤ R(u+
2 ,p

∗) ≤ R(u+
1 ,p

∗) (6.5)

Given a v ∈ V , recall that Pr[v] denotes the probability of the valuation vector being

v. Given a u ∈ U , we also use Pr[u] to denote the probability of the n − 2 items, except

items c and d, taking values u. Let

h1 = (1− qc)qd, h2 = qc(1− qd) and h3 = qcqd.

Clearly we have h1, h2, h3 > 0 and Pr[u+
i ] = Pr[u] · hi, for all u ∈ U and i ∈ [3].
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In order to compare R(p), R(p′) and R(p∗), we only need to compare the following

three sums:

∑
i∈[3]

∑
u∈U

Pr[u+
i ] ·R(u+

i ,p),
∑
i∈[3]

∑
u∈U

Pr[u+
i ] ·R(u+

i ,p
′) and

∑
i∈[3]

∑
u∈U

Pr[u+
i ] ·R(u+

i ,p
∗).

For the first sum, we can rewrite it as (here all sums are over u ∈ U):

h1 ·
∑
u

Pr[u] · R(u+
1 ,p) + h2 ·

∑
u

Pr[u] · (bc − t) + h3 ·
∑
u

Pr[u] · (bc − t), (6.6)

while the sum for R(p′) is the following:

h1 ·
∑
u

Pr[u] · (bd − t) + h2 ·
∑
u

Pr[u] · (bc − t) + h3 ·
∑
u

Pr[u] · (bd − t). (6.7)

Since c < d and bc < bd, R(p) ≥ R(p′) would imply that

∑
u

Pr[u] · R(u+
1 ,p) >

∑
u

Pr[u] · (bd − t). (6.8)

On the other hand, we can also rewrite the sum for R(p∗) as

h1 ·
∑
u

Pr[u] · R(u+
1 ,p

∗) + h2 ·
∑
u

Pr[u] · R(u+
2 ,p

∗) + h3 ·
∑
u

Pr[u] · R(u+
3 ,p

∗). (6.9)

The first sum in (6.9) is the same as that of (6.6). For the second sum, from (6.5), (6.4)

and (6.8) we have

∑
u

Pr[u] · R(u+
2 ,p

∗) ≥
∑
u

Pr[u] ·
(
R(u+

1 ,p)− (bd − bc)
)

>
∑
u

Pr[u] ·
(
bd − t− (bd − bc)

)
=
∑
u

Pr[u] · (bc − t).

The third sum in (6.9) is also strictly larger than that of (6.6) as R(u+
3 ,p

∗) = R(u+
1 ,p

∗) ≥
R(u+

2 ,p
∗) while the second and third sums in (6.6) are the same, ignoring h2 and h3. Thus,

R(p∗) > R(p).

6.4.2 General Case

Now we deal with the general case. Let I denote an input instance with n items, in which

|Vi| ≤ 2 for all i. For each i ∈ [n], either Vi = {ai, bi} where bi > ai ≥ 0, or Vi = {bi}, where
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bi ≥ 0. We let D ⊆ [n] denote the set of i ∈ [n] such that |Vi| = 2. For each item i ∈ D,

we use qi : 0 < qi < 1 to denote the probability of its value being bi. Each item i /∈ D has

value bi with probability 1. As permuting the items does not affect the maximum expected

revenue, we may assume without loss of generality that b1 ≤ b2 ≤ · · · ≤ bn.

The idea is to perturb I (symbolically), so that the new instances satisfy all conditions

described at the beginning of the section, which we know how to solve efficiently. For this

purpose, we define a new n-item instance Iε from I for any ε > 0: For each i ∈ D, the

support of item i is Vi,ε = {ai + iε, bi + 2iε}, and for each i /∈ D, the support of item i is

Vi,ε = {bi + iε, bi + 2iε}. For each i ∈ D, the probability of the value being bi + 2iε is still

set to be qi, while for each i /∈ D, the probability of the value being bi + 2iε is set to be 1/2.

In the rest of the section, we use R(p) and R(v,p) to denote the revenue with respect to

I, and use Rε(p) and Rε(v,p) to denote the revenue with respect to Iε. Let Vε = ×ni=1Vi,ε.

Let ρ denote the following map from Vε to V : ρ maps u ∈ Vε to v ∈ V , where 1) vi = bi

when i /∈ D; 2) vi = ai if ui = ai + iε and vi = bi if ui = bi + 2iε when i ∈ D.

It is easy to verify that, when ε > 0 is sufficiently small, the new instance Iε satisfies all

conditions given at the beginning of the section, including the non-degeneracy assumption.

Moreover, we show that

Lemma 6.4.6. The limit of maxpRε(p) exists as ε→ 0, and can be computed in polynomial

time.

Proof. Since Iε satisfies all the conditions, we know there is a set of O(n2) price vectors,

denote by Aε for Iε, such that the best vector in Aε is optimal for Iε and achieves maxpRε(p).

Furthermore, from the construction of Aε, we know that every vector pε in Aε has an

explicit expression in ε: each entry of pε is indeed an affine linear function of ε. As a

result, the limit of Rε(pε) as ε approaches 0 exists and can be computed efficiently. Since

limε→0 (maxpRε(p)) is just the maximum of these O(n2) limits, it also exists and can be

computed in polynomial time in the input size of I.

Finally, the next two lemmas show that this limit is exactly the maximum expected

revenue of I.

Lemma 6.4.7. maxpR(p) ≤ limε→0

(
maxpRε(p)

)
.
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Proof. Let p∗ denote an optimal price vector of I. It suffices to show that, when ε is

sufficiently small,

maxpRε(p) ≥ R(p∗)− 4n2ε. (6.10)

The proof is similar to that of Lemma 6.2.1. Let p′ denote the vector in which p′i =

max (0, p∗i − 4rinε), where ri is the rank of p∗i among {p∗1, . . . , p∗n} sorted in the increasing

order (when there are ties, items with lower index are ranked higher). We claim that, when

ε > 0 is sufficiently small,

Rε(u,p′) ≥ R(ρ(u),p∗)− 4n2ε, for any u ∈ Vε, (6.11)

from which we get Rε(p′) ≥ R(p∗)− 4n2ε and (6.10) follows.

To prove (6.11) we fix a u ∈ Vε and let v = ρ(u) ∈ V . (6.11) holds trivially if R(v,p∗) =

0. Assume that R(v,p∗) > 0, and let k denote the item selected in I on (v,p∗). (6.11) also

holds trivially if p∗k < 4n2ε, so without loss of generality, we assume that pk ≥ 4n2ε. For

any other item j ∈ [n], we compare the utilities of items k and j in Iε on (u,p′). We claim

that

uk − p′k > uj − p′j (6.12)

because 1) if vk− p∗k > vj − p∗j , then (6.12) holds when ε is sufficiently small; 2) if vk− p∗k =

vj−p∗j and p∗k > p∗j , then (6.12) holds because p∗k−p′k−(p∗j−p′j) ≥ 4nε > (vk−uk)+(uj−vj);
3) finally, the case when vk−p∗k = vj −p∗j , pk = pj and k < j follows similarly from rk > rj .

Therefore, k remains to be the item being selected in Iε on (u,p′). (6.11) then follows from

the fact that p′k ≥ p∗k − 4n2ε by definition.

Lemma 6.4.8. maxpR(p) ≥ limε→0

(
maxpRε(p)

)
.

Proof. From the proof of Lemma 6.4.6, there is a price vector pε ∈ Aε in which every entry

is an affine linear function of ε, such that (as the cardinality of |Aε| is bounded from above

by O(n2))

lim
ε→0

(
max
p
Rε(p)

)
= lim

ε→0
Rε(pε).

Let p̃ ∈ Rn+ denote the limit of pε, by simply removing all the ε’s in the affine linear

functions. Moreover, we note that | p̃i − pε,i | = O(nε) by the construction of Aε, where we

use pε,i to denote the ith entry of pε.



CHAPTER 6. THE COMPLEXITY OF OPT. MULTIDIMENSIONAL PRICING 96

Next, let qε denote the vector in which the ith entry qε,i = max(0, p̃i − rin2ε) for all

i ∈ [n], where ri is the rank of p̃i among entries of p̃ sorted in increasing order (again, when

there are ties, items with lower index are ranked higher). To prove the lemma, it suffices to

show that, when ε is sufficiently small,

R(qε) ≥ Rε(pε)−O(n3ε).

To this end, we show that for any vector u ∈ Vε with v = ρ(u),

R(v,qε) ≥ Rε(u,pε)−O(n3ε). (6.13)

Finally we prove (6.13). First, we note that if U(v, p̃) < 0, then R(v,qε) = Rε(u,pε) =

0 when ε > 0 is sufficiently small (as u approaches v and pε, qε approach p̃). Otherwise,

we have U(v,qε) > U(v, p̃) ≥ 0 and we use k to denote the item selected in I on (v,qε).

To violate (6.13), the item selected in Iε on (u,pε) must be an item ` different from k

satisfying p̃` > p̃k. Below we show that this cannot happen. Consider all the cases: 1) if

vk− p̃k < v`− p̃`, we get a contradiction since item k is dominated by ` in I on (v,qε) when

ε is sufficiently small; 2) if vk − p̃k > v` − p̃`, we get a contradiction with ` being selected

in Iε on (u,pε) when ε is sufficiently small; 3) if vk − p̃k = v`− p̃` and p̃` > p̃k, we conclude

that vk − qε,k < v` − qε,`, contradicting again with k being selected in I on (v,qε). (6.13)

follows by combining all these cases.

6.5 NP–hardness for support size 3

In this section, we give a polynomial-time reduction from Partition to Item-Pricing

for distributions with support (at most) 3. Recall that in the Partition problem [Garey

and Johnson, 1979] we are given a set C = {c1, . . . , cn} of n positive integers and wish to

determine whether it is possible to partition C into two subsets with equal sum. We may

assume without loss of generality that c1 = max (c1, . . . , cn).

Given an instance of Partition, we construct an instance of Item-Pricing as fol-

lows. We have n items. Each item i ∈ [n] can take 3 possible integer values 0, a, b, where

b > a > 0, i.e., Vi = {0, a, b} for all i ∈ [n]. Let qi = Pr[vi = b] and ri = Pr[vi = a]. We set
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qi = ci/M where M = 2nc3
1 and

ri =
b− a

a(1− ti)
· qi, where ti =

b

2a
·
∑

j 6=i,j∈[n]

qj .

The two parameters a and b should be thought of as universal constants (independent of the

given instance of Partition) throughout the proof. We will eventually set these constants

to be a = 1, b = 3 (this choice is not necessary, there is flexibility in our proof and indeed

any values with b > 2a will work). However, for the sake of the presentation, we will keep

a, b as generic parameters for most of the calculations till the end.

Note that the definition of ri implies that

bqi = a(qi + ri)− ariti. (6.14)

Let N = 2nc2
1. Then we have qi, ri = O(1/N) and ti = O(n/N) for all i. Thus, each

distribution assigns most of its probability mass to the point 0. This is a crucial property

which allows us to get a handle on the optimal revenue. For an arbitrary general instance

of the pricing problem, the expected revenue is a highly complex nonlinear function. The

fact that most of the probability mass in our construction is concentrated at 0 implies that

valuation vectors with many nonzero entries contribute very little to the expected revenue.

As we will argue, the revenue is approximated well by its 1st and 2nd order terms with

respect to poly(n)/N , which essentially corresponds to the contribution of all valuations in

which at most two items have nonzero value. The probabilities qi, ri are chosen carefully so

that the optimization of the expected revenue amounts to a quadratic optimization problem,

which achieves its maximum possible value when the given set C of integers has a partition

into two parts with equal sums.

Our main claim is that, for an appropriate value t∗, there exists a price vector with

expected revenue at least t∗ if and only if there exists a solution to the original instance of

the Partition problem.

Before we proceed with the proof, we will need some notation. For T1, T2, ε ∈ R+ we

write T1 = T2 ± ε to denote that |T1 − T2| ≤ ε.

Note that, as both the qi’s and the ti’s are very small positive quantities, we have that
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ri ≈ (b− a)qi/a. Formally, with the above notation we can write

ri =
b− a

a(1− ti)
· qi =

b− a
a
· qi ± 2

b− a
a
· qiti =

b− a
a
· qi ±O(n/N2). (6.15)

Lemma 6.2.2 and Corollary 6.3.1 imply that a revenue maximizing price vector can be

assumed to have non-negative integer coefficients of magnitude at most b. The following

lemma establishes the stronger statement that, for our particular instance, an optimal price

vector p can be assumed to have each pi in the set {a, b}.

Lemma 6.5.1. There is an optimal price vector p ∈ {a, b}n.

Proof. By Lemma 6.2.2 and Corollary 6.3.1, there is an optimal price vector with integer

coordinates in [0 : b]. Let p be any (integer) vector in [0 : b]n that has at least one coordinate

pj 6∈ {a, b}. We will show below that R(p) < R(b), where b denotes the all-b vector, and

hence p is not optimal.

Consider an index i ∈ [n] with pi > 0. The probability the buyer selects item i is

bounded from above by Pr[vi ≥ pi], the probability that item i has value at least pi, and is

bounded from below by

Pr
[
vi ≥ pi

]
·
∏

j 6=i,j∈[n]

(1− qi − ri) ≥ Pr
[
vi ≥ pi

]
· (1−O(n/N)) .

Note that the second term in the LHS above is the probability that all items other than

i have value 0 and the inequality uses the fact that qi, ri = O(1/N). Applying these two

bounds on p and b we obtain

R(b) ≥
∑
i∈[n]

qi (1−O(n/N)) · b and R(p) ≤
∑
i:pi>0

Pr
[
vi ≥ pi

]
· pi.

So R(b) ≥ (
∑

i∈[n] qib)−O(n2/N2). Regarding R(p), we consider the following three cases.

For i ∈ [n] with pi = b, the probability that vi ≥ pi is qi and the contribution of such an

item to the second sum is qib. Similarly, for i ∈ [n] with pi = a, the probability that vi ≥ pi
is qi + ri and the contribution to the sum is

(qi + ri)a ≤ qib+O(n/N2),

where the inequality follows from (6.15). Finally, we consider an item i ∈ [n] with pi /∈ {a, b}.
If a < pi < b then the contribution is qipi, which is at most qi(b− 1) = qib− qi, since pi is
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integer. If pi < a, then the contribution is (qi + ri)pi, which is at most (qi + ri)(a − 1) =

qib+ ariti − qi − ri = qib− qi − ri(1− ati). In both cases, the contribution to the sum is at

most

qib− qi ≤ qib− (1/M).

Note that the definition of M and N implies that 1/M � n2/N2. Because there exists at

least one j with pj /∈ {a, b}, it follows that R(p) < R(b) which completes the proof of the

lemma.

As a result, to maximize the expected revenue it suffices to consider price vectors in

{a, b}n. Given any price-vector p ∈ {a, b}n, we let S = S(p) = {i ∈ [n] : pi = a} and

T = T (p) = {i ∈ [n] : pi = b}. The main idea of the proof is to establish an appropriate

quadratic form approximation to the expected revenue R(p) that is sufficiently accurate for

the purposes of our reduction.

Approximating the Revenue. We appropriately partition the valuation space V into

three events that yield positive revenue. We then approximate the probability of each and

its contribution to the expected revenue up to, and including, 2nd order terms, i.e., terms

of order O(poly(n)/N2), and we ignore 3rd order terms, i.e., terms of order O(ε) where

ε = n3/N3.

In particular, we consider the following disjoint events:

• First Event: E1 = {v ∈ V | ∃ i ∈ S : vi = b}.
Note that for any v ∈ E1 we have R(v,p) = a. The probability of this event is

Pr[E1] = 1−
∏
i∈S

(1− qi) =
∑
i∈S

qi −
∑
i 6=j∈S

qiqj ±O(ε).

• Second Event: E2 = E1 ∩ {v ∈ V | ∃ i ∈ S : vi = a and ∀ i ∈ T : vi ∈ {0, a}}.
Note that for any v ∈ E2 we have R(v,p) = a. The probability of this event is

Pr[E2] =
∏
j∈T

(1− qj)
[∏
i∈S

(1− qi)−
∏
i∈S

(1− qi − ri)
]
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Using the elementary identities∏
j∈T

(1− qj) = 1−
∑
j∈T

qj +
∑
i 6=j∈T

qiqj ±O(ε)

∏
i∈S

(1− qi) = 1−
∑
i∈S

qi +
∑
i 6=j∈S

qiqj ±O(ε)

∏
i∈S

(1− qi − ri) = 1−
∑
i∈S

(qi + ri) +
∑
i 6=j∈S

(qi + ri)(qj + rj)±O(ε),

we can write

Pr[E2] =

1−
∑
j∈T

qj +
∑
i 6=j∈T

qiqj ±O(ε)

·
∑
i∈S

ri +
∑
i 6=j∈S

qiqj −
∑
i 6=j∈S

(qi + ri)(qj + rj)±O(ε)


=
∑
i∈S

ri −
∑
i∈S

ri
∑
j∈T

qj +
∑
i 6=j∈S

qiqj −
∑
i 6=j∈S

(qi + ri)(qj + rj)±O(ε).

• Third Event: E3 = E1 ∩ {v ∈ V | ∃ i ∈ T : vi = b} .
Note that for any v ∈ E3 we have R(v,p) = b. The probability of this event is

Pr[E3] =
∏
i∈S

(1− qi)

1−
∏
j∈T

(1− qj)


=

1−
∑
i∈S

qi +
∑
i 6=j∈S

qiqj ±O(ε)

∑
j∈T

qj −
∑
i 6=j∈T

qiqj ±O(ε)


=
∑
j∈T

qj −
∑
i 6=j∈T

qiqj −
∑
i∈S

qi
∑
j∈T

qj ±O(ε).

Therefore, for the expected revenue R(p) we have:

R(p) =
(

Pr[E1] + Pr[E2]
)
· a+ Pr[E3] · b

= a ·

∑
i∈S

(qi + ri)−
∑
i 6=j∈S

(qi + ri)(qj + rj)−
∑
i∈S

ri
∑
j∈T

qj


+ b ·

∑
j∈T

qj −
∑
i 6=j∈T

qiqj −
∑
i∈S

qi
∑
j∈T

qj

±O(ε).

Using (6.14) it follows that the first order term of the revenue is

b
∑
j∈T

qj + a
∑
i∈S

(qi + ri) = b
∑
j∈[n]

qj +
∑
i∈S

(
a(qi + ri)− bqi

)
= b

∑
j∈[n]

qj +
∑
i∈S

(ariti).
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Observe that the first term b
∑

j∈[n] qj in the above expression is a constant L1, independent

of the pricing (i.e., the partition of the items into S and T ).

In the second order term, we can rewrite the expression a
∑

i 6=j∈S(qi + ri)(qj + rj) as

1

2
·
∑
i∈S

(qi + ri)
∑

j∈S, j 6=i
a(qj + rj)

=
1

2
·
∑
i∈S

(qi + ri)
∑

j∈S, j 6=i
(bqj + arjtj)

=
b

2
·
∑
i∈S

qi
∑

j∈S, j 6=i
qj +

b

2
·
∑
i∈S

ri
∑

j∈S, j 6=i
qj +

1

2
·
∑
i∈S

(qi + ri)
∑

j∈S, j 6=i
arjtj

= b
∑
i 6=j∈S

qiqj +
b

2

∑
i∈S

ri
∑

j∈S, j 6=i
qj ±O(ε)

where in the first expression above, the double summation is multiplied by 1/2 because each

unordered pair i 6= j ∈ S is included twice. Thus, the second order term of the expected

revenue R(p) is

− a
∑
i 6=j∈S

(qi + ri)(qj + rj)− a
∑
i∈S

ri
∑
j∈T

qj − b
∑
i 6=j∈T

qiqj − b
∑
i∈S

qi
∑
j∈T

qj

= −b
∑
i 6=j∈S

qiqj −
b

2

∑
i∈S

ri
∑

j∈S, j 6=i
qj − a

∑
i∈S

ri
∑
j∈T

qj − b
∑
i 6=j∈T

qiqj − b
∑
i∈S

qi
∑
j∈T

qj ±O(ε)

= −b
∑

i 6=j∈[n]

qiqj −
b

2

∑
i∈S

ri
∑

j∈S, j 6=i
qj − a

∑
i∈S

ri
∑
j∈T

qj ±O(ε)

The first term in the last expression is a constant L2 independent of the pricing. As a result,

we can rewrite the second order term as follows:

L2−
b

2

∑
i∈S

ri
∑

j∈S, j 6=i
qj−a

∑
i∈S

ri
∑
j∈T

qj±O(ε) = L2−
∑
i∈S

ri

 b

2

∑
j∈S, j 6=i

qj + a
∑
j∈T

qj

±O(ε).
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Summing with the fist order term and letting L = L1 + L2, we have:

R(p) = L+
∑
i∈S

ri

ati − b

2

∑
j∈S, j 6=i

qj − a
∑
j∈T

qj

±O(ε)

= L+
∑
i∈S

ri

 b

2

∑
j 6=i

qj −
b

2

∑
j∈S, j 6=i

qj − a
∑
j∈T

qj

±O(ε)

= L+
∑
i∈S

ri ·
(
b

2
− a
)∑
j∈T

qj ±O(ε)

= L+
b− a
a
·
(
b

2
− a
)
· 1

M2
·
∑
i∈S

ci ·
∑
j∈T

cj ±O(ε).

Now setting a = 1, b = 3 in the previous expression, we have that for any p ∈ {a, b}n,

R(p) = L+
1

M2

(∑
i∈S

ci

)
·

∑
j∈T

cj

±O(ε). (6.16)

At this point, we observe that the sum of the two factors
∑

i∈S ci,
∑

j∈T cj in (6.16) is

a constant (independent of the partition). Thus, their product is maximized when they

are equal. Because ε = o(1/M2), it follows that the revenue is maximized when the prod-

uct of the two factors is maximized. In particular, if there exists a partition of the set

C = {c1, . . . , cn} into two sets with equal sums H = (
∑

i∈[n] ci)/2, then the corresponding

partition of the indices into the sets S and T yields revenue L + 1
M2 ·H2 ± O(ε). On the

other hand, if there is no such equipartition of the set C, then for any partition of the

indices, the revenue will be at most L+ 1
M2 (H+1)(H−1)±O(ε) = L+ 1

M2 (H2−1)±O(ε).

