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Highlights

• A unified variational framework is introduced for both cracks and compaction band (anti-cracks).
• Projection model is used to capture the difference between mechanical and hydraulic apertures and cure mesh dependence.
• The proposed model is applicable for simulating borehole breakout and hydraulic fracture.

Abstract

The onset and propagation of the cracks and compaction bands, and the interactions between them in the host matrix, are
important for numerous engineering applications, such as hydraulic fracture and CO2 storage. While crack may become flow
conduit that leads to leakage, formation of compaction band often accompanies significant porosity reduction that prevents fluid
to flow through. The objective of this paper is to present a new unified framework that predicts both the onset, propagation and
interactions among cracks and compaction bands via an eigen-deformation approach. By extending the generalized Griffith’s
theory, we formulate a unified nonlocal scheme that is capable to predict the fluid-driven fracture and compression-driven anti-
crack growth while incorporating the cubic law to replicate the induced anisotropic permeability changes triggered by crack and
anti-crack growth. A set of numerical experiments are used to demonstrate the robustness and efficiency of the proposed model.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Crack growth in fluid-infiltrating porous media has important implications on many engineering applications and
activities. The onset, nucleation, branching and coalescence of cracks may dictate the success of geological disposals
of carbon dioxide, hydraulic fracture operation, geothermal energy extraction, storage of nuclear waste underground
and tunneling. In the cases where the void space of the porous media is filled with fluid, the propagation of fracture
may also lead to significant increase in effective permeability and induced anisotropy in the hydraulic responses of
the porous media [1–3]. Perhaps a less well-known fact to the general public is that porous media may also form com-
paction band. As shown in Fig. 1, a compaction band is a narrow zone in which large porosity reduction is observed
in an otherwise intact host matrix [4–7].
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Fig. 1. (Left) SEM image of a laboratory-reproduced compaction band in Bentheim sandstone reported in [8]. (Right) SEM image of a field
compaction band in Navajo Sandstone found in Buckskin Gulch site, Utah as reported in [9].
Source: Figure reproduced from [8,9].

Due to the highly localized porosity reduction, pure and shear-enhanced compaction bands may lead to several
orders of permeability reduction [8,9,7,10,11]. Depending on the mineralogy, porosity, grain size, loading conditions
and other environmental factors, compaction band and fractures may coexist in a hydro-geological system. The in-
teractions between them in the host matrix may profoundly alter the mechanical and hydraulic characteristics. For
instance, in a series of papers [12,13,5,14], Haimson and co-workers have generated a collection of experimental ev-
idence to support that borehole breakouts, the elongations of borehole cross-section resulting from preferential rock
failure, is related to the propagation of both the fracture and compaction band. Their experimental data also indi-
cate that the compaction band, which advances orthogonally to the maximum compressive stress, can be regarded as a
Mode I anti-crack in the LEFM framework [15]. Related findings can also be found in the laboratory tests, such as [16,
17], in which notched specimen is used to study the initiation and propagation of compaction band and measure the
two fracture energies related respectively to fracture and compaction bands, as shown in Fig. 2.

These experimental findings are further validated in another series of theoretical and experimental studies (e.g.
[18,15,19,20]) performed on the Aztec Sandstone found in the Valley of Fire, Nevada. The researchers have found
that the normal contractional strain across the compaction band is nearly constant, which implies a constant driving
stress along the compaction bands with negligibly small processing zone. These results are consistent with the LEFM
anti-crack interpretation based on Griffith’s theory. First pointed out by Sternlof et al. [15], the anti-crack theory on
compaction band explains the initiation and propagation of compaction bands as the consequence of Griffith-type
grain-scale flaw collapses due to weak grains, irregular pores or other causes. This similarity with Griffith’s theory on
brittle fracture provides an opportunity for us to derive a unified variational framework in which the propagation of
both cracks and anti-cracks is viewed as the competition between the surface energy and the restitution of bulk energy
during crack or compaction band growth [21,22].

It should be noted that the anti-crack theory is not the only one accepted theoretical framework to interpret the
onset of compaction band. In particular, bifurcation analysis has also been widely used to predict the onset of the
compaction band at the continuum scale [23–25]. As pointed out in [17], the drawback of this approach is that it is
difficult to apply bifurcation analysis to predict compaction band patterns on heterogeneous material or to explain the
various geometrical features such as the wiggly patterns recently found in [26].

While there are many discrete modeling approaches proposed in to simulate compaction band and fractures with
either DEM or lattice–spring network (e.g. [27,28,26,29]), the applicability of these models are limited to interpre-
tation of micro-scale mechanism in the laboratory under fully drained condition. This limitation is likely related to
(1) the prohibitive computational cost to simulate grain-scale processes at the field scale, (2) the difficulty to cali-
brate material parameters for grain crushing and fragmentation process, and (3) the difficult to properly introduce the
hydro-mechanical effect in the grain scale with a 2D DEM and lattice–spring model.

On the other hand, there are significant progresses made in the development of numerical approaches for simulat-
ing the propagation of fluid-driven fracture at the macroscopic continuum scale. For instance, cohesive zone interface
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Fig. 2. Compaction band initiation and propagation in a wet Bentheim Sandstone specimen reported in [16].
Source: Figure reproduced from [16].

element can be inserted to model the fracture process zone when the crack path is known a priori in a finite element
framework. The Poiseuille flow along the cracks is then simulated with finite element or finite difference methods to
capture the hydro-mechanical coupling effect [30–32]. Another popular modeling technique is to introduce enhance-
ment basis in the finite element space to capture the crack as a strong discontinuity. The X-FEM and assumed strain
model are examples where cracks are explicitly represented as a sharp interface [33–35]. Nevertheless, the efficiency
of the embedded strong discontinuity approach often comes with the price that one must be able to generate proper
mathematical representation of the geometry and topology of the cracks. This is not a big issue if the crack is straight.
However, the modeling of curved crack path, crack branching and coalescence is by no means straightforward [36].
Furthermore, in order to simulate the crack propagation via the embedded strong discontinuity approach, modelers
must select among multiple criteria or models that predict the onset (c.f. [37]) and propagation direction (e.g. maxi-
mum hoop stress criterion), and detect potential branching [38] for a particular situation. This selection process can
be a trial-and-error empirical task that greatly depends on independent tastes and intuition.

Fracture surface may also be approximated by a phase-field or smeared crack model where the location of the
crack is represented by an implicit function but the displacement field itself may remain smooth [22,39–43]. A
notable departure of this approach from the embedded strong discontinuity approach is that one may recast it as
an energy minimization problem and the onset, propagation, branching and coalescence of fractures can be simulated
without introducing any additional criterion for each mechanism. Nevertheless, recent work, particularly, Farrell and
Maurini [44] has shown that the phase-field model can be computationally demanding due to the imposed demands
to resolve the small length scales. The popular operator-split algorithm is robust, but convergence can be slow due
to the large, ill-conditioned linear sub-problems that sequentially updates the phase field and displacement. Another
approach that does not introduce shape interface is the element erosion method in which element is simply deleted
when a specific criterion is met. This method is understandably very easy to implement, but also exhibits severe mesh
dependence. This problem is recently cured in [45] where a variational framework similar to [22] is incorporated into
the Griffith’s fracture theory. This approach interprets the deformation in the eroded element as an eigen-deformation
while introducing a nonlocal regularized fracture energy to eliminate the mesh dependence. Pandolfi and Ortiz [46]
develops a simple finite element erosion method based on this eigen-fracture scheme. Like the phase field approach,
the eigen-fracture model is capable of capturing curved crack path, crack branching and coalescence without the
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spurious mesh dependency. However, there is no additional field variable introduced in the numerical model and hence
relatively easy to implement. Nevertheless, the extension to poromechanics problem has not yet been considered.

Due to the wide spectrum of engineering applications related to fractures and compaction bands, a unified numer-
ical model that can both predict the onset, propagation, branching and coalescence of compaction band and fractures
and the interaction between them in fluid-infiltrating porous media is invaluable. While there are numerous efforts
to separately model fractures and compaction band at the continuum scale, to the best of the authors’ knowledge,
there has not yet any attempt to propose numerical model that can capture both the fracture and compaction band in
fluid-infiltrating porous media within a unified Griffith fracture framework.

The objective of this research is to present a consistent and unified theory and develop a feasible numerical approach
to fulfill this knowledge gap. In particular, we introduce a generalization of the eigen-deformation and corresponding
dissipation energy such that fracture and compaction band can be idealized as cracks and mode I anti-crack. Due to the
existence of two dissipation mechanisms, we use the spectral decomposition to split the stored elastic energy into the
tensile and compressive parts such that the onset of different eigen-deformation within each element is driven by the
corresponding types of regularized dissipation energy. Given the fact that hydraulic aperture is rarely identical to the
mechanical aperture, we introduce a path-searching algorithm to introduce a nonlocal cubic law in the eigen-erosion
element. This introduction of regularization is found to be essential to ensure that the enhancement or suppression
of hydraulic energy dissipation due to the formation of shear band and compaction band in the eroded elements
converges upon mesh refinement. Consequently, the proposed model allows one to simulate the onset, propagation
and coalescence of both fractures and compaction bands, all within a consistent variational framework. This is done
without introducing additional criterion to determine fracture propagation direction, without the need of inserting
additional degree of freedom during the simulations to reflect the altering geometry of the cracks, and without the
introduction of any nodal solution in the discretized finite element model. The simplicity achieved in this work is
important to ensure the proposed method feasible to practicing engineers and scientists.

