
Investigation of Energy-Efficient Hybrid
Analog/Digital Approximate Computation in

Continuous Time

Ning Guo

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017

c©2017

Ning Guo

All Rights Reserved

ABSTRACT

Investigation of Energy-Efficient Hybrid
Analog/Digital Approximate Computation in

Continuous Time

Ning Guo

This work investigates energy-efficient approximate computation for solving differential

equations. It extends the analog computing techniques to a new paradigm: continuous-time

hybrid computation, where both analog and digital circuits operate in continuous time. In

this approach, the time intervals in the digital signals contain important information. Unlike

conventional synchronous digital circuits, continuous-time digital signals offer the benefits of

adaptive power dissipation and no quantization noise.

Two prototype chips have been fabricated in 65 nm CMOS technology and tested suc-

cessfully. The first chip is capable of solving nonlinear differential equations up to 4th or-

der, and the second chip scales up to 16th order based on the first chip. Nonlinear func-

tions are generated by a programmable, clockless, continuous-time 8-bit hybrid architec-

ture (ADC+SRAM+DAC). Digitally-assisted calibration is used in all analog/mixed-signal

blocks. Compared to the prior art [1], our chips makes possible arbitrary nonlinearities and

achieves 16× lower power dissipation, thanks to technology scaling and extensive use of

class-AB analog blocks.

Typically, the unit achieves a computational accuracy of about 0.5% to 5% RMS, solution

times from a fraction of 1µs to several hundred µs, and total computational energy from a

fraction of 1 nJ to hundreds of nJ, depending on equation details. Very significant advantages

are observed in computational speed and energy (over two orders of magnitude and over

one order of magnitude, respectively) compared to those obtained with a modern MSP430

microcontroller for the same RMS error.

Table of Contents

List of Figures vi

List of Tables xii

1 Introduction 1

1.1 Introduction to analog computers: The history and the machine 1

1.2 VLSI analog computers—The first try . 7

1.3 The need for post-Moore’s-law computing 8

1.4 Fundamental differences between analog computers and digital computers . . 8

1.5 Limitations of prior art . 10

1.6 Thesis contributions . 11

2 Two FOMs for Computation 13

2.1 FOM for energy-efficiency . 13

2.2 FOMcomputer for evaluating analog/hybrid computers 14

2.3 FOMtask for evaluating computing tasks . 17

i

3 An Overview of the Complete CT Hybrid Computer System 18

3.1 Overview of the hybrid computer system presented in this work 18

3.2 Overall chip architecture and floor plan . 23

3.3 Design choices . 27

3.3.1 Voltage mode versus current mode 27

3.3.2 Bandwidth and phase shift . 29

3.3.3 Resolution choice . 30

4 Design of Analog and Connectivity Circuits for the Hybrid Computer 31

4.1 Introduction . 31

4.2 Fanout architecture and circuit design . 31

4.3 Integrator design . 35

4.3.1 Error analysis of integrator finite DC gain and limited bandwidth on

ODE solutions . 35

4.3.2 Integrator architecture and circuit design details 42

4.4 Multiplier architecture and circuit design . 50

4.5 Circuits for testability . 59

4.6 Global crossbar design . 61

4.7 Layout considerations . 64

5 Design of the Programmable Nonlinear Function Generator 66

5.1 Introduction to CT digital signals . 66

ii

5.2 Architecture overview . 67

5.3 CT ADC design details . 69

5.4 CT SRAM design details . 77

5.5 CT DAC design details . 81

5.6 Full chip layout . 87

6 Implementation Details of a 16th-Order CT Hybrid Computing Chip 89

6.1 Overall architecture . 90

6.2 Tunable global bias blocks . 92

6.3 Instruction set and address-space mapping 94

6.4 Layout for the second chip . 96

7 Measurement Results 98

7.1 Die photos and packaging considerations . 98

7.2 Testing environment, chip interfaces and programming language 101

7.3 Calibration procedures . 106

7.4 Measurement results . 107

7.4.1 Calibration . 107

7.4.2 Nonlinear function generator . 108

7.4.3 Key performance summary of the hybrid computing chip 112

7.4.4 Comparison to the prior art . 112

7.5 Measured mismatches of integrator time constants 113

iii

7.6 Temperature tests . 116

7.7 A USB-powered hybrid computer board . 118

8 Solutions of Nonlinear Differential Equations on the Hybrid Computer and

Performance Comparisons 122

8.1 Open-loop nonlinear equation computation for robotic path planning 123

8.2 Nonlinear differential equations modeling a coupled mass-spring system . . . 125

8.3 Van der Pol equation . 128

9 Conclusions and Suggestions for Future Work 132

9.1 Conclusion on the presented hybrid-computing chip 132

9.2 Suggestions for future work . 134

9.3 A few thoughts on analog and hybrid computation and its applications . . . 135

Bibliography 138

Appendix A Implementing Division 143

A.1 Using an integrator and a multiplier . 143

A.2 Using table lookup . 145

Appendix B Automatic Scaling 147

Appendix C Schematic and Layout of the Demoboard with Fourth-Order

Chip 149

iv

Appendix D Schematic and Layout of the Demoboard with 16th-Order Chips152

Appendix E Solution of a 1-D Heat Equation 155

v

List of Figures

1.1 Bush differential analyzer. Image courtesy of the Computer History Museum. 2

1.2 An analog computer in 1949 at the Lewis Flight Propulsion Laboratory. . . . 3

1.3 Example of an fourth-order analog computer from Comdyna. 5

1.4 Example of how analog computers work. 6

3.1 Hybrid computer environment. 19

3.2 Hybrid computing unit workflow. 20

3.3 Hybrid computing unit architecture layers. 21

3.4 Basic mathematical operation blocks. 21

3.5 Amplitude scaling and time scaling examples. 22

3.6 The system architecture of the scalable hybrid computing unit. 23

3.7 The finite-state machine of the SPI controller. 25

4.1 Schematic of the fanout block. 32

4.2 Schematic of the fanout block calibration DAC. 34

vi

4.3 An analog computing diagram using ideal integrators with unity-gain fre-

quency ωc to solve the ODE in (4.1). 37

4.4 The transfer function of an integrator with finite DC gain A0, unity-gain

frequency ωc and high-frequency pole ωx. 38

4.5 The diagram using nonideal integrators with unity-gain frequency ωc. 39

4.6 Solutions of (4.3) with nonideal integrators (red) and with ideal integrators

(blue) from Simulink. 41

4.7 Integrator architecture. 43

4.8 Simplified schematic of the input current mirror. 44

4.9 Schematics of the gain boosting amplifiers for NMOS and PMOS devices. . . 45

4.10 Schematic of the current copying OTA. 46

4.11 Schematic of the fully differential OTA used in initial condition setting block. 48

4.12 Schematic of the CMFB block fully differential OTA. 49

4.13 Architecture of the multiplier block. 51

4.14 Circuit details of the multiplier core block. 52

4.15 The composite device used in the multiplier core. 53

4.16 Illustration of basic translinear principle. 54

4.17 A simplified schematic of the input-scaling mirror in Fig. 4.13. There are four

such mirrors receiving two differential currents at the input stage. 56

4.18 Block diagram of the multiplier output mirror. 57

4.19 Schematic of the output-scaling mirror. 58

vii

4.20 The testing scheme for measuring internal nodes’ voltages on our hybrid com-

puting chip. 60

4.21 The analog T-switch used in analog MUX. 61

4.22 The analog crossbars used for programming signal paths between analog

blocks. Local registers (back-to-back inverters) that store the programming

bits for the transmission gates are not shown. 62

4.23 The local register that stores the programming information for the transmis-

sion gates. The contents of the back-to-back inverters are written through

driving the bit lines differentially with large drivers. 63

4.24 The layout of one analog crossbar cell. 64

4.25 The global signal paths for calibrating each block and related functional blocks

involved. 65

5.1 Continuous-time programmable nonlinear function generator. 67

5.2 Voltage-mode level-crossing ADC architecture. 70

5.3 Block diagram of the comparator block. 71

5.4 Schematic of the single stage amplifier in the comparator block. 72

5.5 Schematic of the latch stage of the comparator. 74

5.6 Schematic of control logic block after comparators. 74

5.7 The timing diagram of critical signals of the control logic block. 75

5.8 The architecture of the CT SRAM used in our hybrid system. 77

5.9 The 10T SRAM cell used in our design. 78

viii

5.10 The write and read drivers. 79

5.11 The timing diagram of critical signals for write operation. 80

5.12 The timing diagram of critical signals for read operation. 80

5.13 Delay lines arrays used in the SRAM block for flexibility. 81

5.14 The architecture of the DAC block. 82

5.15 The segmented current-steering DAC core circuits. 82

5.16 The output stage of the current-steering DAC. 84

5.17 Circuit details of the bias block. 85

5.18 Circuit details of the calibration block. 86

5.19 Full chip layout picture with key blocks annotated. 88

6.1 The architecture of a 16th-order hybrid computing system. 90

6.2 Two-by-two array of the 16th-order chips for 64th-order differential equations. 91

6.3 Schematic of one of 32 programmable NMOS bias-current source for biasing

the computing block in one tile (fourth-order system). 93

6.4 Schematic of one of 18 programmable PMOS bias-current source for biasing

the computing block in one tile (fourth-order system). 93

6.5 Illustration of how one tile is divided into multiple slices. 95

6.6 Full-chip layout picture of the 16th-order system. 97

7.1 The die photo of the fourth-order hybrid computing unit. 99

7.2 The die photo of the 16th-order hybrid computing unit. 100

7.3 The testbench of the fourth-order hybrid computing chip. 102

ix

7.4 The testbench of the 16th-order hybrid computing chip. 103

7.5 I–V converter implemented by AD8512. 104

7.6 A diagram illustration of the signal paths set by the programming codes. . . 105

7.7 The global signal paths for calibrating each block and related functional blocks

involved. 107

7.8 The screenshot of oscilloscope measurement results when the nonlinear lookup

table is configured for sine function lookup. 109

7.9 Nonlinear function lookup examples. 110

7.10 Nonlinear function generator’s power dissipation is lookup rate dependent. . 110

7.11 INT time constant mismatches setup. 114

7.12 The measurement results of the setup in Fig. 7.11. 115

7.13 Solutions of the 2nd-oder ODE (7.1) at different temperatures. 118

7.14 The lateral look of the hybrid computing demo board. 119

7.15 The side look of the hybrid computing demo board. 120

7.16 The front look of the hybrid computing demo board. 121

7.17 Programming environment of the demo board. 121

8.1 (a) Differential-drive robot system dynamics. (b) Block diagram for solving

system dynamics in our hybrid computing unit. 123

8.2 A 1-D coupled mass-spring system with nonlinear springs and Coulomb friction.125

8.3 The block diagram solving the nonlinear differential equation (8.1). 126

x

8.4 The solution of x1(t) from our hybrid computer (dots) and the ideal solution

(solid line). 127

8.5 Van der Pol equations in (8.2) mapped to our chip. 129

8.6 The solution of x1(t) from our hybrid computer (dots) and the ideal solution

(solid line) for the Van der Pol equation (8.2). 129

8.7 The phase plane plots from our hybrid computer (red) and the ideal solution

(blue) for the Van der Pol equation (8.2). Time stamps with increment of 10

s are marked. 131

A.1 Divider built with an integrator with a multiplier in the feedback path. FAN

is used to duplicate signals. This is an implicit method for doing division, as

we get the results from an internal node of the diagram. 144

A.2 Divider built with the nonlinear function generation. 145

C.1 The layout of the demoboard with the fourth-order chip. 150

C.2 The schematic of the demoboard with the fourth-order chip. 151

D.1 The layout of the demoboard with the 16th-order chip. 153

D.2 The schematic of the demoboard with the 16th-order chip. 154

E.1 Discretize the space into 16 internal nodes. 156

E.2 The module for building the heat equation shown in (E.3). 156

E.3 The hybrid computer solution (red) and ideal Matlab solution (blue) of the

heat equation in (E.1). 157

xi

List of Tables

3.1 The number of computing blocks used for eight representative differential

equations mapped on our chip. 27

4.1 Transistor sizes of the fanout block. 33

4.2 Transistor sizes of the six-bit calibration DAC. 35

4.3 Transistor sizes of the input current mirror. 45

4.4 Transistor sizes of the current copying OTA. 47

4.5 Transistor sizes of the fully differential OTA used in the initial-condition-

setting stage. 49

4.6 Simulation results for key specifications of integrator block. 50

4.7 Transistor sizes of the multiplier core circuits. 53

4.8 Transistor sizes of the input-scaling mirror. 56

4.9 Transistor sizes of the output-scaling mirror circuits in Fig. 4.19. 59

4.10 Simulation results for key specifications of multiplier block. 59

4.11 The transistor sizes of the analog T-switch. 61

xii

5.1 Transistor sizes of each amplifier stage inside the comparator block. 73

5.2 Transistor sizes of the latch circuit in Fig. 5.5. 73

5.3 Simulation results for key specifications of the CT ADC. 76

5.4 Transistor sizes of the segmented current-steering DAC core circuits in Fig.

5.15. 83

5.5 Transistor sizes of the bias block. 86

5.6 Transistor sizes of the calibration block in Fig. 5.18. 87

5.7 Layout dimensions and areas of each block, plus the area percentage occupied

by the calibration DACs inside each block. 87

6.1 Transistor sizes used in the NMOS mirror array in Fig. 6.3. 94

6.2 Transistor sizes used in the PMOS mirror array in Fig. 6.4. 94

7.1 Analog offsets minimized by calibration. 108

7.2 Solution accuracy improved by calibration. 108

7.3 Fourth-order hybrid computing unit performance. 111

7.4 Comparison to previous work. 113

7.5 Integrator unity-gain frequency measurement results on the uncalibrated 16th-

order chip. 116

7.6 Calibration codes of different representative blocks at different temperatures. 117

8.1 Comparison to solutions on a MSP430 microcontroller for robotics applications.124

xiii

8.2 Comparison to the solution obtained with RK4 method on a MSP430 micro-

controller. 128

8.3 Comparison to the solution obtained with RK4 method on a MSP430 micro-

controller. 130

xiv

Acknowledgments

I would like to thank my advisor, Prof. Yannis Tsividis, for his invaluable help and

support for the past six years at Columbia. Without his guidance and encouragement, this

project and dissertation on hybrid computation would not have been possible. Not only did

I learn circuit techniques, but I also learned how to learn anything. His elegance and life

philosophy will have a lasting influence on me.

I also would like to thank my thesis committee members: Prof. Seok Mingoo, Prof. Simha

Sethumadhavan, Prof. Charles Zukowski and Prof. Kyle Mandli, for their time they spent

reading my thesis and for their comments and suggestions which helped me improve the

thesis.

I would like to thank my family, especially my parents, for their solid supports on all

aspects in my life. Their loves created a comfortable environment for me to focus on my

Ph.D. work. I am very grateful that I have such great parents and family.

Thanks are due to my colleagues who contributed to the hybrid computing project. I

would like to thank my partner, Yipeng Huang, for his solid work on the architecture/software

side in the past five years. We made the best team! I thank Tao Mai, Sharvil Patil, Chi Cao,

and Chien-Tang Hu for their high-quality work on chip design and testing. The success of

xv

such complicated chips would not have been possible without their help. I also thank Doyun

Kim, Josh Kim, Jianxun Zhu, Teng Yang, Yang Xu, Yu Chen, Zhe Cao and all CISL members

for valuable discussions.

Finally, I would like to give my sincere thanks to all my friends for their encouragement

and support.

xvi

Chapter 1

Introduction

1.1 Introduction to analog computers: The history and

the machine

Humankind has been inventing computation devices for millennia. For example, the abacus

was known and used by Babylonians by 2400 BC. In those early days, computation was used

for topics closely related to human or the society’s fundamental needs, such as tax allocation.

Mechanical parts and gears were often used in computing devices in the early days. The

first differential analyzer, invented by V. Bush at MIT in 1927, had gears and shafts for such

basic arithmetic operations as integration and addition. Fig. 1.1 shows a Bush differential

analyzer, consisting of many large and complex mechanical parts. It has six integrators

and several output tables (close to the windows). This mechanical differential analyzer was

developed to solve ordinary differential equations and is considered to be the “ancestor” of

1

Figure 1.1: Bush differential analyzer. Image courtesy of the Computer History Museum.

the electronic analog computer. It models the target differential equations in a mechanical

system, where the configuration of those mechanical parts not only replicates the differential

equations, but also offers insights into the physics described by those equations. However,

computing power was limited, mainly due to slow operation of the mechanical parts.

Harold Stephen Black’s invention of negative feedback electronic amplifiers in 1927 opened

the door for computation using electrical signals. With negative feedback, a series of basic

mathematical operations can be performed by electronic amplifiers, which are much faster

than mechanical devices. This is where the name operational amplifier comes from: Elec-

2

Figure 1.2: An analog computer in 1949 at the Lewis Flight Propulsion Laboratory.

tronic amplifiers were used to perform arithmetic operations in those early days. Voltages

were used to represent numerical values in the equation and could be added, integrated, and

multiplied. Fig. 1.2 shows an analog computer in use in 1949 for aircraft simulations.

Shannon’s 1941 paper [2] is considered to be the first paper discussing the fundamental

principles of mathematical models and the computability of a general-purpose analog com-

puter. Bush’s differential analyzer was used extensively as an example in Shannon’s paper.

Integrators, adders and multipliers were considered the fundamental building block for a

3

general-purpose analog computer. However, the mathematical theory of analog computers

barely evolved after Shannon’s efforts. In the next 30 years, people focused on building bigger

analog computers with more functionality and greater accuracy.

In 1950s and 1960s, analog computers dominated the computing community [3; 4; 5;

6]. They were powerful tools for solving the ordinary and partial differential equations (ODEs

and PDEs) widely used to model physical systems. People used analog computers to simulate

mathematical models before the actual implementations of machines and plants. The best

parameters were found on analog computers, saving considerable time and effort compared

the approach of direct implementation (trial and error). For example, analog computers

played an important role in the Apollo space program, simulating spacecraft dynamics and

guiding control-system design [5].

Starting around 1970, digital computers attracted more attention and competed with

analog computers in scientific computation. This was more than two decades after the in-

vention of the Von Neumann architecture in 1945. Both analog and digital computers were

big machines at that time. However, the ease of programmability, repeatability and trans-

portation of programs made digital computers more and more popular.

In 1980s, analog computers were almost extinct on the market, signaling the end of the

analog-computer industry. All commercial-use computers were digital. Only a few companies

still manufactured small analog computers for education purposes, especially for teaching

control theory in mechanical engineering. Fig. 1.3 shows a fourth-order analog computer

manufactured by Comdyna Inc. It is still in good condition and can solve ODEs with mod-

4

Figure 1.3: Example of an fourth-order analog computer from Comdyna.

erate accuracy (around 10% errors). As shown in Fig. 1.3, the front panel is connected with

wires to set up an second-order ODE.

By the 1990s, only one company, Electronic Associates Inc. (EAI), was still manufacturing

analog computers and components for NASA’s spacecraft simulator. By late 1990s, no records

showed any analog-computer manufacturing activity.

We now demonstrate how a differential equation is solved by an analog computer. Fig.

1.4 illustrates a mass–spring damper system on the left; we would like to investigate the

motion of the mass. This mechanical system is modeled by the ordinary differential equation

shown in the middle. This second-order ODE describes the motion of the mass, with initial

conditions imposed. We want to solve this equation on an analog computer.

The block diagram to the right of the equation in Fig. 1.4 illustrates how the computing

blocks on an analog computer are configured to solve this equation. In this example, we have

used integrators, adders and coefficient-setting blocks. Each integrator’s output represents a

5

Mass

Spring
∫ ∫

-10

-5

0

5

10

20 40 60

Force

x (µA)

t (ms)

-0.2

-0.5

Math equation:

Initial conditions:

0.2 0.5 1x x x=- - +

(0) 9x =
(0) 7x =-

x
xxx

1

Figure 1.4: Example of how analog computers work.

system state, and the input to that integrator represents the derivative of that state. For this

second-order ODE, we use two integrators, whose outputs represent the two state variables

x and ẋ, respectively. Feedbacks are used to close the loop and make the diagram equivalent

to the equations. In Fig. 1.4, the x signal is passed through a −0.2 coefficient block and ẋ

through a −0.5 block. Next, the signal flows are summed together with a constant value at

an adder block, whose output is connected to the integrator’s input. This closes the loop and

equates the left- and right-hand sides of the differential equation in the dashed box. Now

the signal paths of this analog computer are characterized by the same equation describing

the physical system on the left. You can think of the electrical system as an analogy to the

6

physical system. That is, we are using this electrical system to reproduce the behavior of

another physical phenomenon. After we set the initial conditions on the integrators and let

the analog computer run, the transient response of the circuits represents the solution of

the differential equation, shown at the bottom of Fig. 1.4. After proper scaling between the

electrical values and the distance values, and between computer time and physical time, we

arrive at the solution of the original differential equation.

1.2 VLSI analog computers—The first try

Analog computers were mostly abandoned by mid-1970s, long before the dominance of inte-

grated circuits. This means that the old analog computers were only implemented using the

technology of the time: discrete components for computing modules, patch boards for inter-

connections, etc. So analog computers were generally large in size and tedious to program

with wires. Since then, the technical community has embraced digital computers and hardly

considered how modern technology could impact analog computing techniques. Around 2005,

Cowan et al. [7; 1] revisited analog computers in the context of modern VLSI technology and

showed that, with advanced VLSI technology, analog computers can be attractive for low-

power, self-contained computation and to speed digital computation through coprocessing.

7

1.3 The need for post-Moore’s-law computing

In anticipation of the post-Moores-law era of computing, researchers are looking for either

new devices which can replace CMOS transistors, or new methods to harness performance

and efficiency from existing silicon technologies. Analog computing has been touted as one

approach to address these challenges without the need for novel device technologies.

Analog computing has many alluring properties: broadly, analog computing abandons

digital representation of numbers, and also abandons the step-by-step operations typical of

modern computing. Much of research in computer architecture is in the line of breaking

historical abstractions which hold back the performance and efficiency of computers. Among

the remaining abstractions yet to be broken are binary representation and discrete-time

operation. In this regard analog computing may unleash untapped uses for existing CMOS

technology. More details on the differences between analog and digital computers will be

discussed in the next section.