Since ε = o(1/M2) it follows that there exists a partition of the set C = {c1, . . . , cn}
into two sets with equal sums if and only if there exists a price vector p ∈ {a, b}n with

R(p) ≥ t∗ = L+ 1
M2 (H2 − 1

2). This completes the proof.

Remark. In the above construction, the support of the distributions includes the value 0.

It is easy to modify the construction, so that the support contains only positive values: shift

all the values of the distributions up by 1 (thus, the supports now become Vi = {1, 2, 4}) and

add an additional (n+1)-th item which has value 1 with probability 1. This transformation

increases the expected revenue by 1. It is easy to see that an optimal price vector p′ for the

new instance will give price p′n+1 = 1 to the (n + 1)-th item and price p′i = pi + 1 to each

other item i ∈ [n], where p is an optimal vector for the original instance.
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Chapter 7

On the Complexity of Optimal

Lottery Pricing and Randomized

Mechanisms

7.1 Introduction

In this chapter, we study the problem of Unit-demand Lottery pricing from a complexity

theoretic point of view. In particular, we are interested in the following two questions:

Menu size complexity: How many lotteries are needed to achieve the optimal

revenue?

Computational complexity: How difficult it is to compute an optimal menu

of lotteries?

As mentioned in Chapter 5, limited work exists for the Lottery pricing problem regarding

lower-bounds; and this is for additive buyers. Hart and Nisan [Hart and Nisan, 2013],

who introduced the notion of menu size, showed that there exists a correlated continuous

distribution for which no mechanism of finite menu size can achieve a positive fraction of

the optimal revenue. This result, which by itself does not preclude the existence of an

efficient mechanism, was complemented by Daskalakis et al. [Daskalakis et al., 2014a] who

showed that, unless P#P ⊆ ZPP, there is no efficient algorithm that implements an optimal
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mechanism for product distributions, even when all items have support 2.

On the other hand, both the menu-size complexity and the computational complexity

of the unit-demand case remained well-known open problems. For example, no instance

was known previously to require exponentially many lotteries for the optimal revenue. This

is addressed by our work [Chen et al., 2015] with an explicit, simple product distribution

D∗, for which exponentially many lotteries are needed to achieve the optimal revenue. In

particular, we obtain the following theorem (and refer the reader to our paper for the proof).

Theorem 11 ([Chen et al., 2015]). Let D′ denote the distribution supported on {1, 2}, with

probabilities (1 − p, p), and let D′′ denote the distribution supported on {0, n + 2}, with

probabilities (1− p, p), where p = 1/n2. When n is sufficiently large, any optimal menu for

D∗ = D′ ×D′ × · · · × D′ ×D′′ over n items must have Ω(2n) many different lotteries.

To complement this, we prove in this thesis a number of positive results regarding the

menu-size complexity of special cases of Unit-demand Lottery Pricing. We start by noting

that all distributions in D∗ are the same except for one. This is indeed necessary. We show

that lotteries do not help when Di’s have support size 2 and share the same high value.

Theorem 12. If D = D1× · · ·×Dn and supp(Di) = {ai, b} with ai < b for all i ∈ [n], Item

Pricing achieves the same expected revenue as Lottery Pricing.

This together with Theorem 9 also implies that an optimal menu in this case can be

computed in polynomial time. Furthermore, we show that for the special case of two items

the condition of D1 and D2 sharing the same high value can be dropped.

Theorem 13. If both D1 and D2 have support size 2, then an optimal item pricing for

D1 ×D2 achieves the same expected revenue as that of an optimal menu of lotteries.

On the other hand, in Section 7.5 we give examples of three-item support-size-2 and

two-item support-size-3 instances where lotteries do achieve strictly higher revenue than

item pricing.

We are now ready to present our main result which regards the problem of computing

an optimal menu of lotteries. We already argued in Chapter 5 that Theorem 11 does not

rule out the existence of a deterministic polynomial-time algorithm that, given any v ∈ D,
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outputs a lottery `v such that {`v : v ∈ D} is an optimal menu for D∗. The question

of whether a universal efficient algorithm that computes an optimal menu in this fashion

exists for product distributions is motivated by a folklore connection between the lottery

problem and the optimal mechanism design problem. Consider the same setting, where a

unit-demand buyer with values drawn from D is interested in n items offered by a seller.

Here a mechanism is a (possibly randomized) map B from the set D to ([n]∪{nil})×R, where

B(v) = (b, p) means that the buyer is assigned item b (or no item if b = nil) and pays p to the

seller. The optimal mechanism design problem is then to find an individually rational and

truthful mechanism (see definitions in Section 7.2.1) that maximizes the expected revenue

of the seller.

Let B(v) = (x(v), p(v)) denote the expected outcome of B on v, i.e., xi(v) is the

probability of B(v) assigning item i and p(v) is the expected payment. It follows trivially

from definitions of the two problems that, under the same D, B is an optimal mechanism

iff (B(v) : v ∈ D) is an optimal menu.

In this thesis, we show that there exists no efficient universal algorithm to implement

an optimal mechanism even when Di’s have support size 3, unless PNP = P#P:

Theorem 14. Unless PNP = P#P, there exists no algorithm A(·, ·) with the following two

properties:

1. A is a randomized polynomial-time algorithm that always terminates in polynomial

time.

2. Given any instance I = (n,D1, . . . ,Dn) to the optimal mechanism design problem,

where each Di has support size 3, and any v ∈ supp(D1) × · · · × supp(Dn), A(I,v)

always outputs a pair in ([n] ∪ {nil}) × R, such that BI : v 7→ A(I,v) is an optimal

mechanism for instance I.

We remark that the optimal solutions in the proof of Theorem 14 have the property that

they allocate with probability 1 some item for all valuations; such lotteries (mechanisms)

are called complete. Thus, the result holds also for the model where lotteries are required

to be complete.
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7.1.1 Ideas Behind the Proofs

We begin by pointing out that given D = D1 × . . . × Dn the optimal menu for the cor-

responding instance of (Unit-demand or Additive) Lottery Pricing is characterized by a

linear program in which we associate with each v in D := supp(D) a set of n+ 1 variables

to capture the lottery that the buyer receives at v (see Section 7.2.1). We will refer to it as

the standard linear program for the optimal lottery problem.

The main difficulty in proving Theorem 14 is to characterize optimal solutions to the

standard linear program (denoted by LP(I)) for certain input instances I. In particular, we

need to embed an instance of a #P-hard problem in I and then show that every optimal

solution to LP(I) helps us solve it. However, characterizing optimal solutions to LP(I) is

very challenging due to its exponentially many variables and constraints, which result in a

highly complex geometric object for which our current understanding is still very limited.

The high-level approach for our proof of Theorem 14 is similar to that of [Daskalakis

et al., 2014a]. We simplify the problem by relaxing the standard linear program LP(I)

to a smaller linear program LP′(I) on the same set of variables (u(v),q(v) : v ∈ D) but

only subject to a subset of carefully picked constraints of LP(I). Here q(v) is a tuple of n

variables with qi(v) being the probability of the buyer receiving item i in the lottery; u(v)

is the utility of the buyer at v to replace the role of price of the lottery. Then we focus on a

highly restricted family of instances I and characterize optimal solutions to LP′(I), taking

advantages of the relaxed, simplified LP′(I) as well as special structures of I. Finally we

show that every optimal solution to LP′(I) is a feasible and thus, optimal solution to the

standard linear program LP(I) as well, and can be used to solve the #P-hard instance

embedded in it.

The similarity between our proof techniques and those of [Daskalakis et al., 2014a],

however, stops here due to a subtle but crucial difference between the two linear programs.

In our standard LP(I), the allocation variables q(v) must sum to at most 1 because the

buyer is unit-demand. For the additive setting, on the other hand, there is no such constraint

on the sum of qi(v) but the only constraint is that qi(v) ∈ [0, 1] for all i. It turns out that

this difference requires a completely different set of ideas and techniques to carry out the

plan described above for the unit-demand setting, which we now sketch.
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Recall that the goal is to embed a subset-sum-type #P-hard problem in I. Let g1, . . . , gn

denote the input integers of the problem (its definition does not matter for now). We

consider an instance with n+2 items where item i is supported on {ai, `i, hi} for each i ∈ [n]

with ai ≈ 1, `i < hi and `i ≈ hi ≈ 2. In particular, hi’s are perturbed from 2 carefully

to encode gi’s. Items n + 1 and n + 2 are supported on {0, s} and {0, t}, respectively,

for some s, t with t � s � 1. The role of item n + 1 is to make sure that q(a), where

a = (a1, . . . , an, 0, 0), is a (almost) uniform distribution, by choosing s carefully. After this

step, utilities of vectors w with wn+1 = wn+2 = 0 can be shown to encode the desired sums

of subsets of {g1, . . . , gn} in every optimal solution to LP(I). Let c = (a1, . . . , an, 0, t). Our

characterization of optimal solutions to LP(I) implies that the utility of each vector v with

vn+1 = 0 and vn+2 = t satisfies u(v) = max{u(w), u(c)} with w = (v1, . . . , vn, 0, 0), and

u(c) is tightly controlled by our choice of t. As w has wn+1 = wn+2 = 0, u(w) encodes

the sum of a certain subset of {g1, . . . , gn}. Combining all these ingredients, we show that

the #P-hard problem can be solved by choosing an appropriate parameter t, and then

comparing u(c) with u(v) at a specific v with vn+1 = 0 and vn+2 = t (the choice of v

depends on part of the instance of the #P-hard problem) in any optimal solution.

For Theorems 12 and 13, we identify suitable convex combinations of the revenues of

item pricings which upper bound the revenues of all lotteries. Note that this proof method

is not only sound, but also complete in the pricing problem in all cases where randomization

does not help, by the properties of linear programming; the problem is to show the existence

of suitable coefficients for the convex combinations.

7.2 Preliminaries

We now present the standard linear program and prove a few basic properties about it.

7.2.1 The Standard Linear Program

Consider an instance I = (n,D1, . . . ,Dn) of Lottery Pricing (see Chapter 5), where a

seller offers n items, indexed by [n] = {1, . . . , n}, to a unit-demand buyer, whose valuation

v1, . . . , vn of items is drawn from n independent discrete distributions Di, i ∈ [n]. Each
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distribution Di is given explicitly in I, including both its support Di = supp(Di) and the

probability of each value in Di. Let D = D1 × · · · × Dn and D = D1 × · · · ×Dn.

We now give the first (not the standard one) linear program characterization of optimal

solutions to the optimal lottery problem. For each v ∈ D we introduce n + 1 variables

q(v) = (q1(v), . . . , qn(v)) and p(v) to denote the allocation vector and price of the lottery

that the buyer receives at v. Then the menu is given by M = {(q(v), p(v)) : v ∈ D}. The

only conditions are to make sure the utility of the buyer is always nonnegative and that

(q(v), p(v)) is a lottery in M that maximizes the utility of the buyer. This gives us a linear

program characterization of optimal solutions over variables (p(v),q(v) : v ∈ D):

Maximize
∑
v∈D

Pr[v] · p(v) subject to (7.1)

qi(v) ≥ 0 and
∑
i∈[n]

qi(v) ≤ 1, for all v ∈ D and i ∈ [n].

∑
i∈[n]

vi · qi(v)− p(v) ≥ 0, for all v ∈ D. (7.2)

∑
i∈[n]

vi · qi(v)− p(v) ≥
∑
i∈[n]

vi · qi(w)− p(w), for all v,w ∈ D. (7.3)

To obtain the standard linear program, we use instead of the price variables p(v), vari-

ables u(v) for the utilities of the buyer at the valuations v, replacing p(v) by the expression∑
i vi · qi(v)− u(v):

Maximize
∑
v∈D

Pr[v] ·

∑
i∈[n]

vi · qi(v)− u(v)

 subject to (7.4)

u(v) ≥ 0, qi(v) ≥ 0, and
∑
i∈[n]

qi(v) ≤ 1, for all v ∈ D and i ∈ [n].

u(v)− u(w) ≤
∑
i∈[n]

(vi − wi) · qi(v), for all v,w ∈ D. (7.5)

We will refer to it as the standard linear program that characterizes optimal solutions to

the lottery problem and denote it by LP(I). Given an optimal solution (u(v),q(v) : v ∈ D)

to LP(I), we refer to the number of lotteries in the menu it induces as its menu size.
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For the optimal mechanism design problem (with a single unit-demand buyer), the

setting is exactly the same (and so are the input instances I). A randomized mechanism is

a randomized algorithm B that, given v ∈ D, returns a pair (a, p), where a ∈ [n] ∪ {nil} is

the item assigned to the buyer (or no item is assigned if a = nil) and p ∈ R is the payment

from the buyer. Given B, let B(v) = (x(v), p(v)) denote the expected outcome of B on v:

xi(v) is the probability that B(v) assigns item i and p(v) is the expected payment.

We say B is individually rational if the buyer always has a nonnegative utility if she

reports truthfully: ∑
i∈[n]

vi · xi(v)− p(v) ≥ 0, for all v ∈ D.

We say B is truthful if the buyer has no incentive to misreport:

∑
i∈[n]

vi · xi(v)− p(v) ≥
∑
i∈[n]

vi · xi(w)− p(w), for any v,w ∈ D.

The goal of the optimal mechanism design problem is then to find an individually rational

and truthful mechanism B that maximizes the expected revenue
∑

v∈D Pr[v]p(v). From the

definitions B is an optimal mechanism iff the set of lotteries {B(v) : v ∈ D} = {(x(v), p(v)) :

v ∈ D} is an optimal solution to the lottery problem, that is, B is an optimal mechanism

iff the tuple (u(v),x(v) : v ∈ D) it induces is an optimal solution to the standard LP(I),

where we similarly replace p(v) by the utility u(v) of the buyer.

7.2.2 Properties of Optimal Solutions to LP(I)

Given an instance I = (n,D1, . . . ,Dn), we let a ∈ D denote the valuation vector with ai

being the lowest value in the support of Di for each i ∈ [n]. Then we have

Lemma 7.2.1. u(a) = 0 in any optimal solution (u(v),q(v) : v ∈ D) to LP(I).

Proof. Note that in any feasible solution to LP(I) we have u(v) ≥ u(a) for all v ∈ D by

(7.5). If u(a) > 0, replace u(v) by u(v) − u(a) for all v ∈ D, which results in a feasible

solution with a higher revenue.

We assume from now on that u(a) = 0 is fixed and u(a) is no longer a variable of LP(I).
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Lemma 7.2.2. In any feasible solution (u(v),q(v) : v ∈ D) to LP(I), the utility function is

monotonically nondecreasing, i.e. for any two valuations v,w, if v ≤ w then u(v) ≤ u(w).

Proof. If v ≤ w then constraint (7.5) implies that u(v)− u(w) ≤ 0.

The allocation function q is not in general monotonic, but if only one coordinate of the

valuation changes, then q changes monotonically in that coordinate. Given v ∈ D and

b ∈ Dj = supp(Dj), we use (v−j , b) to denote the vector obtained from v by replacing vj

with b. The following lemma shows that if b > vj , then we must have qj(v−j , b) ≥ qj(v).

Lemma 7.2.3. Let v ∈ D and vj < b ∈ Dj. Then any feasible solution to LP(I) satisfies

qj(v−j , b) ≥ qj(v).

Proof. Let w = (v−j , b). Applying (7.5) on both (v,w) and (w,v), we get

u(v)− u(w) ≤
∑
i∈[n]

(vi − wi) · qi(v) and u(w)− u(v) ≤
∑
i∈[n]

(wi − vi) · qi(w).

The lemma follows by summing them up and using vi = wi for all i 6= j.

The lotteries of an optimal menu are not necessarily complete. However, they are

complete for those valuations that are in the upper boundary of the domain D, i.e., have

the maximum value in some coordinate (and this value is positive). In particular, if all the

item supports have size 2, then all the lotteries in the optimal menu are complete, except

possibly for the allocation q(a) for the valuation a where all the items have the minimum

value.

Lemma 7.2.4. Let v ∈ D be a vector in which vi > 0 is the largest value in Di for

some coordinate i. Then any optimal solution (u(v),q(v) : v ∈ D) to LP(I) satisfies∑
j∈[n] qj(v) = 1.

Proof. Suppose that
∑

j∈[n] qj = 1 − c with c > 0. Increase the value of qi(v) by c. The

value of the objective function strictly increases (by Pr[v] · vj · c). The new solution is

feasible: note that in (7.5), qi(v) appears on the right-hand side always with a nonnegative

coefficient since vi ≥ wi for all w ∈ D.
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7.3 Distributions with Support {ai, b}

In this section we prove Theorem 12. Suppose that the n items i = 1, . . . , n have distribu-

tions with support {ai, b} of size 2, where 0 ≤ ai < b, with the same high value b. Let qi

denote the probability that item i has value vi = ai (and 1 − qi that it has value vi = b).

We will show that lotteries do not offer any advantage over deterministic item pricing. A

consequence of course is that in this case we can compute the optimal solution in polynomial

time.

Fix an optimal set of lotteries L∗. Let N denote the set of all items {1, . . . , n}. For each

subset S ⊆ N of items we let v(S) be the valuation in which items in S have value b and the

rest have value ai. Let Pr(S) be the probability of v(S). Let LS be the lottery of L∗ that

the buyer buys for valuation v(S), and let pS be the price of LS . Let L∅ = (x1, . . . , xn, p∅)

be the lottery for the valuation v(∅). Notice that
∑

i∈N xi ≤ 1, and p∅ ≤
∑

i∈N aixi as the

utility is nonnegative. For each subset S ⊆ N of items let x(S) =
∑

i∈S xi.

Let R∗ be the expected revenue of the optimal set of lotteries L∗. We will show that R∗

is upperbounded by a convex combination of the revenues of a set of n + 1 item pricings.

This implies that R∗ is no greater than the revenue of the optimal item pricing.

Consider a valuation v(S) for a subset S 6= ∅. The utility of lottery L∅ for valuation

v(S) is ∑
i/∈S

aixi + b
∑
i∈S

xi − p∅ ≥
∑
i/∈S

aixi + b
∑
i∈S

xi −
∑
i∈N

aixi =
∑
i∈S

(b− ai)xi.

The utility of the lottery LS that is bought under v(S) must be at least as large as that

of L∅. The value of the lottery LS is at most b, thus b − pS ≥
∑

i∈S(b − ai)xi, hence

pS ≤ b−
∑

i∈S(b− ai)xi. Therefore, the total optimal expected revenue R∗ is:

R∗ =
∑
∅6=S⊆N

pS Pr(S) + p∅ Pr(∅) ≤
∑
∅6=S⊆N

[b−
∑
i∈S

(b− ai)xi] Pr(S) +
∑
i∈N

aixi Pr(∅)

= b(1− Pr(∅))−
∑
i∈N

(b− ai)xi(1− qi) +
∑
i∈N

aixi Pr(∅).

Consider now the following set of n + 1 item pricings: pricing π0 assigns price b to all

items; for each i ∈ N , pricing πi assigns price ai to item i and b to all the other items. The

expected revenue R0 of π0 is b(1− Pr(∅)). Under the pricing πi, the revenue is b if vi = ai
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(a1, a2) (b1, a2) (a1, b2) (b1, b2)

(a1, b2) a1 a1 b2 a1

(b1, a2) a2 max{b1, a2} a2 a2

(b1, b2) 0 b1 b2 b2

(a1, b2 − t) δ a1 b2 − t b2 − t

Table 7.1: Revenue for each potentially optimal pricing (rows) and each possible valuation

vector (columns).

and vj = b for some j 6= i, and is ai in all other cases (i.e., if vi = b or if all vj = aj). So

the expected revenue Ri of πi is b(qi − Pr(∅)) + ai(1− qi + Pr(∅)).
Let x0 = 1 − x(N), and consider the convex combination

∑n
i=0 xiRi of the expected

revenues of the n+ 1 pricings πi, i = 0, . . . , n. We have:

n∑
i=0

xiRi = x0b(1− Pr(∅)) + b
∑
i∈N

xi(qi − Pr(∅)) +
∑
i∈N

aixi(1− qi + Pr(∅))

= b
n∑
i=0

xi(1− Pr(∅))− b
∑
i∈N

xi(1− qi) +
∑
i∈N

aixi(1− qi) +
∑
i∈N

aixi Pr(∅)

= b(1− Pr(∅))−
∑
i∈N

(b− ai)xi(1− qi) +
∑
i∈N

aixi Pr(∅).

Thus, R∗ ≤∑n
i=0 xiRi, and hence for at least one of the pricings πi, we must have R∗ ≤ Ri.

This finishes the proof of Theorem 12.

7.4 Two Items with Support Size 2

In this section we show Theorem 13, i.e., that offering lotteries does not improve the expected

revenue when there are two items and both distributions D1 and D2 are of support size 2.

Let {ai, bi} be the support of Di for i ∈ {1, 2}, where 0 ≤ ai < bi. Let qi be the

probability that item i has value ai (and 1 − qi that it has value bi). Without loss of

generality, we assume that b2 ≥ b1 and write t = b1 − a1. We consider the following four

item pricings: (a1, b2), (b1, a2), (b1, b2), (a1, b2−t) (according to the algorithm for the optimal

item pricing in the support-2 case [Chen et al., 2014], one of them is optimal).

In Table 7.1, we list the revenue for each of the four item pricings (the rows of the table)
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Valuation

Allocation

Item 1 Item 2 Price

(a1, a2) w1 w2 p1

(b1, a2) 1− x x p2

(a1, b2) y 1− y p3

(b1, b2) z 1− z p4

Table 7.2: An optimal menu.

at each of the four possible valuations (the columns). The bottom left entry δ of the table

is equal to a1 if a2 < b2 − t (i.e., if t < b2 − a2), and is equal to b2 − t if a2 ≥ b2 − t.
Consider now an optimal menu L∗ of lotteries. By Lemma 7.2.4, all the lotteries, except

for the one bought for valuation (a1, a2), are complete. In table 7.2 we list the allocation

and price of each lottery bought.

Our plan is again to show that the revenue of L∗ is upperbounded by a convex combi-

nation of revenues from the four item pricings. We use the following strategy.

Let α = (1 − q1)/q1. Note that this is the ratio between probabilities of valuations

(b1, a2) and (a1, a2), and also those of (b1, b2) and (a1, b2). The expected revenue of L∗ then

can be written as

q1q2 · (p1 + αp2) + q1(1− q2) · (p3 + αp4).

