
 
 

 

 

 

Pathobiological Mechanisms and Treatment of Electrophysiological Dysfunction  

Following Primary Blast-Induced Traumatic Brain Injury 

 

 

Edward Weigand Vogel III 

 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

in the Graduate School of Arts and Science 

 

COLUMBIA UNIVERSITY 

2017 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

Edward Weigand Vogel III 

All rights reserved 

  



 
 

ABSTRACT 

Pathobiological Mechanisms of Electrophysiological Dysfunction Following Primary Blast-

Induced Traumatic Brain Injury 

Edward W. Vogel III 

 

Traumatic brain injury (TBI) is the signature injury of the ongoing military conflicts in 

the Middle East and Afghanistan, largely due to the use of improvised explosive devices (IEDs), 

which have affected soldiers and civilians alike.  Blast-induced TBI (bTBI) biomechanics are 

complex and multiphasic.  While research has clearly demonstrated the negative effects of 

penetrative (secondary blast) and inertia-driven (tertiary blast) injury, the effect of shock wave 

loading (primary blast) on the brain remains unclear.  Combined primary-tertiary blast exposure 

in vivo has been reported previously to alter brain function, specifically hippocampal function; 

however, it is extremely difficult to deliver primary blast exposure in isolation with an in vivo 

injury model.  The research presented in this thesis utilized a custom-designed in vitro blast 

injury model to deliver military-relevant shock wave exposures, in isolation, to organotypic 

hippocampal slice cultures (OHSCs).  To contextualize blast-induced pathobiology with previous 

TBI studies, the first goal of this thesis was to characterize the deformation profile induced in 

OHSCs with our blast injury model experimentally.  Using stereoscopic, high-speed cameras and 

digital image correlation to calculate strain, we found that our blast model induced low strain 

magnitudes (<9%) but at high strain rates (25-86s
-1

), which aligned closely with associated 

computational simulations of our model. 

The second aim was to determine if primary blast was capable of altering hippocampal 

electrophysiological function.  We exposed OHSCs to a range of shock intensities and found, 



 
 

using a micro-electrode array system, that long-term potentiation (LTP), a measure of synaptic 

plasticity, was very sensitive to primary blast exposure; a threshold for disruption of LTP was 

found between 9 and 39 kPa•ms impulse.  Alternative measures of basal electrophysiology were 

less sensitive than LTP.  Blast exposure significantly reduced LTP between 1 and 24 hours post-

injury, and this deficit persisted through 6 days post-injury.  Depending on shock intensity, LTP 

spontaneously recovered 10 days post-injury.   

The third aim was to explore the cellular mechanisms for blast-induced LTP deficits.  

Using a chemical LTP induction protocol, blast exposure altered key proteins necessary for the 

induction of LTP by 24 hours post-injury including, postsynaptic density protein-95 (PSD-95), a 

major scaffolding protein that organizes the postsynaptic density (PSD), α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid glutamate receptor 1 (AMPA-GluR1), and stargazin, an 

auxiliary GluR1 protein that binds AMPA-GluR1 to PSD-95.  Modulation of the cyclic 

adenosine monophosphate (cAMP) pathway reversed the observed effects of blast on LTP. We 

theorized that blast-induced disruption of PSD-95 prevented translocation, and subsequent 

phosphorylation, of GluR1-containing AMPARs to the postsynaptic membrane, which, in turn, 

prevented potentiation.   

The final aim was to investigate the efficacy of phosphodiesterase-4 (PDE4) inhibitors, 

which block degradation of cAMP, as a therapeutic strategy.  When delivered immediately 

following primary blast injury, multiple PDE4 inhibitors proved efficacious in restoring LTP 

measured 24 hours post-injury.  Roflumilast, a Food and Drug Administration-approved PDE4 

inhibitor, was effective when delivered at a clinically relevant concentration (1nM) and at a 

delayed time point (up to 6 hours).  Roflumilast reversed blast-induced changes in 

expression/phosphorylation of the key LTP protein targets. We hypothesized that maintenance of 



 
 

PSD-95 drove the observed therapeutic effect.  Greater work is necessary to determine how blast 

exposure degrades PSD-95 and how roflumilast prevented these detrimental effects. 

This thesis has shown that primary blast exposure can negatively alter neurological 

function, as well as protein expression and phosphorylation.  These studies expand the 

understanding of primary blast injury mechanisms, provide computational models with important 

tissue-level tolerance criteria, inform protective equipment design, inform clinical care 

guidelines for bTBI, and present a promising therapeutic candidate for further clinical 

investigation.   
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1 Introduction 

Traumatic brain injury (TBI) is defined as a disruption of brain function due to 

mechanical forces acting on the head
1
.  These forces can include an impact to the head, inertia-

driven deformation of brain tissue due to head acceleration/deceleration, a penetrating injury, or 

bomb blast exposure, which includes the aforementioned forces in addition to loading from the 

shock wave
2
.  TBI presents a significant problem for US military personnel, with nearly 350,000 

TBIs diagnosed in this population since 2000
3
.  The majority of military TBI (~83%) is 

considered mild in severity
3
, and most mild TBIs (mTBIs) are attributed to blast exposure

4-6
.  

Blast-induced TBI is considered the signature injury of the recent military conflicts in Iraq in 

Afghanistan
4, 7

.  The increased incidence of bTBI is due to a number of reasons: rise in the use of 

improvised explosive devices (IEDs), improved protection against penetrative blast injuries, and 

general awareness of brain injuries as a whole
5, 6, 8

.  Civilians are also victims of bTBI, either as a 

result of explosive weaponry implemented in terrorist incidents or unexploded military 

landmines/ordinance
9, 10

.  Neuroimaging via computed tomography (CT) or magnetic resonance 

imaging (MRI) following a mild bTBI is typically normal, and reported symptoms can include, 

but are not limited to, loss of consciousness (<30 minutes), cognitive dysfunction (memory loss, 

confusion, reduced attention span, problem-solving difficulties), and changes in personality 

(depression, anxiety, impulsivity, affected emotional response).  While pharmacotherapies exist 

for treating some chronic symptoms of TBI, no clinically approved therapeutic for treating TBI-

related memory loss currently exists.  While research into TBI has increased greatly over recent 

years, further investigation is necessary to improve understanding of the pathophysiology of 
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bTBI.  This thesis will investigate the biomechanics, pathobiological mechanisms, and potential 

treatment of bTBI. 

 

 Blast-induced traumatic brain injury 1.1

An explosive is a chemical substance capable of storing large amounts of energy in a 

small volume, which is released upon detonation
5
.  Blast pressure waves emanate from the 

source of an explosion following the rapid expansion of gases that occur upon detonation.  These 

waves can propagate through the air at various speeds prior to impinging on surrounding objects 

(i.e. soldiers, vehicles, buildings, etc.).  The fastest, initial front of the pressure pulses, known as 

the shock wave, is a supersonic, discontinuous disturbance that takes the form of an extreme rise 

in local pressure over a short period of time
11

.  For an open-field explosion, this pressure-time 

relationship is called a Friedlander curve (Figure 1), characterized by an initial rapid rise 

(microseconds) in pressure followed by a slow decay (milliseconds), which may drop below the 

ambient pressure before returning to baseline.  Following the shock wave, a forced super-heated 

airflow, known as the blast wind, can subsequently impinge upon the subject, leading to a rapid 

acceleration and deceleration of the body
12

.  The physics governing the interaction of blast forces 

and the soldiers’ head lead to the initiation of bTBI.   

Blast-induced TBI exhibits very complex, multiphasic injury biomechanics
13

.  Primary 

blast injury is caused by the interaction of the shock wave with biological tissue.  Secondary 

blast injury is caused by ejecta (shrapnel) being launched from the blast site and penetrating 

biological tissue.  Tertiary blast injury is caused by inertial forces placed on biological tissue 

through rapid acceleration/deceleration of the body due to the blast.  Finally, quaternary blast 
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injury encompasses all other forms of injury due to blast (burns, chemical exposure, toxic 

inhalation, radiation, etc.).  Secondary blast injury is well protected against by current military 

helmet design
14, 15

.  Tertiary blast injury is well investigated in the literature, with known 

potential for cognitive damage, likened to that of civilian TBI (i.e. falls, sports injuries, car 

accidents, etc.)
2
.  It is unclear, however, if primary blast injury has a distinct, injurious effect as 

compared to other phases of blast.  Tertiary and primary blast injury are biomechanically 

distinct; the former characterized as a high strain (10-50%), low strain rate (<50s
-1

) exposure and 

the latter characterized as a low strain (<10%), high strain rate (100-1000s
-1

) exposure
16, 17

.  

Identifying a potential pathobiological distinction between the two phases is critical for a 

complete understanding of bTBI.  A major focus of this thesis is to define the injury 

biomechanics and pathophysiology of primary blast exposure further. 

 

 

Figure 1 Friedlander wave.  Open-field shock exposures are characterized by the Friedlander curve, 

defined by a peak overpressure, duration, and impulse.  
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Multiple animal models of blast have been introduced over the past 15 years, including 

gas-driven shock tubes
18-31

, explosive-driven shock tubes
32, 33

, open-air explosives
34, 35

, and air 

guns
36, 37

.  These models have utilized many different conditions, leading to inconsistencies in 

outcome measures between and even within models, making comparisons of results difficult.  A 

major factor contributing to the variability is whether the animal’s torso was protected from the 

shock wave, as previous research has shown that the lung is very susceptible to shock exposure
38, 

39
.  Another major difference across these models is whether motion of the head was controlled.  

Many studies attempted to restrict head motion in an effort to isolate primary blast
20, 22, 24, 26, 29, 30, 

37, 40, 41
; however, even when attempting to restrain head motion, accelerations can be significant 

(500-1500 G’s) and can lead to injurious effects
30, 40

.  Eliminating all inertial loading is very 

difficult, and validation by high-speed video is often unreported
24

.  Uncontrolled head 

acceleration during blast exposure could lead to additional closed-head TBI (tertiary phase) that 

confounds the delivery of isolated primary blast.  The difficulties associated with controlling 

head kinematics make the study of pure primary blast injury challenging with in vivo injury 

models.   

An advantage of studying primary blast injury with in vitro models is the ability to isolate 

specific phases of the injury biomechanics.  The delivery of pressure transients to biological 

tissue was initially achieved through the use of barotrauma and compression chambers
42-45

; 

however, these injury models delivered pressures at much longer durations (~seconds to 

minutes) than those representative of a blast event (~milliseconds).  Live charges have been used 

for in vitro blast injury models
46, 47

.  Researchers also used gas-driven shock tubes to expose in 

vitro biological samples to primary blast
48-51

.  One critical design concern with these models is 

the method of housing the sample during exposure.  This factor is important to ensure that 
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samples do not experience any inertia-driven (tertiary) deformation.  We have developed a fluid-

filled sample receiver (Figure 2) to house samples during primary blast exposure with a gas-

driven shock tube
49, 50, 52-56

.  The receiver translates an in-air shock wave into an in-fluid pressure 

transient, analogous to intracranial pressure waves measured during blast exposures
49

.  The 

advantages of our system are: 1) the delivery of military-relevant exposures, 2) prevention of 

inertia-driven deformation, 3) the prevention of internal shock wave reflections, and 4) the 

inclusion of a biofidelic barrier (fluid-filled polyvinyl chloride [PVC] plastic column sealed with 

a polydimethysiloxane [PDMS] sheet) between the tissue sample and the shock wave. 

  



6 
 

 

Figure 2 Diagram of in vitro primary blast injury model.  The shock wave is formed by pressurizing the 

variable-length driver section of the shock tube (above the Mylar plastic membrane represented in green) 

with compressed gas (helium or nitrogen) until the membrane bursts, propagates down the length of the 

driven section, and exits the shock tube.  Positioned directly under the shock tube exit, the in vitro 

receiver converts the in-air shock wave an in-fluid pressure transient, houses the sample in a sterile bag 

that is impedance-matched to water.  Piezoresistive pressure transducers record in-air traces at the shock 

tube exit and in-fluid traces at the sample during blast exposure. Image reproduced with permission
50

. 
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 Blast-induced deficits in behavior and cognition 1.2

Symptoms of bTBI are wide-ranging due to a variety of factors (number of exposures, 

range of blast intensities, surrounding environment, proper use of body-armor, elapsed time since 

exposure, etc.).  Clinical observations report the subtle nature of bTBI effects on motor and 

cognitive abilities, including both somatic (loss of consciousness, headache, dizziness, balance, 

hearing problems) and neuropsychiatric (memory loss, irritability, emotional) conditions
57-59

.  

Memory impairments are the most common and persistent cognitive defect associated with 

human TBI
60, 61

.  The hippocampus has been associated with learning, spatial navigation, and the 

consolidation of episodic memories to long-term memories
62-65

.  The hippocampal anatomy 

consists of three interconnected regions which make up its trisynaptic circuit: dentate gyrus (DG) 

filters input to the hippocampus, cornu ammonis 3 (CA3) amplifies neural signal, and cornu 

ammonis 1 (CA1) transduces signal to the cerebral cortex
66

.  Previous research into civilian TBI 

has identified the hippocampus as an important brain region to study resultant injury effects
67-70

.  

Common clinical symptoms from patients who have experienced bTBI (memory loss, spatial 

navigation loss) overlap with the major biological functions of the hippocampus
4
.   

Motor deficits after in vivo bTBI are variable in studies that used the rotarod performance 

test, which evaluates balance and motor coordination. Some studies measured a significant 

decline in rotarod performance
71-73

 and others measured no change
23-25, 27, 74

.  Certain cognitive 

tests like the Morris Water Maze (MWM), which tests spatial learning and memory, have also 

produced mixed results
23, 25, 75

; however, others such as the novel object recognition (NOR) test, 

which tests short-term memory, have consistently measured blast-induced deficits
27, 35, 74, 76, 77

.  
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The reported differences from previous blast animal studies may be linked to the variability in 

blast injury methodology across experiments. 

 

 Blast-induced deficits in electrophysiological function 1.3

Blast injury causes behavioral and neurocognitive deficits; however, it is difficult to 

directly connect behavioral/cognitive deficits to electrophysiological dysfunction.  Studies that 

explore blast-induced electrophysiological dysfunction are limited, and even less have 

specifically investigated primary blast.  Neurobiologists consider LTP to be the 

electrophysiological correlate of learning and memory
78-80

.  Long-term potentiation is induced by 

short trains of high-frequency stimulation to excitatory synaptic pathways that cause an sustained 

increase in the efficiency of synaptic transmission
80

.  Two studies have reported deficits in LTP 

in acute mouse hippocampal slices at 2 and 4 weeks post-blast exposure; however, both 

implemented a combined primary-tertiary blast model
24, 81

.  Other studies observed reductions in 

hippocampal LTP as early as 1 day and as late as 8 weeks following non-blast TBI
82-86

.  Paired-

pulse facilitation (PPF) is a measure of short-term synaptic plasticity, governed by presynaptic 

neurotransmitter release, γ-aminobutyric acid receptor-A (GABAA), GABAB, and NMDA 

receptor (NMDAR) dynamics.  This phenomenon has not been investigated following blast 

injury; however, conflicting results have been observed after in vitro stretch injury
87, 88

.  There is 

a need for greater investigation of neuronal plasticity following blast injury. 

Basal electrophysiological function can be evaluated following brain injury as well.  

Spontaneous activity represents the base level of activity in a quiescent slice.  Parameters that 

define spontaneous function such as event rate, magnitude, or duration, have not been 
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investigated after blast injury.  Studies employing non-blast injury models have reported mixed 

findings.  Outcomes have ranged from decreased event rate to no change to increased event 

rate
88-90

.  Basal evoked function provides insight into the neurons’ firing capacity in response to 

basic electrical stimulus patterns.  One study observed a decrease in CA1 excitability when 

measured 5 days following in vivo rodent blast injury
74

, while other studies observed no change 

in basal evoked function in the hippocampus as well as the corpus callosum at 2 weeks following 

injury
22, 24

.  To date, our group is the only one to investigate basal evoked neuronal function with 

an in vitro blast injury model
53

.  Non-blast TBI studies found variable changes in basal evoked 

function across both in vivo and in vitro injury models
83, 88, 90-93

.  The effect of blast injury on 

basal electrophysiological function remains unclear and warrants further research. 

 

 Cellular mechanisms of blast-induced electrophysiological dysfunction 1.4

In primary blast injury models, many studies have observed minimal amounts of overt 

neuronal death or tissue damage after exposure 
21, 24, 30, 48, 53

; however, some have reported 

contradictory findings of significant cell loss or tissue damage after blast
51, 94

.  The variability in 

findings most likely stems from the variability in blast injury models, as described above.  Large 

amounts of cell death have been observed in non-blast injury models and can contribute to 

subsequent deficits in function
69, 89, 90, 95-98

.  Neuronal death can clearly influence functional 

deficits after injury.  Although less common, functional deficits in the absence of cell death were 

observed in non-blast TBI models, as well
61, 99, 100

.   

Investigations into cellular mechanisms of primary blast-induced functional deficits are 

minimal.  One study associated changes to the cytoskeleton, specifically neurofilament-200 and 
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αII-spectrin, and voltage-gated sodium channel anchoring and expression with increased anxiety 

and reduced compound action potential amplitudes and durations measured in unmyelinated 

fibers at 48 hours following a low-level shockwave exposure in rats
101

.  This data suggested that 

disrupted postsynaptic receptor anchoring to cytoskeletal proteins might be one cause for the 

observed injury effect.  It is important to note that the animals’ heads were not restrained nor 

were kinematics verified with high-speed video.  Another study observed deficits in memory and 

cognition concurrent with hippocampal LTP deficits without changes in basal synaptic 

transmission after combined primary-tertiary blast exposure in mice
24

, suggesting that dendritic 

protein synthesis or changes in gene transcription may interrupt cellular signaling transduction 

downstream of synaptic glutamate release, thus preventing LTP
80, 102-104

.  It is important to note 

that blast exposure did not induce behavioral deficits when head motion was limited in this 

study
24

.  These two studies suggest that blast exposure disrupts postsynaptic receptor integrity. 

Non-blast TBI induced mixed alterations to postsynaptic membrane receptors.  Reduced 

subunit expression and electrophysiological function of the excitatory NMDAR have been 

observed following controlled cortical impact (CCI) and fluid percussion injury (FPI), 

respectively
85, 105

; however, other studies have observed increased NMDA channel activity and 

protein expression after weight drop injury in vivo and in vitro stretch injury
90, 106, 107

.  NMDARs, 

specifically the NR2B subunit, have been identified as the mechanosensitive synaptic membrane 

protein in stretch injury
108

.  In vitro stretch injury to cortical cultures potentiated currents for the 

postsynaptic excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPAR)
109, 110

.  Other studies have observed a decrease in AMPAR gene and protein 

expression after CCI
111, 112

.  Some studies observed an increase in GABA receptor (GABAR) 

inhibition after FPI, CCI, and in vitro stretch injury, while others observed decreased GABAR 
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inhibition following in vitro stretch
87, 113-115

.  Significant changes in GABAR subunit expression 

were observed from 3 hours out to 7 days following FPI and CCI
112, 116, 117

.  Changes to these 

excitatory and inhibitory receptors and others cause alterations to the synaptic excitatory-

inhibitory tone, neurotransmitter concentrations, free radical concentration, and ionic content 

within the neuron, all of which can affect neuronal function and survival
74, 115, 118-122

.  Secondary 

effects on synaptic cytoskeletal proteins, protein kinases, protein phosphatases, and transcription 

factors can cause further electrophysiological dysfunction and neuronal death
85, 123-136

. 

 

 Neuroprotection through phosphodiesterase-4 inhibition 1.5

One electrophysiological process that has been shown to be affected by both blast and 

non-blast TBI is LTP
24, 83-85

.  High-frequency stimulation triggers activation of NMDARs which 

lead to an influx of Ca
2+

 ions into the postsynaptic space and subsequent activation of protein 

kinases
80

.  At a cellular level, the potentiated signal is represented by an increase of 

phosphorylated AMPA-GluR1 in the postsynaptic density (PSD), which is modulated by 

activation of Ca
2+

/calmodulin-dependent protein kinase II (CaMKII), cyclic adenosine 

monophosphate (cAMP)-dependent PKA, and protein kinase C (PKC)
137-140

.  PKA is activated 

by cAMP, which is synthesized from adenosine triphosphate (ATP) by adenylate cyclase 

(AC)
141

.  An important step in the regulation of cAMP is its hydrolysis into adenosine 

monophosphate (AMP) by phosphodiesterase-4 (PDE4)
142, 143

.   

Investigation of blast-induced alterations to cAMP signaling has been limited.  One study 

observed that 3’,5’-cAMP did not significantly change in prefrontal cortex (PFC) following mild 

blast injury in rats
29

.  Conversely, studies have reported that TBI can affect the cAMP 
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pathway
130, 144, 145

; and that subsequent modulation of the cAMP pathway with PDE4 inhibitors 

reversed the negative impact of injury on cAMP
146-148

, improved neurocognitive function, and 

restored LTP
147

.  PDE4 inhibition enhanced cognition for neurological conditions such as 

Alzheimer’s disease (AD), schizophrenia, and aging
149-152

.  All of these studies utilized the 

highly-selective PDE4 inhibitor rolipram, which has previously failed clinical trials to treat 

depression due to the high incidence of adverse side-effects, which included myocardial and liver 

degeneration, nausea, and altered behavior
153, 154

.  Another selective PDE4 inhibitor, roflumilast, 

improved memory and has been Food and Drug Administration (FDA)-approved for the 

treatment of chronic obstructive pulmonary disorder
155-157

.  The only concern with roflumilast is 

that permeability across the blood-brain barrier (BBB) is poor
158

.  This motivates the 

development of potential therapeutic strategies to help protect against primary blast-induced 

electrophysiological deficits.  Modulation of the cAMP pathway through PDE4 inhibition, 

specifically with roflumilast, could provide a potential treatment for observed deficits. 

 

 Significance 1.6

TBI is a serious public health issue.  The CDC has estimated that 1.7 million persons 

sustain a TBI each year
159

.  Of those diagnosed, approximately 1.36 million were treated and 

released from the emergency department, 275,000 were hospitalized, and 52,000 patients died
159

.  

These estimates do not include the countless people who sustain a mild TBI but fail to seek 

medical attention.  An estimated 5.3 million U.S. residents are living with TBI-related 

disabilities, which include long-term motor, cognitive, and psychological impairments
160

.  

Among civilians, the leading causes of TBI are motor vehicle accidents, physical violence, and 
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falls
159

.  The estimated socioeconomic cost of TBI in the U.S. in 2010 was $76.5 billion, 

including $11.5 billion in medical costs and $64.8 billion in indirect costs (loss of productivity, 

lost wages, and non-medical expenditures)
161, 162

.   

In 2014, over 25,000 U.S. military service members worldwide were diagnosed with a 

TBI
3
.  Annual medical costs for veterans with a TBI were about 4-times greater than veterans 

without a TBI
163

.  The cost of care for TBI within the U.S. military population rose from $21 

million in 2003 to approximately $646 million in 2010
164

.  For U.S. military personnel, there is a 

large concern regarding the possible long-term effects of mild TBI as a result of deployment-

related head injuries, particularly those due to proximity to explosive blasts
14

.  Although it is 

difficult to quantify how often blast events result in brain injuries, the rate is estimated to be 

approximately 60%
165, 166

.  IEDs have been implicated as the primary cause of battlefield injuries 

to the head and neck to soldiers in Iraq
167

.  Blast-induced TBI accounts for a significant portion 

of injuries that military personnel sustained in training and combat.  Mild bTBI presents both 

acute and chronic health problems.  Registry data of 1129 post-deployment military personnel 

showed that those with mild bTBI were five times more likely to report negative health changes 

6 months after diagnosis than were those exposed to mild blast without TBI
168

.  Researchers 

concluded these results diverged from non-blast mTBI, which suggested that recovery from 

shock exposure might be different. A better understanding of the pathobiological mechanisms of 

primary bTBI is necessary to provide better combat equipment and emergency care for active 

duty soldiers, as well as treatment protocols for injured veterans. 

The proposed studies will elucidate the biomechanics, functional deficits, injury 

mechanisms, and potential therapeutics for primary blast exposure.  These studies will be the 
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first to measure the mechanical response (i.e. tissue strain and strain rate) of OHSCs to primary 

blast exposure.  Currently, it is difficult to compare findings from bTBI studies and non-blast 

TBI studies due to the difference in strains and strain rates applied to the brain tissue in each 

injury model.  An understanding of the induced deformation in our in vitro primary blast model 

would inform comparisons of functional outcomes (cell death, electrophysiology, etc.) to in vitro 

non-blast injury models.  These studies will be the first to determine operational thresholds for 

primary blast-induced electrophysiological dysfunction to be used in computational models, 

identifying peak overpressure, duration, and impulse levels that induce functional changes.  This 

thesis, in combination with FE models and greater preclinical research, will advance the 

understanding of operational thresholds for blast injury, improving military helmet designs and 

military guidelines for rest.  These studies will investigate the time course of functional deficits 

after primary blast injury and begin to determine the specific cellular mechanisms responsible for 

dysfunction.  Understanding the cellular mechanisms and time course of primary bTBI will assist 

researchers in the development of therapeutics and assist military emergency care personnel in 

the management of blast-injured soldiers.  Finally, this study will be the first to investigate the 

therapeutic potential of PDE4 inhibitors, specifically FDA-approved roflumilast, in bTBI.  To 

date, there are no pharmacological agents approved to treat TBI-induced memory deficits, as all 

Phase III clinical trials in TBI have failed
169

, hence there is a compelling need for the 

development of an effective TBI therapeutic.  