1.4 Fundamental differences between analog comput-

ers and digital computers

The operations of analog computers and digital computers are fundamentally different. First,

they are different in their number systems. Analog computers use electrical signals for com-

putation, either voltage or current. Though accuracy is limited, these signals are continuous

in nature and can be regarded as real numbers. Digital computers, on the other hand, use

8

discrete binary numbers consisting of zeros and ones. More digits are required to achieve

greater accuracy when representing values.

Second, they are different in their basic arithmetic blocks. In analog computers, we have

integrators, multipliers, and adders/subtractors as basic building blocks for math operations.

These operations exist in the physical (electrical) world. For digital computers, though some-

times we can shift bits to implement multiplication and division by powers of two, adders

are the basic arithmetic building blocks for all other operations. All the advanced mathe-

matical operations, such as exponential and logarithmic functions, must be implemented by

successive approximations by addition.

Third, they are different in their algorithms. As the example in Fig. 1.4 shows, analog

computers use diagram-based algorithms to solve equations. Diagrams with different topolo-

gies solve different problems. On the diagrams, all operations are conducted simultaneously.

In contrast, digital computers perform operations in a sequence to complete a task. Data are

manipulated following strict and specific sequences, whether sorting or solving an equation.

Lastly and most importantly, they are different in handling the time variable in solving

ODEs/PDEs. As analog computers use physical phenomena, responses of electrical systems,

to do computation, the time variable is kept intact and continuous when solving ordinary

and partial differential equations. All operations were carried out simultaneously, often with

computation time independent of the problem size, and with no convergence issues as there

is no time-discretization. Digital computers, on the other hand, discretize all the values and

store them in the memory. The time information is treated just as other numbers. On digital

9

computers, time-dependent physical problems are solved in a virtualized and discretized time

domain.

1.5 Limitations of prior art

Cowan’s work in 2005 demonstrated the feasibility of analog computers in VLSI for the first

time. Despite its strengths, however, there are several obvious limitations in that fully analog

work.

First, the types of mathematical problems that could be solved were limited. Linear

differential equations could be implemented on Cowan’s chip with analog integrators, adders,

and coefficient-setting blocks. However, for the nonlinear differential equations, Cowan’s work

[7; 1] only studied multiplication between state variables. Therefore, systems of equations

involving nonlinear functions like sin() and cos() cannot be implemented on Cowan’s chip.

These types of equations are used extensively in robotic-dynamics computation. This lack

of flexibility in nonlinear functions limits the use and application of Cowan’s chip.

Second, most of the analog blocks on Cowan’s chip were not calibrated. The integrator

was the only block with calibration circuits. Other blocks like multipliers and fanouts have no

calibration capabilities. The input and output offsets of these blocks could introduce errors

into the solutions, thus decreasing computing accuracy.

Third, the programming interface of that chip was not standardized. Decoder lines and

data buses of Cowan’s chip were directly exposed to circuitries on PCB. The obvious dis-

advantage is the increasing complexity of board-level conversion, increasing the size of the

10

test board and decreasing the configuration and communication speed between the analog

computer and the digital host.

Fourth, Cowan’s work was limited to big test boards on the test bench in a lab environ-

ment, which still gives people the impression of the immobility of analog computers from

years ago. Furthermore, while Cowan’s work adopted a diagram-based programming style in

the Simulink environment, this style is still quite different from the popular and dominant

line-by-line text-based coding style, generally considered the fastest way for programming.

1.6 Thesis contributions

In this work, we present a new generation of hybrid (mixed analog/digital) computing chips

with full-stack hardware/software codesigns, which greatly solve the issues mentioned earlier.

We extend the range of differential equations that can be solved on analog computers by in-

troducing a new arbitrary nonlinear function generator. This generator implements arbitrary

nonlinear functions in a table-lookup manner with a programmable, clockless, continuous-

time (CT) 8-bit hybrid architecture (ADC + SRAM + DAC). With this new architecture,

we thus extend analog computing techniques to a new paradigm: continuous-time hybrid

computation, where both analog and digital circuits operate in continuous time. In this

new hybrid computing paradigm, the time intervals in the digital signals contain important

information, unlike with traditional synchronous or asynchronous digital signals.

At the same time, we implement extensive digitally assisted calibration circuits in all

analog and mixed-signal blocks, correcting analog imperfections and improving solution ac-

11

curacy. We also use a standard SPI interface for our hybrid computing chips to communicate

with the digital host for configuration and data acquisition. With the support of our cus-

tomized API library, we use C++ style codes to program the blocks on our chips, which is

a great step toward a user-friendly programming interface.

Additionally, we propose two new FOMs for comparing energy efficiency, one for compar-

isons among analog computers and one for comparisons between analog and digital comput-

ers. We have also built the first mobile hybrid computer board powered solely by a laptop.

This is a ground-breaking development as it greatly changes people’s impressions of old

analog computers’ large size and immobility.

Finally, we successfully demonstrate the scalability of our chips and the feasibility of

solving nonlinear equations using two interconnected chips.

12

Chapter 2

Two FOMs for Computation

2.1 FOM for energy efficiency

Back in the 1960s, the number of computing blocks was often used to compare the per-

formance of analog/hybrid computers. For example, the quantity of amplifiers, multipliers,

summers, and coefficient attenuators is an important indicator for the “capability” of com-

puters. In addition, the electrical specification of each building block is critical to the overall

solution accuracy, as discussed in classical textbooks [3; 6; 8]. Analog computer manufac-

turers needed to ensure the fabricated components were as good as possible in all electrical

specifications for the users’ “general purpose” needs.

In a 1970 research report by Benham [9], 12 scientific and engineering problems were

investigated to compare the performance of hybrid computers with that of digital com-

puters. The researchers looked at accuracy, solution time, machine cost, human labor, and

13

setup convenience for the comparison. But little effort has been made to analyze the power

consumption of analog/hybrid computers. One reason could be that due to technology limi-

tations, embedded-system applications were not a possibility before the 1970s, so researchers

did not analyze power consumption, as functionality was still the main concern.

However, in cyber–physical system applications today, the biggest concern is power and

energy dissipation. Less energy consumed by computing devices allows more information to

be processed. So, energy-efficiency improvement is now an active and popular research topic.

Work by Cowan [7; 1] was also limited to just the total power dissipation of the whole chip;

there was no information on individual blocks’ power consumption. So, to compare energy-

efficiency between different analog computers, and between analog and digital computers,

we now propose two new FOMs.

2.2 FOMcomputer for evaluating analog/hybrid computers

The main purpose of analog/hybrid computers is to solve differential equations, especially

ODEs. The computer solution time, Tsolution, is highly problem-dependent and computer-

dependent. It can be defined as the time needed for a certain goal to be reached, e.g. a

response dies out within a certain margin, or the desired number of cycles in a response is

reached. Within this solution time, we want to accomplish the goal with a solution com-

putational energy, Esolution, as low as possible. Even for the same equation, different analog

computers give different solution times. So we need to find out the connection between Esolution

and Tsolution.

14

The analog computer is a kind of machine that uses diagrams of blocks to do computation.

Usually different equations need different numbers of computing blocks in the diagram. The

basic formula to compute energy consumption is

Esolution = Tsolution ∗ Pequation (2.1)

where Pequation is the power consumption of all the blocks used to map the differential equation.

Pequation scales approximately with the order of the equation to be solved, n, i.e. the more state

variables in the equation, the more integrators and other corresponding blocks are needed

to construct the computing diagram. We can express this relation as

Pequation = nP0 (2.2)

where P0 is the typical power dissipation per order of the differential equation.

In a physical problem, let the time interval of interest be Tphysical. We want to achieve a

solution time Tsolution which should be as small as possible, to avoid wasting energy due to

quiescent and leakage currents involved in P0. We thus need to take full advantage of the

analog computer’s speed capability. We could scale the time with the following formula

Tsolution =
Tphysical

α
(2.3)

where the time scaling factor α should be as large as possible. This time scaling technique

is accomplished by choosing appropriate parameter values in the circuits, usually the overall

gain factor of the integrator block [10; 3; 6]. The upper limit on α is bounded by the maximum

computing speed, represented by the maximum frequency the computer can handle with

15

acceptable error, fmax,computer. If we want to simulate a physical problem where we expect the

highest frequency of interest to be fmax,physical, we have the following relationship:

α =
fmax,computer

fmax,physical

(2.4)

Plugging (2.2), (2.3) and (2.4) into (2.1), the total energy consumption for a given problem

solution will thus be

Esolution = TsolutionPequation = Tphysical

fmax,physical

fmax,computer

nP0 (2.5)

We could reformulate (2.5) and introduce a new quantity as the following:

Esolution = nTphysicalfmax,physicalFOMcomputer (2.6)

where the quantity

FOMcomputer =
P0

fmax,computer

(2.7)

is a problem-independent FOM, which can be interpreted as the typical energy dissipation

of the computer, per problem order, over one period time. The lower the FOM, the better

energy-efficiency of a computer.

Basic design tradeoffs [11] show that we can speed up the analog blocks of a computer

by increasing P0, resulting in a proportional increase of fmax,computer. However, this method

leaves FOMcomputer substantially unaffected(see (2.7)), suggesting that this figure of merit

is characteristic of a given technology and a specific architecture. (2.6) shows that power

scaling does not affect Esolution either. So, in order to achieve better FOMcomputer, a lot of

effort is required (analog design expertise) to lower the power dissipation of analog blocks

16

while keeping fmax,computer the same. The above equations and observations will help guide our

design.

2.3 FOMtask for evaluating computing tasks

FOMcomputer described in Section 2.2 is dedicated to evaluating analog and hybrid comput-

ers. To evaluate the performance of different computing architectures for solving the same

equation, we must develop a second figure of merit, FOMtask.

In general, for a given task, we want both Esolution and Tsolution to be small. This goal is

captured by the following FOM:

FOMtask = EsolutionTsolution. (2.8)

Though this FOM is highly problem dependent, it is an elegant measure that allows us to

evaluate different approaches for solving the same equation, with the end of computation

defined in the same manner and with the same solution accuracy.

For analog computers, increasing P0 will result in a proportional increase of fmax,computer

and leave FOMcomputer unchanged (see (2.7)) and thus Esolution unchanged (see (2.6)). However,

this speed-up decreases Tsolution in proportion, decreasing FOMtask in (2.8).

17

Chapter 3

An Overview of the Complete CT

Hybrid Computer System

3.1 Overview of the hybrid computer system presented

in this work

Our hybrid computer user environment is illustrated in Fig. 3.1. Our hybrid computer chip

communicates with our programming environment through the Arduino Due microcontroller

board (Arduino Due is one of the Arduino products, which is based on a 32-bit ARM micro-

controller unit; Due means Two in Italian). We chose an Arduino board for its popularity;

more powerful microcontroller boards, even FGPA development boards, could be used here.

Normally, we write codes in the Arduino Integrated Development Environment (IDE) on

the laptop and download the codes to the Arduino Due through the USB port. Then the

18

Laptop/

Desktop

Hybrid

computing chip
Arduino Due

Figure 3.1: Hybrid computer environment.

microcontroller board programs our hybrid computing chip through a standard Serial Periph-

eral Interface (SPI) with four pins: SS (slave select), CLK (clock signal), MISO (master-in,

slave-out), and MOSI (master-out, slave-in). The control board not only provides configura-

tions for the unit, but also performs calibration, controls computation, and reads out analog

and digital output values. By taking in external instructions, our on-chip SPI controller can

switch our chip between different operating modes, such as signal-path configuration, block

parameter setting, computation, etc. A typical workflow of the hybrid computing system for

solving differential equations is shown in Fig. 3.2.

Fig. 3.3 shows our hybrid computer’s architecture layers. In Arduino’s IDE, we use C++

codes to make connections and set parameters for blocks, building the whole diagram to

represent the target differential equation. Object-oriented methodology is used to define the

behaviors of each type of functional block in our Hybrid Computer API Library [12]. By

calling the functions from this software library, we calibrate our hybrid computer, configure

signal paths, set computation times and read exception bits.

Upon downloading, each of the above functions is translated into a series of instruction

19

Target differential
equations/math operations

Automatic calibration

Start computation by
releasing integrators

After predetermined time,
measure signal values

Determine if any computing
block has saturation issues

Rescale
signal ranges

Solution

Downloading via SPI

R
e-

co
m

pi
li

ng

YesNo

Set interconnections, block
parameters and initial

conditions

Figure 3.2: Hybrid computing unit workflow.

words with the support of the laptop’s native C++ compiler (e.g. gcc on a MacBook). For

example, in the 18-bit instruction words used on our first chip, the first six bits indicate the

target block and the next four bits indicate the 8-bit register’s specific address in that block.

The last eight bits carry the information to be configured. Then the instruction machine

codes are downloaded into our hybrid computing unit through the SPI interface.

20

C++ style codes

in Arduino IDE

Hybrid Computer

API Library

Machine codes

(18-bit Instruction Word)

Hybrid Computer

Lower-level

Compiler

SPI interface

 Computing block index (6 bits)

+ Block-level registers index (4 bits)

+ Register content (8 bits)

Figure 3.3: Hybrid computing unit architecture layers.

Adder/Subtractor

block

Multiplier/VGA

block

Integrator

block
Nonlinear

function block

 F()

Fanout

block

Figure 3.4: Basic mathematical operation blocks.

The basic building blocks used on our chip are shown in Fig. 3.4. As we chose differential

currents for signal representation, fanout blocks are used to make copies of the current signals

that need to be distributed to several destinations. Addition and subtraction are done by

just sending currents to a common node, so a separate adder/subtractor block is not needed

on our chip. (Adder and subtractor block are shown in the dashed-box just for illustration

purpose). The multiplier block can be configured as a variable-gain amplifier (VGA) for

coefficient-setting, by applying a controlled current (generated by a DAC) to one input of

the multiplier. In total, we could implement addition, subtraction, integration, multiplication

21

Physical variable
-10 cm +10 cm

0

-2 µA +2 µA
0

Computer variable

Physical time

Computer time

(Solution time)

0 1 s

0 1 µs

Figure 3.5: Amplitude scaling and time scaling examples.

and nonlinear function generation operations on our hybrid computing chip.

When used to solve ODEs / PDEs, these various blocks are connected in such a way that

the resulting system is characterized by the same equations as that describing the physical

system under investigation (see Chapter 1); more examples will be seen in Chapter 8. Each

integrator’s output represents a system state, and the input to that integrator represents the

derivative of that state. Following the imposition of initial conditions and the release of the

integrators, the transient response of the circuits represents the solution of the equations.

Amplitude scaling and time scaling techniques [3; 4; 5] are necessary on our hybrid com-

puter chip, so that the electrical variables and time are within desired ranges. An illustration

example is given in Fig. 3.5. After the solution, both amplitude and time are unscaled to the

original problem variables.

22

3.2 Overall chip architecture and floor plan

4
 A

N
A

L
O

G

 O
U

T
P

U
T

S

8 FANOUT BLOCKS 4 INTEGRATORS 8 MULTIPLIER/VGAs

8 8 8 8

8 8 8 8
SPI CONTROLLER

SRAM SRAM

C
T

A
D

C

C
T

D
A

C

8
8

DIGITAL

OUTPUT

D
IG

IT
A

L

IN
P

U
T

4
SPI

4 ANALOG

INPUTS

C
T

A
D

C

C
T

D
A

C

Figure 3.6: The system architecture of the scalable hybrid computing unit.

The architecture of our first test chip is shown in Fig. 3.6. This test chip was designed to

include only a sufficient number of blocks to thoroughly test their functions. The chip can

solve nonlinear ODEs up to fourth order and can be scaled up to higher orders, described

23

in Chapter 6. As shown, we adopt the full-crossbar topology from Cowan’s work [7; 1] for

interconnections between analog blocks. The scalability of our system is similar to FPGAs,

offering dense local connectivity and sparse global connectivity.

In order to keep the interference between analog and digital blocks low, the system is

organized from top to bottom as rows of analog blocks, mixed-signal blocks and digital

blocks(Fig. 3.6). Each individual block is placed in separate deep n-wells to isolate substrate

noise. Each block can be connected to any other block through crossbar networks.

Each analog block’s input is at the bottom of the block; each input port is connected to

a separate global horizontal wire. Each analog block’s output is at right side of the block,

connected to a separate global vertical wire. At the intersections, transmission gates control

the connections between inputs and outputs(Fig. 3.6). Transmission gates’ on-off states are

stored in local SRAM cells.

The mixed signal blocks on our hybrid computer chip consist of two ADCs and two

DACs, both operating in continuous-time (CT) mode. ADC’s analog inputs and DAC’s

analog outputs are connected to the crossbar network above them, shown in Fig. 3.6. The

SPI controller and two SRAMs at the bottom are the digital blocks on our chip. The SRAM

block serves as a nonlinear function lookup table, which provides 256 lookup data points with

eight-bit accuracy. See Chapter 5 for more SRAM details. The digital controller provides

an interface to receive instruction commands from the digital host (Arduino Due), through

which we can configure all chip parameters. At the same time, the SPI controller also provides

configurable data bus for ADCs, DACs and SRAMs interconnections.

24

Idle

Parameter

Configuration

Power Up

Exception/ADC

Data Fetching

Equation

Solving

Figure 3.7: The finite-state machine of the SPI controller.

A simplified finite-state machine of the SPI controller is shown in Fig. 3.7. Parameter

configuration state includes signal paths configurations, block parameter setting, offset cali-

brations, etc. In the equation solving state, after setting the initial conditions, the controller

releases all integrators into normal integration mode and the whole system starts to com-

pute the equation. In the meantime, the SPI controller is counting the time elapsed, with its

internal counter clocked by the external clock signal. This will put all integrators into hold

mode after the desired computing period, thus putting the SPI controller into Idle mode

again.

Different methods can be used to fetch the solution data from our chip. Currents corre-

sponding to state variables in ODEs can be routed off-chip through the analog input/output

ports, or they can be digitized by on-chip CT ADCs and then sent back to the control

board through the SPI interface or the parallel eight-bit digital outputs, illustrated in the

bottom-right corner of Fig. 3.6.

It is worth mentioning that all non-analog signals and circuits involved in solving differen-

25

tial equation are continuous-time (CT) digital signals and circuits, previously demonstrated

in signal processing applications [13]. This type of digital circuits involve binary signals that

are functions of continuous time, whose time details are an integral part of signal repre-

sentation. CT digital signals carry more information than conventional synchronous and

asynchronous digital signals. More importantly, CT digital signals avoid aliasing [13], which

introduces considerable error into certain types of computation. To our knowledge, our hy-

brid computing unit demonstrates for the first time the use of CT digital signals in hybrid

computation.

The number of each type of blocks on chip is decided based on the per-order power

dissipation P0 (Chapter 2), expressed as P0 = Pintegrator + kPmultiplier/VGA + lPfanout +mPnonlinear,

where k, l and m are the numbers of multiplier/VGA, fanout, and nonlinear function blocks

used, depending on equation details. The adder/subtractor blocks, nodes at which wires are

joined together, are not included in P0, as they do not dissipate any power. For the equations

shown in Table 3.1, we obtain the average values of k = 2.3, l = 2.0 and m = 0.4, after a

simple linear regression of the blocks needed for each differential equation. We round these

values to the nearest integers as k0 = 2.0, l0 = 2.0, and set m0 = 0.5, i.e. the ratio of block

quantity is Integrator : Multiplier/VGA : Fanout : Nonlinear block = 1 : 2 : 2 : 0.5. During

circuit design, we gave a lot of attention to minimizing the power dissipation for the chosen

bandwidth (20 kHz), to keep P0 low and improve FOMcomputer.

26

ODE’s physical
background

No. Order

Mass-spring damper1 2
Large angle motion of

pendulum
2 2

Mass-spring dampers
with Coulomb friction

3 2

Integrator

2

2

2

Multiplier/
VGA

2

2

2

Fanout

2

2

2

Nonlinear
function

0

1

1

Van der Pol oscillator4 2
Two-wheel differential-

drive robot
5 3

Two coupled nonlinear
oscillators

6 4

2

3

4

2

2

6

3

2

6

0

2

2

Inverted pendulum7 4

1-D heat equation8 4

4

4

8

4

7

8

2

0

Table 3.1: The number of computing blocks used for eight representative differential equations

mapped on our chip.

3.3 Design choices

For a large VLSI system, there are several system-level decisions and choices to be made

before implementing individual building blocks.

3.3.1 Voltage mode versus current mode

When using electrical signals for computation, we have two choices, current signals and

voltage signals, to encode value information of the equation variables. We need to choose the

one that best fits our need.

Old analog computers built with vacuum tubes have voltage signals to represent equa-

tion variables, and could have a voltage swing from −100 V to +100 V. However, in the

65 nm CMOS technology we selected for our hybrid computing system, the normal supply

27

voltage is 1.2 V. The input/output voltage swing would be less than 1.2 V due to headroom

requirements.

Current signaling is the other choice for encoding the value information. For our purposes,

current-mode signaling is better and preferred for four reasons: 1. For a CMOS device, when

we want the drain current signal to vary linearly, VGS only needs to vary approximately by

the square root (in strong inversion) or even logarithmically (in weak inversion). Thus, the

voltage headroom requirement is looser when we choose current-mode signals for computing

and interfacing between blocks, which is very desirable for our 65 nm CMOS technology. Also,

as will be seen, the resulting noise is within desired limits. 2. Current-mode signals facilitate

the addition and subtraction implementations by merging currents with the proper polarity,

eliminating the need to design adder/subtractor blocks. 3. Current-mode multiplication can

be easily implemented with well-known translinear circuits, saving considerable design effort.

4. Current-mode signals are a better choice for signal distribution across the whole chip in

our case because the voltage swing on the long wires is low, mitigating the effects of potential

capacitive interference on some critical paths, such as the bias-voltage and bias-current wires

running across the chip subject to capacitive coupling. Considering all the above advantages,

differential currents make the most sense for all signal representation and distribution.

DC values are often used as static forcing functions and boundary conditions when solving

ODEs and PDEs. In addition, when doing algebraic calculations, we usually manipulate

numerical values, which are also fixed DC values. We therefore used DC-coupled interfaces

for all analog blocks. To minimize quiescent currents of analog blocks and maintain high

28

linearity at the same time, we apply Class-AB designs to as many circuits as possible. For

example, all analog blocks’ input and output stages follow the Class-AB operating principle.

