
RESEARCH ARTICLE

Epigenetic Alterations Affecting Transcription

Factors and Signaling Pathways in Stromal

Cells of Endometriosis

Iveta Yotova1,2*, Emily Hsu1, Catherine Do1, Aulona Gaba2, Matthias Sczabolcs3,

Sabine Dekan4, Lukas Kenner4,5,6, Rene Wenzl2, Benjamin Tycko1,3

1 Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical

Center, New York, New York, United States of America, 2 Department of Gynecology and Gynecological

Oncology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria,

3 Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia

University Medical Center, New York, New York, United States of America, 4 Department of Experimental

Pathology, Clinical Institute of Pathology, University Clinic of Obstetrics and Gynecology, Medical University

of Vienna, Vienna, Austria, 5 Pathology Laboratory Animal Pathology University of Veterinary Medicine

Vienna, Vienna, Austria, 6 Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria

* iveta.yotova@meduniwien.ac.at

Abstract

Endometriosis is characterized by growth of endometrial-like tissue outside the uterine

cavity. Since its pathogenesis may involve epigenetic changes, we used Illumina 450K

Methylation Beadchips to profile CpG methylation in endometriosis stromal cells compared

to stromal cells from normal endometrium. We validated and extended the Beadchip data

using bisulfite sequencing (bis-seq), and analyzed differential methylation (DM) at the CpG-

level and by an element-level classification for groups of CpGs in chromatin domains. Gen-

es found to have DM included examples encoding transporters (SLC22A23), signaling

components (BDNF, DAPK1, ROR1, and WNT5A) and transcription factors (GATA family,

HAND2, HOXA cluster, NR5A1, OSR2, TBX3). Intriguingly, among the TF genes with DM

we also found JAZF1, a proto-oncogene affected by chromosomal translocations in endo-

metrial stromal tumors. Using RNA-Seq we identified a subset of the DM genes showing dif-

ferential expression (DE), with the likelihood of DE increasing with the extent of the DM and

its location in enhancer elements. Supporting functional relevance, treatment of stromal

cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23 and

repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression. We found that global

5hmC is decreased in endometriotic versus normal epithelial but not stroma cells, and for

JAZF1 and BDNF examined by oxidative bis-seq, found that when 5hmC is detected, pat-

terns of 5hmC paralleled those of 5mC. Together with prior studies, these results define a

consistent epigenetic signature in endometriosis stromal cells and nominate specific tran-

scriptional and signaling pathways as therapeutic targets.

PLOS ONE | DOI:10.1371/journal.pone.0170859 January 26, 2017 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yotova I, Hsu E, Do C, Gaba A, Sczabolcs

M, Dekan S, et al. (2017) Epigenetic Alterations

Affecting Transcription Factors and Signaling

Pathways in Stromal Cells of Endometriosis. PLoS

ONE 12(1): e0170859. doi:10.1371/journal.

pone.0170859

Editor: Max Costa, New York University School of

Medicine, UNITED STATES

Received: October 14, 2016

Accepted: January 11, 2017

Published: January 26, 2017

Copyright: © 2017 Yotova et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All 450K BeadChips

array and RNA-sequencing files from this study are

available from GEO database under accession

numbers GSE87810, GSE87809 and GSE87621.

Funding: This work was supported by a grant from

Schaefer Scholar Award at Columbia University of

New York, to IY and BT, NIH grant to BT (U54

CA163111) and by institutional support to IY, AG

and RW from Department of Obstetrics and

Gynecology, Medical University of Vienna.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170859&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170859&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170859&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170859&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170859&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170859&domain=pdf&date_stamp=2017-01-26
http://creativecommons.org/licenses/by/4.0/


Introduction

Endometriosis is characterized by growth of endometrial-like tissue outside the uterine cavity.

As a hormone-driven disorder it affects women of reproductive age, and it is associated with

chronic pelvic pain, pelvic inflammatory reactions and infertility. Although it is not a malig-

nant condition, it shares its metastasizing-like biological behavior and certain aspects of gene

expression with cancers [1]. In healthy individuals, the development and the maintenance of

the decidua is dependent on progesterone, and a hormonal withdrawal in the absence of preg-

nancy provokes apoptosis and shedding of the endometrium and differentiated decidual cells

during menstruation [2]; this physiological response is altered in women with endometriosis

partly due to progesterone-resistance of the ectopic endometrial tissue [3].

Multiple predisposing factors of genetic, epigenetic and environmental origin, combined

with an altered immune response, are thought to contribute to survival of endometrial cells

outside the uterine cavity in the endometriotic lesions [4]. Since there are important but to

date only partly characterized interactions between epithelial cells, inflammatory cells with

their associated cytokines, and mesenchymal stromal cells in these lesions (e.g. [5–7]), a full

elucidation of the pathogenic mechanisms will require testing multiple biological hypotheses.

Among these possibilities, epigenetic changes in endometriosis have come under scrutiny. Ini-

tial reports focused on DNA methylation changes in candidate genes associated with sex-ste-

roid hormone signaling and the dysregulation of endometrial decidualization [8]: losses of

methylation in gene promoters for aromatase [9], steroidogenic factor-1 [10] and estrogen

receptor beta [11] were associated with local estrogen production and enhanced estrogen sig-

naling in ectopic whole endometriotic tissue compared to control uterine endometrium.

Hypermethylation of promoter regions of genes involved in implantation including those

encoding the progesterone receptor, homeobox A10, and e-cadherin were reported in endo-

metrium of patients with endometriosis (reviewed in: [8]) and several other genes have also

been reported to show abnormal CpG methylation in endometriotic lesions [12]. Recently,

altered promoter methylation in eutopic endometrial cells was suggested as a possible mecha-

nism in women who will develop endometriosis later in life [13].

In addition to these candidate gene studies, methods for genome-wide profiling of differ-

ential methylation (DM) have advanced quickly, and studies by us and many others using

microarrays such as 450K Illumina Methylation Beadchips, and massively parallel bisulfite

sequencing (bis-seq), have shown that not only promoter regions but also intragenic, inter-

genic and enhancer sequences have dynamic DNA methylation patterns in cell differentia-

tion and disease [14, 15]. Methylation arrays have been used by six independent groups to

study endometriosis, with four reports comparing DNA methylation patterns in whole tis-

sue samples of patients with endometriosis versus healthy controls [16–19] and two other

studies reporting on cultured stromal cells from control endometrium and endometriosis

[20, 21]. Here we use 450K Methylation Beadchips, with extensive validations by bis-seq,

and with parallel genome wide expression profiling by RNA-Seq, to compare epigenetic

patterning in endometriosis stromal cells at ovarian ectopic sites (OESC) vs. control endo-

metrial stromal cells (CESC). Our findings confirm some of the results from prior investiga-

tions and highlight additional examples of DM genes that point to targetable biological

pathways for future therapies of endometriosis. In addition, we present a useful method for

analyzing DM at the level of chromatin elements, and we uncover mechanistically informa-

tive relationships between DM and differential expression (DE) that may be relevant not

only to endometriosis but also to other human disorders.

Epigenetic Alterations in Endometriosis Stromal Cells

PLOS ONE | DOI:10.1371/journal.pone.0170859 January 26, 2017 2 / 32

Competing Interests: The authors have declared

that no competing interests exist.



Materials and Methods

Tissue samples

All samples used for analysis in this study were obtained from premenopausal women

undergoing laparoscopic surgery because of suspected endometriosis, pelvic pain of

unknown origin, adnexal cysts, infertility work-up or leiomyoma uteri. Patients with his-

tory of any malignant disease, acute inflammatory process, infection, or systemic autoim-

mune disorders were excluded from study participation. The presence or absence of

endometriosis was confirmed visually by laparoscopy and additional histopathological

analysis. The study was approved by the institutional ethics committee of the Medical

University of Vienna (EK 545/2010). All patients gave their verbal and written informed

consent prior to study inclusion.

Stromal cell cultures

The primary tissue samples and OESC and CESC cells analyzed in this study are in S1 Table.

Cryopreserved endometrial tissue obtained by diagnostic laparoscopy was minced and incu-

bated with collagenase (Sigma-Aldrich, St. Louis, MO) at 37˚C for 10 min., followed by filtra-

tion, as previously described [22]. This method produces 95–99% pure stromal cells. The

purity of these stromal cells at passage one was evaluated by immunofluorescence analysis

using antibodies against vimentin (stromal cell marker), cytokeratin7 (epithelial cell marker)

and CD45 (leukocyte marker), which showed that all cultures were 98–99% pure stromal mes-

enchymal cells. The cells were then cultured as previously described [23]. Briefly, the cells were

cultured on fibronectin-collagen (Gibco, Grand Island, NY) coated dishes in DMEM-F12

without phenol red (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco), 2 mM

L-glutamine (Gibco) and 1% antibiotics–antimycotic (Gibco) up to passage 3. To exclude

influences of the serum derived steroid hormones on DNA methylation and expression in the

cultures, the cells were grown in culture medium containing 10% charcoal stripped fetal

bovine serum (CS-FBS; Gibco).