The broader impact of this work will be to improve the overall understanding of bTBI 

and the treatment of military personnel, as well as civilians, who have suffered bTBI
4, 10, 170

.  

Current military emergency practice requires that any war fighter within 50 meters of an 

explosive blast must be screened by a first responder for TBI
170

.  The discovery of an operational 
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blast threshold for neurological dysfunction could provide military healthcare professionals with 

a more informed evaluation of the potential incidence of TBI.  TBI-induced neuronal dysfunction 

on the cellular level can lead to altered macroscopic cognitive function
69, 171

.  Therefore, a 

thorough understanding of bTBI-induced electrophysiological dysfunction is critical to 

characterize the effect of bTBI on neurocognitive function.  Current treatment protocols for bTBI 

include mandatory removal from activity, rest, and potentially non-narcotic analgesics and/or 

anti-migraine medication
5, 170

.  There is a dire need for an effective pharmacological intervention 

to assist in the recovery from bTBI.  The proposed studies will help elucidate the contribution of 

primary blast exposure to the overall epidemiology of bTBI and attempt to identify a potential 

therapeutic. 
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2 In vitro primary blast exposure induced low-strain, high-strain 

rate deformation in hippocampal slice cultures
1
 

 Introduction 2.1

Blast-induced traumatic brain injury (bTBI) is a serious health concern for military 

personnel and civilians in areas of conflict around the world.  Between April 2007 and December 

2015, the Veterans Health Administration determined that nearly 138,000 US service personnel 

were diagnosed with combat TBI, mainly mild TBI (mTBI) caused by blast
172

.   The increased 

use of improvised explosive devices (IEDs) coupled with greater surveillance by medical 

professionals for brain injuries have raised the incidence of bTBI.  The injury biomechanics of 

blast-induced TBI are complex and multi-phasic
13

.  Primary blast injury is initiated by the 

interaction of the shock wave with the skull and the brain as the shock wave transits the head
5
.  

Secondary blast injury is defined as a penetrating injury, caused by ejecta launched from the 

blast origin.  Tertiary blast injury is driven by inertial forces loading the biological tissue through 

rapid acceleration/deceleration of the body due to blast.  Although secondary and tertiary blast 

exposures are known to be injurious, the effect of primary blast in isolation is still debated. 

Research into bTBI has increased over the last 20 years with studies using a variety of 

methods to model blast exposure including gas-driven shock tubes
18-31, 51, 74, 173

, explosive-driven 

shock tubes
32, 33

, open-air explosions
34, 35, 47, 174

, and air guns
36, 37

.  Previous bTBI studies using in 

vivo animal models have reported altered memory and cognition following injury
23, 24, 27, 30, 35, 37, 

                                                           
1
 A modified version of this chapter is currently in preparation: Vogel III, E.W., Panzer, M.B., Morales, F.N., 

Varghese, N., Meaney, D.F., Bass, C.R.D., Morrison III, B. Direct observation of low strain, high rate deformation 

of cultured brain tissue during primary blast and validation of finite element simulations, In preparation. (2017). 
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71, 74, 75, 81, 173, 175
.  Some of these studies assert that motion of the head, and hence inertial loading, 

was eliminated, thereby providing a model of pure primary blast loading, i.e. the shock wave 

only
24, 37, 74, 173, 175

; however, it is extremely difficult to completely fix the head during blast 

exposure.  Even when extra steps were taken to secure the head, significant head accelerations 

remained as revealed by analysis of high-speed video
24, 30, 74

.  Therefore, it remains a 

considerable challenge to investigate pure primary blast in animal models.  We expressly 

designed our in vitro injury model to eliminate inertia-driven acceleration, thus isolating primary 

blast exposure
49, 50

.  Through high-speed video analysis, we observed no bulk motion of the 

tissue within the receiver, confirming an absence of inertia-driven forces on the tissue sample
50

.  

We have previously reported that primary blast in vitro has negative effects on hippocampal 

electrophysiological function, protein expression, and blood-brain barrier integrity
52-56, 176

. 

Contemporary in vitro models of non-blast TBI injure cultures with deformations in the 

range of 20-50% strain applied at strain rates <50s
-1 16, 177, 178

.  Computational models of inertia-

driven TBI have predicted deformations of similar strain magnitudes and rates
179-182

.  

Conversely, computational simulations of the head under shock wave loading have predicted that 

brain tissue deformation is ≤10%, but applied at higher rates from 12-960s
-1

 
17, 183

.  Modeling of 

our in vitro receiver under shock tube loading predicted tissue strains of ≤8% at high strain rates 

(80s
-1

); however, these biomechanics have not been confirmed experimentally
49

.  The purpose of 

this study was to characterize the tissue biomechanics within organotypic hippocampal slice 

cultures (OHSCs) during shock wave loading in our in vitro blast injury model experimentally.  

We utilized a stereoscopic high-speed camera system, in combination with digital image 

correlation to quantify strain histories for a range of shock exposures.  We found that primary 

blast exposure induced low strains (<9%) and high strain rates (25-85s
-1

) in OHSCs in vitro, with 
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peak tissue strain and rate occurring after the pressure wave had passed the sample in the fluid 

filled receiver.  Blast-induced strains and rates were highly correlated with in-air blast impulse 

and in-fluid peak pressure parameters.  We observed thresholds for electrophysiological 

dysfunction, defined by deficits in long-term potentiation (LTP), between 3.7-6.7% strain and 

25-33s
-1

 rate.  This study experimentally confirmed computationally predicted strain magnitudes 

and rates using our in vitro blast model.  The findings within this study provide biomechanical 

injury thresholds for future computational models of primary bTBI that will contribute to the 

design of protective equipment and diagnostic capabilities. 

 

 Materials and Methods 2.2

2.2.1 Organotypic hippocampal slice cultures 

All animal procedures were approved by the Columbia University Institutional Animal 

Care and Use Committee (IACUC).  OHSCs were generated from P8-P10 Sprague Dawley rats 

as previously described
50, 53, 55, 184

.  In brief, the hippocampus was excised, cut into 400µm thick 

sections on a McIlwain tissue chopper (Ted Pella Inc, Redding, CA), and plated onto Millicell 

inserts (EMD Millipore, Billerica, MA) in Neurobasal medium supplemented with 2mM 

GlutaMAX
TM

, 1X B27 supplement, 10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), and 25mM D-glucose (Life Technologies, Grand Island, NY).  Cultures were fed 

every 2-3 days after plating with full serum medium, containing 50% Minimum Essential 

Medium, 25% Hank’s Balanced Salt Solution, 25% heat inactivated horse serum, 2mM 

GlutaMAX, 25mM D-glucose, and 10mM HEPES (Sigma).  Cultures were maintained for 10-14 

days prior to blast exposure. 
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2.2.2 Cell death measurement 

Propidium iodide (PI) fluorescence was used to assess tissue health prior to blast 

exposure, applying 2.5 µM PI (Life Technologies) in serum-free medium to tissue samples 

immediately before injury.  Cell death was determined using MetaMorph (Molecular Devices, 

Downingtown, PA) according to published methods
50, 53, 55, 95

.  Cultures that exhibited greater 

than 5% cell death before exposure were eliminated.  Previous studies with this injury model 

have reported that blast injury at the levels used in this study caused minimal cell death
53, 55

. 

 

2.2.3 Primary blast exposure 

Blast injury methods have been described previously in detail
49, 50, 52-56

.  For this study, a 

square box was attached around the receiver column and filled with water to minimize image 

distortion caused by the cylindrical column.  Cultures were first spray painted to create a 

stochastic fiducial pattern for strain analysis and then placed into sterile bags filled with serum-

free medium that was pre-equilibrated with 5% CO2 at 37°C.  Any air bubbles were fastidiously 

removed from the bag, which was sealed and placed into the receiver column.  The receiver 

column was filled with pre-warmed water (37°C), sealed with a silicone membrane, and the 

shock tube was fired.  Blast exposure levels (Table 1) were chosen so that in-fluid peak pressure 

and duration parameters were minimally correlated (r
2
 = 0.04).   
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 In-air In-fluid 

Exposure 

Level 

Pressure 

(kPa) 

Duration 

(ms) 

Impulse 

(kPa•ms) 

Pressure 

(kPa) 

Duration 

(ms) 

Impulse 

(kPa•ms) 

Level 1 106 ± 2 0.25 ± 0.01 9 ± 2 134 ± 2 1.5 ± 0.01 89 ± 1 

Level 2 93 ± 3 1.4 ± 0.01 39 ± 1 270 ± 15 2.6 ± 0.02 295 ± 56 

Level 3 190 ± 2 1.2 ± 0.01 73 ± 1 516 ± 31 1.30 ± 0.03 254 ± 35 

Level 4 336 ± 8 0.84 ± 0.01 87 ± 2 598 ± 15 1.85 ± 0.30 440 ± 13 

Table 1 Blast exposure levels tested in Chapter 2.  Blast exposures were characterized by three 

different parameters of the shock wave: peak overpressure (kPa), duration (ms), and impulse 

(kPa•ms).  Four different exposure levels (in addition to sham exposure) were utilized as 

previously reported by Effgen et al. (2014)
53

.  Parameters are reported for the in-air shock wave 

and the in-fluid pressure transient.   These blast pressure histories are similar to those 

experienced in-theater
53

.  

 

Piezoresistive pressure transducers (Endevco 8530B-500, San Juan Capistrano, CA, 

USA) recorded incident pressure at the shock tube exit.  Peak overpressure, duration, and 

impulse were recorded, processed, and quantified as previously described
50, 52, 53, 55

.  

Representative in-fluid pressure traces for each blast exposure level are presented in Figure 3. 
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Figure 3 Representative in-fluid pressure profiles for blast exposures used in this study.  The traces 

represent the in-fluid pressure profiles at the level of the sample for each of the blast levels tested in this 

study (Levels 1-4).  Note that the duration of the pressure pulse is less than 5ms.  

 

2.2.4 High-speed videography and digital image correlation (DIC) 

A pair of Fastcam SA-X2 charge-coupled device (CCD) cameras (Photron USA, San 

Diego, CA) captured stereophotogrammetric videos of OHSCs during blast exposure.  A 

calibration cube (15mm x 12mm) established a global coordinate system to orient the cameras in 

3D space.  The two cameras simultaneously recorded the culture during blast exposure at 5,000 

frames per second (FPS) with a resolution of 896 x 896 (20µm pixel size). 

Digital image correlation (DIC) was used to map unique correlation areas, or facets, of 

the spray pattern on the hippocampal slices to identify the same location in the images from the 

left and right cameras (Aramis, GOM, Brunswick, Germany).  At each time step, the algorithm 

successively identified the location of the center of each facet in the left and right image.  

Knowing the global positions of the cameras relative to the sample, the facet’s location within 

both images was converted into a single set of 3D coordinates in real space.  To calculate facet 

deformations, the 3D coordinates were transformed onto the surface of the culture using the 

assumption that the local neighborhood of a point can be well approximated by a tangential 

plane.  The tangential plane was calculated separately for both the undeformed and deformed 

states, and then the points in the local neighborhood were projected perpendicularly onto the 

tangential plane.  This transformation resulted in two sets of points on the tangential plane for the 

undeformed and deformed state. 
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Facet coordinates were tracked between the reference frame and the deformed frame to 

calculate the deformation gradient (F) for each facet at each time step.  Each deformation 

gradient was decomposed into the product of two tensors using the polar decomposition theorem 

(Equation 1): a pure stretch tensor (U) and a pure rotation matrix (R). 

𝑭 = 𝑹 ∙ 𝑼      (1) 

The stretch tensor was computed from the Cauchy-Strain tensor (C) and the orthogonal 

rotation matrix (Equations 2-4). 

𝑪 = 𝑭𝑻 ∙ 𝑭 = 𝑼𝑻 ∙ 𝑹𝑻 ∙ 𝑹 ∙ 𝑼    (2) 

𝑹𝑻 ∙ 𝑹 = 𝑰      (3) 

𝑼 =  √𝑪      (4) 

The first eigenvalue of the stretch tensor yielded the maximum principal strain (MPS) 

within each facet plane at each time step.  For all facets across the sample at each time, the MPS 

was averaged.  Strain rate was calculated from the average MPS history.  Both strain and strain 

rate induced strains across the range of blast intensities were analyzed by ANOVA, followed by 

Bonferroni post hoc tests with statistical significance set as p < 0.05.  The Pearson correlation 

coefficient was calculated to determine with which blast parameters strain and rate were most 

highly correlated (duration, peak overpressure, and impulse measured in-air and in-fluid). 

 

 Results 2.3

2.3.1 Primary blast exposure induced low strains 
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The initial rise in strain occurred over the first 2ms of pressure loading; however, strain 

did not reach maximum magnitudes until the pressure pulse had transited the sample (>3ms).  

After this point, strains were induced by deformation of the Millipore membrane with limited 

bulk motion of the sample.  We provided a time history of induced strains (Figure 4) following 

Level 4 blast exposure to visualize slice deformation during blast. 

 

Figure 4 Time history of tissue strains induced by Level 4 blast exposure. (A) The trace represents the 

average maximum principal strain (MPS) on the tissue sample surface (± SEM, N=3) over the first 150ms 

following Level 4 blast exposure.  The black bar marks 30ms after blast, which is expanded in B. (B) The 

trace represents the MPS on the tissue sample surface (± SEM, N=3) over the first 30ms following Level 

4 blast exposure.  The dotted vertical line indicates the time point when the in-fluid pressure transient 

passes the sample.  

 



24 
 

We observed that blast exposure induced strains of low magnitude (< 10%) (Figure 5A).  

Level 1 blast exposure induced average maximum principal strains of 3.7 ± 0.4%.  Level 2 blast 

exposure significantly (p = 0.046) increased strains (6.7 ± 0.6%), as compared to Level 1 blast.  

Level 3 (8.2 ± 0.8%) and Level 4 (8.2 ± 0.6%) blast exposures induced significantly (p = 0.005) 

higher strains than Level 1 blast, but not Level 2 blast. 

When compared to blast input parameters (Figure 5B: duration, Figure 5C: peak pressure, 

and Figure 5D: impulse), strain best correlated with in-air impulse (R
2
 = 0.9105) and in-fluid 

peak pressure (R
2
 = 0.8579).  Strain was somewhat correlated to in-fluid impulse (R

2
 = 0.7118), 

but only weakly correlated to in-air pressure (R
2
 = 0.4363), in-air duration (R

2
 = 0.5209), and in-

fluid duration (R
2
 = 0.0044). 
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Figure 5 Primary blast exposure induced strains of low magnitudes.  (A) Increasing blast exposure 

increased the average maximum principal strain (MPS) in OHSCs, but remained below 9% (mean ± 

S.E.M.; n=3, * p<0.05, as compared to Level 1 blast). (B) Linear correlation between MPS and blast 

duration in-air and in-fluid, indicating a weak association with R2 = 0.0044 and R2 = 0.5209, 

respectively.  (C) Linear correlation between MPS and blast peak pressure, indicating a strong association 

with in-fluid (R2 = 0.8579) and a weak association with in-air (R2 = 0.4363) peak pressure.  (D) Linear 

correlation between MPS and blast impulse indicating a strong association with in-air (R2 = 0.9105) and a 

moderate association with in-fluid (R2 = 0.7118) impulse.  

 

2.3.2 Primary blast exposure induced high strain rates 

Blast exposure above Level 2 significantly elevated maximum strain rate (Figure 6A).  

Level 1 and Level 2 blast exposure induced average maximum strain rates of 25.2 ± 6.6 and 32.9 

± 2.4s
-1

, respectively.  Level 3 blast exposure significantly increased strain rate (76.5 ± 4.6s
-1

), as 

compared to Level 1 (p = 0.02) and Level 2 (p = 0.047) blast.  Level 4 (85.6 ± 15.3s
-1

) blast 
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exposure induced significantly (p = 0.005) higher strains than Level 1 (p = 0.007) and Level 2 (p 

= 0.017) blast. 

When compared to blast input parameters (Figure 6B: duration, Figure 6C: peak pressure, 

and Figure 6D: impulse), blast-induced strain rates best correlated with in-fluid pressure (R
2
 = 

0.9739) and in-air impulse (R
2
 = 0.9346).  Strain rate was somewhat correlated to in-air pressure 

(R
2
 = 0.7995) but only weakly correlated with in-fluid impulse (R

2
 = 0.5422), in-air duration (R

2
 

= 0.0787), and in-fluid duration (R
2
 = 0.1184). 

 

Figure 6 Primary blast exposure induced deformations with strain rates in excess of 80 s
-1

.  (A) Increasing 

blast exposure increased the average peak strain rate in OHSCs.  Both Level 3 and Level 4 blast 

exposures induced significantly greater strain rates over both Level 1 and Level 2 blast. (mean ± S.E.M.; 

n=3, * p<0.05, as compared to Level 1 blast, # p < 0.05 as compared to Level 2 blast). (B) Linear 

correlation between strain rate and blast duration in-air and in-fluid, indicating a weak association with R
2
 

= 0.0787 and R
2
 = 0.1184, respectively.  (C) Linear correlation between strain rate and blast peak pressure 
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indicating a strong association with in-fluid (R
2
 = 0.9739) and a moderate association with in-air (R

2
 = 

0.7995) pressure.  (D) Linear correlation between strain rate and blast impulse indicating a strong 

association with in-air (R
2
 = 0.9346) and a weak association with in-fluid (R

2
 = 0.5422) impulse.  

 

2.3.3 Strain and rate thresholds for blast-induced LTP deficits 

We then compared the measured strain and strain rates at these blast levels to potentiation 

at the same blast intensities measured previously 
55

.   After an applied strain of 3.7%, LTP 

(Figure 7A) was not different from sham cultures; however, after an applied strain of 6.7% or 

greater, LTP was significantly reduced.  Potentiation exhibited a strong negative correlation with 

strain (R
2
 = 0.8688).  After an applied strain rate of 25s

-1
, LTP (Figure 7B) was not different 

from sham cultures; however, after an applied strain of 33s
-1

 or greater, LTP was significantly 

reduced.  Potentiation exhibited a moderate negative correlation with strain rate (R
2
 = 0.7967). 

 

 

Figure 7 Increased strain magnitude and rate reduced long-term potentiation (LTP).  (A)  We observed a 

threshold for significant LTP deficits between 3.7% and 6.7% MPS.  LTP deficits were strongly 

correlated with MPS with an R
2
 = 0.8688. (B) We observed a threshold for LTP deficits for strain rates 

between 25 and 33s
-1

.  LTP deficits were moderately correlated with strain rate with an R
2
 = 0.7967.  

 

 Discussion 2.4
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This is the first study to experimentally measure primary blast-induced strain and strain 

rates in hippocampal tissue.  We exposed OHSCs to a range of blast exposures (Levels 1-4) and 

observed that primary blast induced low strains (3-9%) and high strain rates (25-86s
-1

).  A strain 

threshold for LTP deficits ranged between 3.7-6.7% and a strain rate threshold ranged between 

25-33s
-1

.  Both induced tissue strain and strain rate were highly correlated with in-air impulse 

and in-fluid peak pressure.  The observed tissue strain and rate were well predicted 

computationally for this injury model by Panzer and colleagues (<8%, ~80s
-1

), similarly 

observing maximum strains after the pressure wave had passed the sample. 

Although no other study has experimentally quantified strain fields in brain tissue 

following blast exposure, one study found that shock loading of a poly-(methyl 

methacrylate)/Perma-Gel model of a human skull/brain induced 4.5% strain or less within the 

Perma-Gel
185

.  Although strain rates were not explicitly reported, the study reported that loading 

occurred at high-strain rates.  Peak pressures in the gel were 350kPa, which is slightly greater 

than our Level 2 blast that induced 6% strain.  Another study employed a Split-Hopkinson Bar to 

induce strain rates of over 8000s
-1

, across a range of strains (3-42%), in acute coronal brain slices 

embedded in gelatin blocks
186

.  Although the pressure transient at the tissue level exhibited a 

similar rise-time (~300µs) and duration (~1ms) applied in our study, the peak pressures within 

the aCSF greatly exceeded those within the receiver from our study (11MPa vs. 0.6MPa).  

Average maximum principal strains in that study were 28%, which subsequently induced 

degenerating neurons in CA1 at 6 hours post-injury.   Although that study corroborates our 

finding that increased fluid pressures caused elevated strains and strain rates, the strain and rates 

greatly exceeded those in our study, which could explain the differences in observed cell death 

between the models
53

. 
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Multiple studies have computationally modeled blast exposure for both in vitro and in 

vivo loading scenarios
8, 13, 17, 49, 180, 187-189

.  As previously mentioned, Panzer and colleagues 

predicted that shock loading of tissues in our in vitro receiver would induce MPS less than 8% 

and maximum strain rates of 80s
-1

 or less, which aligns closely with our findings
49

.  

Computational models of the human head under shock loading corroborated the biomechanical 

loading observed with our injury model
17, 183, 189

.  Those studies predicted maximum strains 

below 10% and maximum strain rates to reach between 10-570s
-1

, depending on loading 

conditions.  Panzer and colleagues reported that strain was mainly dependent on the impulse of 

the blast, which we corroborated with our findings (Figure 5D)
17

.  We have previously reported 

that biological outcomes such as LTP and blood-brain barrier disruption were also depended on 

the impulse of the blast wave
52, 53

.  Another computational study predicted higher strains (7-47%) 

within the brain after shock loading; however, this discrepancy from our results could have been 

due to the coarseness of the finite element mesh (> 1mm) in that study
190

.  In the aforementioned 

computational studies, maximum strains were observed after the pressure pulse had passed 

through the in vitro sample or the skull/brain model.  While our study corroborated this result, 

video analysis suggested that primary blast-induced deformation was driven by vibration of the 

Millipore membrane, on which the culture was adhered, within the test apparatus.  This result 

may have been driven by bulk fluid motion within the column, which was observed in 

computational models of the receiver
49

. 

Comparing the strain field induced by primary blast versus tertiary blast, in vitro and in 

vivo studies have reported that inertial-driven TBI leads to higher strain magnitudes, but lower 

strain rates than what we report for primary blast.  One common methodology for inducing 

inertial-driven strains is stretching of cultured cells or tissue by deformation of the culture 
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substrate.  In these studies, applied strains range from 1-140% whereas strain rates remained 

below 50s
-1 191-196

.  Alternatively, shearing devices have been developed for 3D cell cultures, 

capable of inducing up to 50% shear strain at rates from 1-30s
-1 197

.  Another study utilized 

magnetic resonance imaging (MRI) to quantify the strain field applied using an in vivo brain 

impact device
198

.  In this study, MPS ranged from 20-40% in certain regions, applied at rates 

between 10-40s
-1

.  Most computational simulations predicted that impact or accelerative forces 

on human head models induced high strain magnitudes (6-96%) and low strain rates (<80s
-1

)
180, 

181, 199-202
.  Interestingly, computational models of controlled cortical impact (CCI), a commonly 

used blunt-impact injury model, predicted high strain magnitudes (5-60%) and strain rates (> 

400s
-1

)
181, 203

.  Since the strain rate differs greatly from other experimental and computational 

models of inertial TBI, precautions must be taken when comparing CCI-induced pathobiology to 

other TBI models.  It is clear that the injury biomechanics of primary and tertiary bTBI are 

distinct and should be considered when interpreting pathobiological or behavioral outcomes 

following blast exposure. 

In this study, we correlated our previously reported levels of potentiation following in 

vitro blast to the induced strain magnitudes and strain rates at the same levels
55

.  From the 

correlations, blast-induced LTP deficits were dependent on both strain and strain rate, with 

strains above 3.7% and strain rates above 25s
-1

 inducing significant LTP deficits.  Although no 

other study has investigated LTP deficits at high-strain rates, our group has previously observed 

that a single mild stretch injury (12%, 5-6s
-1

) did not affect LTP; however, a subsequent mild 

stretch delivered 24 hours after the first significantly reduced LTP without altering other evoked 

response measures
204

.  It is possible that the observed strain threshold for LTP deficits in our 

study is lower since the primary blast injury model deforms tissue at higher rates than the stretch 
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injury model.  Although LTP was not investigated, another stretch injury study found that the 

strain threshold for electrophysiological dysfunction was potentially as low as 5% when 

stretched at 5 s
-1 97

.  Upon mathematically fitting functional changes to applied strain/rate injury 

parameters, Kang and colleagues found that most changes to basal hippocampal and cortical 

electrophysiological dysfunction were dependent on both strain magnitude and rate, even at low 

strain magnitudes
88, 205

.  Another study observed that changing the rate of stretching hippocampal 

cultures, increasing from 1 to 5 to 50s
-1

, while maintaining low strain magnitudes (<6%) 

increased cytosolic [Ca
2+

], an important parameter for LTP induction
194, 206

.  Previous studies 

hypothesized that macro- and micro-interfaces between cellular structures with disparate 

properties, e.g. the dendritic spines and transmembrane structures critical to LTP induction, 

could be particularly vulnerable to damage from high strain rate loading
197, 207-209

. 