Besides, Class-AB design could reduce input offset current and improve SNR when the input

swing is small [14]. In conclusion, we use differential currents for signal representation, and

DC-coupled, Class-AB interfaces for all analog blocks.

3.3.2 Bandwidth and phase shift

We introduced FOMcomputer in Chapter 2, showing that higher computing bandwidth can be

achieved by increasing the power dissipation, but this leaves FOMcomputer unchanged. Since we

target applications in low-power cyber–physical systems, we decided to limit our bandwidth

to 20 kHz to save power: Analog signals involved in computation are defined from DC to

20 kHz. The analog computing bandwidth can definitely be increased, if we design all blocks

accordingly.

Another important reason to use 20 kHz is that we would like to reduce to negligible levels

the phase shifts caused by the parasitic capacitances between blocks’ interfaces. Delays of

computing blocks should be very small compared to the solution time scale of our target

differential equations. In other words, when solving differential equations, phase shifts can

be ignored in the feedback loops of the computing block diagrams.

29

3.3.3 Resolution choice

We target 8-bit resolution for our computing unit because of the power constraints and

the approximate computing applications we target. 8-bit resolution is a common choice

of moderate accuracy. All specifications for each block—e.g., input/output offsets (after

calibration), nonlinearity, total harmonic distortion (THD), and signal to noise ratio (SNR)—

target 8-bit accuracy.

The trade-offs between accuracy and area/power of analog circuits are highly functionality-

dependent, and we only discuss them qualitatively here. Let us assume that the analog circuit

errors are dominated by the offset/mismatch and the flicker noise, and that we would like to

reduce them. Both mismatch and flicker noise are inversely proportional to area, so analog

accuracy could be improved by increasing area. However, this will also increase parasitic ca-

pacitors, which may require more power consumption to maintain the bandwidth [11]. Thus,

area and power are sacrificed for improving analog circuit resolution.

30

Chapter 4

Design of Analog and Connectivity

Circuits for the Hybrid Computer

4.1 Introduction

In this chapter, we describe the design details of the fanout, integrator, and multiplier/VGA

blocks in Fig. 3.6. Circuits for testing and global crossbars are discussed in detail.

4.2 Fanout architecture and circuit design

Fig. 4.1 presents the schematic of the fanout block. It is a pseudo-differential architecture,

consisting of two current-mirror branches with each taking one side of the differential inputs.

On each side, a current mirror is implemented with the class-AB operating principle, gen-

erating three identical outputs. We decided not to include gain-calibration circuits for the

31

Ical1-, Ical2-, Ical3- Ical3+, Ical2+, Ical1+

VB

VC

IIN-

IOUT1+

VA

VD

IOUT2+

IOUT3+
IIN+

IOUT1-

IOUT2-

IOUT3-

AVDD
Mirror ratio k = 1:1 for both branches

Offset calibration block
(Three 6-bit DACs)

6 6 6

M1 M2

M3 M4

M13, M14, M15

M5
M6

M7

M8

M9
M10

M11 M12

M16, M17, M18

M19, M20, M21 M22, M23, M24

Figure 4.1: Schematic of the fanout block.

mirror devices to save area. Otherwise, there would be a total of 12 devices to be calibrated,

M13–M24, which would greatly increase the design complexity and area. Thus, matching be-

tween the mirror devices is critical. The mirror devices need to be as large as possible, to

achieve as close to 1 : 1 ratio as possible. At the same time, if the mirror devices were too

large, they would generate excessive phase shifts. When solving differential equations, we

need to keep the phase shift of each block as small as possible to minimize solution errors.

We choose the size of 1 µm×3 µm with multiplicity of three for the mirror devices. The sizes

of all the transistors used in Fig. 4.1 are shown in Table 4.1.

Simulations show that the matching errors of the mirror devices are within 0.4% for

32

M1

1/3

Transistors

W/L (μm/μm)

3Multiplicity

M2

1/3

3

M3

3/0.5

2

M4

3/0.5

2

M5

4/0.2

3

M6

4/0.2

3

M7

4/0.2

3

M8

4/0.2

3

M9

6/0.5

2

M10

3/3

2

LowVT type

M11

1/3

Transistors

W/L (μm/μm)

3Multiplicity

M12

1/3

3

M13

1/3

3

M14

1/3

3

M15

1/3

3

M16

1/3

3

M17

1/3

3

M18

1/3

3

M19

1/3

3

M20

1/3

3

LowVT type

M21

1/3

Transistors

W/L (μm/μm)

3Multiplicity

M22

1/3

3

N/A

N/A

N/A

LowVT type N/A

Table 4.1: Transistor sizes of the fanout block.

two-sigma Monte Carlo analysis, the phase shift at 20 kHz is 0.11 degrees, and the THD is

−77.5 dB for the full scale (2µA peak, differential).

The DC offsets of the outputs are calibrated to be within one half LSB current of each

other (nominally, 1 LSB current = 7.8125 nA) by injecting differential currents into the

drains of the NMOS mirror devices, as shown in Fig. 4.1. The calibration block consists of

three six-bit unary current-steering DACs, whose schematic is shown in Fig. 4.2. Sixty-four

identical PMOS transistors (including one dummy device, M5 and M6) divide the full-scale

current, IFS, equally. The 6-bit binary inputs are decoded into 63-bit thermometer codes

EN1 through EN63 (and their complements EN1 through EN63). As the 6-bit inputs change

from 000 000 to 111 111, IOUT changes from 63
64
IFS to 0, and IOUT− changes from 1

64
IFS to

IFS correspondingly. The NMOS current sources beneath the current-steering DAC shift its

outputs IOUT+ and IOUT− by 0.5IFS. Therefore, as ICAL+ changes from +31
64
IFS to −0.5IFS,

33

M0 VBIAS1

EN1 EN63
 EN1 EN63

VBIAS3

VBIAS4

0.5IFS 0.5IFS

ICAL+ ICAL-

(+31/64 IFS ~ -0.5 IFS) (-31/64 IFS ~ +0.5 IFS)

IOUT-IOUT+(63/64 IFS ~ 0) (1/64 IFS ~ IFS)

6-bit unary current-steering DAC

DUMMY

M1 M2

M3 M4

M5 M6 M7 M8 M130 M131

IFS

Figure 4.2: Schematic of the fanout block calibration DAC.

ICAL− changes from −31
64
IFS to +0.5IFS correspondingly. After this conversion, the calibration

DAC injects differential push–pull currents into the outputs (see Fig. 4.1) to cancel offsets.

This 6-bit calibration DAC is an important building block on our chip. It will be used

many times in other analog blocks and the CT ADC block for calibration. The transistor

sizes used for this calibration DAC are shown in Table 4.2.

34

M0

0.73/3

Transistors

W/L (μm/μm)

1Multiplicity

M1

1/8

1

M2

1/8

1

M3

3/0.06

1

M4

3/0.06

1

NormalVT type Low

M5 – M131

0.15/0.06

1

Normal

Table 4.2: Transistor sizes of the six-bit calibration DAC.

4.3 Integrator design

The analog integrator is the most important building block in any analog or hybrid computer

system. The analog integrator introduces the “dynamics” into the system. The integrator’s

output holds the state variable, and its input represents the derivative of that state variable.

Compared to other building blocks, analog integrators provide temporary memory. That is,

all past information is integrated (recorded) and reflected in the integrator’s present output

value.

4.3.1 Error analysis of integrator finite DC gain and limited band-

width on ODE solutions

It is important to analyze how the integrator introduces errors into differential-equation

solutions. Most classical analog-computer textbooks provide only approximate and limited

error analysis. In [6], for example, while low-frequency errors introduced by the integrator’s

finite DC gain were analyzed for the solving of linear differential equations, high-frequency

errors introduced by limited bandwidth were not mentioned. Other papers give error analyses

of the integrator as a standalone block, but not in the context of solving differential equations.

35

For example, [15] provides a detailed analysis of how the integrator’s offset, finite DC gain

and limited bandwidth introduce temporal errors (i.e., errors in the time domain), and shows

how the integrator’s output will give smaller amplitude and show a time lag due to the finite

bandwidth and DC gain when integrating a constant signal.

Our analysis focuses on analytic methods and formulas to calculate ODE solution errors

caused by the finite DC gain and limited bandwidth of the integrator used in our hybrid

computer. We will ignore the integrator’s input offsets because they can be modeled as

“forcing functions” in the equations. We will introduce our analysis by means of a specific

example.

Suppose we would like to solve

d2x

dt2
= −0.1

dx

dt
− x(t) (4.1)

with initial conditions: x(0) = 1 and x′(0) = 0. On analog computers, we usually solve ODEs

with time-scaling techniques using integrators designed with unity-gain frequency of ωc. The

ideal transfer function of an integrator (the Laplace transform of its impulse response) with

unity-gain frequency of ωc can be expressed as

Hideal(s) =
ωc
s
, (4.2)

where s is the complex frequency variable.

The overall gain value, ωc, of the integrator in (4.2) is often chosen as the scaling factor

for analog computers [3; 6; 8]. With the above integrators (with unity-gain frequency ωc),

we could solve the original ODE using the analog computing diagram in Fig. 4.3.

36

ωc
s

x(t)x'(t)

-0.1

-1

x''(t)

ωc
s

ωc(ωc)²

Figure 4.3: An analog computing diagram using ideal integrators with unity-gain frequency

ωc to solve the ODE in (4.1).

Now, based on the diagram in Fig. 4.3, the new differential equation becomes

1

ω2
c

d2x

dt2
=
−0.1

ωc

dx

dt
− x(t). (4.3)

The characteristic equation of (4.3) is s2 + 0.1ωcs + ω2
c = 0. In our analysis, we choose

ωc = 2π · 20× 103 rad/s for ωc. Solving (4.3), we get two eigenvalues:

s1 = −0.0628× 105 + 1.2551× 105i, (4.4)

s2 = −0.0628× 105 − 1.2551× 105i. (4.5)

We then construct the general solution of (4.3), which is the linear combination of the

corresponding solutions:

x(t) = c1e
−0.0628×105t cos(1.2551× 105t) + c2e

−0.0628×105t sin(1.2551× 105t). (4.6)

Using the initial conditions, x(0) = 1 and x′(0) = 0, we can solve for c1 and c2 to get the

final solution:

x(t) = e−0.0628×10
5t cos(1.2551× 105t) + 0.05e−0.0628×10

5t sin(1.2551× 105t). (4.7)

37

20log|H(ω)|

ω (log scale)ωc

ωx

20log(A0)

0

Figure 4.4: The transfer function of an integrator with finite DC gain A0, unity-gain frequency

ωc and high-frequency pole ωx.

However, the analog integrator used in our hybrid computer, designed with unity-gain

frequency ωc, has a finite DC gain (A0) and a high-frequency pole ωx due to nonidealities.

Their values are ωx = 2π · 3.2× 106 rad/s and A0 = 6000.

Now, the integrator transfer function can be modeled as

Ĥ(s) =
A0(

1 + s
ωc/A0

)(
1 + s

ωx

) . (4.8)

The corresponding Bode plot of (4.8) is shown in Fig. 4.4. We can rewrite (4.8) into the

following form, which is similar to the transfer function (4.2) of an ideal integrator with

unity-gain frequency ωc:

Ĥ(s) =
ωc(

s+ ωc

A0

)(
s
ωx

+ 1
) =

ωc
1
ωx
s2 +

(
1 + ωc

A0ωx

)
s+ ωc

A0

=
ωc
ŝ
, (4.9)

where

ŝ =
1

ωx
s2 +

(
1 +

ωc
A0ωx

)
s+

ωc
A0

. (4.10)

38

x(t)

-0.1

-1

ωc
s

ωc
s

Figure 4.5: The diagram using nonideal integrators with unity-gain frequency ωc.

We use (4.9) as the transfer function of a “new” integrator. When we use this new integrator

for solving the second-order ODE in (4.1), we have the diagram in Fig. 4.5.

We use ŝ as we would use an ideal s-domain operator. The characteristic equation of

Fig. 4.5, found by setting loop gain to 1, is ŝ2 + 0.1ωcŝ + ω2
c = 0. Solving this, we get two

eigenvalues for the second-order ODE:

ŝ1 = −0.0628× 105 + 1.2551× 105i, (4.11)

ŝ2 = −0.0628× 105 − 1.2551× 105i. (4.12)

As already shown in (4.10), ŝ is a second-order polynomial of the “true” s operator. To

express the general solution of the ODE with independent variable t, we need to have the

eigenvalues in the “true” s domain. So we plug the values in (4.11) and (4.12) back into the

ŝ expression (4.10) and solve for the equation’s “true” eigenvalues. Each ŝ value would give

39

two roots in the s domain, so we have four roots in total.

s3 = −201.01× 105 − 1.2558× 105i, (4.13)

s4 = −201.01× 105 + 1.2558× 105i, (4.14)

s5 = −0.0552× 105 + 1.2558× 105i, (4.15)

s6 = −0.0552× 105 − 1.2558× 105i (4.16)

Using above four eigenvalues, we then construct the general solution with independent

variable t:

x̂(t) = ĉ1e
−201.01×105t cos(1.2558× 105t) + ĉ2e

−201.01×105t sin(1.2558× 105t)

+ ĉ3e
−0.0552×105t cos(1.2558× 105t) + ĉ4e

−0.0552×105t sin(1.2558× 105t). (4.17)

To solve for the four coefficients ĉ1, ĉ2, ĉ3, and ĉ4, we need four initial conditions. However,

we have only two available, x(0) = 1 and x′(0) = 0, and there are no other ways to obtain

another two new initial conditions. Thus, it is infeasible to solve for ĉ1, ĉ2, ĉ3, and ĉ4 in

(4.17).

Instead, we could implement nonideal integrator models with the same transfer function

(4.9) in Simulink, build the diagram shown in Fig. 4.5 and set the two nonideal integrators’

output values with the two initial conditions we have. That is, we set the integrator output

that represents x̂ to 1 and the other integrator output to 0 (see Fig. 4.5).

Before we show the simulation results, we could take a look at the four eigenvalues in

(4.13)–(4.16), and compare them with the original two eigenvalues (4.4) and (4.5) from the

equation diagram implemented by ideal integrators. Due to integrator nonidealities, we now

40

time (s) #10-4

0 0.5 1 1.5 2 2.5 3

A
m

pl
itu

de
 (

di
m

en
si

on
le

ss
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Solution with ideal integrators
Solution with non-ideal integrators

Figure 4.6: Solutions of (4.3) with nonideal integrators (red) and with ideal integrators (blue)

from Simulink.

have two dominant poles s5 and s6 located very close to the original dominant poles s1 and

s2; two other nondominant poles s3 and s4 are located far away to the left of the dominant

poles. Ignoring the effects of nondominant poles and comparing the dominant poles s5 and

s6 with the original poles s1 and s2, we would expect the equation solution using nonideal

integrators to have a more slowly decaying envelope and a very slight frequency increase.

Fig. 4.6 shows the equation solution with nonideal integrators (red) from Simulink to-

gether with solution using ideal integrators (blue). As expected, the red curve decays more

41

slowly and the oscillation frequency difference is unobservable. The solution RMS error in-

troduced by nonideal integrators is 1.34% relative to full scale.

4.3.2 Integrator architecture and circuit design details

Cowan’s work [1] used a log-domain integrator architecture. That log-domain integrator

architecture was not adopted here because its DC gain depends on how well two integrating

currents cancel each other and integration would be lossy if the matching is bad. Large devices

can not be used either due to bandwidth requirement. In addition, device mismatches inside

the log-domain integrator causes the low-frequency pole to be in the right-half plane, causing

stability issues when solving ODEs.

The integrator used in our hybrid computing unit is much less sensitive to device matching

and its architecture is shown in Fig. 4.7 [16].The main signal paths are highlighted in bold.

Starting from the left, the input differential current is mirrored by the class-AB current

mirrors at the input stage, and then driven onto the integration capacitor in the second

stage. The voltage across the capacitor, an integral of the input current, is then converted to

a differential output current (IOUT+ − IOUT−) by the output transconductor block, allowing

interfacing with other current-mode analog blocks. The common mode feedback block in the

integration stage maintains the capacitor’s common-mode voltage. The initial condition on

the capacitor is set by an eight-bit DAC, as shown in the initial condition setting block. The

eight-bit DAC used here is the same current-steering CT DAC block discussed later in this

chapter.

42

8

DAC
Digital

code

Input current mirror block

Output

transconductor block

C1

Initial condition setting block

Common mode

feedback block

IC+

IC-

IIN-

IIN+

IDAC+

IDAC-

R2

VC+

VC-
VREF

VCM

IOUT-

IOUT+

IF+

IF-

R1

R1

OTA-1

VF+

VF-ICM

ICM

CMFB

OTA

R2

9R0

R0

R0 = 19.6 kΩ

OTA-2

OTA-3

Figure 4.7: Integrator architecture.

A simplified schematic for the input current mirror is shown in Fig. 4.8. We chose a Class-

AB topology to keep the quiescent current low and save power. The mirroring ratio k1, can

be configured as 1 or 0.1 by adjusting the width of the mirror devices by closing or opening

switches. The states of the switches are stored by the local registers. Gain-boosting amplifiers

are added to the cascade devices [17] to increase the low-frequency output impedance of the

current mirror, reducing loss during the integration operation. These boosting amplifiers are

single-stage, one-transistor amplifiers (Fig. 4.9). The sizes of transistors used in Fig. 4.8 are

shown in Table 4.3.

A six-bit calibration current DAC is used to calibrate the output offsets of the input

current mirrors. This calibration DAC is the same one used inside the fanout block (see Fig.

4.2). One calibration current (ICAL+) is injected into the drain of M2 inside one input current

43

Gm
boosting

- -

- -

AVDD

IIN+ IC-

VBIAS_A

VBIAS_B

1×

Mirror ratio k1 = 1:1 or 10:1

9×

1× 9×

1×

1×
M1 M2

M4M3

M5

M6

M7 M8

M9
M10

Ical+

Figure 4.8: Simplified schematic of the input current mirror.

mirror, as shown in Fig. 4.8; the other calibration current (ICAL−) is injected into the other

current mirror in Fig. 4.7.

The output transconductor block of the integrator have two OTAs (OTA-1 and OTA-2

in Fig. 4.7), which constitute the pseudodifferential output currents. Our design is based on

the work in [18] and a schematic of the OTA is shown in Fig. 4.10 (switches used for testing

purposes are not shown). Table 4.4 shows the transistor sizes used in our design. Devices M9

and M10 act as resistors; this configuration does not have an optimum power supply rejection,

but the use of a clean AVDD reduces the importance of this problem. The input differential

44

M1

9/3

Transistors

W/L (μm/μm)

1Multiplicity

M2

9/3

1

M3

6/1

1

M4

6/1

1

M5

9/0.8

1

LowVT type

M6

9/0.8

1

M7

6/1

1

M8

6/1

1

M9

12/2

1

M10

12/2

1

Low NormalNormal

Table 4.3: Transistor sizes of the input current mirror.

-
BN

AN

BN

AN

-
BP

AP AP

BP

Figure 4.9: Schematics of the gain boosting amplifiers for NMOS and PMOS devices.

voltage is converted into a pair of differential currents charging the MOS resistors M9 and

M10. The differential voltage across M9 and M10 is converted into two identical current

outputs IOUT and IF. IOUT is used as the integrator output, and IF is used to drive the load

resistor R1 in the common-mode feedback path (Fig. 4.7). The negative feedback path of the

OTA in Fig. 4.7 at the output stage forces the differential voltage (VF+ − VF−) across the

resistors to follow the voltage across the integration capacitor C1 (VC+−VC−). The differential

current going through the resistors R1 is IF+ − IF− = (VC+ − VC−)/R1. The output current

(IOUT+ − IOUT−), which is a copy of the current (IF+ − IF−), is proportional to the voltage

across the integration capacitor (VC+−VC−), i.e. IOUT+−IOUT− = IF+−IF− = (VC+−VC−)/R1.

The gain of the output transconductor block is settable by changing the value of the load

resistor R1.

In order to calibrate the integrator output offset, we again use the six-bit calibration

45

VIN+

-

- -

- -

-

M1 M2

I1 I1

I2 I2

M3 M4

M5 M6

M7 M8

M9

M10

VbiasN
VbiasP

M11 M12

M13
M14

M15

M16

M17 M18

IF IOUT

Gm
bosting

AVDD

VIN-
RS =

1.4 kΩ

Ical+

Figure 4.10: Schematic of the current copying OTA.

current DAC (see Fig. 4.2) at the output stage. One calibration current (ICAL+) is injected

into the drain of M18 of OTA-1, as shown in Fig. 4.10 and the other (ICAL−, not shown) is

injected into OTA-2.

The CMFB block in Fig. 4.7 is an OTA with two matching output currents (ICM),

similar to the one used in the output transconductor block. The CMFB block maintains

the capacitor’s common-mode voltage with respect to ground by injecting equal currents to

both terminals of the capacitor. The common-mode component of the input current of the

integrator is therefore absorbed by the OTA inside the CMFB block.

The I/O relationship of the integrator, assuming zero initial condition, is as follows:

IOUT+ − IOUT− = ω1

∫ tstop

0

(IIN+ − IIN−) dt (4.18)

where ω1 = 2πf1 = k1
1

R1C1
is the unity gain frequency of the complete integrator, including

46

M1

12/0.5

Transistors

W/L (μm/μm)

1Multiplicity

M2

12/0.5

1

M3

4/0.5

1

M4

4/0.5

1

M5

4/0.5

1

M6

4/0.5

1

M7

6/2

1

M8

6/2

1

M9

4/0.5

4

M10

4/0.5

4

LowVT type

M11

4/0.8

Transistors

W/L (μm/μm)

8Multiplicity

M12

4/0.8

8

M13

12/0.4

1

M14

12/0.4

1

M15

12/0.5

1

M16

12/0.5

1

M17

4/1

8

M18

4/1

8

N/A

N/A

N/A

NormalVT type

Normal Low

N/A

Table 4.4: Transistor sizes of the current copying OTA.

input-scaling factor k1. The unity-gain frequency f1 is taken as fmax,computer as described in

Chapter 2, and ω1 sets the time scaling factor α [3; 6; 8]. We use C1 = 40.6 pF; R1 is selectable

as either 19.6 kΩ or 196 kΩ; and k1 is selectable as either 0.1 or 1. This allows the selection

of f1 as 2 kHz, 20 kHz, or 200 kHz.