The rest of this paper is organized as follows. We first explain the modeling of the onset and propagation of fractures
and compaction bands in fluid-infiltrating porous media within a variational framework (Section 2). We then highlight
the important aspects of the numerical implementation, such as the split of tensile and compressive strain, and the
introduction of the regularized cubic law specific for the eigen-fracture problems (Section 3). Numerical examples
are used to demonstrate the hydromechanical interactions among the propagating fractures and compaction bands
(Section 4). A conclusion that summarizes the major points of this work is introduced in Section 5.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a single contraction of
adjacent indices of two tensors (e.g. a · b = ai bi or c · d = ci j d jk); the symbol ‘:’ denotes a double contraction of
adjacent indices of tensor of rank two or higher (e.g. C : ϵe

= Ci jklϵ
e
kl ); the symbol ‘⊗’ denotes a juxtaposition of two

vectors (e.g. a⊗ b = ai b j ) or two symmetric second order tensors (e.g. (α ⊗ β) = αi jβkl ). As for sign conventions,
unless specify otherwise, we consider the direction of the tensile stress and dilative pressure as positive.

2. Multiphysical eigen-fracture model for hydro-mechanical problems

We present a unified framework that predicts the growth of both cracks and anti-cracks in brittle fluid-saturated
porous media using the eigen-erosion approach. The relation between eigen-fracture model and generalized Griffith’s
theory for brittle fracture is first examined in [45], and subsequently further developed in [46] to simulate crack growth
in a finite element framework. This fracture model contains an energy functional depending on the displacement
field u, a field of eigen-deformation ε∗ and a regularization parameter ϵ. ε∗ allows the displacement field to exhibit
deformation with no cost of local elastic energy, thus can represent the fracture occurred in the body. The derived
eigen-erosion scheme, which is a mesh independent element deletion approach, restricts the eigen-deformation to be
either 0 in the intact linear elastic elements, or equal to the local strain ε(u) = 1

2 (∇u+∇uT) in elements representing
the crack. Here our new contribution is to extend this framework to include eigen-deformation that represent not only
fracture but also anti-crack. We also include additional terms in the energy functional to account for the pore fluid
contribution.

In fluid-saturated porous media, the external loading imposed on porous solid is partially carried by the solid
skeleton and partially supported by the fluid [47,48]. Following the effective stress principle, the total stress σ is
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decomposed to the effective stress σ ′ acting on grains and a pore pressure:

σ = σ ′ − bp f I; b = 1−
K

Ks
, (1)

where p f is the pore fluid pressure, b is the Biot’s coefficient, I is the identity tensor, K and Ks are the bulk modulus
of the solid skeleton and that of the solid grains. The effective stress principle motivates the decomposition of total
elastic energy into effective strain energy stored in solid skeleton and energy stored in pore fluid [33], i.e.,

W (ε, ε∗, p f ) = Weff(ε, ε
∗)+Wfluid(ε, p f ). (2)

For linear elastic solid skeleton, the effective strain energy takes the form:

Weff(ε, ε
∗) =


Ω

1
2
(ε − ε∗) : Ce

: (ε − ε∗)dV (3)

where Ω is the domain of the elastic body, C e is the fourth-order elasticity tensor of the solid skeleton. The eigen-
deformation field takes different values in intact solid, crack C and compaction band C B:

ε∗(x, t) =

 ε+(x, t) x ∈ C
εinelnC B(x, t)⊗ nC B(x, t) x ∈ C B

0 x ∈ Ω \ (C ∪ C B).
(4)

This choice of eigen-deformation field implies that we assume the zero-traction boundary conditions across the crack,
which is suitable for brittle fracture. As for the compaction band, the assumption is made based on experimental
observations: upon compaction band formation, the grain crushing and pore collapse induce significant uniaxial
inelastic strain εinel (e.g., 10%) along the principal direction of maximum compressive stress nC B [15]. The numerical
value of εinel is a material parameter calibrated to match the experimental porosity reduction (private communication,
Rudnicki, 2016). Another underlying simplification is that the elastic property of the compaction band does not differ
significantly from the host matrix. The latter simplification is likely to be feasible for limited cases only and should
be considered with caution. For instance, in the natural compaction bands found in the Aztec Sandstone formation,
the compaction band is stiffer than the host rock due to the local pressure solution healing, porosity loss and effective
grain size distribution. Meanwhile, the shear modulus is affected by competing mechanisms, i.e., the reduced porosity,
which enhances shear stiffness, and the micro-fracturing and effective grain size reduction which reduce shear
stiffness [15]. On the other hand, the effect of elastic modulus difference between the host matrix and the compaction
band has been studied in [19,20], where the strain energy per unit area required to propagate the compaction band
in an infinite layer of finite thickness corresponding for compaction band of different stiffness are analyzed. The
analyses concluded that the mismatch of elastic moduli has a relatively small effect on the stress ahead of the band
and the energy release comparing to that of the far-field stress and the amount of inelastic compactive strain triggered
by the compaction band. Nevertheless, a more refined phenomenological or micro-structure based model that more
accurately captures the evolving relationship between the elastic behaviors of the compaction band and the host rock
may still bring new insights into the interpretation of critical energy release rate and the influences of microstructural
attributes on the constitutive responses of compaction bands. Nevertheless, such an improvement remains a significant
challenge due to the difficulties to generating reliable measurements of the very thin and tabular compaction bands in
the laboratories (e.g. [15]) and will only be considered in the future when the relevant data becomes available.

In this study, a material element is allowed to be simultaneously in crack set C and compaction band C B in the
proposed model, i.e., C ∩ C B ≠ ∅. A compaction band zone could become crack, as observed in borehole breakout
experiments that anti-dilatant failure zone occurs at the tip of fracture-like breakout in sandstone with high porosity [5].
On the other hand, once a material element is cracked, it is excluded from the compaction band detection scheme to
enforce the appropriate path-dependent behaviors.

The fluid contribution to the total elastic energy reads [33,41]:

Wfluid(ε, p f ) =
M

2


(1− b)εv −

p f

M

2

(5)
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where εv = trace(ε) is the volumetric strain, M is the Biot’s modulus defined as [49]:

M =
Ks K f

K f (b − φ)+ Ksφ
(6)

with φ being the porosity, Ks and K f being the bulk modulus of solid particle and pore fluid, respectively. The
dissipation associated with the Darcian flow of the pore fluid D f (ε, ε

∗, p f ) is expressed as:

D f (ε, ε
∗, p f ) = −

 t

0


Ω

1
2
κ(ε, ε∗)

µ
: (∇ p f

⊗∇ p f )dV


dτ (7)

where µ is the dynamic viscosity of fluid and κ(ε, ε∗) is the effective permeability of the porous medium, which we
assume to be symmetric. To capture the porosity–permeability relation responsible for the formation of flow barriers
(due to the compaction band formation) and flow conduits (due to crack growth), the effective permeability is written
in terms of both the deformation and the eigen-deformation of the solid skeleton. The fracture energy accounting for
crack and anti-cracks, in the context of eigen-fracture, reads:

GC
|CϵC |

2ϵC
+ GC B

|CϵC B |

2ϵC B
,

where ϵC and ϵC B are length scale parameters related to crack and anti-crack, respectively. Their values can be
different. The symbol |Cϵ | denotes the “ϵ-neighborhood” of crack C or anti-crack CB, i.e., the sets of points having
distance less or equal to ϵ from C or CB [45,46]. GC and GC B are critical energy release rates. The regularized
energy-dissipation functional in the context of fluid-saturated brittle porous media writes:

F(ϵC ,ϵC B )(ε, ε
∗, p f , t) =


Ω

1
2
(ε − ε∗) : Ce

: (ε − ε∗)dV −

Γt

T̄ · ud S

+


Ω

M

2


(1− b)εv −

p f

M

2

dV +
 t

0


Ω

s̄ p f dV −

Γq

q̄ · p f dS


dτ

+GC
|CϵC |

2ϵC
+ GC B

|CϵC B |

2ϵC B
+D f (ε, ε

∗, p f ) (8)

where Γt is the boundary on which the traction T̄ is applied, Γq is the boundary on which the flux q̄ is prescribed, and
s̄ is the source flux.

The regularized crack/anti-crack tracking problem consists of minimizing the above energy-dissipation functional
at every time step subject to monotonicity constraint:

C(t) ⊂ C(t +∆t)
C B(t) ⊂ C B(t +∆t).

(9)

The finite element implementation of the eigen-fracture framework consists of taking the eigen-deformation field
to be constant over one element and restricting the value in a binary case: the element is either intact (linear elastic) or
completely failed (eroded). This leads to a simple element deletion approach. However, it is superior to other element
erosion methods that it converges to the Griffith fracture with infinitesimal mesh size and does not exhibit spurious
mesh dependencies.

The eigen-erosion approach is simple and could be easily implemented to finite element codes for continuum
mechanics without intruding the existing structure, unlike some numerical schemes such as X-FEM which must insert
new degrees of freedom into the global equilibrium equations. The Ids of eroded elements at time tn are contained in
the crack set Cn . The equilibrium displacement field with crack Cn is solved by conventional FEM. Then the crack-
tracking scheme iterates over all elements K and computes the associated elastic energy release of the solid skeleton
−∆EK by the explicit first-order estimation (cf. [46]):

−∆EK ∼
1
2

uK
T
·∆SK · uK, (10)
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where uK is the displacement vector of element K and ∆SK is its element stiffness matrix. The effective crack
increment ∆AK is also computed assuming that K is included in the new crack set Cn+1. The increment is defined
as the area difference (in 2D problems) between the ϵ-neighborhood of crack Cn ∪ K and that of crack Cn .
The regularization parameter ϵ defining the region supporting the computation of fracture energy is chosen to be
proportional to the element size h and tends to zero more slowly than h: ϵ = 4h. The net energy gain −∆FK =

−∆EK − Gc∆AK is computed for each element K and the element having the largest positive energy gain is eroded
from the simulation. This procedure is repeated within the time step until −∆FK for all elements are inferior to zero.

In the new unified eigen-erosion framework, we highlight our contribution of introducing the eigen-decomposition
algorithm for crack/anti-crack tracking. This scheme is more appropriate when shear and compaction band are mod-
eled, since it identifies the principal directions of deformation and distinguishes the tensile/compressive contributions.
Another important aspect is the development of hydraulic aperture algorithm for fracture in porous media. Both
schemes are detailed in the section of numerical implementation.