Immunohistochemistry (IHC) and immunofluorescence (IF) analyses of

archival tissue samples

Paraffin embedded tissue samples from controls (n = 14) and endometriosis cases (n = 14)

collected in the Pathology Department of the Medical University of Vienna were used for

immunohistochemical (IHC) staining of WNT5A. Six tissue samples (3 controls and 3

endometriosis) from the Pathology Department of Columbia University Medical Center

were used for 5mC and 5hmC analysis by immunofluorescence (IF). For IHC, antigen

retrieval was performed by autoclaving the slides in 10 mM Sodium citrate buffer using

DAKO target retrieval solution pH = 6 (DAKO, Carpinteria, CA) for 20 min. The slides

were further blocked with 3% sodium peroxide (Gatt-KOLLER, Absam, Austria) for 10

min, stained with avidin (10 min), biotin (10 min) and again blocked for 7 min using Super-

stain Horseradish Peroxidase (HPR) system (Empire Genomics, Buffalo, NY, USA; IDST

1007). An anti-WNT5A-antibody (Cell Signaling Technology, Danvers, MA) at 1:1000 dilu-

tion was applied for identification of WNT5A protein, with incubation of the slides over-

night at 4˚C. Amino ethyl carbazole (AEC) development (Labs Biotechnology, American

Fork, UT) was performed for 2 min. For double immunofluorescence (IF) of 5mC and

5hmC, we detected 5mC using a mouse monoclonal antibody (Ab-1; Calbiochem, San

Diego, CA), and we used a polyclonal antibody (anti-5hmC, Active Motif, CA, USA) to

detect 5hmC, as previously described [24].
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CpG methylation profiling using Illumina 450K Methylation Beadchips

The amount and integrity of genomic DNA was assessed by agarose gel electrophoresis with

ethidium bromide staining and by PicoGreen1 dsDNA quantitation assays (Life Technolo-

gies, Carlsbad, CA, USA). Genomic DNA, 500 ng, was bisulfite converted and analyzed per the

manufacturer’s instructions for Illumina HumanMethylation450K Beadchips, with all assays

performed at the Roswell Park Cancer Institute Genomics Shared Resource, New York, USA.

The BeadChip-based methylation assays entail bisulfite conversion of the genomic DNA fol-

lowed by primer extensions to query the percent methylation at each of 485,000 (450K) CpG

dinucleotides, covering sequences in and around promoter-associated and non-promoter-

associated CpG-islands (CGIs), as well as many non-island promoter regions, associated with

99% of RefSeq genes. Data were processed using Genome Studio software, which calculates the

percent methylation (AVG_Beta) at each CpG queried by the array, after background correc-

tion and normalization to internal controls.

Analysis of the 450K BeadChip data at the individual CpG and regulatory

element levels

As initial data cleaning, AVG_Beta values with detection p-values>.05 were designated as

missing values. All probes mapping to the X or Y chromosome were removed, as were poorly

performing probes with missing values in more than 20% of the samples and probes querying

a common SNP (DbSNP137, minor allele frequency>0.01). After these steps, 452,704 probes

(queried CpGs) remained for analysis. In addition to performing a standard analysis for DM

at each individual CpG using p-value (with FDR) and average difference criteria, we addition-

ally performed a modified element-level analysis, grouping together contiguous CpGs in pro-

moter, enhancer and insulator sequences. Chromatin state data from ENCODE and related

projects [25] were downloaded from the USCS browser and analyzed in a non-cell specific

manner. Multiple CpGs mapping the same regulatory sequence and distant from less than 500

bp were grouped into the same segment. A 500 bp window was defined around single CpGs

mapping a given regulatory element and large segments (>500 bp) were tiled into 500 bp seg-

ments including the 100 bp upstream and downstream flanking regions and with a 100 bp over-

lap between tiles. Fractional methylation values were then average across each 500 bp window.

P-values for the case/control comparison were calculated using Student’s T-tests and false dis-

covery rates were calculated using the Benjamini-Hochberg method. For the CpG-level, we

defined DM CpGs using stringent criteria, FDR<0.05 and absolute difference in fractional

methylation>0.15, as well as more lenient criteria, nominal p-value<0.05 and at least 2 CpGs

in each gene with p-value<0.05 and fractional methylation >0.15. Similarly, DM segments

were defined using stringent criteria, FDR<0.05 and absolute difference in averaged fractional

methylation>0.10 (or>0.15 when the segment contained a single CpG), as well as more

lenient criteria, nominal p-value<0.05 and at least 2 segments in each gene with p-value<0.05

and fractional methylation>0.10 (or>0.15 for single CpG segment). Analyses were performed

using R and STATA statistical software.

Gene set enrichment analysis (GSEA) and gene ontology enrichment

analysis (GOEA) of DM and DE loci and test for correlations of DM with

chromatin states

To test whether the DM genes, identified by our stringent criteria, are associated with specific

biological function we performed gene ontology enrichment analysis using DAVID (https://

david.ncifcrf.gov/) [26], [27] and GSEA-Broad Institute (www.broadinstitute.org/gsea) [28],
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[29] software. In the DAVID annotation system, Fisher’s Exact test is adopted to measure the

gene-enrichment in annotation terms. Gene ontology (GO) terms showing a Fisher’s Exact p-

value <0.05 were considered significantly enriched among DM genes. In GSEA we used the

Molecular Signature Database (MSigDB) to investigate the overlap between our gene lists and

known annotated gene sets. Gene sets showing FDR q-value<0. 005 were considered as signif-

icantly enriched among DM genes. We considered the biological processes associated with sig-

nificantly enriched GO terms or MSigDB gene sets as potentially relevant for endometriosis.

Chromatin state data from ENCODE [25] were analyzed in a non-cell type-specific manner: we

focused on chromatin states associated with promoter (active, weak or poised), enhancer (active

or poised) or insulator in at least one queried cell line. To test whether DM CpGs occur at spe-

cific chromatin states more often than random expectation, we used univariate logistic regres-

sions with the presence or absence of DM as the dependent variable and the tested sequence

feature as the explanatory covariate, as described in our recent work [15, 30]. Enrichment of a

given state among DM CpGs was estimated by the odd ratios (ORs) and log2(OR) was used to

visualize under-representation and enrichment in a symmetrical manner.

Standard and oxidative bis-seq

Genomic DNA, 500 ng, was bisulfite-converted using the EpiTect Bisulfite Kit (Qiagen, CA,

USA). Sequences spanning the DM CpGs were amplified by PCR, using primers designed in

MethPrimer [31], the products cloned in bacteria (TopoTA Cloning Kit; Thermo-Fisher Sci-

entific, MA, USA) and multiple clones sequenced. We evaluated the relative contributions of

5mC and 5hmC to DM at selected loci using the TrueMethylTM6 kit (CEGX, Cambridge, UK).

This oxidative chemical conversion-based approach uses oxidative bis-seq of multiple clones

to score 5mC-only while standard bis-seq is used in parallel to score 5mC+5hmC, so that the

percent contribution of 5hmC to net methylation at each CpG can be inferred from the differ-

ence between oxidative and standard bisulfite conversion. For both standard and oxidative

bis-seq at least 10 independent clones were sequenced per amplicon per DNA sample. Primer

sequences are in S7 Table.

RNA-seq and analysis of correlations between DM and DE

RNA was isolated using TRIZOL reagent (Invitrogen, MA, USA) and RNA integrity was con-

firmed as RIN>7 on a Bio Analyzer (Agilent Technologies, CA, USA). Poly-A pull-down was

used to enrich for mRNAs, and libraries were prepared using the Illumina TruSeq RNA kit.

Libraries were pooled and sequenced on an Illumina HiSeq2000 machine with 100 bp paired-

end reads. RTA (Illumina, San Diego, CA, USA) was used for base calling and bcl2fastq (ver-

sion 1.8.4) for converting BCL to FASTQ format, coupled with adaptor trimming. The reads

were mapped to the human reference genome (NCBI/build37.2) using Tophat [32] (version

2.0.4) with 4 mismatches (—read-mismatches = 4) and 10 maximum multiple hits (—max-

multihits = 10). The relative expression level of genes was estimate by FPKM (Fragments Per

Kilobase of transcript per Million mapped reads) using cufflinks [33] (version 2.0.2) with

default settings. Genes with very low levels of expression, defined by average FPKM values < 1

in both OESC and CESC groups were excluded from further analysis. To identify DM loci for

which CpG methylation correlates with expression, we regressed, for each expressed gene que-

ried by RNA-seq and Illumina 450K Beadchips, its FPKM value against the fractional methyla-

tion of each CpG or groups of CpGs in each sequence element within and flanking the gene

(within 1.5 kb upstream of the gene transcription starting site). Significant correlation was

defined as p<0.005 and rho correlation coefficient >0.7 (corresponding to a R2>0.5). We then
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superimposed the lenient DM CpG- and segment-level lists with the list of CpGs/segments

with correlation between expression and methylation.

Treatment of cells with 5aza-dC

Equal numbers of OESC and CESC cells (passage 3) were seeded in 10 cm dishes. After the

cells reached about 50% confluency, 5aza-dC was added to a final concentration of 0, 1.0, 1.5

or 2.0 micromolar. The culture medium was changed every 24 hours, with addition of freshly

prepared 5aza-dC. These concentrations of the drug affected cell proliferation but did not

cause noticeable cell death: changes in the proliferation rate of the cells were noticeable after

the first 24 hours of treatment and became more pronounced after 72 hours, when the cells

were harvested for RNA isolation. This treatment was performed in biological and technical

replicates for the OESC and CESC. RNA isolation, followed by DNase I treatment (Ambion,

MA, USA) was performed as described above and the total RNA was further used for reverse

transcription and Q-PCR analysis of JAZF1, ROR1, SLC22A23,HAND2, HAND2as, DAPK1
and WNT5A genes.