The initial condition of the integrator is set by imposing a voltage across the integration

capacitor using a fully differential OTA driven by an eight-bit current DAC (shown in the

upper left in Fig. 4.7). The eight-bit DAC here is the same as the CT DAC block discussed

later in Chapter 5, without the input DFFs. Note that block reuse, both schematic and

layout, would save considerable time and efforts in large VLSI system design.

The schematic of the fully differential OTA (OTA-3) used in the initial condition setting

stage (see Fig. 4.7) is shown in Fig. 4.11. Table 4.5 shows the transistor sizes in our design.

Common-mode rejection is critical for this OTA design, because any common-mode level

deviation at its output would be directly imposed on the integrator capacitor C1 (Fig. 4.7)

in initial condition setting mode. When the integrator goes to operation mode, large common-

47

VIN+
M1 M2

2I1

VIN-

I1 I1
M4 M21 M22

M25

M26

M27 M28

 Iout+
 Iout-

Vb

Vcmfb

V1+

V1-

M3

M5 M6

I1 I1

M14M13

M16
M15

M18

M17

M19 M20

M23 M24

CMFB

V1- V1+

Stage 1 Stage 2

Ib Ia Ib Ia

left-half right-half

VBIASP

VBIASN

Figure 4.11: Schematic of the fully differential OTA used in initial condition setting block.

mode level deviation on the capacitor would make the following DC-coupled blocks operate

abnormally initially. Though the integrator’s CMFB stage would reject this common-mode

signal on the capacitor (after some time), it would be better to reject it at the origin and

not to overload integrator’s CMFB block (it needs to reject Integrator’s input signal).

Shown in Fig. 4.11, the input stage of the fully differential OTA is a differential pair

(M1 and M2) with folded cascode devices (M5 and M6). The CMFB circuit is shown in Fig.

4.12. M9 and M10 act as a common-mode detector. The voltage difference between VCM and

V1,com = (V1+ + V1−)/2 will be minimized through the CMFB feedback loop.

The second stage is another fully differential stage that further rejects the common-mode

48

V1-
M9 M10

2I1

V1+

M7 M8Vcmfb
M12

2I1

M11 VCM

Figure 4.12: Schematic of the CMFB block fully differential OTA.

M1

12/0.6

Transistors

W/L (μm/μm)

1Multiplicity

M2

12/0.6

1

M3

4/2

1

M4

4/2

1

M5

8/0.5

1

M6

8/0.5

1

M7

4/2

1

M8

4/2

1

M9

8/0.5

1

M10

8/0.5

1

LowVT type

M11

8/0.5

Transistors

W/L (μm/μm)

2Multiplicity

M12

4/1

1

M13

4/1

1

M14

4/1

6

M15

2/0.4

1

M16

2/0.4

6

M17

2/0.5

1

M18

2/0.5

6

LowVT type

Normal Low

M19

4/1

1

M20

4/1

6

Low Normal

Normal

M21

4/1

Transistors

W/L (μm/μm)

6Multiplicity

M22

4/1

1

M23

2/0.4

6

M24

2/0.4

1

M25

2/0.5

6

M26

2/0.5

1

M27

4/1

6

M28

4/1

1

NormalVT type

N/A

N/A

N/A

Table 4.5: Transistor sizes of the fully differential OTA used in the initial-condition-setting

stage.

current signal by applying a crosscoupling technique. The left-half and right-half circuits

are symmetrical. As an illustration purpose, denote the signal current through the M14

branch with IA and that through the M21 with IB. Then we have drain currents at M19

49

Lower 3-dB
frequency

3.5 Hz

Specs

Simulation
results

DC gain

75 dB

Unity-gain
frequency

19.9 kHz

Phase @ 20
kHz

-90.1 degree

Output Noise
(1kHz – 1MHz)

1.3 nA

THD*

-50 dB

Power
dissipation

24.6 µW

*20 kHz, full-scale (2 µA peak, differential)

Table 4.6: Simulation results for key specifications of integrator block.

and M20 equal to IB, and the drain currents at M27 and M28 equal to IA. The output

currents can be expressed as IOUT+ = IA − IB, IOUT− = IB − IA. Therefore, the differential

output is Iout,com = IOUT+ − IOUT− = 2(IA − IB) and the common-mode output are Iout,com =

(IOUT+ + IOUT−)/2 = 0. We can see that the output stage passes the differential component

while rejecting the common-mode component.

Key simulation results are listed in Table 4.6.

4.4 Multiplier architecture and circuit design

Fig. 4.13 shows the multiplier/VGA architecture based on [1]. The multiplier core block

uses current-mode translinear circuits, implemented with Gilbert’s translinear principle by

operating MOS transistors in the weak inversion region to achieve exponential behavior.

The block can operate either as a multiplier or a VGA. The module has two input ports

and one output port. When the module is operating in multiplier mode, the output is a

scaled version of the product of the two inputs:

IOUT =
0.5K1IIN1K2IIN2

KoIref
, (4.19)

50

IIN1+

IIN1-

IIN2-

IIN2+

8

DAC

IDAC+ IDAC-

IOUT+

IOUT-

A
na

lo
g

M
U

X

Multiplier Core
(Translinear)

Output scaling mirror

Input scaling mirrors

DIN

 SEL

IA+

IA+

IB+

IB+

IC+

IC+

Figure 4.13: Architecture of the multiplier block.

where Iref = 1 µA and K1, K2, and Ko are the mirroring ratios of the scaling mirrors. These

K mirror ratios are set to values of 1, 10, and 0.1 at the same time, allowing the output IOUT

to be a scaled version of the input products. For example, when all Ks are set to 1, we have

IOUT =
0.5IIN1IIN2

1 µA
. (4.20)

Please pay attention to the 0.5 scaling factor for the multiplication result, which comes

from the multiplication core block and will be explained later. (When we use multipliers

in solving equations, the 0.5 coefficient could be absorbed by manipulating the equation

expressions. See Chapter 8 for examples.)

When operating in VGA mode, the second scaling mirror is turned off (IIN2 is disabled)

and the MUX is configured to receive input from the DAC block. The DAC block here is the

51

C1

VA

IB+

C2 C3 C4

VA

C10C9C8C7C5 C6

M1 M2 M3 M4

2Iref

IA+ IC+ IC- IA- IB-

2Iref

VA VA

IE+ IF+ IF- IE-

Figure 4.14: Circuit details of the multiplier core block.

same CT DAC design used in the nonlinear function generator, except that the push–pull

conversion stage is removed (see the CT DAC design details in Chapter 5). Now the output

is the product of the first input and a constant current set by an 8-bit current DAC. The

output is expressed as

IOUT =
K1IIN1
2KoIref

IDAC,FS(
DIN

128
− 1), (4.21)

where DIN is the eight-bit digital input (binary weighted), and IDAC,FS is the full-scale current

of the DAC block, which is 2 µA. For example, when K1 and Ko are set to 1, we have

IOUT = IIN1

(
DIN

128
− 1

)
. (4.22)

By setting DIN from 0000 0000 to 1111 1111, the coefficient of IIN1 can be varied from −1 to

127
128

in increments of 1
128

.

Fig. 4.14 shows the details of the translinear multiplier core. Devices C1–C10 are composite

devices that behave like single NMOS transistors with large drain output impedance. Fig.

52

C
G

D

S

S

G

IBIAS

M5

M7

M6

D

Figure 4.15: The composite device used in the multiplier core.

M1

20/0.5

Transistors

W/L (μm/μm)

1Multiplicity

M2

20/0.5

1

M3

20/0.5

1

M4

20/0.5

1

M5

75/0.4

1

HighVT type

M6

2/3

1

M7

5/0.5

1

Normal Low

Table 4.7: Transistor sizes of the multiplier core circuits.

4.15 shows the schematic of the composite device, and Table 4.7 presents the transistor sizes.

M5 is the core device biased in weak inversion and provides the exponential I–V characteristic

of the translinear element. M5 is sized with a large W/L ratio of 20 µm/0.5 µm to achieve a

low inversion coefficient and good exponential I–V behavior. L is kept short to conserve area

and guarantee device bandwidth. If M5 is used directly in place of C1–C10, the drain node

of M5 is directly exposed to outside, so that the voltage variation at the drain of M5 would

cause its I–V characteristic to deviate significantly from the ideal exponential, resulting in

errors in the multiplier transfer characteristic. M6 and M7 are added to isolate and buffer

M5. M6 acts as a cascode device for M5, and common-source amplifier M7 boosts M6. Most

of the voltage variation at Node D is absorbed by M6, keeping the M5 drain voltage stable.

53

M1

VA VA

I1 I2 I3 I4

M2 M3 M4

M1, M2, M3, M4 in weak inversion

Figure 4.16: Illustration of basic translinear principle.

The basic translinear principle is illustrated in Fig. 4.16. All four transistors are in weak

inversion. Applying KVL, we have VGS1 + VGS3 = VGS2 + VGS4. With the exponential I–V

relationship, we could replace all instances of VGS with drain currents and have I1I3 = I2I4.

For the multiplier core block (Fig. 4.14), C1–C10 form a total of five translinear loops,

each of which has four devices in the loop. The loop formed by C1, C2, C3, and C4 gives

2IrefIE+ = IB+IA+. (4.23)

The loop formed by C1, C2, C7, and C8 gives

2IrefIE− = IB+IA−. (4.24)

The loop formed by C10, C9, C6, and C8 gives

2IrefIF− = IB−IA−. (4.25)

The loop formed by C10, C9, C5, and C3 gives

2IrefIF+ = IB−IA+. (4.26)

54

Subtracting (4.24) from (4.23) and (4.25) from (4.26) gives

2Iref(IE+ − IE−) = IB+(IA+ − IA−) (4.27)

2Iref(IF+ − IF−) = IB−(IA+ − IA−). (4.28)

Subtracting (4.28) from (4.27), we have

2Iref[(IE+ + IF−)− (IE− + IF+)] = (IB+ − IB−)(IA+ − IA−). (4.29)

From Fig. 4.14, we also have IC+ = IE+ + IF− and IC− = IE−+ IF+. Plugging these values

into (4.29) and rearrange the equation, we have

IC+ − IC− =
(IB+ − IB−)(IA+ − IA−)

2Iref
. (4.30)

Now we have the desired multiplication behavior from the translinear core for our differential

input/output currents.

However, we also must pay attention to the core’s behavior for common-mode signals.

By adding (4.23), (4.24), (4.25), and (4.26) together, we have

IC+ + IC− =
(IB+ + IB−)(IA+ + IA−)

2Iref
. (4.31)

We can see that the common-mode signals behave the same as the differential ones, meaning

that there is no intrinsic common-mode rejection for the translinear core. To remove this

common-mode component, we use a crosscoupled architecture at the output stage between

the scaling mirrors, as will be seen shortly.

Fig. 4.17(a) shows the schematic of the input-scaling mirror in Fig. 4.13 and Table 4.8

presents the corresponding transistor sizes used. The input current mirror operates in Class-

A mode. The purpose of the input-scaling current mirror is to support the three different

55

- -

AVDD

Iin
Iout

VBIAS_A

1× 9×

I0

(To multiplier
core circuits)

C1

C2

C3 C4

C5

-

BP

AP

AP

BP

D

G

S
S

G

D

(a) (b)

M0

6µm
0.3µm

Ical+

Figure 4.17: A simplified schematic of the input-scaling mirror in Fig. 4.13. There are four

such mirrors receiving two differential currents at the input stage.

C1

6/0.4

Unit Transistor M0 in

W/L (μm/μm)

1Multiplicity

C2

12/0.4

1

C3

12/1.5

1

C4

12/1.5

1

C5

12/0.4

1

LowVT type Normal

Table 4.8: Transistor sizes of the input-scaling mirror.

input ranges while holding constant the signal swing seen by the multiplier core. The transfer

characteristic equation of the circuit is IOUT = K · IIN + I0, where I0 is value of the DC bias

current to the multiplier core and K is a programmable gain factor (0.1, 1, or 10 by setting the

programmable devices C1–C5 accordingly). C1–C5 are composite devices shown in Fig. 4.17

(b). There are four scaling mirrors at the input stage. Two mirrors process each differential

56

input current in a pseudo-differential style.

We use two six-bit calibration-current DACs (the same as the one used in the fanout

block, see Fig. 4.2) to calibrate the multiplier’s input offsets. For the two scaling mirrors

that process one differential input, one calibration current (ICAL+) is injected into the drain

of C4 inside one scaling mirror, as shown in Fig. 4.17 and the other calibration current (ICAL−)

is injected into the other scaling mirror as in Fig. 4.13.

The output-scaling current mirror in Fig. 4.13 scales the output of the multiplier core

to match the range of the final output and at the same time removes the common-mode

component. Fig. 4.18 shows the block diagram and Fig. 4.19 shows the schematic of the

output-scaling current mirror. Table 4.9 shows the transistor sizes used. The output-scaling

current mirror has a structure similar to the input-scaling mirror. The difference is that each

of the single-ended mirrors in the output-scaling mirror has two current outputs, and they

are combined so that the final differential output contains no common-mode component.

Output
mirror

Output
mirror

IC+

IC-

IOUT+

IOUT-

I1A

I1B

I2A

I2B

Figure 4.18: Block diagram of the multiplier output mirror.

57

-

AVDD

Iin

C1

C2 C3

C5

-

Iout

C4

C6

- -

 Iout

M1

M2

M4 M5

M3

2× 18×

D

G

S
S

G

D

(b) For C1 and C2 :

1× 9×

D

G

S
S

G

D

(c) For C3 – C6 :

(a)

1 : 1

M0

M0

Ical+

Figure 4.19: Schematic of the output-scaling mirror.

Fig. 4.18 shows how the four output currents are combined to generate the differential

outputs IOUT+ and IOUT−. Assume that the mirroring ratio is 1 for the output stage. Then

we have IOUT+ = I1A − I2B and IOUT− = I2A − I1B. The output common-mode signal is

IOUT+ + IOUT− = 0 and the output differential signal is IOUT+− IOUT− = IC+− IC−, achieving

the common-mode rejection purpose.

We use one six-bit calibration-current DAC at the output stage (the same one used in

fanout block, see Fig. 4.2 for more details) to calibrate the multiplier’s output offset. One

calibration current (ICAL+) is injected into the drain of M5, as shown in Fig. 4.19, and the

other (ICAL−) injected into the same position inside the other output mirror. Key simulation

results are listed in Table 4.10.

58

C1

12/0.2

Unit Transistor M0 in

W/L (μm/μm)

2Multiplicity

C2

12/0.6

2

C3

12/0.6

1

C4

12/0.6

1

C5

12/0.2

1

VT type Normal

M1

12/0.2

Transistors

W/L (μm/μm)

1Multiplicity

M2

12/0.4

1

M3

12/0.4

1

M4

20/0.6

1

M5

20/0.6

1

LowVT type Normal

C6

12/0.2

1

N/A

N/A

N/A

N/A

Table 4.9: Transistor sizes of the output-scaling mirror circuits in Fig. 4.19.

3-dB
bandwidth

3.78 MHz

Specs

Simulation
results

Phase shift
@ 20 kHz

-0.3 degree

Output Noise
(1kHz – 1MHz)

2.02 nA(rms)

THD*

-59 dB

Power
dissipation

51.6 µW

*20 kHz, full scale (2 µA peak, differential)

Table 4.10: Simulation results for key specifications of multiplier block.

4.5 Circuits for testability

Circuit structures for probing internal nodes, especially for DC operating points, are vital

for mixed-signal designs. Considering the large number of analog and mixed-signal blocks in

our hybrid computing system, we used a two-level multiplexing scheme.

For each analog block, we have the ability to measure the voltages of seven internal

nodes, connected to the external testing pin through analog muxes. We chose seven nodes

instead of eight because we need a state to shut down all the signals when the analog block

is in operation. Due to the large number of analog blocks, we need to further multiplex the

59

A
na

lo
g

M
U

X

 SEL0

1

A
na

lo
g

M
U

X 1 7

A
na

lo
g

M
U

X 1 7

8

 SEL17

 SEL87

Fanout-1's
probing nodes

Fanout-8's
probing nodes

Connected
to pad

Local analog muxes
inside each block

Global
analog mux

(a) (b)

Test node 1

Test node 2

Test node N

 OUT

Analog MUX:

 SEL
N

Figure 4.20: The testing scheme for measuring internal nodes’ voltages on our hybrid com-

puting chip.

testing wires between them. For example, there is one testing signal (wire) coming out of

each multiplier block; since we have eight fanout blocks, these 8 testing signals are further

multiplexed to share a single pad (Fig. 4.20(a)).

More importantly, we need very good isolation for the analog muxes. Otherwise, the

signals will be coupled to each other in the computing phase. As shown in Fig. 4.21, we use

a T-style analog switch to construct analog muxes. When the T-switch is disabled (EN set

low), Node C is pulled to GROUND, shielding the circuit from undesired coupling by the

floating node. Simulation shows that this T-switch provides −190 dB isolation between IN

and OUT when off. Table 4.11 shows the transistor sizes in Fig. 4.21.

60

IN OUT
A

EN

M0

M1

M2

M3

M4

Figure 4.21: The analog T-switch used in analog MUX.

M0

0.5/0.3

Transistors

W/L (μm/μm)

1Multiplicity

M1

1/0.3

1

M2

1/0.2

1

M3

1/0.3

1

NormalVT type

M4

1/0.2

1

Table 4.11: The transistor sizes of the analog T-switch.

4.6 Global crossbar design

The signal paths between the analog computing blocks are routed by programming the global

analog crossbars (see Fig. 3.6). Fig. 4.22 shows the design details of four analog crossbars.

The crossbar design is scalable both horizontally and vertically, so we can stack them as

needed. The programming bits controlling the ON/OFF states of the transmission gate of

one crossbar cell are stored in registers located inside that crossbar cell (Fig. 4.23). The

registers use a standard 6T SRAM cell design. Nodes EN and EN are directly connected

to Nodes EN and EN of one crossbar cell (Fig. 4.22). We use the static differential driving

method here to write the contents of the cell.

61

EN1 EN1

Ana3IN+

Ana3IN-

Ana4IN+

Ana4IN-

A
na

2 O
U

T
+

A
na

2 O
U

T
-

EN1 EN1

EN2 EN2

EN2 EN2

EN3 EN3

EN3 EN3

EN4 EN4

EN4 EN4

A
na

1 O
U

T
+

A
na

1 O
U

T
-

Crossbar-1 Crossbar-2

Crossbar-3 Crossbar-4

All NMOS&PMOS:
2.4 µm / 0.12 µm,

Normal VT

Figure 4.22: The analog crossbars used for programming signal paths between analog blocks.

Local registers (back-to-back inverters) that store the programming bits for the transmission

gates are not shown.

If we would like to connect Analog Block 1’s output (Ana1OUT+ and Ana1OUT−) to Analog

Block 3’s input (Ana3IN+ and Ana3IN−), we close Crossbar 1 by setting EN1 to high and must

leave Crossbar 3 open. Only 1 crossbar in the same column can be closed at the same time

62

M5

VDD VDD
WWL WWL

M2

M1

M4

M3

M6

WBL

M1-M6: W=0.2 μm
L = 60nm for all transistors

WBL

EN EN

DATA DATA

Tri-state buffers
 (6× driving strength)

Global driver block

Figure 4.23: The local register that stores the programming information for the transmission

gates. The contents of the back-to-back inverters are written through driving the bit lines

differentially with large drivers.

because one analog output current can only go to one input port fully. If we need to distribute

the same output current value to multiple places, we need to use the fanout block to make

multiple copies.

Fig. 4.24 shows the layout of one analog crossbar cell. The layout area here should be

minimized because there are many analog crossbars on chip for signal routing.

63

Connected to analog
differential outputs
(layer-4 metal used)

Connected to analog
differential input

(layer-3 metal used)

Transmission
gates

Register
(back-to-back inverters)

Figure 4.24: The layout of one analog crossbar cell.

4.7 Layout considerations

In addition to device matching, another difficult aspect of layout is limiting the dimensions of

different functional blocks for space efficiency. It is an iterative process to align all blocks to

the same height. (There is no need to align the width as the same type of block occupies the

entire column.) Fig. 4.25 shows one “slice” of the analog block array, which consists of two

fanout blocks, one integrator block and two multiplier blocks (see the system architecture in

Fig. 3.6). Integrator and multiplier blocks have about the same height (160 µm), while the

fanout blocks are a bit shorter due to their simpler functionality and circuit architecture.

The crossbar “islands” sit in the top-right corner of each block (Fig. 4.25).

64

Fanout Fanout Integrator Multiplier Multiplier

Crossbars

Figure 4.25: The global signal paths for calibrating each block and related functional blocks

involved.

65

Chapter 5

Design of the Programmable

Nonlinear Function Generator

In this chapter, we discuss the design of the key feature of our hybrid computing system:

the arbitrary nonlinear function generator. It greatly increases the generality of our chip and

expands the range of mathematical problems that can be solved, compared to the earlier

effort in [1].

5.1 Introduction to CT digital signals

Continuous-time digital signal processing was introduced by Tsividis in 2003 [19]. In contrast

to conventional digital signal processing with its issues of aliasing and high quantization noise

due to time sampling, processing the digital signals in the continuous-time domain completely

avoids aliasing and greatly reduces quantization noise. In 2008, Schell [13] demonstrated the

66

CT

DAC

8

TRIGGER

DATA

8

TRIGGER

DATA
ANALOG

INPUT

ANALOG

OUTPUT
CT

ADC
SRAM

TRIGGER

D
F

F
s

D
F

F
s8 COLUMNS

X 32 WORDS

X 8BIT

88

D
E

C
O

D
E

R

SRAM IN READ MODE

DATA

Voltage

mode

 CT ADC DATA

8

I-V CONVERTER

1/8

3 MSBs

D
F

F
s

1/8

... +

1/161/8 1/32 1/256

...