It has been shown that electrophysiological dysfunction can occur even in the absence of 

cell death; however, multiple experimental studies have similarly investigated strain thresholds 

for cell death
53, 95, 203, 210, 211

.  Biomechanical thresholds for electrophysiological dysfunction and 

cellular death are critical to the advancement of computational TBI models.  Current finite 

element models of the human head can incorporate a neural tract structure, identified by diffuse 

tensor imaging, to predict the effect of injury on neural connections
201, 212

.  For example, Kraft 

and colleagues found that 20% of the neural connectome links between brain regions were fully 

degraded by 96 hours post-frontal TBI, when using an axonal strain threshold (18%) for 

functional deficits identified in vitro
210, 212

.  Our study connects blast parameters (peak pressure, 

duration, impulse) to biomechanical deformation (strain magnitude, rate) and provides 

computational studies with additional threshold information to better inform their models. 
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While our study provided insights into the biomechanics of primary blast injury, several 

limitations should be considered.  The Aramis software required that a fiducial pattern be applied 

to the OHSCs so that facets can be assigned for subsequent deformation tracking.  It is possible 

that the spray paint used to make that pattern altered the physical properties of the OHSC and, 

thus, the strain response.  The use of spray paint prevented subsequent electrophysiological 

recording from patterned slices.  In the future, different biological dyes or staining could be 

implemented to determine whether the induced strains were altered by the paint.  To prevent 

image distortion that accompanies recording a sample through a cylindrical PVC receiver, a 

square box was built to surround the receiver and filled with water.  This structure served to 

better match the refractive indices of the intervening media, PVC (n = 1.5390) and water (n = 

1.33) and present a flat surface through which to image, minimizing image-distortion and 

allowing for proper calibration of the system.  An ideal setup would be to redesign the receiver 

with a square column.  An inherent limitation of any stereophotogrammetric technique is that 

only strains on visible surfaces were measured, although, this may not be a significant limitation 

because the OHSCs are a few hundred microns thick 
51, 213

.  Recording speed was limited by 

lighting conditions, which were somewhat limited by space constraints around the receiver.  The 

onset time of the in-fluid pressure transient at the level of the sample was approximately 500µs, 

which allows capture of this onset in only two frames.  Although the maximum strain 

magnitudes and rates were observed after pressure loading had subsided, a higher frame rate 

would be desirable in future studies. 

In summary, we report that in vitro primary blast exposure induced low strain magnitudes 

and high strain rates in OHSCs with strain magnitudes between 3-9% and rates between 25-86s
-1

 

for Level 1-4 blasts.  Both strain magnitude and rate were highly correlated with in-air blast 



33 
 

impulse and in-fluid peak pressure.  Peak strains and rates were observed after the pressure wave 

had passed the sample, suggesting that this mode of strain was driven by either bulk fluid motion 

or vibration of culture substrates like a drumhead.  Our results aligned closely with 

computational simulations of our blast injury device under shock loading
49

.  When comparing 

biomechanical parameters to blast-induced LTP deficits, we observed that a strain magnitude and 

rate threshold for LTP-loss was found between 3.7-6.7% and 25-33s
-1

, respectively.  The 

reported findings will advance computational modeling of the brain under shock loading by 

providing tissue-level tolerance criteria for neuronal dysfunction.  
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3 Isolated primary blast injury to in vitro organotypic hippocampal 

slice cultures inhibits long-term potentiation
2
  

 Introduction 3.1

Traumatic brain injury has been considered the signature injury of the US military 

operations in Iraq and Afghanistan for more than a decade
7
.  In 2015 alone, there were 22,672 

identified cases of TBI within the four branches of the US military, with 82.4% of these cases 

being mild in severity
3
.  The biomechanics of blast-induced injury are complex but classified 

into four mechanisms: primary blast due to the interaction of the supersonic shock wave with 

biological tissues; secondary blast due to ejecta causing penetrating injuries; tertiary blast due to 

blunt impact or rapid acceleration / deceleration leading to injurious deformation within the 

brain; and quaternary blast due to remaining mechanisms including burning, poisoning, 

infection, and electromagnetic waves
53, 214

.  Although the mechanisms and consequences of brain 

deformation, the mechanism of tertiary injury, are well-studied
2, 215

, the existence and 

pathobiology of TBI due to primary blast injury remain controversial. 

Animal studies investigating the effects of primary blast injury have produced conflicting 

results.  Some studies report reduced motor function in the rotarod test following primary blast 

71-73
; however, others have reported no decline in motor skills from primary blast

23-25
.  Similar 

discrepancies appear for cognition, as well.  Following blast exposure, cognitive performance in 

                                                           
2 A modified version of this chapter previously appeared in print: Vogel III, E.W., Effgen, G.B., Patel, 

T.P., Meaney, D.F., Bass C.R.D., Morrison III, B. Isolated primary blast inhibits long-term potentiation in 

organotypic hippocampal slice cultures, J Neurotrauma. 2016, 33, p 652-661. Reproduced with 

permission (doi:10.1089/neu.2015.4045). 

http://online.liebertpub.com/doi/abs/10.1089/neu.2015.4045
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the MWM significantly decreased in some studies
23, 75

, but not in others
24, 25

.  These mixed 

results may be due to the large range of bTBI models in use today in which many critical factors 

are not standardized, including injury biomechanics (e.g. the head acceleration during blast 

exposure is often not measured
30

), thorax protection, scaling of the blast magnitude and duration, 

and orientation of the subject to the blast wave
19, 23, 24, 216

. 

It remains unclear whether isolated primary blast affects neurological function. Our in 

vitro approach allows for the precise control of injury biomechanics and removes the potentially 

confounding influence of systemic pathophysiology (e.g. lung damage, ischemia, etc.) and brain 

deformation due to blast-induced head acceleration
53

.  The goal of our study was to determine 

the minimum primary blast exposure to produce a significant deficit in neuronal network 

function in the absence of cell death, i.e. a tissue-level tolerance criterion for functional deficits.  

We have previously characterized our blast-injury model (Figure 2), which is comprised of a 

shock tube and a fluid-filled sample receiver for exposing OHSC to primary blast
53, 216, 217

.  The 

system converts the in-air shock wave into an in-fluid pressure transient to simulate the blast-

induced intracranial pressure wave for interaction with the brain culture
216

.  Previously, in-fluid 

pressure transients to injure cultures have been implemented in in vitro TBI models to simulate 

non-blast loading and to replicate the loading associated with fluid percussion injury.  Those 

loading conditions with much longer rise times (~5ms) and durations (~20ms) differed 

substantially from the loading conditions of the current study
42, 44

.   Loading conditions 

employed in the current study were designed specifically to replicate blast-loading with much 

faster rise-times (~ 0.2ms) and shorter durations (~ 3ms).  We measured changes in 

electrophysiological function in OHSCs with 60-channel microelectrode arrays (MEAs).  

Although we have previously reported that electrophysiological deficits occur at lower primary 
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blast levels than cell death
53

, a threshold for functional deficits has not been reported.  In this 

study, we report that a shock wave produced subtle changes in neuronal network function.  

However, long-term potentiation was significantly impaired or eliminated following primary 

blast exposure of 9 and 39 kPa•ms impulse, respectively. Determining a tolerance threshold 

could be used to increase safety during military training, as well as improve helmet technology to 

protect military personnel better. 

 

 Materials and Methods 3.2

3.2.1 Organotypic hippocampal slice culture 

All animal procedures were approved by the Columbia University Institutional Animal 

Care and Use Committee (IACUC).  OHSC were generated as previously described from 

approximately 25 dams and 100 pups.  In brief, P8-11 Sprague-Dawley rat pups were decapitated 

and the brains removed
218-220

.  Hippocampi were excised, sectioned into 400 m thick slices and 

separated aseptically in ice-cold Gey’s salt solution supplemented with 25 mM D-glucose 

(Sigma, St. Louis, MO).  Next, 2-3 slices were plated onto each porous Millipore Millicell cell 

culture inserts (Millipore, Billerica, MA) in Neurobasal medium supplemented with 1 mM L-

GlutaMAX, 1X B27 supplement, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), and 25 mM D-glucose (Life Technologies, Grand Island, NY).  Every 2-3 days, half of 

the medium was replaced with full-serum medium containing 50% Minimum Essential Medium, 

25% Hank’s Balanced Salt Solution, 25% heat inactivated horse serum, 2 M L-GlutaMAX, 25 

mM D-glucose, 10 mM HEPES (Sigma, St. Louis, MO).  Cultures were grown for 10-14 days 

prior to testing. 
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3.2.2 Primary blast exposure 

Blast injury methods have been previously described in detail
216, 217

.  In brief, a shock 

wave was generated with a 76 mm diameter aluminum shock tube with an adjustable-length 

driver section (25 mm, 50 mm, and 190 mm used for the current studies) pressurized with helium 

or nitrogen and a 1240 mm long driven section
216, 217

.  Individual culture wells were sealed inside 

sterile, 57 µm-thick, low-density polyethylene bags (Whirl-Pak, Fort Atkins, WI) filled with 10 

mL of pre-warmed, serum-free culture medium (containing 75% Minimum Essential Medium, 

25% Hank’s Balanced Salt Solution, 2 mM Glutamax, 25 mM D-glucose, 10 mM HEPES) that 

had been equilibrated with 5% CO2 / 95% O2 (37°C) before being placed in the fluid-filled blast 

receiver, maintained at 37C.  These bags were selected because their acoustic impedance 

matched that of water, thus preventing attenuation of the pressure transient, as previously 

reported
217

.  The culture and the bag were submerged 85 mm into the receiver column, oriented 

perpendicular to the pressure wave propagation.  The receiver was sealed (without air bubbles) 

with a polydimethylsiloxane (PDMS) sheet and positioned directly at the shock tube exit (5 mm 

gap). 

Piezoresistive pressure transducers (Endevco 8530B-500, San Juan Capistrano, CA, 

USA) were flush-mounted at the exit of the shock tube and in the fluid-filled blast receiver at the 

location of the culture and were oriented perpendicular to the direction of propagation to record 

side-on (incident) pressure.  Analog outputs from the transducers were conditioned using 

amplifiers (gain of 50) and low-pass filters (corner frequency of 40 kHz, Alligator Technologies, 

Costa Mesa, CA, USA). Signals were digitized with an X-series data acquisition card at 125 kHz 

and LabVIEW™2010 (National Instruments, Austin, TX, USA).  Peak overpressure, 
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overpressure duration, and impulse were calculated with custom MATLAB (Mathworks, Natick, 

MA) code
217

.  

For injured cultures, the shock tube was then fired; sham cultures were treated identically 

except the shock tube was not fired.  Four blast exposure levels were utilized (Table 2, levels 

referenced to Effgen et al., 2014
53

), characterized by the peak pressure (kPa), duration (ms), and 

impulse (kPa•ms) of the in-air shock wave and the in-fluid pressure transient.  Blast levels 

(specific parameters given below in the results) simulated real-world exposures and were chosen 

both below and above the threshold for causing cell death based on previous studies
53

.  

Following blast- or sham exposure, the culture was immediately removed from the receiver and 

returned to the incubator in fresh, full serum medium. 

 In-air In-fluid 

Exposure 

Level 

Pressure 

(kPa) 

Duration 

(ms) 

Impulse 

(kPa•ms) 

Pressure 

(kPa) 

Duration 

(ms) 

Impulse 

(kPa•ms) 

Level 1 106 ± 2 0.25 ± 0.01 9 ± 2 134 ± 2 1.50 ± 0.01 89 ± 1 

Level 2 93 ± 3 1.40 ± 0.01 39 ± 1 270 ± 15 2.60 ± 0.20 295 ± 56 

Level 4 336 ± 8 0.84 ± 0.01 87 ± 2 598 ± 15 1.85 ± 0.30 440 ± 13 

Level 9 424 ± 6 2.31 ± 0.03 248 ± 3 1510 ± 91 2.80 ± 0.10 1420 ± 87 

Table 2 Blast exposure levels tested in Chapter 3.  Blast exposures were characterized by three 

different parameters of the shock wave: peak overpressure (kPa), duration (ms), and impulse 

(kPa•ms).  Four different exposure levels (in addition to sham exposure) were utilized as 

previously reported by Effgen et al. (2014)
53

.  Parameters are reported for the in-air shock wave 

and the in-fluid pressure transient.   These blast pressure histories are similar to those 

experienced in-theater
53

.  

 

3.2.3 Cell death measurement 
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Propidium iodide (PI) fluorescence was used to measure cell death immediately prior to 

and four days following injury.  Previous studies with this injury model have demonstrated that 

significant cell death does not occur until four days post-injury
53

.  OHSCs were incubated in 2.5 

µM PI (Life Technologies) in serum-free medium for 1 hour before imaging.  Images were 

acquired at the indicated time points using an Olympus IX81 microscope with 568/24 nm 

(peak/width) excitation and 610/40 nm emission filters.  Following imaging, cultures were 

returned to fresh, full serum medium.   

Cell death was determined for specific OHSC regions (DG, CA1, CA3), as previously 

described, using MetaMorph (Molecular Devices, Downingtown, PA)
221

.  In brief, the same 

threshold for fluorescence was used to analyze all images at both pre- and post-injury time points 

for a given culture.  Cell death was quantified as the percentage area of a specific region 

exhibiting fluorescence above the threshold.  To confirm OHSC viability after blast, a subset of 

cultures were exposed to the highest blast level (Level 9) and subsequently subjected to an 

excitotoxic injury (10mM of glutamate for 3 hours) 4 days following blast exposure.  Slice 

cultures were returned to fresh serum-free medium following excitotoxic exposure, and cultures 

were imaged for cell death 24h later.  Cell death was analyzed by analysis of variance 

(ANOVA), followed by Dunnett post hoc tests with statistical significance set at p < 0.05 (SPSS 

v22, IBM, Armonk, NY).   

 

3.2.4 Electrophysiology 

Electrophysiological activity within the OHSC was recorded using 60-channel MEAs 

(8×8 electrode grid without the corners, 30μm electrode diameter, 200μm electrode spacing) 4-6 
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days following blast injury (60MEA200/30iR-Ti-gr, Multi-Channel Systems, Reutlingen, 

Germany).  This time point coincided with the observed delay for increased cell death previously 

measured in this injury model
53

.  Before transferring OHSCs to MEAs, the MEAs were plasma 

cleaned (Harrick Plasma, Ithaca, NY) and coated with 5 µL of 0.01% nitrocellulose (GE 

Healthcare Life Sciences, Piscataway, NJ) in methanol (Pharmco-AAPER, Brookfield, CT) to 

adhere the tissue to the electrodes.  Individual OHSCs were excised from the Millipore 

membranes and inverted onto the MEA.  A nylon mesh, harp slice grid (ALA Scientific 

Instruments, Farmingdale, NY) held the OHSC stationary and helped ensure contact with the 

electrodes.   

OHSCs were perfused with artificial cerebral spinal fluid (aCSF) containing 125 mM 

NaCl, 3.5 mM KCl, 26 mM NaHCO3, 1.2 mM KH2PO4, 2.4 mM CaCl2, 1.3 MgCl2, 10mM 

HEPES, and 10 mM glucose (pH = 7.40), which was bubbled with 5% CO2/95% O2 and warmed 

to 37°C, as previously described 
97

.  Recordings were acquired with an MEA1060-BC amplifier 

and data acquisition system (Multi-Channel Systems).  The system recorded neural signals at 20 

kHz with a 6 kHz analog, anti-aliasing filter.  Recordings were further filtered in MATLAB 

using an 8
th

 order, digital, low-pass (1000Hz) and a 4
th

 order, digital, high-pass (0.2Hz) 

Butterworth filter.  The sample numbers for each injury group for a given recording protocol are 

listed in the results section. 

 

3.2.5 Spontaneous activity 

Spontaneous neural activity was measured by recording continuously for 3 minutes from 

all electrodes within the hippocampus.  The raw data was passed through a 60 Hz comb filter 
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using a custom MATLAB script, before neural event activity was detected based on the multi-

resolution Teager energy operator
88, 115, 205, 222, 223

.  Events were characterized by their start time, 

magnitude, and duration.   

Spontaneous network synchronization was also quantified using previously published 

methods
115, 121, 224, 225

.  Correlation, c

, between neural events was calculated for each electrode 

pair (x and y) given neural event-timing 𝑡𝑖
𝑥 and 𝑡𝑗

𝑦
 (i = 1, …, mx; j = 1, …, my) according to

224
: 

𝒄𝝉(𝒙|𝒚) = ∑ ∑ 𝑱𝒊𝒋
𝝉𝒎𝒚

𝒋=𝟏
𝒎𝒙
𝒊=𝟏 {

𝑱𝒊𝒋
𝝉 = 𝟏 𝒊𝒇 𝟎 < 𝒕𝒊

𝒙 − 𝒕𝒋
𝒚

≤ 𝝉

𝑱𝒊𝒋
𝝉 =

𝟏

𝟐
 𝒊𝒇 𝒕𝒊

𝒙 = 𝒕𝒋
𝒚

𝑱𝒊𝒋
𝝉 = 𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

    (5) 

in which τ was the duration in which two events were considered synchronous (1.5 ms) 

and mx & my were the total number of events to be compared on each electrode.  

An activity correlation matrix, Qxy, was calculated as: 

   𝑸𝒙𝒚 =
𝒄𝝉(𝒙|𝒚)+𝒄𝝉(𝒚|𝒙)

√𝒎𝒙𝒎𝒚
     (6) 

with individual entries ranging from 0 (completely uncorrelated) to 1 (perfectly 

correlated).  The eigenvalues, λb, and associated eigenvectors, νab, of the correlation matrix 

provided insight to the structure of the neuronal activity.  To identify clusters of simultaneously 

active electrodes, the participation index (PInd) was calculated for each electrode a that 

contributed to a cluster b as: 

   𝑷𝑰𝒏𝒅𝒂𝒃 = 𝝀𝒃𝝂𝒂𝒃
𝟐      (7) 
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where νab represented the a
th

 element of eigenvector b.  Electrodes contributing to cluster 

b were those with PInd ≥ 0.01
225

. 

To determine statistical significance, randomized surrogate time-series data without 

correlated activity was generated with an event-rate equal to the measured event-rate of the 

experimental recordings
225

.  The surrogate process was repeated 50 times, and the mean (�̅�𝑘
′ ) and 

standard deviation (SDk) of surrogate eigenvalues were calculated (k = 1,…, M, where M 

represented the number of electrodes in the experiment).  We identified the number of 

synchronized clusters that were significantly different from the randomized, asynchronous 

surrogate clusters as: 

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 = ∑ 𝒔𝒈𝒏[𝝀𝒌 > (�̅�𝒌
′ + 𝑲 × 𝑺𝑫𝒌)]𝒌   (8) 

where sgn was the sign function, λk was the eigenvalue of each electrode of the 

experimental data, and K was a constant (K = 3 was chosen to provide a 99% confidence level, 

i.e. p < 0.01). 

Finally, a global synchronization index (GSI), ranging from 0 (random, uncorrelated 

activity) to 1 (perfectly synchronous, correlated activity on all electrodes), was calculated for the 

cluster with the highest degree of synchronization: 

  𝑮𝑺𝑰 = {
𝝀𝑴−�̅�′

𝑴−�̅�′  𝒊𝒇 𝝀𝑴 > �̅�′

𝟎   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
     (9) 

where �̅�′ was the mean of the largest surrogate eigenvalues, 𝜆𝑀 was the maximal 

eigenvalue of the correlation matrix from the experimental data, and M was the number of 

electrodes in the experiment.  Active regional percentage in the most synchronized cluster (i.e. 
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the cluster corresponding to 𝜆𝑀) was quantified as the ratio of regional electrodes involved in the 

cluster to the total number of electrodes in the respective region.   

Spontaneous and synchronization parameters were averaged for a given recording and 

analyzed by ANOVA, followed by Dunnett post hoc tests with statistical significance set as p < 

0.05 (SPSS v22, IBM).  In addition, principal component analysis (PCA) was performed with the 

built-in MATLAB function pca.m on the parameters together to identify significant changes 

(ANOVA) in the first principal component score (PC1), followed by Dunnett post hoc tests.  

Observed power was calculated for the effect of injury severity (impulse) with  = 0.05.   

 

3.2.6 Stimulus-response curves 

Stimulus-response (SR) curves were generated by applying a constant current, biphasic, 

bi-polar stimulus (100 µs positive phase followed by 100 µs negative phase) of increasing 

magnitude (0-200 µA in 10 µA increments) to electrodes located in either the Schaffer collateral 

(SC) or mossy fiber (MF) pathways, and the data was analyzed with respect to stimulation site.  

Evoked responses were recorded from each electrode throughout the hippocampal tri-synaptic 

circuit. As in previous studies, each electrode’s response was fit to a sigmoidal curve
97

 as:   

  𝑹(𝑺) =  
𝑹𝒎𝒂𝒙

𝟏+ 𝒆𝒎(𝑰𝟓𝟎−𝑺)      (10) 

Rmax represented the maximum amplitude of the evoked response and I50 represented the 

current necessary to generate a half-maximal response.  The term m, which is proportional to the 

slope of the sigmoidal fit, represented the spread in the firing threshold for the population of 

neurons
88, 97, 205

.  Data from each electrode was segregated by anatomical region of interest (ROI: 
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CA1, CA3, DG).  Each parameter (I50, m, Rmax) for an electrode was averaged within a region to 

determine that regional response for any given slice.  Data reported for each region is the average 

across slices within a given experimental group. 

A PCA was also performed to identify significant multivariate changes in the SR 

parameters.  Individual parameters as well as PC1 were analyzed by ANOVA followed by 

Dunnett post hoc tests with statistical significance set as p < 0.05 (SPSS v22, IBM).  Observed 

power was calculated for the effect of impulse with  = 0.05. 

 

3.2.7 Paired-pulse ratios 

Short-term plasticity was investigated by delivering two successive stimuli of the same 

intensity (I50) at interstimulus intervals (ISI) of 20, 35, 50, 70, 100, 140, 200, 300, 500, 1000, and 

2000 ms.  Paired-pulse ratios (PPR) were calculated as the ratio of the peak-to-peak amplitude of 

the second response to the peak-to-peak amplitude of the first response.  A PPR greater than 1 

indicated paired-pulse facilitation, whereas a PPR less than 1 indicated paired-pulse depression 

226
.  ISIs were assigned to one of four bins that are biologically relevant to short-term synaptic 

plasticity. Short-term ISI (20 ms) produce paired pulse depression thought to be mediated by the 

neurotransmitter GABA, specifically via the GABAA class of GABA receptors
227, 228

.  Early-mid 

ISIs (35 – 100 ms) elicit a rebound in excitation thought to be caused by GABAA mediated 

disinhibition and activation of NMDARs
227, 229

.  Late-mid ISIs (140 – 500 ms) produce late 

phase paired pulse depression thought to be mediated by GABAB receptors
227, 230

.  Lastly, Long-

term ISIs (> 500 ms) are not expected to elicit a response resulting from the interaction of the 

paired pulse stimulation and instead results in two independent and equal responses
231, 232

.  PPRs 
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for each bin were averaged across a given recording and analyzed by ANOVA, followed by 

Dunnett post hoc tests with statistical significance set at p < 0.05 (SPSS v22, IBM).  

Additionally, PC1 was analyzed to identify significant multivariate changes in PPR.   Observed 

power was calculated for the effect of impulse with  = 0.05. 

 

3.2.8 Long-term potentiation 

In a separate cohort of cultures, the ability to induce LTP was quantified after blast.  

Baseline behavior was evoked by stimulating at I50 once every minute for 30 minutes.  LTP was 

then induced by stimulating across the SC pathway with a high frequency stimulus, which 

consisted of three trains of 100 Hz pulses applied for 1 second at I50, with each train separated by 

10 seconds
233, 234

.  Immediately following LTP induction, post-LTP responses were evoked by 

stimulating at I50 once every minute for 60 minutes.  LTP induction was calculated as percent 

potentiation above baseline based on the last 10 minutes of recording in each recording window.  

To ensure only stable responses were included for analysis, electrodes were discounted if the 

coefficient of variance (pre or post-induction) was greater than 20%
235

.  LTP induction was 

averaged among electrodes within the CA1 and analyzed by ANOVA followed by Dunnett post 

hoc tests with statistical significance set as p < 0.05 (SPSS v22, IBM). 

 

 Results 3.3

3.3.1 Primary blast-induced cell death in the hippocampus was minimal 
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We observed a region-specific threshold for blast-induced cell death, but the relative 

amount of cell death was significantly less than excitotoxic insult.  Four days following sham 

injury or blast exposure and prior to electrophysiology recording, cell death was evaluated within 

the OHSC (Table 2).  In all three regions, cell death (Figure 8) was minimal, but significantly 

increased following a Level 9 blast exposure, as compared to sham.  Level 4 blast exposure 

induced minimal, but significant cell death in only the DG but not the CA3 or CA1.  Cell death 

was not significantly increased after Level 2 or Level 1 blast exposure.  Although Level 9 blast 

exposure induced significant cell death in all ROI, it remained minimal (< 5%).  In comparison, 

glutamate exposure 4 days after Level 9 blast exposure significantly increased cell death in all 

ROIs as compared to a Level 9 blast exposure alone.  These data are consistent with a previous 

study from our group which reported significant but minimal cell death after a Level 9 

exposure
53

. 