Denote by Ci the ith column vector of Table 7.1. Our goal is to find a non-negative vector

s = (s1, s2, s3, s4) of weights (view si as the weight of the item pricing on the ith row of

Table 7.1) with
∑4

i=1 si = 1 such that

s · (C1 + αC2) ≥ p1 + αp2 and s · (C3 + αC4) ≥ p3 + αp4. (7.6)

Let R∗ be the revenue of L∗ and Ri be the revenue of the item pricing on the ith column

of Table 7.1. Such a weight vector s then implies that R∗ ≤∑4
i=1 si · Ri, and Theorem 12

follows.

Here is the plan of the rest of the section. We in Section 7.4.1 bound the prices pi of

L∗, and then bound p1 +αp2 and p3 +αp4. We then choose an appropriate s and use these

bounds to prove (7.6) in Section 7.4.2.
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7.4.1 Upper Bounds for the Prices in L∗

We start with upper bounds for pi, i ∈ {1, 2, 3, 4}.
Bounding p1: For valuation (a1, a2), the buyer buys (w1, w2, p1). Since it has non-negative

utility,

p1 ≤ a1w1 + a2w2. (7.7)

Bounding p2: For valuation (b1, a2), the buyer prefers lottery (1−x, x, p2) over (w1, w2, p1).

Thus,

b1(1− x) + a2x− p2 ≥ b1w1 + a2w2 − p1
(7.7)
==⇒ p2 ≤ b1 − x(b1 − a2)− w1(b1 − a1).

Bounding p4: For valuation (b1, b2), the buyer prefers lottery (z, 1− z, p4) over (w1, w2, p1),

so

b1z + b2(1− z)− p4 ≥ b1w1 + b2w2 − p1
(7.7)
==⇒

p4 ≤ b1z + b2(1− z)− w1(b1 − a1)− w2(b2 − a2). (7.8)

For valuation (b1, b2), lottery (z, 1− z, p2) is also preferred over (1− x, x, p2), so we have

b1z + b2(1− z)− p4 ≥ b1(1− x) + b2x− p2
(7.8)
==⇒

p4 ≤ b1z + b2(1− z)− w1(b1 − a1)− x(b2 − a2). (7.9)

Hence, from (7.8) and (7.9) it follows that

p4 ≤ b2 − z(b2 − b1)− w1(b1 − a1)−max{w2, x}(b2 − a2). (7.10)

Bounding p3: For valuation (a1, b2), lottery (y, 1 − y, p3) is preferred over (z, 1 − z, p4), so

we have

a1y + b2(1− y)− p3 ≥ a1z + b2(1− z)− p4
(7.10)
===⇒

p3 ≤ b2 − (b2 − a1)y + z(b1 − a1)− w1(b1 − a1)−max{w2, x}(b2 − a2). (7.11)

Similarly, for valuation (a1, b2), lottery (y, 1−y, p3) is preferred over (w1, w2, p1), so we have

a1y + b2(1− y)− p3 ≥ a1w1 + b2w2 − p1
(7.7)
==⇒

p3 ≤ a1y + b2(1− y)− w2(b2 − a2). (7.12)
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Plugging in b2 ≥ a1 and y ≥ 0, we have from (7.11) and (7.12) that

p3 ≤ b2 + z(b1 − a1)− w1(b1 − a1)−max{w2, x}(b2 − a2)

and (7.13)

p3 ≤ b2 − w2(b2 − a2).

Bounding p1 + αp2: From (7.7) and (7.8) we get

p1 + αp2 ≤ αb1 − w1(αb1 − (1 + α)a1) + w2a2 − xα(b1 − a2). (7.14)

Bounding p3 + αp4: Combining the first part of (7.14) and (7.10) we get

p3 + αp4 ≤ (1 + α) (b2 − w1(b1 − a1)−max{w2, x}(b2 − a2))

−z(α(b2 − b1)− (b1 − a1)). (7.15)

Similarly, from the second part of (7.14) and (7.10) we get:

p3 + αp4 ≤ b2(1 + α)− zα(b2 − b1)− w1α(b1 − a1)− w2(b2 − a2)

−max{w2, x}α(b2 − a2). (7.16)

Next we will prove that there are non-negative weights s1, s2, s3 and s4 that sum to 1

and satisfy (7.6).

7.4.2 Upper Bounds for the Expected Revenue

First we note the following useful inequality:

w2a2 − xα(b1 − a2) ≤ max{w2, x} ·
(
a2 + α(max{b1, a2} − b1)

)
,

which can be verified by checking both cases of b1 ≥ a2 and b1 < a2.

We start with a sufficient condition on s = (s1, . . . , s4) to satisfy the first part of (7.6).

Lemma 7.4.1. Suppose that s1, s4 ≥ 0 satisfy s1+s4 = w1, s2 satisfies 0 ≤ s2 ≤ max{w2, x}
and

w2a2 − xα(b1 − a2) ≤ s2 ·
(
a2 + α(max{b1, a2} − b1)

)
, (7.17)

and s3 = 1− w1 − s2. Then si ≥ 0 for all i,
∑4

i=1 si = 1, and s satisfies s · (C1 + αC2) ≥
p1 + αp2.
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Proof. We have s1, s2, s4 ≥ 0 by the assumption of the lemma. To see that s3 ≥ 0 note

that by Lemma 7.2.3 w1 ≤ 1− x. As w1 +w2 ≤ 1, we have 1−w1 ≥ max{w2, x} and thus,

s3 ≥ 0.
∑4

i=1 si = 1 is obvious.

Recall that δ in Table 7.1 is a1 or b2− t = b2− b1 +a1 ≥ a1. Letting A = s · (C1 +αC2),

we have:

A = s1(1 + α)a1 + s2a2 + s2αmax{b1, a2}+ s3αb1 + s4δ + s4αa1

≥ s1(1 + α)a1 + s2a2 + s2αmax{b1, a2}+ s3αb1 + s4a1 + s4αa1

= (s1 + s4)(1 + α)a1 + s2a2 + s2αmax{b1, a2}+ s3αb1.

From the choice of the si’s: s1 +s4 = w1 and s4 = 1−w1−s2, the above inequality becomes

A ≥ w1(1 + α)a1 + s2a2 + s2αmax{b1, a2}+ (1− w1 − s2)αb1

= αb1 − w1(αb1 − (1 + α)a1) + s2a2 + s2α(max{b1, a2} − b1).

The lemma then follows directly from (7.14) and the assumption (7.17).

We next show that there is an s that satisfies the second part of (7.6) as well as conditions

of Lemma 7.4.1.

Lemma 7.4.2. There exists an s that satisfies conditions of Lemma 7.4.1 and s · (C3 +

αC4) ≥ p3 + αp4.

Proof. Let B = s · (C3 + αC4). It follows from Table 7.1 that we have

B = s1b2 + s1αa1 + s2(1 + α)a2 + s3(1 + α)b2 + s4(1 + α)(b2 − t). (7.18)

We will distinguish two cases.

Case 1: (b2 − b1)α ≥ b1 − a1. Set s2 = max{w2, x}, s3 = 1− w1 −max{w2, x}, s1 = 0,

and s4 = w1. Clearly, this assignment satisfies the conditions of Lemma 7.4.1. Equation

(7.18) gives:

B = (1 + α)
(
b2 − w1(b1 − a1)−max{w2, x}(b2 − a2)

)
. (7.19)

Furthermore, in this case −z((b2 − b1)α − (b1 − a1)) ≤ 0, therefore (7.15) and (7.19) give

p3 + αp4 ≤ B.
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Case 2: (b2 − b1)α < (b1 − a1). For this case we distinguish 3 subcases.

Case 2.1: z ≤ w1. Set s1 = w1, s2 = max{w2, x}, s3 = 1−w1−max{w2, x}, and s4 = 0.

Then

B = w1b2 + w1αa1 + max{w2, x}(1 + α)a2 + (1− w1 −max{w2, x})(1 + α)b2

= b2(1 + α)− w1α(b2 − a1)−max{w2, x}(1 + α)(b2 − a2). (7.20)

Using (b2 − b1)α < (b1 − a1) and z ≤ w1 in (7.15), we have

p3 + αp4 ≤ (1 + α)(b2 − w1(b1 − a1)−max{w2, x}(b2 − a2))− w1(α(b2 − b1)− (b1 − a1))

= b2(1 + α)− w1α(b2 − a1)−max{w2, x}(1 + α)(b2 − a2) = B.

Case 2.2: z > w1 and x ≤ w2. Using the same assignment of s as in Case 2.1, by

z > w1, (7.16) gives

p3 + αp4 ≤ b2(1 + α)− w1α(b2 − a1)− w2(b2 − a2)−max{w2, x}α(b2 − a2). (7.21)

Furthermore, x ≤ w2 implies that w2 = max{w2, x}. It follows from (7.21) and (7.20) that

p3 + αp4 ≤ B.

Case 2.3: z > w1 and x > w2. Setting s1 = w1, s3 = 1− w1 − s2, and s4 = 0, with

s2 = (w2 + xα)
/

(1 + α).

Clearly s2 ≤ max{w2, x}. We verify that (7.17) at the end but first compare B and p3+αp4.

We have

B = w1b2 + w1αa1 + s2(1 + α)a2 + (1− w1 − s2)(1 + α)b2

= b2(1 + α)− w1α(b2 − a1)− s2(1 + α)(b2 − a2). (7.22)

Since x > w2, equation (7.21) gives

p3 + αp4 ≤ b2(1 + α)− w1α(b2 − a1)− w2(b2 − a2)− xα(b2 − a2). (7.23)

It follows from our choice of s2 and b2 − a2 ≥ 0 that p3 + αp4 ≤ B.

Finally we verify that our choice of s2 satisfies (7.17) in this case. To see this, we have

(1 + α)
(
w2a2 − xα(b1 − a2)

)
− (w2 + xα)

(
a2 + α(max{b1, a2} − b1)

)
= w2αa2 − xαb1 + xα2a2 − w2αmax{b1, a2}+ w2αb1 − xα2 max{b1, a2} ≤ 0.
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The last inequality is true because x > w2. The lemma follows by combining all the

cases.

Theorem 13 follows from Lemma 7.4.1 and Lemma 7.4.2.

7.5 Small Instances where Lotteries help

In this section, we give examples where lotteries can extract a strictly higher revenue than

the optimal item pricing. In the first example, there are three items and each Di has support

size 2; in the second example, there are two items and each Di has support size 3.

Three items, support size 2: We consider the following instance I with three items.

The three items have distributions with support {5, bi} for i ∈ [3], where b1 = 10 and

b2 = b3 = 6. Let pi be the probability that item i has value 5. Then set p1 = 0.6, p2 = 0.7

and p3 = 0.8.

There are two optimal item pricings: (10, 6, 5) and (9, 6, 5), with expected revenue 6.744.

The optimal menu for I consists of four lotteries: x1 = (1, 0, 0) at price 9.5, x2 = (0, 1, 0) at

price 5.5, x3 = (0, 0, 1) at price 5.5, and x4 = (0, 0.5, 0.5) at price 5. The expected revenue

of this menu is 6.806.

Two items, support size 3: Next consider the following instance J with two items and

identical distributions. Each item has value 4 with probability 0.5, value 6 with probability

0.2, and value 7 with probability 0.3.

There are also two optimal item pricings: (6, 4) and (6, 6), with expected revenue 4.5.

The optimal menu for instance J consists of three lotteries: x1 = (1, 0) at price 6, x2 = (0, 1)

at price 5, and x3 = (0, 0.5) at price 2. The expected revenue of this menu is 4.56.

7.6 Hardness of Optimal Mechanism Design

In this section we prove Theorem 14. This is done by giving a polynomial-time reduction

from a #P-hard problem called COMP. We delay its definition and proof of #P-hardness

to Section 7.6.2.3 and only mention for now that it is a generalization of #SUBSET-SUM.
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This section is organized as follows. In Section 7.6.1, we characterize optimal solutions to

a relaxation to the standard linear program LP(I) when parameters of the instance I satisfy

certain conditions. We call the relaxed linear program LP′(I), and the characterization is

summarized in Section 7.6.1.7. In Section 7.6.2 we pin down the rest of parameters of I

to embed the #P-hard problem COMP. More formally, one can construct an instance I

to the lottery problem from an instance of COMP in polynomial time such that a specific

entry of any optimal solution to LP′(I) can be used to answer COMP. Finally we show

that for such instances I, any optimal solution to LP′(I) must be an optimal solution to

LP(I). Then an efficient universal algorithm for the optimal mechanism design problem

implies PNP = P#P. This finishes the proof of Theorem 14.

7.6.1 Linear Program Relaxation

Let I denote an instance of n+ 2 items with the following properties. Each item i ∈ [n] is

supported over Di = {ai, `i, hi} with ai < `i < hi. Probabilities of ai, `i and hi are 1−p−r,
p and r, respectively, where

p =
1

2n4 and r =
p

2n2 . (7.24)

So p and r satisfy p = (r/p)n
2
. Let β = 1/2n. The support {ai, `i, hi} of item i ∈ [n]

satisfies

`i = 2 + 3(n− i)β, `i + β ≤ hi ≤ `i +

(
1 +

1

22n

)
β, and |ai − 1| = O(np). (7.25)

Let di = `i − ai ≈ 1 and τi = hi − `i. Our choices of `i and hi guarantee that τi ≈ β as

well as `i > hi+1 + β (or `i ≈ hi+1 + 2β more precisely) for all i from 1 to n − 1. Item

n+ 1 takes value 0 with probability 1− δ, and s with probability δ; item n+ 2 takes value

0 with probability 1 − δ2, and t with probability δ2. So let Dn+1 = {0, s}, Dn+2 = {0, t},
and D = D1 × · · · × Dn+2. We impose the following conditions on δ, s and t throughout

Section 7.6.1:

δ =
1

2n6 , s = Θ

(
1

pn

)
, t = O

(
β

rm+1m

)
, t = Ω

(
β

rm+1m2n

)
, where m = dn/2e.

(7.26)

Note that δ � r � p, and t = 2Θ(n5) � s = 2Θ(n4) � 1. Precise values of the ai’s,

the hi’s, and s and t will be chosen later on in Section 7.6.2 after we have analyzed the
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structure of the problem. In particular, the hi’s and t will be used to reflect the instance

of the #P-hard problem that we will embed in I and LP(I). (7.24), (7.25) and (7.26) are

sufficient for our analysis in Section 7.6.1 of the relaxed LP to be described below.

We need some notation before describing the relaxation of LP(I). Given v ∈ D, we use

S(v) to denote the set of i ∈ [n] such that vi ∈ {`i, hi}, S−(v) to denote the set of i ∈ [n]

such that vi = `i, and S+(v) to denote the set of i ∈ [n] such that vi = hi. So we always

have S(v) = S+(v) ∪ S−(v) ⊆ [n].

Next we partition D into T1, T2, T3, T4, where T1 consists of vectors with vn+1 = vn+2 =

0, T2 consists of vectors with vn+1 = s and vn+2 = 0, T3 consists of vectors with vn+2 = t

and vn+1 = 0, and T4 consists of vectors with vn+1 = s and vn+2 = t. We call vectors in Ti

type-i vectors. We denote the bottom vector (a1, . . . , an, 0, 0) by a, (a1, . . . , an, s, 0) by c2,

(a1, . . . , an, 0, t) by c3, and (a1, . . . , an, s, t) by c4 (so ci is the bottom of type-i vectors for

i from 2 to 4). By Lemma 7.2.1, we have u(a) = 0 in any optimal solution to LP(I) so we

fix it to be 0.

Given v ∈ D, we write Block(v) to denote the set of w ∈ D with S(w) = S(v),

wn+1 = vn+1, and wn+2 = vn+2; we refer to Block(v) as the block that contains v. It

would also be helpful to view each Ti as a collection of (disjoint) blocks. We say v ∈ D
is essential if S+(v) = ∅ (here the intuition is that within each block, there is a unique

essential vector with the largest mass of probability, given r � p in (7.24)). We use D′

to denote the set of essential vectors, and write T ′i = Ti ∩D′ and T ∗i = Ti \ T ′i for each i.

Given v ∈ D, we use Lower(v) to denote the unique essential vector in Block(v), i.e.,

Lower(v) is the vector obtained by replacing each hi in v by `i.

We let min(S(v)) denote the smallest index in S(v) and S′(v) denote S(v)\{min(S(v))}.

Given a vector v ∈ D we follow the convention and write (v−i, α) to denote the vector

obtained from v by replacing its ith entry vi with α. We write (v[n], α, α
′) to denote the

vector obtained from v by replacing vn+1 with α and vn+2 with α′. We let ρ : T2∪T3∪T4 →
T1 denote the map with ρ(v) = (v[n], 0, 0).

Given two vectors v,w ∈ Ti of the same type, we write v ≺ w (or say that v lies below

w, or w lies above v) if either S(v) ⊂ S(w), or S(v) = S(w) and S+(v) ⊂ S+(w). By

definition ≺ is transitive.
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The linear program LP′(I) is presented in Figure 7.1 which has the same objective

function and variables (u(v),q(v) : v ∈ D) as LP(I). We refer to u(v) and q(v) as the

utility and allocation variables of v ∈ D, respectively. For convenience, we write (u(·),q(·))
to denote a solution to LP′(I), and call u(·) : D → R≥0 a utility function. Constraints in

Part 1 of LP′(I) concerns variables of type-1 vectors; Part 2 concerns type-2 and type-1

vectors; Part 3 concerns type-3 and type-1 vectors; Part 4 concerns type-4, 3 and 1 vectors.

It is easy to check that LP′(I) is a relaxation of LP(I). The goal is to understand its

optimal solutions.

Maximize
∑
v∈D

Pr[v] ·

 ∑
i∈[n+2]

vi · qi(v)− u(v)

 subject to the following constraints:

Part 0. Same constraints on u(v) and q(v) as in LP(I):

u(v) ≥ 0, qi(v) ≥ 0, and
∑

j∈[n+2]

qj(v) ≤ 1, for v ∈ D and i ∈ [n+ 2].

Part 1. Constraints on type-1 vectors.

u(v) ≥
∑
i∈S(v)

di · qi(a), for v ∈ T ′1; (7.27)

u(v)− u(w) ≤ τi · qi(v), for v ∈ T1, i ∈ S+(v) and w = (v−i, `i); (7.28)

u(v)− u(w) ≥
∑

j∈S+(v)

τj · qj(w), for v ∈ T1, w = Lower(v); (7.29)

u(v) ≥ u(w), for v ∈ T1, i ∈ S(v), w = Lower(v−i, ai); (7.30)

u(v)− u(w) ≤
∑
j∈[n]

(vj − wj) · qj(v), for v ∈ T1, i ∈ S(v), w ∈ Block(v−i, ai). (7.31)

Part 2. Constraints on type-2 vectors:

u(v) ≥ u(ρ(v)) and u(v) ≥ u(c2), for v ∈ T2; (7.32)

u(v)− u(w) ≤ τi · qi(v), for v ∈ T2, i ∈ S+(v), w = (v−i, `i); (7.33)

u(v)− u(w) ≤
∑
j∈[n]

(vj − wj) · qj(v), for v ∈ T2, i ∈ S(v), w ∈ Block(v−i, ai). (7.34)
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Part 3: Constraints on type-3 vectors:

u(v) ≥ u(ρ(v)) and u(v) ≥ u(c3), for v ∈ T3; (7.35)

u(v)− u(w) ≤ τi · qi(v), for v ∈ T3, i ∈ S+(v), w = (v−i, `i); (7.36)

u(v)− u(w) ≤
∑
j∈[n]

(vj − wj) · qj(v), for v ∈ T3, i ∈ S(v), w ∈ Block(v−i, ai). (7.37)

Part 4: Constraints on type-4 vectors: u(c4) ≥ u(c3) and u(c4)− u(c3) ≤ s · qn+1(c4) and

u(v) ≥ u(ρ(v)) and u(v) ≥ u(c4), for v ∈ T4; (7.38)

u(v)− u(w) ≤ τi · qi(v), for v ∈ T4, i ∈ S+(v), w = (v−i, `i); (7.39)

u(v)− u(w) ≤
∑
j∈[n]

(vj − wj) · qj(v), for v ∈ T4, i ∈ S(v), w ∈ Block(v−i, ai). (7.40)

Figure 7.1: Relaxed Linear Program LP′(I)

7.6.1.1 Properties of a Small Linear Program

We start with the following lemma on q(c2), q(c3) and q(c4) in any optimal solution to

LP′(I).

Lemma 7.6.1. If (u(·),q(·)) is an optimal solution to LP′(I), then it satisfies

qn+1(c2) = 1, qn+2(c3) = 1, qn+1(c4) =
u(c4)− u(c3)

s
and qn+2(c4) = 1− qn+1(c4);

all other entries of the three vectors q(c2),q(c3) and q(c4) are 0.

Proof. No constraint in LP′(I) involves q(c2) or q(c3) other than those in Part 0.

For q(c4), in additional to Part 0, there is a constraint in Part 4 that involves qn+1(c4):

s · qn+1(c4) ≥ u(c4)− u(c3). (Note that we have u(c4) ≥ u(c3) by (7.38) in Part 4.)

The lemma then follows from the objective function and that t� s� 1.

Let D̂ = T2 ∪ T3 ∪ T4 \ {c2, c3, c4}. Vectors q(v) for v ∈ D̂ are much more involved.

Given a utility function u : D → R≥0, we define for each v ∈ D̂ the following small linear
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program LP(v : u) over n+ 2 variables q = (q1, . . . , qn+2):

Maximize
∑

j∈[n+2]

vj · qj − u(v) subject to (7.41)

qi ≥ 0 and
∑

j∈[n+2]

qj ≤ 1, for i ∈ [n+ 2]; (7.42)

τi · qi ≥ u(v)− u(w), for i ∈ S+(v) and w = (v−i, `i); (7.43)∑
j∈[n]

(vj − wj) · qj ≥ u(v)− u(w), for i ∈ S(v) and w ∈ Block(v−i, ai). (7.44)

Note that LP(v : u) uses utilities of v and w in blocks nearby v given by u (so the RHS

of the constraints u(v)− u(w) and u(v) in the objective function are all constants instead

of variables), and that qn+1, qn+2 and qi, i ∈ [n] \ S(v), do not appear in constraints of

LP(v : u) other than (7.42) and the objective function.

Comparing LP′(I) and LP(v : u) gives us the following lemma.