5 LSBs

THERMO

WEIGHTED

BINARY

WEIGHTED

T
H

E
R

M
O

D
E

C
O

D
E

R

8

DELAYDELAY DELAY

x F(x)

NONLINEAR FUNCTION F()

i-

i+

RF ,10RF

RF ,10RF
VREF

t0 0

111
8

t0 0

111

8
tt

ANALOG INPUT ADC s OUTPUT SRAM s OUTPUT DAC s OUTPUT

Figure 5.1: Continuous-time programmable nonlinear function generator.

use of continuous-time digital signals in audio signal-processing applications.

The work presented here is the first one to use CT digital signals for computing applications—

specifically, solving differential equations.

5.2 Architecture overview

The nonlinear function generator is implemented in a programmable, CT hybrid architecture

(Fig. 5.1), consisting of a CT ADC, a CT SRAM, and a CT DAC.

Our generator uses a clockless, CT architecture because it offers several important ad-

vantages over the discrete-time one. First, a clockless, CT architecture has an event-driven,

activity-dependent power dissipation feature. The digital circuits switch only when the input

analog signal changes. Second, this architecture’s response to input changes is not limited

by a clock period so there is no clock period latency, allowing for real-time operation. Third,

67

since the circuit does not need a clock, no power is dissipated in distributing a clock sig-

nal. Finally, because this scheme operates in CT, it inherently avoids aliasing, which could

otherwise affect computation accuracy for solving certain equations.

In our nonlinear function generator (5.1), the analog input current is fed to a tran-

simpedance amplifier, and the output is then converted into an eight-bit CT digital signal

by a voltage-mode, CT level-crossing ADC similar to the one used in [13]. In the meantime,

the CT ADC generates a trigger signal that indicates a level-crossing action at the analog

input. The ADC’s output is then taken as the address input of the SRAM block to fetch

the nonlinear function values stored inside. The trigger signal from the ADC is then passed

through a delay line to give enough time for the SRAM block to finish the read operation;

after the data have been read out from the SRAM and settled, the trigger signal triggers

the SRAM’s output DFFs, allowing the nonlinear function data to be sent to the next stage.

The following eight-bit CT DAC converts the data back to current signals, which are sent

to other analog blocks. Since the conversion of the input and output analog signals is done

in CT, this conversion scheme works in real time.

It is worth mentioning that the work by Huang and Zukowski [20], developed indepen-

dently in 2006, also used a similar clockless architecture with three-bit resolution. In that

work’s configurable logic block, eight inverter-based one-bit ADCs convert analog inputs to

digital signals, which are then passed into the digital look-up table. This digital look-up ta-

ble is implemented with programmable combinational logics with a three-bit digital output,

where the programming information is stored on shift registers. The output of the digital

68

look-up table serves as a weighting factor for a dependent current source, whose reference

current is controlled by the analog input value. There are differences between our nonlinear

function generator and the configurable logic block in [20], in addition to the increased reso-

lution and lookup depth. First, our design is a general-purpose nonlinear function generator,

which could be used for such purposes as equation solving and analog signal processing,

while the configurable logic block in [20] is a highly specialized design for simulating one

type of differential equation describing gene regulatory networks. The output of that block

represents the concentration of a particular molecule. Second, our nonlinear function data

are stored inside a SRAM block for lookup, while the nonlinear function data in [20] are

generated by feeding input data into combinational logics. Third, each build block (ADC,

SRAM, DAC) inside our nonlinear function generator has programmable data paths, so that

each could be used as a stand-alone block for other purposes (e.g., DAC for generating con-

stant values shown in differential equations). In contrast, the signal paths are fixed inside

the configurable logic block in [20]. Last, the implementation details in Fig. 5.1 of our design

are different from those in [20]. The design details of the various blocks in our nonlinear

function generator are now given in the following sections.

5.3 CT ADC design details

The 8-bit CT ADC can convert full-scale signals up to 20 kHz. That is, the ADC bandwidth

is from DC to 20 kHz. The CT ADC can handle two selectable current-signal ranges (±2 µA

and 20 µA) by adjusting the gain of the input transimpedance amplifier, as shown on the

69

R
-S

T
R

IN
G

D

A
C

G
R

A
Y

-C
O

D
E

 T
H

E
R

M
O

 D
E

C
O

D
E

R

VIN

C
O

N
T

R
O

L
 L

O
G

IC
S

8

G
R

A
Y

-C
O

D
E

C

O
U

N
T

E
R DATA

TRIGGER

256

VTH_HIGH

VTH_LOW

UP

DN

CHG

A

B

OUTA

OUTB

Figure 5.2: Voltage-mode level-crossing ADC architecture.

left in Fig. 5.1. The full-scale input of the voltage-mode ADC (Fig. 5.2) is fixed at 0.6 V

(from 0.4 V to 1.0 V, VLSB = 2.344 mV). It has an R-string DAC in the feedback path that

adjusts the comparison voltages fed to the comparators and guarantees that the input is

always contained between two successive comparison levels. The R-string DAC consists of

256 identical polyresistors. In order to achieve good linearity, the common-centroid layout is

applied to the R-string block. Our design improves the work in [13] in power dissipation. We

use a Gray-code counter and a Gray-code thermometer decoder in the feedback path instead

of the original big shift-register array (256-bit), shown in the dashed box in Fig. 5.2. Since

only two bits are flipping at a time, this scheme greatly reduces the peak digital-switching

current and the potential noise interference with the analog circuits.

70

L
at
ch

VIN+

VIN-

Stage-1 Stage-2 Stage-3
OUT

RST

Figure 5.3: Block diagram of the comparator block.

As the fastest input signal that could be handled by this CT ADC is a 20 kHz sinusoidal

signal with a 0.6 V swing (0.3 V amplitude), the level-crossing speed of VIN is fastest when

the sinusoidal input is crossing the common-mode voltage level (0.7 V). This fastest rate of

change of VIN is calculated by taking the derivate of the full-scale sinusoidal input 0.3 sin(2π ·

20 kHz · t) V and setting t to 0 (this is when the sine wave is crossing the common-mode

voltage level), which is 0.3 V · 2π · 20 kHz = 37.7 kV/s. The maximum trigger rate generated

by the ADC is when VIN is crossing two consecutive threshold levels at 37.7 kV/s speed. Since

VLSB = 2.344 mV, the shortest trigger period as 2.344 mV / 37.7 kV/s = 62 ns.

The comparator consists of three cascaded single-stage amplifiers, followed by a latch

stage (Fig. 5.3). Fig. 5.4 shows the schematic of the single-stage differential amplifier. It is

a single-stage differential amplifier with common-mode feedback, where the common-mode

detector is a differential pair (M7 and M8) as shown in the dotted box.

The sizes of the input differential pair (M2 and M3) of the comparator’s Stage 1 are

critical; they dominate the trade-off between comparator speed and input offsets. Stage 1’s

M2 and M3 contribute directly to the capacitive loads at the R-string output. Smaller M2

71

VIN+
M2 M3 VIN-

I1

M1

M7 M8

M10 M11

M9 VCM

M6

VOUT-

VOUT+

M4

M5

VBIAS

CMFB circuitsSingle stage amplifier

AVDD

 Ical+ Ical-

Only available
in Stage-1

Figure 5.4: Schematic of the single stage amplifier in the comparator block.

and M3 would yield faster settling of the R-string’s outputs (VTH HIGH and VTH LOW), but the

mismatch between M2 and M3 would be larger, resulting in larger input offsets. We chose

the sizes of M2 and M3 of each stage as shown in Table 5.1, and used one six-bit calibration

current DAC (see Fig. 4.2) to calibrate the comparator’s input offset at Stage 1 (the dominant

offset contributor). The differential calibration currents, ICAL+ and ICAL−, are injected into

the drains of the differential pair, as shown in Fig. 5.4. The transistor sizes used for the

amplifiers in all three stages are shown in Table 5.1.

Fig. 5.5 shows the schematic of the comparator’s latch stage, and Table 5.2 shows the

transistor sizes used. When in reset mode, RST is set high so that M9 is off, turning off the

input stage; at the same time, M10 is turned on and OUT is set low. When in operation

mode, RST is set low, turning on the input stage. The differential inputs VIN+ and VIN− are

72

M1

0.75/5

Transistors

W/L (μm/μm)

28Multiplicity

M2

1/0.25

3

M3

1/0.25

3

M4

0.25/0.25

16

M5

0.25/0.25

16

M6

0.75/5

7

M7

1/0.25

3

M8

1/0.25

3

M9

1/0.25

6

M10

0.25/0.25

4

LowVT type

M11

0.25/0.25

4

S
tage-1

Normal Low Normal

M1

0.75/5

Transistors

W/L (μm/μm)

28Multiplicity

M2

1/0.25

8

M3

1/0.25

8

M4

0.25/0.25

4

M5

0.25/0.25

4

M6

0.75/5

7

M7

1/0.25

1

M8

1/0.25

1

M9

1/0.25

2

M10

0.25/0.25

1

LowVT type

M11

0.25/0.25

1

S
tage-2

Normal Low Normal

M1

0.75/5

Transistors

W/L (μm/μm)

28Multiplicity

M2

1/0.25

1

M3

1/0.25

1

M4

0.25/0.25

4

M5

0.25/0.25

4

M6

0.75/5

7

M7

1/0.25

1

M8

1/0.25

1

M9

1/0.25

2

M10

0.25/0.25

1

LowVT type

M11

0.25/0.25

1

S
tage-3

Normal Low Normal

Table 5.1: Transistor sizes of each amplifier stage inside the comparator block.

M1

0.2/0.06

Transistors

W/L (μm/μm)

1Multiplicity

M2

0.4/1

1

M3

0.6/0.06

1

M4

0.6/0.06

1

M5

1.2/0.06

1

M6

1.2/0.06

1

M7

0.2/2

1

M8

0.2/0.06

1

M9

0.2/0.06

1

M10

0.2/0.06

1

NormalVT type

Table 5.2: Transistor sizes of the latch circuit in Fig. 5.5.

fed into a pair of inverters. When the differential input is positive—i.e., VIN+ > VIN−—Node

B will go up, causing Node C to go down. Pulling Node C down will gradually turn on M8,

increasing the charging current from VDD and making Node B go up even faster; this is

a positive feedback. When Node C is at low, M1 is turned off and Node B is set high (at

VDD); the latch output OUT is now set high (VDD). This is a complete operation cycle of

the latch stage. The next cycle starts when RST is set high again, resetting the latch.

73

M9

M7 M8

M5 M6

M3 M4

M1

M10

RST

OUT
VIN+ VIN-

VDD

M2

A B
C

Figure 5.5: Schematic of the latch stage of the comparator.

OUTA

OR

UP

Delay TD

CHANGE

RSTA

OUTB DOWN

Delay TD RSTB

From
comparators’

outputs

Figure 5.6: Schematic of control logic block after comparators.

Fig. 5.6 shows the block diagram of the control logic. It takes the outputs of two compara-

74

. . .OUTA

CHANGE

UP

VIN

VTH_HIGH

. . .

. . .

. . .
Inverters
delays

TD

Comparator
delay

. . .

RST

. . .
Inverters and

OR delays

Figure 5.7: The timing diagram of critical signals of the control logic block.

tors and generates the reset signals (RSTA and RSTB) for the latches inside two comparators,

plus the control signals (UP and DOWN) and trigger (CHANGE) for the counter in the next

stage. Fig. 5.7 illustrates the timing of critical signals when Comparator A is in operation

(i.e., when VIN is crossing the upper threshold). After Comparator A’s output OUTA goes

high, UP will go high after two inverter delays, putting the following counter into increment

mode. Then CHANGE will go from low to high, triggering the counter to increase by one.

After a delay of TD, RSTA goes high, putting the comparator in reset mode in which OUTA

is subsequently pulled down. After all the signals go low, a new operation cycle starts again.

The ADC’s speed is limited by the R-string DAC delay. The output of the R-string

DAC needs to settle to the desired voltage levels before the input crosses. The worst case is

when the input voltage (assuming a sine wave of 20 kHz) crosses the zero point (common-

75

mode voltage). If the DAC is not settled, the comparator will generate false triggers. There

are two ways to increase the R-string DAC’s updating speed. One way is to decrease the

resistor value, thus increasing the charging currents to the load capacitances. This approach,

however, would increase power dissipation. The second way to increase the R-string DAC’s

updating speed is to decrease the load capacitances of the R-string DAC, which are the input

capacitances of the comparators. Since the load capacitances are determined by the size of the

input differential pairs, decreasing their sizes would increase the updating speed. However,

doing so would increase the potential mismatches between input devices, which would exceed

the offset calibration range. (Note that we need to reduce the errors introduced by each block

as much as possible, since the errors may be cumulative over the entire computation time).

It is important to apply both methods for increasing the R-string DAC’s updating speed

and to achieve a balance. The final values we chose are 150 Ω for each individual resistor and

3 µm/0.25 µm for the input differential pairs (NMOS transistors).

Comparator
delay

75 ns @ 400 Hz
30 ns @ 20 kHz

Specs

Simulation
results

RMS Noise at
comparator input

(1 Hz – 1 MHz)

0.234 mV
(VLSB/10)

SFDR

67 dB

Power dissipation
@ 20 kHz FS input

72.6 µW

Table 5.3: Simulation results for key specifications of the CT ADC.

The CT ADC is calibrated in several places. The input I–V converter (Fig. 5.1) has

a six-bit (current-steering) calibration DAC for the output offset, ensuring that it outputs

0.7 V when the input current is 0µA. Each comparator also has a six-bit DAC for the input

76

offset calibration, with full-scale configurable ranges of 100 nA, 200 nA, 300 nA, and 400 nA.

Calibration currents injected into the two drain terminals of the input differential pairs

(NMOS) balance the bias currents. Table 5.3 lists the CT ADC’s key simulation results.

5.4 CT SRAM design details

D
E

C
O

D
E

R

IN
_
D

F
F

s

WWL

RWL

RWL

DELAY T1

DELAY T2

B
U

F
_

D
F

F
s

DATA

DATA O
U

T
_
D

F
F

s

8

8

TRIGGER

TRIGGERDL1

REGISTER ARRAYS

8 COLUMNS X 32 WORDS X 8 BITS

WRITE & READ DRIVER ARRAYS

8 COLUMNS X 8 BITS

W_EN

R_EN

ADDR

DATABUFF

8

7 6 0

DATARBL

8

DATAOUT

8

TRIGGERDL2

8

ADDRIN

8

W_ENIN

R_ENIN

DATAIN

8

COL_SEL

32

32

32

8

Figure 5.8: The architecture of the CT SRAM used in our hybrid system.

The CT SRAM has eight-bit address/word length (Fig. 5.8). It has a CT digital data path

and its operation is controlled by trigger signals instead of a clock. The SRAM cell used in

our work is based on the fully static 10T design in [21]. The sizing is shown in Fig. 5.9. The

write and read drivers are shown in Fig. 5.10.

In write mode, the write enable signal W ENIN is set high and the read enable signal

R ENIN is set low at the SRAM input. The timing diagram of critical signals in write mode

77

M5

RWL

RWL

VDD VDD VDD
WWL WWL

M2

M1

M4

M3

M6

M7

M8

M9

M10

RBLWBL

M1-M6, M8, M10: W=0.2 μm

M7, M9: W=0.4 μm

L = 60nm for all transistors

4T READ BUFFER

WBL

Figure 5.9: The 10T SRAM cell used in our design.

is shown in Fig. 5.11. After TRIGGER t riggers the input flip-flops IN DFFs, the eight-bit

address ADDRIN is loaded to the decoder. The eight-bit content DATABUFF is buffered by

BUF DFFs. After a delay of T1(550 ps in our design), which guarantees that the intended

WWL (write word line) and COL SEL (column select) have settled, TRIGGERDL1 triggers

BUF DFFs and sends DATA and its complement DATA to the write drivers, which are

high-enabled tri-state buffers (Fig. 5.10). Since COL SEL, W EN and TRIGGERDL1 are

all high, ENW DR is set high and the write drivers are turned on. The differential digital

signals DATA and DATA are then driven onto bit lines WBL and WBL and written into

the targeted SRAM cells. The write operation lasts for a duration of TW, set by the external

control board. After an interval TW, TRIGGERDL1 goes low and ENW DR is set low, disabling

the write drivers.

In read mode, W ENIN is set low and R ENIN is set high at the input. The timing diagram

of critical signals in this mode is shown in Fig. 5.12. After the TRIGGER goes from low

78

EN EN EN

8

COL_SEL

TRIGGERDL1

W_EN AND

8 8WBL WBL RBL

COL_SEL

R_EN
AND 8 8 8

DATA DATARBL

READ

DRIVERS

CONTROL

LOGIC

WRITE

DRIVERS

ENW_DR

ENR_DR
8 8 8

DATA

Figure 5.10: The write and read drivers.

to high, ADDRIN are again loaded into the DECODER block, which generates COL SEL,

read word line signal RWL and its complement RWL. After COL SEL and RWL/RWL are

settled, the intended SRAM word contents are read out by the 4T read buffer inside the 10T

cell, (Fig. 5.9). At the same time, the read drivers (high-enabled tri-state buffers, Fig. 5.10)

are also turned on. After a delay T2 (1 ns in our design), TRIGGERDL2 goes high, triggering

OUT DFFs and DATAOUT are sent to the following block, i.e. the CT DAC.

The choice of delay values T1 and T2 is very important, especially the T2 value in read

mode. Note that in computation, the trigger signal in Fig. 5.12 is generated by the CT

ADC block, shown in Fig. 5.1. This means that the trigger signal is event-driven and is not

controlled by any external configurations. Only the input event density affects the rate of the

trigger signals, i.e. the faster the varying of the input signal, the more often the trigger signal

is generated. We would like T2 to be as small as possible, because larger T2 would increase

the delay of the nonlinear function generator chain, increasing the phase shift of the loop

when solving equations. On the other hand, T2 must be large enough for the SRAM to read

79

TRIGGER

DATAIN

ENW_DR

. . .

. . .

. . .

. . .

WRITE OPERATION

1
ST

 DATAIN

TRIGGERDL1
T1

TW

TW

TW

WRITE

FINISHED

WRITE PERIOD

2
ND

 DATAIN

Figure 5.11: The timing diagram of critical signals for write operation.

TRIGGER

TRIGGERDL2

READ OPERATION

T2

ENR_DR

. . .

. . .

. . .

DATAOUT . . .1
ST

 DATAOUT

READ

FINISHED

READ PERIOD

Figure 5.12: The timing diagram of critical signals for read operation.

out the data content from the register banks and allow the data to settle before triggering

the output DFFs, shown in Fig. 5.8. If T2 is not large enough, the entire read operation fails

and sends wrong data to the next stage. Most importantly, we need to give enough flexibility

80

DELAY 1.0 ns

DELAY 1.5 ns

DELAY 2.0 ns

DELAY 2.5 ns

1-to-4

demux

4-to-1

mux

22

Sctrl Sctrl

Figure 5.13: Delay lines arrays used in the SRAM block for flexibility.

to the T2 values to counter the worst process, temperature, and voltage (PVT) variations.

Thus, we make T2 configurable as 1 ns, 1.5 ns, 2.0 ns, 2.5 ns, shown in Fig. 5.13. We use a

demux in the front of the delay line arrays to save power, i.e. we prevent the trigger signal

from passing through unused delay lines and causing unnecessary switching.

In simulation, the SRAM could function correctly for read/write operations when the

trigger frequency goes up to 1 GHz speed. In our hybrid computing applications, we always

use the CT ADC output trigger signal (max frequency is 16.1 MHz) as the trigger input for

SRAM. When the input trigger rate is 16.1 MHz, the average power dissipation is 19.0 µW

for read/write operations under random test conditions.

5.5 CT DAC design details

The CT DAC block is shown in Fig. 5.14. It has two selectable ranges (±2 µA and ±20 µA)

for the full scale by configuring the bias block accordingly. A segmented current-steering

topology is used for its core circuits (segmented-core DAC). After triggering the input DFFs,

the 8-bit binary input DACIN is loaded; three MSBs are passed through a binary-thermometer

81

DAC
segmented core

Push-pull
conversion stage

IOUT+ IOUT-

B
ia

s
bl

oc
k

5

C
al

ib
ra

ti
on

 D
A

C

B
in

-t
he

rm
o

de
co

de
r

2

B
in

-t
he

rm
o

de
co

de
r

1

8
5

CALIN

7

63

ICAL

D
F

F
sDACIN

8 3

TRIGGER
M

S
B

s

VBIAS1

VBIAS2

VBIAS3

VBIAS4

IREF

VBIAS5

VBIAS6

Figure 5.14: The architecture of the DAC block.

ICORE+ ICORE-

EN1 EN1

M1

M2

M3 M4

ICORE+ ICORE-

EN81 EN81

M8

M81

M810 M811

VBIAS1

ICORE+ ICORE-

M82

M820 M821

ICORE-

M88

M880 M881

ICORE+

Segment-1 Segment-8

EN82 EN82 EN88 EN88

ICORE-

M89

M890 M891

VBIAS2

ICORE-

EN88EN88

DUMMY

32× 16× 8× 1× 1×

Figure 5.15: The segmented current-steering DAC core circuits.

decoder, whose outputs, together with the input’s other 5 LSBs, are used to control the DAC

segmented core block.

Fig. 5.15 shows the segmented-core circuit. We choose PMOS current arrays because

PMOS transistors in our technology (TSMC 65 nm LP) have better matching properties

82

M1

4/3

Transistors

W/L (μm/μm)

1Multiplicity

M2

1/3

32

M3

0.12/0.06

4

M4

0.12/0.06

4

NormalVT type

S
egm

en
t-1 ~7

M8

4/3

Transistors

W/L (μm/μm)

1Multiplicity

M81

1/3

16

M82

1/3

8

M810 ~M881

0.12/0.06

2

NormalVT type

S
egm

en
t-8

Table 5.4: Transistor sizes of the segmented current-steering DAC core circuits in Fig. 5.15.

than NMOS transistors (almost half the variations for PMOS by Monte Carlo simulation).

Segments 1–7 are identical, with the sizing shown in Table 5.4. These sizes are chosen based on

Monte Carlo simulations to guarantee that 95% (two sigma) of the devices yield mismatches

smaller than 0.5 LSB current (7.8125 nA).