 

Figure 8 Cell death measured for each ROI of the hippocampus 4 days after injury.  Groups are in order 

of increasing impulse from left to right.  Minimal cell death was significantly induced after Level 9 blast 

exposure in all ROI.  Minimal cell death was significantly induced after Level 4 blast exposure in DG 

only.  Level 2 and Level 1 blast exposure did not significantly increase cell death.  Glutamate exposure 4 

days following Level 9 blast induced significant cell death in all ROI. (mean ± S.E.M.; n≥7; * p<0.05 as 

compared to sham, # p<0.05 as compared to Level 9)  
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3.3.2 Primary blast exposure impaired long-term potentiation 

Four to six days following blast exposure, LTP (Figure 9) was significantly reduced 

following Level 9, Level 4, and Level 2 blast exposures as compared to sham.  Following Level 

1 blast exposure, potentiation closely resembled that of sham-injured cultures. 

 

Figure 9 Long-term potentiation measured in CA1 4-6 days after injury.  Groups are in order of increasing 

impulse from left to right.  LTP was significantly reduced after Level 2 and eliminated after Level 4 or 

Level 9 blast exposures. (mean ± S.E.M.; n≥5; * p<0.05, as compared to sham)  
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3.3.3 Primary blast exposure reduced hippocampal synchronization 

One feature that is often critical for transmitting information through neural circuitry is 

the synchronization of activity across distinct regions, an aspect that may underlie the process of 

memory consolidation 
236

.  To this end, GSI (Figure 10A) across recording regions was 

significantly reduced following Level 9 and Level 4 blast exposures as compared to sham.  Blast 

did not alter the number of synchronized clusters identified (Figure 10B).  Level 9 and Level 4 

blast exposure significantly reduced the active regional percentage in the most synchronized 

cluster (Figure 10C) in CA3, as compared to sham. 

 

3.3.4 Primary blast exposure minimally affected spontaneous activity 

An additional measure to reflect the general excitability of the circuitry is the 

spontaneous activity recorded within different regions.  There was a decreasing trend in 

spontaneous event rate (Figure 11A) as the impulse increased from Level 1 to 9 primary blast 

exposures for all three ROIs; however, the deficits did not reach significance.  Level 9 blast 

exposure significantly decreased spontaneous event magnitude (Figure 11B) in DG. There was 

no significant change in event duration (Figure 11C) after blast exposure for any ROI.  Lastly, 

Level 9 blast exposure significantly reduced PC1 (Figure 11D) in DG, but the change did not 

reach statistical significance in CA3 or CA1.  PC1 captured over 95% of the variance in the 

overall data set.  The statistical power was ≥ 0.18 for all non-significant comparisons. 
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Figure 10 Synchronization of spontaneous activity 4-6 days after injury. Groups are in order of increasing 

impulse from left to right.  The global synchronization index (GSI, [A]) was significantly decreased 

following Level 9 and Level 4 blast exposures compared to sham exposure.  The number of synchronized 

clusters (B) per slice was not significantly affected by primary blast exposure (p≥0.43 with a calculated 

power of 0.29).  Following Level 9 and Level 4 blast exposure, active regional percentage in the most 

synchronized cluster (C) significantly decreased in CA3, as compared to sham exposure.  (mean ± 

S.E.M.; n≥6; *p<0.05, as compared to sham)  
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Figure 11 Blast injury altered spontaneous event properties. There was a decreasing trend in spontaneous 

event rate (A) as impulse increased.  Level 9 blast exposure significantly decreased event magnitude (B) 

in DG, as compared to sham.    There was no significant change in event duration (C) after blast exposure 

for any ROI (p>0.40 with a calculated power < 0.28).  Level 9 blast exposure significantly altered PC1 

(D) in DG, but there was no significant change in CA3 (p>0.08 with a calculated power of 0.54) or CA1 

(p>0.35 with a calculated power of 0.33).  (mean ± S.E.M.; n≥7, * p<0.05, as compared to sham)  
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3.3.5 Primary blast exposure minimally altered basal evoked responses 

Spontaneous activity only reveals the state of the circuitry with existing inputs.  

Alternatively, a full stimulus/response characterization in response to external stimulation would 

reveal any alterations in the ability to stimulate local circuitry in the OHSC or the progressive 

stimulation of downstream circuits due to synaptic transmission.  When stimulating across the 

MF pathway, there was no effect on Rmax (Figure 12A) or I50 (Figure 12B) following blast 

exposure, as compared to sham.  Level 4 blast exposure significantly decreased the slope of 

excitation (m) (Figure 12C) for DG and CA3, as compared to sham.  There was no significant 

change in PC1 (Figure 12D) for any ROI following blast exposure.  PC1 captured over 99% of 

the variance in the overall data set.  The statistical power was greater than or equal to 0.20 for all 

non-significant comparisons.  

For stimulation across the SC pathway, Level 9 blast exposure significantly reduced Rmax 

(Figure 13A) in DG, as compared to sham.  Level 9 blast exposure significantly increased I50 

(Figure 13B) in CA3.  Level 9 and Level 4 blast exposure reduced the parameter m (Figure 13C) 

in all ROI; however, no change reached significance.  Level 9 blast significantly reduced PC1 

(Figure 13D) in DG, as compared to sham.  The statistical power was greater than or equal to 

0.31 for all non-significant comparisons. 

One explanation for changes in circuit activation would be impairments in presynaptic 

release, as identified by paired-pulse stimulation paradigms.  For stimulation across the MF or 

SC pathway, primary blast exposure did not change paired pulse responses (data not shown) in 

any ROI for any temporal bin of ISIs. 
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Figure 12 Blast injury minimally affected stimulus-response parameters when stimulated across the 

mossy fiber (MF) pathway. There was no significant effect on Rmax (A, p>0.14 with a calculated power 

< 0.12) or I50 (B, p>0.88 with a calculated power < 0.44) following blast exposure, as compared to sham.  

Level 4 blast exposure significantly reduced m (C) in DG and CA3; however, the change did not reach 

significance in CA1 (p>0.09 with a calculated power of 0.53), as compared to sham exposure.  Level 9 

exposure reduced m for all ROI, but the changes did not reach significance (p>0.07).  There was no 

significant change (p>0.15 with a calculated power < 0.44) in PC1 (D) following blast exposure for any 

ROI.  (mean ± S.E.M.; n≥6, * p<0.05, as compared to sham)  

 

 

Figure 13 Blast injury minimally affected stimulus-response parameters when stimulated across the 

Schaffer collateral (SC) pathway. Level 9 blast exposure significantly decreased Rmax (A) in DG.  Level 

9 blast exposure significantly increased I50 (B) in CA3.  Level 9 and Level 4 blast exposure levels 

reduced the parameter m (C) for all ROI; however, no change reached significance (p>0.09 with a 

calculated power < 0.56).  Level 9 blast exposure significantly reduced PC1 (D) in DG.  (mean ± S.E.M.; 

n≥5, * p<0.05, as compared to sham)   
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 Discussion 3.4

The current study reports that 1) primary blast exposure in isolation can disrupt LTP; 2) a 

threshold for significantly impairing LTP lies between 9 kPa•ms (Level 1) and 39 kPa•ms (Level 

2) impulse; 3) primary blast exposure significantly reduced hippocampal synchrony with a 

threshold lying between 39 kPa•ms (Level 2) and 87 kPa•ms (Level 4) suggesting that 

synchrony is less sensitive to blast than LTP; and 4) other measures of spontaneous and evoked 

activity were less sensitive to blast.  These functional alterations occurred in the absence of cell 

death, demonstrating that cell death is not necessary for a change in neuronal function.  

Functional and cognitive deficits in the absence of cell death have been observed with earlier 

non-blast models of TBI, as well
61, 99

.  Although the highest blast level tested (248 kPa•ms; 

Level 9) altered electrophysiological function as well as caused significant cell death, average 

cell death was never above 5% in any ROI, which agreed with previous literature
53

.  In 

comparison, glutamate exposure 4 days following Level 9 blast exposure caused over 40% cell 

death in all ROI, confirming the presence of viable cells following blast, which were not killed 

by primary blast alone. 

Although not investigated in previous in vitro blast models, LTP has been investigated in 

acute hippocampal slices following in vivo blast exposure.  LTP, induced either chemically or by 

theta-burst stimulation in acute mouse hippocampal slices was significantly reduced 2 and 4 

weeks post-blast injury in vivo (167 kPa•ms)
24

.  In this previous work, the injury was a 

combination of the blast pressure wave through the brain and induced head-acceleration.  In 

general, head acceleration (tertiary blast loading) is a well-known causal factor for brain injury, 

and therefore it is not possible to prove conclusively that blast pressure alone can cause circuit 
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impairment. Although mild fluid pressure loading to the brain can also cause LTP impairments 

one day
83

, one week
85, 86

, and 8 weeks
84

 post-injury, this injury model is also a mix of pressure 

and deformation throughout the brain
237, 238

.  To our knowledge, our data is the first to show that 

primary blast (shock wave alone) is also capable of disrupting LTP. 

Alterations in the function of the hippocampal circuitry after blast was not restricted to 

only LTP impairments.  We found that primary blast exposure reduced global synchronization of 

hippocampal activity, correlating to observations in humans and other experimental models 

(Figure 10A).   For example, electroencephalographic synchronization was significantly reduced 

in the frontal brain regions of US personnel one month after blast-exposure without impact
239

.  

Likewise, non-blast TBI reduced cortical synchronization during learning and recognition tasks 

240
.  Network synchronization was decreased after in vitro stretch injury in both hippocampal 

slices
115

 and cultured cortical neurons
121

.  Proposed mechanisms behind these deficits include 

intracellular chloride imbalance
115

, calpain activation
121

, and loss of white matter tract structural 

integrity
239

.  TBI-induced deficits in network synchronization could explain some short-term 

learning and memory impairments as previous studies have shown that the basis for working 

memory is persistent, synchronized neural activity
241, 242

.  While previous studies have 

demonstrated the potential for reduced neural synchrony after various types of injury, our study 

supports that primary blast exposure, in isolation, is capable of causing deficits in 

synchronization. 

Although spontaneous function (event rate, magnitude, duration) has not been previously 

investigated after blast injury, the non-blast TBI literature is divided.  In our study, our highest 

blast level (Level 9) was capable of subtly reducing event rate, magnitude, and duration in 
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certain regions of the hippocampus.    The decreasing trend for PC1 suggested that clustering the 

three spontaneous parameters uncovered an underlying deficit in the spontaneous signaling that 

was not obvious by observing just a single parameter in isolation.  After mild controlled cortical 

impact (CCI) injury in rats, spontaneous event rate was increased in CA1, but not CA3, starting 2 

hours and out to 24 hours post-injury
89

.  Alternatively, severe in vitro stretch injury decreased 

spontaneous event rate
90

; however, mild stretch injury did not alter spontaneous event rate at 24 

hours after injury
115

.  These discrepancies may be related to injury severity and the associated 

cell death in that spontaneous rates did not change in the absence of cell death
115

.  The injury 

biomechanics between our blast model, the CCI model, and the stretch injury model may 

contribute to the varying changes following injury.  It is possible that the deficits in post-injury 

synchronization observed in our study could be linked to the slight alterations in the spontaneous 

functional behavior, but will need further testing to confirm. 

In our study, stimulus-response curves (i.e. input/output curves) were only minimally 

affected by primary blast exposure, with the largest effects due to a Level 9 blast capable of 

causing (minimal) cell death.  In an in vivo rat study, no changes in corpus callosum compound 

action potentials were measured three days post-blast despite cell death in the corpus callosum
22

.  

However, the duration of the blast was only 200 µs, which is not operationally realistic unless 

scaled.  Applying previously published scaling relationships
243

, this duration would scale to 

about 2ms.  Non-blast FPI increased I50 out to seven days post-injury in rodent CA1
83, 92

 and 

decreased Rmax out to two days post-injury in rat CA1
83

, in response to SC stimulation.  

However, similar injury studies reported decreased I50 and increased Rmax between three and 

seven days post-injury in rodent CA1 in response to SC stimulation
91, 93

. Results from in vitro 

mechanical TBI were similar to the complex in vivo results.  Cell-death-inducing stretch injury 
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(10% strain, 20 s
-1

 rate) decreased field excitatory postsynaptic potential (fEPSP) and population 

spike Rmax in the hippocampus at 4 days post-injury
90

.  Hippocampal Rmax peaked as strain rate 

increased at high strain 4-6 days post-stretch injury, but reached a minimum as strain rate 

increased at low strain
88

.  The same study also observed that I50 was increased after injury
88

.  

Although conflicting, previous investigations have demonstrated that normal neuronal 

transmission can be affected by injury, which our study confirms.  The minimal changes we 

observed at lower impulse blast exposures (i.e. Level 2 and Level 4) suggests that normal 

neuronal transmission is less sensitive to primary blast exposure than LTP and GSI. 

Paired-pulse facilitation (PPF) is one form of short-term synaptic plasticity
244

, governed 

at different ISI (40-2000 ms) by presynaptic neurotransmitter release
245, 246

 along with GABAA, 

GABAB, and NMDA receptor dynamics
227-231

.  In our study, primary blast exposure did not 

affect PPR.  The lack of changes in short-term plasticity observed in this study suggests that 

damage to presynaptic cellular machinery may not be responsible for the LTP deficits we 

observed
85, 247

.  Previous FPI studies have shown reduced paired-pulse inhibition (PPI) at short-

term (<100ms) ISIs and at mid-length (~500 ms) ISIs in rat CA1
87

.  PPI was similarly reduced in 

rat hippocampal slices after mild stretch in vitro at shorter ISIs (< 100ms) in response to MF 

stimulation; however, PPI increased when exposed to low strain, high-strain rates at late-mid 

length ISIs (~500 ms), in response to SC stimulation
88

.  In these time windows, paired-pulse 

depression is driven by GABAA and GABAB receptors, respectively
227, 228

.  The lack of effect of 

blast on PPR in our study suggests that GABA-mediated depression was not appreciably altered, 

but would require further testing to confirm.  The difference in outcomes at the short-term and 

late-mid ISIs may be related to differences between the injury-models employed in each study, 

suggesting that changes in paired-pulse facilitation may not be a blast-related phenomenon. 
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The blast levels tested in our study are similar to those commonly experienced in-

theater
53

.  Our Level 1 exposure is similar to the blast from an M49A4 60mm mortar round at a 

standoff distance of 0.25-2 m and the Level 9 exposure represents an explosion from an M118 

bomb at a standoff distance of 10-32 m, according to the Conventional Weapons Effect Program 

(ConWEP).  Our experimental conditions, whether unscaled or scaled for different species
243

, are 

consistent with the range of real world blast exposures encountered by service members.   

Although we report that primary blast exposure disrupted LTP and neuronal 

synchronization, there are limitations associated with this study.  Translating the 

electrophysiological alterations measured in vitro to behavioral or cognitive changes in vivo is 

difficult
24, 73, 81

; however, our model provided the benefit of precise control over injury 

biomechanics, which remains a challenge for in vivo systems.  Another limitation of this model 

is the inherent difficulty into translating tissue-level results to macroscopic loading scenarios.  

However, one of this study’s strengths is the extensive characterization of pressure histories from 

the shock tube and the sample receiver.  Measured fluid pressure histories applied to the tissue in 

the receiver could be extended to macroscopic loading conditions via realistic finite element 

models, which provide an intermediate step in the clinical understanding of tissue-level results.  

In the current study, neuronal activity was recorded at only one time frame (4-6 days) post-

injury, which was chosen to allow for secondary injury cascades to develop but before 

regeneration mechanisms could repaired damaged circuits
53, 97, 221

.  One potentially important 

injury mechanism that is not reproduced with our in vitro model is the breakdown of the BBB 

following blast exposure, which is increasingly a common observation in both in vivo and in 

vitro models
20, 21, 52, 248-250

.  Therefore, future studies will examine the time course of 

electrophysiological changes after blast.  In our study, cell viability was a major outcome 
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measure; however, other more subtle structural or protein alterations could be responsible for the 

observed electrophysiological deficits.   

In summary, we report that primary blast disrupted LTP and decreased the 

synchronization of spontaneous activity in the hippocampus, while minimally affecting other 

functional measures.  Disruption of LTP was dose-dependent with respect to blast impulse in the 

absence of cell death.  Future studies will examine the molecular mechanisms underlying 

disruption of LTP.   
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4 Primary blast injury depressed hippocampal long-term 

potentiation through disruption of synaptic proteins
3
 

 Introduction 4.1

Blast-induced TBI poses a substantial problem for both training and active duty members 

of the military.  Nearly 83% of military TBIs are considered  mild TBI 
3
.   Although TBI can 

occur from blunt impact and penetrating injury, blast forces are considered the cause of the 

majority of mTBIs
4, 166

.  Although the physiological consequences of brain deformation, i.e. 

tertiary injury, are well studied
215, 251

, the pathobiology of TBI due to primary blast, or shock 

wave exposure, remains debated
13

. 

Animal studies that investigated the effects of primary blast injury have produced 

conflicting results for motor
24, 25, 71-73, 252

 and cognitive deficits
23-25, 75

.  One potential reason for 

these discrepancies is the lack of standardization in several critical factors in the bTBI injury 

models, such as verification of head immobilization, thoracic protection, blast exposure 

magnitude and duration, and subject orientation.  In comparison, appropriately developed in vitro 

models of blast injury allow one to overcome these complications of in vivo models and focus on 

the precise effect of blast loading to brain tissue
12

.  A major feature of our in vitro injury model 

is that it isolates the shock wave component of blast from the other, confounding phases of injury 

including secondary (transection due to shrapnel), tertiary (large deformations due to inertial 

                                                           
3 A modified version of this chapter previously appeared in print: Vogel III E.W., Rwema S.H., Meaney 

D.F., Bass C.R.D., Morrison III, B. Primary blast injury depressed hippocampal long-term potentiation 

through disruption of synaptic proteins, J Neurotrauma. 2016, Available online. Reproduced with 

permission (doi: 10.1089/neu.2016.4578). 

http://online.liebertpub.com/doi/abs/10.1089/neu.2016.4578
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loading), and quaternary blast loading
50

.  By using a system with controlled biomechanics, we 

can determine whether primary blast in isolation affects neuronal function of the hippocampus. 

Common symptoms of bTBI include memory deficits and loss of spatial navigation 

which implicate damage to the hippocampus
18

.  Many studies showed bTBI impairs memory 

processing in animal models through cognitive tests
23-25, 73, 75, 252

, but fewer reveal their 

underlying electrophysiological basis
22, 24, 53, 55

.  Long-term potentiation is thought to functionally 

represent experience-driven neural circuitry changes
253, 254

 and  numerous TBI studies have 

reported deficits in LTP in vitro following non-blast injury
83-85, 255, 256

; however, there is a dearth 

of studies showing LTP deficits following bTBI
24, 55

.  Our group was the first to observe that 

LTP was disrupted after pure primary blast exposure
55

, and this report examines the molecular 

mechanisms behind primary blast-induced LTP deficits. 

We observed that primary blast reduced LTP in a delayed manner, requiring more than 1 

hour to develop.  LTP spontaneously recovered 10 days after exposure to an 87 kPa•ms impulse 

blast, but not after a 248 kPa•ms blast.  With LTP induction, blast significantly reduced 

phosphorylation of AMPA-GluR1 subunits at the serine-831 (Ser831) site and reduced 

phosphorylation of stargazin at the serine-239/240 (Ser239/240) site.  Primary blast exposure 

significantly decreased expression of GluR1 subunits, with LTP induction, and PSD-95, 

regardless of LTP.  Post-exposure treatment with the FDA-approved PDE4 inhibitor roflumilast 

prevented blast-induced LTP deficits.  The observed improvement in LTP with roflumilast 

treatment warrants further investigation as a potential therapeutic for blast-induced LTP-loss. 
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 Materials and Methods 4.2

4.2.1 Organotypic hippocampal slice culture 

All animal procedures were approved by the Columbia University IACUC.  OHSCs were 

generated from P8-P10 Sprague Dawley rat pups as previously described
50, 53, 55, 184

.  In brief, the 

hippocampus was isolated, cut into thin sections (400m) with a McIlwain tissue chopper (Ted 

Pella, CA), and plated onto Millicell inserts (EMD Millipore, Billerica, MA) in Neurobasal 

medium supplemented with 2mM GlutaMAX
TM

, 1X B27 supplement, 10mM HEPES, and 

25mM D-glucose (Life Technologies, Grand Island, NY).  Thereafter, cultures were fed every 2-

3 days with full serum medium, containing 50% Minimum Essential Medium, 25% Hank’s 

Balanced Salt Solution, 25% heat inactivated horse serum, 2mM GlutaMAX, 25mM D-glucose, 

and 10mM HEPES (Sigma).  Prior to blast injury, cultures were maintained for 10-14 days. 

 

4.2.2 Primary blast exposure 

Blast injury methods have been previously described in detail
49, 50, 52-55

.  Piezoresistive 

pressure transducers (Endevco 8530B-500, San Juan Capistrano, CA, USA) recorded side-on 

(incident) pressure at the shock tube exit and inside the fluid-filled receiver.  Peak overpressure, 

overpressure duration, and impulse were recorded, processed, and quantified as previously 

described
50, 52, 53, 55

.  

For injured cultures, the shock tube was fired; sham cultures were treated identically 

except the shock tube was not fired.  Two blast exposure levels were utilized (Table 2, Level 4 

and Level 9, referenced to Vogel et al., 2016
55

), characterized by the peak pressure (kPa), 
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duration (ms), and impulse (kPa•ms) of the in-air shock wave and the in-fluid pressure transient.  

Blast levels (specific parameters given in the table) simulated real-world exposures and were 

chosen both below and above the threshold for causing cell death based on previous studies
53, 55

.  

Following blast- or sham exposure, the culture was immediately removed from the receiver and 

returned to the incubator in fresh, full serum medium.  Cultures were maintained in full serum 

medium for up to 10 days post exposure.   

 

4.2.3 Cell death measurement 

Propidium iodide (PI) fluorescence was used to measure cell death immediately prior to 

injury, and at one hour and 10 days following injury using 2.5 µM PI (Life Technologies) in 

serum-free medium; previous studies with this injury model have reported that cell death remains 

minimal between 1 and 4 days after blast
53, 55

.  Cell death was determined for specific ROI (DG, 

CA3, CA1), as previously described, using MetaMorph (Molecular Devices, Downingtown, PA), 

and reported as percentage area
50, 53, 55, 95

.  To confirm OHSC viability after blast, a subset of 

cultures were exposed to the highest blast level tested (Level 9) and subsequently subjected to an 

excitotoxic injury (10mM of glutamate for 3 hours) 10 days following blast exposure.  OHSC 

were returned to fresh serum-free medium following excitotoxic exposure, and cultures were 

imaged for cell death 24h later.  Cell death was analyzed by ANOVA, followed by Dunnett post 

hoc tests with statistical significance set at p < 0.05 (SPSS v22, IBM, Armonk, NY).   

 

4.2.4 Electrophysiology 
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In a separate set of cultures, electrophysiological activity within the OHSC was recorded 

using 60-channel MEAs (8×8 electrode grid without the corners, 30μm electrode diameter, 200 

μm electrode spacing) at either 1 hour, 1 day, 2 days, 4 days, 6 days, or 10 days following blast 

injury (60MEA200/30iR-Ti-gr, Multi-Channel Systems, Reutlingen, Germany).  In our previous 

studies,  electrophysiological deficits were measured at only 4-6 days after blast
53, 55

.  The MEAs 

were prepared and slices were placed onto the arrays as previously described
53, 55

.  OHSCs were 

perfused with aCSF containing 125 mM NaCl, 3.5 mM KCl, 26 mM NaHCO3, 1.2 mM 

KH2PO4, 2.4 mM CaCl2, 1.3 mM MgCl2, 10mM HEPES, and 10 mM glucose (pH = 7.40), 

which was bubbled with 5% CO2/95% O2 and warmed to 37°C, as previously described
97

.  

Recordings were acquired with an MEA1060-BC amplifier and data acquisition system (Multi-

Channel Systems). 

 

4.2.5 Stimulus-response curves 

Stimulus-response (SR) curves were generated by applying a constant current, biphasic, 

bi-polar stimulus (100 µs positive phase followed by 100 µs negative phase) of increasing 

magnitude (0-200 µA in 10 µA increments) to electrodes located in the SC pathway.  Evoked 

responses were recorded from each electrode throughout the hippocampal tri-synaptic circuit.  