3. Numerical implementation

Within each time step t ∈ [tn, tn+1], the hydro-mechanical field variables (displacement field u, pore pressure
field p f ) and the element-wise constant eigen-deformation field representing cracks and compaction bands are solved
in a staggered manner. Given the crack and compaction band configuration obtained from the previous time step,
u and p f are updated to achieve equilibrium in response to new mechanical loading or injection of fluid. This
step consists of solving the governing equations of saturated porous media (unbroken and fractured), i.e., balance
of linear momentum and balance of fluid mass. The standard finite element procedure is presented in Appendix A
for completeness. Holding the hydro-mechanical field constant, a unified spectral-decomposition crack/anti-crack
tracking scheme is then performed to update the sets of discontinuities C and C B. If new crack or anti-crack elements
are identified, the hydraulic permeability matrices are updated to account for the flow conduit and flow barrier effect
of crack and compaction band, respectively. A new algorithm based on a projected eigen-erosion field is proposed
for determination of flow direction and hydraulic aperture inside crack. This staggered procedure is iterated until
no element is added to the crack nor anti-crack sets. Algorithm 1 summarizes this unified eigen-erosion framework
and important algorithmic aspects are elaborated in the following subsections. Note that other choices of solution
sequence are also possible. For instance, instead of simultaneous tracking cracks and compaction bands, crack set
could be updated first and the hydro-mechanical field is equilibrated before searching for new anti-crack set. In
principle, the theories and algorithms presented in this work should be valid for one-, two- and three-dimensional
problems. Nevertheless, the three-dimensional simulations would only be practical if the solver is sufficiently fast to
handle the fine mesh required to capture the crack paths in many 3D applications with complex fracture patterns. This
extension will be considered in the future but is out of scope of this work.

Algorithm 1 Main

Require: Displacement field un and pore pressure field p f
n at time tn .

Require: Crack set Cn and anti-crack set C Bn at time tn .
1: Set time to tn+1, apply loading, initialize new crack set C0

n+1 = Cn , new anti-crack set C B0
n+1 = C Bn , i = 0.

2: Compute equilibrium displacement ui
n+1 and pore pressure field p f i

n+1 with C i
n+1 and C Bi

n+1.

3: Update C i+1
n+1 and C Bi+1

n+1 (Algorithm 2).

4: Update local permeability of C i+1
n+1 and C Bi+1

n+1 (Algorithm 3 or 4).

5: if C i+1
n+1 ≠ C i

n+1 or C Bi+1
n+1 ≠ C Bi

n+1 then
6: i ← i + 1.
7: go to 2.
8: else
9: Exit

3.1. Generalized eigen-deformation modes for fracture and compaction band (Algorithm 2)

The propagation of both crack and compaction band requires dissipating a specific amount of energy to create new
crack surfaces or advance compaction zones. As reported in [8,19,20], this energy may vary, depending on the type
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of kinematic modes. In the proposed framework, we assume that the elastic responses are isotropic and the stress and
strain tensor are co-axial.

The proposed eigen-erosion framework distinguishes the tensile and compressive contributions of the effective
elastic strain energy density in an intact element, following the idea by Miehe et al. [50]:

Weff(ε) = W+eff(ε
+)+W−eff(ε

−)

=
1
2
σ+ : ε+ +

1
2
σ− : ε−. (11)

The tensile and compressive split of the strain and stress tensor writes:

ε = ε+ + ε− =


i

< εi >+ ni ⊗ ni +


i

⟨εi ⟩−ni ⊗ ni ;

σ = σ+ + σ− =


i

⟨σi ⟩+ni ⊗ ni +


i

⟨σi ⟩−ni ⊗ ni ,
(12)

where εi and σi are eigenvalues, ni are associated eigenvectors common to ε and σ . The bracket operators ⟨x⟩+ and
⟨x⟩− are defined as:

⟨x⟩+ =
x + |x |

2
, ⟨x⟩− =

x − |x |

2
. (13)

Note that, in addition to the particular form of tensile and compressive splitting we used in this paper, other splitting
methods for stress and strain also exist and have been adopted for variational approaches to fracture in the literature.
For example, the strain energy could be decomposed into volumetric and deviatoric parts, as suggested in [51] and
recently in [52]. Presumably, separating the volumetric and deviatoric contributions of strain energy may make it more
convenient to capture the pressure-sensitive behavior. For instance, one may allow bulk and shear modulus to have dif-
ferent residual values or partition the amount of energy contribution of deviatoric responses used to form compaction
band and fracture by introducing the proper material parameters. These options will be further investigated in future
study.

On the bases of field and laboratory data, Sternlof et al. [15] idealize compaction bands as highly eccentric and
asymmetric ellipsoidal zones within which porosity loss induced by grain crushing takes place. The direction of the
band is perpendicular to the maximum remote compressive stress. Since the aspect ratio of the compaction bands is of
order 10−3–10−4 [15], we ignore the elliptical geometry and represent the band by tabular zones of “eroded” elements,
similar to the crack geometry. The pore collapse and grain crushing result in significant uniform uniaxial inelastic
compactive strain εinel = −0.1 inside the band. This literature also states that the elastic property of the band, although
differing from the surrounding intact solid matrix, has little effect on the stress state adjacent to the band with large
εinel and shear modulus. Thus we adopt the same elastic property for compaction bands in this study for simplification.

The detection of propagation of anti-crack requires the estimation of compressive strain energy dissipation per unit
advance of compaction band. Rudnicki and Sternlof [19] analytically investigated the propagation of an isolated semi-
infinite compaction band and proposed that the strain energy density released is simply σaheadεinel when the elastic
modulus of the compaction band remains the same as the surrounding intact porous media. σahead is the compressive
stress far ahead of the anti-crack tip and εinel is the uniaxial inelastic compactive strain in the band. In the proposed
eigen-fracture finite element framework, assuming that the anti-crack process zone is negligibly small, the strain en-
ergy released by converting an intact element to compaction band element equals to


Ωe

min(⟨σi ⟩−) · εinel dV , where
min(⟨σi ⟩−) is the maximum compressive stress and Ωe is the domain of the element. On the basis of field observation
and the data collected in the Aztec Sandstone formation, previous works such as [15,19] and the experimental work
done by Vajdova and Wong [53], Baud et al. [8], Stanchits et al. [16], Charalampidou et al. [17], a general agreement
is that compaction band can be idealized as a Griffith-type flaws that propagates nearly uniform uniaxial plastic strain.
After the formation, the compaction band is best described as an elastic inclusion embedded within an elastic host
matrix.

Fig. 3 presents the idealized stress–strain relation along the principal direction nC B associated with min(⟨σi ⟩−).
During the compaction band formation process, the element undergoes an inelastic strain of −0.1 while the stress
remains the same, representing a perfect-plastic constitutive behavior. The associated strain energy (hatched square
area in Fig. 3(a)) is released and causes the pore collapse and grain crushing at the grain scale. Collectively, these
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Fig. 3. Compaction band (anti-crack) model. (a) Uniaxial stress–strain relation of compaction band. Assume σ1 = min(⟨σi ⟩−) and set compactive
stress and strain as positive value. (b) Porosity reduction of compaction band element.

mechanisms lead to the formation of compaction band. After the formation, a compaction band, which is composed
of the compacted and sometime fragmented grains due to pore collapses and grain crushing (see Fig. 1), can be viewed
as an elastic inclusion, which is capable of locally storing elastic energy without plastic dissipation.

Based on the assumption that the compaction band may be idealized as anti-crack whose propagation may lead to
the development of nearly uniform plastic strain in a narrow zone, the eigen-deformation field inside the compaction
band element takes the form of a rank-one tensor, i.e.,

ε∗ = εinel = εinelnC B ⊗ nC B, (14)

where we set εinel = −0.1 in the numerical example sections. Assuming that the elastic response of the porous media
is approximately linear, the constitutive law of the compaction band therefore reads [15],

σ = Ce
: (ε − εinel). (15)

Hence this element incorporates the local porosity reduction inside the compaction band by re-setting the referred
equilibrium strain to be the eigen-deformation εinel. This treatment is in analogy to the sequence of cutting-and-
welding operations used by Eshelby to predict the elastic field [54,15,55,56], where the element for compaction is
first removed from the elastic body and then irreversibly and uniaxially shortened. Traction is then applied to the
compacted element in order to restore its geometry before removal. Finally, the stretched element is re-inserted back
to the surrounding solid and to compute the complete stress field.

3.2. Transverse isotropic permeability: Nonlocal and local hydraulic aperture algorithm

As the propagation of fracture and compaction band triggers changes in the size and geometry of void space,
they may also affect the effective permeability of the porous media. In addition to the change in the magnitude of
the permeability, the localized damage zones may also change the flow paths and induce anisotropy of the effective
permeability. The permeability changes as well as the induced anisotropy can be incorporated in a double-permeability
model [57,58] or captured explicitly [59,41]. In either case, we assume that the flow inside the fracture and in the host
matrix obeys the Darcy’s law, i.e.,

q̄ = −
1
µ

k∇x p (16)

where q̄ is the Darcy velocity,µ is the dynamic viscosity (with the unit of pressure times time) and k is the permeability
tensor (with the units of area). We idealize that the localized permeability change due to the presence of compaction
band and fracture is of rank-one. In the case of fracture mode, the effective permeability along the flow direction inside
the fracture k f is related to the fracture opening (hydraulic aperture) w via the cubic law. As pointed out in previous
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Algorithm 2 Crack & Compaction band algorithm in 2D
Require: Crack set Cn and anti-crack set C Bn at time tn
Require: Priority queue of crack P QC and anti-crack P QC B .

1: Set P QC = P QC B = ∅.
2: for all elements K not in Cn ∪ C Bn do
3: for all integration points p of K do
4: Spectral decomposition and tensile/compressive split of current strain and stress tensor: ε+, ε−, σ+ and
σ− ( Eq. 12).