Quantitative PCR (Q-PCR) for measuring mRNA expression

Total RNA was reverse transcribed with SuperScript1 III First-Strand Synthesis Reverse

Transcriptase (Life Sciences Advance Technology, St Petersburg, FL), with priming using a

mixture of oligo-d (T) and random hexamers. Q-PCR was performed in triplicate in 96-well

optical plates and repeated two or three times using independent cDNA sets, all of which gave

consistent results. Each reaction contained 1X Power SYBR Green PCR master mix (Applied

Biosystems, MA, USA) and 0.2 μM of each specific primer pair, which were designed using

online Real Time PCR tool (IDT). Q-PCR was performed using a 7500 Fast Real-Time PCR

System (Applied Biosystems), or a StepOnePlus instrument (Bio-Rad, CA, USA), with an ini-

tial denaturation for 10 min at 95˚C, primer annealing at 50˚C for 2 min, followed by 40 cycles

of 15 secs at 95˚C and 1 min at 60˚C. The relative expression of target genes was calculated by

the delta-CT method as described [34], with normalization using either B2MG or CSNK1D
housekeeping genes. The average Ct values were�30 except for JAZF1as and ROR1 tran-

scripts showing average Ct-value of 32 cycles (for ROR1 in CESC and for JAZF1as in both cell

types), for each of the assayed genes using 2-fold dilutions of the SuperScript-generated cDNA

preparations. The Q-PCR primer sequences are in S8 Table. Q-PCR for the WNT5A gene was

performed using TaqMan primers (Applied Biosystems) and probes for WNT5A (Applied

Biosystems, Hs00998537_m1) and the TBP house-keeping gene, with ROX reference dye

(Thermo Fisher Scientific) and InnuMIX Q-PCR Mastermix (Analytik Jena, Jena, Germany).

Quantitation of secreted BDNF by ELISA

The levels of secreted BDNF in the supernatants of cultured OESC and CESC were measured

using the Biosensis human BDNF Rapid ELISA Kit (Biosensis, Thebarton, Australia; BEK-

2211-1P) following the manufacturer’s protocol. Cells were grown in DMEM-F12 media with-

out phenol red (Gibco) supplemented with 0.5% charcoal stripped-FBS (CS-FBS; Gibco), 2

mM L-glutamine (Gibco) and 1% antibiotics–antimycotic (Gibco) for four days. The superna-

tants were collected, particles were removed by centrifugation (10,000 x g for 5 minutes), and

the supernatants were diluted 1:4 and further subjected to enzyme-linked immunosorbent

assay (ELISA). A total of 6 independent samples per group, with technical triplicates, were ana-

lyzed and the levels of secreted BDNF were calculated in pg/ml.
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Results

Differential CpG methylation in endometriosis stromal cells vs. stromal

cells from normal endometrium

To identify changes in patterns of CpG methylation we isolated genomic DNA from early pas-

sage explant cultures of stromal cells from tissue biopsies of 5 patients with endometriosis and

from parallel cultures of control uterine endometrial stromal cells from 5 individuals (OESC

and CESC, respectively; S1 Table). We analyzed these samples on Illumina Infinium Human-

Methylation450 BeadChips. With the resulting data, we first carried out a CpG-level analysis,

using stringent criteria of false discovery rate (FDR) < .05 and average difference in fractional

methylation (DFM)>.15 to identify a set of 68 CpGs, located in 43 genes, with strong and

highly consistent DM between the cases and controls (Fig 1A and S2 Table). Supervised hier-

archical clustering to produce methylation heat maps highlighted that both gains and losses of

methylation occur in OESC vs. CESC (Fig 1A and S2 Table).

Since stringent correction for multiple testing in genome-wide data can lead to the discard-

ing of some true-positive differences, and since the methylation status of multiple contiguous

CpGs is thought to be important in creating or maintaining chromatin states, we used two

approaches based on biological criteria to improve the identification of DM genes. First, genes

with multiple DM CpGs are more likely to be true positives. Our DM criteria based on a

lenient nominal p-value <0.05 require at least 2 CpGs or segments within a given gene. Sec-

ond, the methylation status of multiple contiguous CpGs is more likely to be correlated and to

reflect the same regulatory sequence. Focusing on CpGs in promoter, enhancer and insulator

sequences, we grouped contiguous CpGs into 500 bp DNA segments to identify DM regula-

tory segments (among a total of 197,949 genomic segments, see Methods) For each segment,

fractional methylation values of contiguous CpGs were averaged and to identify genomic seg-

ments with DM between cases and controls, we required the CpGs in a segment to have an

average DFM>.10 (or DFM>.15 for segments mapping only 1 CpG queried by the Bead-

Chips), and we again used FDR< .05, but with the correction for multiple comparisons calcu-

lated based on the number of evaluable segments. This element-level analysis resulted in a

somewhat larger set of 183 CpGs (corresponding to 141 segments), in 91 genes, with DM

between OESC and CESC (Fig 1A and S3 Table).

Next, we asked whether certain classes of DNA sequences and chromatin states might be

preferentially affected by DM in the OESC vs. CESC comparison. Using chromatin states as

defined by public data from ENCODE and related projects [25], we applied bioinformatic

enrichment analyses analogous to those in our previous work [15] and found, using the DM

sets from our CpG-level analysis, that the DM CpGs are over-represented in active and poised

enhancer regions (Odds Ratio (OR) = 3.0; p = 5x10-06 and OR = 2.8; p = 3x10-05) but under-

represented in active and poised promoters (OR = 0.4; p = 6x10-03 and OR = 0.27; p = 10−02,

Fig 1B). This finding of enrichment of DM in enhancer elements is relevant to our analysis of

the relationship of DM to DE, described in later section.

The DM affects genes with known or suspected roles in endometriosis

lesion formation

To gain insight into the functions of the genes being epigenetically regulated, we carried out

manual annotations based on literature and gene ontology databases (Table 1 and S4 Table),

and performed gene set enrichment analysis (GSEA) and gene ontology enrichment analysis

(GOEA) by overlapping the lists of DM genes identified by our stringent CpG-level and regu-

latory element-level criteria with gene sets using Broad Institute-GSEA website (www.
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broadinstitute.org/gsea) [28], [29] and with gene ontology annotation using DAVID (https://

david.ncifcrf.gov/) [35, 36]. By these unbiased approaches (Methods), the GOEA was more

informative than GSEA, revealing sets of DM regulatory regions, which are localized in multi-

ple genes encoding TFs and signaling components, and showing significant enrichments in

genes that control cell proliferation, nervous system development, and immunity (S4 Table).

Fig 1. Gene-specific alterations in DNA methylation in primary ovarian endometriosis stromal cells (OESC) compared to

control endometrial stromal cells (CESC), chromatin state enrichment analysis of DM genes in endometriosis, and bi-seq

validation for DAPK1. A) Heat maps of gene-specific methylation changes in endometriotic stroma cells vs. controls. Supervised

hierarchical clustering of the 450K methylation BeadChip data analyzed at the CpG level (FDR q-values < .05 and absolute

difference in fractional methylation (Δmethyl.)>.15) and at the element-level (q-values < .05 and Δmethyl.>.15 for multiple CpG

segment and>0.1 for single CpG segment) are shown. Biological samples are on the x-axis and differentially methylated loci are on

the y-axis, with relative hypermethylation and hypomethylation indicated by the color scale. The fractional methylation values for

each CpG are centered and standardized to have mean 0 and standard deviation 1. The red color represents a methylation level

above the mean methylation of the CpG across all samples, the white color represents mean methylation and the blue color

represents methylation lower than the mean. B) DM CpGs are enriched in enhancers but depleted in promoter regions. For each

chromatin state, enrichment and under-representation are symmetrically visualized using log2(OR). C) Validation and mapping of

the DMR in DAPK1 using bis-seq. A map of the DAPK1 gene showing hypomethylation in the promoter region is given on the top.

The DMR overlaps an active promoter region (color coded in red) flanked by a strong enhancer (yellow). Bis-seq amplicons for

validation and mapping of the DMR are indicated by the numbered rectangles. The bis-seq data (bottom panel) is visualized by the

circles representing consecutive CpGs with black circles indicating methylated CpGs and white circles unmethylated CpGs, with

each line being a unique DNA clone.

doi:10.1371/journal.pone.0170859.g001

Table 1. Examples of genes with DM and DE in OESC versus CESC.

Gene DM CpGa Rhob p-valuec Function Reference

NR5A1 6 0.972 1.15E-05 NR, development, steroidogenesis, reproduction [37], [38]

CYP1B1 7 0.895 0.001 ENZ, steroid metabolism, proangiogenic factor [39], [40]

GATA4 7 -0.979 4.34E-06 TF, development, sex determination [41], [42]

RGS5 4 -0.921 4.32E-04 GTP-ase activator, vascular remodeling [43]

S100A4 6 -0.950 8.74E-05 Oncogene, cell differentiation, motility,cell cycle [44], [45]

HOXA10 10 -0.940 1.67E-04 TF, organogenesis, decidualization [46], [47]

HOXA11 3 -0.931 0.0003 TF, decidualization, endometrial receptivity [48], [46]

COL7A1 3 -0.848 0.0038 Extracellular matrix protein, PRO-regulated [49], [50]

OSR2 13 -0.868 0.0024 TF, PRO-regulated, morphogenesis [51], [52]

DAPK1 8 -0.958 0.0002 ENZ, cell survival, apoptosis and autophagy [53], [54]

TRERF1 1 -0.951 7.92E-05 TF, co-activator of NR5A1, PRO-regulated [55], [56]

JAZF1 10 -0.883 0.0016 TF, oncogene in EM stroma cancer [57]

WNT5A 3 -0.946 0.0001 WNT ligand, organ development, PRO-regulated [58], [59]

BDNF 1 0.900 0.005 Secreted NGF, NS development, loss of function polymorphism in endometriosis [60], [61]

TGFBR1 1 0.890 0.0018 Receptor, reproductive tract integrity [62], [63]

ROR1 3 0.893 0.0012 ENZ, WNT receptor, tissue morphogenesis [64], [65]

HAND2 4 -0.957 5.32E-05 PRO-regulated, decidualization [66], [67]

NRP2 4 -910 0.0016 Transmembrane co-repressor, lymphatic vessel formation [68]

SLC22A23 5 -0.964 2.69E-05 Ion transporter, gene polymorphisms associated with EM [69]

SGK1 7 0.929 0.0003 ENZ, decidualization, loss of gene function is associated with pregnancy loss [70]

Lenient CpG DM genes showing correlation between expression and methylation were ranked based on rho correlation coefficient and methylation

changes. The top 20 genes are shown. For each gene, the number of DM CpGs (a), the overall difference in fractional gene methylation, the number of

CpGs (b) with correlation between DM and DE with corresponding Rho-coefficient and nominal p-value of the CpG (c) with the highest rank are indicated.