Lemma 7.6.2. Given a utility function u(·) : D → R≥0 and v ∈ D̂, q(v) satisfies all

constraints in LP′(v) that involve q(v) iff it is a feasible solution to LP(v : u). Moreover,

if (u(·),q(·)) is an optimal solution to LP′(I), then q(v) must be an optimal solution to

LP(v : u) for all v ∈ D̂.

Proof. The first part is trivial since we included in LP(v : u) every constraint in LP′(I)

that involves q(v).

The second part follows directly from the first part, since the objective function of

LP(v : u) is exactly Rev(v), the revenue at v (and we also know that Pr[v] > 0 for all

v ∈ D).

Next we prove a few properties of optimal solutions to LP(v : u).

Lemma 7.6.3. Suppose that LP(v : u) is feasible for some utility function u : D → R≥0

and v ∈ D̂. Then any optimal solution q = (q1, . . . , qn+2) to LP(v : u) satisfies qi(v) = 0

for all i ∈ [n] \ S(v) and entries of q sum to 1. Moreover, we also have qn+2(v) = 0 if

v ∈ T2, and qn+1(v) = 0 if v ∈ T3 ∪ T4.

Proof. If any of the qi’s listed above is positive, replacing qi by 0 and adding qi to qn+1 if

v ∈ T2 or adding qi to qn+2 if v ∈ T3 ∪ T4 would result in a strictly better feasible solution.
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If the entries of q sum to 1− c, for some c > 0, adding c to either qn+1 or qn+2 would result

in a strictly better feasible solution.

In the proof sometimes we need to compare optimal solutions to LP(v : u) vs LP(v : u′)

for two utility functions u and u′ that are entry-wise close to each other. The following

lemma comes in handy.

Lemma 7.6.4. Assume LP(v : u) and LP(v : u′) are feasible for some v ∈ D̂ and utilities

u, u′ : D → R≥0. Let OPT and OPT′ denote optimal values of LP(v : u) and LP(v : u′),

respectively. Let ε > 0. Then

1. If v ∈ T2 and |u(w)− u′(w)| ≤ ε for all w ∈ T2, then |OPT− OPT′ | = O(nεs/β).

2. If v ∈ T3 (or T4) and |u(w)−u′(w)| ≤ ε for all w ∈ T3 (or T4), then |OPT−OPT′ | =
O(nεt/β).

Proof. We prove that OPT′ ≥ OPT−O(nεs/β) when v ∈ T2. All other cases can be proved

similarly.

For this purpose, let q and q′ denote an optimal solution to LP(v : u) and LP(v : u′),

respectively. We consider the following two cases:

Case 1: qn+1 ≥ 4nε/β. Let q∗ denote the following nonnegative vector obtained from q:

q∗n+1 = qn+1 − |S(v)| · 4ε

β
and q∗i = qi +

4ε

β
, for each i ∈ S(v).

It is a feasible solution to LP(v : u′), given (7.24) and (7.25). Thus, OPT′ ≥ OPT −
O(nεs/β).

Case 2: qn+1 < 4nε/β. This case is more involved. By Lemma 7.6.3 we have qn+2 =

q′n+2 = 0. Let

c = max
i∈[n]

{
qi − q′i

}
.

If c ≤ 8nε/β, then we immediately have (using q′n+1 ≥ 0)

OPT′ ≥ OPT− s · (4nε/β)− n · c ·O(1) ≥ OPT−O(nεs/β),

since we assumed that s � n in (7.26). Otherwise (c > 8nε/β), we let k ∈ S(v) denote

an index that achieves the maximum (k ∈ S(v) since qi = q′i = 0 for all i ∈ [n] \ S(v) by
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Lemma 7.6.3):

qk − q′k = c > 8nε/β.

As
∑

i∈S(v) qi = 1 − qn+1 > 1 − c and
∑

i∈S(v) q
′
i ≤ 1 we have qi ≥ q′i − (n + 1)c for all

i ∈ S(v). Now let q∗ denote the vector obtained from q by replacing

q∗k = qk − (|S(v)| − 1) · 4ε

β
and q∗i = qi +

4ε

β
, for all other i ∈ S(v).

One can then verify that q∗ is a feasible solution to LP′(v). The only nontrivial case in

verifying this is to show that the following constraint

∑
j∈[n]

(vj − wj) · q∗j ≥ u′(v)− u′(w),

holds for any w ∈ Block(v−k, ak). To prove this, we note that

∑
j∈[n]

(vj − wj) · q∗j −
∑
j∈[n]

(vj − wj) · q′j ≥ (vk − ak) ·
c

2
− n ·O(β) ·O(nc) = Ω(c) > 0.

As a result, we have OPT′ ≥ OPT−O(nε/β) ·O(nβ) = OPT−O(n2ε).

The lemma then follows by combining the two cases and the fact that s/β � n.

7.6.1.2 Condition on Utilities of Type-2 Vectors

We show that utilities of type-2 vectors in any optimal solution (u(·),q(·)) to LP′(I) must

satisfy:

Condition-Type-2: Each type-2 vector v ∈ T2 has utility

u(v) = max
{
u(ρ(v)), u(c2)

}
.

Recall that ρ(v) = (v−(n+1), 0) for type-2 vectors. By (7.32) of LP′(I) in Part 2, u(v) is at

least as large as the RHS. So Condition-Type-2 requires that it is tight for every v ∈ T2

in an optimal solution.

We now prove Condition-Type-2.

Lemma 7.6.5. Given (7.24), (7.25) and (7.26), any optimal solution to LP′(I) satisfies

Condition-Type-2.
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Proof. Let (u(·),q(·)) denote an optimal solution to LP′(I). Let R denote the set of v ∈ T2

with

u(v) > max
{
u(ρ(v)), u(c2)

}
.

Note that c2 /∈ R by the definition of R. Assume for contradiction that R is nonempty.

Our plan is to derive a solution (u′(·),q′(·)) from (u(·),q(·)), by modifying utilities and

allocations of type-2 vectors only. We then get a contradiction by showing that (u′(·),q′(·))
is feasible and has a strictly higher revenue than (u(·),q(·)). (Because we only modify

utilities and allocations of type-2 vectors, for the feasibility it suffices to verify constraints

of LP′(I) in Part 2.) We use Rev(v) and Rev′(v) to denote the revenue from v in the old

and new solutions. By Lemma 7.6.3 Rev(v) is the value of LP(v : u) for v ∈ D̂.

To define the new solution (u′(·),q′(·)), let ε > 0 denote the following parameter:

ε = min

{
min
v∈R

{
u(v)−max

{
u(ρ(v)), u(c2)

}}
, min

v∈D
{positive entry in q(v)}

}
.

For each v ∈ T2, set u′(v) = u(v) if v /∈ R and u′(v) = u(v)− ε if v ∈ R. All other entries

of u′ remain the same as in u. Note that u′ still satisfies (7.32) in Part 2. Given u′(·), we

set q′(v) for each v ∈ T2 \ {c2} to be an optimal solution to the linear program LP(v : u′)

(though it is not clear for now if LP(v : u′) is still feasible or not; we will show that this is

indeed the case for every v ∈ T2 \ {c2}) and all other allocations remain the same as those

in q(·). This finishes the description of (u′(·),q′(·)).
By Lemma 7.6.2, to show that (u′(·),q′(·)) is well-defined and feasible it suffices to show

that LP(v : u′) is feasible for all v ∈ T2 \ {c2} (because (u′(·),q′(·)) satisfies trivially all

constraints of LP′(I) except (7.33) and (7.34) in Part 2). To see this is the case we fix

such a v. If v ∈ R (and u′(v) = u(v) − ε), every feasible solution to LP(v : u) is also

feasible to LP(v : u′). As a result, LP(v : u′) is feasible as well. Furthermore, we also have

Rev′(v) ≥ Rev(v) + ε since u′(v) = u(v)− ε, for any v ∈ R.

If v /∈ R, then either u′(v) = u(v) = u(c2), or u′(v) = u(v) = u(ρ(v)). For the former

case, setting qn+1 = 1 and qi = 0 for all other i is a feasible solution to LP(v : u′), since

u′(w) ≥ u(c2) for all w ∈ T2. For the latter case, q = q(ρ(v)) is a feasible solution to

LP(v : u′) since constraints on q(ρ(v)) in LP′(I) are at least as strong as those on q in

LP(v : u) using u′(v) = u(ρ(v)) and u′(w) ≥ u(ρ(w)) for w ∈ T2. More specifically, (7.43)
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of LP(v : u′) follows from (7.28) of Part 1 in LP′(I) over q(ρ(v)); (7.44) follows from (7.31)

of Part 1 in LP′(I) over q(ρ(v)). We conclude that (u′(·),q′(·)) is well-defined, feasible to

LP′(I).

The only thing left to show that the expected revenue from (u′(·),q′(·)) is strictly higher.

By the definition of (u′(·),q′(·)), we have Rev′(v) = Rev(v) for all v other than those in

T2 \ {c2} since each such v receives the same allocation and utility as in (u(·),q(·)). By

Lemma 7.6.4, we also have

Rev′(v) ≥ Rev(v)−O(nεs/β), for all v ∈ T2 \ {c2}.

Moreover, if v ∈ T2 \ R and there is no w ∈ R below v (or w ≺ v) then LP(v : u′) is

exactly the same as LP(v : u) so Rev′(v) = Rev(v). This inspires us to define R′ ⊆ R as

the bottom of R: v ∈ R′ if there is no other vector in R below v. (Since R is nonempty,

R′ is nonempty as well.) For each v ∈ R′, we claim that Rev′(v) from the new solution

indeed has a much bigger advantage over Rev(v):

Rev′(v) ≥ Rev(v) + Ω(εs). (7.45)

To prove (7.45), we first show that qi(v) > 0 for some i ∈ S(v). For this, setting

w = Lower(v−j , aj) for some j ∈ S(v) in (7.34) of Part 2 in LP′(I) (note that v 6= c2

implies S(v) 6= ∅), we have ∑
i∈S(v)

(vi − wi) · qi(v) ≥ u(v)− u(w).

It follows from v ∈ R′ ⊆ R that

u(v) > max
{
u(ρ(v)), u(c2)

}
and u(w) = max

{
u(ρ(w)), u(c2)

}
.

By (7.31) of Part 1 in LP′(I), we have u(ρ(v)) ≥ u(ρ(w)). It follows that u(v) > u(w) and

thus, qi(v) > 0 for some i ∈ S(v). Let k be an index in S(v) with qk(v) > 0. As a result,

the following vector q∗ (which is nonnegative because of our choice of ε):

q∗n+1 = qn+1(v) +
ε

2
and q∗k = qk(v)− ε

2
,

and q∗i = qi(v) for all other i, must be a feasible solution to LP(v : u′). (7.45) then follows

from s� 1.
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We say a type-2 vector is above R′ if it is above one of the vector in R′. Combining

all cases together, to show that revenue from (u′(·),q′(·)) is strictly higher than that from

(u(·),q(·)), it suffices to show that

Pr[vectors in R′ ] · Ω(εs)� Pr[(type-2) vectors above R′ ] ·O(nεs/β). (7.46)

This follows from our choices of p and r in (7.24). Taking any v ∈ R′, we have the following

bound:

Pr[vectors above v] = Pr[vectors w � v, S(w) = S(v)]

+ Pr[vectors w � v, S(v) ⊂ S(w)]

=

(
O

(
nr

p

)
+O

(
np|S(v)|+1

r|S(v)|

))
· Pr[v]

= O

(
nr

p
+ np ·

(p
r

)n)
· Pr[v]� β

n
· Pr[v].

Then (7.46) follows from a union bound. This finishes the proof of the lemma.

The arguments used in Lemma 7.6.5 imply the following property. Suppose (u(v),q(v) :

v ∈ T1) satisfies all the constraints of LP′(I) in Parts 0 and 1. Given any nonnegative

number u2, we can extend it to T2 by setting u(c2) = u2 and u(v) = max{u(ρ(v)), u2}
for each other v in T2, and then setting q(c2) according to Lemma 7.6.1 and q(v) to be

an optimal solution to LP(v : u) for each other v ∈ T2. It is easy to show, by a similar

argument as used in Lemma 7.6.5, that LP(v : u) is feasible, and (u(v),q(v) : v ∈ T1 ∪ T2)

now satisfies all the constraints of LP′(I) in Parts 0, 1 and 2.

7.6.1.3 Conditions on Utilities of Type-4 Vectors

Next we show that utilities of type-4 vectors satisfy the following condition:

Condition-Type-4: Each type-4 vector v ∈ T4 has utility

u(v) = max
{
u(ρ(v)), u(c4)

}
.

Lemma 7.6.6. Given (7.24), (7.25) and (7.26), any optimal solution to LP′(I) satisfies

Condition-Type-4.
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Proof. Let (u(·),q(·)) be an optimal solution, and let R be the set of v ∈ T4 with u(v) >

{u(ρ(v)), u(c4)} (so we have c4 /∈ R). Assume for contradiction that R is nonempty. Our

plan is to derive (u′(·),q′(·)) from (u(·),q(·)) by modifying utilities and allocations of vectors

in T4 \ {c4} only. We reach a contradiction by showing that the new solution (u′(·),q′(·))
is feasible and has a strictly higher revenue than (u(·),q(·)).

To define the new solution (u′(·),q′(·)), let ε > 0 denote the following parameter:

ε = min

{
min
v∈R

(
u(v)−max

{
u(ρ(v)), u(c3)

})
, min

v∈D
{positive entry in q(v)}

}
.

First for each v ∈ T4 we set u′(v) = u(v) if v /∈ R, and u′(v) = u(v) − ε if v ∈ R; all

other entries of u′ are the same as those in u. Note that u′(·) still satisfies (7.38) in Part

4 of LP′(I). Given u′(·) we set q′(v) for each v ∈ T4 \ {c4} to be an optimal solution to

the linear program LP(v : u′). With an argument similar to that used in Lemma 7.6.5,

LP(v : u′) is feasible (if v ∈ R, q(v) is feasible; otherwise q(ρ(v)) is feasible).

Given that (u′(·),q′(v)) is well-defined and feasible, we next show that its expected

revenue is strictly higher than that of (u(·),q(·)). We follow the approach as in the proof

of Lemma 7.6.5. Let R′ be the bottom of R: R′ contains w ∈ R if no other vector in R

lies below w. For each v ∈ T4 \ R′ with w ≺ v for some w ∈ R′, we apply Rev′(v) ≥
Rev(v) − O(nεt/β) by Lemma 7.6.4. For each v ∈ T4 \ R′ that is not above any vector

in R′, we have Rev′(v) = Rev(v). Finally, for each v ∈ R′, the same proof of (7.45) in

Lemma 7.6.5 gives that Rev′(v) ≥ Rev(v) + Ω(εt).

Combining all the cases and following the same argument used in Lemma 7.6.5, we have

Pr[vectors in R′ ] · Ω(εt)� Pr[(type-4) vectors above R′ ] ·O(nεt/β).

This finishes the proof of the lemma.

The arguments used in Lemma 7.6.6 also imply the following fact. Suppose (u(v),q(v) :

v ∈ T1 ∪ T2 ∪ T3) satisfies all the constraints of LP′(I) in Parts 0, 1, 2 and 3. Given any

nonnegative number u4 with

u(c3) ≤ u4 ≤ u(c3) + s,

we can extend it to T4 by setting u(c4) = u4 and u(v) = max{u(ρ(v)), u4} for other v in T4,

and setting q(c4) according to Lemma 7.6.1 and q(v) to be an optimal solution to LP(v : u)
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for other v ∈ T4. By similar arguments used in Lemma 7.6.6, LP(v : u) is feasible, and

(u(v),q(v) : v ∈ D) now is feasible to LP′(I).

7.6.1.4 Condition on Utilities of Type-3 Vectors

A similar condition holds for utilities of type-3 vectors in any optimal solution to LP′(I):

Condition-Type-3: Each type-3 vector v ∈ T3 has utility

u(v) = max
{
u(ρ(v)), u(c3)

}
.

Lemma 7.6.7. Given (7.24), (7.25) and (7.26), any optimal solution to LP′(I) satisfies

Condition-Type-3.

Proof. Assume for contradiction that (u(·),q(·)) is an optimal solution to LP′(I) that

violates Condition-Type-3. Let R denote the nonempty set of v ∈ T3 with u(v) >

max
{
u(ρ(v)), u(c3)} (so c3 /∈ R).

To reach a contradiction, we derive from (u(·),q(·)) a new solution (u′(·),q′(·)) by

modifying utilities and allocations of v ∈ T3 \ {c3} only. (All constraints are satisfied

trivially except those in Part 3; note that only u(c3) appears in Part 4 but it remains the

same in u′(·).) We then show that (u′(·),q′(·)) is better.

We define (u′(·),q′(·)) from (u(·),q(·)) as follows. Let ε > 0 denote the following pa-

rameter:

ε = min

{
min
v∈R

(
u(v)−max

{
u(ρ(v)), u(c3)

})
,min
v∈D
{positive entry in q(v)}

}
.

For each v ∈ T3 we set u′(v) = u(v) if v /∈ R and u′(v) = u(v) − ε if v ∈ R; all other

entries remain the same. Note that the new u′ satisfies (7.35) in Part 3 of LP′(I). Then for

each v ∈ T3 \ {c3}, we set q′(v) to be an optimal solution to LP(v : u′). With an argument

similar to the one used in the proof of Lemma 7.6.5, LP(v : u′) is feasible (if v ∈ R, q(v)

is feasible; otherwise, q(ρ(v)) is feasible). All other entries of q′(·) remain the same. It is

clear now that (u′(·),q′(·)) is a feasible solution to LP′(I).

We compare the expected revenues from (u(·),q(·)) and (u′(·),q′(·)) and show that the

latter is higher. Let R′ denote the bottom of R: R′ contains v ∈ R if no other vector in R lies
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below v. For each v ∈ T3 \R′ above a vector in R′, we apply Rev′(v) ≥ Rev(v)−O(nεt/β)

by Lemma 7.6.4. For each vector v ∈ T3 \ R′ that is not above any vector in R′, we have

Rev′(v) = Rev(v). Finally, for each v ∈ R′, we can show that Rev′(v) ≥ Rev(v) + Ω(εt)

with an argument similar to that in the proof of Lemma 7.6.5.

Combining all these bounds together and following the same argument used in Lemma

7.6.5, we have

Pr[vectors in R′ ] · Ω(εt)� Pr[(type-3) vectors above R′ ] ·O(nεt/β).

This finishes the proof of the lemma.

The arguments used in Lemma 7.6.6 imply the following property. Suppose (u(v),q(v) :

v ∈ T1 ∪ T2) satisfies all the constraints of LP′(I) in Parts 0, 1 and 2. Given a nonnegative

number u3, we can extend it to T3 by setting u(c3) = u3 and u(v) = max{u(ρ(v)), u3}
for other v in T3, and setting q(c3) according to Lemma 7.6.1 and q(v) to be an optimal

solution to LP(v : u) for other v ∈ T3. By similar arguments used in Lemma 7.6.7, LP(v : u)

is feasible, and (u(v),q(v) : v ∈ T1 ∪ T2 ∪ T3) now satisfies Parts 0, 1, 2 and 3.

7.6.1.5 Expected Revenue from Type-2, 3 and 4 Vectors

Before working on type-1 vectors, which is the most challenging part, we summarize our

progress. Let (u(v),q(v) : v ∈ T1) be a partial solution that satisfies all constraints

of LP′(I) in Parts 0 and 1. Given u2, u3, u4 ≥ 0 that satisfy u3 ≤ u4 ≤ u3 + s, let

Ext(u(·),q(·);u2, u3, u4) denote the following solutions set {u′(v),q′(v) : v ∈ D} to LP′(I):

1. u′(v) = u(v) and q′(v) = q(v) for all v ∈ T1;

2. u′(c2) = u2, u′(c3) = u3, and u′(c4) = u4; q′(c2) = en+1 and q′(c3) = en+2;

3. All entries of q′(c4) are 0 except qn+1(c4) = (u4−u3)/s and qn+2(c4) = 1−(u4−u3)/s;

4. For each i ∈ {2, 3, 4}: v ∈ Ti \ {ci}, u′(v) = max{u(ρ(v)), ui} and q′(v) is an optimal

solution to LP(v : u′).

By discussions at the end of Sections 7.6.1.2, 7.6.1.3, and 7.6.1.4, Ext(u(·),q(·) : u2, u3, u4)

is well-defined (and nonempty). The next two lemmas summarize our progress so far.
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Lemma 7.6.8. Suppose that (u(v),q(v) : v ∈ T1) satisfies all constraints of LP′(I) in Parts

0 and 1. Given any u2, u3, u4 ≥ 0, where u3 ≤ u4 ≤ u3 + s, solutions in Ext(u(·),q(·) :

u2, u3, u4) are feasible to LP′(I) and for each i = 1, 2, 3, 4, they all share the same expected

revenue from type-i vectors.

Lemma 7.6.9. Any optimal solution (u′(·),q′(·)) to LP′(I) must belong to Ext(u(·),q(·) :

u2, u3, u4) where we set ui = u′(ci) for i = 2, 3, 4 and (u(v),q(v) : v ∈ T1) to be the

restriction of (u′(·),q′(·)) on T1.

Let (u(v),q(v) : v ∈ T1) and (u′(v),q′(v) : v ∈ T1) denote two partial solutions that

satisfy Parts 0 and 1 of LP′(I). The next lemma shows that if |u(v)− u′(·)| is small for all

v ∈ T1, then expected revenues of Ext(u(·),q(·) : u2, u3, u4) and Ext(u′(·),q′(·) : u2, u3, u4)

from type-2, 3, 4 vectors are also close.

Lemma 7.6.10. Suppose (u(v),q(v) : v ∈ T1) and (u′(v),q′(v) : v ∈ T1) satisfy all

constraints of LP′(I) in Parts 0 and 1 and |u(v) − u′(v)| ≤ ε for all v ∈ T1. Let

u2, u3, u4, u
′
2, u
′
3, u
′
4 ≥ 0 with u3 ≤ u4 ≤ u3 + s, u′3 ≤ u′4 ≤ u′3 + s, and |ui − u′i| ≤ ε

for i = 2, 3, 4. Then we have∣∣Revi −Rev′i
∣∣ ≤ O

(
δi−1nεs

β

)
where Revi and Rev′i denote revenues from type-i vectors in solutions of Ext(u(·),q(·) :

u2, u3, u4) and solutions of Ext(u′(·),q′(·) : u′2, u
′
3, u
′
4), respectively.