5: Compute the inelastic compressive strain tensor εinel (Eq. 14).

6: Compute elastic energy release

−∆E+K =

Ω K

1
2
σ+ : ε+ dV

−∆E−K =

Ω K

σ− : εinel dV

7: Compute effective anti-crack area increment ∆AK .
8: Compute net energy gain

−∆F+K = −∆E+K − GC∆AK

−∆F−K = −∆E−K − GC B∆AK

9: If −∆F+K ≥ 0, push K into P QC , if −∆F−K ≥ 0, push K into P QC B .

10: if P QC ≠ ∅ then
11: Pop from P QC elements K with −∆F+K within TOL of largest, add to Cn+1.

12: if P QC B ≠ ∅ then
13: Pop from P QC B elements K with −∆F−K within TOL of largest, add to C Bn+1.

14: Exit.

work, such as [60,61], the local cubic law is only valid when the Reynolds number is sufficiently low such that the
transmissivity is independent of flow rate and proportional to the cube of the mean hydraulic aperture w. The cubic
law for three-dimensional space takes the following form,

q̄ · t = −
k f

µ
(∇x p · t) = −

w3

12µ
(∇x p · t) (17)

where t is the unit vector parallel to the fracture line. In two-dimensional cases where one assumes that the crack is
also two-dimensional, the cubic law is often rewritten such that,

q̄ · t/b = −
k f

bµ
(∇x p · t) = −

w2

12µ
(∇x p · t) (18)

where b is the depth of the 2D domain, which is often set as 1 for convenience purpose and hence k f = w
2/12 [62].

The enhanced effective permeability due to the presence of fracture kf is a rank-one tensor

kf = k f t⊗ t. (19)

The total effective permeability can be idealized as the summation of the isotropic effective permeability of the host
matrix and the anisotropic enhancement, i.e.,

ktotal = khost + k f = kI + k f t⊗ t, (20)

where k is the magnitude of the effective permeability of the host. Note that cubic law is commonly used in
adjunct to hydro-mechanical models that model fractures via embedded strong discontinuities (e.g. [59,63]) where
the mechanical aperture can be computed easily. In the case where the cracks are represented by binary or regularized
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(a) Local scheme. (b) Nonlocal scheme.

Fig. 4. Determination of hydraulic aperture. Local and nonlocal projection of erosion field.

level set functions, a numerical algorithm must be used to keep track of the orientation and magnitude of the opening
at each integration point of the finite element such that the proper permeability enhancement can be computed [41].

In this work, we propose two numerical algorithms designed specifically for the eigen-fracture model to estimate
the hydraulic aperture and the orientation of the crack opening such that the enhanced effective permeability tensor
can be estimated properly.

3.2.1. Local hydraulic aperture algorithm
To obtain the hydraulic aperture w and the orientation of the crack opening properly, one possible way is to project

the element-wise binary indicator function onto a scalar field with sufficient smoothness (i.e. Co continuity), which we
denoted as deroded. This field indicates the state of porous media by assigning value 1 to completely eroded (fractured)
material and value 0 to intact material. The simplest approach to construct this field in the eigen-erosion framework is
setting deroded = 1 at all nodes of the eroded elements and deroded = 0 for the rest of the finite element nodes (cf. Fig.
4(a)).

The resulting field may have gradient strongly depending on the finite element mesh size. As the mesh is refined,
the gradient across the intact and broken domain may become sharper. However, since we only use the orientation of
the gradient field to determine the aperture direction, the mesh sensitivity of the magnitude of the gradient field does
not directly impose any difficulty. Furthermore, if the thickness of the crack is only of one element, then one may
compute the enhanced permeability by computing the elongation along the orthogonal vector of this gradient field.
We refer the numerical scheme based on this design as the “local scheme” (cf. Algorithm 3). In this case, we consider
that the direction n normal to the crack is always aligned with the gradient of the erosion field, i.e., n = ∥∇deroded∥.
Since the field is constant inside the eroded element, the gradient inside the closest neighboring element is adopted
if the finite element is surrounded by broken elements. The unit vector of the flow direction t is perpendicular to the
direction vector n. An aperture line is then defined along the direction n intercepted by the integration (Gauss) point of
the eroded element. The initial length of the aperture line is the distance between the intersection points of this line and
the boundary of the eroded elements representing the crack. Meanwhile, the length after the crack opening is obtained
using the deformed boundary of the eroded elements. The fracture aperture w is the difference between the deformed
length and initial length. In this approach, we assume that the mechanical and hydraulic apertures are identical [64,
65]. The obvious advantage of this algorithm that it is relatively easy to implement. However, the major drawback is
that the amount of energy dissipation of the pore-fluid is sensitive to the mesh size. As further demonstrated in the
numerical examples of Section 4, this mesh sensitivity may have profound effect not only on the predicted hydraulic
properties but also on the resultant crack and compaction band patterns, due to the hydro-mechanical coupling effects.

3.2.2. Non-local hydraulic aperture algorithm
Experimental studies have long confirmed that the mechanical aperture, defined as the distance between the

two opposite faces of a crack, is not identical to the hydraulic aperture—the aperture used in the cubic laws. This
discrepancy is commonly observed in experimental work on single-fracture flow and often attributed to the surface
roughness, local tortuosity, contact area and the nonlinearity effect at high Reynolds numbers. Consequently, directly
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Algorithm 3 Hydraulic aperture algorithm (local)
Require: Crack set Cn at time tn
Require: Erosion field deroded at time tn

1: for all elements K in Cn do
2: Compute gradient of erosion field: ∇deroded.
3: Compute aperture direction: n = ∇deroded

||∇deroded ||
.

4: Compute flow direction t: t ⊥ n.
5: Determine the two intersection points between the boundary of Cn . by drawing a line parallel to n and

intersected by the (Gauss) integration point p.
6: Compute fracture aperture w as the Euclidean distance between the two end points.
7: Compute fracture permeability kf via the cubic law.
8: Update total permeability: ktotal = khost + kf

9: return ktotal

applying mechanical aperture in the cubic law generally leads to overestimation of Darcy’s velocity [60,64–66]. As
a result, we design and introduce a nonlocal permeability model which incorporates the length scale of the hydraulic
aperture, through an additional neighborhood zone (referred as hydraulic neighborhood ϵhydro herein) to distinguish
the difference between the mechanical and hydraulic apertures. In this second approach, we first project the discrete
indicator function into a smooth field. In other words, the field deroded inside the ϵ-neighborhood region is obtained
by solving the second-order Euler equation (cf. [67]):

deroded − l2
hydro∆deroded = 0, (21)

with the boundary conditions that deroded = 0 for nodes at the boundary of the ϵ-neighborhood of the crack and
deroded = 1 at all nodes of the eroded elements (cf. Fig. 4(b)). deroded = 0 outside the ϵ-neighborhood region. lhydro is
the length scale parameter of hydraulic aperture. The normal direction n is determined from the average of gradients
inside the neighboring elements. The hydraulic aperture is computed by:

w = A lhydro n · ε · n, (22)

where A ∈ ]0, 1] is a material parameter related to the difference between the mechanical and hydraulic aperture,
which we set it equal to 1 in the examples presented in Section 4. Note that the upper bound 1 implies that the
hydraulic aperture is equal or smaller than the mechanical aperture. This scheme is referred to as “nonlocal scheme”
(cf. Algorithm 4). Note that this erosion field resembles the phase field in the phase-field method. Subsequently, the
total permeability tensor is obtained by ktotal = khost + kf , where khost is the isotropic permeability tensor for intact
porous matrix.

In addition, for elements inside “lhydro-neighborhood” of crack set C (in analogy to “ϵ-neighborhood” except
that lhydro is the search radius), they possess reduced fracture permeability: d2

erodedkf . For each of these elements, an
aperture line is defined by its integration point and the gradient of erosion field ∇deroded. The element in C who has
the minimum distance from the element center to the aperture line could be determined. Then the corresponding kf is
used for reduced permeability calculation.

3.2.3. Permeability reduction due to formation of compaction band

If one assumes that the permeability reduction of the compaction band is isotropic inside the compaction band, then
the reduction of effective permeability inside the compaction band can be captured by the Kozeny–Carman equation.
The rationale behind this assumption is due to the fact that the compaction band, once it is formed, is idealized as
an inclusion of isotropic elastic constitutive responses. Hence, we assume that the permeability reduction inside the
compaction band is also isotropic for consistency. Note that the inclusion of the permeability reduction inside the
compaction band may still lead to anisotropic hydraulic responses at the specimen scale. Improvement of constitutive
law that better captures the induced anisotropy of permeability inside compaction band is an important task and
will be considered in future study when further experimental evidence and meso-scale data becomes available. The
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Algorithm 4 Hydraulic aperture algorithm (regularized)
Require: Crack set Cn at time tn

1: H1 projection of erosion field deroded using a length parameter lhydro for hydraulic aperture (Eq. 21).
2: for all elements K in Cn do
3: Compute gradient of erosion field: ∇deroded.
4: Compute aperture direction: n = ∇deroded

||∇deroded ||
.

5: Compute elongation along n: ε⊥ = n · ε · n
6: Compute aperture: w = lhydro · ε⊥
7: Compute fracture permeability kf via the cubic law.
8: Update total permeability: ktotal = khost + kf

9: for all elements within lhydro-neighborhood of Cn do
10: Get the closest element K in Cn and the corresponding fracture permeability kf .
11: Update total regularized permeability: ktotal = khost + d2

erodedkf .