The complete lists of DM genes showing correlation between expression and methylation are in S5A and S5B Table. The complete lists of DM genes

showing correlation between expression and methylation are in S5A and S5B Table. NR-nuclear receptor, TF-transcription factor

doi:10.1371/journal.pone.0170859.t001
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GESA analysis, however, identified sets of DM regulatory regions localized in multiple estro-

gen-regulated genes (S4 Table).

Our manual curation of the gene lists using literature searches confirmed these conclusions

(Table 1). These results suggest that the pathogenesis of endometriosis may involve epigenetic

modulation of gene regulatory programs for neurogenesis, cell proliferation and immune

responses, which are known or suspected to support ectopic lesion implantation and growth.

Validations and extension of the BeadChip findings by bis-seq

The Beadchip assays query many CpGs, but these still represent only a small percentage in

each CG-rich gene regulatory region. For example the DMR in DAPK1 was only partially cov-

ered by the array (Fig 1). Similarly, for JAZF1, the DMR and flanking regions are queried at

only by 1 CpG in the BeadChip assay (Fig 2B and S1 Fig). Further, since SNPs in the probe

binding sites and a few ambiguously mapping probe sequences can complicate the BeadChip

data interpretation, it is desirable to perform validations using bis-seq, which can reveal the

pattern of methylation across multiple contiguous CpGs including and surrounding the DM

CpGs queried by the Beadchips. Determining the boundaries of the DMRs in this way is cru-

cial for understanding the biological mechanisms and consequences of DM. Using bis-seq, we

confirmed hypomethylation in the promoter of the DAPK1 gene in OESC and extended the

results to additional DM CpGs. This DMR was localized to the downstream part of the DAPK1
promoter (Fig 1C). At least four DMRs in the JAZF1 gene were identified in our analysis,

located in strong enhancer sequences and near the promoter of the gene (Fig 2A). We vali-

dated and extended the findings of DM in two of these regions using bis-seq. The first of these

DMRs, marked as region “d” in Fig 2B, is located in JAZF1 intron 1 within an ENCODE-

defined enhancer element. Our bis-seq data identified it as a large DMR with gain of methyla-

tion in endometriotic stromal cells vs. control endometrial stromal cells. Bis-seq of a second

DMR in the JAZF1 gene, located in a gene body enhancer element, was also confirmed,

extending the BeadChip results by coverage of additional DM CpGs (S1 Fig).

Since endometriosis is associated with abdominal pain and nerve fiber outgrowth within

the lesions, we further examined the CpG methylation changes in the BDNF gene, which codes

for a secreted nerve growth factor that was shown to be elevated in tissue samples of patients

with endometriosis vs. controls [71] and for which a loss of function polymorphism has been

associated with endometriosis-related infertility [72]. Our bis-seq data for this gene validated

and extended the BeadChip findings of gains of methylation in the OESC samples (S2 Fig).

Similarly, we validated and extended our 450K findings of gain of methylation in a CpG over-

lapping the last exon of the TGFBR1 gene, encoding an important signaling receptor, with bis-

seq extending the 450K data by revealing gains of DNA methylation at multiple CpGs in

OESC (S3 Fig).

Analysis of 5mC and 5hmC in endometriosis lesions and stroma cells

To examine possible contributions of changes in the “sixth base”, 5hmC, we first used IF to

examine the relative amounts of 5mC versus 5hmC in endometriotic lesions. Strikingly, at the

whole tissue level we found an obvious loss of 5hmC in the epithelial cell compartment of

endometriosis, compared to epithelial cells in control endometrium, with no loss of global

5hmC in the endometriotic stroma cells (Fig 3A). Next, we tested two DM loci for the detailed

pattern of 5hmC using both standard and oxidative bis-seq applied to OESC and CESC sam-

ples. As shown in Fig 3B and 3C, both types of modifications contributed to the net DM, with

the relative contributions differing between the two genes: a strong relative contribution of

5hmC was seen in the BDNF gene (Fig 3B) with concurrent and equal gains of both 5mC and
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5hmC, while the enhancer DMR in the JAZF1 gene (Fig 3C) show little or no contribution.

These results show that while the precise balance between these two DNA modifications is

Fig 2. Gain of DNA methylation in the promoter and gene body of JAZF1. A) Map showing multiple clusters of hyper-methylated CpGs in

the promoter and gene body of JAZF1. The dashed and plain rectangles indicate clusters of CpGs with DM overlapping multiple individual

enhancer regions. B) Validation and mapping of the DMR (d) in JAZF1 gene using bis-seq. The results from the Bis-seq for the amplicons

indicated with number on the higher resolution gene map (top) are shown as QUMA blots (bottom). Every circle represents a single CpG. Black

circles indicate methylated CpG and the white free of methylation CpG. The number of the amplicon and each individual sample ID are indicated

on the top of every QUMA. The bis-seq data identify this DMR as a large 2.75 KB region spanning amplicons 5, 6 and 7.

doi:10.1371/journal.pone.0170859.g002
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Fig 3. Analysis of 5mC and 5hmC in endometriosis lesions and stroma cells. A) Immunofluorescence analysis of the levels of expression of

5mC (green) and 5hmC (red) in tissue samples of women with endometriosis and controls, showing disease-dependent loss of 5hmC in the

epithelial but not in the stromal cell compartment. Representative photos from a total number of n = 2 control and n = 2 endometriotic tissue are
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PLOS ONE | DOI:10.1371/journal.pone.0170859 January 26, 2017 12 / 32



different between different genomic loci, when 5hmC is detected, the direction of the change

in 5hmC can parallel that of 5mC.

Effects on gene expression are more frequent when the DM is localized

to enhancer sequences

Differential mRNA expression (DE) is obviously an important functional readout of DM, but

in most epigenetic studies only a subset of genes with DM are found to show DE. Thus it is

thought that many genes with DM are “bystanders”, and the search for genomic and epige-

nomic features that distinguish these bystander loci from the biologically relevant loci whose

expression is affected by DM is a fundamental question. To investigate this situation in endo-

metriosis we performed RNA-Seq on 5 control and 4 endometriotic stromal cell samples for

which RNA was available from the same early passage cultures as had been profiled for DM

(S1 Table). The results showed DE of a large group of genes in OESC compared to CESC, with

GSEA revealing alterations in gene networks with roles in apoptosis, cell differentiation, neu-

ronal development, response to estrogens, and genes coordinately up-regulated in a compen-

dium of adult tissue stem cells (S4 Table), and GOEA revealing significant enrichment in cell

survival, immune responses, cell migration, neuronal differentiation and hypoxia pathways

(S4 Table).

Using the RNA-Seq data, we identified CpGs and genomic segments with strong overall

correlations between methylation and expression (p<0.005 and correlation coefficient>0.7),

independent of case-control status and restricting the analysis to genes expressed above a stan-

dard cut-off (average FPKM>1 in at least one of the groups). Using these criteria, we identified

1623 and 1105 genes with positive or negative overall correlations between methylation and

expression at the CpG-level and element-level, respectively. Among the genes with negative

correlations (hypermethylation correlating with reduced expression), 54% showed it at the

CpG-level and 58% at the element-level.

Next, we brought forward the lists of DM genes identified by lenient CpG-and element-

level case-control comparisons for overlap with this methylation-expression correlation list.

We found 306 (CpG-level) and 239 (element-level) genes with DM for which methylation

correlates with expression (S4A Fig, S5 Table and Methods). Thus, 19% of genes with DM

showed correlations between methylation and expression. While this fraction is a minority

of the DM genes, it nonetheless represents a significant enrichment over random expectation

(O.R. 5.8, p = 5x10-185). Among these DM and DE genes, the JAZF1 and DAPK1 DM regions

showed a strong correlation between the fractional methylation and the gene expression (S4B

and S4C Fig). Q-PCR validation analysis for the JAZF1 gene showed a significant 2.3-fold

(p = 0.003) down-regulation of the levels of JAZF1 expression in OESC versus CESC. Based on

genomic annotations the JAZF1 locus contains an antisense transcript that arises from a pro-

moter region located in intron 1 of the protein coding gene, and our results from Q-PCR of

DNAse-treated RNA samples using primers specific for the main antisense transcript suggest

that the DM in OESC does not markedly affect the expression of the apparently spliced and

non-translated JAZF1-as RNA (S5A Fig).

shown. B) The results of the standard and oxidative bis-seq for BDNF in endometriotic and control stromal cells represented as QUMA plots (left)

and as bar graph (right). The QUMA plot and bar-graph show the percent methylation assessed by standard bis-seq (which scores indistinctly

5hmC and 5mC) and by modified bis-seq (which scores 5mC only) in control stroma and endometriotic stroma cells. The contribution of 5hmC in

endometriotic and control stroma is inferred from the difference between the percent methylation at each CpG in the standard bis-seq reactions

(5hmC + 5mC) and the percent methylation in the modified bis-seq reactions (5mC). C) The data of JAZF1 standard and oxidative bis-seq in

endometriotic and control stromal cells represented as QUMA plots (left) and bar-graph (right) are shown.

doi:10.1371/journal.pone.0170859.g003
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Although a large number of other CpGs that showed overall correlations between methyla-

tion and expression in our combined OESC plus CESC sample sets did not pass the stringent

cutoffs for DM in our case-control comparisons, they showed on average an absolute difference

of fractional methylation of 0.096, i.e. DM that is sub-threshold by our criteria. Notably, TGFBR1
and BDNF showed a strong correlation between expression and methylation (p = 0.0018, rho

correlation coefficient = 0.89 and p = 0.005, rho = 0.9, respectively) but did not pass our DM cri-

teria at FDR< .05 since only 1 of the 450K-queried CpGs in each gene showed strong DM

(DFM = 0.4, nominal p-value = 0.002 and DFM = 0.4, nominal p-value = 0.007, respectively

(S4D and S4E Fig). Nonetheless, as noted above using bis-seq we confirmed, for both of these

gene regions, DM not only in the 450K-queried CpG but also in several contiguous CpGs (S2

Fig and S3 Fig). Consistent with previously reported positive relationship between intra-genic

hypermethylation and increased gene expression, the hypermethylation of the DM region in

intron 2 of the BDNF gene was associated with up-regulation of BDNF mRNA expression in

OESC (6-fold, p = 0.008 by Q-PCR) (S4B Fig) and with increased protein secretion (8.5- fold by

ELISA; p = 0.006, S5C Fig) by these endometriotic stromal cells.