Proof. We focus on |Rev4 − Rev′4 |. The same argument applies to type-3 and 4 vectors.

For convenience, we abuse the notation a little bit and still write (u(v),q(v) : v ∈ D) and

(u′(v),q′(v) : v ∈ D) to denote two full feasible solutions of LP′(I) after extension. By

definition we have

∣∣Rev4 −Rev′4
∣∣ =

∣∣∣∣∣∣
∑
v∈T4

Pr[v] ·
(
Rev(v)−Rev′(v)

) ∣∣∣∣∣∣ .
It is clear that |Rev(c4) − Rev′(c4)| ≤ O(εt/s). For other v ∈ T4, q(v) is an optimal

solution to LP(v : u) and q′(v) is an optimal solution to LP(v : u′), both of which are

feasible. It follows from Lemma 7.6.4 and

|u(w)− u′(w)| =
∣∣max{u(ρ(w)), u4} −max{u′(ρ(w)), u′4}

∣∣ ≤ ε, for all w ∈ T4,
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that |Rev(v) −Rev(v′)| ≤ O(nεt/β). Since
∑

v∈T4 Pr[v] < δ3 we have |Rev4 −Rev′4 | ≤
O(δ3nεt/β). This finishes the proof of the lemma.

7.6.1.6 Condition over Type-1 Vectors

Finally we show that any optimal solution (u(·),q(·)) to LP′(I) satisfies the following con-

dition:

Condition-Type-1: For each type-1 essential vector v ∈ T ′1 and v 6= a, we have

u(v) =
∑
i∈S(v)

di · qi(a).

For each v ∈ T ′1 and v 6= a, letting k = min(S(v)) and S′(v) = S(v) \ {k}, we have

qi(v) = qi(a), for all i ∈ S′(v), and qk(v) = 1−
∑

i∈S′(v)

qi(a),

while all other entries of q(v) are 0. Moreover, for each nonessential type-1 vector v ∈ T ∗1 ,

letting w = Lower(v), we have q(v) = q(w) and

u(v) = u(w) +
∑

j∈S+(v)

τj · qj(w) =
∑
i∈S(v)

di · qi(a) +
∑

j∈S+(v)

τj · qj(w).

Note that Condition-Type-1 does not require
∑

i∈[n] qi(a) = 1. Actually we will only get

to impose this condition later in Section 7.6.2.1 after proper choices of ai’s.

The following three simple lemmas concern solutions that satisfy Condition-Type-1.

Lemma 7.6.11. Assume that (u(·),q(·)) satisfies Condition-Type-1. If two type-1 vec-

tors v and w satisfy S(w) ⊆ S(v), then qj(w) ≥ qj(v) for all j ∈ S(w).

Lemma 7.6.12. Assume that (u(·),q(·)) satisfies Condition-Type-1. Then we have

Rev(v) = Rev(v′) for any two type-1 vectors v and v′ in the same block.

Proof. Let w = Lower(v) = Lower(v′). Then by Condition-Type-1, Rev(v) is equal

to∑
i∈[n+2]

vi · qi(v)−u(v) =
∑

i∈S(w)

vi · qi(w)−u(w)−
∑

i∈S+(v)

τi · qi(w) =
∑

i∈S(w)

`i · qi(w)−u(w),

which does not depend on v but only w = Lower(v). The lemma then follows.
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Lemma 7.6.13. Let q denote an (n + 2)-dimensional nonnegative vector that sums to

at most 1. Then there is a unique (u(v),q(v) : v ∈ T1) that satisfies q(a) = q and

Condition-Type-1.

Moreover, (u(v),q(v) : v ∈ T1) satisfies all constraints of LP′(I) in Parts 0 and 1.

Proof. Part 0, (7.27) and (7.30) are trivial. For (7.28), given v ∈ T1, i ∈ S+(v), w =

(v−i, `i), we have

u(v)− u(w) = τi · qi
(
Lower(v)

)
= τi · qi(v),

by Condition-Type-1. For (7.29), letting w = Lower(v), we have

u(v)− u(w) =
∑

j∈S+(v)

τj · qj(w).

For (7.31), given v ∈ T1, i ∈ S(v), w ∈ Block(v−i, ai), v′ = Lower(v) and w′ =

Lower(w), we have

u(v)− u(w) = u(v)− u(v′) + u(v′)− u(w′) + u(w′)− u(w)

=
∑

j∈S+(v)

τj · qj(v′) + di · qi(a)−
∑

j∈S+(w)

τj · qj(w′).

Applying Lemma 7.6.11 on v and w′ (also q(v) = q(v′) and qi(a) ≤ qi(v) for i ∈ S(v)),

we have

u(v)− u(w) ≤
∑

j∈S+(v)

τj · qj(v) + di · qi(v)−
∑

j∈S+(w)

τj · qj(v) =
∑

j∈S(v)

(vj − wj) · qj(v).

This covers all constraints in Parts 0 and 1, and the lemma is proven.

Now we prove Condition-Type-1.

Lemma 7.6.14. Given (7.24), (7.25) and (7.26), any optimal solution to LP′(I) satisfies

Condition-Type-1.

Proof. Let (u(·),q(·)) be an optimal solution to LP′(I). Our plan is the following. We first

derive a solution (u∗(·),q∗(·)) from (u(·),q(·)), and show that it is feasible to LP′(I). Then

we compare expected revenues from them and show that for (u(·),q(·)) to be optimal as

assumed, it must satisfy Condition-Type-1.
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Using Lemma 7.6.13, let (u′(v),q′(v) : v ∈ T1) denote the unique partial solution that

satisfies q′(a) = q(a) and Condition-Type-1. Using Lemma 7.6.13 again (u′(v),q′(v) :

v ∈ T1) satisfies all constraints of LP′(I) in Parts 0 and 1. By Lemma 7.6.8, we have that

Ext(u′(·),q′(·);u(c2), u(c3), u(c4)) is a well-defined (nonempty) set of feasible solutions to

LP′(I) (here u(c3) ≤ u(c4) ≤ u(c3)+s as (u(·),q(·)) is feasible). Now we use (u∗(v),q∗(v) :

v ∈ D) to denote a full feasible solution to LP′(I) in Ext(u′(·),q′(·);u(c2), u(c3), u(c4)).

Now we compare expected revenues of (u∗(·),q∗(·)) and (u(·),q(·)).
For this purpose, let Revi and Rev∗i denote expected revenues of (u(·),q(·)) and

(u∗(·),q∗(·)) from type-i vectors, and let Rev and Rev′ denote their overall expected rev-

enues. Let

ε = max
v∈T1

∣∣u(v)− u∗(v)
∣∣.

Then by Lemma 7.6.9 and Lemma 7.6.10 we have

∣∣(Rev2 + Rev3 + Rev4)− (Rev∗2 + Rev∗3 + Rev∗4)
∣∣ ≤ O(δnεs+ δ2nεt+ δ3nεt

β

)
= O

(
δns

β

)
·
∑
v∈T1

∣∣u(v)− u∗(v)
∣∣,

where we used s� δt from (7.26) and
∑

v |u(v)−u∗(v)| as a trivial upper bound for ε. By

our choice of δ, we have δns/β = o(rn+1). We also have Pr[v] ≥ rn(1− δ)(1− δ2) = Ω(rn)

for all v ∈ T1. As a result,

Rev−Rev∗ ≤ Rev1 −Rev∗1 +
∣∣(Rev2 + Rev3 + Rev4)− (Rev∗2 + Rev∗3 + Rev∗4)

∣∣
≤
∑
v∈T1

Pr[v] ·
(
Rev(v)−Rev∗(v)

)
+ o(rn+1) ·

∑
v∈T1

∣∣u(v)− u∗(v)
∣∣

=
∑
v∈T1

Pr[v] ·

 ∑
i∈[n+2]

vi ·
(
qi(v)− q∗i (v)

)
+ (1 + ζv) ·

(
u∗(v)− u(v)

)
:=
∑
v∈T1

Pr[v] ·Diff(v),

for some ζv with |ζv| = o(r) for all v ∈ T1. For convenience we use Diff(v) to denote each

term for v.

We bound Diff(v) of nonessential type-1 vectors first. Fix a v ∈ T ∗1 . We write w =

Lower(v) ∈ T ′1 and wi = Lower(v−i, ai) ∈ T ′1 for each i ∈ S(v). We have for each
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i ∈ S(v):

u(v)− u(wi) ≤ (vi − ai) · qi(v) +
∑

i 6=j∈S+(v)

τj · qj(v) = di · qi(v) +
∑

j∈S+(v)

τj · qj(v).

Applying Condition-Type-1 on u∗(·), we also have

u(v)− u(wi) = u(v)− u∗(v) + u∗(v)− u∗(w) + u∗(w)− u∗(wi) + u∗(wi)− u(wi)

= (u(v)− u∗(v)) +
∑

j∈S+(v)

τj · q∗j (w) + di · qi(a) + (u∗(wi)− u(wi)).

Combining these two together (and plugging in q∗(w) = q∗(v)), we have

di · (qi(a)− qi(v)) +
∑

j∈S+(v)

τj · (q∗j (v)− qj(v)) ≤ (u∗(v)− u(v))− (u∗(wi)− u(wi)).

Let k = min(S(v)) (S(v) 6= ∅ since v ∈ T ′1) and S′(v) = S(v) \ {k}. We consider two

cases.

Case 1: k = min(S(v)) /∈ S+(v). Then we have q∗j (v) = qj(a) for all j ∈ S+(v) and thus,

di · (qi(a)− qi(v)) +
∑

j∈S+(v)

τj · (qj(a)− qj(v)) ≤ (u∗(v)− u(v))− (u∗(wi)− u(wi)). (7.47)

Given q∗k(v) = 1−∑i∈S′(v) qi(a) and that vk is the (strictly) largest entry in v, we have

∑
i∈[n+2]

vi · q∗i (v) = vk

1−
∑

i∈S′(v)

qi(a)

+
∑

i∈S′(v)

vi · qi(a) = vk −
∑

i∈S′(v)

(vk − vi) · qi(a),

∑
i∈[n+2]

vi · qi(v) ≤ vk

1−
∑

i∈S′(v)

qi(v)

+
∑

i∈S′(v)

vi · qi(v) = vk −
∑

i∈S′(v)

(vk − vi) · qi(v).

Combining these two we get∑
i∈[n+2]

vi · (qi(v)− q∗i (v)) ≤
∑

i∈S′(v)

(vk − vi) · (qi(a)− qi(v)). (7.48)

Since τi = O(β) = O(1/2n) � di ≈ 1, there exists a unique tuple (γi : i ∈ S′(v)} such

that

∑
i∈S′(v)

(vk−vi) ·(qi(a)−qi(v)) =
∑

i∈S′(v)

γi

di · (qi(a)− qi(v)) +
∑

j∈S+(v)

τj · (qj(a)− qj(v))


(7.49)
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This is because (γi : i ∈ S′(v)) is the unique solution to a linear system with diagonal entries

being di or di + τi and off-diagonal entries being 0 or τj for some j ∈ S+(v). Furthermore,

given τj = O(β) and β ≤ vk − vi ≤ 3nβ, we claim that 0 < γi = O(nβ). To see this, we

first prove that |γi| ≤ 6nβ for all i. Assume for contradiction that |γi| = maxj |γj | > 6nβ.

Then we have

3nβ ≥ |vk − vi| ≥ |diγi| − n ·O(β) · |γi| > (3/4) · |γi|,

a contradiction. Next, assume for contradiction that γi ≤ 0 for some i. Then we have

β ≤ vk − vi ≤ n ·O(β) ·O(nβ),

contradicting with β = 1/2n. It follows from these properties of γi’s that

∑
i∈[n+2]

vi · (qi(v)− q∗i (v)) ≤
∑

i∈S′(v)

γi ·
(
(u∗(v)− u(v))− (u∗(wi)− u(wi)

)
= γv · (u∗(v)− u(v)) +

∑
i∈S′(v)

γv,i · (u∗(wi)− u(wi)), (7.50)

for some γv and γv,i that satisfy |γv| = O(n2β) and |γv,i| = O(nβ) for all i ∈ S′(v).

Case 2: k = min(v) ∈ S+(v). Then we have for each i ∈ S(v):

di · (qi(a)− qi(v)) + τk · (q∗k(v)− qk(v)) +
∑

j∈S+(v)\{k}

τj · (qj(a)− qj(v)) (7.51)

≤ (u∗(v)− u(v))− (u∗(wi)− u(wi)).

For clarity we use LHSi to denote the left hand side of the inequality above for each i ∈ S(v).

Then there exists a unique tuple (γi : i ∈ S(v)) such that

∑
i∈S′(v)

((vk − vi) + γk) · (qi(a)− qi(v)) + γk · (q∗k(v)− qk(v)) =
∑

i∈S′(v)

γi · LHSi.

This is because (γi : i ∈ S(v)) is the unique solution to a linear system with diagonal entries

being either di or di + τi for i 6= k and −1 for k and off-diagonal entries being either 0 or τj

in general and −1 for the column that corresponds to k. Similarly we have 0 < γi ≤ O(nβ)

for all i ∈ S(v). This gives us a connection between the left hand side above and what we
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care about since

∑
i∈S′(v)

((vk − vi) + γk) · (qi(a)− qi(v)) + γk · (q∗k(v)− qk(v))

=
∑

i∈S′(v)

(vk − vi) · (qi(a)− qi(v)) + γk − γk

qk(v) +
∑

i∈S′(v)

qi(v)


≥

∑
i∈S′(v)

(vk − vi) · (qi(a)− qi(v)) ≥
∑

i∈[n+2]

vi · (qi(v)− q∗i (v)), (7.52)

where the last inequality follows from (7.48). So (7.50) also holds in this case for some γv

and γv,i with absolute values bounded from above by O(n2β) and O(nβ), respectively.

To summarize our progress so far, we have shown for each nonessential type-1 vector v ∈ T ∗1 :

Diff(v) ≤ (1 + ζv + γv)(u∗(v)− u(v))

+
∑

i∈S′(v)

γv,i ·
(
u∗(Lower(v−i, ai))− u(Lower(v−i, ai))

)
.

Therefore, we have

∑
v∈T ∗1

Pr[v] ·Diff(v) ≤
∑
v∈T ∗1

Pr[v] · (1 + γ′v) · (u∗(v)− u(v)) +
∑
v∈T ′1

Pr[v] · ξv · (u∗(v)− u(v)),

(7.53)

for some γ′v and ξv with |γ′v| = O(n2β) (since |ζv| = o(r)) and |ξv| ≤ O(n2pβ). For the

latter, we used the fact that for any v ∈ T ′1 the total probability of all vectors in blocks

strictly above Block(v) is at most Ω(np)-fraction of that of v. We continue to simplify

the first part of the RHS above.

Let w = Lower(v) for some nonessential vector v ∈ T ∗1 . We have

u∗(v) = u∗(w) +
∑

j∈S+(v)

τj · q∗j (w) and u(v) ≥ u(w) +
∑

j∈S+(v)

τj · qj(w)

by Condition-Type-1 and (7.29) in Part 1 of LP′(I). As a result, we have

u∗(v)− u(v) ≤ u∗(w)− u(w) +
∑

j∈S+(v)

τj · (q∗j (w)− qj(w)).
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Fix an essential vector w ∈ T ′1 and let B = Block(w) \ {w}. Then we have∑
v∈B

Pr[v] · (1 + γ′v) · (u∗(v)− u(v))

≤
∑
v∈B

Pr[v] · (1 + γ′v) ·

u∗(w)− u(w) +
∑

j∈S+(v)

τj · (q∗j (w)− qj(w))


= Pr[w] · αw · (u∗(w)− u(w)) + Pr[w]

∑
j∈[n+2]

αw,j · (q∗j (w)− qj(w)),

for some αw and αw,j with absolute values bounded by |αw| = O(nr/p) and |αw,j | =

O(nrβ/p).

Combining all these inequalities together, we have∑
v∈T1

Pr[v] ·Diff(v)

≤
∑
v∈T ′1

Pr[v] ·

 ∑
j∈[n+2]

vj · (qj(v)− q∗j (v)) + (1 + ζv) · (u∗(v)− u(v))


+
∑
v∈T ′1

Pr[v] ·

αv · (u∗(v)− u(v)) +
∑

j∈[n+2]

αv,j · (q∗j (v)− qj(v))


+
∑
v∈T ′1

Pr[v] · ξv · (u∗(v)− u(v))

=
∑
v∈T ′1

Pr[v] ·

(1 + ζv + αv + ξv) · (u∗(v)− u(v)) +
∑

j∈[n+2]

(vj − αv,j) · (qj(v)− q∗j (v))

 .

Recall that |ζv| = o(r) and |ξv| ≤ O(n2pβ). We have 1 + ζv + αv + ξv = 1± o(1). Fix

an essential v ∈ T ′1. We have vj − αv,j ≈ 2 for j ∈ S(v), and k = min(S(v)) still has the

(strictly) largest coefficient vk − αv,k since |αv,j | = O(nrβ/p) � β. As a result, we have

(recall that S′(v) = S(v) \ {k})

∑
j∈[n+2]

(vj − αv,j) · q∗j (v) = (vk − αv,k) ·

1−
∑

j∈S′(v)

qj(a)

+
∑

j∈S′(v)

(vj − αv,j) · qj(a),

∑
j∈[n+2]

(vj − αv,j) · qj(v) ≤ (vk − αv,k) ·

1−
∑

j∈S′(v)

qj(v)

+
∑

j∈S′(v)

(vj − αv,j) · qj(v).

(7.54)
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Let φv,j = vk− vj −αv,k +αv,j for each j ∈ S′(v). Then we have Ω(β) ≤ φv,j ≤ O(nβ) and

∑
j∈[n+2]

(vj − αv,j) · (qj(v)− q∗j (v)) ≤
∑

j∈S′(v)

φv,j · (qj(a)− qj(v)).

Plugging this in, we have

∑
v∈T1

Pr[v] ·Diff(v) ≤
∑
v∈T ′1

Pr[v] ·

(1± o(1)) · (u∗(v)− u(v)) +
∑

j∈S′(v)

φv,j · (qj(a)− qj(v))


We also have u∗(v)− u∗(v−j , aj) = dj · qj(a) for v ∈ T ′1 and each j ∈ S(v), and

u(v)− u(v−j , aj) ≤ dj · qj(v)

by (7.31) of LP′(I). As a result, we have

∑
j∈S′(v)

φv,j · (qj(a)− qj(v)) ≤
∑

j∈S′(v)

φv,j
dj
·
(
(u∗(v)− u(v))− (u∗(v−j , aj)− u(v−j , aj))

)
.

(7.55)

Plugging it back, we have

∑
v∈T1

Pr[v] ·Diff(v) ≤
∑
v∈T ′1

Pr[v] · (1± o(1)) · (u∗(v)− u(v))

+
∑
v∈T ′1

Pr[v]
∑

j∈S′(v)

φv,j
dj
·
(
(u∗(v)− u(v))− (u∗(v−j , aj)− u(v−j , aj))

)
≤
∑
v∈T ′1

Pr[v] · (1 + δv) · (u∗(v)− u(v)),

for some δv with absolute value bounded from above by |δv| ≤ o(1)+O(n2β)+O(nβ ·np) =

o(1).

Since u(v) ≥ u∗(v) for all v ∈ T ′1 (due to (7.27) of LP′(I)), we must have u(v) = u∗(v)

for all v ∈ T ′1 by the optimality of (u(·),q(·)). This proved the part of Condition-Type-1

on q(v) of essential vectors.

Combining this with (7.31) of LP′(I), we have for each v ∈ T ′1, i ∈ S(v) and w =

(v−i, ai):

di · qi(a) = u(v)− u(w) ≤ di · qi(v)
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and thus, qi(v) ≥ qi(a). On the other hand, it follows from the optimality of (u(·),q(·))
that both (7.55) and (7.54) must be tight. This implies that q(v) = q∗(v) for all essential

vectors v ∈ T ′1.

For a nonessential type-1 vector v ∈ T ∗1 , letting w = Lower(v), (7.29) in Part 1 of

LP′(I) implies that

u(v) ≥ u(w) +
∑

j∈S+(v)

τj · qj(w) = u∗(v),

because we have proved that u(w) = u∗(w) and q(w) = q∗(w) (since w is essential). Then

u(v) = u∗(v) follows from the tightness of (7.53).

Finally, for each nonessential vector v ∈ T ∗1 , we consider two cases (k = min(S(v))):

Case 1: k /∈ S+(v). q(v) = q∗(v) follows from the tightness of (7.47) and (7.48). (7.47)

yields that

di · (qi(a)− qi(v)) +
∑

j∈S+(v)

τj · (qj(a)− qj(v)) = 0

for all i ∈ S′(v) (note that we actually do not use i = k in (7.49)). These equations together

imply that qi(v) = qi(a) for all i ∈ S′(v). qk(v) = q∗k(v) follows from the tightness of (7.48).

Case 2: k ∈ S+(v). The tightness of (7.52) implies that

qk(v) = 1−
∑

j∈S′(v)

qj(v). (7.56)

The tightness of (7.51) implies that

di · (qi(a)− qi(v)) + τk · (q∗k(v)− qk(v)) +
∑

j∈S+(v)\{k}

τj · (qj(a)− qj(v)) = 0

for all i ∈ S′(v). Plugging in q∗k(v) = 1−∑j∈S′(v) qj(a) and (7.56), we must have qi(a) =

qi(v) for all i ∈ S′(v) and thus, qk(v) = q∗k(v) by (7.56). It follows that q(v) = q∗(v).

This finishes the proof of the lemma.

7.6.1.7 Characterization of Optimal Solutions

Let q be a nonnegative (n+2)-dimensional vector that sums to at most 1, and u2, u3, u4 ≥ 0

that satisfy u3 ≤ u4 ≤ u3 + s. We use Ext(q, u2, u3, u4) to denote the following set of

solutions to LP′(I):
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Let (u(v),q(v) : v ∈ T1) be the unique partial solution that satisfies both q(a) =

q and Condition-Type-1. By Lemma 7.6.13, (u(v),q(v) : v ∈ T1) satisfies

all constraints in Parts 0 and 1 of LP′(I). Then we set Ext(q, u2, u3, u4) =

Ext(u(·),q(·);u2, u3, u4).

We record the following lemma.