As in previous studies, each electrode’s response was fit to a sigmoidal curve and three 

parameters were quantified: Rmax, represented the maximum amplitude of the evoked response, 

I50 represented the current necessary to generate a half-maximal response, and the term m, 

represented the slope of the sigmoidal fit
97

.  Each parameter (I50, m, Rmax) for an electrode was 

averaged within a region to determine that regional response for any given slice.  Data reported 
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for each region is the average across slices within a given experimental group.  Individual 

parameters were analyzed by ANOVA followed by Dunnett post hoc tests with statistical 

significance set as p < 0.05 (SPSS v22, IBM). 

 

4.2.6 Long-term potentiation 

Following SR evaluation, the ability to induce LTP was measured.  Baseline response 

was evoked by stimulating at I50 once every minute for 30 minutes.  LTP was then induced by 

stimulating across the SC pathway with a high frequency stimulus, which consisted of three 

trains of 100 Hz pulses applied for 1 second at I50, with each train separated by 10 seconds
233, 234

.  

Immediately following LTP induction, post-LTP responses were evoked by stimulating at I50 

once every minute for 60 minutes.  LTP induction was calculated as percent potentiation above 

baseline based on the last 10 minutes of recording in each recording window.  To ensure only 

stable responses were included for analysis, electrodes were discounted if the coefficient of 

variance (pre or post-induction) was greater than 20%
235

.  LTP induction was averaged among 

electrodes within the CA1 and analyzed by ANOVA followed by Dunnett post hoc tests with 

statistical significance set as p < 0.05, as compared to time-matched shams (SPSS v22, IBM). 

 

4.2.7 Chemical LTP 

In separate sets of cultures, LTP was chemically induced with two distinct protocols.  

Baseline electrical activity was recorded for 30 minutes as above.  The first chemLTP protocol 

replaced electrical LTP induction with a 3 minute perfusion with a modified aCSF solution (gly-

aCSF) 
257

: aCSF containing 200 µM glycine and 0 mM MgCl (reduced from 1.3mM).  The 
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perfusate was then switched back to aCSF and washed out for 20 minutes prior to post-induction 

electrical stimulation.  Percent potentiation was calculated by comparing the average of the final 

10 minutes of post-induction responses to the average of the final 10 minutes of pre-induction 

responses, as above.  The gly-aCSF solution activates synaptic NMDARs, allowing Ca
2+

 ions to 

enter the dendritic spine, similar to electrically-induced LTP 
257

.   

The second chemLTP protocol replaced electrical LTP induction with a 20 minute 

perfusion with a modified aCSF solution (cAMP-aCSF) 
258

: aCSF containing 1 mM MgCl 

(reduced from 1.3mM), 50µM forskolin, 50µM picrotoxin, and 100nM rolipram.  Forskolin, 

rolipram, and picrotoxin stocks were dissolved in dimethyl sulfoxide (DMSO) with a final 

DMSO concentration in cAMP-aCSF of 0.07%.  The perfusate was then switched back to aCSF 

and washed out for 20 minutes prior to post-induction stimulation for 60 minutes.  Percent 

potentiation was calculated as above.  The cAMP-aCSF solution acts to upregulate the cAMP-

PKA pathway through inhibition of PDE4 (rolipram) and activation of adenylate cyclase 

(forskolin), which results in elevated cAMP levels and consequently PKA activation
258

.  

Picrotoxin, a GABAA inhibitor, reduced inhibition and enhanced stability of the potentiated 

signal, while not inducing LTP on its own
258

. 

Chemically-induced LTP was averaged among electrodes within the CA1 and analyzed 

by ANOVA followed by Dunnett post hoc tests with statistical significance set as p < 0.05, as 

compared to time-matched shams (SPSS v22, IBM). 

 

4.2.8 Western blotting 
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For each condition tested by western blotting, 8 slices from 2 different animals were 

collected for protein extraction.  Groups receiving chemLTP induction (gly-aCSF or cAMP-

aCSF) were treated, switched back to normal aCSF after respective treatment times, incubated 

for appropriate induction times, and then lysed.  Slices were rinsed twice with ice-cold PBS and 

immediately placed in chilled lysis buffer A (40mM HEPES, 120mM NaCl, 1 mM EDTA, 1% 

Triton X-100, 10mM sodium pyrophosphate, 50mM sodium fluoride, 0.5mM sodium 

orthovanadate, 10mM β-glycerophosphate, Sigma).  Samples were sonicated (Sonicator 3000, 

Misonix, NY, USA), incubated on ice and then centrifuged to remove cellular debris.  Protein 

concentrations were determined by the bicinchoninic acid assay (BCA) according to the 

manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA), and 50 µg of 

protein per sample were loaded in a 4-12% Bis-Tris gel (Life Technologies).  Proteins were 

separated by electrophoresis (150V, 1.5h) and transferred (100mA, 40mins) to a nitrocellulose 

membrane (Life Technologies) using a semi-dry apparatus (Fisher Scientific, NY, USA).  The 

membrane was blocked in Tris-buffered saline (TBS, pH 7.4) with 1% bovine serum albumin 

(BSA) for 1 hour.  Membranes were incubated overnight at 4°C with primary antibodies (total 

GluR1 [Millipore, #04-855], phosphorylated GluR1-Ser
831

 [Millipore, #04-823], phosphorylated 

GluR1-Ser
845

 [Millipore, #04-1073], total CaMKII [Sigma, #SAB4503250], phosphorylated 

CaMKII-Thr
286

 [Abcam, #ab5683], total NMDA NR2B [Millipore, MAB5778], total PSD-95 

[Thermo Fisher, MA1-046], phosphorylated stargazin-Ser239/240 [Millipore, AB3713], β-actin 

[Sigma, #A1978]) in TBS with Tween (TBS-T, 0.1% Tween-20, pH 7.4) and 0.25% BSA.  

Following the primary antibody incubation, membranes were washed 3 x 10 min in TBS-T.  To 

detect protein bands, the membranes were labeled with a corresponding secondary antibody 

(Donkey anti-Rabbit Alexa Fluor 488 or Goat anti-Mouse Alexa Fluor 647, Life Technologies).  



67 
 

Fluorescence was detected using a CRi Maestro 2 Imaging System (Perkin Elmer).  The bands 

were quantified using ImageJ software.  Average fluorescence was quantified from, at minimum, 

4 lysates per exposure group (8 slices per lane, 32 slices in total) and analyzed by ANOVA with 

statistical significance set as p < 0.05, as compared to treatment-matched shams (SPSS v22, 

IBM).  A post-hoc Bonferroni analysis revealed statistical significant differences between injury-

matched treatments for each antibody, with significance set as p < 0.05. 

 

4.2.9 Roflumilast treatment 

To test the ability of a PDE4 inhibitor to rescue LTP after blast exposure, 1 µM 

roflumilast (SML1099, Sigma-Aldrich; dissolved in 0.07% DMSO) in full serum media was 

delivered to sham and Level 4-exposed cultures immediately after blast exposure.  For 

comparison, DMSO vehicle was also delivered to a second set of cultures that had received 

either sham or Level 4 blast exposure.  The cultures’ ability to generate LTP through high 

frequency electrical stimulation was evaluated at 24 hours post-exposure.  Potentiation was 

averaged in CA1 region of the hippocampus and analyzed by ANOVA with statistical 

significance set as p < 0.05, as compared to similarly treated shams. 

 

 Results 4.3

4.3.1 Primary blast exposure inhibited LTP in a delayed manner 

Potentiation (Figure 14) was not reduced when measured 1 hour (Day 0) after Level 4 or 

Level 9 blast exposures, as compared to sham.  When measured at 24 hours (Day 1) post-blast 
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exposure, potentiation was significantly reduced in cultures exposed to either a Level 4 or Level 

9 exposure.  This deficit was maintained at Day 2, Day 4, and Day 6 post-Level 4 and Level 9 

blast exposure.  At 10 days after Level 4 blast, potentiation had partially recovered and was no 

longer significantly different from time-matched sham-exposed cultures; however, potentiation 

remained significantly depressed in the Level 9 exposed cultures at the same time point. 

 

Figure 14 LTP measured in CA1 at multiple time points after primary blast injury. Groups are organized 

by increasing time after exposure [Day 0, Day 1, Day 2, Day 4, Day 6, Day 10] and then by increasing 

impulse from left to right [Sham, Level 4, Level 9].  LTP was significantly reduced 1 day following Level 

4 or Level 9 blast exposures.  This deficit persisted out to 6 days following either injury exposure.  LTP 

spontaneously recovered 10 days after Level 4 blast exposure, but not Level 9 blast exposure. (mean ± 

S.E.M.; n≥5; * p<0.05, as compared to time-matched sham)  

 

4.3.2 Primary blast exposure did not induce neuronal death 

One possible explanation for changes in potentiation is neuronal degeneration and loss 

after blast exposure.  Previous work has reported that this injury model does not induce 

substantial cell death at the time points previously examined, i.e. between days 1 and 4 following 
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blast exposure 
53, 55

.  We evaluated cell viability (Figure 15) at a longer time point (Day 10) to 

confirm that cells remained alive at extended periods following Level 9 blast exposure, the most 

severe blast condition used in the study.  We found that cell death was not significantly increased 

for any ROI at 10 days following Level 9 exposure compared to sham cultures.  Although cell 

death was slightly higher in the DG (~ 10%) than other regions following blast, this pattern was 

also present in sham cultures.  To confirm the presence of living neurons, exposure to toxic 

levels of glutamate 10 days following Level 9 primary blast caused significant cell death (> 

80%) across all ROI, confirming the presence of cells not killed by primary blast exposure alone. 

 

Figure 15 Cell death measured for each ROI of the hippocampus at 1 hour and 10 days after Level 9 blast. 

Cell death was not significantly induced after Level 9 blast exposure in any ROI compared to sham-

injured cultures.  Glutamate exposure at (A) 1 hour and (B) 10 days following Level 9 blast induced 

significant cell death in all ROI. (mean ± S.E.M.; n=12; * p<0.05 as compared to sham, # p<0.05 as 

compared to Level 9)  
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4.3.3 Primary blast exposure did not induce deficits in basal evoked function 

Alterations in basal evoked function, the ability to stimulate local circuitry or transmit 

stimulation to downstream networks, could potentially explain the observed change in LTP 

following blast injury.  We have previously reported that our injury model induced minimal 

changes in basal evoked function, when stimulating across the SC pathway, at 4-6 days post-

primary blast exposure 
55

.  In the current study, we observed that neither blast level significantly 

altered the maximum voltage response (Figure 16A, Rmax), the current necessary to generate a 

half-maximal response (Figure 16B, I50), or the spread in the firing threshold for the population 

of neurons (Figure 16C, m) for any ROI at any time point following injury.  These results 

confirmed the previous findings from this system and revealed that basal evoked function was 

not disrupted at acute or longer time points following blast exposure. 

 

Figure 16 Blast injury minimally affected stimulus-response parameters in CA1 when stimulated across 

the Schaffer collateral (SC) pathway. There was no significant effect on Rmax (A, p>0.35), I50 (B, p>0.42), 

m (C, p>0.10) at any time point following blast exposure, as compared to sham.  (Data not shown for 

CA3 and DG, mean ± S.E.M.; n≥5)  
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4.3.4 Primary blast exposure reduced potentiation when induced with gly-aCSF 

To explore blast-induced deficits in LTP further, we investigated the effect of blast injury 

on chemical induction of LTP using gly-aCSF.  We observed that potentiation (Figure 17A) was 

significantly reduced in Level 4 blast-exposed cultures measured at 1 day after injury when 

induced with gly-aCSF.  When measured at 10 days following Level 4 blast exposure, gly-aCSF-

induced potentiation (Figure 17A) recovered and was not significantly different from time-

matched, sham-exposed cultures.  These findings matched the time course of blast-induced LTP 

deficits when induced electrically.  To verify that the shorter treatment duration with gly-aCSF 

did not confound results, we extended gly-aCSF treatment from 3 to 20 minutes and observed 

that Level 4 blast exposure significantly decreased potentiation (27 ± 13%) as compared to sham 

(78 ± 15%) exposure (data not shown). 

 

Figure 17 Blast injury significantly reduced glycine-induced LTP, but not rolipram/forskolin-induced 

LTP. (A) LTP was significantly reduced when induced by gly-aCSF at 1 day following Level 4 blast 

exposure.  There was no significant change in glycine-induced LTP at 10 days following Level 4 blast 

exposure. (B) LTP was not reduced when induced by cAMP-aCSF at 1 day following Level 4 blast 

exposure. (mean ± S.E.M.; n≥8, * p<0.05, as compared to sham)  
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4.3.5 Primary blast exposure did not reduce potentiation when induced with cAMP-aCSF 

In contrast, potentiation (Figure 17B) was not significantly reduced at 1 day following a 

Level 4 blast exposure using a chemLTP induction protocol that upregulated the cAMP/PKA 

pathway (cAMP-aCSF).  To verify the extended treatment duration with cAMP-aCSF did not 

confound results, we shortened cAMP-aCSF treatment from 20 to 3 minutes and observed that 

blast exposure did not significantly reduce potentiation (48 ± 11%) as compared to sham (42 ± 

17%) exposure (data not shown).  These results suggested that modulation of the cAMP/PKA 

pathway might act therapeutically against primary blast-induced LTP loss. 

 

4.3.6 Phosphorylated GluR1-Ser831 and total GluR1 expression was significantly reduced by 

primary blast injury 

Blast prevented a significant increase in phosphorylation of AMPAR-GluR1 subunits at 

the Serine-831 site at 24 hours post-injury as compared to shams, when LTP was induced with 

gly-aCSF (Figure 18A).  There was no observed effect of blast with vehicle-treated cultures or 

with the cAMP-aCSF treatment.  Treatment with either gly-aCSF or cAMP-aCSF significantly 

increased GluR1-Ser831 phosphorylation over vehicle-treated sham cultures, i.e. no induction of 

LTP; however, only cAMP-aCSF significantly increased GluR1-Ser831 phosphorylation over 

vehicle-treated blast-cultures. 

Blast also significantly decreased the expression of total GluR1 subunits (Figure 18B) as 

compared to shams, when LTP was induced with gly-ACSF.  Although this deficit was not 

observed with vehicle-treated cultures or with the cAMP-aCSF treatment, it is important to note 
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that there was an increase in total GluR1 expression for both sham and blast-exposed cultures 

receiving cAMP-aCSF treatment, as compared to the vehicle-treated cultures.   

We observed no significant change in the phosphorylation state of AMPAR-GluR1 

subunits at the Serine-845 site (Figure 18C) between blast and sham cultures for any chemical 

treatment; however, both chemical treatments significantly increased GluR1-Ser845 

phosphorylation over vehicle treated cultures.   

There also was no significant change to NMDAR-NR2B subunits (Figure 18D) because 

of either injury exposure or chemical treatment. 
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Figure 18 Phosphorylation of GluR1-Ser831 and total GluR1 expression was reduced at 24 hours 

following Level 4 blast injury. Protein expression (normalized to loading control β-actin) was evaluated at 

24 hours following Level 4 blast injury for four different synaptic membrane protein targets: pGluR1-

Ser831 (A), total GluR1 (B), pGluR1-Ser845 (C), and total NMDA-NR2B (D).  Cultures were either 

untreated (vehicle) or LTP was induced by either gly-aCSF or cAMP-aCSF prior to cell lysis.  

Phosphorylation of GluR1-Ser831 and total GluR1 expression were significantly reduced when LTP was 

induced by gly-aCSF, but not by cAMP-aCSF, at 1 day following Level 4 blast exposure.  Representative 

bands from each group are shown below the graphs.  (mean ± S.E.M.; n≥4, * p<0.05, as compared to 

treatment-matched sham, # p<0.05 as compared to injury-matched treatment)  
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4.3.7 Primary blast injury did not affect total CaMKII nor phosphorylated CaMKII-Thr286 

Another important target in the LTP pathway is CaMKII as CaMKII phosphorylation is 

necessary for the induction of some forms of LTP 
80, 138, 259

.  We observed that phosphorylation 

of CaMKII at the Threonine-286 (Thr-286) site was not affected by injury (Figure 19A).  There 

was an expected increase in phosphorylation with both chemLTP treatments.  We also observed 

that total expression of CaMKII (Figure 19B) was not altered because of injury (p > 0.33) or 

chemical treatment (p = 1.0). 

 

 

Figure 19 Primary blast exposure did not affect (A) phosphorylation of CaMKII-Thr286 or expression of 

(B) total CaMKII at 24 hours post-injury with or without induction of LTP. Representative bands from 

each group are shown below the graphs.  (mean ± S.E.M.; n≥4, # p<0.05 as compared to injury-matched 

treatment)  
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4.3.8 Primary blast injury significantly reduced PSD-95 and pStargazin-Ser239/240 

We also examined two key proteins responsible for receptor integration at the synapse: 

PSD-95 and stargazin.  We found that blast decreased expression of total PSD-95 for both 

vehicle and gly-aCSF treated cultures as compared to shams, but not for cAMP-aCSF treated 

cultures (Figure 20A).  We observed that blast exposure reduced the phosphorylation of stargazin 

(Ser239/240) after gly-aCSF treatment, but not for vehicle or cAMP-aCSF treated cultures 

(Figure 20B). 

 

Figure 20 Blast exposure reduced total PSD-95 expression and phosphorylation of stargazin at the 

Ser239/240 site. Total PSD-95 expression (A) was significantly reduced at 24 hours following Level 4 

blast exposure in vehicle treated and gly-aCSF-treated cultures, but not in cAMP-aCSF-treated cultures. 

Phosphorylation of stargazin-Ser239/240 (B) was significantly reduced at 24 hours following Level 4 

blast exposure in gly-aCSF-treated cultures, but not in cAMP-aCSF-treated cultures. Representative 

bands from each group are shown below the graphs.  (mean ± S.E.M.; n≥4, * p<0.05, as compared to 

treatment-matched sham, # p<0.05 as compared to injury-matched treatment)  
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4.3.9 Roflumilast treatment immediately following exposure prevented blast-induced LTP 

deficits 

Roflumilast treatment immediately following blast exposure prevented a deficit in 

electrically-induced LTP at 24 hours post-injury (Figure 21).  Level 4 blasted cultures that were 

treated with vehicle (0.07% DMSO in aCSF) immediately following injury were unable to 

potentiate at 24 hours post-exposure, as compared to sham-vehicle treated cultures.  This 

indicated that PDE4 inhibitors have the potential to prevent primary blast-induced LTP loss. 

 

 

Figure 21 Roflumilast treatment prevented blast-induced LTP deficits at 24 hours post-injury. Cultures 

were exposed to Level 4 blast and immediately treated with either 1µM roflumilast or vehicle (0.07% 

DMSO in medium).  LTP was electrically-induced and evaluated 24 hours post-injury.  (mean ± S.E.M.; 

n≥5, * p<0.05, as compared to treatment-matched sham, # p<0.05 as compared to injury-matched 

vehicle)  
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 Discussion 4.4

This study elucidates important details regarding the mechanisms behind LTP-deficits 

following primary blast exposure.  The onset of blast-induced LTP deficits was delayed (1-24 

hours post-exposure), and the deficit recovered over time (6-10 days post-exposure), depending 

on blast intensity.  Primary blast exposure reduced expression and disrupted phosphorylation of 

proteins critical to LTP induction.  Blast reduced phosphorylation of GluR1-Ser831 and 

expression of total GluR1.  Blast also decreased PSD-95 expression and phosphorylation of 

stargazin-Ser239/240.  Treatment with FDA-approved roflumilast immediately post-blast 

prevented LTP deficits measured at 24 hours.  We hypothesize that a mechanism for blast-

induced LTP deficits is the disruption of PSD-95, which prevents the increase and subsequent 

phosphorylation of synaptic AMPAR-GluR1 at the PSD, thereby preventing the induction of 

LTP. 

Our study is the first to report that primary blast produced deficits in LTP at acute time 

points following injury.  In vivo blast injury induced LTP deficits at 2 and 4 weeks following 

blast in mice
24, 81

.  Non-blast, fluid percussion injury (FPI) models induce LTP deficits in rodents 

at 2-4 hours
82

, 1-2 days
83, 255

, and 1 week
85

 post-injury.  One study did not observe FPI-induced 

LTP deficits at 1 week post-injury, but did observe deficits at 8 weeks post-injury
84

.  The 

difference in injury biomechanics between our injury model and FPI is important to note when 

interpreting results.  Our blast model applied a pressure transient in vitro that leads to minimal 

tissue deformation
49

, whereas FPI is a mix of pressure and deformation throughout the brain
237, 

238
. 
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Glycine-LTP is similar to high-frequency stimulus-induced LTP because they both 

directly activate NMDARs enabling an influx of Ca
2+

 ions
257

.  Conversely, rolipram/forskolin-

LTP activates secondary messengers (namely cAMP) to induce LTP
258

.  In sham cultures, both 

protocols induced hallmark signs of LTP, including GluR1-containing AMPAR insertion into the 

PSD, phosphorylation of CaMKII, phosphorylation of GluR1-Ser831, and increased 

electrophysiological response
258, 260, 261

.  No previous study has investigated the effect of TBI on 

glycine-LTP; however, one study observed that blast exposure significantly reduced 

rolipram/forskolin-LTP at 2 and 4 weeks following injury
24

.  Although the results of our study 

contradict those findings, it is important to note the substantial differences between the studies 

including the post-injury time point, injury biomechanics, and concentration of rolipram. 

We observed that primary blast affected postsynaptic receptors, specifically total GluR1 

expression and phosphorylation of GluR1-Ser831 (Figure 18).  Conversely, one non-blast TBI 

study observed an increase in phosphorylation of GluR1-Ser831 between 1 and 4 hours 

following stretch injury in cortical neurons; however, their findings corroborate our observations 

that total GluR1 expression or phosphorylation of GluR1-Ser845 did not change with injury
262

.  

This difference may be linked to different injury models, brain region, and use of chemical LTP 

induction.  We observed that cAMP-aCSF increased the phosphorylation of GluR1-Ser845 over 

that of gly-aCSF for both blast and sham cultures.  This difference suggests a mechanism for 

LTP-recovery with cAMP-aCSF treatment.  We also chose to investigate the NMDAR-NR2B 

subunit, as previous studies reported this subunit governed NMDAR mechanosensitivity
108

.  We 

observed no change to this subunit after blast exposure; however, previous non-blast TBI studies 

reported mixed results for this target 
105, 263, 264

.  The effect of primary blast on postsynaptic 
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receptors, namely the AMPAR-GluR1 subunit, is likely linked to the LTP deficits measured 

electrophysiologically. 

CaMKII is a protein critical for induction of hippocampal LTP
265

.  Our data suggested 

that blast did not affect either total CaMKII expression or phosphorylation at the Thr-286 site 

(Figure 19).  These results suggest that the mechanism to phosphorylate CaMKII was not 

impacted by blast.  Studies with non-blast TBI have reported a decrease in total CaMKII 

expression at varying time points after FPI
85, 266

.  Conversely, CaMKII phosphorylation was 

reported to increase acutely following in vivo and in vitro non-blast TBI in rodents
131, 262, 263, 266

.  

Most of these studies reported resolution of altered phosphorylation of CaMKII by 24 hours 

post-injury, which corroborates our finding that CaMKII phosphorylation was not affected at 24 

hours following primary blast exposure; however, reduction of total CaMKII by non-blast-TBI 

suggested a different injury cascade from blast.  Interestingly, we observed that blasted cultures 

that were subsequently treated with cAMP-aCSF exhibited significantly increased 

phosphorylation of CaMKII-Thr286 over blasted cultures that subsequently were treated with 

gly-aCSF, suggesting that CaMKII phosphorylation may modulate LTP-rescue by 

rolipram/forskolin.   

The immobilization of GluR1-containing AMPARs at the PSD through PSD-95 is a 

required step for LTP induction
267

.  We observed that primary blast reduced PSD-95 expression, 

in both vehicle and glycine-LTP groups (Figure 20).  PSD-95 was the only target for which blast, 

without subsequent LTP-induction, reduced expression.  These findings corroborate our 

observation that blast did not affect all neuronal function, but rather that deficits after blast were 

LTP-specific.  Combined primary and tertiary blast exposure did not affect cortical PSD-95 
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expression 2 weeks post-injury in rats
27

; however, the rise time of the pressure profile in that 

model was extended (~2ms) compared to typical shock exposures (~20µs)
49

.  Several non-blast 

TBI reduced hippocampal PSD-95 expression between 18 hours and 7 days post-injury
132, 136, 268

.  