12: return ktotal

Kozeny–Carman equation [68] relates the effective permeability k with the current void ratio e of porous media, i.e.,

k =
d2

p

180µ
e3

(1+ e)2
, (23)

where dp is the particle diameter and the coefficient
d2

p
180µ holds constant during deformation of the porous media. If

the effective permeability takes the value k0 at the initial void ratio e0, k can be updated as:

k =


e3

1+ e


e3

0

1+ e0


k0. (24)

Assuming that the compressibilities of both the solid and fluid constituents are significantly higher than that of the
solid skeleton, the change of the void ratio is a function of volumetric strain rate ε̇v , i.e.,

ė ≈
e0(1+ e)2

1+ e0
ε̇v, (25)

which is obtained by considering the relationships among variables for porous media, i.e.,

ė =
∂e

∂φ
φ̇; e =

φ

1− φ
; φ ≈ (1+ ϵv)φ0 (26)

where φ represents the porosity and φ0 is the initial porosity of the porous medium.
Finally, it should be noted that it is possible to use the fracture model to impose a rank-one permeability reduction

due to the compaction band.

4. Numerical examples

In this section, we present three sets of numerical experiments designed to demonstrate the salient features of
the proposed model and access the robustness and accuracy of the numerical schemes designed to replicate the
onset and propagation of the compaction band and brittle fracture. In the first example, we simulate the hydro-
mechanical coupling effect of solid deformation, fracture nucleation and induced fluid flow occurred in a notch
specimen subjected to different combinations of tensile, shear and compression loads. By varying the prescribed
loading, tensile fracture, mixed-mode fracture and compaction band/anti-crack are nucleated from the notches and
propagate in different directions. By conducting the same simulations with different meshes, we assess the mesh
sensitivity of the proposed scheme. In the second set of numerical simulations, we attend to simulate the borehole
breakout problem commonly encountered in the drilling process due to preferential rock failure. In particular, this
example demonstrates the potential of using a unified framework to model compaction band and brittle fracture
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(a) Coarse mesh, 4539 nodes, 8992 elements. (b) Fine mesh, 16 649 nodes, 33 200
elements.

Fig. 5. Geometry, boundary condition and mesh.

to analyze and predict the potential breakout. In the final set of numerical simulations, we simulate a series of
injection simulations in homogeneous and heterogeneous porous media. The simulations showcase the ability of
the unified eigen-erosion framework to capture the propagation and coalescence of fracture and compaction band and
the corresponding effects on the flow patterns due to the interaction of fracture and compaction bands. For simplicity,
we assume that the elastic moduli of the compaction band as an inclusion and the host matrix are identical.

4.1. Tension/compression shear tests on fluid-saturated double-edge-notched specimen

In this first example, we investigate the onset and propagation of cracks and compaction bands inside a fluid-
saturated specimen under different loading conditions. The geometry of the specimen is identical to the double-
edge-notched specimen used in a Nooru-Mohamed shear experiment originally designed for analyzing mixed-mode
fractures in concrete specimen [69]. The specimen is assumed to be under the plane strain condition. The thickness
of the specimen is 1000 mm. The domain and the boundary conditions, as well as a coarse and a fine mesh of 3-node
triangular elements are all depicted in Fig. 5. The center of the specimen is constrained in X and Y directions to
prohibit rigid body displacement. At the first loading step, a traction Ps is applied to the upper-left and lower-right
edges of the specimen, with no crack or compaction band triggered. To replicate the experimental setup these two
edges are maintained to stay straight throughout the simulation via the usage of a Lagrangian multiplier. The loading
rate is first set to be negligibly low so that the excess pore pressure built up inside the specimen is small compared
to the applied loading to resemble a fully drained condition. Subsequently, the top and bottom edges are subjected to
constant loading rate, while maintaining the same pressure Ps . The material parameters adopted in this example are
recapitulated in Table 1.

4.1.1. Effect of critical energy release rate of compaction band
The first loading condition consists of 15 MPa pressure for constant shear load and a tensile loading strain rate of

0.0005 s−1 for both the top and bottom edges. As reported from the literature (e.g. [15,16]), the critical energy release
for compaction band varies due to the difference in mineral composition, initial porosity and the types of materials.
Nevertheless, previous studies have confirmed that the typically critical energy release rate for compaction band may
range from 10 kJ/m2 to 80 kJ/m2 and is typically higher than the critical energy release rate of fracture. To analyze
how the difference in the critical energy release rate of fracture and compaction affects the fracture and compaction
band patterns, we run a simulation with material parameters all identical to the one reported in Table 1 except the
critical energy release rate is cut by half. Fig. 6 compares the predicted crack path with two critical energy release
rates for compaction band while keeping the same critical energy release rate for fracture.

In both cases, fracture forms after the normal traction on the top of the specimen reach the maximum value. In the
simulation where the critical energy release rate for compaction band GC B = 10 kJ/m2, the combination of shear and
tensile load leads to the onset and propagation of cracks from the two notches. As the two cracks propagating from the
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Table 1
Material parameters for double-edge-notched specimen.

Parameter Value

Solid matrix Young’s modulus E 20 GPa
Solid matrix Poisson’s ratio ν 0.2
Critical energy release rate of crack GC 1 kJ/m2

Critical energy release rate of compaction band GC B 20 kJ/m2

Fluid bulk modulus K f 2.2 GPa
Solid particle bulk modulus K f 45 GPa
Initial porosity φ 0.25
Biot’s coefficient B 0.75
Biot’s modulus M 8 GPa
Intrinsic permeability κ 1e−13 m2

Dynamic viscosity µ 1e−3 Pa s
Length scale parameter for crack ϵC = 0.005 m
Length scale parameter for anti-crack ϵC B = 0.005 m
Length scale parameter for hydraulic aperture lhydro = 0.0025 m

(a) GC B = 10 kJ/m2.

(b) GC B = 20 kJ/m2.

Fig. 6. Effect of compaction band on crack propagation. Red: crack set; Blue: compaction band set. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

left and right get close enough, the compressive stress near the crack tip increases and ultimately leads to the formation
of compaction bands oriented orthogonal to the existing cracks. Since the stress field in the vicinity of the two crack
tips is altered by the formation of compaction bands, the cracks stop extending away from each other, but tend to
coalesce. In the other case in which GC B = 20 kJ/m2, two cracks simultaneously nucleate from the two notches and
approach the specimen center, while no compaction band is initiated. With the presence of mixed shear–tensile loading
condition, two cracks deviate from each other and follow inclined paths in the opposite directions. Results from this
numerical experiment suggest the possible interactions between cracks and compaction bands when the critical energy
release rate for these two Griffith-type flaws are close to each other. To the best knowledge of the authors, this is the
first time the interactions between compaction band and fractures have been captured numerically.
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(a) (b) Strain rate 0.0005 s−1. (c) Strain rate 0.05 s−1.

Fig. 7. Effect of tensile loading rate on crack propagation, Ps = 50 MPa. (a) Vertical reaction force vs. vertical displacement on the top surface.
(b) Crack path at strain rate 0.0005 s−1. (c) Crack path at strain rate 0.05 s−1.

4.1.2. Fluid-induced rate effects
The pore fluid plays an important role in the mechanical behavior of fluid saturated porous media. Through the

hydro-mechanical coupling, [70–72], the solid skeleton constitutive responses may appear to be rate dependent due to
the diffusion of pore fluid, even though the solid skeleton itself does not exhibit any rate dependence. To investigate
this fluid-induced effect on the crack propagation, we conduct two numerical simulations on the same specimen
loaded under two different strain rates i.e. 0.0005 and 0.05 s−1. These strain rates are generated by moving the
both top and bottom edges with equal-magnitude, opposite-direction velocity. In both simulations, the side-wall
traction remains Ps = 50 MPa throughout the numerical test. The load–displacement curve in Fig. 7 shows the
force–displacement relation of the specimen subjected to the two different rates. Since a zero-pore-pressure boundary
condition is prescribed at the top and bottom edges of the specimen, it is difficult to build up excess pore pressure in
the specimen unless a very high loading rate (relative to the hydraulic conductivity) is prescribed. Nevertheless, the
hydro-mechanical effect may still manifest in multiple ways. As shown in Fig. 7(a), we observe that the specimen
subjected to higher loading rate also appears slightly more stiff. Furthermore, even though we only employ rate-
independent models to capture the elastic responses, the maximum normal force on the top is found to be sensitive to
the loading rate. Finally, for the case where strain rate is 0.0005 s−1, the reaction force abruptly drops as the cracks
evolve to the final configuration within one loading step. This global response differs from the high-strain-rate case in
which softening can be observed when the top surface displacement is between 0.3 and 0.5 mm. The pore fluid also
effect the predicted crack paths in the two cases, as shown in Fig. 7.

Fig. 8 presents the pore pressure and Darcy velocity field predicted by the proposed algorithm for the fractured
specimen. Note that the Darcy’s velocity plotted in Fig. 8(c) and (d) are illustrated with a log-scale color scheme. When
subjected to a high loading rate (two orders higher than the low-loading rate counterpart), the pore pressure built up
within the specimen is also approximately of two orders higher than the low-loading-rate counterpart. The magnitude
and direction of Darcy velocity also evolve as the cracks propagate. Water flows into the specimen in tension through
the top and bottom boundaries where a pressure head is prescribed. The presence of cracks significantly alters the
Darcy velocity field: water tends to flow into the cracks and are stored in the void space near the crack where the
pressure plume located. The flow patterns demonstrated in Fig. 8 indicate that the cracks do behave like flow conduits
which draws water by creating a fast pathway along the crack propagation direction.

4.1.3. Mechanical and hydraulic apertures
To demonstrate the necessity of adopting the “nonlocal scheme” in computing hydraulic aperture for fractures, we

conduct three simulations with different meshes such that a quantitative assessment of the mesh dependency can be
established. In this set of numerical experiments, the nonlocal scheme is applied on both coarse and fine meshes with
the same ϵC , ϵC B and lhydro. Meanwhile, the local scheme is applied on fine mesh with the same ϵC and ϵC B , but the
hydraulic aperture is assumed to be the same as the crack opening. The boundary conditions and material parameters
used in these simulations are also identical.

Fig. 9 shows the force–displacement curves obtained from the three simulations. These curves are all consistent
with those of a brittle materials and their difference is minor. This indicates that the specimen-scale response is not
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(a) Strain rate 0.0005 s−1. (b) Strain rate 0.05 s−1.