Lemma 7.6.15. Given any nonnegative vector q that sums to at most 1, and u2, u3, u4 ≥ 0

with u3 ≤ u4 ≤ u3 + s, Ext(q, u2, u3, u4) is a nonempty set of feasible solutions to LP′(I).

Our characterization of optimal solutions to LP′(I) is summarized in the theorem below.

Theorem 15. Any optimal solution (u(v),q(v) : v ∈ D) to LP′(I) belongs to Ext(q, u2, u3,

u4), where q = q(a) and ui = u(ci) for each i = 2, 3, 4.

7.6.2 Choices of Parameters and their Consequences

Now we pin down the rest of parameters: ai, s, hi, t, and see how they affect optimal

solutions of LP′(I).

7.6.2.1 Setting ai’s

First, we set ai’s (see (7.58) below) such that they satisfy (7.25), i.e. |ai − 1| = O(np), and

the expected revenue from type-1 vectors in any optimal solution (u(·),q(·)) to LP′(I) is of

the following form

const + c ·
∑
i∈[n]

qi(a), (7.57)

for some c ≈ 1. By Theorem 15, (u(·),q(·)) lies in Ext(q, u2, u3, u4) for some nonnegative

vector q that sums to at most 1, and some u2, u3, u4 ≥ 0 that satisfy u3 ≤ u4 ≤ u3 + s.

Given that (u(·),q(·)) satisfies Condition-Type-1, expected revenue from type-1 vectors

only depends on q(a) = q. We next calculate the expected revenue from type-1 vectors

given q, and the choices of ai’s will become clear.

First, we have Rev(a) =
∑

i∈[n] ai · qi (since u(a) = 0). Given that (u(·),q(·)) satisfies

Condition-Type-1, each essential type-1 vector v ∈ T ′1 and v 6= a has revenue (letting
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k = min(S(v)))

Rev(v) =
∑

i∈S′(v)

`i · qi+ `k ·

1−
∑

i∈S′(v)

qi

− ∑
i∈S(v)

di · qi = `k−
∑

i∈S′(v)

(`k−ai) · qi−dk · qk.

Given Lemma 7.6.12, the block B that contains v ∈ T ′1 and v 6= a overall contributes

Pr[B] ·Rev(v) = Pr[B] ·

`k − ∑
i∈S′(v)

(`k − ai) · qi − (`k − ak) · qk

 .

It is clear now that expected revenue from type-1 vectors is an affine linear form of qi’s,

i ∈ [n].

Let ci denote the coefficient of each qi in the expected revenue from type-1 vectors. Then

a contributes Pr[a] ·ai to ci (note that Pr[a] ≈ 1−np which as we will see is the dominating

term in ci). A block B that contains v ∈ T ′1 and v 6= a contributes 0 if i /∈ S(v);

−Pr[B] · (`i − ai) if i = min(S(v)); and − Pr[B] ·
(
`min(S(v)) − ai

)
if i ∈ S′(v).

More specifically, the total probability of type-1 blocks B and v ∈ B with i = min(S(v)) is

(1− δ) · (1− δ2) · (1− p− r)i−1 · (p+ r);

for each k < i, the total probability of type-1 blocks B with i ∈ S(v) and min(S(v)) = k is

(1− δ) · (1− δ2) · (1− p− r)k−1 · (p+ r) · (p+ r).

As a result, we have the following explicit expression for ci (setting ψ = (1− δ)(1− δ2)):

ψ

(
(1− p− r)nai −

∑
k<i

(1− p− r)k−1(p+ r)2(`k − ai)− (1− p− r)i−1(p+ r)(`i − ai)
)

To meet both goals, i.e., c1 = · · · = cn ≈ 1 and |ai − 1| ≤ O(np), we set

ai =
1 +

∑
k<i (1− p− r)k−1 · (p+ r)2 · `k + (1− p− r)i−1 · (p+ r) · `i

(1− p− r)n +
∑

k<i(1− p− r)k−1 · (p+ r)2 + (1− p− r)i−1 · (p+ r)
. (7.58)

It is easy to verify that ai’s satisfy 1 < ai ≤ 1+O(np). The length of binary representations

of each ai is polynomial in n and ai’s can be computed efficiently, given p, r and `i’s as in

(7.24) and (7.25).

We summarize the consequence of our choices of ai’s in the following lemma:
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Lemma 7.6.16. Given choices of ai’s in (7.58), revenue from type-1 vectors in any feasible

solution to LP′(I) that satisfies Condition-Type-1 is of the form in (7.57) with c =

(1− δ)(1− δ2) ≈ 1.

It is now time to prove that q(a) sums to 1 in any optimal solution to LP′(I).

Lemma 7.6.17. Given our choices of ai’s in (7.58) any optimal solution to LP′(I) satisfies∑
i∈[n] qi(a) = 1.

Proof. Assume for contradiction that {u(·),q(·)} is optimal but q(a) does not satisfy∑
i∈[n] qi(a) = 1. Let q′ be the vector obtained from q(a) as follows: If

∑
i∈[n+2] qi(a) < 1,

we replace its first entry by

q′1 = q1(a) + ε, where ε = 1−
∑

i∈[n+2]

qi(a) > 0;

otherwise, letting ε = qn+1(a) + qn+2(a) > 0, we set

q′1 = q1(a) + ε and q′n+1 = q′n+2 = 0.

Let {u′(·),q′(·)} denote a feasible solution from Ext(q′, u(c2), u(c3)). It follows from Lemma

7.6.16 that expected revenue from type-1 vectors goes up by Ω(ε) in {u′(·),q′(·)}. However,

by Condition-Type-1,

|u(v)− u′(v)| ≤ O(ε), for all v ∈ T1.

By Lemma 7.6.10, expected revenue from type-2, 3 and 4 vectors goes down in {u′(·),q′(·)}
by at most O(δnεs/β) + O(δ2nεt/β) � ε. This contradicts with the assumption that

{u(·),q(·)} is optimal.

Given Lemma 7.6.17 we will from now on restrict q to be a nonnegative n-dimensional

vector that sums to exactly 1 in Ext(q, u2, u3, u4). We also use Rev(q, u2, u3, u4) to denote

the expected revenue of solutions in Ext(q, u2, u3, u4). All parameters of I have been chosen

except s, hi’s and t.
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7.6.2.2 Setting s

Our goal in this section is to show that, by setting

s = 2 +
1

(n− 0.5)p
= Θ

(
1

np

)
. (7.59)

any optimal solution to LP′(I) from Ext(q, u2, u3, u4) must satisfy

d1 · q1(a) = d2 · q2(a) = · · · = dn · qn(a). (7.60)

Note that we have chosen both ai and `i, and so is di = `i − ai. (7.60) then uniquely

determines q(a) in any optimal solution, as by Lemma 7.6.17, q(a) must sum to 1. (7.60)

also implies that q(a) is indeed very close to the uniform distribution over [n] since di ≈ 1

(more precisely, |di − 1| = O(np+ nβ)).

In the rest of Section 7.6.2.2 we use vi for each i ∈ [n] to denote the type-2 vector with

vi,i = `i, vi,j = aj for other j ∈ [n], vi,n+1 = s and vi,n+2 = 0. To prove (7.60), we start

with the following lemma:

Lemma 7.6.18. Let q be any nonnegative n-dimensional vector that sums to 1, and

u′2 = mini∈[n] di · qi. If u2, u3, u4 ≥ 0 satisfy u3 ≤ u4 ≤ u3 + s and u2 6= u′2, then

Rev(q, u2, u3, u4) < Rev(q, u′2, u3, u4).

Proof. Let (u(·),q(·)) be a feasible solution in Ext(q, u2, u3, u4) and (u′(·),q′(·)) be a feasible

solution in Ext(q, u′2, u3, u4). Below we compare their revenues Rev2 and Rev′2 from type-

2 vectors since it is clear that Revi = Rev′i for all i ∈ {1, 3, 4}. We consider two cases:

u2 < u′2 or u2 > u′2.

Case 1: u2 < u′2. Let ε = u′2 − u2 > 0. We compare revenues from type-2 vectors one

by one. For c2, Rev′(c2) = Rev(c2) − ε. For v ∈ T2 other than c2, q(v) and q′(v) are

optimal solutions to LP(v : u) and LP(v : u′), respectively. Given |u(w) − u(w′)| ≤ ε for

all w ∈ T2, we have by Lemma 7.6.4∣∣Rev′(v)−Rev(v)
∣∣ = O(nεs/β).

We compare Rev′(vi) and Rev(vi) more carefully. Since u2 < u′2, by Condition-

Type-2 and the definition of u′2, we have u(vi) = u′(vi). Constraints of LP(vi : u) are

qi ≥ 0,
∑

j∈[n+2]

qj ≤ 1, and di · qi ≥ u(vi)− u2
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and constraints in LP(vi : u′) are

qi ≥ 0,
∑

j∈[n+2]

qj ≤ 1, and di · qi ≥ u′(vi)− u′2.

It follows that q(v) has qi(v) = (u(vi)−u2)/di and puts the rest of probability on qn+1(v),

while q′(v) has q′i(v) = (u′(vi)− u′2)/di = qi(v)− (ε/di) and puts the rest on q′n+1(v). As

a result we have

Rev′(vi) = Rev(vi) +
ε

di
· (s− `i)−ε, for each i ∈ [n].

To summarize, we have

Rev′2 −Rev2 ≥
∑
i∈[n]

Pr[vi] ·
(
ε

di
· (s− `i)−ε

)
− Pr[c2] · ε−O(nrδ) ·O

(
nεs

β

)
.

Plugging in that Pr[c2] ≤ δ, 1/di ≥ 1−O(nβ), s− `i ≥ s− 2−O(nβ), and

Pr[vi] = p · (1− p− r)n−1 · δ · (1− δ2) ≥ pδ · (1−O(np)),

we have∑
i∈[n]

Pr[vi] ·
ε

di
· (s− `i) ≥ n · pδ · (1−O(np)) · ε · (1−O(nβ)) ·

(
1

(n− 0.5)p
−O(nβ)

)
≥ nδε

n− 0.5
· (1−O(nβ)).

As a result, we have Rev′2 −Rev2 > 0 given our choices of p, r and β.

Case 2: u2 > u′2. Let ε = u2 − u′2 > 0. In this case, we have Rev′(c2) = Rev(c2) + ε

and similarly, |Rev′(v)−Rev(v)| = O(nεs/β) for all other type-2 vectors v ∈ T2. For each

i ∈ [n], a similar analysis of LP(vi : u) and LP(vi : u′) as in Case 1 implies that

qi(v) =
u(vi)− u2

di
and q′i(v) =

u′(vi)− u′2
di

,

and both vectors have the rest of probability allocated on their (n+ 1)th entries.

Let I denote the nonempty set of i that has the minimum di · qi among all indices in [n].

It then follows from the definition of u′2 and the assumption of u2 > u′2 that u(vi) = u2 and

u(v′i) = u′2 for each i ∈ I and thus, Rev′(v) = Rev(v) + ε for each i ∈ I. For each i /∈ I,

we have

u′(vi)− u′2 ≤ u(vi)− u2 + ε.
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This follows by considering both cases of u(ρ(vi)) ≤ u2 or u(ρ(vi)) > u2. As a result, for

each i /∈ I,

Rev′(v) ≥ Rev(v)− ε

di
· (s− `i)+ε.

Combining them together, we have

Rev′2−Rev2 ≥ Pr[c2] ·ε+
∑
i∈I

Pr[vi] ·ε−
∑
i/∈I

Pr[vi] ·
(
ε

di
· (s− `i)− ε

)
−O(nrδ) ·O

(
nεs

β

)
.

Plugging in Pr[c2] ≥ δ(1−O(np)) and∑
i/∈I

Pr[vi] ·
ε

di
· (s− `i) ≤ (n− 1) · pδ · ε · (1 +O(nβ)) · 1

(n− 0.5)p
= δε · n− 1

n− 0.5
· (1 +O(nβ)),

we have Rev′2 −Rev2 > 0. This finishes the proof of the lemma.

We are now ready to prove the main lemma of this section.

Lemma 7.6.19. Any optimal solution (u(·),q(·)) to LP′(I) satisfies d1 · q1(a) = · · · =

dn · qn(a).

Proof. Let (u(·),q(·)) ∈ Ext(q, u2, u3, u4) be an optimal solution to LP′(I), where q is an

n-dimensional nonnegative vector that sums to 1 and u2, u3, u4 ≥ 0 with u3 ≤ u4 ≤ u3 + s.

By Lemma 7.6.18, we have

u2 = min
i∈[n]

di · qi.

Assume for contradiction that q does not satisfy d1 · q1 = · · · = dn · qn. We use K ⊂ [n]

to denote the set of indices k with dk · qk = mini di · qi, and t ∈ [n] denote an index with

dt · qt > mini di · qi. Then we replace q by q′, where q′k = qk + (ε/dk) for each k ∈ K

and q′t = qt −
∑

k∈K(ε/dk), for a sufficiently small ε > 0 such that q′ remains nonnegative

and indices k ∈ K still have the smallest dk · q′k = dk · qk + ε in q′. We also replace u2 by

u′2 = u2 + ε. Let (u′(·),q′(·)) ∈ Ext(q′, u′2, u3, u4) be a feasible solution. Then we reach

a contradiction by showing that the revenue of (u′(·),q′(·)) is strictly higher than that of

(u(·),q(·)).
First it is clear that Rev′1 = Rev1 since both q and q′ sum to 1. By Lemma 7.6.10, we

have∣∣(Rev3 + Rev4)− (Rev′3 + Rev′4)
∣∣ ≤ O(δ2n2εt

β

)
+O

(
δ3n2εt

β

)
= O

(
δ2n2εt

β

)
,
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where we used the loose bound of |u(w)− u(w′)| ≤ O(nε) for all w ∈ T1. The RHS above

is negligible as we will see due to δ2. Recall that δ = 1/2n
6

and t = 2Θ(n5). It remains

to compare Rev2 and Rev′2. For all v ∈ T2 other than c2 and vi, i ∈ [n], by Lemma

7.6.4: |Rev′(v) − Rev(v)| = O(n · nε · s/β) = O(n2εs/β). On the other hand, we have

Rev′(c2) = Rev(c2)− ε. For each i ∈ [n], it follows from LP(vi : u) that

Rev(vi) = `i · qi(v) + s · (1− qi(v))− di · qi(a) = s− (s− `i) ·
di · qi − u2

di
− di · qi.

A similar expression holds for Rev′(vi) (replacing qi by q′i and u2 by u′2). As a result,∑
i∈[n]

Pr[vi] ·
(
Rev′(vi)−Rev(vi)

)
= δ · (1− δ2) · p · (1− p− r)n−1 ·

∑
i∈[n]

s− `i
di
· ε+ (s− at)

∑
k∈K

ε

dk
−
∑
k∈K

(s− ak) ·
ε

dk


≥ δ · (1− δ2) · p · (1− p− r)n−1 ·

(
n

(n− 0.5)p
· (1−O(nβ)) · ε−O (np · nε)

)
=

nδε

n− 0.5
· (1−O(nβ))−O

(
n2p2δε

)
,

where we used |ai − 1| = O(np). Combining all these bounds together, we have

Rev′2−Rev2 ≥
nδε

n− 0.5
·(1−O(nβ))−O

(
n2p2δε

)
−ε·δ−O(nrδ)·O(n2εs/β)� O

(
δ2n2εt

β

)
,

given our choices of parameters. This contradicts with the optimality of (u(·),q(·)).

Given that q(a) is close to a uniform distribution, we record a lemma that will be useful

later.

Lemma 7.6.20. Let v,v′ ∈ D denote two valuation vectors that differ at the ith entry

only, for some i ∈ [n], and v′i > vi. Then we have u(v′) ≥ u(v) in any optimal solution to

LP′(I).

Proof. It suffices to prove the lemma for two type-1 vectors v,v′ ∈ T1 (due to Condition-

Type-2, 3, and 4). The case when vi = `i and v′i = hi follows directly from Condition-

Type-1. The case when vi = ai and vi = `i follows from Lemma 7.6.19, that q(a) is close

to a uniform distribution. In particular, we have

u
(
Lower(v′)

)
= u

(
Lower(v)

)
+ di · qi(a) ≈ u

(
Lower(v)

)
+ (1/n),
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while both u(v′)−u(Lower(v′)) and u(v)−u(Lower(v)) are much smaller than 1/n since

τi = O(nβ) for all i and β = 1/2n. This finishes the proof of the lemma.

7.6.2.3 Setting hi’s and t

Before giving our choices of hi’s and t, we introduce the problem COMP, and show that

it is #P-hard. Here an input (G, H,M) of COMP consists of a tuple G = (g2, . . . , gn) of

n − 1 integers between 1 and N = 2n, a subset H ⊂ [2 : n] of size |H| = m = dn/2e,
and an integer M between 1 and

(
n−1
m

)
. For convenience, we write Sum(T ) =

∑
i∈T gi for

T ⊆ [2 : n]. We use t∗ to denote the M -th largest integer in the multiset

{
Sum(T ) : T ⊂ [2 : n] and |T | = m

}
. (7.61)

The problem is then to decide whether Sum(H) > t∗ or Sum(H) ≤ t∗, i.e. compare Sum(H)

to the M -th largest integer in (7.61). We first show that COMP is #P-hard.

Lemma 7.6.21. COMP is #P-hard.

Proof. We reduce from a related problem called LEX-RANK, which was shown to be #P-

hard in [Daskalakis et al., 2014a]. In LEX-RANK, the input consists of a collection C =

{c1, . . . , cn} of positive integers, a subset S ⊆ [n], and a positive integer k. Order the

subsets T of [n] of cardinality |S| according to their sums, SumC(T ) =
∑

i∈T ci, from

smallest to largest, with subsets that have equal sums ordered lexicographically; that is,

we have T <C T ′ if and only if SumC(T ) < SumC(T ′), or SumC(T ) = SumC(T ′) and the

largest element in the symmetric difference T∆T ′ belongs to T ′. The LEX-RANK problem

is to determine for a given input (C, S, k) whether the rank of S in this ordering (among

subsets of cardinality |S|) is at most k.

Let (C, S, k) be an instance of LEX-RANK. Let c′i = 22n · ci + 2i, for all i, and let

C ′ = {c′1, . . . , c′n}. Clearly, any two subsets of C ′ have unequal sums and furthermore,

T <C T ′ iff SumC′(T ) < SumC′(T
′), for all T, T ′ ⊆ [n]. In the new instance (C ′, S, k),

the rank of a set S (among sets of the same cardinality) is the same as its rank in the old

(C, S, k), and the rank of S is at most k iff SumC′(S) is at most the M -th largest sum,

where M =
(
n
|S|
)
− k+ 1. Thus, the LEX-RANK problem in the new instance is equivalent
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to the COMP problem, except that in the latter problem we also require that |S| = dn/2e
and that all input integers are at most 2n.

Let B be the maximum number of bits of the integers in C ′; note, B ≥ 2n. Add

2B − n− 1 new elements to the set C ′ to form the new set G; B − |S| of the new elements

have value n2B+1, and the rest have value 1. Let H be the set that consists of S and the

new elements with value n2B+1. Thus, G has 2B−1 = n′−1 elements, S has size B = n′/2

and all the integers are between 1 and 22B = 2n
′
. Let M =

(
n
|S|
)
− k + 1, as above. The

instance (G, H,M) of COMP now satisfies the required constraints. If we order the subsets

of cardinality B = |H| from largest sum to smallest, the first
(
n
|S|
)

subsets will each consist

of the B − |S| new elements with the large value of n2B+1 and then a subset of cardinality

|S| of the original elements, ordered according to their sum. Therefore, SumG(H) is at most

the M -th largest sum in the instance (G, H,M) of COMP iff SumC′(S) is at most the M -th

largest sum in (C ′, S, k), i.e., iff the rank of S is at most k in the original instance (C, S, k)

of LEX-RANK.

We embed COMP in I. Let (G, H,M) be an instance of COMP where G = (g2, . . . , gn)

is a sequence of n− 1 integers between 1 and N = 2n, H ⊂ [2 : n] with |H| = m = dn/2e,
and M is an integer between 1 and

(
n−1
m

)
. Here are our choices of τi’s and then hi = `i + τi.

Recall that we promised in (7.25), (7.26) that

β ≤ τi ≤
(

1 +
1

N2

)
β, t = O

(
β

rm+1m

)
and t = Ω

(
β

rm+1m2n

)
. (7.62)

By our choices and ai’s and `i’s, d1 = maxj∈[n] dj . Set τi = τ ′i + β for each i ∈ [n] with

τ ′1 = β/N2 and

τ ′i =
β

N2
· d1 − di

d1
+ gi ·

diβ

N4
= O

(
nβ2

N2

)
, for each i > 1.

Recall gi is from G. As β = 1/N , (7.62) on τi is satisfied. The choice of t needs to be done

more carefully.

Let R denote the set of v ∈ T3 satisfying |S(v)| = m + 1 and |S+(v)| = m, and let R′

denote the set of v ∈ T3 with |S(v)| = |S+(v)| = m + 1. Let R∗ denote the set of v ∈ R′

with 1 ∈ S+(v). Let h denote the probability Pr[v] of each vector v ∈ R′ (note that they
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all share the same probability Pr[v]):

h = (1− δ) · δ2 · rm+1 · (1− p− r)n−m ≈ δ2rm+1.

We are now ready to set t using M from the instance of COMP as follows:

t = 2 +
βδ2

h(m+ 1)(M − (1/2))
,

which clearly satisfies the promise on t in (7.62).

Fix a type-3 vector v ∈ R∗, and let w = ρ(v) ∈ T1. Let (u(·),q(·)) ∈ Ext(q, u2, u3, u4)

be a feasible solution to LP′(I) for some nonnegative q that sums to 1 and u2, u3, u4 ≥ 0

that satisfy

u2 = d1 · q1 = · · · = dn · qn = Θ(1/n) and u3 ≤ u4 ≤ u3 + s.

To see the connection between the two problems, we calculate u(w). As min(S(w)) =

min(S(v)) = 1,

u(w) =
∑
i∈S(v)

di · qi + τ1 ·

1−
∑

i∈S′(v)

qi

+
∑

i∈S′(v)

τi · qi

= (m+ 1) · u2 + τ1 −
∑

i∈S′(v)

(τ ′1 − τ ′i) ·
u2

di

= (m+ 1) · u2 + τ1 −
∑

i∈S′(v)

(
βdi
N2d1

− gi ·
diβ

N4

)
· u2

di

= C +
βu2

N4

∑
i∈S′(v)

gi,

where we write the constant C (independent of the choice of v ∈ R∗) as

C = (m+ 1) · u2 + τ1 −
mβu2

N2d1
.