Stargazin is an auxiliary AMPA protein that mediates the binding of AMPARs to PSD-95 upon 

phosphorylation.  We observed that blast exposure reduced pStargazin-Ser239/240 when LTP 

was induced with glycine, which could explain the reduction in total GluR1 after blast, as 

stargazin binds to the GluR1 subunit.  Genetically-altered stargazin expression was shown to 

decrease the duration that AMPARs resided in the PSD
269

.  Our study is the first to report that 

TBI affected stargazin 

Our working hypothesis (Figure 22) is that blast disrupts PSD-95, which, in turn, reduces 

induction of LTP due to decreased GluR1 immobilization at the PSD and phosphorylation at the 

Ser831 site (Figure 22).  Phosphorylation of GluR1-Ser831 requires immobilization of GluR1-

containing AMPARs to PSD-95.  We also investigated the effect of blast on protein expression 

when LTP was chemically induced through secondary messengers, specifically cAMP.  We 

observed that modulation of the cAMP/PKA pathway restored phosphorylation of GluR1-Ser831 

and PSD-95 expression.  One study previously observed that activation of the cAMP pathway 

with forskolin prevented NMDA-induced PSD-95 loss
270

.  Our findings, in conjunction with 

previously reported results, warrant further investigation into the modulation of cAMP/PKA 

pathway as a therapeutic target for primary blast injury. 
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Figure 22 Hypothesized injury mechanism for primary blast-induced LTP deficits. This diagram 

compares an uninjured dendritic spine to a spine exposed to primary blast. Our findings suggest that 

primary blast exposure degrades or reduces the expression of PSD-95, the major post-synaptic membrane 

scaffolding protein.  We hypothesize that when attempting to induce LTP after blast, GluR1-containing 

AMPARs are less able to immobilize at the PSD, a required step for the increase in AMPAR signaling 

that enables potentiation. Thus, pCaMKII is unable to phosphorylate GluR1 subunits at the Ser831 site 

and potentiation is reduced.  Our data suggests that NR2B-containing NMDARs, CaMKII, and 

extrasynaptic AMPAR priming (via phosphorylation of Glur1-Ser845) were unaffected by primary blast.  

 

In this study, we report that the PDE4 inhibitor, roflumilast, reduced LTP-deficits after 

blast (Figure 21).  Although it has not been investigated in TBI, treatment with roflumilast 

improved cognition in hypertensive rats
155

.  Another PDE4 inhibitor, rolipram, rescued FPI-

induced LTP deficits in rats at two weeks post-injury
147

.  Together, these studies suggest that the 

modulation of the cAMP pathway may hold therapeutic potential for TBI. 

There are limitations to consider when interpreting these results.  A goal of this study was 

to focus on the effects of primary blast injury in isolation.  This approach required an in vitro 
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injury model to ensure precise control over the injury biomechanics.  Subsequently, it is difficult 

to translate the observed functional deficits from this study to macroscopic behavioral and 

cognitive changes.  In studying the time course of primary blast-induced LTP deficits, we chose 

to measure LTP out to 10 days post-injury.  Although we did not observe spontaneous recovery 

for Level 9 exposed cultures in this period, it is possible that LTP could recover at later time 

points. As previously mentioned, PSD-95 was the only target for which blast reduced expression 

when LTP was not induced.  This finding supports our observation that blast did not affect basal 

function, but rather affected an LTP-specific pathway.  We concluded that modulation of the 

cAMP/PKA pathway might act therapeutically against primary blast-induced LTP loss; however, 

it is possible that the multiple stimulatory components within the cAMP-aCSF solution comprise 

a more powerful potentiating stimulus than electrical or glycine-induced LTP.  In this case, our 

results suggest that a supra-physiological induction (i.e. non-synaptic) of LTP is required 

following primary blast exposure. 

In summary, we report that primary blast disrupted hippocampal LTP in a delayed 

manner (>1 hour) and, depending on the severity of blast exposure, LTP spontaneously 

recovered by 10 days post-injury.  We observed blast-induced deficits in phosphorylation or 

expression of proteins critical for LTP induction, namely AMPAR-GluR1 (total and pGluR1-

Ser831), PSD-95, and pStargazin-Ser239/240.  Finally, we observed that modulation of the 

cAMP/PKA pathway using PDE4 inhibitors ameliorated blast-induced deficits in LTP and 

protein expression.  Future studies will investigate the potential of PDE4 inhibitors to prevent the 

effects of primary blast injury. 
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5 Phosphodiesterase-4 inhibition restored hippocampal long term 

potentiation after primary blast
4
 

 Introduction 5.1

Traumatic brain injury (TBI) is defined as a disruption of brain function due to 

mechanical forces acting on the head
1
.  Since 2000, there have been approximately 350,000 

diagnosed TBIs among U.S. military personnel, with 83% of these injuries considered mild TBI 

(mTBI)
3
.  Exposure to blast is the leading cause of TBIs for military personnel

4, 271
.  The 

biomechanics of blast-induced TBI (bTBI) are multi-phasic and can include penetrating injury 

and acceleration-based deformation
215, 272

; however, injury due to shock wave exposure, often 

referred to as primary blast injury, remains debated
13

.  Studying primary blast injury using in 

vivo models can be difficult due to the associated challenges of eliminating head motion and 

providing adequate thoracic protection
30

.  In comparison, our in vitro primary blast injury model 

isolates the shock wave component of blast from the other, confounding phases of injury 
50

.  The 

precisely controlled biomechanics of our injury model enables the study of neuronal dysfunction 

following primary blast injury in isolation
50, 54, 56, 176

. 

One common clinical symptom of bTBI is memory impairment
273

.  Behavioral and 

ultrastructural changes in rodents following in vivo blast exposure suggest that the hippocampus 

is especially vulnerable to bTBI
35, 74, 274

.  Long-term potentiation is the primary experimental 

model for investigating synaptic plasticity on a cellular level and is known to occur within the 

hippocampus
80

.  It has been well-documented that blast exposure in animals negatively effects 

                                                           
4
 A modified version of this chapter previously appeared in print: Vogel III E.W., Morales F.N., Meaney D.F., Bass 

C.D., Morrison III, B. Phosphodiesterase-4 inhibition restored hippocampal long term potentiation after primary 

blast, Exp. Neurol. 2016, In Revisions. 
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hippocampal LTP, but this observation is not universal among preclinical models of blast TBI
24, 

55, 81, 176, 275
.  We have previously reported that 24h post-injury, primary blast reduced the 

expression and phosphorylation of AMPA-GluR1 subunits
56

, a key transmembrane receptor 

required for the induction and maintenance of LTP
103, 276, 277

.  We also observed that modulation 

of the second messenger cyclic adenosine monophosphate (cAMP) rescued blast-induced deficits 

in LTP and the expression of key proteins involved in LTP maintenance
56

.  Those results 

suggested that modulation of the cAMP pathway could have therapeutic potential in preventing 

memory deficits following primary bTBI.  Intriguingly, increasing cAMP through 

phosphodiesterase-4 (PDE4) inhibition was effective in improving outcome in some 

experimental models of TBI and also reduced cognitive impairments associated with 

Alzheimer’s disease, schizophrenia and aging
141, 278-281

.  Currently, there are no clinically-

approved treatments for TBI
282

.     

This study examined the ability of PDE4 inhibitors, including roflumilast, to prevent 

primary blast-induced deficits in LTP and protein expression.  Roflumilast is FDA-approved for 

treatment of chronic obstructive pulmonary disorder (COPD), making it an attractive therapeutic 

candidate.  We observed that delivery of a PDE4 inhibitor immediately post-blast prevented LTP 

deficits measured 24 hours following injury in vitro.  When varying the time post-injury of drug 

delivery, the therapeutic window of PDE4 inhibitors following primary blast was 6 hours post-

injury.  PDE4 inhibition post-blast reversed blast-induced changes in protein 

expression/phosphorylation for key targets in the LTP pathway, including phosphorylation of 

AMPA-GluR1 subunits (pGluR1) at the serine-831 (Ser831) site, total GluR1 expression, and 

phosphorylation of stargazin (pStargazin) at the serine-239/240 (Ser239/240) site upon LTP 

induction.  Roflumilast treatment significantly increased total postsynaptic density protein-95 



86 
 

(PSD-95) expression regardless of LTP induction.  These findings indicate that further 

investigation into the therapeutic potential of PDE4 inhibition following bTBI is warranted. 

 

 

 Materials and Methods 5.2

5.2.1 Organotypic hippocampal slice culture 

All animal procedures were approved by the Columbia University Institutional Animal 

Care and Use Committee (IACUC).  OHSCs were generated from P8-P10 Sprague Dawley rats 

as previously described
50, 53, 55, 184

.  In brief, the hippocampus was excised, cut into 400µm thick 

sections, and plated onto Millicell inserts (EMD Millipore, Billerica, MA) in Neurobasal 

medium supplemented with 2mM GlutaMAX
TM

, 1X B27 supplement, 10mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 25mM D-glucose (Life 

Technologies, Grand Island, NY).  Following plating, cultures were fed every 2-3 days with full 

serum medium, containing 50% MEM, 25% Hank’s Balanced Salt Solution, 25% heat 

inactivated horse serum, 2mM GlutaMAX, 25mM D-glucose, and 10mM HEPES (Sigma).  Prior 

to blast injury, cultures were maintained for 10-14 days. 

 

5.2.2 Primary blast exposure 

Blast injury methods have been described previously in detail
49, 50, 52-55

.  Cultures were 

placed into sterile bags, filled with pre-warmed, serum-free medium, pre-equilibrated with 5% 

CO2 at 37°C.  Any air bubbles were removed from the bag, which was sealed and placed into the 

receiver column.  The receiver column was filled with pre-warmed water (37°C), sealed with a 
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silicone membrane, and the shock tube was fired.  Piezoresistive pressure transducers (Endevco 

8530B-500, San Juan Capistrano, CA, USA) recorded incident pressure at the shock tube exit 

and inside the fluid-filled receiver.  Peak overpressure, duration, and impulse were recorded, 

processed, and quantified as previously described
50, 52, 53, 55

.  Sham cultures were treated 

identically except the shock tube was not fired. 

Based on previous studies, a blast exposure was utilized that produced consistent deficits 

in LTP, which was characterized by the peak pressure, duration, and impulse of the in-air shock 

wave (336 ± 8 kPa, 0.84 ± 0.01 ms, 87 ± 2 kPa•ms) and the in-fluid pressure transient (598 ± 15 

kPa, 1.85 ± 0.30 ms, 440± 13 kPa•ms)
55

.  Following blast or sham exposure, cultures were 

immediately removed from the receiver and returned to the incubator in fresh, full serum 

medium.  Cultures were maintained in full serum medium until the indicated time points. 

 

5.2.3 Drug treatment 

A stock solution of roflumilast (SML1099, Sigma-Aldrich) was dissolved in DMSO at a 

final concentration of 200µM.  The drug was further diluted in fresh, full serum medium (≤ 

0.07% DMSO) at indicated concentrations: 100pM, 1nM, 10nM, and 100nM.  Cultures were 

placed into drug-containing medium immediately following blast injury.  In a separate set of 

cultures, roflumilast (1nM) or DMSO vehicle was delivered to OHSCs at varying times 

following blast exposure: 0 hours, 1 hour, 6 hours, and 23 hours.  To further evaluate the effect 

of delayed roflumilast delivery, a separate set of cultures were treated with roflumilast 24 hours 

following injury and function was evaluated 48 hours following injury. 
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A stock solution of piclamilast (SML0585, Sigma-Aldrich), another PDE4 inhibitor, was 

dissolved in DMSO at a final concentration of 10µM.  The drug was further diluted in fresh, full 

serum medium (≤ 0.07% DMSO) to 5nM, which was used to treat cultures at the indicated time 

points following blast exposure.   

A stock solution of ibudilast (I0157, Sigma-Aldrich), another PDE4 inhibitor, was 

dissolved in DMSO at a final concentration of 200mM.  The drug was further diluted in fresh, 

full serum medium (≤ 0.07% DMSO) to 1μM, which was used to treat cultures at the indicated 

time points following blast exposure.   

A stock solution of papaverine (CDS021481, Sigma-Aldrich), a partially selective 

PDE10A inhibitor, was dissolved in DMSO to 400µM.  The drug was further diluted in fresh, 

full serum medium (≤ 0.07% DMSO) to 200nM, which was used to treat cultures at the indicated 

time points following blast exposure.   

For all experiments, additional groups of injured or sham cultures were treated with 

DMSO vehicle (0.07%) for comparison to drug-treated cultures. 

 

5.2.4 Electrophysiology 

Electrophysiological activity within the OHSC was recorded using 60-channel MEAs 

(8×8 electrode grid without the corners, 30 μm electrode diameter, 200 μm electrode spacing) at 

the indicated time points following blast injury (60MEA200/30iR-Ti-gr, Multi-Channel Systems, 

Reutlingen, Germany).  OHSCs were perfused with aCSF (norm-aCSF) containing 125 mM 

NaCl, 3.5 mM KCl, 26 mM NaHCO3, 1.2 mM KH2PO4, 2.4 mM CaCl2, 1.3 mM MgCl2, 10mM 
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HEPES, and 10 mM glucose (pH = 7.40), which was bubbled with 5% CO2/95% O2 and warmed 

to 37°C, as previously described
97

.  Recordings were acquired with an MEA1060-BC amplifier 

and data acquisition system (Multi-Channel Systems).  Neural signals were recorded at 20 kHz 

with a 6kHz analog, anti-aliasing filter and then further filtered in MATLAB, using an eighth-

order, digital low-pass (1000Hz) and a fourth-order, digital, high-pass (0.2Hz) Butterworth filter. 

 

5.2.5 Spontaneous activity 

Spontaneous neural activity was measured by recording continuously for 3 minutes from 

all electrodes within the hippocampus, as previously described
55

.  In brief, neural event activity 

was detected based on the multi-resolution Teager energy operator
88, 115, 205, 222, 223

.  Data from 

each electrode was segregated by anatomical ROI (DG, CA3, and CA1).  The effect of blast 

injury and drug-treatment on spontaneous event rate, magnitude, and duration were analyzed by 

two-way ANOVA with statistical significance set as p < 0.05 (SPSS v22, IBM; Armonk, NY).  It 

is important to note that there no significant difference between vehicle-treated cultures and 

roflumilast-treated cultures was observed for the number of electrodes per region. 

Spontaneous network synchronization was also quantified using previously published 

methods
55, 115, 121, 224, 225

.  In brief, correlation between neural events was calculated for each 

electrode pair based upon neural event-timing, where two events occurring within 1.5ms were 

considered synchronous, and the total number of events.  A correlation matrix was constructed 

which represented the strength of correlation between electrode pairings.  To determine 

statistical significance, this data was compared to randomized surrogate time-series data without 

correlated activity, but with an equal event-rate, to identify significantly synchronized clusters.  
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The GSI, ranging from 0 (random, uncorrelated activity) to 1 (perfectly synchronous, correlated 

activity on all electrodes), was calculated from the clusters of electrodes with the highest 

(significant) degree of synchronization.  This analysis was based upon the eigenvalues of the 

correlation matrix, which represented correlation strength, and associated eigenvectors, which 

represented the cluster of electrodes.  The effects of blast exposure and drug-treatment on GSI 

were analyzed by two-way ANOVA, with statistical significance set as p < 0.05. 

 

5.2.6 Stimulus-response curves 

Stimulus-response curves were generated by applying a constant current, biphasic, bi-

polar stimulus (100 µs positive phase followed by 100 µs negative phase) of increasing 

magnitude (0-200 µA in 10 µA increments) to electrodes located in the SC pathway.  As in 

previous studies, each electrode’s response was fit to a sigmoidal curve, and three parameters 

were quantified: Rmax, represented the maximum amplitude of the evoked response, 

I50 represented the current necessary to generate a half-maximal response, and the term m, 

represented the slope of the sigmoidal fit
97

.  As before, data from each electrode was segregated 

by anatomical ROI.  Each parameter (I50, m, Rmax) for an electrode was averaged within a region 

to determine that regional response for any given slice.  Data reported for each region is the 

average across slices within a given experimental group.  The effects of blast exposure and drug-

treatment on individual SR parameters were analyzed by two-way ANOVA with statistical 

significance set as p < 0.05. 

 

5.2.7 Long-term potentiation 
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Following SR recordings, the ability to induce LTP by electrical stimulus was measured 

as previously described
55

.  Baseline response was evoked by stimulating at I50 across the SC 

pathway once per minute for 30 minutes.  LTP was induced by stimulating with a HFS, which 

consisted of three trains of 100Hz pulses applied for 1 second at I50, with each train separated by 

10 seconds.  Immediately following LTP induction, post-induction response was evoked by 

stimulating at I50 once every minute for 60 minutes.  LTP induction was calculated as percent 

potentiation above baseline based on the last 10 minutes of recording in each recording window.  

To ensure only stable responses were included for analysis, electrodes were discounted if the 

coefficient of variance (pre or post-induction) was greater than 20%
235

.  The average number of 

discounted electrodes was 12% and recordings where greater than 50% of electrodes were 

discounted were removed from analysis.  This led to an average of LTP induction was averaged 

among electrodes within the CA1.  The effect of drug treatment was analyzed by ANOVA, 

followed by Tukey HSD post hoc tests with statistical significance set as p < 0.05.  For the dose 

response study, the effect of roflumilast concentration was analyzed by ANOVA, followed by 

Tukey HSD post hoc tests with statistical significance set as p < 0.05. 

 

5.2.8 Cell death measurement 

Propidium iodide fluorescence was used to observe the effect of roflumilast on cell 

viability.  Cell death was measured immediately prior and 24 hours following injury using 2.5 

µM PI (Life Technologies) in serum-free medium.  Previous studies with this injury model have 

reported that blast injury caused minimal cell death
53, 55

.  Cultures were treated with full serum 

medium containing either 1nM roflumilast or DMSO (0.07%) vehicle at 6 hours post-injury.  
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Cell death was determined for ROI, as previously described, using MetaMorph (Molecular 

Devices, Downingtown, PA), and reported as percentage area
50, 53, 55, 95

.  To confirm OHSC 

viability, a subset of cultures were exposed to blast and either roflumilast or vehicle treatment, 

and subsequently subjected to an excitotoxic exposure of glutamate (10mM for 3 hours) 24 hours 

following blast exposure (18 hours following drug delivery).  OHSC were returned to fresh 

serum-free medium following excitotoxic exposure, and cultures were imaged for cell death 24h 

later.  Cell death was analyzed by ANOVA, followed by Tukey HSD post hoc tests with 

statistical significance set at p < 0.05. 

 

5.2.9 Chemically-induced LTP (chemLTP) 

In a separate set of cultures, LTP was chemically induced.  The chemLTP protocol 

replaced electrical LTP induction with a 3 minute perfusion with a modified aCSF solution (gly-

aCSF)
257

: norm-aCSF containing 200 µM glycine and 0 mM MgCl (reduced from 1.3mM).  

Perfusate was then switched back to norm-aCSF for 20 minutes prior to assessing LTP induction.  

LTP was quantified as described above.  Chemically-induced LTP was averaged among 

electrodes within the CA1 and the effect of drug-treatment was analyzed by ANOVA with 

statistical significance set as p < 0.05. 

 

5.2.10 Western blotting 

For each condition tested by Western blotting, 8 slice cultures from 2 different animals 

were collected for protein extraction at the indicated time points.  Protein concentrations were 

determined by the BCA assay according to the manufacturer’s instructions (Thermo Fisher 
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Scientific, Waltham, MA, USA), and 50 µg of protein per sample was separated on a 4-12% Bis-

Tris gel (Life Technologies) and transferred to a nitrocellulose membrane by semi-dry transfer, 

as previously described
55

.  The membrane was blocked in TBS (pH 7.4) with 1% BSA for 1 

hour.  Membranes were incubated overnight at 4°C with primary Ab (total GluR1 [Millipore, 

#04-855, 1:1000], phosphorylated GluR1-Ser
831

 [Millipore, #04-823, 1:500], total PSD-95 

[Thermo Fisher, MA1-046, 1:500], phosphorylated stargazin-Ser239/240 [Millipore, AB3713, 

1:500], -actin [Sigma, #A1978, 1:2000]) in TBS with Tween (TBS-T, 0.1% Tween-20, pH 7.4) 

and 0.25% BSA.  To detect protein bands, the membranes were labeled with a corresponding 

secondary Ab (Donkey anti-Rabbit Alexa Fluor 488 or Goat anti-Mouse Alexa Fluor 647, Life 

Technologies).  Fluorescence was detected using a CRi Maestro 2 Imaging System (Perkin 

Elmer).  The bands were quantified using ImageJ software.  Average fluorescence was quantified 

from, at minimum, 4 lysates per exposure group (8 slices per lane, 32 slices in total).  All 

cultures were exposed to blast injury and received either 1nM roflumilast or DMSO vehicle at 6 

hours post-injury.  At 24 hours post-injury, cultures were exposed to aCSF containing 200uM 

glycine (LTP induction) or DMSO vehicle (No LTP induction) prior to cell lysis.  The effects of 

drug-treatment and chemLTP treatment were analyzed by two-way ANOVA with statistical 

significance set as p < 0.05. 

 

 Results 5.3

5.3.1 PDE4 inhibitors prevented LTP deficits after blast 

Our group previously observed that 1µM roflumilast delivered immediately post-blast 

prevented LTP deficits measured 24 hours following injury
56

.  When delivered immediately 



94 
 

following blast exposure, roflumilast (concentrations ≥ 1nM) was efficacious in preventing blast-

induced LTP deficits 24 hours post-injury (Figure 23), as compared to blast-injured cultures 

treated with vehicle or 100pM roflumilast.  Alternative PDE4 inhibitors, ibudilast and 

piclamilast, were similarly effective in preventing blast-induced LTP deficits.   

PDE4 enzymes are present in abundance across the hippocampus, including dendrites of 

CA1 neurons, and have been attributed with maintaining basal levels of cAMP
283-285

.  This 

contrasts with PDE10A which also inhibits degradation of cAMP; however, basal expression of 

PDE10A within the hippocampus is limited to cell bodies, with no discernable expression in the 

dendritic or axonal processes
286

.  We observed that treatment with the PDE10A inhibitor 

papaverine immediately following blast did not prevent LTP deficits measured 24 hours post-

injury. 
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Figure 23 Effect of PDE inhibitors on LTP measured 24 hours following primary blast injury. (A) 

Cultures were treated with either DMSO (vehicle), roflumilast (RFM), piclamilast (PIC), ibudilast (IBD), 

or papaverine (PAP) immediately following blast exposure.  LTP was significantly increased in cultures 

that received roflumilast (1nM or greater), piclamilast, or ibudilast compared to those receiving vehicle.  

LTP in cultures that received 100pM roflumilast or papaverine was not significantly different from those 

receiving vehicle. Potentiation was evaluated 60 minutes following HFS. (B) Examples of field potentials 

from a single electrode channel prior to and following LTP induction in a slice culture exposed to blast 

and subsequently treated with 1nM RFM. (mean ± S.E.M.; n≥6; * p<0.05, as compared to blast + vehicle, 

# p<0.05, as compared to blast + 100pM RFM)  
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5.3.2 Delayed roflumilast treatment prevented LTP deficits after blast 

We varied the time of roflumilast delivery, using the minimum therapeutic roflumilast 

concentration (1nM), to determine the duration of the therapeutic window.  Roflumilast delivered 

at 1 and 6 hours post-injury prevented LTP deficits 24 hours following blast exposure (Figure 

24).  In contrast, roflumilast delivered 23 hours post-injury did not prevent LTP deficits 

measured 1 hour later.  To verify that inefficacy of 23h delayed drug delivery was not due to 

minimal exposure time, we delivered the drug 23 hours post-injury in a separate set of cultures 

and observed an LTP deficit when recording after an additional 24 hours (47 hours post-injury). 

 

Figure 24 Effect of roflumilast delivery time on LTP measured after primary blast injury. Cultures were 

treated with either DMSO (vehicle) or 1nM roflumilast at increasing times post-blast exposure (1, 6 or 23 

hours).  LTP was significantly increased in cultures that received roflumilast at 1 or 6 hours post-blast, as 

compared to time-matched vehicle treatment.  Cultures that received vehicle or roflumilast at 23 hours 

post-blast were unable to potentiate significantly. When cultures were treated with vehicle or roflumilast 

at 23 hours post-injury and LTP was evaluated after an additional 24 hours (47 hours post-blast), 

potentiation was not increased by treatment.  Potentiation was evaluated 60 minutes following HFS. 

(mean ± S.E.M.; n≥6; * p<0.05, as compared to time-matched blast + vehicle, # p<0.05, as compared to 

blast + roflumilast delivered at 23 hours) 
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5.3.3 Roflumilast treatment prevented deficits in glycine-induced LTP after blast 

We previously reported that primary blast exposure significantly reduced glycine-induced 

LTP
56

.  The gly-aCSF activates synaptic NMDA receptors, allowing Ca
2+

 ions to enter the 

dendritic spine, similar to electrically-induced LTP
257

.  Roflumilast (1nM) delivered 6 hours 

post-blast exposure significantly enhanced glycine-induced potentiation 24 hours post-blast, as 

compared to vehicle (Figure 25).  We had previously reported that blast exposure significantly 

reduced glycine-induced potentiation 24 hours post-blast, as compared to a sham exposure, 

which was confirmed in the current study
56

. 

 

 

Figure 25 Roflumilast treatment significantly increased glycine-induced LTP 24 hours following blast 

exposure. LTP was significantly increased in injured, roflumilast-treated (1nM delivered 6 hours post-

injury) cultures when induced by gly-aCSF at 24 hours following injury, as compared to injured, vehicle-

treated cultures also induced by gly-aCSF.  Potentiation was evaluated 60 minutes following end of 

chemical LTP induction protocol. (mean ± S.E.M.; n≥7, * p<0.05, as compared to blast + vehicle)   
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5.3.4 Roflumilast treatment prevented deficits in spontaneous activity after blast 

Blast exposure significantly decreased spontaneous event rate across all ROI for vehicle-

treated cultures as compared to vehicle-treated sham cultures (Figure 26).  Roflumilast (1nM) 

delivered 6 hours post-blast, prevented the decrease in spontaneous event rate across all ROI at 

24 hours, as compared to vehicle treated cultures.  There was no effect of blast or drug exposure 

on spontaneous event magnitude for any ROI.  Roflumilast significantly reduced event duration 

in all ROI, as compared to sham + vehicle, and in CA1 and CA3, as compared to blast + vehicle.  