(c) Strain rate 0.0005 s−1.

(d) Strain rate 0.05 s−1.

Fig. 8. Rate effect on the pore pressure and Darcy velocity distribution, Ps = 50 MPa. In both case, the cracks act as flow conduits.

very sensitivity to the meshes. However, a closer examination on the local responses, in particular, the predicted crack
paths and the pore pressure field shown in Figs. 10 and 11 reveals that a pathological bias may occur when the local
scheme described in Algorithm 3 is used to compute the hydraulic aperture. On the other hand, the coarse and fine
meshes yield similar crack patterns and pore pressure field when the nonlocal scheme described in Algorithm 4 is
used.

These encouraging results are due to the usage of ϵ-neighborhood (for fracture) and lhydro-neighborhood (for
permeability). Since both the size of the ϵ-neighborhood and lhydro-neighborhood are independent of the mesh size,
these treatments allow the energy dissipation due to the crack propagation and fluid diffusion regularized by the length
scales. Finally, it should be noted that it is possible to introduce a more comprehensive phenomenological model to
relate the hydraulic and mechanical apertures (e.g. [66]). This research direction is out of the scope of this study but
will be considered in the future.

4.1.4. Shear effect on formation and propagation of compaction bands
In order to initiate and propagate compaction bands, the specimen are compressed under constant shear stress Ps .

The magnitude of shear stress effects the anti-crack paths, as shown in Fig. 12. Since the formation of compaction
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Fig. 9. Mesh dependency: reaction force vs. prescribed vertical displacement on top surface.

(a) Coarse mesh. (b) Fine mesh, nonlocal
permeability.

(c) Fine mesh, local permeability.

Fig. 10. Assessment of mesh dependency: crack path predicted by different meshes and local & nonlocal hydraulic aperture algorithms.

bands results in significant volume reduction compared to surrounding intact porous media, the distribution of
volumetric strain is used as the illustration of anti-crack configurations in the figure. Under low shear stress of
Ps = 50 MPa, the anti-cracks nucleate from the two notches and propagate horizontally and finally merge with
each other. With increasing Ps , compaction bands propagate towards the top and bottom edges. This example shows
that the unified eigen-fracture scheme is capable of predicting curved compaction band paths.

Fig. 13 demonstrated the direction and magnitude of Darcy velocity field right after the formation of compaction
band in the cases where shear loads Ps = 50 MPa, 100 MPa, 120 MPa. As opposed to the cases shown in Fig. 8, the
formation of compaction bands lead to a flow barrier in which the water inside the compaction band is squeezed out
from the compaction band due to the porosity reduction. In all three cases, the Darcy velocity inside the specimen
subjected to compression is much lower than the tensile-loading cases where crack propagates.

4.2. Fracture-like borehole breakout induced by compaction bands

Borehole breakouts are stress-induced enlargements of the wellbore cross-section. The breakout phenomena have
been observed in a number of drilling operations, such as breakouts in the Witwatersrand gold mine in South Africa
[73] and in the Exploratory Studies Facility below the Yucca Crest, Nevada [74]. In those cases, boreholes often
elongate in the direction of the minimum principal stress orthogonal to the borehole axis [75]. While there are a
number of conceptual models since the 80s to explain the breakouts as a mechanism due to ex-tensile or shear failure,
(cf. [76,12]), recent experimental work, such as [5,14,77], have provided a substantial amount of evidence that the
borehole breakout in high-porosity rock is due to a sequence of micro-mechanical events described as follows.
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(a) Coarse mesh. (b) Fine mesh, nonlocal permeability.

(c) Fine mesh, local permeability.

Fig. 11. Assessment of mesh dependency: fluid pressure predicted by different meshes and local & nonlocal hydraulic aperture algorithms.

Fig. 12. Compaction bands developed inside the specimen during compressive–shear tests subjected to shear loads Ps = 50 MPa, 100 MPa,
120 MPa, illustrated by volumetric strain εv contour.

1. The formation and propagation of compaction band orthogonal to the maximum principal stress direction.
2. Inside the compaction band, grain crushing and fragmentation cause porosity reduction and create a narrow zone

with compacted fine grains.
3. If the flowing rate of the drilling fluid circulating inside the borehole is very high, then the drilling fluid may flushes

out the fine grains inside the compaction band. Otherwise, the fine grains in the compaction band may be partially
removed.

4. In the former case, the removal of the fine grains may cause the stress concentration moves and cause the breakout
propagation. In the latter case, the partial removal of fine grains creates a weak layer that is vulnerable to fracture.

5. If the flow rate is not high enough to cause the fine grains completely removed but high enough to build up excess
pore pressure over time, then a fracture may emerge due to the hydro-mechanical coupling effect.

In this example, our objective is to simulate the low-flow-rate case in which the fine grains in the compaction band
are not completely flushed out, but the compaction band is weakened due to the circulation of the drilling fluid, i.e., the
un-emptied compaction band case as reported in [78]. To simulate the propagation of the compaction band inside a
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(a) Ps = 50 MPa. (b) Ps = 100 MPa. (c) Ps = 120 MPa.

Fig. 13. Flow barrier effect of compaction bands developed inside the specimen during compressive–shear tests subjected to shear loads
Ps = 50 MPa, 100 MPa, 120 MPa, as demonstrated by Darcy velocity field.

drilled sandstone specimen, we construct an idealized 2D plane strain boundary value problem considering only half
of a rectangular sandstone specimen of dimension 230 mm × 150 mm. A circular hole of radius 11.5 mm has been
drilled through the sandstone. The drilled specimen is subjected to a confining pressure of σH = 100 MPa on the long
side and σh = 40 MPa on the short side. The material properties of the specimen is identical to the ones shown in
Table 1 with the following exceptions: E = 9.24 GPa; ν = 0.25; GC = 100 J/m2; GC B = 200 J/m2; κ = 1e−17 m2;
ϵC = ϵC B = lhydro = 2 mm. To replicate the experimental procedure, the simulation is designed in two phases. In the
first phase, we consider the plane-strain domain with the cylindrical borehole at the center subjected to an anisotropic
far-field stress under fully drained condition. This lead to the development of compaction band. Following this, we
change the boundary condition such that the drilling fluid begins to inject into the borehole and ultimately leads to the
borehole breakout along the compaction band at a sufficiently low injection rate.

4.2.1. Formation of compaction band
At the first phase of the simulation, the presence of borehole under anisotropic far field stress induces the nucleation

of the compaction band. Fig. 14 shows the evolution of the binary indicating function of the compaction band (blue
color) in selected iteration steps used by the eigen-fracture algorithm to establish equilibrium. Since we assume that
the material remains in drained condition, these iteration steps are not correlated with the time steps. However, Fig. 14
does reveal that the compaction band does propagate along the minimum compressive stress direction, which is
consistent with the experimental evidence in [14]. This first simulation stage approximates the un-emptied compaction
band configuration where the compacted and crushed grains are not evacuated into the borehole by the drilling fluid
during the drilling process [78]. The compaction band propagation demonstrated in Fig. 14 is also consistent with the
evolution of the stress concentration location (see σyy field in Fig. 15).

4.2.2. Fractures in compaction bands during fluid injection
At the second stage, water is injected into the borehole to expand the previously formed compaction band. This

is realized by discretizing the circular borehole by finite elements and idealizing the flow inside the borehole as a
potential flow of incompressible fluid. For clarity, the mesh used to solve the fluid diffusion problem in the borehole
is not shown in Fig. 16.

Since the grains inside the compaction band are damaged and further weakened by the partial removal of fine
grains, we make a highly idealized assumption that the critical energy release rate for crack inside the compaction
band is two orders smaller than those formed in the host matrix. Under this hypothesis, fluid will expand and then
erode the compaction band elements, forming a crack along the anti-crack path. Notice that a more complete model
for the borehole breakout must be able to capture the mass exchange between the intact host matrix and the fine grain
suspension in the pore fluid as well as the changes of the elastic constitutive responses due to the removal of fine
grains. These details are neglected in this study but will be considered in the future.

Eventually, the configuration will be similar to the borehole breakout experiments [5,14], where highly compacted
region lies ahead of the crack tip (c.f Fig. 16). Fig. 17 shows the σyy field during crack propagation induced by
injection of fluid and Fig. 18 illustrates the corresponding pore pressure fields at different time after the injection of
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(a) Iteration 1. (b) Iteration 30. (c) Iteration 53.

Fig. 14. First stage of borehole breakout simulation: the presence of borehole in a biaxial stress field induces the onset and propagation of
compaction band. The stable compaction band is formed after 53 iterations of the anti-crack tracking algorithm (Section 3) within one time
step. The compaction band configurations at the 1st, 30th and 53th iterations are presented to show its propagation. Blue: compaction band set. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Distribution of σyy (stress component along the maximum compressive stress σH ) during the compaction band formation stage at the 1st,
30th and 53th iteration.

water. As expected, the pore pressure plume grows in the same direction of the crack. As the crack propagates inside
the compaction band, the hydraulic aperture increases and this in return causes permeability significantly increases
along the crack that was previously the low-permeability compaction band. Note that the assumption of reducing
the compaction band Gc in order to achieve this consistency is a significant simplified way to take account of the
grain-removal process.

4.3. Coalescence of cracks and compaction band inside a heterogeneous domain

In this last example, we employ the unified eigen-erosion framework to predict the propagation and coalescence
of fluid-driven fractures and compaction band in porous media. The interaction between nearby fractures may induce
the onset and evolution of compaction bands. This phenomenon has not been observed in real-life field or laboratory
experiments, while the numerical results may motivate research in this direction.

We consider a boundary value problem with a water-saturated 20 m× 20 m square domain with three preexisting
cracks under plane-strain condition. Fig. 19 presents the domain geometry and initial configuration of the cracks. All
cracks have the initial length of 1.2 m, one is embedded horizontally at the domain center, the other two are oriented
vertically 0.75 m apart from the ends of the horizontal crack. The separation between the vertical cracks is 2.7 m. As
a result, the domain is symmetric with respect to the central Y -axis.