This suggests a natural one-to-one correspondence: T 7→ v ∈ R∗ with S(v) = {1} ∪ T ,

between {
T : T ⊂ [2 : n] and |T | = m

}
and R∗ with respect to which the order over Sum(T ) is the same as that over u(ρ(v)).

Moreover, since τ ′1 is much larger than τ ′i with i > 1, other v ∈ R′ have strictly smaller

utility u(ρ(v)) than those in R∗.
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To see this, note that for each v ∈ R∗, we have

u(ρ(v)) ≥ (m+ 1) · u2 + β + τ ′1 −
∑

i∈S′(v)

τ ′1 · qi = (m+ 1) · u2 + β + Ω(τ ′1).

On the other hand, let k = min(S(v′)) > 1 for some v′ ∈ R′ \R∗. We have

u(ρ(v′)) ≤ (m+ 1) · u2 + β + τ ′k +
∑

i∈S′(v)

τ ′i · qi = (m+ 1) · u2 + β +O

(
max
i≥2

τ ′i

)
.

It is also easier to verify that u(ρ(v)) with v ∈ R∗ are strictly higher than u(ρ(v′)) of

v′ ∈ R.

We write u∗ to denote the M -th largest element of the multiset {u(ρ(v)) : v ∈ R∗}.
Then the next two lemmas together show that u(c3) = u3 must be exactly u∗ in any optimal

solution to LP′(I).

Lemma 7.6.22. Any optimal solution (u(·),q(·)) to LP′(I) must satisfy u(c3) ≤ u∗.

Proof. This direction is easy. Assume for contradiction that (u(·),q(·)) ∈ Ext(q, u2, u3, u4)

is optimal but u3 > u∗. Let ε > 0 be sufficiently small such that u(v) < u3 implies that

u(v) < u3 − ε, for all v ∈ D.

We show that (u′(·),q′(·)) ∈ Ext(q, u2, u
′
3, u
′
4), where u′3 = u3 − ε and u′4 = u4 − ε (note

that we still have u′3 ≤ u′4 ≤ u′3 + s), results in strictly higher expected revenue from type-3

and type-4 vectors, which contradicts with the optimality of (u(·),q(·)). By Lemma 7.6.10,

we have |Rev′4 −Rev4 | = O(δ3nεt/β).

We now bound Rev′3−Rev3. To this end, let A denote the set of v ∈ T3 with u(ρ(v)) ≥
u3 and let B denote the rest of type-3 vectors with u(ρ(v)) < u3 (so c3 ∈ B). For each

v ∈ B, we have u(v) = u3 and u′(v) = u′3 (by our choice of ε). By LP(v : u) and

LP(v : u′), we have both q(v) and q′(v) put probability 1 on item n + 2. As a result, we

have Rev′(v) = Rev(v) + ε for each v ∈ B. On the other hand, for each v ∈ A, by Lemma

7.6.4 we have Rev′(v) ≥ Rev(v)−O(nεt/β).

We need to take a closer look at vectors v ∈ R∗ ∩ A (which can be empty but by

u3 > u∗, |R∗ ∩A| is at most M − 1). To understand q(v) and q′(v), we note that all u(w)

in LP(v : u) are u3 and all u′(w) in LP(v : u′) are u′3. As a result, we only need to consider
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the following constraints in LP(v : u)

qi ≥ 0,
∑

j∈[n+2]

qj ≤ 1, and τi · qi ≥ u(v)− u3, for i ∈ S+(v) = S(v).

since all other constraints would be implied. As a result, qi(v) = (u(v) − u3)/τi for each

i ∈ S+(v), and q(v) puts the rest of probability on qn+2(v). Similarly, q′i(v) = (u(v)−u′3)/τi

for each i ∈ S+(v) and q′(v) puts the rest of probability on q′n+2(v). This implies that

Rev′(v) > Rev(v)− (m+ 1) · ε
β
· t, for each v ∈ R∗ ∩A.

Combining all these inequalities, we have

Rev′3 −Rev3 ≥ Pr[B] · ε− Pr[A \R∗ ] ·O(nεt/β)− (M − 1) · h · (m+ 1) · ε
β
· t.

Plugging in Pr[B] ≥ Pr[c3] ≥ δ2(1−O(np)) (since c3 ∈ B) and Pr[A \R∗ ] < 3n · δ2 · pm+2

since A \R∗ only has vectors v ∈ T3 with |S(v)| ≥ m+ 2, we have

Rev′3 −Rev3

≥ δ2ε(1−O(np))−O
(

3nδ2pm+2nεt

β

)
+ (M − 1)h(m+ 1)

ε

β
· βδ2(1 + o(rm))

h(m+ 1)(M − (1/2))

= δ2ε ·
(

1

2M − 1
−O(np)− o(rm)−O

(
3npm+2n

rm+1m

))
� O(δ3nεt/β),

where the inequalities follow from choices of p, r and δ in (7.24). This finishes the proof.

Lemma 7.6.23. Any optimal solution (u(·),q(·)) to LP′(I) must satisfy u(c3) ≥ u∗.

Proof. This direction is more difficult. Assume that (u(·),q(·)) ∈ Ext(q, u2, u3, u4) is an

optimal solution but u3 < u∗. Let ε > 0 be a sufficiently small positive number such that

u(v) > u3 implies u(v) > u3 + ε for all v ∈ D. Our plan is to show that (u′(·),q′(·)) ∈
Ext(q, u2, u

′
3, u
′
4), where u′3 = u3 + ε and u′4 = u4 + ε, results in strictly higher expected

revenue, a contradiction.

By Lemma 7.6.10, we have |Rev′4 −Rev4 | = O(δ3nεt/β). Next we compare Rev′3 and

Rev3. For this purpose we define A as the set of v ∈ T3 with u(ρ(v)) > u3 and B as the

rest of v ∈ T3 with u(ρ(v)) ≤ u3 (so c3 ∈ B). By an argument similar to the previous

lemma, we have Rev′(v) = Rev(v)− ε for all v ∈ B. For v ∈ A, we have u(v) = u′(v) by
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our choice of ε. Since u′3 = u3 + ε, we have u′(w) ≥ u(w) for each w in LP(v : u) and thus,

constraints in LP(v : u) are at least as strong as those in LP(v : u′). As a result, we have

Rev′(v) ≥ Rev(v)− ε for every v ∈ A.

Let C denote the subset of v ∈ A that satisfies 1) v is below a vector in R∗ and 2) every

type-3 vector below v has u(w) = u3 (so w ∈ B). Note that C can be empty. Fix a v ∈ C
when it is nonempty. We have u′(v) = u(v) > u′3 = u3 + ε and u′(w) = u′3 = u(w) + ε,

for all type-3 vectors w below v. As a result, every constraint (other than those on q only)

in LP(v : u) has its RHS larger than the corresponding RHS of LP(v : u′) by ε. We claim

that Rev′(v) ≥ Rev(v) + Ω(tε). To see this, let q∗ denote the vector derived from q(v) as

follows: q∗i = qi(v)− (ε/2) for some i ∈ S(v) and q∗n+2 = qn+2(v) + (ε/2); all other entries

remain the same. It is clear that q∗ is nonnegative (since di · qi(v) ≥ u(v)− u3 > ε) and is

also a feasible solution to LP(v : u′). It follows that Rev′(v) ≥ Rev(v) + Ω(tε).

To finish the proof, we consider the following two cases: Case 1: C 6= ∅. Then (taking

the worst case that |C| = 1 and the vector is in R) we have

Rev′3 −Rev3 ≥ δ2 · rm · p · Ω(tε)− δ2 · ε > δ2ε ·
(

rmpβδ2

h(m+ 1)(M − 0.5)
− 1

)
� O(δ3nεt/β),

where the second to the last inequality follows from p/r = 2n
2 � mM/β.

Case 2: C = ∅. Then every v ∈ R∗∩A satisfies that all vectors w below v have u(w) = u3,

and for each v ∈ R∗ ∩A, LP(v : u) boils down to the following constraints:

qi ≥ 0,
∑

i∈[n+2]

qi ≤ 1, and τi · qi ≥ u(v)− u3, for all i ∈ S+(v) = S(v),

since all other constraints would be trivially implied. As a result, we have qi(v) = (u(v)−
u3)/τi for each i ∈ S(v) and qn+2(v) takes the rest of probability. Similarly, we have

q′i(v) = (u(v)−u′3)/τi for each i ∈ S(v) and q′n+2(v) takes the rest of probability. Plugging

in u′3 = u3 + ε, we have

Rev′(v) ≥ Rev(v) + (m+ 1) · ε

maxi∈[n] τi
·
(
t−max

i∈[n]
hi

)
− ε.

Given that u3 < u∗, we have |A ∩R∗| ≥M . Combining all bounds together, we have

Rev′3 −Rev3 ≥ Mh · (m+ 1)ε

β(1 +O(1/N2))
·
(
t− (2 + 3nβ)

)
− δ2ε

= δ2ε

(
M(1−O(1/N2))

M − 0.5
− 1

)
> 0
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and is � O(δ3nεt/β). This finishes the proof of the lemma.

Before we pin down u(c4), recall that the second part of the input (G, H,M) is a set

H ⊂ [2 : n] of size m. Let vH denote the vector in R∗ with S+(vH) = S(vH) = {1} ∪H.

Given that u3 = u∗, we have 1) if Sum(H) > t∗ then u(vH) > u(c3); and 2) if Sum(H) ≤ t∗

then u(vH) = u(c3), in any optimal solution (u(·),q(·)) to LP′(I). It also follows from

LP(v : u) that 1) if Sum(H) > t∗ then qn+2(vH) < 1, and 2) if Sum(H) ≤ t∗ then

qn+2(vH) = 1, in any optimal solution. We summarize it below.

Corollary 7.6.1. If Sum(H) > t∗, then qn+2(vH) < 1 in every optimal solution to LP′(I).

If Sum(H) ≤ t∗, then qn+2(vH) = 1 in every optimal solution to LP′(I).

Finally we show that u(c4) = u(c3) = u∗ in any optimal solution to LP′(I).

Lemma 7.6.24. Any optimal solution to LP′(I) must satisfy u(c4) = u(c3) = u∗.

Proof. As for Lemma 7.6.22, suppose that (u(·),q(·)) ∈ Ext(q, u2, u
∗, u4) is optimal but

u4 > u∗ (and u4 ≤ u∗ + s for it to be feasible). Let ε > 0 be a sufficiently small positive

number, such that u4 − ε ≥ u∗ and u(v) < u4 implies that u(v) < u4 − ε, for every

v ∈ D. Our goal is then to show that (u′(·),q′(·)) ∈ Ext(q, u2, u
∗, u′4) is strictly better,

where u′4 = u4 − ε, a contradiction.

It suffices to compare Rev′4 and Rev4 since Rev′i = Revi for i = 1, 2, 3.

For c4 we have Rev′(c4) ≥ Rev(c4) + Ω(εt/s). Let A be the set of v ∈ T4 \ {c4} with

u(ρ(v)) ≥ u4 and B be the rest of v ∈ T4 \ {c4} with u(ρ(v)) < u4. Following the same

argument used in Lemma 7.6.22, we have Rev′(v) = Rev(v) + ε for each v ∈ B, and

Rev′(v) ≥ Rev(v)−O(nεt/β) for each v ∈ A.

These bounds are strong enough for the current lemma. Given u∗ we have Pr[A] ≤
3n · δ3 · rm+1. So

Rev′4 −Rev4 ≥ Pr[c4] · Ω(εt/s)− Pr[A] ·O(nεt/β) = Ω(δ3εt/s)−O(3nδ3rm+1nεt/β) > 0.

This finishes the proof of the lemma.
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7.6.3 Returning to the Standard Linear Program

Let (G, H,M) be an input instance of COMP and I be the input instance of the optimal

mechanism design problem (or the lottery problem) constructed from (G, H,M) in Section

7.6.1 and 7.6.2.

We show that any optimal solution to LP′(I) is a feasible solution to the standard LP(I).

Lemma 7.6.25. Any optimal solution (u(·),q(·)) to LP′(I) is a feasible solution to LP(I).

Before proving Lemma 7.6.25, we use it to prove Theorem 14.

Proof of Theorem 14 Assuming Lemma 7.6.25. By Lemma 7.6.25, we claim (u(·),q(·)) is

an optimal solution to LP(I) if and only if it is an optimal solution to LP′(I). To see this,

let Opt and Opt′ denote the optimal values of LP(I) and LP′(I), respectively. As LP′(I)

is a relaxation of LP(I), we have Opt′ ≥ Opt. Lemma 7.6.25, on the other hand, implies

Opt ≥ Opt′. So Opt = Opt′, and from here the claim follows easily.

Suppose that A(·, ·) satisfies both properties stated in Theorem 14. Then it follows from

the connection between the optimal mechanism design problem and LP(I) (see Section 7.2.1)

that (A(I,v) : v ∈ D) is an optimal solution to LP(I) and thus, an optimal solution to

LP′(I).

It follows from Corollary 7.6.1 that 1) when Sum(H) > t∗, A(I,vH) assigns an item

other than n+ 2 or no item to the buyer with a positive probability; 2) when Sum(H) ≤ t∗,
A(I,vH) always assigns item n + 2 with probability 1. Given I and vH , the problem of

deciding which case it is belongs to NP, because A is a randomized algorithm that always

terminates in polynomial time by assumption.

The theorem follows directly from the #P-hardness of COMP proved in Lemma 7.6.21.

We prove Lemma 7.6.25 in the rest of the section. It suffices to show that any optimal

solution (u(·),q(·)) to LP′(I) satisfies (7.5) for all ordered pairs (v,w) in D.

7.6.3.1 Reducing to (v,w) with S(w) ⊆ S(v)

First we handle the special case when v = a.
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Let (u(·),q(·)) be an optimal solution to LP′(I) and w ∈ T1. The by Condition-Type-1:

u(w) ≥
∑

i∈S(w)

(wi − ai) · qi(a).

We extend ρ by setting ρ(w) = w if w ∈ T1. Then u(w) ≥ u(ρ(w)) for all w ∈ D. Thus,

u(w) ≥ u(ρ(w)) ≥
∑

i∈S(ρ(w))

(wi − ai) · qi(a) =
∑

i∈S(w)

(wi − ai) · qi(a).

As u(a) = 0, this implies (7.5) on (a,w) for all w ∈ D. We assume v 6= a in (v,w) from

now on.

Now we claim that it suffices to prove (7.5) for (v,w) that satisfies S(w) ⊆ S(v) (though

v and w here may belong to different blocks). Suppose that we have proved (7.5) over (v,w)

with S(w) ⊆ S(v). Given any general pair (v,w) with v 6= a (otherwise it is done), we

use w′ to denote the vector obtained from w by replacing every wi, i ∈ S(w) \ S(v), by ai.

Then clearly we have S(w′) ⊆ S(v). Because (7.5) holds for (v,w′), then by monotonicity

of u(·) (Lemma 7.6.20), we have

u(v)− u(w) ≤ u(v)− u(w′) ≤
∑
i∈[n]

(vi − w′i) · qi(v) +
∑

i∈{n+1,n+2}

(vi − w′i) · qi(v)

=
∑
i∈[n]

(vi − wi) · qi(v) +
∑

i∈{n+1,n+2}

(vi − wi) · qi(v).

The last equation follows from two observations: wn+1 = w′n+1 and wn+2 = w′n+2; for every

i ∈ [n] but i /∈ S(v), qi(v) = 0 (due to Condition-Type-1, Lemma 7.6.1 and Lemma

7.6.3).

From now on we consider pairs (v,w) that satisfy S(w) ⊆ S(v).

7.6.3.2 Both v and w are Type-1

We start with the case when v and w are both type-1 vectors (and satisfy S(w) ⊆ S(v)).

Note that (7.5) means that w does not envy the lottery of v. As v buys the same

lottery as Lower(v) (by Condition-Type-1), we may assume without loss of generality
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that v ∈ T ′1 and S(w) ⊂ S(v). Then

u(v)− u(w) =
∑

i∈S(v)\S(w)

di · qi(a)−
∑

i∈S+(w)

τi · qi
(
Lower(w)

)
≤

∑
i∈S(v)\S(w)

di · qi(v)−
∑

i∈S+(w)

τi · qi(v),

where the last inequality follows from qi(v) ≥ qi(a) for all i ∈ S(v), and qi(Lower(w)) ≥
qi(v) for all i ∈ S(w) by Lemma 7.6.11.

7.6.3.3 Both v and w are Type-2

Next we prove (7.5) for pairs (v,w) of type-2 vectors that satisfy S(w) ⊆ S(v).

The special case of |S(v)| ≤ 1 is easy to check. Let vi be the type-2 vector with

S(vi) = {i} and its ith entry being `i and let v′i denote the type-2 vector with S(v′i) = {i}
and its ith entry being hi. The constraint (7.5) over (v,w) = (vi, c2), (v′i, c2), or (v′i,vi) is

part of LP′(I); for (v,w) = (vi,v
′
i), (7.5) follows trivially from the fact that u(v′i) ≥ u(vi)

(by Condition-Type-2), and qi(vi) = 0. To see the latter, note that by Lemma 7.6.19 we

have u(vi) = u(c2) and thus, an optimal solution to LP(vi : u) must have qn+1 = 1.

For type-2 (v,w) with |S(v)| ≥ 2, we need to understand q(v) better. We prove the

following lemma regarding v ∈ T2 ∪ T3 ∪ T4 \ {c2, c3, c4} that satisfies certain conditions.

Lemma 7.6.26. Let (u(·),q(·)) be an optimal solution to LP′(I) and v ∈ T2 ∪ T3 ∪ T4 \
{c2, c3, c4}. Assume that u(v) = u(ρ(v)) and u(w) = u(ρ(w)) for every w that appears

in LP(v : u). Then LP(v : u) has the following unique optimal solution q: (letting k =

min(S(v)) and S′(v) = S(v) \ {k})

• If k /∈ S+(v), qi = qi(a) for all i ∈ S(v), and q puts the rest of probability 1 −∑
i∈S(v) qi(a)

(if any) on qn+1 if v ∈ T2 or qn+2 if v ∈ T3 ∪ T4; all other entries of q are 0.

• If k ∈ S+(v), qi(v) = qi(a) for all i ∈ S′(v) and qk(v) = 1−∑i∈S′(v) qi(a); all other

entries

of q are 0. In this case we have q(v) = q(ρ(v)).
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Proof. We relax LP(v : u): its second batch of constraints is now over i ∈ S(v) and

wi = Lower(v−i, ai) only. Denote this linear program by LP∗(v : u):

Maximize
∑

j∈[n+2]

vj · qj − u(v) subject to

qi ≥ 0 and
∑

j∈[n+2]

qj ≤ 1, for i ∈ [n+ 2];

τi · qi ≥ u(v)− u(w), for i ∈ S+(v) and w = (v−i, `i);∑
j∈[n]

(vj − wj) · qj ≥ u(v)− u(w), for i ∈ S(v) and w = Lower(v−i, ai).

We start with the case when k = min(S(v)) /∈ S+(v). The first batch of constraints

yields qi ≥ qi(a), for all i ∈ S+(v), where we used u(v) = u(ρ(v)), u(w) = u(ρ(w)), and

Condition-Type-1. For each i ∈ S(v), the second batch requires

(vi − ai) · qi +
∑

j∈S(w)

(vj − wj) · qj ≥ di · qi(a) +
∑

j∈S+(v)

τj · qj(a).

Rearranging terms results in for each i ∈ S(v):

di · (qi − qi(a)) +
∑

j∈S+(v)

τj · (qj − qj(a)) ≥ 0.

These are the only constraints in LP∗(v : u) other than those on q itself. We now show that

LP∗(v : u) has a unique optimal solution q with qi = qi(a) for all i ∈ S(v), and q allocates

all the rest of probability on qn+1 or qn+2, depending on whether v ∈ T2 or v ∈ T3 ∪ T4.

Assume for contradiction that q` < q`(a) for some ` ∈ S(v) (this is actually without

loss of generality since if qi ≥ qi(a) for all i ∈ S(v), then to be optimal q must be the

vector described above). Take ` to be an index in S(v) that maximizes q`(a)− q`, denoted

by ε > 0. For the second constraint on ` we must have qt − qt(a) ≥ Ω(ε/(nβ)) for some

t ∈ S(v). Let q′ denote the following vector derived from q: q′i = qi + ε for all i ∈ S(v)

and i 6= t; q′t = qt − 2nε; q′n+1 or q′n+2 takes the rest of probability. Then q′ is feasible and

strictly better than q. For feasibility, the only nontrivial constraint to check is the second

one on t:

dt · (q′t − qt(a)) +
∑

j∈S+(v)

τj · (qj − qj(a)) ≥ Ω(ε/(nβ))− n ·O(β) · ε > 0.
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Given that q described above is the unique optimal solution to LP∗(v : u), it is easy to

verify that q is indeed a feasible solution to LP(v : u). Taking a w ∈ Block(v−i, ai) for

some i ∈ S(v), we have

u(v)− u(w) = di · qi(a) +
∑

j∈S+(v)

τj · qj
(
ρ(v)

)
−

∑
j∈S+(w)

τj · qj
(
ρ(w)

)
≤ di · qi(a) +

∑
j∈S+(v)

τj · qj(a)−
∑

j∈S+(w)

τj · qj(a)

=
∑

j∈S(v)

(vj − wj) · qj(a) =
∑

j∈S(v)

(vj − wj) · qj .

This finishes the proof of the case when k = min(S(v)) /∈ S+(v).

We consider the case when k = min(v) ∈ S+(v). Let v′ = ρ(v). The first batch

requires qi ≥ qi(v
′) for all i ∈ S+(v) (including k). For each i ∈ S−(v), the second batch

of LP∗(v : u) requires

(vi − ai) · qi +
∑

j∈S(w)

(vj − wj) · qj ≥ di · qi(a) +
∑

j∈S+(v)

τj · qj(v′).

Since i ∈ S−(v) and i 6= k, we have qi(a) = qi(v
′). Rearranging terms, we get for each

i ∈ S−(v):

di · (qi − qi(v′)) +
∑

j∈S+(v)

τj · (qj − qj(v′)) ≥ 0.