Roflumilast also rescued blast-induced deficits in GSI. 
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Figure 26 Roflumilast treatment affected spontaneous activity measured 24 hours following blast 

exposure. (A) Event rate (Hz) was significantly depressed across all regions for injured, vehicle-treated (6 

hours) cultures, as compared to sham + vehicle treatment.  Roflumilast (1nM) treatment 6 hours following 

blast significantly increased event rate, as compared to injured, vehicle-treated cultures, returning it to 

sham levels.  (B) Event magnitude (µV) was unaffected by either blast exposure or roflumilast treatment.  

(C) Blast exposure did not significantly affect event duration (ms); however, roflumilast exposure 6 hours 

following blast significantly depressed event duration, as compared to vehicle-treated sham or blast 

cultures in CA1 and CA3 regions (only was significantly depressed in DG for blast + vehicle).  (D) GSI 

was significantly depressed for injured, vehicle-treated cultures, as compared to sham + vehicle treated 

slices; however, roflumilast treatment following blast injury significantly increased GSI, as compared to 

injured, vehicle-treated cultures, returning it to sham levels. (E) An example of an identified spontaneous 

field event. (mean ± S.E.M.; n≥7, * p<0.05, as compared to sham + vehicle; # p<0.05, as compared to 

blast + vehicle)  
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5.3.5 Roflumilast treatment did not affect basal evoked function or cell variability 

We previously reported that blast exposure had minimal effect on basal evoked function, 

measured through SR
55, 56

.  We observed no significant effect of blast exposure or roflumilast 

delivery in any ROI on SR parameters 24 hours post-injury (data not shown).  We observed no 

significant effect of blast exposure or roflumilast in any ROI on cell viability; exposure of 

cultures to excitotoxic concentrations of glutamate verified the presence of viable cells after blast 

(data not shown). 

 

5.3.6 After blast, roflumilast preserved protein transduction pathways necessary for LTP 

induction 

Phosphorylation of GluR1-Ser831 has been shown to be a key molecular step for 

induction of LTP
277

.  We previously reported that blast exposure significantly reduced 

phosphorylation of GluR1-Ser831 and expression of total GluR1 after glycine-exposure 24 hours 

post-blast
56

.  We found in this study that after blast exposure and LTP-induction, increased 

phosphorylation of GluR1-Ser831 was eliminated (Figure 27A).  However, post-injury treatment 

with roflumilast restored GluR1-Ser831 phosphorylation after LTP induction.  In the absence of 

LTP induction, roflumilast did not affect levels of phosphorylation for GluR1-Ser831. 

Blast exposure eliminated the increase of total GluR1 expression normally observed after 

LTP induction
56

.  However, post-injury treatment with roflumilast increased total GluR1 

expression after LTP induction (Figure 27B).  In the absence of LTP induction, roflumilast did 

not affect total expression of GluR1. 
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Our group has previously observed that primary blast exposure significantly reduced 

expression of PSD-95 and phosphorylation of stargazin at the Ser239/240 site 24 hours post-

injury
56

.  In this study, roflumilast significantly increased total expression of PSD-95 regardless 

of LTP induction (Figure 27C).  PSD-95 expression after LTP induction was the same for either 

vehicle-treated or roflumilast-treated cultures. LTP induction was previously shown to not affect 

total PSD-95 expression
287

.  Post-blast, phosphorylation of stargazin-Ser239/240 was not 

increased after LTP induction (Figure 27D).  However, post-injury treatment with roflumilast 

restored stargazin-Ser239/240 phosphorylation after LTP induction.  In the absence of LTP 

induction, roflumilast did not affect levels of phosphorylation for GluR1-Ser831. 
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Figure 27 Roflumilast treatment 6 hours following blast injury altered protein expression measured 24 

hours post-injury. Protein expression (normalized to loading control β-actin) was evaluated at 24 hours 

following blast for four protein targets critical to LTP: pGluR1-Ser831 (A), total GluR1 (B), total PSD-95 

(C), and pStargazin-Ser239/240 (D).  Cultures were exposed to blast and treated with either DMSO 

(vehicle) or 1nM roflumilast 6 hours following injury.  At 24 hours post-injury, cultured were treated with 

either aCSF + DMSO (No LTP Induction) or aCSF + 200µM glycine (LTP induction) prior to cell lysis.  

Roflumilast treatment significantly increased pGluR1-Ser831, total GluR1, total PSD-95, and pStargazin-

Ser239/240 when LTP was induced, as compared to injured, vehicle-treated cultures.  Roflumilast 

treatment significantly increased total PSD-95 when LTP was not induced, as compared to injured, 

vehicle-treated cultures.  LTP induction significantly increased pGluR1-Ser831and pStargazin-

Ser239/240 in injured, roflumilast-treated cultures.  Representative bands from each group are shown 

below the graphs, along with the size of the identified protein.  (mean ± S.E.M.; n≥4, * p<0.05, as 

compared to LTP-matched vehicle treatment, # p<0.05 as compared to treatment-matched, non-LTP 

induction)   
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 Discussion 5.4

We previously reported that a PDE4 inhibitor, roflumilast at high concentration, 

prevented neuronal dysfunction after primary blast exposure
56

, and herein, we report molecular 

mechanisms by which PDE4 inhibitors may be preserving LTP induction.  We observed that 

roflumilast (1nM) increased LTP when treatment was delayed by up to 6 hours post-injury but 

was not effective when delivered 23 hours post-injury.  We also observed that roflumilast 

increased protein expression and phosphorylation caused by LTP induction that was previously 

lost when slices were exposed to blast
56

.  Roflumilast restored the increase in pGluR1-Ser831, 

expression of total GluR1, and pStargazin-Ser239/240 upon LTP induction 24 hours following 

blast exposure.  Additionally, roflumilast increased PSD-95 expression, regardless of LTP 

induction, at 24 hours following blast exposure.  These observations suggest that modulation of 

the cAMP pathway through inhibition of PDE4 can prevent primary blast-induced alterations in 

LTP-induction. 

Investigation of blast-induced alteration of cAMP has been limited.  One study observed 

that 3’,5’-cAMP did not significantly change in pre-frontal cortex using one rodent mild blast 

injury model
29

.  Conversely, FPI studies observed hippocampal cAMP levels decreased between 

15 minutes and 24 hours following injury
130, 144, 288

.  Increased hippocampal PDE4 expression 

was observed between 1 and 24 hours following FPI in rats
289

.  Studies using PDE4 inhibitors 

have demonstrated that a cAMP-dependent mechanism is a part of the pathogenesis of TBI and 

modulation of this pathway can prevent electrophysiological deficits measured in vitro and 

cognitive deficits measured in vivo after blast
147, 290

. 
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Previous work showed PDE4 inhibitors could enhance hippocampal-dependent memory 

and LTP in animals
149, 291, 292

.  The current study observed that roflumilast concentrations of at 

least 1nM prevented LTP deficits post-blast (Figure 23).  Alternative PDE4 inhibitors 

(piclamilast, ibudilast) similarly preserved LTP induction.  Although no other study has 

investigated the therapeutic potential of PDE4 inhibition after blast, several studies have 

observed that PDE4 inhibition preserved LTP measured 2 weeks and 12 weeks following FPI in 

rats
147, 293

.  The effectiveness of either ibudilast or piclamilast following TBI is unknown; 

however, ibudilast prevented LTP-deficits in cortical cell cultures after microglia activation 
294

.  

Similar findings across biomechanically distinct models provide greater confidence in the 

therapeutic potential of PDE4 inhibition following injury
49, 237, 238

.  Conversely, we found that the 

PDE10A inhibitor papaverine was unable to rescue LTP after blast injury.  A previous study 

observed that PDE10A expression decreased at 1 hour post-FPI in rats, whereas PDE4 

expression increased
289

.  It is possible that this change in expression leads to the observed 

deficits in in CA1 synaptic plasticity
292

.  The contrasting abilities of PDE4 and PDE10A 

inhibitors to prevent blast-induced deficits in hippocampal LTP suggests that there may be an 

important subcellular effect and regulation of recovery following blast. 

Previous studies found that PDE4 inhibition at 2 weeks
147

 and 3 months
293

 post-FPI 

improved both LTP in vitro and cognition in vivo.  This contrasts with our observation that 

delayed PDE4 inhibition (23 hours post-injury) did not prevent blast-induced LTP deficits.  One 

possible explanation is that our study delivered the PDE4 inhibitor at acute time points following 

injury, whereas the aforementioned non-blast studies delivered PDE4 inhibitors at sub-acute time 

points after injury and during LTP induction with electrical stimulation.  Our findings showing 

efficacy with a 6 hour delayed treatment exceed the current target for an extended therapeutic 
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window within clinical trials (3 hours post-TBI)
295

.  PDE4 inhibition may provide an extended 

delivery window making it an exciting prospect. 

PDE4 inhibition by roflumilast reversed negative effects of blast on network 

synchronization and spontaneous event rate measured 24 hours following injury (Figure 26).  In 

cortical neurons, PDE4 inhibition increased spontaneous spike-rate
296

.  Increasing cAMP 

concentration increased spontaneous spike rate in the hippocampus, but decreased burst 

duration
297

.  Niedringhaus and colleagues suggested collective network activity contracted and 

reorganized into shorter episodes following PKA activation, which could explain the observed 

changes in event rate and duration in our study.  We observed that blast did not alter spontaneous 

event duration, but roflumilast treatment decreased duration.  More research is needed to confirm 

if the protective effect of PDE4 inhibition on spontaneous neural function following TBI will 

translate to animal studies. 

We observed that measures of basal evoked function were unaffected by PDE4 

inhibition.  Several studies observed that TBI-induced deficits in hippocampal input/output (I/O) 

curves were improved following PDE4 inhibition in rats, with no effect on paired pulse 

facilitation (PPF)
147

.  There was no observable effect on I/O curves or PPF in PDE4D genetic 

KO mice
292

.  These data suggest that PDE4 inhibition can repair deficits in synaptic plasticity 

without negatively affecting basal evoked function. 

We observed that roflumilast significantly increased glycine-induced LTP measured 24 

hours following blast exposure (Figure 4).  PDE4 inhibitors’ effect on chemical LTP is unclear.  

One study observed that in vivo blast injury decreased chemical LTP (via rolipram/forskolin) in 

hippocampal slices measured 2 weeks following injury
24

.  Our group previously found that 
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rolipram/forskolin-induced LTP was not decreased by blast at 24 hours following in vitro 

primary blast
56

.  The varied responses may be due to several differences between these studies, 

in terms of injury model, blast injury mechanics, and observation time post-injury. 

This study is the first to report that PDE4 inhibitors prevented changes in protein 

expression after primary blast.  Roflumilast treatment significantly increased phosphorylation of 

GluR1-Ser831 when LTP was induced, as compared to injured, vehicle-treated cultures.  Several 

studies show that increasing cAMP concentration promotes AMPA receptor function, both 

directly and indirectly
140, 298

.  We observed that when LTP was induced after injury, roflumilast 

treatment significantly increased expression of total GluR1 subunits compared to vehicle-treated 

cultures.  However, this finding contrasts with another study in which rolipram did not increase 

total GluR1 expression in rat hippocampal neuronal cultures
299

.  More studies are needed to 

understand the influence of PDE4 inhibitors on AMPARs following injury. 

The proteins PSD-95 and stargazin are critical for anchoring AMPARs at the 

postsynaptic membrane during LTP
269, 270

.  Here we observed that roflumilast treatment 

significantly increased expression of total PSD-95 after injury regardless of LTP induction.  

Forskolin activation of the cAMP pathway was found to prevent NMDA-induced loss of PSD-

95, implicating cAMP in the regulation of PSD-95
270

.  We also observed that roflumilast 

significantly increased pStargazin-Ser239/240 after injury when LTP was induced.  Although the 

effect of PDE4 inhibitors on stargazin phosphorylation has not been studied previously, ghrelin, 

an activator of both PKA and protein kinase C (PKC), increased pStargazin-Ser239/240
300

.  It is 

important to note that the Ser239/240 site is phosphorylated by PKC, but there is evidence of 

crosstalk between the PKA and PKC pathways
301, 302

.  Our working hypothesis for blast-induced 
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LTP deficits is that degradation of PSD-95 led to a reduced ability of GluR1-containing 

AMPARs to immobilize at the PSD, which prevented phosphorylation of GluR1-Ser831 and thus 

reduced potentiation (Figure 22).  It is possible that PDE4 inhibition restored LTP induction by 

preventing blast-induced PSD-95 degradation, which enables immobilization and 

phosphorylation of GluR1-containing AMPARs at the PSD and, ultimately, increased 

potentiation (Figure 28). 

 

 

Figure 28 Hypothesized mechanism for the prevention of primary blast-induced long-term potentiation 

(LTP) deficits via phosphodiesterase-4 (PDE4) inhibition. On the left is a dendritic spine exposed to blast, 

and on the right, is a dendritic spine that has been treated with roflumilast after blast. Our findings suggest 

that primary blast exposure reduces expression of postsynaptic density protein-95 (PSD-95), which in 

turn prevents immobilization and phosphorylation of glutamate receptor-1 (GluR1)-containing α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at the PSD, a necessary step for 

potentiation.  We hypothesize that PDE4 inhibition maintains expression of PSD-95 (by a mechanism to 

be determined), which then allows for the downstream immobilization and phosphorylation of GluR1 

subunits necessary for LTP induction.  
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Although we report that PDE4 inhibition following primary blast injury preserves LTP, 

there are some limitations associated with this study.  The use of an in vitro culture model 

prevents direct comparisons between electrophysiology and cognitive function observed in 

vivo
24, 73

.  A benefit of our injury model is that it provides precise control over the injury 

biomechanics, which is difficult to achieve with in vivo injury models.  Another limitation of this 

study is the induction of LTP via glycine exposure in cultures lysed for western blotting.  This 

study required that chemical induction be employed due to the number of slices needed for 

western blotting.  Glycine-induced LTP generated hallmark signs of electrically-induced LTP, 

including increased electrical response, phosphorylation of AMPA-GluR1 subunits, and 

activation of CaMKII
257

.  Another limitation of this study is that we did not evaluate total 

stargazin expression.   As phosphorylation of stargazin is necessary to bind AMPARs to PSD-95 

at the postsynaptic density, we viewed phosphorylated stargazin as a surrogate for AMPAR 

translocation, which was the mechanism we wished to investigate.  As such, we felt that total 

stargazin levels were not critical to the mechanism for blast-induced LTP dysfunction and chose 

not to include total stargazin.  Another potential limitation of this study is the use of a pan-PDE4 

inhibitor, like roflumilast, over a subtype-specific inhibitor.  Pan-PDE4 inhibitors can induce 

emetic effects in patients, limiting their clinical effectiveness
293

; however, a recent study 

observed that non-emetic doses of roflumilast improved memory in rodents
156

.  In that study, free 

brain concentrations of roflumilast were estimated to be 10.37nM, which is greater than our 

lowest effective concentration tested (1nM).  Time scaling between slice cultures and humans 

may also be a necessary consideration moving forward
243

. 

In summary, we report that PDE4 inhibitors preserved LTP induction in the hippocampus 

after primary blast.  We found the minimal therapeutic concentration of roflumilast was 1nM and 



109 
 

the therapeutic window was at least 6 hours, but less than 23 hours.  Roflumilast treatment post-

blast increased phosphorylation or expression of proteins critical for LTP induction including 

AMPAR-GluR1 (total and pGluR1-Ser831), and pStargazin-Ser239/240 when LTP was induced.  

Regardless of LTP induction, roflumilast treatment post-blast increased total PSD-95 expression.  

Future studies will investigate the potential of PDE4 inhibitors to prevent cognitive deficits after 

in vivo blast injury.  
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6 Summary and discussion 

 In vitro primary blast exposure delivered a low-strain, high-strain rate 6.1

deformation to hippocampal slice cultures 

In this thesis work, we utilized a shock tube and a custom-built sample receiver to expose 

OHSCs to isolated primary blast.  Our shock tube produced a characteristic Friedlander 

waveform, measured at the shock tube exit
303

.  The blast intensities utilized in this thesis work 

were similar to typical blast exposure conditions experienced in theater, ranging from a small 

mortar round for Level 1 blast (M49A4 60 mm mortar, standoff distance 0.25-2 m) to a large 

bomb for Level 4 blast (M118 bomb, standoff distance 10-32 m), according to ConWEP 

analysis.  The in vitro receiver performed several necessary functions in this injury model: a 

surrogate for the surrounding skull-brain complex, translation of the shock wave into a fluid 

pressure transient that mimicked the intracranial pressure transient, immobilization of the sample 

to prevent inertial-driven deformation, and prevention of internal wave reflections
49, 50

.  The 

pressure profile measured at the level of the tissue resembled those predicted by computational 

models and measured in mice intracranially during blast exposure in vivo
17, 49, 50, 304

.  This model 

enabled precise control over the injury biomechanics, a feat that is difficult to achieve with in 

vivo blast injury models
49, 50

. 

In Chapter 2, we characterized the range of strain and strain rate profiles induced by our 

injury model using a stereoscopic high-speed camera system and DIC software.  Finite element 

simulations of a human head under shock wave loading predicted that brain tissue experienced 

low maximal principal strain (5-10%) and high strain rates (100-1000 s
-1

)
17

.  Computational 
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modeling of our in vitro receiver under shock loading similarly predicted that tissue experienced 

low-strain (< 5%) and high-strain rate (80 s
-1

) deformation
49

.  This type of loading is 

biomechanically distinct from blunt impact deformation profiles, which typically consist of 

higher maximum principal strains (>10%) at lower strain rates (<50 s
-1

)
95, 220

.   

Our experiments that measured tissue strain during blast validated our computational 

model of the injury.  As blast exposure increased in severity, statistically significant strain 

magnitudes were induced in OHSCs; however, the strain magnitudes remained relatively low 

(<9%).  Blast exposure induced statistically significant strain rates in OHSCs ranging from 25-

86s
-1

.  It is important to note that we observed these maximum values after the pressure pulse had 

passed the sample (>5ms), suggesting potential influence of bulk fluid motion.  We observed that 

both strain magnitude and rate strongly correlated with certain blast parameters, specifically in-

air impulse and in-fluid peak pressure.  When comparing blast-induced LTP deficits from 

Chapter 3 to observed strain magnitudes and rates at the same intensities, we observed a strain 

threshold for LTP deficits between 3.7-6.7% and a rate threshold for LTP deficits between 25-

33s
-1

.  This finding suggested that even at high-rate loading, the strain threshold for functional 

deficits may be aligned with the threshold for electrophysiological dysfunction identified in non-

blast TBI studies (5-10%)
97, 194, 204, 210

.  Kang and colleagues previously reported that 

hippocampal electrophysiological function has a complex dependence on both strain magnitude 

and rate
88

.  Another non-blast TBI study found that in cultured hippocampal neurons stretched at 

low strain magnitudes, intracellular [Ca
2+

] increased in a rate-dependent fashion
194

.  Our findings 

in Chapter 2 place our in vitro blast exposure data into biomechanical perspective with non-blast 

TBI studies. 
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There is much debate over the role of primary blast in the bTBI cascade.  Some evidence 

has shown that functional changes following blast injury are wholly due to inertia effects
24

; 

however, many other studies have demonstrated that primary blast exposure in isolation initiates 

distinct effects
52, 53, 55, 74, 173, 305, 306

.  One study investigated the neurocognitive deficits in U.S. 

Army Special Operations Command personnel with diagnosed blunt, blast, and blast-blunt 

mTBIs
273

.  Kontos and colleagues found that patients with combination blast-blunt mTBIs 

exhibited significantly different residual symptoms (mTBI symptoms, PTSD symptoms, verbal 

memory, visual memory, visual processing speed, reaction time) versus blunt-only.  This finding 

would suggest that primary blast exposure leads to separate and distinct consequences compared 

to blunt or inertia-driven TBI.  Multiple in vivo studies observed that blast overpressure and 

rotational injury induce distinct patterns of cognitive deficits in rats
74, 175

.  From a biomechanical 

perspective, our results suggest these observed differences between primary and tertiary blast 

outcomes may be a result of different strain profiles induced by each phase.  A complete 

understanding of the biomechanics and pathobiology associated with the phases of blast 

exposure is necessary for designing protective helmet equipment and potential therapeutics.  

 

 In vitro primary blast exposure induced hippocampal electrophysiological 6.2

dysfunction 

6.2.1 LTP is more sensitive to primary blast than other electrophysiological parameters 

measured 

Our blast injury model enabled extensive investigation into the effects of shock wave 

exposure on OHSC neurological function.  We exposed OHSCs to a range of blast intensities and 
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measured functional outcomes in an effort to identify tolerance criteria for blast-induced 

functional change.  In Chapter 3, we identified a threshold for primary blast-induced LTP deficits 

between Level 1 and Level 2 blast (Table 2), when measured 4-6 days following injury
55

.  In 

previous studies with this injury model, we found that impulse, rather than peak pressure or 

duration, best predicted the significant, but minimal, cell death observed after primary blast 

exposure
53

.  Impulse was similarly correlative to induced strain magnitudes and rates, as 

presented in Chapter 2.  Hue and colleagues also found that primary blast-induced BBB 

disruption most correlated with the impulse parameter
52

.  The shock wave parameters peak 

pressure and duration, along with the shape of the pressure history, define the impulse.  In this 

study, LTP deficits best correlated with increasing blast impulse levels. 

We found that LTP, induced by HFS, exhibited greater vulnerability to primary blast than 

network synchronization, spontaneous function, and basal evoked function.  When we did 

observe deficits in measures other than LTP, the threshold for dysfunction was between Level 2 

and Level 4 blast, which was higher than the threshold observed for LTP.  This was the first 

study to report that isolated primary blast exposure disrupted LTP in OHSCs.  This study 

suggests that low-level exposure intensities are capable of disrupting neurological function.  

While scaling of to the test species is a common topic in blast injury research, it is important to 

note that, regardless of scaling, the blast intensities used in this study are akin to realistic blast 

exposures
53

.  We observed functional deficits without significant loss of cells, which verified 

previous findings from our group
53

.   

Other studies have investigated blast-induced electrophysiological dysfunction since we 

completed this research.  Within our own group, Effgen and colleagues found that repetitive in 
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vitro primary blast exposure (two blasts delivered 24 hours apart) reduced LTP measured 3 days 

following the second exposure
176

.  Additionally, they did not observe any overt changes to SR 

function or cell death, which corroborated our studies in Chapter 3.  Another study observed that 

in vivo blast exposure in mice with restricted head motion reduced hippocampal CA1 excitability 

and increased GABAA signaling (inhibitory tone)
74

.  Although those findings differs slightly 

from ours, it is important to note that their injury model was not pure primary blast, as the 

animal’s head undergoes accelerations of almost 3,500 m/s
2
, even with restraint of the shoulders 

and snout.  This study reported no blast-induced deficits in PPRs, which corroborated our 

findings. 

 

6.2.2 Primary blast exposure induced delayed LTP deficits 

In Chapter 4, we explored the time course of primary blast-induced LTP deficits.  To test 

our hypothesis that functional changes would occur more rapidly than blast-induced changes in 

cell death (which occur around 4 days following injury
53

), we evaluated LTP at increasing time 

points (1 hour, 1 day, 2 days, 4 days, 6 days, 10 days) following either Level 4 or Level 9 blast.  

We found that neither blast intensity induced LTP deficits when measured 1 hour following 

injury; however, both exposures led to significant reductions in LTP by 24 hours following 

injury
56

.  These deficits were maintained through 6 days post-injury and, by day 10, only the 

group exposed to Level 4 blast recovered significantly.  This study verified the findings from 

Chapter 3 that LTP was depressed between 4-6 days post-blast.  The findings of this study 

suggested that altered memory function from increased shock intensities required a longer 

duration to recover, or that shock loading may in fact induce chronic deficits.  The 
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aforementioned repetitive blast study from Effgen and colleagues reported heightened 

vulnerability to Level 2 blast exposure when they extended the inter-blast interval to 3 days; 

however, they did not observe this result upon extending the interval to 6 days
176

.  Although we 

observed in Chapter 5 that a single, but more intense (Level 4), blast reduced LTP measured 6 

days following exposure, these studies agree that at least 6-10 days are required to recover from 

primary blast exposure.  Several in vivo studies have reported blast-induced LTP deficits as far 

out as 14-30 days post-injury; however, it is important to consider the varied injury 

biomechanics across these studies
24, 81

.  The surrounding tissue and vasculature could also 

influence recovery times observed in vivo.  Studies from Hue and colleagues observed that 

primary blast exposure caused BBB dysfunction both in vitro and in vivo
40, 52

.  Breakdown of the 

BBB enables extravasation of various serum constituents, normally blocked from the brain, 

which may influence neurological function and network connectivity post-injury
307

.  It is 

important to note that we did not observe any significant changes in basal evoked function at any 

time point, which further suggested that LTP exhibited greater sensitivity to primary blast 

exposure than other electrophysiological measures we measured.   