We next used a series of bioinformatic analyses to seek mechanistic explanations for the

observed overlap of some but not all DM regions with DE in the EOSC versus CESC comparison.

We first tested for the effect of increasing stringency for DM (number of DM CpGs in the gene or

regulatory element and p-value in the case-control comparison) and found stronger enrichment

for correlation of DM with DE with increased strength of the DM (S6 Fig). When examined at

the regulatory element level, we found that CpGs with correlations between methylation and

expression were enriched in enhancers but depleted in promoters (OR = 2.6, p = 7x10-142 and

OR = 0.6, p = 2.3x10-42, respectively, S7 Fig). Since we used the entire set of genomic elements as

the denominator for our enrichment analyses, this strong finding is only partly explained by the

overall enrichment in enhancers that we had observed among DM CpGs. The simplest mechanis-

tic interpretation is that it reflects a greater methylation-sensitivity of the function of enhancer

regions, compared to promoter regions, particularly when the changes in fractional methylation

occur in a modest range of 0.1–0.4, as is true in this dataset and in most other methylation data-

sets from epigenomic studies of non-neoplastic diseases.

To better understand this observation, we compared the methylation distribution between

CpGs correlating and those not correlating with expression. The methylation distributions for

CpGs not correlating with expression were, as expected, bimodal in enhancers and insulators

but unimodal (low methylation) in promoters, which often correspond to CG-islands that are

generally protected from methylation. The methylation distributions of CpGs correlating with

expression showed an enrichment of the intermediate methylation levels in OESC for all the

tested regulatory elements. We also compared the methylation levels between DM CpGs corre-

lating with expression and DM CpGs not correlating with expression. Overall, DM CpGs cor-

relating with expression were associated not only with greater methylation changes, but also

with a more complete unmethylated or methylated status in the control (CESC) cell popula-

tions (S6 Table). Since intermediate net methylation levels can often reflect heterogeneity of

methylation within cell populations, a reasonable hypothesis is that DE is more likely to be

detectable when DM occurs uniformly across the cell population.

In summary, we observed (i) a statistically significant enrichment among DM loci of CpGs

where methylation correlates with expression, supporting a functional role of DM in endome-

triosis and, (ii) enrichment of DM CpGs correlating with DE in enhancer elements and deple-

tion in promoters, suggesting that functionally relevant DM in endometriosis stromal cells

occurs more frequently in dynamic than in primarily constitutive regulatory elements.
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The HOXA gene cluster, TBX3, NR5A1, DAPK1, RGS5 and members of

the GATA family of transcription factors show DM and DE both in our

data and in a prior study

Previously, Dyson et al. [21] performed methylation analyses on OESC compared to CESC sam-

ples, obtained at a different medical center independently of our cases and controls, using 450K

BeadChips. With a very lenient cutoff requiring DFM>0.15 with no p-value criterion, they

found 45,425 DM CpGs located in 9,021 genes. Given their very large DM set, as expected, 96%

of our DM CpGs are included in that set. In the same report, those investigators went on to char-

acterize gene expression using microarrays and then performed ANOVA interaction modeling,

yielding a much smaller list of 403 genes that showed both DM and DE. Our list of DM genes

with significant correlations between DM and DE contains 77 of those genes. Important exam-

ples of genes with concurrent findings in both studies are the HOXA gene cluster, members of

the GATA family of TFs (GATA2, GATA4 and GATA6), and TBX3, which encode transcription

factors (TFs) that specify cellular identities in development, NR5A1, coding for a TF that plays a

role in endometriosis by deregulating steroid signaling [73, 74], and DAPK1, encoding a protein

kinase that regulates cell survival and apoptosis [75]. Epigenetic changes in these genes, with

downregulation and hypermethylation of GATA2 and hypomethylation and activation of

GATA6, have been postulated to be involved in progesterone resistance and altered estrogen

responses in endometriosis [21]. The RGS5 gene codes for a cytoskeleton regulating protein that

can mediate an epithelial-mesenchymal transition in cancer cells and was previously found to be

differentially expressed and up-regulated in endometrial mesenchymal stem cells [5, 76].

Examples of novel differentially methylated and expressed genes in

endometriosis stromal cells

Examples of interesting novel epigenetically affected loci that showed DM and DE in our series

include genes coding for TFs (OSR2, JAZF1), extracellular matrix proteins (COL7A1), trans-

porter proteins (SLC22A23), receptor proteins (TGFBR1, ROR1) and secreted signaling pro-

teins (WNT5A, BDNF). The transmembrane tyrosine kinase receptor ROR1 has been shown

to inhibit apoptosis, potentiate EGFR signaling and to induce epithelial to mesenchymal tran-

sitions [36, 77]. A mouse genetic model with disruption of Wnt5a-Ror1 non-canonical Wnt

signaling identified this gene as an important factor in embryo implantation, decidualization

and placentation. In our data ROR1 shows hypermethylation in OESC, with the DMR overlap-

ping an enhancer element (Fig 4A, Table 1, S3B Table and S5B Table), which positively cor-

relates with gene expression (Rho = 0.89, p = 0.001) in OESC. The gene locus also hosts a non-

coding RNA antisense transcript with unknown function. The OSR2 TF gene has been shown

to be progesterone-regulated in endometrial stroma, where it may regulate decidualization.

We found promoter hypermethylation and transcriptional down-regulation of this gene in

OESC vs. CESC, with a high negative correlation between DM and DE (Rho = 0.87, p = 0.002,

Fig 4B).

Another very interesting and potentially functionally important DM and DE gene identified

in our data is JAZF1, which encodes a TF [78] and also hosts a small nuclear RNA U6 involved

in spliceosome assembly and a long non-coding antisense RNA transcript. The gene is a “hot-

spot” for chromosomal translocations resulting in gene fusions in endometrial stromal tumors

[79] and chimeric JAZF1-JJAZ1 mRNA transcripts, resembling the gene fusion in cancer, have

been found to be produced by physiological trans-splicing in human cells. JAZF1 is also

expressed in normal endometrial stroma, with higher abundance in early proliferative and late

secretory phases of the menstrual cycle [80]. In our data this gene is broadly hypermethylated

at multiple intragenic and flanking positions and its expression is down-regulated in OESC
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Fig 4. DNA methylation changes at regulatory DNA elements in ROR1 and OSR2 correlate with gene expression. A) Map and XY graph of the

DMRs in ROR1. Multiple hyper-methylated CpGs are identified in the gene body. Differences in fractional methylation between OESC and ESC are

indicated for all CpGs with nominal p-value<0.05 in the bar graph. Chromatin state in NHLF and H1-ESC cell lines (ENCODE project) are color coded

as described in the USCS browser. A positive correlation between methylation and expression is observed at cg19267457 (rectangle), overlapping an

enhancer region (color coded in yellow). The XY graph shows expression levels, assessed by RNA-Seq and estimated by FPKM values, as a function

of the fractional methylation assessed by Illumina BeadChip arrays at cg19267457. B) Map and XY graph of the DMRs in OSR2. Strong hyper-

methylation is observed in and upstream OSR2. The DMRs overlapped a dynamic promoter, active in differentiated cells and poised in embryonic

stem cells (color coded in red or purple, respectively). The cluster of DM CpGs in the gene (rectangle) shows a strong negative correlation between

methylation and expression. The XY graph shows OSR2 expression level against the fractional methylation of the CpG with the highest absolute rho

correlation coefficient.

doi:10.1371/journal.pone.0170859.g004
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compared to control CESC (Table 1 and S3B Table and S5B Table). Lastly, in our data the

WNT5A gene showed concurrent gain of promoter methylation and transcriptional down-reg-

ulation in the OESC samples (Table 1). WNTs are secreted signaling molecules that control a

variety of biological processes such as cell polarity, cell differentiation, proliferation, and sur-

vival [81]. In human endometrium, WNT5A, encoding a non-canonical WNT signaling pro-

tein, acts as pro-survival protein during decidualization [82], so this gene is a compelling

candidate for a functional role in endometriosis.

Functional testing: effects of the hypomethylating drug 5aza-dC

To examine the effects of altering DNA methylation on the functional readout of gene expres-

sion, we treated the stromal cells with low (sub-cytotoxic) concentrations of the DNA hypo-

methylating agent 5Aza-dC for several days (see Methods) to permit replication-dependent

genomic hypomethylation, followed by Q-PCR analysis of mRNA expression of 7 of the

DM/DE genes (Table 1). We observed significant effects of the hypomethylating drug on

the expression of most of these genes, but with the directions of the effects differing among

the tested genes. SLSC22A23 codes for a membrane protein that transports organic ions

and haplotypes at this locus have been associated with endometriosis-related infertility [69].