It turns out that q = q(v′) is the unique feasible solution to these constraints (as q(v′)

sums to 1, q sums to at most 1, and di � τj). Hence, we have q(v) = q(v′) (as LP(v : u)

is feasible and q = q(v′) is the only feasible solution to its relaxation LP∗(v : u)). This

finishes the proof for the case when k ∈ S+(v).

We summarize below the following property of q(v) for all v ∈ T2 that will be useful

later:

Lemma 7.6.27. For all v ∈ T2 and i ∈ S(v), qi(v) ≤ qi(ρ(v)). Moreover, qn+1(v) =

1−∑i∈S(v) qi(v).

Proof. Recall vi and v′i at the beginning of Section 7.6.3.3. For c2 and vi we have qn+1(c2) =

qn+1(vi) = 1; for v′i we have qi(v
′
i) = 1 = qi(ρ(v′i)). The rest of v ∈ T2 follows from Lemma

7.6.26.
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Now let (v,w) be a pair of type-2 vectors with S(w) ⊆ S(v) and |S(v)| ≥ 2 (so Lemma

7.6.26 applies to v and we know exactly what q(v) is). The rest of the proof is similar to

that for type-1 vectors.

Using u(v) = u(ρ(v)) and u(w) ≥ u(ρ(w)), we have

u(v)− u(w) ≤
∑

i∈S(v)\S(w)

di · qi(a) +
∑

i∈S+(v)

τi · qi(ρ(v))−
∑

i∈S+(w)

τi · qi(ρ(w)).

For the case when k = min(v) /∈ S+(v), we have qi(v) = qi(a) for all i ∈ S(v). We have

u(v)−u(w) ≤
∑

i∈S(v)\S(w)

di ·qi(a)+
∑

i∈S+(v)

τi ·qi(a)−
∑

i∈S+(w)

τi ·qi(a) =
∑
i∈S(v)

(vi−wi) ·qi(v),

where we used qi(ρ(v)) = qi(a) for all i 6= min(S(v)) and qi(ρ(w)) ≥ qi(a) for all i ∈ S(w).

For the case when k = min(v) ∈ S+(v), we have q(v) = q(ρ(v)). Then

u(v)−u(w) ≤
∑

i∈S(v)\S(w)

di ·qi(v)+
∑

i∈S+(v)

τi ·qi(v)−
∑

i∈S+(w)

τi ·qi(v) =
∑
i∈S(v)

(vi−wi)·qi(v),

where we used qi(ρ(w)) ≥ qi(ρ(v)) = qi(v) for all i ∈ S(ρ(w)) = S(w) by Lemma 7.6.11.

This finishes the proof of (7.5) over all pairs (v,w) of type-2 vectors.

7.6.3.4 Both v and w are Type-3

Now we turn to pairs (v,w) of type-3 vectors that satisfy S(w) ⊆ S(v).

When |S(v)| ≥ m+3, we note that by Lemma 7.6.22 and 7.6.23, v satisfies the condition

of Lemma 7.6.26 which completely characterizes q(v). The same argument above for type-2

vectors with |S(v)| ≥ 2 can be used to prove (7.5) for type-3 (v,w) with S(w) ⊆ S(v) and

|S(v)| ≥ m+ 3.

Next we check the case when |S(v)| ≤ m+ 1. The case when u(v) = u(c3) is simple as

qn+2(v) = 1 (note that this includes v = c3). As a result, we have (using u(w) ≥ u(c3) by

Condition-Type-3)

u(v)− u(w) ≤ 0 =
∑

i∈[n+2]

(vi − wi) · qi(v).

For the case when u(v) > u(c3) and |S(v)| ≤ m + 1, by Lemma 7.6.22 and 7.6.23

we must have v ∈ R∗. q(v) is then an optimal solution to the following (relaxed) linear
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program (from LP(v : u)):

qi ≥ 0,
∑

i∈[n+2]

qi ≤ 1, τi · qi ≥ u(v)− u(c3), for i ∈ S+(v),

as all other constraints in LP(v : u) would be implied. This implies that qi(v) = (u(v) −
u(c3))/τi for all i ∈ S(v) and qn+2(v) takes the rest of probability. We now prove (7.5) on

(v,w). Using S(w) ⊆ S(v) and w 6= v (so u(w) = u(c3)), there must be an index t ∈ S(v)

such that wt < vt. As a result we have

∑
i∈[n+2]

(vi − wi) · qi(v) =
∑
i∈S(v)

(hi − wi) · qi(v) ≥ τt · qt(v) = u(v)− u(c3) = u(v)− u(w).

The only case left for type-3 (v,w) is when |S(v)| = m + 2. We need the next lemma

about its q(v).

Lemma 7.6.28. For each v ∈ T3 with |S(v)| = m + 2, q(v) satisfies qi(v) = qi(ρ(v)) for

each i ∈ S+(v), qi(v) ≤ qi(a) for each i ∈ S−(v), and q(v) puts the rest of probability on

qn+2(v).

Proof. By LP(v : u), qi(v) for each i ∈ S+(v) must satisfy

τi · qi(v) ≥ u(v)− u(v−i, `i) = u(ρ(v))− u(ρ(v−i, `i)) = τi · qi(ρ(v)), (7.63)

since we have u(w) = u(ρ(w)) for w ∈ T3 with |S(w)| ≥ m + 2. Let q be the vector with

qi = qi(ρ(v)) for all i ∈ S+(v) and qi = qi(a) for all i ∈ S−(v). Let c = maxi(qi(v) − qi),
and assume for contradiction that c > 0. Let t ∈ S(v) denote an index with qt(v) = qt + c.

We consider two cases below.

Case 1: One of the constraints in the second batch of LP(v : u) with i = t is tight, i.e.,

there is a type-3 vector w ∈ Block(v−t, at) such that

∑
i∈S(v)

(vi − wi) · qi(v) = u(v)− u(w).

Since u(v) = u(ρ(v)) and u(w) ≥ u(ρ(w)), we have

∑
i∈S(v)

(vi−wi)·qi(v) ≤ u(ρ(v))−u(ρ(w)) = dt·qt(a)+
∑

i∈S+(v)

τi·qi(ρ(v))−
∑

i∈S+(w)

τi·qi(ρ(w)).
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Plugging in qt(a) ≤ qt, qi(ρ(v)) = qi for i ∈ S+(v), and qi(ρ(w)) ≥ qi(ρ(v)) ≥ qi for

i ∈ S(w),

dt · (qt(v)− qt) +
∑

i∈S+(v)

τi · (qi(v)− qi) ≤
∑

i∈S+(w)

τi · (qi(v)− qi) ≤ n ·O(β) · c.

Given that dt ≈ 1 � O(nβ), there must exist an i ∈ S+(v) such that qi(v) − qi < 0,

contradicting (7.63).

Case 2: All constraints in the second batch with i = t are loose. For this case we lower

qt(v) by ε, for some sufficiently small ε > 0, increase qi(v) by ε/(2n) for other i ∈ S(v), and

move the rest of (at least ε/2) probability to qn+2(v). This gives a feasible solution that is

strictly better than q(v), a contradiction.

We summarize below the following property of q(v) for all v ∈ T3 that will be useful

later:

Lemma 7.6.29. For all v ∈ T3 and i ∈ S(v), qi(v) ≤ qi(ρ(v)). Moreover, qn+1(v) =

1−∑i∈S(v) qi(v).

Proof. The case of u(v) = u(c3) is trivial. The case of u(v) > u(c3) and |S(v)| ≤ m + 1

follows from

qi(v) = (u(v)− u(c3))
/
τi ≤

(
u(ρ(v))− u(ρ(v−i, `i))

)/
τi = qi(ρ(v)).

The rest of v ∈ T4 follows from either Lemma 7.6.26 or Lemma 7.6.28.

We now return to prove (7.5) for pairs (v,w) of type-3 vectors with S(w) ⊆ S(v) and

|S(v)| = m + 2. The only nontrivial case here is when w also has |S(w)| = m + 2. For

other cases, we have

1. |S(w)| = m+ 1: Trivial since the constraint is indeed part of LP′(I);

2. |S(w)| < m + 1: Let w∗ denote a type-3 vector in R such that w ≺ w∗ ≺ v and

w∗i = hi for

all i ∈ S(w). Then we have u(w∗) = u(w) = u(c3). It follows from (7.5) over (v,w∗)

that

u(v)− u(w) = u(v)− u(w∗) ≤
∑
i∈S(v)

(vi − w∗i ) · qi(v) ≤
∑
i∈S(v)

(vi − wi) · qi(v),
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where the last inequality follows from wi ≤ w∗i for all i.

When |S(w)| = m+ 2, we have S(v) = S(w). Then u(v)− u(w) = u(ρ(v))− u(ρ(w)) and

u(ρ(v))− u(ρ(w)) =
∑

i∈S+(v)\S+(w)

τi · qi(ρ(v))−
∑

i∈S+(w)\S+(v)

τi · qi(ρ(v))

≤
∑

i∈S+(v)\S+(w)

τi · qi(v)−
∑

i∈S+(w)\S+(v)

τi · qi(v)

=
∑
i∈S(v)

(vi − wi) · qi(v),

since qi(v) = qi(ρ(v)) for all i ∈ S+(v) and qi(v) ≤ qi(a) ≤ qi(ρ(v)) for all i ∈ S−(v).

This finishes the proof of (7.5) over pairs of type-3 vectors.

7.6.3.5 Both v and w are Type-4

For each v ∈ T4, let Φ(v) = (v−(n+1), 0). So Φ is a one-to-one correspondence between

type-4 and type-3 vectors. As u(c4) = u(c3), we have u(v) = u(Φ(v)) for all v ∈ T4. This

suggests the following lemma.

Lemma 7.6.30. Let (u(·),q(·)) be an optimal solution to LP′(I) and v ∈ T4. Then

(u(·),q(·)) remains to be an optimal solution to LP′(I) after replacing q(Φ(v)) by q(v).

Proof. The statement is trivial for v = c4 since qn+2(c3) = qn+2(c4) = 1.

For v 6= c4, note that LP(v : u) is essentially the same as LP(Φ(v) : u), with the only

subtle difference being that the coefficient of qn+1 is s in LP(v : u) but 0 in LP(Φ(v) : u).

However, neither q(Φ(v)) nor q(v) can put any probability on qn+1. The lemma then

follows.

To prove (7.5) on a pair (v,w) of type-4 vectors we simply replace q(Φ(v)) by q(v) to

get a new optimal solution by Lemma 7.6.30, and (7.5) must hold on (Φ(v),Φ(w)) in the

new solution (since we have proved (7.5) between type-3 vectors in any optimal solution).

This then implies (7.5) on (v,w) in the original solution.

7.6.3.6 Pairs with Different Types

Finally we prove (7.5) for pairs (v,w) of vectors with S(w) ⊆ S(v) and of different types.
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The following lemma helps us further reduce cases that need to be considered.

Lemma 7.6.31. Assume that v,v′ ∈ D differ at the ith entry only, for some i ∈ {n +

1, n+ 2}, and v′i > vi. Then we have u(v′) ≥ u(v) in any optimal solution to LP′(I).

Proof. The case when v ∈ T1 follows directly from Condition-Type-2 and Condition-

Type-3.

The case when v ∈ T3 and i = n+ 1 follows from u(c3) = u(c4).

The case when v ∈ T2 and i = n+ 2 follows from the fact that u(c3) > u(c2).

It suffices to prove (7.5) for (v,w) that satisfies vn+1 ≥ wn+2 and vn+2 ≥ wn+2. To

see this, we let w′ denote the vector obtained from w by replacing wi by min(wi, vi),

i ∈ {n+ 1, n+ 2}. Then u(w) ≥ u(w′) by Lemma 7.6.31 and (v,w′) satisfies vn+1 ≥ w′n+1

and vn+2 ≥ w′n+2. Assuming that (7.5) holds for (v,w′),

u(v)−u(w) ≤ u(v)−u(w′) ≤
∑

i∈[n+2]

(vi−w′i)qi(v) =
∑
i∈[n]

(vi−wi)qi(v)+
∑

i∈{n+1,n+2}

(vi−w′i)qi(v)

The RHS is indeed the same as
∑

i(vi−wi)·qi(v). This is because for either i ∈ {n+1, n+2},
wi 6= w′i would imply that vi = 0 and thus, qi(v) = 0.

Now we need to consider the following cases of types of (v,w): (2, 1), (3, 1), (4, 1), (4, 2)

and (4, 3). We start with the case when v is type-2 and w is type-1.

We consider two cases: u(v) = u(c2) or u(v) > u(c2). For the former, qn+1(v) = 1 and

thus,

u(v)− u(w) ≤ u(c2)� s =
∑

i∈[n+2]

(vi − wi) · qi(v).

For the latter, u(v) = u(ρ(v)). By Lemma 7.6.27, let γi = qi(ρ(v)) − qi(v) ≥ 0 for each

i ∈ S(v). Then

u(v)− u(w) = u(ρ(v))− u(w) ≤
∑
i∈S(v)

(vi − wi) · qi(ρ(v))

=
∑
i∈S(v)

(vi − wi) · qi(v) +
∑
i∈S(v)

(vi − wi) · γi

≤
∑
i∈S(v)

(vi − wi) · qi(v) + s ·
∑
i∈S(v)

γi

=
∑

i∈[n+2]

(vi − wi) · qi(v),
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where the last equation used qn+1(v) = 1−∑i∈S(v) qi(v) from Lemma 7.6.27.

The case when v is type-3 and w is type-1 can be proved similarly using Lemma 7.6.29.

From this case, the case when v is type-3 and w is type-2 follows from Lemma 7.6.31 (we

mention it since it is used below).

For the case when v is type-4 and w is type-3, we simply replace q(Φ(v)) by q(v) to

get a new optimal solution by Lemma 7.6.30. (7.5) on (v,w) in the original solution then

follows from that on (Φ(v),w) in the new solution (note that this is the (3, 2) case we

already handled), given that qn+1(v) = 0.

For the case when v is type-4 and w is type-2, we again replace q(Φ(v)) by q(v) to

get a new optimal solution by Lemma 7.6.30. (7.5) on (v,w) in the original solution then

follows from that on (Φ(v),w) in the new solution, given qn+1(v) = 0. The same argument

works for the case when v is type-4 and w is type-1.

This finishes the proof of Lemma 7.6.25.
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Chapter 8

Conclusions

8.1 Conclusions

In this thesis we studied the Computational Complexity of Equilibrium Computation and

Revenue Maximization. Here, we summarize our results and provide future research direc-

tions.

8.1.1 Summary of Results

8.1.1.1 Market Equilibria

In the first part of the thesis we studied the computation of Market Equilibria. Prior to our

work, all PPAD-hardness proofs were based on reductions fine-tuned to the utility functions

under consideration. In an effort to unify these results, we took a step towards a systematic

understanding of what features make equilibrium computation hard.

Our first result is a complete characterization of the complexity of finding an ε-approxi-

mate equilibrium in Arrow-Debreu markets with CES utilities based on the parameters

ρi of the utilities. In particular, we show (Theorem 3) that it is PPAD-hard to find an

ε-approximate market equilibrium when the traders are allowed to have CES utilities with

parameters ρi < −1, thus resolving this long-standing open problem.

Building on this result, we introduced the notion of non-monotone utilities, which covers

a wide variety of important utility functions. Our main result (Theorem 6) states that for
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any family U of non-monotone utilities, it is PPAD-hard to compute an ε-approximate

equilibrium for a market with utilities that are drawn from U or are linear. Our result is

the first to provide a general sufficient PPAD-hardness condition for Arrow-Debreu markets.

We note however that although all previously known PPAD-hard families of utilities satisfy

non-monotonicity they are not subsumed by our result because of the use of linear utilities.

8.1.1.2 Revenue Maximization

In the second part of the thesis we concentrate on the complexity of Revenue Maximization

when there is a Unit-demand buyer. We first study Bayesian Unit-Demand Item-Pricing

problem with independent distributions. Prior to our work, only approximation algorithms

existed for the problem; indeed, the problem was not even known to be in NP. Our first

result is a structural characterization (Theorem 8) of the optimal prices as solutions to a

Linear Program restricted to cells of a partition of the price space. NP-membership follows

by guessing the appropriate cell, which can be described with a polynomial number of linear

constraints. Our next result (Theorem 9) is a polynomial time algorithm for the case that

each marginal distribution has support size at most 2. Finally, our main result (Theorem

10) resolves the computational complexity of the problem showing that it is NP-hard even

for distributions of support size at most 3.

The final contribution of this thesis is on the complexity of Unit-demand Lottery Pricing.

We begin by studying the special case of distributions with support-size 2 and the same

high value for all items and prove (Theorem 12) that randomization does not improve

revenue in this case. Therefore, one can use our algorithm for Item Pricing and distributions

of support size 2. After providing some simple examples where randomization improves

revenue we prove our main result (Theorem 14); unless PNP = P#P, there is no universal

efficient randomized algorithm that computes implicitly an optimal menu. This concludes

the contributions of this thesis.

8.1.2 Future Directions and Open Problems

Our work raises many interesting questions for both Market Equilibrium computation and

Revenue Maximization. Here, we present what we believe are the most interesting ones.
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8.1.2.1 Market Equilibria

We begin by pointing our that our hardness result for CES markets characterizes the com-

putation of approximate market equilibria, that is, finding prices that approximately clear

the market. In general, approximate equilibrium prices, when viewed as a vector, may be

far from an actual equilibrium price vector and this makes them undesirable in many cases;

economists are more interested in approximating actual equilibrium prices. In our work,

we prove that the problem of approximating an actual equilibrium for CES markets is in

FIXP. Theorem 3 further implies that the problem is PPAD-hard; by continuity a price-

vector close to an actual equilibrium is an approximate market equilibrium. Furthermore,

it is known that when ρ→ −∞, that is all utilities are Leontief functions, it is FIXP-hard

to approximate an actual equilibrium. However, the exact complexity for finite ρ remains

unknown and we conjecture that it is FIXP-complete to approximate an actual equilibrium

of a CES market.

Regarding our general result for arbitrary non-monotone utilities, can we dispense with

the linear functions, i.e., is it true that for any family U of non-monotone utilities, the

approximate equilibrium problem is PPAD-hard for markets that use utilities from U only?

The reduction for CES utilities is essentially a fine-tuned version of the reduction for non-

monotone utilities that makes use of the properties of CES utilities. Can a similar approach

work in general for all non-monotone utilities? Related to this question, what other general

features of utilities (if any) make the market equilibrium problem hard? Non-monotonicity

is related with markets that have disconnected sets of market equilibria for which currently

we do not have any efficient algorithmic methods to deal with. Convexity has been critical

essentially in all tractable cases so far, whether the set of market equilibria itself is convex

or a convex formulation can be obtained after a change of variables. Can we obtain a

complexity dichotomy theorem that allows us to classify any family of utility functions

(under standard, generally acceptable, mild assumptions for utilities) into those that can

be solved efficiently and those that are intractable (PPAD-hard and/or FIXP-hard)?

On the algorithmic side of the problem, the work of Codenotti et al [Codenotti et al.,

2005a] provides convex programs for the Arrow-Debreu setting in the cases that either

every trader i has a 0 < ρi or every trader i has a −1 ≤ ρi < 0. However, the two convex
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programs cannot be combined because the two cases have different structure of equilibria.

In the case 0 < ρi the set of equilibria is convex while in the case −1 ≤ ρi < 0 it is log-

convex. Currently, no algorithm is known for the case that every trader i has a −1 ≤ ρi < 1

with ρi 6= 0. We conjecture that this case also admits a polynomial time algorithm but we

believe that a new approach is needed to obtain it.

Second, convexity seems to be the main property exploited by all algorithms for finding

an (approximate) market equilibrium; with WGS being the largest family of markets with

convex set of equilibria for which algorithms are known. Another general property that

implies convexity of the set of equilibria is the Weak Axiom of Revealed Preference (WARP)

[Mas-Colell et al., 1995] but currently there is no polynomial time algorithm that works for

all WARP markets. Is it possible to obtain an efficient algorithm for all WARP markets?

A more ambitious direction is towards obtaining a general sufficient condition that allows

for an efficient algorithm. While many families of utilities satisfy WGS or WARP, they do

not seem to cover all the efficiently solvable market problems. For example, the family of

CES utilities with parameter −1 ≤ ρ < 0 does not satisfy WGS or WARP but has a convex

formulation. Is there a more general property that covers all the markets with connected

sets of equilibria and, if so, can this property lead to polynomial time algorithms?

8.1.2.2 Revenue Maximization

Our results in this thesis address the computational complexity for the general cases of

both Item Pricing and Lottery Pricing for a Unit-demand buyer by proving that they are

NP-complete and #P-hard respectively. In addition, we provide efficient algorithms for a

few special cases. Many important questions however remain widely open.

Regarding Item Pricing, our NP-hardness results do not preclude the existence of a

PTAS or even an FPTAS (Fully Polynomial Time Approximation Scheme). Actually, by

adapting techniques from [Cai and Daskalakis, 2011] we can give an FPTAS for the case

when the supports of the distributions are integers in a bounded interval. Thus, the most

natural and important open question is the following: Is there a PTAS or, even better, an

FPTAS for unit-demand deterministic pricing? Addressing this question will require new

intuition about the problems and their structure as well as application of tools from other
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areas such as geometry and probability theory. A first step towards this direction would

be identifying special cases of distributions that allow for a PTAS. Existing work provides

a PTAS for Monotone Hazard Rate distributions. Can this result be extended to different

distributions? Finally, our hardness proof for the i.i.d. case uses distributions of support

polynomial to the number of items. In fact, when the distributions are identical the problem

obtains a nice structure. Namely, one has then to decide how many items get each of the

prices suggested by our NP-membership. When all the prices come from the support, this

observation gives an O(nk) algorithm for the problem, where k is the size of the support. We

conjecture that this can be extended to a polynomial algorithm for identical distributions

of constant support size, even when the candidate prices suggested by our NP-membership

do not lie in the support.

Regarding the randomized setting, the question of whether a PTAS or an FPTAS exists

transfers here, since our hardness proof does not rule out this possibility. Similarly, iden-

tifying special cases of the problem that accept polynomial-time exact or approximation

algorithms is a major open problem in this setting too. Especially for the i.i.d. case, it is

possible that one can obtain exact algorithms using the symmetries that arise in this case.

Finally, regarding the menu-size of the problem, obtaining a characterization of the cases

that need an exponentially large menu remains an important open problem.
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