In the numerical simulations, water is simultaneously injected into the three preexisting cracks through their centers
with a prescribed Darcy velocity vinject, driving the cracks to propagate. The center square region of size 4 m × 4 m
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(a) t = 0.2 s after injection. (b) t = 0.4 s after injection. (c) t = 0.6 s after injection.

Fig. 16. Second stage of borehole breakout simulation: crack of the compaction band upon injection of water into the borehole (prescribed injection
velocity vinject = 0.001 m/s at the center node of the borehole, borehole mesh not shown). Crack advances along the anti-crack path, based on
the assumption that the grains compaction and crushing largely reduce the GC of porous matrix inside the compaction band. Red: crack set; Blue:
compaction band set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Distribution of σyy (stress component along the maximum compressive stress σH ) during crack propagation induced by injection of fluid
along the compaction band path.

Fig. 18. Distribution of pore pressure during crack propagation induced by injection of fluid along the compaction band path.

is discretized by 20,000 triangular elements of size hmin = 0.04 m. The remaining regions, which are far away from
the interaction zone of the cracks, are discretized by larger finite elements as shown in Fig. 19. The displacement
along the four edges of the square domain are constrained and the pore pressure is set to 0 Pa along these boundaries.
The length scale for crack and compaction band are ϵC = ϵC B = 4hmin = 0.16 m, and the hydraulic length scale is
lhydro = 2hmin = 0.08 m.
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Fig. 19. Embedded cracks (black lines) inside a water-saturated brittle elastic porous medium with randomly generated porosity distribution.

To demonstrate the ability of the proposed model to simulate the propagation of cracks and compaction bands
without any a priori knowledge of the propagation path, we introduce spatial heterogeneity by generating a random
porosity field. Following this step, we then use empirical equations to relate the drained bulk and shear moduli as well
as the critical energy release rate for fracture and compaction band to the porosity [79]. This treatment will gives us
an idealized domain of heterogeneous material properties that solely depends on the spatial distribution of porosity.

The heterogeneous porosity field used in the simulation is generated by an open-source multi-scale random field
simulation program developed by Baker et al. [80]. Our goal is to use this program as a code to generate heterogeneous
domains. Since it is not our purpose to use the realizations to quantify the effect of the correlation length or the spatial
variability via Monte Carlos simulations, the quality of the stochastic realizations and possible improvement of the
random-field generation techniques generate non-Gaussian random field is not considered in this study.

Furthermore, we use the mechanical and hydraulic properties of the porous rock specimen with porosity equals
to 0.2 as the reference. The corresponding material parameters are listed in Table 2. To generate the heterogeneous
domain, we idealized the porosity as a Gaussian random field and set the porosity ranging from 0.1 to 0.3, with mean
value of φ0 = 0.2. A coarse-scale field is first generated with spatial correlation for the 20 m × 20 m domain and
the field inside the region of interest of 4 m × 4 m is then refined [80]. The resulting porosity field is presented in
Fig. 19. The mean value of the resultant porosity field is 0.197 and the standard deviation is 0.0451. With the initial
porosity determined, we then obtain the rest of the mechanical and hydraulic material parameters via empirical or
phenomenological relations. For instance, The bulk modulus Kφ and the shear modulus Gφ of rock are related to the
porosity φ by the empirical equations in [79]:

Kφ =
Kquartz(1− φ)

1+ αφ

Gφ =
Gquartz(1− φ)

1+ γαφ
,

(27)

where the modulus of quartz Kquartz = 38 GPa and Gquartz = 44 GPa, α is a parameter that represents the degree
of consolidation between grains (α = 4 in this example) and γ = 1+2α

1+α . The intrinsic permeability depends on the

porosity φ by the Kozeny–Carman equation, i.e. κφ = κφ0
φ3

(1−φ)2
where κφ0 = 8 × 10−14 m2 and κφ = 10−15 m2

when porosity φ = 0.2. As for the critical energy release rate for cracks and anti-cracks, they are assumed to follow
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Table 2
Material parameters for Example 4.3 (porosity φ = 0.2).

Parameter Value

Solid matrix Young’s modulus E 33.68 GPa
Solid matrix Poisson’s ratio ν 0.17
Critical energy release rate GC 100 Pa m
Solid grain bulk modulus Ks 38 GPa
Fluid bulk modulus K f 2.2 GPa
Biot’s coefficient B 0.55
Biot’s modulus M 9.9 GPa
Reference permeability κ at 0.2 porosity 1e−15 m2

Dynamic viscosity µ 1e−3 Pa s

the power law [81]:

GCφ

GCφ0

=
φnC

φ
nC
0

;
GC Bφ

GC Bφ0

=
φnC B

φ
nC B
0

. (28)

In this example, GCφ0
= GC Bφ0

= 100 Pa m at the reference porosity φ0, and the parameters nC = nC B = −1. Note
that the pressure-dependent rock property and plasticity are not considered in the current simulation.

4.3.1. Fluid-driven fractures in heterogeneous domain
To investigate the effect of the heterogeneity of the porosity field on fluid-driven fracture process, a simulation

is firstly performed on homogeneous field with a constant porosity φ0 = 0.2 and the corresponding homogeneous
material properties as a control experiment. The fluid injection velocity is vinject = 0.00025 m/s and the time step is
0.1 s. GC B is set to be 20 kJ/m2 and no anti-crack is generated during the process. Fig. 20 depicts the evolution of
fluid pressure field. Due to the symmetry of the boundary value problem, all crack tips of the three cracks advance in
straight lines until the cracks coalesce. The pore pressure inside the horizontal crack is lower than the pore pressure in
vertical cracks. This may be attributed to the higher crack propagation speed of the horizontal crack, which reduces
the amount of pore pressure built up due to enhancement of permeability along the crack as shown in Fig. 20(a).
At t = 3 s, the center crack join the vertical cracks at their centers, and the pressure values in the three cracks
become nearly identical while the pore pressure plumes originated from the boundaries of the three cracks also joined
together to form a single boundary layer domain. This hydromechanical interaction in return causes the crack paths
of the vertical cracks to incline. The resultant final crack pattern is consistent with previous results from the crack-
coalescence simulations in porous media via the phase field approach [82,41]. As a comparison, the simulation runs
again with the identical setting except that the homogeneous porosity field is now replaced by the heterogeneous
counterpart. With the same flow injection rate, the pore pressure of the heterogeneous domain at t = 2 s, 3 s, 5 s
are shown in Fig. 21 for comparison. In this case, all cracks tend to propagate towards regions where porosity is
higher. The final fracture pattern differs significantly from the homogeneous counterpart. The main reason for this
discrepancy is that the drop of GC with increasing porosity facilitates the crack propagation, and this factor dominates
the effects of the other porosity-dependent material properties.

Due to the enhanced permeability along the crack, the pore pressure inside the crack is of similar magnitude.
However, the boundary layer of the pore pressure plume grows in time and eventually coalesces at 5 s.

4.3.2. Influence of injection rate
Next we study the influence of the fluid injection rate on fracture patterns. vinject is raised by ten times to 0.0025

m/s for an additional simulation on the heterogeneous porosity field. To compare the results, the pore pressure field at
t = 0.2 s, 0.3 s and 0.5 s are presented in Fig. 22, so that the amount of fluid injected into the domain are kept identical
to those at t = 2 s, 3 s and 5 s of the low-injection-rate case. In the analytical framework introduced by Adachi and

Detournay [83], the change of injection may affect the values of the dimensionless toughness coefficient K ∝ ( 1
Q0
)

1
4

and the leak-off coefficient C ∝ ( t
Q3

0
)

1
6 , where Q0 being the injection flux rate [83]. In particular the increase of the

prescribed Darcy velocity vinject may lead to lower K, which means that a lower ratio of energy rate is expended in
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(a) t = 2 s. (b) t = 3 s. (c) t = 5 s.

Fig. 20. Fluid driven propagation and coalescence of fractures in homogeneous porosity field. vinject = 0.00025 m/s. Fluid pressure at t = 2 s,
3 s, 5 s.

(a) t = 2 s. (b) t = 3 s. (c) t = 5 s.

Fig. 21. Fluid driven propagation and coalescence of fractures in heterogeneous porosity field. vinject = 0.00025 m/s. Fluid pressure at t = 2 s,
3 s, 5 s.

(a) t = 0.2 s. (b) t = 0.3 s. (c) t = 0.5 s.

Fig. 22. Fluid driven propagation and coalescence of fractures in heterogeneous porosity field. vinject = 0.0025 m/s. Fluid pressure at t = 0.2 s,
0.3 s, 0.5 s.

fracturing compared to the fluid viscous dissipation, and also a lower value of C, which indicates that the fracture
propagation takes longer time to transit from no-leak-off to leak-off dominated regime. These predictions from the
analytical model is consistent with our numerical results shown in Figs. 21 and 22. In the high-injection-rate case, the
increased injection velocity results in sharper pore pressure gradient across the crack and the surrounding host matrix.
The pressure concentration zone becomes thinner and leak off is less profound compared to the low-injection-rate
counterpart shown in Fig. 21. The increased injection rate does not only lead to a more storage-dominated behavior,
but also alters the crack pattern. As shown in Fig. 22, the higher injection rate allows more excess pore pressure build
up and the negative pore pressure near the tip of the cracks are also more significant. Through the hydro-mechanical
coupling effect, this leads to a slightly different crack patterns compared with Fig. 21.
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(a) Iteration 10. (b) Iteration 30. (c) Iteration 50.

Fig. 23. Onset and propagation of compaction band near pressurized fractures in heterogeneous porosity field. GC B = 0.1 kJ/m2 at reference
porosity φ0 = 0.2. vinject = 0.00025 m/s. Compaction band starts to form and propagate at time t = 0.2 s. The configurations at 10th, 30th, 50th
iterations of anti-crack tracking algorithm at time t = 1.8 s are presented to illustrate the evolution of compaction band path. Red: crack set; Blue:
compaction band set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) Iteration 10. (b) Iteration 30. (c) Iteration 50.