In our data the DM in this gene is localized both in promoter and enhancer sequences. In

CESC and OESC treated with 5aza-dC, the relative levels of SLC22A23 expression were

3.3-fold (p = 0.015) and 1.68-fold (p = 0.0035) higher compared to non-treated cells (Fig 5A

and Table 2). The DMRs in the OSR2 gene were likewise located in both promoter and

enhancer elements (Fig 5B, S3 Table and S5 Table), but in contrast to the SLC22A23 gene

treatment with 5Aza-dC led to down-regulation of OSR2 mRNA expression in both cell types

(Fig 5, S8A Fig and Table 2). The JAZF1, HAND2 and ROR1 genes are all complex loci host-

ing non-coding RNA transcripts. DM at JAZF1 and ROR1 is widespread and affects several

intragenic enhancers and insulator sequences, while DM in HAND2 was localized to the pro-

moter region (S3B Table and S5B Table). Gains of DNA methylation in JAZF1 and HAND2
in OESC compared to CESC are associated with transcriptional down-modulation, but some-

what unexpectedly under treatment with 5Aza-dC these two genes showed downregulation of

their expression in both cell types (Fig 5, S8B Fig and Table 2). Down-modulation of expres-

sion of the HAND2 protein-coding gene by the hypomethylating treatment was associated

with an increase in HAND2as expression (2- fold increase, p = 0.004 for CESC and 2.3-fold,

respectively, p = 0.008 for OESC) (Fig 5E, S8B Fig and Table 2), suggesting a possible mecha-

nism for the observed “paradoxical effects”. ROR1 on the other hand is hypermethylated and

up-regulated in OESC vs. CESC. This suggests that the increased methylation in OESC may

be acting via its effect on intragenic insulator sequences. The hypomethylating treatment

decreased the mRNA levels of this gene in both types of cells, though more profoundly in

CESC (Fig 5D). Here it is important to note that the baseline levels of ROR1 expression in

CESC were very low, showing mean FPKM = 0.8 by RNA-Seq, and Q-PCR CT-values of 32

cycles and higher (Table 2). This result is in agreement with previous observations where it

was found that in human adult tissues the protein is either absent or expressed at low levels.

High levels of ROR1 were found in solid and blood malignancies [83][84], which makes it a

possible diagnostic and targeted therapy marker. Overall, we could confirm the RNA-seq data

using Q-PCR for all seven genes (Table 2). We further showed that the decrease in methyla-

tion at the promoter of DAPK1 in OESC compared to CESC was associated with upregulation

of gene expression. Decrease of DNA methylation at the promoter of the DAPK1 gene in

CESC under 5aza-dC treatment resulted in activation of mRNA expression (2- fold increase,

p = 0.02) (Fig 5F and Table 2). This result, together with our observation of decreased
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methylation levels around the promoter of the gene in OESC compared to CESC, suggests

that the increased levels of expression of the gene in non-treated OESC (Fig 5F and Table 2)

are due to loss of methylation in this region. Further, we asked whether changes in the levels

of DNA methylation at the promoter in OESC can affect gene expression. As shown in Fig

5F, 5aza-dC treatment resulted in activation of mRNA expression in OESC, which was lower

than the effect of the drug observed in CESC (1.4-fold, p = 0.05). Overall, these data show that

the levels of DM within the promoter region of DAPK1 gene account for the degree of tran-

scriptional activation rather than regulating the “on-off” expression state. Lastly, the levels of

expression of WNT5A (Table 2) and TFBR1 (Fig 5G) were not affected by the global changes

in DNA methylation in our experimental conditions, suggesting more complex mechanisms

of transcriptional regulation of these genes.

Fig 5. Validation of RNA-sequencing by Q-PCR and effects of 5Aza-dC on a subset of DM and DE genes in

CESC and OESC. This figure shows average gene expression levels in CESC and OESC, from two or three

biological replicates, after treatment with 5aza-dC for 72 hrs. All values were normalized to the mean of the non-

treated CESC controls (0) set to 1. A) The relative expression of SLC22A23 under treatment with 5aza-dC increases

in CESC as well as in OESC. In CESC, the increase in expression is dose dependent. B) The relative expression

levels of OSR2 are decreased in CESC as well as in OESC under all tested doses of the demethylating agent. C)

Treatment with 5aza-dC is associated with decreased relative expression levels of JAZF1 in both control and

endometriotic stromal cells. D) Although in both CESC and OESC the ROR1 expression levels decrease under

5aza-dC treatment, in CESC the effect on gene expression is dose dependent and more pronounced compared to

the endometriotic cells. E) While the HAND2 gene relative expression levels decrease after demethylation treatment

as shown in the left bar graph, the HAND2as levels change in the opposite direction; the expression levels are

increased in both CESC and OESC, especially at the highest level of 5aza-dC. DAPK1 (F) and TGFBR1 (G)

expression levels are not influenced by the drug in CESC or in both CESC and OESCs, respectively. For direct

comparison of Q-PCR and RNA-seq data, the differences in expression between CESC and OESC, identified by

RNA-seq method are indicated below each graph. CESC, control endometrial stroma cells, OESC, ovarian ectopic

endometriosis stroma cells. In each graph, † indicates conditions with biological duplicates.

doi:10.1371/journal.pone.0170859.g005

Table 2. Validation of RNA-sequencing by Q-PCR for seven DM and DE genes and effects of the hypomethylating drug 5aza-dC on their

expression.

Control endometrial stroma cells Ovarian endometriosis stroma cells

Gene AVG.RPKM AVGCt AVG. ΔCta AVG. DMb Fold changec AVG. RPKM AVG. Ct AVG. ΔCta AVG. DMb Fold changec

JAZF1 40.6 23.7 3.5 0.249 3.807d 17.8 24.0 4.9 0.628 2.889d

ROR1 0.9 31.4 7.6 0.353 3.556d 10.9 28.3 4.1 0.437 1.682d

OSR2 18.5 20.3 6.4 0.133 9.047d 3.9 24.6 11.2 0.503 4.795d

SLC22A23 0.4 25.2 5.1 0.431 3.271d 8.0 28.4 2.5 0.538 1.681d

HAND2 18.3 23.3 1.8 0.076 5.657d 4.5 26.3 5.0 0.370 7.086d

HAND2as ND 27.0 3.9 0.076 2.002d ND 27.5 3.5 0.379 2.286d

DAPK1 0.2 28.9 11.1 0.637 2.015d 17.5 22.2 7.4 0.478 1.426d

WNT5A 233.9 19.9 -4.5 0.280 NC 66.8 22.1 -1.4 0.532 NC

The levels of expression of DE genes in control and endometriotic stromal cells identified by RNA-seq and validated by Q-PCR, and overall levels of DM,

are shown. For each gene, the RPKM values from RNA-seq., the row averages Ct-values for non-treated (0) controls for CESC and OESC, corresponding

normalized ΔCt values, the averaged overall DM at the CpG level for each gene, and the difference in the expression between non-treated (0) controls and

cells treated with 2μM 5aza-dC, are listed. RPKM- reads per kilobase per million
a—averaged normalized to housekeeping gene ΔCt values
b- averaged overall gene DM at CpG-level
c- expression given as Fold change under 2μM 5aza-dC treatment vs. non-treated control
d- statistically significant: p-value <0.05; ND-not determined; NC-no change

doi:10.1371/journal.pone.0170859.t002
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While the directions of the effects of the hypomethylating agent differed among the genes

tested, the effects on gene expression correlated with the levels of baseline methylation. Except

for the DAPK1 gene, in CESC and OESC cells genes with widespread DM show more pro-

found changes of their expression when the overall level of gene methylation was low, com-

pared to genes with overall high baseline levels of methylation (Table 2).

WNT5A promoter hypermethylation correlates with reduced expression

of WNT5A protein in stromal cells at the whole tissue level

Arguing for relevance of our findings from the stromal explant cultures to the in vivo situation, a

number of the genes that we found to be differentially expressed in OESC compared to CESC

stromal cells, including GATA6, HOXA11 and TBX3, among others, were also found to be differ-

entially expressed in Gene Chip expression array data from whole endometriotic lesions in the

study of Crispi et al [85]. To further investigate this question, we screened antibody reagents for

several of the top-ranked DM/DE genes. We found a useful antibody against WNT5A and used it

to perform IHC on tissue sections of ovarian ectopic endometriotic lesions and control uterine

endometrium. As shown in Fig 6 endometriosis stromal cells have significantly lower intensity of

WNT5A signal and therefore, lower levels of stromal WNT5A compared to normal endometrium

stroma. When looking at the levels of the normal stromal WNT5A expression in the context of

the menstrual cycle phases we observed, high cytosolic expression of the protein in proliferative

stroma and lower cytosolic signal in secretory phase endometrium stroma, where, a small number

of endometrial stromal cells showed perinuclear WNT5A staining. No significant difference was

seen in the levels of expression of WNT5A in epithelial cell compartment where the protein

showed cytosolic localization.