The last segment, Segment 8, is decomposed into eight binary-weighted branches. The

switches that steer the currents are small devices (Fig. 5.15). The size of these switches should

not be large because the parasitic capacitance Cgd causes glitches at the output current. To

further reduce glitches at the DAC output, we need to be very careful with the layout of the

control signal wires (EN1, EN1, EN81, EN82, etc.). To balance the delay between these control

signals, we use dummy metal wires and NMOS capacitors in our design. Fortunately, the

high-frequency glitches generated by the DAC are filtered out by the follow-up bandwidth-

limited computing blocks, so they have a negligible effect on the overall solution.

The push–pull conversion block at the DAC’s output stage (Fig. 5.16) has two NMOS

current mirrors interfacing with the segmentation core. They convert the segmentation core’s

output to a class-AB, push–pull style current output to interface with the inputs of other

83

VBIAS3

VBIAS4

ICORE-ICORE+

1/2 IFS 1/2 IFS

(255/256 IFS ~ 0) (1/256 IFS ~ IFS)

IOUT+ IOUT-
(+127/256 IFS ~ -1/2 IFS) (-127/256 IFS ~ +1/2 IFS)

Segmentation core

M1,M1: 8 × 1 μm/14 μm, low VT

A1

B1

A2

B2

M3

M1 M2

M4

M3,M4: 8 × 4 μm/1 μm, low VT

Figure 5.16: The output stage of the current-steering DAC.

analog blocks. The output of the segmentation core (ICORE+−ICORE−) is shifted by half of the

full-scale current value (IFS) by implementing two NMOS current sources with values of 0.5IFS

(Fig. 5.16). Accordingly, the encoding scheme for the DAC’s digital input is unsigned binary,

with the code shifted by -128. For example, 1000 0000 input code generates zero output

current, 0000 0000 generates differentially the negative full scale current (−IFS), and 1111

1111 will generate differentially positive full scale current off by 1
128
IFS. Note that NMOS

current sources at the output stage must have very good matching, otherwise calibration

circuits are needed to compensate for the mismatch. In our case, we use large NMOS devices

to achieve good matching; speed is not a concern here because these NMOS current mirrors

84

AVDD

IREF

VBIAS5

VBIAS6

VBIAS3

VBIAS4

C1 C2

C3 C4

M1

M2

M3

M5

M4

ICAL

M6

M12

M10

M11

M7

M8 M9

VBIAS1

VBIAS2

I1 I2 I3 I4

1× 9×
M0

Figure 5.17: Circuit details of the bias block.

are isolated by the cascode devices. Another option would be the use of calibration circuits

(e.g., six-bit current DACs), but they would take up a much more area.

Fig. 5.17 presents the circuit details of the bias block. It takes a 1µA (Iref) current and

mirrors it to four other branches, generating bias voltages for other blocks. I1, I2, I3, and

I4 are equal and could be configured as 250 nA (for the 2 µA full-scale range, there are

eight segments in total, with each segment of 250 nA) or 2.5 µA (for the 20 µA full-scale

range) by setting the composite devices C1–C4. Gain calibration is implemented by injecting

calibration current ICAL (from the calibration DAC block) into the I2 branch, because I3 and

I4 values are decided by I4 through the NMOS mirrors (M4, M6, and M6). Table 5.5 shows

the transistor sizes used.

85

C1

2/8

Unit Transistor M0 in

W/L (μm/μm)

1Multiplicity

C2

1.85/8

1

C3

8/0.5

1

C4

8/0.5

1

VT type Low

M1

2/8

Transistors

W/L (μm/μm)

4Multiplicity

M2

8/0.5

4

M3

0.3/9

1

M4

1/14

2

M5

4/1

2

LowVT type

M6

1/14

2

M7

1/14

2

M8

4/1

2

M9

4/1

2

M10

1/3

32

M11

0.5/6

1

Low

M12

4/3

1

Transistors

W/L (μm/μm)

Multiplicity

VT type

N/A

N/A

N/A

N/A

N/A

N/A

N/A N/A

Normal

Table 5.5: Transistor sizes of the bias block.

IDUMP IDUMP

M0

MX

VBIAS1

EN1

M1

EN63

M63

VBIAS2

ICAL IDUMP ICAL IDUMP

DUMMY

EN1 EN63GND GND

Figure 5.18: Circuit details of the calibration block.

The calibration DAC block is a unary, current-steering DAC (Fig. 5.18). Sixty-four

branches divide the current from M0. IDUMP goes to a diode-connected NMOS device, and

ICAL is used to calibrate the bias block. For this gain-calibration DAC, matching between

the 64 branches is not important; monotonicity here matters most because we need to cover

the desired value for the bias block 250 nA/2.5 µA. Table 5.6 shows the transistor sizes used

86

M0

0.24/8

1

MX

0.2/1

1

M1 ~M63

0.2/1

1

PMOS switches

0.2/0.2

1

Low

Transistors

W/L (μm/μm)

Multiplicity

VT type

Table 5.6: Transistor sizes of the calibration block in Fig. 5.18.

for this calibration DAC.

5.6 Full chip layout

Fig. 5.19 shows the full-chip layout with key blocks annotated. Table 5.7 shows the detailed

area information of each block.

Fanout

150 × 120

Block

Width × Height
(μm × μm)

0.018Area (mm2)

Integrator

275 × 150

0.041

Multiplier

310 × 160

0.050

CT ADC

300 × 185

0.056

CD DAC*

133 × 118

0.016

Area percentage for
calibration DACs

CT SRAM

220 × 130

0.029

40.5% 11.8% 14.7% 13.1% 10.4% N/A

6-bit calibration
DAC

90 × 27

0.00243

N/A

*The calibration DAC used in CT DAC block is different from others; its dimension is 25 μm × 65 μm

Table 5.7: Layout dimensions and areas of each block, plus the area percentage occupied by

the calibration DACs inside each block.

87

Fanout

Bias and testing
circuits

Integrator Multiplier

CT
ADC

Global
drivers for
registers in
crossbars

Global decoder for selecting
registers in crossbar

CT
SRAM

CT
DAC

Irrelevant digital circuits

SPI
controller

Figure 5.19: Full chip layout picture with key blocks annotated.

88

Chapter 6

Implementation Details of a

16th-Order CT Hybrid Computing

Chip

The fourth-order chip discussed in the previous chapter was fabricated and tested. We were

very lucky to have all the blocks functioning correctly the first time. (Measurement results

will be shown in the next chapter.) Then we decided to move on; we scaled the system up

to the 16th order. That is, the new system contained 16 integrator blocks. To guarantee

the success of this larger system, we reused the designs of individual blocks from the first

chip as described in Chapters 4 and 5. Furthermore, we retained the microarchitecture of

the fourth-order system shown in Fig. 3.6 and integrated four such blocks into a 16th-order

system. The new features and designs are discussed in the following sections.

89

A
n

a

In
s/O

u
ts

16

16

Tile-00

16

16

Tile-01

Ana

Ins/Outs

Ana

Ins/Outs

4

4

4

4

4 4

4 4

TILE_ANA_INs

T
IL

E
_
A

N
A

_
O

U
T

s

TILE_ANA_INs
T

IL
E

_
A

N
A

_
O

U
T

s

16

16

Tile-10

16

16

Tile-11

TILE_ANA_INs

T
IL

E
_
A

N
A

_
O

U
T

s

TILE_ANA_INs

T
IL

E
_
A

N
A

_
O

U
T

s

A
N

A
_

IN
s

&
O

U
T

s
40

Programmable Bias Programmable Bias

Programmable Bias Programmable Bias

4
0

SPIs4 SPIs4

SPIs4 SPIs4

(4
th

-order system) (4
th

-order system)

(4
th

-order system) (4
th

-order system)

Figure 6.1: The architecture of a 16th-order hybrid computing system.

6.1 Overall architecture

Fig. 6.1 shows the overall architecture of the 16th-order system. Each fourth-order unit, with

the microarchitecture and orientation shown in Fig. 3.6, serves as a “tile” in the scalable

architecture. Each tile is upgraded to have 16 analog inputs, 16 analog outputs, one pro-

grammable bias block, two more CT DAC blocks (not shown, now four CT DACs per tile

in total). Each tile is programmed by the its own SPI controller and has a pair of eight-bit

90

4

4

16
th

-order chip 16
th

-order chip

4

4

4

4

4

4

16
th

-order chip 16
th

-order chip

4

4

4

4

4 4 4 4

4 4 4 4

4 4 4 4

Figure 6.2: Two-by-two array of the 16th-order chips for 64th-order differential equations.

digital I/Os (see TDIs and TDOs in Fig. 3.6. Four pairs of digital I/Os are multiplexed at

the global level and the chip has only one pair connected to the outside.

Each tile can be connected to any other tile through the global crossbars. As shown, there

are 40 global horizontal wires (on each row) and 40 global vertical wires (on each column), 32

of which are connected to the tiles; the wires not connected to tiles contribute to the chip’s

16 analog inputs and outputs. At each intersection sits a global crossbar that controls the

signal flows between tiles; each tile is responsible for the programming of the adjacent global

crossbars, the one to the top-right corner of each tile. The orientation of the analog inputs

and outputs is designed for multiple-chip integration onboard to solve larger problems. For

example, to build a 64th-order system, we could just put four chips in a two-by-two array,

as shown in Fig. 6.2. The analog I/Os would be connected to the adjacent neighbors, so that

91

any two adjacent chips would have eight connected analog channels (four inputs and four

outputs). It is worth mentioning that, when we integrate multiple chips on PCBs to solve

higher order equations, the distribution of SPI signals to each chip may become a problem:

the SPI signals received by each chip need to be well synchronized, otherwise the blocks on

different chips would start computation at different times, causing solution errors. Sending

a start signal to various chips on the board is a problem similar to clock distribution.

The number of analog I/O pins for each tile and for the whole chip was decided based on

mapping a series of 2-D PDEs, the target application for this 16th-order chip. For example,

with the I/O connections shown in Fig. 6.1, we can map a 2-D heat-diffusion equation, a 2-D

Burger’s equation, a 2-D wave equation, etc. onto our system. Two-D PDEs with more than

16 unknowns can be mapped to several chips, with the interconnections described earlier.

Each tile has separate power domains for the analog and digital blocks to reduce interfer-

ence. Nevertheless, they also share some power rails to save pins. For example, Tile 00 shares

analog power rails with Tile 01, and Tile 10 shares digital power rails with Tile 11. Also, all

the testing structures, used for probing internal signals in the first chip, are removed.

6.2 Tunable global bias blocks

To further save pads and pins, each tile has just two bias-current ports: 1 µA going into

and 1 µA going out of the tile. The two bias currents are received by NMOS and PMOS

programmable biasing blocks, respectively. Fig. 6.3 shows the NMOS programmable current

source array, which generates bias currents for functional blocks in the same tile. The pro-

92

B

A1

IBIAS for block biasing

A2
A7

IREF from
off-chip

Programmable NMOS current mirror array

M1

M2

M3

M4

M5

M12

M6

M13

M11

M18

Figure 6.3: Schematic of one of 32 programmable NMOS bias-current source for biasing the

computing block in one tile (fourth-order system).

IBIAS for block biasing

IREF from
off-chip

Programmable PMOS current mirror array

AVDD

AVDDAVDDAVDD

M1

M2

M3

M4
M5M6M11

M12M13
M18

Figure 6.4: Schematic of one of 18 programmable PMOS bias-current source for biasing the

computing block in one tile (fourth-order system).

grammable bias block has three-bit programmability (binary to thermometer decoding) for

each generated bias current (Fig. 6.3), to compensate for temperature and process variations:

Code 100 would generate the normal value of 1 µA, and step size is 65 nA. Fig. 6.4 shows

the design detail of the PMOS programmable current source array, which uses the same

93

M1

1.2/12

Transistors

W/L (μm/μm)

3Multiplicity

M2

1.2/12

3

M3

1.2/12

3

M4

1.2/12

3

M5 ~ M11

0.2/12

1

M12 ~ M18

0.2/12

1

LowVT type

Table 6.1: Transistor sizes used in the NMOS mirror array in Fig. 6.3.

M1

3/12

Transistors

W/L (μm/μm)

3Multiplicity

M2

12/12

3

M3

3/12

3

M4

12/12

3

M5 ~ M11

2.4/12

1

M12 ~ M18

0.6/12

1

LowVT type

Table 6.2: Transistor sizes used in the PMOS mirror array in Fig. 6.4.

architecture as the NMOS one shown in Fig. 6.3. The whole chip now has eight pins reserved

for bias currents, two for each tile. Transistor sizes used for NMOS and PMOS mirror arrays

are shown in Tables 6.1 and 6.2, respectively.

6.3 Instruction set and address-space mapping

The instruction sets are also upgraded to 24 bits from the previous 18 bits used in the

fourth-order chip. The advantage of having the instruction word length be a multiple of eight

bits is that commercial microcontrollers usually support dedicated high-speed SPI interfaces

(usually called USART ports), which are much faster than just toggling the universal digital

I/Os to construct the correct timing for the SPI signals. The virtual hierarchy of our 16th-

order chip is defined as fabric, tile, slice, and block, which will be explained next.

94

8 8 8 8

8 8 8 8
SPI CONTROLLER

SRAM SRAM

∫

∫

∫

∫

C
T

A

D
C

C
T

D

A
C

8 8

DIGITAL
OUTPUT

D
IG

IT
A

L

IN
P

U
T4

SPI

C
T

A

D
C

C
T

D

A
C

8 8

C
T

D

A
C

C
T

D

A
C

Slice-0

Slice-1

Slice-2

Slice-3

S
li

ce
-0

S
li

ce
-2

Slice-0 Slice-2

From left to
right, belongs to
Slice-0, 1, 2, 3

Figure 6.5: Illustration of how one tile is divided into multiple slices.

Each 16th-order chip is called a fabric. The first four bits of the 24-bit instruction word

are used to identify which fabric to program and inside that fabric, which tile (the fourth-

order system) and the associated global crossbars to program (Fig. 6.1). For example, we

can name the chips Fabric 00, Fabric 01, etc. to facilitate multiple-chip programming. The

following eight bits are used to locate which slice to use and inside that slice, which functional

95

block is used for programming. A slice contains one row of analog blocks, shown in Fig. 6.5,

and several other mixed-signal blocks. However, since there are only two ADCs and two

SRAMs in total, the two slices containing ADCs and SRAMs are called full, and other two

are called half. For example, there are four slices in total. One full slice has two fanout

blocks, one integrator block, two multiplier blocks, one ADC block, one SRAM block, and

one DAC block. The last 12 bits of the instruction word carry the parameter information for

the individual block and signal routings. This hierarchy of fabric, tile, slice, and block adopts

the object-oriented design methodology and inheritance features of the C++ language, which

is beyond the scope of the thesis topic and thus will not be discussed here.

6.4 Layout for the second chip

Fig. 6.6 shows full-chip layout of the 16th-order chip design with key blocks annotated.

96

Global
horizontal wires

4 CT
DACs

Global
vertical wires

Programmable
bias array

Global
crossbars

Figure 6.6: Full-chip layout picture of the 16th-order system.

97

Chapter 7

Measurement Results

7.1 Die photos and packaging considerations

The two test chips were fabricated in TSMC 65 nm LP CMOS technology and were success-

fully tested. We also tried the TSMC 65 nm GP CMOS process in simulation, but its large

gate leakages are unsuitable for low-power analog circuits.

Fig. 7.1 shows the die photo of the 1.96 mm× 1.96 mm (3.84 mm2) fourth-order system.

The active area is about 2.0 mm2, including testing and general programmability circuits.

The area would be considerably smaller if some special-purpose computation tasks were

targeted. As can be seen from Fig. 7.1, all the analog blocks share the same power rails,

which is similar to “star”-style connections. The CT ADCs and CT DACs have separate

power rails. All the digital blocks share the same power grid.

Fig. 7.2 shows the die photo of the 3.7 mm×3.9 mm 16th-order system, where the fourth-

98

4×

INTEGRATOR

8×

FANOUT

8×

MULTIPLIER

 / VGA

2×CT ADC 2×CT DAC

SPI CONTROLLER

2×SRAM

Figure 7.1: The die photo of the fourth-order hybrid computing unit.

order systems are oriented in a two-by-two array. To minimize parasitic inductance and

capacitance, we chose the QFN package (80 pins, with thermal-ground plane) for the fourth-

order chip. However, no QFN package solution is available for the 16th-order chip, as it has

over 200 pads, over 120 of which are functional pads (not for power or ground rails) and need

99

4
th

-order system 4
th

-order system

4
th

-order system 4
th

-order system

Figure 7.2: The die photo of the 16th-order hybrid computing unit.

to be bounded to package pins. The BGA package would be a good choice for the 16th-order

chip, but its complexity and cost are prohibitive. Finally, after some searching, we chose

an unusual but economic 144-pin LQFP package with a thermal-ground plane. Though the

long leads of this LQFP package have more parasitics than those of the QFN, it provides a

ground plane as well, which saves many ground pins.

100

We would like to make clear that, in the following sections, all of the reported results

related to individual blocks (e.g. the power dissipations of each block, the nonlinearity of

the fanout block, etc.) were measured on the fourth-order chip. Since the 16th-order chip

reuses exactly the same blocks, we did not remeasure them. Instead, we focused on solving

higher-order problems with the 16th-order chip. Thus, all the ODE/PDE equations with no

more than four unknowns/state-variables were measured on the fourth-order chip; equations

with more than four unknowns were solved on the 16th-order chip, unless otherwise noted.

7.2 Testing environment, chip interfaces and program-

ming language

Fig. 7.3 shows the testing environment setup for the fourth-order chip. The test board for

the 16th-order chip is shown in Fig. 7.4. We choose Arduino boards because of its popularity

and open-source software. The Arduino Due boards provide all the necessary interfaces and

functionalities we need for testing: eight ADC channels for measuring analog signals, two

DAC channels for generating analog signals, over 40 digital I/Os for generating control signals

and measuring chip data. The only limitation is the speed of the Arduino Due board. It can

only toggle the digital I/O up to 500 kHz (after implementing some specific call functions to

the I/O pins, which will not be discussed here). However, this is sufficient for the purposes

of this project. A more advanced FPGA board would be needed if we aim for much higher

SPI toggling speed, such as 100 MHz.

101

4th-order chip

Figure 7.3: The testbench of the fourth-order hybrid computing chip.

Since our hybrid computing chip’s analog interfaces operate in current mode, I–V and

V –I converters are needed to interface with the Arduino board’s voltage-mode ADC/DACs.

Due to the small current (7.8 nA for 1 LSB) coming out of the chip, we need to use op amps

with at least pA-level input bias current and adequate bandwidth at the same time. We

102

16th-order chip

16th-order chip

Figure 7.4: The testbench of the 16th-order hybrid computing chip.

chose AD8512 from Analog Devices to implement the I–V converter, as shown in Fig. 7.5.

We choose 600 kΩ for the feedback resistors so we could convert the ±2 µA range differential

currents to a ±1.2 V range. The V –I converters were implemented with Texas Instruments’

LM13700 chips, which provide a similar push–pull, class-AB output current interface as the

analog blocks’ on our chip (see LM13700 datasheet for more details). To keep the nonlin-

103

AD8512

600 kΩ

IOUT1-

IOUT1+
VOUT+

VOUT-

The hybrid
computer

chip
AD8512

600 kΩ

Figure 7.5: I–V converter implemented by AD8512.

earity low, we configured the LM13700 to convert ±25 mV peak differential inputs to ±2 µA

peak differential currents. We passed these differential currents into the I–V converters im-

plemented with the AD8512, and the measured voltage outputs have THD = 0.1%, lower

than the eight-bit resolution we targeted for our blocks. This guarantees that our testing

instruments’ nonidealities would have negligible effects on the measurement results.

We used a C++ style, object-oriented, customized language [12] to program the chips. We

primarily followed the computing diagrams for each equation (as will be seen later in Chapter

8) to write the corresponding programming codes. Concise and higher-level symbolic math

expressions, like those used in Mathematica, can also be taken as input, but this method

is limited by our compiler to only a few specific equations and thus will not be discussed

here. For example, we could connect one block’s output to another block’s input, then to the

chip’s analog output by writing the following codes.

int0 = fabric.chips[0].tiles[0].slices[0].integrator;

104

∫
through

local
crossbars

 through
local

crossbars

Slice[0]

Tile[0]

fans[0]integrator

Chip[0]

tileOuts[0] chipOutputs[0]

through
global

crossbars

Figure 7.6: A diagram illustration of the signal paths set by the programming codes.

fan0 = fabric.chips[0].tiles[0].slices[0].fans[0];

tileout = fabric.chips[0].tiles[0].slices[0].tileOuts[0];

chipout = fabric.chips[0].tiles[0].slices[0].chipOutputs[0];

conn0.setConn(int0→out0, fan0→in0);

conn1.setConn(fan0→out1, tileout→in0);

conn2.setConn(tileout→out0, chipout→in0);

Fig. 7.6 illustrates the signal paths configured by the above code. The first four lines of

codes define four different objects: an integrator block named as “int0,” a fanout block named

“fan0,” an analog output of the tile named “tileout,” and a chip output named “chipout.” As

shown, each lower-hierarchy item is a member of a higher-hierarchy item (similar to the C++

class type). The last three lines define the connections between the objects, which follows

the rules that the first object’s output is connected to the second object’s input. Thus, the

105

above codes state the following: int0’s output is connected to fan0’s input, fan0’s out1 is

connected to tileout’s input, tileout’s output is connected to chipout’s in0. Please note that

there are three output ports of the fanout block (named out0, out1, and out2). The analog

inputs and outputs of a tile or chip are treated as functional blocks, even though they are

actually just analog crossbars. This helps standardize the codes and facilitates interpretation

and debugging.

7.3 Calibration procedures

As discussed in the design details of each building block (Chapters 4 and 5), there are many

calibration circuits to compensate for analog imperfections and improve computing accuracy.

The calibration routine is performed by the Arduino Due microcontroller, although they

could also be implemented as ASIC circuits on the chip. When in calibration mode, the

whole system is configured as illustrated in Fig. 7.7. Each analog block is connected to the

chip’s output, one by one, and measured by the microcontroller’s ADCs. After measuring

the present offsets, the binary search algorithm decides a new calibration code to be sent to

the chip through the SPI interface. This new instruction is decoded by the global driver and

global decoder, which then writes the local SRAM cells that store the calibration codes. The

calibration takes about 4 ms for the fourth-order chip and about 20 ms for the 16th-order

chip, when the SPI clock is running at 20 MHz.