Fig. 24. Onset and propagation of compaction band near pressurized fractures in heterogeneous porosity field. GC B = 2 kJ/m2 at reference
porosity φ0 = 0.2. vinject = 0.00025 m/s. Compaction band starts to form and propagate at time t = 1.8 s. The configurations at 10th, 30th, 50th
iterations of anti-crack tracking algorithm at time t = 1.8 s are presented to illustrate the evolution of compaction band path. Red: crack set; Blue:
compaction band set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3.3. Interaction of compaction bands and fractures
Since a portion of the injected fluid will be stored inside the cracks when the permeability is low, it will expand the

fracture and compress the surrounding porous matrix. For material with low GC B , this could lead to the formation of
compaction band in the vicinity of the fracture. This is consistent with the results of the simulations performed on a
heterogeneous porosity field with GC B = 0.1 kJ/m2 at reference porosity φ0 = 0.2 (Fig. 23). Before propagation of
the embedded fractures, anti-crack nucleates in the vicinity of one tip of the horizontal crack that lies in high porosity
area. It propagates rapidly towards the other tip of the horizontal crack following a curved path. The path represents
the region where maximum compressive strain takes place. Anti-crack branching and coalescence are observed in
Fig. 23.

The onset of anti-crack could be postponed as the material GC B is increased. GC B = 2 kJ/m2 at reference porosity
φ0 is adopted in the new simulation and Fig. 24 illustrates the compaction band evolution. The compaction band
(anti-crack) this time appears after the coalescence of the left and center fractures. It is formed underneath the joint
compression of these two expanding cracks. Again the compaction band exhibits branching, with one branch extending
rapidly towards the other tip of the center crack, and the other branch connecting the tip of the left crack. Notice that
in this work we assume the compaction band is formed in a brittle manner. Hence, the compaction band formed
almost spontaneously following the peak loading. As a result, the crack patterns shown in Figs. 23 and 24 are formed
within one single time step in which the nonlocal eigen-erosion scheme is used to search for a new equilibrium in this
particular case.
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Altogether this series of simulations of fluid-driven fracture coalescence demonstrate the capability and potential
of the unified eigen-erosion model in predicting complex crack and anti-crack patterns in large-scale geomechanics
and geoenvironmental problems.

5. Conclusion

As point out in [84], the existing computational model has not yet progressed to the point to analyze the influence
of fluid flow on the formation and propagation of compaction band. Nor is it clear how does the compaction
band and cracks interact in various drainage conditions. This work is intended to fill these knowledge gaps with
important implications for petroleum engineering, reservoir management and geological disposals of nuclear waste
and carbon dioxide storage. By introducing a unified Griffith-type variational framework capable of simulating the
onset, propagation and coalescence of both fracture and compaction bands as Griffith-type flaws in fluid-infiltrating
porous media. This is achieved without (1) requiring any prior knowledge on the fracture and compaction band
patterns and (2) introducing any nodal variables such as phase field. By associating the eigen-deformation modes
of fracture and compaction bands with the corresponding fracture and compaction band energy functionals, the
interplay between the fracture and compaction band is captured in the numerical examples. In addition, we have
introduced a nonlocal algorithm to capture the evolving anisotropic effective permeability and circumvent the mesh
dependence demonstrated commonly in the element erosion approach. Consequently, the numerical model exhibits the
similar advantages of variational fracture and phase-field fracture model, without introducing any additional degree
of freedoms to represent fractures and compaction bands. This simplicity greatly reduces the complexity of the solver
and allows one to implement the fracture and compaction band models as nonlocal constitutive laws coupled with the
classical field equations for poromechanics. Our numerical examples also demonstrate that the proposed model has
good rate of convergence, even without any adaptive mesh refinement.
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Appendix. Finite element formulation of the hydraulic fracture in saturated porous media

One of the major advantages of the proposed approach is that there is no need to change the field equation, as well
as the corresponding weak, Galerkin and matrix forms of the hydro-mechanics model. The introduction of regularized
element erosion can be regarded simply as non-local solid and hydraulic constitutive laws employed in standard
mixed finite element formulation for poromechanics problem. As a result, the formulation of the stabilized finite
element model used in this paper is only included here for completeness. Readers interested at the details of theory
and implementation of the u/p formulation may refer to [85–89].

To construct the macroscopic hydro-mechanical boundary-value problem, consider a porous media domain B with
its boundary ∂B composed of Dirichlet boundaries (solid displacement ∂Bu, pore pressure ∂B p) and Von Neumann
boundaries (solid traction ∂Bt, fluid flux ∂Bq ) satisfying

∂B = ∂Bu ∪ ∂Bt = ∂B p ∪ ∂Bq
∅ = ∂Bu ∩ ∂Bt = ∂B p ∩ ∂Bq .

(29)
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The prescribed boundary conditions are
u = u on ∂Bu

σ · n = t on ∂Bt

p f
= p on ∂B p

−n · Q = Q on ∂BQ

(30)

where n is outward unit normal on surface ∂B.
For model closure, the initial conditions are imposed as

p f
= p f

0 , u = u0 at t = t0. (31)

Following the standard procedures of the variational formulation, the weak form of the balance of linear
momentum, fluid mass in intact porous medium and fluid mass in fracture are:

G : Vu × Vp × Vη → R

G(u, p f , η) =


B
∇η : (σ ′ − Bp f I) dV−


∂Bt

η · t dΓ = 0 (32)

H : Vu × Vp × Vψ → R

H(u, p f , ψ) =


B
ψB∇ · u̇ dV+


B
ψ

1
M

ṗ f dV−


B
∇ψ · [k · (−∇ p f )] dV

−


∂BQ

ψQ dΓ = 0 (33)

H ′ : Vu × Vp × Vψ → R

H(u, p f , ψ) =


B
ψ∇ · u̇ dV+


B
ψ

1
K f

ṗ f dV−


B
∇ψ · [kf · (−∇ p f )] dV

−


∂BQ

ψQ dΓ = 0. (34)

The displacement and pore pressure trial spaces for the weak form are defined as

Vu = {u : B → R3
|u ∈ [H1(B)]3,u|∂Bu = u} (35)

Vp = {p
f
: B → R|p f

∈ H1(B), p f
|∂Bp = p} (36)

and the corresponding admissible spaces of variations are defined as

Vη = {η : B → R3
|η ∈ [H1(B)]3, η|∂Bu = 0} (37)

Vψ = {ψ : B → R|ψ ∈ H1(B), ψ |∂Bp = 0} (38)

H1 denotes the Sobolev space of degree one, which is the space of square integrable function whose weak derivative
up to order 1 is also square integrable.

The spatially discretized equations can be derived following the standard Galerkin procedure. Shape functions Nu

and Np are used for approximation of solid motion u, u̇ and pore pressure p f , ṗ f , respectively:
u = Nuū, u̇ = Nu ˙̄u, η = Nuη̄

p f
= Npp̄f , ṗ f = Np

˙p̄ f , ψ = Npψ̄
(39)

with ū being the nodal solid displacement vector, p̄ f being the nodal pore pressure vector, ˙̄u, ˙p̄ f being their time
derivatives, and η̄, ψ̄ being their variations. The gradients of the shape functions are Bu =

1
2 (∇Nu + ∇Nu

T ) and
Bp = ∇Np.

The adopted 2D four-node quadrilateral element interpolates the displacement and pore pressure field with the same
order Nu = Np. This combination does not inherently satisfy the inf–sup condition [90]. Therefore a stabilization
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procedure is necessary. In this study, the fluid pressure Laplacian scheme is applied. This scheme consists of adding
the following stabilization term to the balance of fluid mass equation:

B
∇ψ αstab ∇ ṗ f dV (40)

with αstab a scale factor depending on element size and material properties of the porous media [91].
The semi-discretized finite element equations for balance of linear momentum and balance of fluid mass in intact

porous medium are written as:
G(u, p f , η) = 0

H(u, p f , ψ) = 0
H⇒


Kuū− Kupp̄ f = F1

ext

C1 ˙̄u+ (C2 + Cstab)
˙p̄ f + Kpp̄ f = F2

ext.
(41)

The expressions for each matrices and vectors are as following, assuming linear elastic behavior of the solid
skeleton with De being the material stiffness matrix:

Ku
=


B

Bu
TDeBudV

Kup
=


B

BBu
TmNpdV

C1 =


B

BNT
p mTBudV

m = [110]T in 2D

C2 =


B

1
M

NT
p NpdV

Cstab =


B

Bp
TαstabBpdV

Kp
=


B

Bp
TkBpdV

F1
ext =


∂Bt

NT
u tdΓ

F2
ext =


∂BQ

NT
p QdΓ .

(42)

For elements representing the fracture in porous medium, the matrix equations are similar, with B = 1, M = K f
and k = kf .

The equation system (41) can be rewritten in a compact form:

Mv+ Kd = Fext (43)

where M =


0 0
C1 (C2 + Cstab)


, v =


˙̄u
˙p̄ f


, K =


Ku

−Kup

0 Kp


, d =


ū
¯pf


and Fext

=


F1

ext
F2

ext


.

The transient equation is integrated implicitly in time using the predictor–corrector scheme based on the
generalized trapezoidal rule. It consists of satisfying Eq. (43) at time tn+1:

Mvn+1 + Kdn+1 = Fext
n+1 (44)

with the solution

dn+1 = d̃ + α∆tvn+1 (45)

where the subscripts n and n + 1 denote that the variables are evaluated at time tn and tn+1, respectively; ∆t is the
time step; α is the integration parameter. d̃ = dn + (1− α)∆tvn is referred to as the predicted solution. The corrector
step consists of solving the vn+1 by:

(M + α∆tK)vn+1 = Fext
n+1 − Kd̃ (46)

and compute the corrected dn+1 by (45).
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