Fig 6. WNT5A protein expression at the whole tissue level. Immunostaining for the WNT5A protein was done on FFPE

sections of endometriotic (n = 14) and normal endometrial tissue (n = 14) samples. Representative pictures from control

endometrium and endometriotic lesions at proliferative and secretory phase of the menstrual cycle are shown. The stromal = S

and epithelial compartments = E are indicated. The results indicate down-regulation of the levels of WNT5A in the stroma of

endometriosis vs. control endometrium, independent of the cycle phase.

doi:10.1371/journal.pone.0170859.g006
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Discussion

Results from this comprehensive epigenomic and expression profiling study show that stromal

cells of endometriosis lesions have altered patterns of DNA methylation, compared to stromal

cells in normal endometrium; that these changes affect genes with roles in cell signaling, prolif-

eration and migration, nerve development, and immunity; and that some but not all of the

genes with DM also show the functional readout of altered mRNA expression (“DM+DE

genes”). Using a new and broadly applicable approach for segmenting the 450K Methylation

Beadchip data according to regulatory elements, we find that the DM CpGs are over-repre-

sented in active and poised enhancer regions and under-represented in active and poised pro-

moters. Using bis-seq we validated and extended the array-based data to larger numbers of

CpGs, revealing strong DMRs in regulatory elements of several of the DM genes including

JAZF1, DAPK1, BDNF and TGFBR1. In conjunction with the methylation profiling, our RNA-

seq data address the important general problem of incomplete correlations of DM with altered

gene expression (the “DM+DE paradox”)—showing that the likelihood of DM correlating

with DE increases with the extent of the DM and with its location in enhancer elements, with-

out an enrichment of expression-correlated DM in promoter regions. These results add to an

evolving picture in which the changes in DNA methylation that are associated with transcrip-

tional changes in development and disease occur more frequently in non-promoter regulatory

elements [86–88].

In our study we also assessed the relative contribution of 5mC and the “sixth base”, 5hmC.

We found that global 5hmC is more abundant, relative to 5mC, in endometriosis stromal cells

compared to the epithelial cell population, and is slightly decreased in endometriotic versus

normal stroma. Using oxidative bis-seq we found that for the DM region in BDNF the changes

in 5hmC parallel those in 5mC while in JAZF1, little or no 5hmC was detected in both OESC

and CESC. Our finding of more global 5hmC in the stromal compartment compared to the

epithelial compartment is reminiscent of our prior observations in a stroma-rich cancer model

[24] and of results obtained by other groups who compared stromal to epithelial cells in other

settings [89]. Moreover, the finding of parallel, not discordant, changes in 5mC and 5hmC is

similar to observations that we and others have made in other human diseases [15], [90], sup-

porting the idea that these two marks can sometimes act together, not antagonistically, in regu-

lating gene expression [89].

Using GSEA and GOEA enrichment analysis we identified DM gene sets enriched in genes

controlling cell proliferation, nervous system development, immunity and estrogen responsive

genes. Our annotations of DM+DE genes using literature searches revealed a mechanistically

interesting and potentially clinically relevant connection of some of these genes to progester-

one responses. These results suggest that DM affects genes with known or suspected roles in

endometriosis lesion formation.

Examples of DM+DE genes that are known to be progesterone regulated include OSR2,

SGK1, HAND2 and WNT5A. Consistent with known progesterone resistance of the lesions,

OSR2, HAND2 and WNT5A show gains of methylation and reduced expression in endome-

triotic stroma vs. controls. Previously, the essential mediator of the early decidual response

HAND2 was identified as a specific target of the GATA2 transcription factor [21], and hyper-

methylation of this gene is a common and crucial alteration in endometrial cancer. In addi-

tion, a knock-out of Hand2 in uterine tissue of mice induced atypical endometrial hyperplasia

as a function of age [66]. These observations suggest that epigenetic silencing of this gene in

ectopic endometriotic stroma may be linked to increased cell proliferation.

Another interesting DM+DE gene is SGK1. Genetic studies in mice and targeted knock-

down of the gene in primary human CESC revealed that SGK1 is an important factor for

Epigenetic Alterations in Endometriosis Stromal Cells

PLOS ONE | DOI:10.1371/journal.pone.0170859 January 26, 2017 21 / 32



decidual cell survival, while relative SGK1 deficiency sensitized these cells to oxidative cell

death [70]. Recently, SGK1 was found to be overexpressed in endometriosis associated with

regulation of ectopic stromal cell survival [91, 92]. This finding is in line with our observation

that the gene is hypomethylated and overexpressed in endometriotic stroma cells.

It is known that endometriotic lesions release several pain-mediating substances such as

prostaglandin E2/F2, histamine, kinins, nerve growth factor (NGF), BDGF and different IL,

which can activate peritoneal nociceptors [93]. Estrogen is locally produced by ectopic lesions

and its inhibitory effect on sympathetic nerve fibers is in part controlled by the upstream actions

of ER- alpha [94], which leads to activation of expression of NGF and BDNF [95]. Thus, besides

the neurotrophic properties of the endometriotic lesion itself, neuromodulation is also a hor-

mone-dependent phenomenon. Here we have found that gain of methylation at 3 ‘sequence of

the BDNF gene is functionally linked to up-regulation of gene transcription and protein secre-

tion by endometriotic stromal cells, suggesting a role for epigenetic gene regulation in the

mechanisms of pain generation in endometriosis.

As noted above, among the DM+DE genes passing our stringent statistical criteria are

examples associated with biological processes relevant to endometriosis pathogenesis and

progression such as immune responses (TGFBR1), neurogenesis (BDNF), cell proliferation

(JAZF1) progesterone responses (ORS2, HAND2, SGK1), and cell signaling (DAPK1). The

DAPK1 kinase induces cellular apoptosis in response to internal and external apoptotic stimu-

lants and inactivation of the gene by promoter hypermethylation was associated with a broad

range of human cancers. Here we identified this gene as hypomethylated and highly expressed

in endometriotic stroma cells, suggesting that in endometriotic stroma, the DAPK1 kinase

may be acting in ways other than through a pro-apoptotic function. Of note, several studies

reported that DAPK1 mediates pro-inflammatory signaling downstream of TNF-alpha, LPC,

and other cytokines (reviewed in [96]). As endometriosis is a chronic inflammatory disorder

where the immune surveillance is impaired due to local production of pro-inflammatory cyto-

kines including TNF-alpha, IL-1, IL-6 and IL-8 and partially originating from ectopic lesions

stromal cells [35], we propose that DAPK1 in endometriotic stroma may be involved in cellu-

lar processes associated with immunity.

Prominent in our list of DM+DE genes is JAZF1, encoding a nuclear protein and transcrip-

tional regulator [78] that is affected by chromosomal rearrangements in endometrial stromal

tumors [79]. A chimeric JAZF1-JJAZ1 RNA, resembling the gene fusion in cancer, was also

found to be expressed within normal endometrial stroma with higher abundance in early pro-

liferative and late secretory phases of the menstrual cycle, where the fusion RNA transcript is a

product of a rare trans-splicing event [80]. In our study this gene was hyper-methylated and its

expression was down-regulated in OESC compared to CESC, suggesting an intriguing link

between endometriosis and a type of endometrial neoplasm.

Supporting functional relevance of the DM in endometriotic stroma cells, treatment of stro-

mal cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23
and repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression and IHC analysis of tis-

sue samples revealed a difference in protein expression of WNT5A in CESC and OESC. The

directions of the effects of the hypomethylating agent differed among the genes tested, presum-

ably due to different functions of the DM elements in each locus. Arguing for non-randomness

of these effects we found that for genes with widespread DM—JAZF1, SLC22A23 and OSR2 –

the 5aza-dC produced stronger changes in expression in cells where the starting level of gene

methylation was low, compared to cells with a high starting level of methylation, which would

be predicted to be more refractory to the drug effects.

How do our findings relate to prior studies of epigenetic alterations in endometriosis?

Altered DNA methylation of several genes in endometriotic lesions has been previously
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reported from candidate gene studies, and from several genome-wide studies (S9 Table). In

particular, DNA methylation arrays have been used by six independent groups to study endo-

metriosis [16–21]. However, only Yamagata et al. [20] and Dyson et al. studied purified stromal

cells, and only the work of Dyson et al. [21] described methylation and expression differences in

normal and endometrial stromal cells of ovarian lesions. In their combined genome-wide meth-

ylation and expression analysis in stromal cells of patients with endometriosis versus controls

they utilized 450K Methylation Beadchips and expression arrays. Their methylation analyses

had a very lenient cutoff, requiring DFM>0.15 with no p-value criterion, which led to a very

large set of 9021 DM genes which, as would be expected from such a lenient cutoff, included

96% of the DM CpGs that we have identified using our more stringent criteria.

In agreement with our current findings, the results of Dyson et al. also suggested that

genome-wide differences in DNA methylation occur more frequently in the body of the genes

as well as in the areas that flank CpG islands. We significantly extended these observations

here, showing that DM in endometriosis stromal cells affects specific classes of cis-regulatory

elements, and pinpointing genes that pass stringent statistical criteria for DM+DE. Despite

their lenient cutoffs for DM, 77 out of 403 genes identified by Dyson et al. as having DM+DE

overlapped with our DM+DE genes identified at the CpG level (306 genes) and at the regula-

tory element level (239 genes), representing 25% and 32% respectively, of the genes in our lists.

Although not a complete overlap, given the different profiling platforms used (microarrays in

Dyson et al. and RNA-Seq in our study), the definite overlap in DM+DE genes across the two

independent case series gratifyingly suggests that endometriosis, while manifesting clinical

heterogeneity, in fact shows a degree of epigenetic homogeneity. In addition to the novel

aspects discussed above, also new in our work is the demonstration of involvement of both

5mC and 5hmC in the dynamic changes in DNA methylation in endometriosis stromal cells,

our fine-mapping of methylation patterns using extensive Bis-Seq, our functional testing of

methylation-dependence of candidate genes using the response to 5aza-dC, and our tissue-

based validation of one of the biologically interesting DM+DE genes by immunostaining.

In summary, our findings confirm and significantly extend the results of prior studies on

epigenetic patterning in the stromal cells of endometriosis, thereby defining a consistent epige-

netic signature in endometriosis stromal cells that nominates specific transcriptional and sig-

naling pathways as therapeutic targets for this distressing and difficult to treat gynecological

condition.