106

WWL

GLOBAL DECODER

G
L

O
B

A
L

 D
R

IV
E

R

WBL

WBLB

8

8

CFG_CAL 8

SPI CONTROLLER

ARDUINO DUE

BINARY

SEARCH

ALGORITHM

HYBRID COMPUTING CHIP

. . .

ON-BOARD ADCs

ADC

ARM

CORTEX M3

 ADDRDATA

8

TG SWITCH

10

SPIs

4

Local

SRAMs

Figure 7.7: The global signal paths for calibrating each block and related functional blocks

involved.

7.4 Measurement results

7.4.1 Calibration

Table 7.1 shows output offsets of analog blocks measured before and after calibration. The

calibration circuits greatly reduced the offsets caused by device mismatches.

The accuracy of solving differential equations is also greatly improved by offset calibra-

tions, as shown in Table 7.2 for two examples. After offset calibrations, we have a solution

error smaller than 2%.

107

Block type

Fanout

Multiplier

Output offsets*
before calibration (nA)

109

57

Output offsets*
after calibration (nA)

4

6

*Average values of all same type of blocks over one chip for +/-2μA
range

Integrator 42 4

Table 7.1: Analog offsets minimized by calibration.

ODE s physical

background
Nonlinearity involved

Large angle motion of

pendulum

Trigonometric

function (sine)

Mass-spring dampers

with Coulomb friction
Sign function

RMS error*

(uncalibrated)

7.3%

18.0%

RMS error*

(calibrated)

1.5%

0.5%

*Relative to full sale

Table 7.2: Solution accuracy improved by calibration.

7.4.2 Nonlinear function generator

We chained together one CT ADC, one CT SRAM and one CT DAC as a nonlinear function

generator, where the DAC’s analog output signal is a nonlinear function of ADC’s analog

input signal.

Shown in Fig. 7.8 is a screen capture of critical signals on oscilloscope when the nonlinear

function generator is performing a sine function lookup. The blue ramp signal on channel

3 is the input x from −π to +π; green and yellow curves are the differential outputs of the

DAC, already converted to voltage signals. The purple curve is the difference (calculated by

108

F(x) = sin(x) lookup

x

Differential output

AnaOut-
x is from -π to +π

AnaOut+

F(x) = sin(x) lookup
(AnaOut+ - AnaOut-)

Figure 7.8: The screenshot of oscilloscope measurement results when the nonlinear lookup

table is configured for sine function lookup.

the oscilloscope) between the yellow and green curves, which is obviously a sine function of

x.

Two examples of the nonlinear function generator errors compared to ideal values are

shown in Fig. 7.9; the full cycle (−π to −π) sine function and sigmoid function table lookups

have normalized RMS errors of 0.56% and 0.76% respectively. The total power dissipation of

the nonlinear function generator is signal-dependent, decreasing as the table lookup activity

decreases, as shown in Fig. 7.10.

109

-1

-0.5

0

0.5

1

X (rad)

F(X) = sin(X)

-2%

-1%

0%

1%

2%

-π +π

X (rad)-π

+π

Y

F(Y) = sigmoid(Y)

-6 +6

Y

-6 +6

0

0.5

1

-2%

-1%

0%

1%

2%

Relative ErrorRelative Error

Figure 7.9: Nonlinear function lookup examples.

50

55

60

65

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16 18 20

Lookup Rate (kHz)

F(X) = sin(X) lookup

P
o
w

er
 D

is
si

p
at

io
n
 (
μ

W
)

Figure 7.10: Nonlinear function generator’s power dissipation is lookup rate dependent.

110

Technology TSMC 65nm LP

Die area / active area 3.8 mm
2
 / 2.0 mm

2

Number of integrators 4

Number of multipliers/VGA 8

Number of fanout blocks 8

Number of CT ADC 2

Number of SRAM 2

Number of CT DAC 2

Number of analog inputs/outputs 4/4

Digital input/output word length 8 bits

Programming interface SPI

ADC+DAC SNDR 1kHz/20kHz 46.3dB/53dB

Fanout nonlinearity
2

0.13%

VGA/Multiplier nonlinearity
3

0.15%

Block name Power

Fanout
4

37 mW

Integrator
4

28 mW

Multiplier
4

61 mW

VGA
4

49 mW

CT ADC
5 54 mW /

82 mW

CT DAC
5 4.6 mW /

15 mW

SRAM
6

20 mW

Analog circuits

leakage
6.7 mW

Digital circuits

leakage

(estimate)

85 mW

Supply voltage 1.2V

Integrator nonlinearity
1

0.44%

1 2μA range, full-scale 20kHz sine input.
2 RMS deviation from unity gain over +/- 85% full scale.
3 RMS deviation from unity gain over +/- 85% full scale in VGA mode.
4 2μA range, 20kHz full-scale sine input.
5 2μA range, 1kHz / 20kHz full-scale sine input.
6 20kHz full-scale sine digital input from ADC; SRAM programmed as a linear lookup table.

DAC DNL/INL 0.73LSB/0.67LSB

FOMcomputer 14.1 nJ

fmax,computer 20 kHz

Table 7.3: Fourth-order hybrid computing unit performance.

111

7.4.3 Key performance summary of the hybrid computing chip

A performance summary is shown in Table 7.3. The measured nonlinearities and noise are

consistent with our intended eight-bit accuracy.

7.4.4 Comparison to the prior art

To compare our work to the prior art as reported by Cowan [1], we use one macro block of

that work, which contains a similar number of functional blocks as our hybrid computing

chip, as shown in Table 7.4. The increased functionality is apparent, as is the lowering of the

power dissipation and FOMcomputer by more than an order of magnitude.

112

Technology 65nm CMOS

Active area (estimate) 2.0 mm2

On-chip ADC, SRAM, DAC Available

Programming interface SPI

Nonlinearities available
for computation

Arbitrary

Supply voltage 1.2V

Programming environment Arduino IDE

Calibration All blocks, automatic

250nm CMOS

6.3 mm2

N/A

Non-standard

Specific types

2.5V

Simulink

Integrators only

On-chip digital controller AvailableN/A

Power with all blocks on
(estimated)

1.2 mW18.8 mW

Our 4th-order chipOne macro in [7]

Shut down of unused blocks AvailableN/A

Computation types CT analog / CT hybridCT analog only

Number of function blocks 2625

fmax,computer 20 kHz25 kHz1

FOMcomputer 14.1 nJ150.4 nJ1

1 Estimated

Table 7.4: Comparison to previous work.

7.5 Measured mismatches of integrator time constants

As shown in the integrator design part of Chapter 4, we use fixed value capacitors to im-

plement the integration operation. Due to the capacitor mismatches, plus the input-scaling

mirror gain mismatches and the output stage gain mismatches, integrator’s overall gain

(wc = 2πfc, where fc is the unity-gain frequency), also known as the time scaling factor, α,

113

-
x(t)

To chip output

x(t)

Figure 7.11: INT time constant mismatches setup.

to have mismatches as well. In order to record such mismatches and compensate them in

computation, we use the following setup, which represent the first-order ODE, to measure

the integrator time constant τ = 1
2πfc

: with x(0) as the initial condition, we have the an-

alytic solution of the above setup as x(t) = x(0) exp(−t
τ

), where τ is the time constant of

the integrator. (The solution is also in the same expression for the RC discharging circuits,

where x represents the voltage across the capacitor.) The measurement results of 16 integra-

tors on the 16th-order chip are shown in Fig. 7.12, where the initial condition is measured

as −1.22 V on board (which corresponds to −1.22 V/600 kΩ = 2.033 µA). When t = τ , we

have x(τ) = x(0) exp(−1) ≈ 0.368x(0) ≈ 0.449 V. Thus, we could directly measure the time

constants of 16 integrators from Fig. 7.12 by looking at the corresponding time values when

outputs change by 0.449 V. We then converted the time values into the unity-gain frequency

fc as shown in the following table:

As shown in Table 7.5, the average unity-gain frequency across one 16th-order chip is

19.37 kHz, which is smaller than our design value 20 kHz because of process variations; thus,

we will use 19.37 kHz as the new fc. The third column shows the ratios of individual value

over the average value. For those that deviate from the normal 1 “a lot” like 1.04, we could

114

0 0.5 1 1.5 2 2.5

x 10
−5

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

time (s)

V
ol

at
ge

(V
)

Figure 7.12: The measurement results of the setup in Fig. 7.11.

calibrate them back to one by inserting a VGA block before the Integrator block. Remember

that the VGA have the ability of fine coefficient tuning by the six-bit gain calibration to the

eight-bit coefficient-setting DAC. However, the disadvantage of doing this is that the inserted

block would cause extra phase shifts in the feedback loops, which would also introduce

solution errors. For slow varying solutions, fc calibration would help increase the solution

accuracy; for fast varying solutions, we need to be careful at introducing extra loop delays,

which would possibly introduce more errors instead.

Our experience is that we could directly use those integrators with normal values between

0.99 and 1.01; this means that we could directly use 11 out of the 16 integrators shown in

Table 7.5. For those 5 integrators with large fc deviation, we could insert VGAs to do fc

calibrations.

115

Tile[0].Slice[1].int 1.03
Tile[0].Slice[0].int 1.01

20.02
19.47

Integrator
Normalized to average

value (19.37 kHz)
Unity-gain frequency

(kHz)

Tile[0].Slice[3].int 1.01
Tile[0].Slice[2].int 0.98

19.47
18.89

Tile[1].Slice[1].int 1.00
Tile[1].Slice[0].int 0.99

19.41
19.23

Tile[1].Slice[3].int 1.01
Tile[1].Slice[2].int 1.04

19.47
20.08

Tile[2].Slice[1].int 0.98
Tile[2].Slice[0].int 1.00

18.95
19.29

Tile[2].Slice[3].int 1.00
Tile[2].Slice[2].int 1.00

19.35
19.35

Tile[3].Slice[1].int 0.97
Tile[3].Slice[0].int 1.00

18.78
19.35

Tile[3].Slice[3].int 1.00
Tile[3].Slice[2].int 1.01

19.29
19.47

Average value 19.37
Standard deviation 0.34

Table 7.5: Integrator unity-gain frequency measurement results on the uncalibrated 16th-

order chip.

7.6 Temperature tests

We provide measurement results of our hybrid computing chips for three different tempera-

tures, -20 ◦C, 25 ◦C and 70 ◦C.

At all temperatures the calibrations work correctly. The offsets of analog blocks change

little based on the observed calibration codes, as shown in Table 7.6. The calibration current

changes in steps of 12 nA. The full-scale currents of DAC block vary more than the offsets

based on the observed calibration codes. This wide variation is due to the off-chip resistors

116

Block type

Fanout

Multiplier

-20 °C

44

27

25 °C

43

22

*For Fanout, Multiplier and Integrator, calibration codes are for offsets; for DAC, calibration
codes are for full-scale current. We use bi-polar calibration currents: code 31 is zero current, code
larger than 31 is positive current and code smaller than 31 is negative current; calibration current
changes in steps of 12 nA.

Integrator 44 41

70 °C

41

21

39

Calibration codes*

DAC 59 33 17

Table 7.6: Calibration codes of different representative blocks at different temperatures.

(± 100ppm/◦C) used to set the absolute 1µA bias current of the DAC blocks.

We also tested a 2nd-order ODE on our chip at different temperatures. The equation we

used is the following:

d2x

dt2
= −0.22

dx

dt
− 0.84x(t) (7.1)

with initial conditions: x(0) = 9 and x′(0) = −2. Shown in Fig. 7.13 is our chip’s solutions

at -20 ◦C, 25 ◦C and 70 ◦C, together with the ideal solution from Matlab. The RMS errors

(relative to full scale) of the chip’s solutions are 1.5% at -20 ◦C, 1.8% at 25 ◦C and 1.9% at

70 ◦C, respectively.

117

t (s)
0 10 20 30 40 50 60 70

x
(d

im
en

si
on

le
ss

)

-8

-6

-4

-2

0

2

4

6

8

10

Ideal Matlab solution

Chip solution under -20 °C
Chip solution under 25 °C
Chip solution under 70 °C

Figure 7.13: Solutions of the 2nd-oder ODE (7.1) at different temperatures.

7.7 A USB-powered hybrid computer board

In order to spread the word about analog/hybrid computing among different communities,

and more importantly, to gain more users of our hybrid computing chip to try out new ideas

of hybrid computing, the author developed a small, mobile demo board with the fourth-order

chip, which can be powered just by a USB cable.

The hybrid computer is composed of two subboards: the hybrid computing board on

118

top and the Arduino Due board underneath. The purpose of the Arduino Due board is

for powering, programming, measuring and calibrating the hybrid computing board. The

schematic and layout of this hybrid computer board are shown in Appendix C.

 Hybrid Computing Board

Arduino Due

Figure 7.14: The lateral look of the hybrid computing demo board.

Another hybrid computer board with 16th-order chips are under development at the time

of writing, whose schematic and layout are shown in Appendix D.

119

Figure 7.15: The side look of the hybrid computing demo board.

120

4×Analog Outputs Power Supplies

8
-b

it
 D

ig
it

al

In
p
u

t
&

 O
u
tp

u
t

4 × Analog Inputs

 Hybrid Computing Chip

(4
th

-order)

+
-

+
-

+
-

+
-

Figure 7.16: The front look of the hybrid computing demo board.

 Hybrid Computing Board

Arduino IDE

USB cable

Figure 7.17: Programming environment of the demo board.

121

Chapter 8

Solutions of Nonlinear Differential

Equations on the Hybrid Computer

and Performance Comparisons

We have successfully tested the chip using a variety of equations using the developed hybrid

computer board in Chapter 7. In this chapter, we focus on solving nonlinear ODEs and

the comparisons against numerical methods running on microcontrollers. For examples of

solving linear differential equations, see the solution of a 16th-order 1-D heat equation (16

state variables after applying finite difference method) in Appendix E, which describes the

temperature distribution in 1-D space over time.

We now provide several examples of nonlinear ODEs in details.

122

8.1 Open-loop nonlinear equation computation for robotic

path planning

ω

ν

cos

sin

x

y

θ(t)

x(t)

y(t)

θ

x

y

CT
DAC

CT
ADC

SRAM
8

DATA

TRIGGER
SIGNAL

CT
DAC

SRAM

COS()

SIN()

θ(t)

:

:

angular velocity

linear velocity

Continuous-time
system dynamics

8

DATA

TRIGGER
SIGNAL

8

DATA

TRIGGER
SIGNAL

8

DATA

TRIGGER
SIGNAL

∫ ∫

∫

(b)

(a)

Figure 8.1: (a) Differential-drive robot system dynamics. (b) Block diagram for solving system

dynamics in our hybrid computing unit.

In this equation example, we demonstrate the use of our chip modeling the system state

of a miniature differential-drive wheeled robot (Fig. 8.1(a)) using model-predictive control

method [22]. Under a limited computing energy budget, the robot must predict the system

state (x(t), y(t), θ(t)) at a future instant. The prediction involves trying as many randomized

inputs (ω(t), ν(t)) as possible, and finding the best input that minimizes a cost function for

actuator control. Our chip acts as a system dynamics simulator in this application. The

123

1 25 MHz, 7 μW/MHz
N/A: Not Applicable

Time step
size

Total clock
cycles

Our hybrid chip N/A N/A

0.1sMSP4301 734

Time needed for
one solution

Energy consumption
for one solution

0.84 μs 0.48 nJ

29 μs 5.14 nJ

Table 8.1: Comparison to solutions on a MSP430 microcontroller for robotics applications.

system dynamics equations are mapped to the diagram shown in Fig. 8.1(b), and the chip

is programmed to implement this diagram. In this example, we apply constant inputs (ω,

v) and solve for the state 0.1 s into the future. Our chip solves this in 0.84 µs with 0.48 nJ

energy consumption and with 0.6% RMS error relative to full scale under 5000 random tests,

which is acceptable for this application.

For a fair comparison, we chose an efficient 16-bit fixed-point solver (eight-bit fixed-point

resulted in excessive error), running on a state-of-the-art, 25 MHz 0.4 V, MSP430 architecture

[23], which has the efficiency of 7 µW/MHz, is assumed, it requires an estimated 29 µs and

5.14 nJ to predict the future state, with 0.28% RMS error relative to full scale. Our chip

achieves 35× improvement in speed and 11× in energy.

124

8.2 Nonlinear differential equations modeling a cou-

pled mass-spring system

The example describes a coupled mass-spring system involving nonlinear springs, shown in

Fig. 8.2.

Mass

A

k1
Mass

B

k2 k3

x1 x3

x1 , x3 : positions of Mass A & B

x2 , x4 : velocities of Mass A & B (not shown)

k1 , k2 , k3 : spring constant

cf : coefficient of frictions (not shown)

Figure 8.2: A 1-D coupled mass-spring system with nonlinear springs and Coulomb friction.

The nonlinear ODEs describing the system dynamics are shown as follows:

ẋ1 = x2,

ẋ2 = −(k1 + k2)sign(x1)
√
|x1|+ k2sign(x3)

√
|x3| − cf ẋ1,

ẋ3 = x4,

ẋ4 = −(k2 + k3)sign(x3)
√
|x3|+ k2sign(x1)

√
|x1| − cf ẋ3

(8.1)

with initial conditions of x1(0) = 2; x2(0) = 0; x3(0) = −1;x4(0) = 0, spring constants

of k1 = k2 = k3 = 0.5 and friction coefficient of cf = 0.15. We simulate the motion of

the two masses, with displacements x1 and x3, for a physical time of 40 s. Fig. 8.3 shows

125

CT

DAC
SRAM

8

8

CT

DAC
SRAM

8

8

x2(t) x1(t)

x3(t)x4(t)

-cf

x1(t)

-(k1+k2)

k2

-cf

x3(t)

k2

CT

ADC

CT

ADC

-(k1+k2)

Figure 8.3: The block diagram solving the nonlinear differential equation (8.1).

the block diagram that maps the equations, where the nonlinear functions sign(xi)
√
|xi|

are implemented as lookup tables. When solving the equations shown in Fig. 8.3, the state

variables x1(t) and x3(t) are continuously varying with time; they are converted by the

CT-ADCs into CT digital signals, which are immediately fed into the following SRAMs in

order to look up the nonlinear function values. The following CT-DACs convert the SRAMs’

outputs back to analog signals, which are distributed to several destinations through fanout

blocks. The signal flow in this computing technique is CT hybrid: it is CT digital inside the

ADC+SRAM+DAC chain, and CT analog elsewhere.

Our hybrid chip solves the nonlinear ODEs in 320µs with energy consumption of 0.25µJ,

and with 4.7% RMS error relative to full scale. Fig. 8.4 shows the representative solution of

x1(t) from our chip (dots), together with the ideal solution (solid lines).

126

-2

-1

0

1

2

20 40

t (s)

x1 (cm)

Figure 8.4: The solution of x1(t) from our hybrid computer (dots) and the ideal solution

(solid line).

A comparison against a RK4 solver running on the state-of-art MSP430 microcontroller

[23] is shown in the following table.

127

Coupled mass-springs,
4.7% RMS error

Time step size (s)

Our chip
MSP4301,

RK4 method

N/A 0.85

Total clock cycles
(est.)

N/ANo. of iterations 47

N/A 1015k

Solution time (μs) 320 41k

FOMtask (μs*μJ)
(Time-energy

product)

0.25Solution energy (μJ) 7

80 287k

1 25 MHz, 7 μW/MHz
N/A: Not Applicable

N/A
Clock cycles per

iteration (est.)
21.6k

Table 8.2: Comparison to the solution obtained with RK4 method on a MSP430 microcon-

troller.

8.3 Van der Pol equation

In this example, we provide the solution of the second-order, nonlinear Van der Pol equation

[24]. The equation is shown as follows:

ẋ1 = x2,

ẋ2 = µ(1− x21)x2 − x1

(8.2)

with initials conditions of x1(0) = −0.5, x2(0) = 0. We choose µ = 0.2 for this example.

Fig. 8.5 shows the block diagram that maps the equations. We solve for a physical time of

128

x1(t)x2(t)

CT

DAC

8

μ

x1(t)

Figure 8.5: Van der Pol equations in (8.2) mapped to our chip.

60 s. The solution of x1(t) from our chip (dots) is shown in Fig. 8.6, together with the ideal

solution (solid lines). Our hybrid chip solves this problem in 480 µs with energy consumption

of 0.14 µJ, and with 4.6% RMS error relative to full scale.

-2.5

-1.5

-0.5

0.5

1.5

2.5

t (s)

x1 (cm)

6030

Figure 8.6: The solution of x1(t) from our hybrid computer (dots) and the ideal solution

(solid line) for the Van der Pol equation (8.2).

129

A comparison against a RK4 solver running on the state-of-art MSP430 microcontroller

[23] is shown in Table 8.3.

Time step size (s)

Van der Pol,
 4.6% RMS error

Total clock cycles
(est.)

No. of iterations

Solution time (μs)

FOMtask (μs*μJ)
(Time-energy

product)

Solution energy (μJ)

Our chip
MSP4301,

RK4 method

N/A 0.23

N/A 260

N/A 1859k

480 74k

0.14 13

67 962k

1 25 MHz, 7 μW/MHz
N/A: Not Applicable

Clock cycles per
iteration (est.)

N/A 7.15k

Table 8.3: Comparison to the solution obtained with RK4 method on a MSP430 microcon-

troller.

Phase plane plots are often used to investigate nonlinear oscillation equations. Fig. 8.7

shows the phase plane plot of two state variables, x1(t) and x2(t) for both our hybrid chip’s

solution (red) and the ideal solution (blue). Seven time stamps, starting from 0 s with

increment of 10 s, are marked on plots for reference.

130

Figure 8.7: The phase plane plots from our hybrid computer (red) and the ideal solution

(blue) for the Van der Pol equation (8.2). Time stamps with increment of 10 s are marked.

131

Chapter 9

Conclusions and Suggestions for

Future Work

9.1 Conclusion on the presented hybrid-computing chip

We introduced CT hybrid approximate computation, and have implemented a prototype

system in a scalable architecture using 65 nm CMOS technology. The system can do CT

computation with arbitrary nonlinearities that are implemented by a CT ADC + SRAM +

DAC architecture, demonstrating for the first time the use of CT digital signals in hybrid

computation. CT digital signals are used to do table-lookup tasks in our case. Nevertheless,

they can also be considered for such computation tasks as digital integration and differen-

tiation in the CT domain [25]. With CT digital signals involved, hybrid computing attains

more versatility, while ensuring aliasing-free operation and adaptive power dissipation.