Websites and GEO Accession Numbers

Websites

https://david.ncifcrf.gov/; www.broadinstitute.org/gsea; https://www.ncbi.nlm.nih.gov

GEO accession numbers

All 450K BeadChips array and RNA-seq files from this study are available from GEO database

under accession numbers GSE87810, GSE87809 and GSE87621.

Supporting Information

S1 Fig. Validation of DM region within JAZF1 gene body. A) Graphical representation of

the Illumina Beadchips array methylation data for “index “CpG -cg12988813 at the JAZF1
gene and showing a gain of DNA methylation in OESC vs. CESC is given. The mean values

(horizontal line) and the T-test p-values are indicated. B) Bis-seq confirming hyper-methyla-

tion in DMR (R1) overlapping an enhancer region in the body of the gene (amplicon 2) are
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represented as QUMA plots. The number of the Sanger probes and each individual sample ID

are indicated on the top. C) Map of JAZF1 showing the DMR (R1) and including the “index

CpG” corresponding to the CpG given in Fig 2 map as “a”. Chromatin state in NHLF and

H1-ESC cell lines (ENCODE project) are color coded as described in the USCS browser.

(TIF)

S2 Fig. Validation of DM region at the 3’end of the BDNF gene. A) Graphical representation

of the Illumina Beadchips array methylation data for “index “CpG—cg051895703 at the BDNF
gene (top panel) and showing a gain of DNA methylation in OESC versus CESC is given. The

mean values (horizontal line) and the T-test p-values are indicated. B) Validation and mapping

of the DMR in BDNF using bis-seq. Although a single DM CpG was identified by the methyla-

tion arrays, bis-seq data validate the DMR and show differential methylation in the contiguous

CpG (black rectangle). C) Map of BDNF showing hyper-methylation at the 3’ end of the gene.

The DMR overlaps a region bearing the chromatin marks of strong transcription (green) and

overlapping with the body of the BDNF-as transcript. In this region, Illumina BeadChips array

coverage is low with only one queried CpG as indicated by the 450K probe track. Chromatin

state in NHLF and H1-ESC cell lines (ENCODE project) are color coded as described in the

USCS browser.

(TIF)

S3 Fig. Validation of the DM region at TGFBR1 3’UTR. A) Graphical representation of the

Illumina Beadchips array methylation data for “index “CpG -cg13827209 (left) at the TGFBR1
gene showing gain of DNA methylation in OESC versus CESC. The mean values (horizontal

line) and the T-test p-values are indicated. B) Validation and mapping of the DMR in TGFBR
using bis-seq. Although a single DM CpG was identified by the methylation arrays, bis-seq

data validate the DMR and show differential methylation in the contiguous CpGs. The number

of the Sanger probes and each individual sample ID are indicated on the top C) Map showing

hyper-methylation in the 3’UTR of TGFBR1. In this region, Illumina BeadChips array coverage

is low with only one queried CpG as indicated by the 450K probe track. Chromatin state in

NHLF and H1-ESC cell lines (ENCODE project) are color coded as described in the USCS

browser.

(TIF)

S4 Fig. A substantial subset of DM genes show correlation between methylation and

expression. A) The Venn diagrams shows that methylation correlates with expression in 19%

of the DM genes. The XY graphs showing a strong negative correlation between the gene

expression and the methylation level at the DMR of JAZF1 (B) and DAPK1 (C) genes. The XY

graphs showing BDNF (D) and TGFBR1 (E) expression level against the fractional methylation

of the “index CpGs” on the Illumina Beadchips array for each gene. Notably, TGFBR1 and

BDNF showed a strong correlation between expression and methylation (p = 0.0018, rho cor-

relation coefficient = 0.89 and p = 0.005, rho = 0.9, respectively) but did not pass our DM crite-

ria at FDR< .05 since only 1 of the 450K-queried CpGs in each gene showed strong DM

(DFM = 0.4, nominal p-value = 0.002 and DFM = 0.4, nominal p-value = 0.007, respectively).

(TIF)

S5 Fig. Validation of the levels of expression of BDNF/BDNF-as, JAZF1/JAZF1-as genes

and analysis of BDNF secretion in OESC vs. CESC. Results of Q-PCR showing reduced

expression of JAZF1 (A) in CESC vs. OESC and over-expression of BDNF (B) in OESC vs.

CESC cells. The levels of expression are plotted as 2-ΔCT values after normalization to the CT

values of the housekeeping gene. Normalized expression (2-ΔCT values), mean values (horizon-

tal line) and T-test p-values are indicated. No changes of the levels of the antisense transcripts
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ware seen for both JAZF1 and BDNF (A, B). C) Graphical representation of the levels of BDNF

secreted protein in supernatants of cultured OESC and CESC analyzed by ELISA. Total num-

ber of n = 4 independent samples per group using technical triplicates were analyzed and the

levels of secreted BDNF were calculated in pg/ml media.

(TIF)

S6 Fig. With increasing stringency, there is an enrichment in DM genes showing correla-

tion between methylation and expression. A) Graphs showing the enrichment of genes with

correlation between methylation and expression in DM CpGs and segments as a function of

the stringency. The ORs become higher with increasing stringency, confirming the robustness

of the enrichment. B) The methylation distribution in CpGs with correlation between methyl-

ation and expression shows a shift of the usually observed low and high methylation peaks

toward the intermediate methylation levels in OESC but not in CESC.

(TIF)

S7 Fig. CpGs with correlation between methylation and expression are enriched in enhanc-

ers and show element-specific methylation distribution. A) CpGs with correlation between

methylation and expression are enriched in enhancers and insulators but depleted in promoter

regions. B) Methylation distributions of CpGs with correlation between methylation and

expression according to the overlapping regulatory elements. The methylation distributions

for CpGs not correlating with expression are, as expected, bimodal in enhancers and insulators

but unimodal in promoters. The methylation distributions of CpGs correlating with expres-

sion show an enrichment of the intermediate methylation levels in OESC for all the tested reg-

ulatory elements. In insulators, the methylation distribution becomes unimodal with only a

low methylation peak in both CESC and OESC.

(TIF)

S8 Fig. Effects of 5Aza-dC on ORS2 and HAND2 DM and DE genes in CESC and OESC.

This figure shows changes in average gene expression levels for ORS2 (A) and HAND2 (B)

genes in CESC and OESC under 5Aza-dC treatment for 72 hrs. The levels of expression were

normalized to the respective vanish CESC and OESC controls set to 1 for each experimental

group.

(TIF)

S1 Table. Endometrial and endometriotic samples used for primary cultures preparation

and analyzed for DNA methylation and expression. List of endometrial and endometriotic

samples used for DNA methylation and expression analysis after primary cell culture prepara-

tion are shown. BT ID numbers correspond to the specific sample number in the laboratory

tissue bank is given to identify the sample in the corresponding analysis. The sample ID num-

ber corresponds to the tissue bank number of the sample in the collaborators lab.

(XLSX)

S2 Table. CpGs with differential methylation (DM) in endometriosis stroma cells. This is a

complete list of DM loci identified using stringent (A) and lenient (B) criteria for DM between

cases and controls. For the stringent criteria, the cut-off was set at FDR<0.05 and absolute dif-

ference in fractional methylation of>0.15, and more lenient criteria the nominal p-value<0.05

and at least 2 CpGs in each gene with p-value<0.05 and fractional methylation >0.15 were

used. The P-values for the case/control comparison were calculated using Student’s T-tests

and false discovery rates were calculated using the Benjamini-Hochberg method. Samples of

normal peripheral blood (PBL) and placenta are included in S2B as heterologous tissues for
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comparison.

(XLSX)

S3 Table. Gene-regulatory elements with differential methylation in endometriotic stro-

mal cells. This is a complete list of DM on gene-regulatory elements (See Materials and Meth-

ods for definition) identified using stringent (A) and lenient (B) criteria for DM between cases

and controls. The stringent criteria are set as a cut-off of FDR<0.05 and absolute difference in

averaged fractional methylation >0.10 (or >0.15 when the segment contained a single CpG).

The more lenient criteria, are defined at nominal p-value<0.05 and at least 2 segments in a

given gene with p-value<0.05 and fractional methylation >0.10 (or >0.15 for single CpG seg-

ment). The P-values for the case/control comparison were calculated using Student’s T-tests

and false discovery rates were calculated using the Benjamini-Hochberg method.

(XLSX)

S4 Table. Gene-ontology (GO) and gene-set (GS) enrichment analysis for DM and DE

genes between endometrial and endometriotic stroma cells. The list of the top GO terms

enriched in genes identified to be DM by our stringent CpG (A) and segment (B) criteria are

given. P-value cut-off <0.05 was used. C) The list of top gene sets showing enrichment of DM

regulatory regions identified by our stringent segment criteria and localized in multiple genes

including estrogen-responsive genes are given. FDR cut-off <0.005 was used. The list of the

top GSEA gene sets and GO terms enriched in genes identified to be DE are shown in (D) and

(E), respectively. The same statistical criteria were used as described for DM gene analysis.

(XLSX)

S5 Table. List of Differentially methylated and expressed genes in endometriotic stroma.

This is a complete list of DM and DE genes in endometriotic stroma identified by overlapping

the gene lists of DM genes identified by our stringent (A) and lenient criteria (B) with the gene

list created by computational analysis of the CpGs and genomic segments with strong correla-

tion between methylation and expression (cut-off p<0.005 and correlation coefficient>0.7;

average FPKM>1 in at least one of the groups) independently of the disease status.

(XLSX)

S6 Table. Comparison of methylation levels of DM CpGs correlating with expression and

DM CpGs not correlating with expression.

(XLSX)

S7 Table. Bisulfite PCR primers.

(XLSX)

S8 Table. Q-PCR primers.

(XLSX)

S9 Table. Summary of previous genome-wide methylation studies in endometriosis.

(XLSX)
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