132

We have successfully demonstrated the solution of differential equations up to 16th order.

Extensive digitally assisted calibration is used to improve analog computation accuracy,

which is on the order of 0.5% to 5%, depending on the details of the equations. However, the

trade-offs involved in our approach are very different from those in digital computation. In

the latter, precision can be increased at will by adding bits, whereas such luxury does not

exist in our case. For solving ODEs, digital computation can also use more energy (through

smaller time steps) to achieve higher accuracy. On the other hand, in many applications,

such as in cyber–physical systems, the overall system accuracy is limited by the sensors and

actuators involved, so extra bits in computation would not bring a significant advantage.

Another difference involves chip area. In our case, it scales approximately in proportion to

the problem order, whereas in digital computation a higher-order problem just results in

longer computation times, leaving area unaffected.

We should note that analog and hybrid computers have “taken a 40-year break”; we

are just now researching their possibilities in modern VLSI technology. It would thus be

premature to draw conclusions on comparisons between analog and digital computers, the

latter of which have a huge R&D effort behind them. Nevertheless, a limited comparison for

the specific cases reported shows that, compared to a conventional microcontroller in the

same technology, our hybrid computing unit is capable of giving much faster solutions (by

about two orders of magnitude) with large energy savings (one to two orders of magnitude),

for the same error. Thus, one possible use of the techniques presented is in applications where

approximate solutions are sought with low computational energy, as is often the case with

133

cyber–physical systems.

9.2 Suggestions for future work

First, more area-efficient calibration methods are needed. In our work, six-bit current-steering

calibration DACs are used extensively in all analog and mixed blocks. This calibration DAC

occupies a large percentage of area, as shown in Table 5.7. One possibility woul the floating-

gate technique. The floating-gate transistor can hold the calibration information in gate-

channel voltage, which is then converted to calibration current by transconductance circuits.

The transconductance circuit could be implemented as simply as one transistor. Thus, the

original six-bit calibration DAC could be replaced by several transistors using floating-gate

techniques, which would greatly decrease the area needed for calibration.

Second, digital computing blocks with more functionality are needed. For example, if

a microprocessor core is integrated on chip, calibration and configuration time would be

greatly reduced. Our prototype took about 4 ms to calibrate the fourth-order chip with the

SPI clock running at 20 MHz. With the calibration algorithms on chip, the SPI clock would

easily run at a much higher rate, such as 500 MHz in the 65 nm technology we used. The

calibration time could be reduced to 0.16 ms, greatly reducing the time overhead.

Third, besides the CT lookup tables, CT digital blocks doing arithmetic computations

are worth trying on chip. For example, as described in the patent [25], continuous-time

digital integration and differentiation blocks could be implemented with feedback and feed-

forward architectures. If, in the end, we could replace all analog computing blocks with the

134

equivalent CT digital ones, we will no longer need offsets/gain calibrations, greatly improving

the solutions’ accuracy.

Fourth, more time and effort could be spent on exploring the analog-seeding method for

solving equations. Most of the work described in this thesis was spent on designing chips

and boards. The analog-seeding method is a win-win: it takes advantage of the fast and

approximate analog solutions, and uses it as a seed to speed up an accurate but slow digital

algorithm. One analog seeding example can be found in Cowan’s work [1].

9.3 A few thoughts on analog and hybrid computation

and its applications

In history, no conclusions were drawn on why analog computers became extinct. In the

1960s, there were conferences for experts from analog computing and digital computing

communities to debate and defend their respective machines. Because analog computers

and digital computers use CT and DT computing principles, their strengths and weakness

are complementary. However, in the era dominated by CMOS technology, which is highly

optimized for logic operations, digital computers have been the winners.

The equations solved by old analog computers and the CT hybrid computer presented

in this work are mostly used to model physical systems. This means that the role of analog

and CT hybrid computers is to provide guidance to how the physical system, modeled by

differential equations, would behave under different conditions and parameters. Thus, analog

135

computers and our CT hybrid computer serve as physics simulators and predict behaviors

in the time domain.

We spent quite some time trying to find applications for the energy-efficient CT hybrid

computer presented in this work. They would include applications that

1. need to solve ODEs.

2. solve ODEs which dominate the computing workload.

3. solve ODEs that are mappable to our hybrid computer chip.

4. require low energy consumption while solving ODEs (more important than speed and

accuracy).

The first area we examined is real-time robotics. However, most of the robotics work-

load is evaluation of real-time data from sensors: Robotics decisions are made based on

conventional algorithms like searching and sorting. One path-planning method called model-

predictive control has been found that evaluates the robot’s future states and solves ordinary

differential equations describing the system states many times. However, evaluating ODEs

has not been identified as a problem in academic papers and people simply used Euler meth-

ods. The subsequent time-consuming nonlinear programming algorithms, which process the

ODE results and allocate robotics resources in real time, are big concerns and speedup

methods are often discussed in papers.

The second area is video games. Some video games do involve real-time physics simula-

tions, where the objects are changing positions according to users’ inputs. Physics engines,

136

software that provides simulations of physical systems, are often used to compute objects’

motions. It remains unclear how the complicated physics engine software works; it could

be based on open loop calculation or solving ODEs. But among these motion simulations,

the common collision detections are not suitable on analog computers because at the very

moment of collision, large force values, beyond analog computers’ dynamic range, are needed

at the contacted surface to separate two objects. Nevertheless, calculating objects’ motions

only accounts for a small portion of the computing work load (both time and energy). Other

computations like coordinate transformations, rendering, and texture mappings, takes up

most of the computing workloads; GPUs are often used there.

The third is solving ODEs and PDEs in applied mathematics. When we talked to people

from this area, they expressed more concern about speed, complexity, and accuracy than

about power dissipation. People use as much computing power as possible—e.g., GPU arrays

and computer clusters—to solve very complex and difficult problems. For example, the Vlasov

PDEs describe the evolution of a plasma distribution function in time domain. Unfortunately,

it is not practical to map the Vlasov PDE to our hybrid computer chip because the dependent

variable is a function of time, space, and velocity. For space dimensions, we could use the

finite difference method to approximate space derivatives. Then, at each node, in theory,

we could discretize again in the velocity dimension, which, unlike space, has no boundaries,

giving it a huge dynamic range (velocity could change sharply, as in the case of plasma-

particle motion). Thus, the discretization in the velocity dimension would result in huge

numbers of state variables, not suitable on analog computers. For conventional equations

137

like Poisson PDEs, a moderate-size problem to start catching some attention would involve

millions of state variables, such as a 3-D Poisson PDE with 100 nodes in each dimension.

Speeding up PDEs with millions of variables would be of interest, as this many variables

would reasonably model a physical object or phenomenon. However, even with several 16th-

order chips integrated on board, the number of state variables our chip could handle would

be around one hundred, which could only model toy problems from the perspective of applied

mathematics.

Thus, as can be seen, though solving differential equations with as little energy as possible

is a good and correct direction to explore, its direct applications remain a mystery, where

solving differential equations are involved and its solution energy is the biggest concern.

However, we believe that with the coming of the Internet of Things and other emerging

applications of sensor nodes, where more versatile distributed computing methods are needed

and their energy efficiency is a concern, it is realistically possible that solving differential

equations will be embedded in future applications.

138

Bibliography

[1] G. E. R. Cowan, R. C. Melville, and Y. P. Tsividis, “A VLSI analog computer/digital

computer accelerator,” IEEE Journal of Solid-State Circuits (JSSC), vol. 41, pp. 42–53,

Jan. 2006.

[2] C. E. Shannon, “Mathematical theory of the differential analyzer,” Journal of Mathe-

matics and Physics, vol. 20, no. 1–4, pp. 337–354, 1941.

[3] A. S. Jackson, Analog Computation. New York, NY, USA: McGraw-Hill, 1960.

[4] A. E. Rogers and T. W. Connolly, Analog Computation in Engineering Design. New

York, NY, USA: McGraw-Hill, 1960.

[5] J. A. Lawrence and H. E. Smith, “The role of jsc engineering simulation in the apollo

program,” Journal of Simulation, vol. 57, no. 1, pp. 9–16, 1991.

[6] G. A. Korn and T. M. Korn, Electronic Analog and Hybrid Computers. New York, NY,

USA: McGraw-Hill, 1964.

139

[7] G. E. R. Cowan, R. C. Melville, and Y. P. Tsividis, “A VLSI analog computer/math

co-processor for a digital computer,” in Proc. IEEE Int. Solid-State Circuits Conf.

(ISSCC), vol. 1, pp. 82–586, Feb. 2005.

[8] G. Bekey and W. Karplus, Hybrid computation. Wiley, 1968.

[9] R. Benham, Evaluation of Hybrid Computer Performance on a Cross Section of Scien-

tific Problems. AEC research and development report, Pacific Northwest Laboratory,

1970.

[10] A. E. Rogers and T. W. Connolly, Analog Computation in Engineering Design. New

York, NY, USA: McGraw-Hill, 1960.

[11] E. A. Vittoz and Y. P. Tsividis, “Frequency-dynamic range-power,” Trade-Offs in Ana-

log Circuit Design: The Designer’s Companion, C. Toumazou, G. Moschytz, B. Gilbert,

Boston, MA, USA: Springer, 2002, pp. 283-313.

[12] Yipeng Huang, private communication, 2016.

[13] B. Schell and Y. Tsividis, “A clockless ADC/DSP/DAC system with activity-dependent

power dissipation and no aliasing,” in Proc. IEEE Int. Solid-State Circuits Conf.

(ISSCC), pp. 550–635, Feb. 2008.

[14] S. Kawahito and Y. Tadokoro, “CMOS Class-AB current mirrors for precision current-

mode analog-signal-processing elements,” IEEE Transactions on Circuits and Systems

II: Analog and Digital Signal Processing, vol. 43, pp. 843–845, Dec. 1996.

140

[15] R. Stata, “Operational integrators,” Journal of Analog Dialogue, vol. 1, no. 3, pp. 6–11,

1967.

[16] Tao Mai, private communication, 2013.

[17] K. Bult and G. Geelen, “The CMOS gain-boosting technique,” Journal of Analog Inte-

grated Circuits and Signal Processing, vol. 1, no. 2, pp. 119–135, Oct. 1991.

[18] A. Putra, T. H. Teo, and S. Rajinder, “Ultra low-power low-voltage integrated pream-

plifier using class-AB op-amp for biomedical sensor application,” in Proc. Int. Symp.

on Integrated Circuits (ISIC), pp. 216–219, Sept. 2007.

[19] Y. Tsividis, “Continuous-time digital signal processing,” Electronics Letters, vol. 39,

pp. 1551–1552, Oct. 2003.

[20] T. Huang and C. Zukowski, “Reconfigurable digital/analog processor array for the sim-

ulation of gene regulatory networks,” in 49th IEEE International Midwest Symposium

on Circuits and Systems, vol. 1, pp. 552–556, Aug. 2006.

[21] D. Kim, G. Chen, M. Fojtik, M. Seok, D. Blaauw, and D. Sylvester, “A 1.85 fW/bit

ultra low leakage 10T SRAM with speed compensation scheme,” in Proc. IEEE Int.

Symp. on Circuits and Systems (ISCAS), pp. 69–72, May 2011.

[22] G. Klančar and I. Škrjanc, “Tracking-error model-based predictive control for mobile

robots in real time,” Robotics and Autonomous Systems, vol. 55, no. 6, pp. 460–469,

2007.

141

[23] D. Bol, J. D. Vos, C. Hocquet, F. Botman, F. Durvaux, S. Boyd, D. Flandre, and J. D.

Legat, “Sleepwalker: A 25 MHz 0.4 V sub-mm2 7 µW/MHz microcontroller in 65 nm

LP/GP CMOS for low-carbon wireless sensor nodes,” IEEE Journal of Solid-State Cir-

cuits (JSSC), vol. 48, pp. 20–32, Jan. 2013.

[24] D. Kaplan and L. Glass, “Understanding nonlinear dynamics,” in Two-Dimensional

Differential Equations, New York, NY, USA: Springer, 1995, pp. 240–244.

[25] Y. Tsividis, “Systems, apparatus, and methods for providing continuous-time signal

differentiation and integration.” US Patent App. 14/082,945, May 2014.

[26] R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations.

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2007.

142

Appendix A

Implementing Division

Though division is not available as a computing block, our computer is rich in primary

computing units: We could construct a divider block as discussed in the following subsections.

A.1 Using an integrator and a multiplier

In this method, we use an integrator block with a multiplier block in feedback to build a

divider, as shown in Fig. A.1. The purpose of the fanout block here is to duplicate and

invert the current signals. Please note that the multiplier block on our chip has the transfer

function of z = 0.5× x× y, where z is the output, and x and y are the inputs. We designed

the multiplier with the 0.5 coefficient because when both x and y are at full scale values

(e.g., 2 µA), we need to ensure that the output current is also unsaturated because it could

be fed to other blocks’ input. The 0.5 coefficient would halve the ideal 4 µA current to the

allowed maximum value of 2 µA. See multiplier circuit design in Chapter 4 for more details.

143

INT

-y

-
2×y/x

-2×y/x

2×y/x
y

x

FAN

MUL

A B

C

D

E

F G

Figure A.1: Divider built with an integrator with a multiplier in the feedback path. FAN is

used to duplicate signals. This is an implicit method for doing division, as we get the results

from an internal node of the diagram.

We now describe the operating principle of this divider. The critical signal path is in

bold, forming the mandatory negative feedback loop for the divider to work correctly. Fig.

A.1 shows the case when the input x is positive. (When x is negative, we need to set the

first output of the fanout block back to normal, with no inversion.) When the system is in

the stable state, the input (Node G) to the Integrator block is zero. Otherwise, any nonzero

signals would be integrated and drive the signal at Node G to 0 through the feedback loop.

Then we trace the signal path clockwise from Node G to derive other signal values. The

signal on Node E must be −y to cancel the input y on Node F. The signal on Node C should

be −2 × y/x for the multiplier block to generate −y. Since the first output of the fanout

144

inverts the signal on Node A, both Node A and B should be 2× y/x, which is the output of

the divider. The integrator here serves as an op amp, which drives any “error” signal at the

summing nodes to zero, thus stabilizing the loop.

To ensure that all the signals stay in the range during the division operation, we need to

limit our inputs x and y to satisfy the requirements of all nodes. This requires

−2 µA < x < +2 µA, x 6= 0, −x < y < +x (A.1)

If x and y do not satisfy the above, they can be scaled within the required range before

division.

A.2 Using table lookup

Since division of one variable by another is a nonlinear math operation, we could use our

lookup tables to generate the function, as shown in Fig. A.2.

CT

DAC

8
CT

ADC
SRAM

8

x

1/x

1/x

y 0.5×y/x

MUL

Figure A.2: Divider built with the nonlinear function generation.

Here, we use the lookup table to generate the nonlinear function 1
x
, and then multiply it

145

with y to get the final y
x

with a coefficient of 0.5. This requires

−2 µA < x < −0.5 µA, 0.5 µA < x < +2 µA, −2 µA < y < +2 µA (A.2)

Again, x and y may have to be scaled to satisfy the above relation.

146

Appendix B

Automatic Scaling

With the help of the microcontroller and the internal saturation-detection circuits, we have

the ability to do automatic scaling during computation. The microcontroller could monitor

the saturation-detection bits through the SPI interface by requesting the exception bits from

our chip. Once saturation is detected, the microcontroller could pause the computation, redo

the dynamic range scaling, download the new equation parameters onto the chip and resume

the computation. We use the following equation as a demonstration of how it works.

ẍ = −0.2ẋ− 2x− 1.6, (B.1)

with initial conditions of x(0) = 1.5, ẋ(0) = −1.5. If we directly map this equation and

values on our chip, we would have x(t)’s minimum value of −2.8 µA and ẋ(t)’s minimum

value of −3.2 µA and maximum value of 2.6 µA, exceeding our desired range from −2 µA to

+2 µA. One straightforward way to solve the above saturation issue is to do the following

147

simple math trick to the original (B.1) by “halving” all the terms and values:

(
ẍ

2

)
= −0.2

(
ẋ

2

)
− 2

(x
2

)
− 1.6

2
. (B.2)

We could replace x
2

with a new variable y in the above equation and have

ÿ = −0.2ẏ − 2y − 0.8, (B.3)

with initial conditions of y(0) = 0.75, ẏ(0) = −0.75.

148

Appendix C

Schematic and Layout of the

Demoboard with Fourth-Order Chip

149

Figure C.1: The layout of the demoboard with the fourth-order chip.

150

Figure C.2: The schematic of the demoboard with the fourth-order chip.

151

Appendix D

Schematic and Layout of the

Demoboard with 16th-Order Chips

152

Figure D.1: The layout of the demoboard with the 16th-order chip.

153

Figure D.2: The schematic of the demoboard with the 16th-order chip.

154

Appendix E

Solution of a 1-D Heat Equation

The 1-D heat equation is a PDE with the following form:

ut(t, x) = uxx(t, x) (E.1)

where the temperature variable u(t, x) is a function of time t and space x (x ∈ [0, 1]). We

would like to solve (E.1) with the boundary conditions of ux=0 = 0 and ux=1 = 2.

Applying finite difference methods [26], we could discretize the space variable x into

equally spaced grids with grid space h. (E.1) becomes the following:

dun
dt

=
un−1 − 2un + un+1

2h
(E.2)

where un is the temperature variable at grid n and has only one independent variable t.

We decided to discretize the space x with 16 internal nodes as shown in Fig. E.1.

We also need to do a time scaling trick in the expression before we map (E.2) on our

16th-order chip. Observe that there is a 1
2h

factor on the right-hand side. We can move this

155

… …
0 1

0 	 	 1/17
2

Figure E.1: Discretize the space into 16 internal nodes.

∫ From
left cell

To chip output

One cell (one state variable)

-
-

un

un

un-1

un

un+1

To
left cell

To
right cell

From
right cellun

Figure E.2: The module for building the heat equation shown in (E.3).

factor to the left-hand side of the equation and combine it with the dt term:

dun
dT

= un−1 − 2un + un+1 (E.3)

where T = t
2h

, h = 1
17

and n = 1, 2, 3, . . . , 16. Mapping (E.3) on our hybrid computer, we now

have a new time scaling factor of 2h × ωc. For amplitude scaling, we map the temperature

value range [-2, 2] directly to the hybrid computer range [−2 µA,+2 µA].

We mapped (E.3) onto our 16th-order chip using the module cell associated with one

state variable, as shown in Fig. E.2.

By cascading 16 such cells and setting the boundary conditions and the initial conditions,

156

u16

u9

.

.

.

.

Figure E.3: The hybrid computer solution (red) and ideal Matlab solution (blue) of the heat

equation in (E.1).

we could solve the 16th-order heat equations.

The solutions of (E.1) are shown in Fig. E.3 (after rescaling the time and amplitude) from

our hybrid computer chip (red) for eight state variables u16, u15, . . . , u9. The ideal Matlab

solutions are also shown (blue). The RMS error (relative to full scale) of our hybrid computer

solution is 1.7%.

157

	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction to analog computers: The history and the machine
	1.2 VLSI analog computers—The first try
	1.3 The need for post-Moore's-law computing
	1.4 Fundamental differences between analog computers and digital computers
	1.5 Limitations of prior art
	1.6 Thesis contributions

	2 Two [s] for Computation
	2.1 for energy-efficiency
	2.2 computer for evaluating analog/hybrid computers
	2.3 task for evaluating computing tasks

	3 An Overview of the Complete CT Hybrid Computer System
	3.1 Overview of the hybrid computer system presented in this work
	3.2 Overall chip architecture and floor plan
	3.3 Design choices
	3.3.1 Voltage mode versus current mode
	3.3.2 Bandwidth and phase shift
	3.3.3 Resolution choice

	4 Design of Analog and Connectivity Circuits for the Hybrid Computer
	4.1 Introduction
	4.2 Fanout architecture and circuit design
	4.3 Integrator design
	4.3.1 Error analysis of integrator finite DC gain and limited bandwidth on ODE solutions
	4.3.2 Integrator architecture and circuit design details

	4.4 Multiplier architecture and circuit design
	4.5 Circuits for testability
	4.6 Global crossbar design
	4.7 Layout considerations

	5 Design of the Programmable Nonlinear Function Generator
	5.1 Introduction to CT digital signals
	5.2 Architecture overview
	5.3 CT ADC design details
	5.4 CT SRAM design details
	5.5 CT DAC design details
	5.6 Full chip layout

	6 Implementation Details of a 16th-Order CT Hybrid Computing Chip
	6.1 Overall architecture
	6.2 Tunable global bias blocks
	6.3 Instruction set and address-space mapping
	6.4 Layout for the second chip

	7 Measurement Results
	7.1 Die photos and packaging considerations
	7.2 Testing environment, chip interfaces and programming language
	7.3 Calibration procedures
	7.4 Measurement results
	7.4.1 Calibration
	7.4.2 Nonlinear function generator
	7.4.3 Key performance summary of the hybrid computing chip
	7.4.4 Comparison to the prior art

	7.5 Measured mismatches of integrator time constants
	7.6 Temperature tests
	7.7 A USB-powered hybrid computer board

	8 Solutions of Nonlinear Differential Equations on the Hybrid Computer and Performance Comparisons
	8.1 Open-loop nonlinear equation computation for robotic path planning
	8.2 Nonlinear differential equations modeling a coupled mass-spring system
	8.3 Van der Pol equation

	9 Conclusions and Suggestions for Future Work
	9.1 Conclusion on the presented hybrid-computing chip
	9.2 Suggestions for future work
	9.3 A few thoughts on analog and hybrid computation and its applications

	Bibliography
	Appendix A Implementing Division
	A.1 Using an integrator and a multiplier
	A.2 Using table lookup

	Appendix B Automatic Scaling
	Appendix C Schematic and Layout of the Demoboard with Fourth-Order Chip
	Appendix D Schematic and Layout of the Demoboard with 16th-Order Chips
	Appendix E Solution of a 1-D Heat Equation