 

6.2.3 Primary blast exposure depressed chemically-induced LTP 

In addition to HFS, chemical exposures can also induce LTP
257, 258

.  In Chapter 4, we 

examined the effect of primary blast exposure on glycine-induced LTP.  We observed that Level 

4 blast exposure significantly reduced glycine-induced LTP when measured 24 hours following 

injury; however, measured 10 days post-injury, primary blast did not reduce glycine-induced 

LTP.  This result matched our findings from the time course of blast-induced LTP deficits when 

inducing LTP via HFS.  Glycine activates NMDARs and causes an influx of Ca
2+

 ions that 
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triggers LTP in a manner similar to HFS
80, 257

.  Thus, it is intuitive that blast would affect both 

HFS-induced and glycine-induced LTP in a similar manner 

An alternative chemical LTP induction protocol that exposed cultures to aCSF with 

rolipram, forskolin, and picrotoxin, That induce synaptic potentiation supra-physiologically via 

activation of the cAMP/PKA pathway
258

.  In Chapter 4, we found that primary blast exposure did 

not affect cAMP-induced LTP measured 24 hours following injury, which contradicted the 

results from HFS-induced and glycine-induced LTP measured at the same time point post-blast.  

This result suggested that modulation of the cAMP/PKA pathway could prevent primary blast-

induced deficits in LTP.  Pharmacological induction of LTP provides a powerful research tool to 

antagonize different aspects of the complicated cellular pathways that govern LTP. 

 

6.2.4 Translating electrophysiological outcomes to clinical observations 

There is limited clinical data for primary blast-induced brain injury.  One clinical study 

observed the effect of repetitive primary blast exposure on “breachers,” a military population 

routinely exposed to low-level primary blast through detonations on locked doorways
308

.  

Breachers had reduced neurocognitive performance when tested following a 2-week training 

course.  Most mild bTBI patients’ symptoms resolved within a few hours or days; however, 

some patients developed post-concussive syndrome in the following days, which leads to chronic 

cognitive deficits
5
.  Clinicians observed residual mTBI symptoms in soldiers exposed to blast, 

which increased a dose-response manner to multiple blast exposures; these symptoms included 

altered consciousness, headache, anxiety, impaired balance, dizziness, attention difficulties, and 

memory deficits
273, 309

. 
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The clinical sequelae of mild bTBI mainly consist of subtle deficits in cognitive 

function
273, 310, 311

.  Blast injury research with animal models has verified these subtle cognitive 

deficits using behavioral tasks post-injury, including the MWM and NOR
31, 74, 312

.  Although it is 

speculative to directly compare electrophysiological deficits to altered cognition and behavior, 

the electrophysiological deficits following blast reported in Chapters 2 and 3 appear to align with 

the subtle cognitive deficits observed clinically and in vivo. 

One area where mild bTBI diverges from non-blast mTBI is the observation of cognitive 

deficits with no cell loss or overt damage to cell structure following blast.  In Chapters 2 and 3, 

we observed that blast induced subtle changes to electrophysiological function (LTP deficits, 

limited basal function deficits) without significant cell death.  Studies have shown that mild blast 

is capable of inducing deficits in hippocampal-dependent memory tasks with no changes in cell 

viability or gross anatomical damage (i.e. hemorrhage, atrophy, scarring, etc.)
24, 25, 35, 75

.  If 

observed, pathology associated with mild bTBI is similarly subtle, including diffuse axonal 

injury, microtubule disruption, and glial activation between 24 hours and 30 days post-injury
24, 35, 

275, 313
.   

 

 PDE4 inhibition restored electrophysiological function after primary blast 6.3

exposure 

Rolipram, a component of the protocol used in the chemical induction of LTP, is a PDE4 

inhibitor that prevents degradation of cAMP.  The PDE4 inhibitor class has shown an ability to 

restore LTP and cognition following non-blast TBI in rats
147, 293

.  Rolipram has limited clinical 
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potential due to its emetic potential
153, 154

; however, an alternative PDE4 inhibitor, roflumilast, is 

FDA-approved for treatment of COPD.  In Chapter 4, we observed that a super-therapeutic 

concentration of roflumilast (1µM), delivered immediately following Level 4 blast injury, 

restored LTP measured 24 hours post-injury. 

In Chapter 5, we examined the dose response of roflumilast delivered immediately 

following Level 4 blast by evaluating LTP 24 hours post-injury.  We found that 1nM roflumilast 

(or greater) significantly increased LTP after blast as compared to cultures treated with 100pM 

roflumilast or DMSO vehicle.  Alternative PDE4 inhibitors, piclamilast and ibudilast, produced a 

similar effect; however, the PDE10A inhibitor papaverine did not restore LTP.  It is important to 

note, within the hippocampus, CA1 dendrites heavily express PDE4, but not PDE10A (primarily 

found in cell bodies)
283-286

.  One non-blast TBI study observed that injury increased expression 

of PDE4 subunits in the hippocampus, but decreased expression of PDE10A
289

.  Thus, PDE4 

inhibition following injury may restore the levels of PDE4 activity following injury, while 

PDE10A inhibition may exacerbate the inhibitory effect of TBI.  Phosphodiesterase subtype 

specificity is an important consideration when investigating new therapeutic targets for TBI.  It is 

possible the positive effect of PDE4 inhibitors is due to subcellular localization of PDE4 in 

dendrites and/or to the presence of elevated PDE4 expression following injury.   

We also investigated the therapeutic delivery-window for roflumilast.  In Chapter 5, we 

observed that roflumilast (1nM) delivered 6 hours or earlier following Level 4 blast could restore 

LTP measured 24 hours post-injury; however, roflumilast delivered 23 hours post-injury could 

not restore LTP measured 1 hour later.  In a separate set of cultures, we delivered roflumilast 23 

hours post-injury and evaluated LTP after an additional 24 hours of exposure time (48 hours 
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post-injury).  We again observed no restoration of LTP, confirming the negative result was not 

due to the brief exposure-time.  The observed therapeutic delivery window of 6 hours following 

TBI is promising as the current target for an extended therapeutic window within clinical trials is 

3 hours post-injury
295

.  When using the minimum therapeutic roflumilast concentration (1nM) 

and the maximum therapeutic delivery time (6 hours post-injury), we observed that roflumilast 

treatment restored glycine-induced LTP measured 24 hours following Level 4 blast.  

In Chapter 5, we found that post-blast roflumilast delivery influenced not only LTP, but 

spontaneous function as well.  We found that roflumilast treatment restored hippocampal 

synchronization following primary blast.  It is possible that roflumilast restored LTP and 

synchronization through similar pathways, as studies have shown that synchronized neural 

activity is the basis for working memory
241, 242

.  Roflumilast prevented the blast-induced 

decrease in spontaneous event rate measured 24 hours following injury. Although we reported in 

Chapters 3 and 5 that blast exposure did not reduce event duration, we observed that roflumilast 

significantly reduced event duration.  Increased cAMP concentration were previously shown to 

significantly increase spontaneous spike rate and decrease burst duration in uninjured 

hippocampal neurons
297

.  In contrast, we did not see any significant effect of primary blast or 

roflumilast treatment on spontaneous event magnitudes, SR curves or cell viability, which adds 

to the potential of roflumilast as a clinical target. 

Although we investigated PDE4 inhibition post-injury only, there is evidence that 

prophylactic caffeine exposure ameliorated spatial reference memory impairment, working 

memory impairment, and astrogliosis measured 1 week following bTBI
314

.  Caffeine is a non-

specific PDE inhibitor, which supports our in vitro findings; however, the shock duration used in 
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this study was 51 ms, which is more representative of a nuclear explosion than an IED blast 

event
243

.  This study was unclear on controlling head motion and thoracic protection, which, as 

previously discussed, can greatly influence the injury response
38, 40

. 

Other pharmacological interventions have gained recent attention for ameliorating blast-

induced cognitive deficits such as N-acetylcysteine (NAC).  Hoffer and colleagues administered 

NAC to blast-exposed soldiers within 24 hours following injury (and then for 7 consecutive 

days) in a Phase II clinical study that found NAC treatment improved executive function
315

.  

NAC serves as a prodrug to L-cysteine, which subsequently replenishes glutathione stores
316

.  As 

a result, NAC can influence a number of downstream targets including c-Jun N-terminal kinase, 

p38 MAP kinase, NF-κB, and synaptic membrane receptors like NMDARs
316, 317

.  It is possible 

that NAC could improve hippocampal-dependent memory following blast, as one study found 

that NAC restored LTP in aged mice to that observed in adult mice
317

.  Thus, NAC may be worth 

investigating following in vitro primary blast exposure.  The next goal of the thesis was to 

determine the cellular mechanisms that mediated primary blast-induced neuronal dysfunction 

and prevention of dysfunction with roflumilast. 

 

 Primary blast-induced disruption of synaptic proteins influenced neurological 6.4

function 

In Chapter 4, we utilized western blotting to measure protein expression 24 hours 

following Level 4 blast exposure.  We previously showed that LTP exhibited greater sensitivity 

to primary blast than other electrophysiological measures we studied
55

.  This finding led us to 
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investigate specific protein targets critical to the induction of LTP, namely AMPA-GluR1 (total, 

Ser831 phosphorylation, Ser845 phosphorylation), total NMDA-NR2B, CaMKII (total, Thr286 

phosphorylation), total PSD-95, and stargazin-Ser239/240 phosphorylation.  We quantified 

protein expression with and without the induction of LTP using glycine.  The first group of 

protein targets investigated was transmembrane glutamate receptors (AMPAR and NMDAR).  

We found that Level 4 blast exposure prevented an increase in GluR1-Ser831 phosphorylation 

induced by gly-aCSF.  The effect of blast on glycine-induced Ser831 phosphorylation 

corroborated the effect of blast on chemical LTP measured electrophysiologically as LTP 

induction is associated with increased Ser831 phosphorylation
276, 277

.  Blast exposure 

significantly decreased the expression of total GluR1 subunits with exposure to gly-aCSF.  One 

study observed no change in hippocampal GluR1 at 24 hours following a single blast in vitro, but 

found decreased hippocampal GluR1 at 24 hours following two blast exposures
174

.  The previous 

study applied an extremely short duration (50µs) shock exposure to OHSCs, which may explain 

the difference with our findings. 

An alternative GluR1 phosphorylation site, Ser845, controls insertion of GluR1-

containing AMPARs into the synaptic membrane
298, 318

.  We found that Level 4 blast did not 

influence Ser845 phosphorylation; however, gly-aCSF treatment significantly increased 

phosphorylation over vehicle treatment.  The lack of blast effects on Ser845 phosphorylation 

suggested that blast exposure did not affect the mechanism controlling GluR1-containing 

AMPAR insertion into the synaptic membrane, although channel insertion was not directly 

measured.  Lastly, we did not observe any effect of blast or chemical LTP induction on total 

NMDA-NR2B expression levels.  We concluded that primary blast exposure influenced the 

AMPA-GluR1 subunit. 
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The next target we investigated in Chapter 4 was CaMKII, the protein kinase that, upon 

phosphorylation, initiates the biochemical cascade that ultimately phosphorylates the GluR1-

Ser831 site and potentiates synaptic transmission
140, 259, 319, 320

.  We found that chemical LTP 

induction significantly increased CaMKII-Thr286 phosphorylation, but blast exposure had no 

effect.  We did not see any influence of blast or chemical LTP on total CaMKII expression.  The 

lack of blast effects on CaMKII suggests that the mechanism to phosphorylate the GluR1-Ser831 

site was intact after blast and that the disruption must be with another step in the complicated 

pathway, perhaps translocation of GluR1-containing AMPARs to the PSD. 

The final targets we investigated in Chapter 4 addressed translocation of the GluR1 

receptors to the PSD.  The first target was PSD-95, a synaptic scaffolding protein that associates 

with both receptors and cytoskeletal elements at the PSD
321

.  The second target was stargazin, a 

transmembrane protein associated with AMPARs that regulate their synaptic targeting by PSD-

95
322

.  Multiple studies have shown that the interactions between PSD-95 and phosphorylated 

stargazin protein govern the number of synaptic AMPARs
322, 323

.  We observed that Level 4 blast 

exposure significantly reduced total PSD-95 expression for both vehicle and gly-aCSF treated 

cultures.  A recent in vivo study found that blast exposure in mice did not affect cerebellar PSD-

95 expression at 24 hours following blast, but did significantly reduce expression at 30 days 

following blast
324

.  Blast exposure prevented the increase in pStargazin-Ser239/240 when 

treating cultures with gly-aCSF.  Our hypothesis for a cellular mechanism that drives primary 

blast-induced LTP deficits is blast-induced disruption of PSD-95.  Disruption of PSD-95 

prevents immobilization of GluR1-containing AMPARs at the PSD and subsequently prevents 

GluR1-Ser831 phosphorylation.   
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As mentioned in Section 6.3, blast exposure had no effect on potentiation induced via 

activation of the cAMP/PKA pathway.  We examined the effect of blast on protein expression 

after treatment with cAMP-aCSF.  We found that primary blast did not affect GluR1-Ser831 

phosphorylation, total GluR1 expression, or GluR1-Ser845 phosphorylation when treated with 

cAMP-aCSF.  For all three targets, the group exposed to cAMP-aCSF exhibited significantly 

higher phosphorylation or expression than blasted cultures treated with either vehicle or gly-

aCSF.  Neither blast nor cAMP-aCSF affected total NMDA-NR2B expression.   Although 

cAMP-aCSF significantly increased CaMKII-Thr286 phosphorylation over vehicle and gly-

aCSF treatment, cAMP activation did not influence total CaMKII expression.  There was no 

effect of blast on total PSD-95 expression for cAMP-aCSF treated cultures.  Additionally, this 

group exhibited significantly higher expression than cultures receiving vehicle or gly-aCSF 

treatment following blast.  Blast exposure had no effect on phosphorylated stargazin when 

treating cultures with cAMP-aCSF; however, this group exhibited significantly higher 

phosphorylation than cultures receiving vehicle or gly-aCSF following blast.  These findings 

suggested that modulation of the cAMP/PKA pathway prevents changes to key proteins involved 

in LTP induction that blast exposure disrupted.  The positive effect of PKA activation on protein 

expression/phosphorylation following blast could explain the restorative effect of roflumilast on 

LTP following blast, as one component of the cAMP-aCSF treatment (rolipram) is a PDE4 

inhibitor. 

 

 PDE4 inhibition following primary blast exposure restored expression of key 6.5

proteins for LTP induction 
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In Chapter 5, we explored the effect of delivering roflumilast after blast injury on the 

proteins exhibiting sensitivity to primary blast from Chapter 4 (pGluR1-Ser831, total GluR1, 

total PSD-95, and pStargazin-Ser239/240).  We quantified protein expression or phosphorylation 

at 24 hours following blast exposure in OHSCs that received 1nM roflumilast or DMSO vehicle 

6 hours post-injury.  As in Chapter 4, we quantified protein expression with and without the 

induction of LTP using glycine.  Roflumilast significantly increased GluR1-Ser831 

phosphorylation and total GluR1 expression upon induction of LTP, as compared to vehicle.  

This finding explained the recovery in electrically- and glycine-induced LTP following blast 

exposure and subsequent roflumilast treatment observed in Chapter 5.  Roflumilast significantly 

increased total PSD-95 expression, as compared to vehicle, regardless of LTP induction.  Finally, 

we found that roflumilast increased stargazin-Ser239/240 phosphorylation upon induction of 

LTP, as compared to vehicle.  These findings suggested that PDE4 inhibition restored LTP 

induction by preventing blast-induced PSD-95 degradation, which enables immobilization and 

phosphorylation of GluR1-containing AMPARs at the PSD and, ultimately, increased 

potentiation. 

 

 Potential cellular mechanisms for blast-induced PSD-95 disruption and 6.6

cAMP-induced restoration 

Although Chapters 4 and 5 demonstrated that synaptic protein disruption (specifically 

GluR1, PSD-95, and stargazin) is associated with LTP deficits following primary blast, we did 

not explore the mechanisms by which the proteins are degraded.  We also did not explore the 

mechanisms by which roflumilast treatment restored protein expression/phosphorylation.  The 
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following sections outline two pathways that may be involved in this process: 1) the ubiquitin-

proteasome system (UPS) and 2) calpain-mediated degradation. 

6.6.1 Blast-induced PSD-95 degradation by ubiquitin-proteasome system 

Most proteins in the PSD are degraded via the UPS
325

.  This pathway regulates synaptic 

strength, plasticity, and structure in mammals
326

.  Previous research found involvement of the 

UPS in memory consolidation of a hippocampal-dependent learning task in rats
327

.  In Chapter 4, 

we reported that PSD-95 was the only target investigated for which blast exposure reduced 

expression, regardless of LTP induction.  The UPS is an important regulator of PSD-95; the 

protein is first ubiquitinated, or “tagged”, for degradation by the E3 ligase Mdm2 and 

subsequently degraded by the 26S proteasome
270

.  This process causes a resultant reduction in 

AMPAR surface expression due to reduced interactions with PSD-95.  A possible theory for 

blast-induced degradation of PSD-95 is that blast exposure activates the UPS.  Studies found that 

primary and combined primary-tertiary blast exposure increased levels of ubiquitin-C-terminal 

hydrolase-L1 (UCH-L1), a marker of UPS activation, in both human
308, 328

 and rat
19, 313

 serum 

and cerebral spinal fluid (CSF) as early as 24 hours and as late as 48 hours post-injury.  Non-

blast TBI studies have similarly identified increased levels of UCH-L1 as a potential injury 

biomarker
329-334

. 

If UPS activation were the injury mechanism following primary blast, one possible 

therapeutic mechanism of PDE4 inhibition could be the prevention of ubiquitination of PSD-95 

prior to digestion.  One study found that PKA activation inhibited ubiquitination of the protein β-

catenin through phosphorylation of β-catenin
335

.  Increased PKA activation, via treatment with 

forskolin/rolipram, increased phosphorylation of PSD-95 at the serine-295 site
287

.  It is possible 
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that PDE4 inhibition blocks the mechanism that tags PSD-95 for digestion by inducing 

phosphorylation of PSD-95. 

It is also possible that blast exposure prevents phosphorylation of PSD-95 by increasing 

the protein phosphatase calcineurin (CaN).  Calcineurin is co-localized with PKA on A-kinase 

associated proteins (AKAPs) at the PSD and, when activated, CaN reduces the open probability 

of GluR1-containing AMPARs
336, 337

.  Under basal activity, AKAP79/150 anchors both PKA and 

CaN; while PKA is partially active, CaN is normally inhibited
336, 338, 339

.  When the ratio of active 

PKA:CaN shifts, such as during LTD induction, the resultant dephosphorylation of PKA 

substrates leads to relocalization of AKAP-PKA complexes away from the PSD in a process that 

is driven by actin depolymerization
277, 340, 341

.  It is possible that this ratio shifts following TBI as 

studies have shown that TBI increased CaN in CA1 dendrites as early as 2 hours and as long as 4 

weeks following injury, and TBI decreased PKA in the same time frame
130, 342, 343

.  Increased 

PKA activity antagonized the inhibitory effects of CaN on excitatory postsynaptic current 

amplitude in rat hippocampal cultures
344

.  Enhancing activated PKA to outcompete CaN could 

explain another possible therapeutic mechanism for PDE4 inhibition following primary blast.  

Activated PKA would prevent degradation of AKAP-PKA complexes and enable greater 

phosphorylation of PSD-95, thus preventing ubiquitination.  We could test this hypothesis by 

applying an inhibitor of CaN following blast exposure, such as the FDA-approved FK506 

compound. 

An alternative therapeutic mechanism for PDE4 inhibition following primary blast could 

be preventing the digestion of PSD-95 by the 26S proteasome.  The UPS degrades ubiquitinated 

proteins via the 26S proteasome.  Although there is limited research on the 26S proteasome 
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following TBI, one study did find that blast injury in humans reduced gene expression for 

proteasome inhibitor subunit 1, which suggested that proteasome activity increased following 

injury
345

.  Proteasome inhibition, in combination with dexamethasone treatment, prevented 

proteasomal degradation of the glucocorticoid receptor following TBI
346

.  However, it is unlikely 

that PDE4 inhibition ameliorates any increase in proteasomal degradation, as elevated cAMP 

concentrations increased 26S proteasome activity in a PKA-dependent manner in rat spinal cord 

neurons
347

.  Although PDE4 inhibition may not address this mechanism, therapeutics targeting 

proteasomal dysfunction after TBI may also be efficacious and perhaps even additive to PDE4 

inhibition. 

 

6.6.2 Calpain-mediated PSD-95 degradation following blast 

The calpain protease mediates a second mechanism that degrades cytoskeletal proteins 

within the PSD.  Calpains are calcium-dependent proteases known to be critical to LTP 

induction.  The calpain-1 isoform is located in dendrites, soma, axons, and glia, where the 

calpain-2 isoform is located only in axons
348

.  Cytoskeletal proteins, including microtubule-

associated proteins (MAPs), neurofilaments, spectrin, and actin, are preferred substrates for 

calpain
349

.  Researchers have demonstrated that calpain-mediated degradation of PSD-95 and 

AMPARs occurs in hippocampal neurons and slice cultures
350-352

.  There is evidence that certain 

cytoskeletal proteins are more sensitive to calpain degradation than other cytoskeletal proteins
353

.  

This differential sensitivity could explain the lack of blast-induced cell death that large-scale 

calpain activation induces
354

. 
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Studies observed that bTBI increased calpain activation and the presence of calpain-

breakdown products in the hippocampus as early as 12 hours post-injury
22

.  Blast exposure in 

rats cleaved calpain-regulated caspase-3 and caspase-12 at 24 hours post-injury
355

.  One study 

did not observe any calpain-mediated proteolysis of spectrin following bTBI in rats; however, 

the pressure waveform exhibited a much longer rise time (~1ms) than the typical Friedlander 

waveform (~100ns)
27

.  Multiple non-blast studies observed calpain-breakdown products as early 

as 6 hours post-injury
123, 125, 356, 357

.  Functionally, calpain activation after TBI is associated with 

reduced LTP and network synchronization
121

.  It is possible that primary blast-induced PSD-95 

digestion is calpain-mediated. 

Calpain inhibition following TBI in rats attenuated observed cognitive deficits
358

.  There 

is evidence that the PKA pathway can modulate calpain activity.  Over-activation of calpain was 

found to downregulate PKA; PDE5 inhibitors, which enhance cAMP, reduced calpain 

activation
134, 359, 360

.  Interestingly, a current patent application exists for the use of a PDE5 

inhibitor in treating blast-induced tinnitus
361

.  No studies have tested the effect of PDE4 

inhibition on calpain activation; however, it is possible that PDE inhibitors out-compete calpains 

to increase PKA activation or, more simply, reduce calpain activation on their own.  Greater 

investigation is necessary to determine if primary blast-induced PSD-95 loss, and restoration 

with PDE4 inhibition, is calpain-mediated. 

 

 Strategies to prevent primary blast-induced neurological dysfunction 6.7

6.7.1 Improving safe-working guidelines and clinical care 
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While in active combat and training, military personnel frequently encounter high-

intensity blast exposures, which can lead to a mTBI
4, 166, 308

.  The diagnosis of mTBI within the 

military can often be subjective, depending on self-reporting of neurological symptoms
309

.  In 

some cases, soldiers who have sustained a TBI will deny their symptoms to remain in the field, 

and physicians who evaluate soldiers post-deployment may over-report symptoms in order to be 

conservative.  Efforts have been made to more accurately diagnose acute bTBI such as by using 

the Military Acute Concussion Evaluation (MACE) protocol
362

, computer-assisted cognitive 

testing
363, 364

, eye tracking/balance testing
363, 365

, and blast dosimeters
366

 to name a few.  Blast 

dosimetry presents a non-biased approach for alerting medical professionals of a potential bTBI; 

however, it requires accurate injury thresholds for correct diagnosis.  This thesis (Chapters 2 and 

3) advances the development of these thresholds; identifying strain, strain rate, and impulse 

levels that disrupted memory function (LTP).  Here we identified that blast intensities similar to 

those commonly seen in theater are capable of inducing neurological dysfunction
55

.  These 

thresholds will help curtail underreporting of mild bTBI from soldiers and inform physicians’ 

protocols on removal-from-duty. 

Upon diagnosis, physicians remove soldiers from duty until all indicators of 

mTBI/concussion have resolved completely.  Evidence from sports medicine and animal studies 

suggests a period of increased vulnerability for repeat injury exists for approximately 10 days 

post-injury
367-369

.  Current Veteran Affairs/Department of Defense guidelines for patients who 

complain of mTBI/concussion symptoms is removal from activity for at least 7 days post-injury; 

however, this timeline is based on findings from non-blast TBI studies
364, 370

.  Although 

researchers have previously investigated the window of vulnerability for civilian mTBIs, more 

research is necessary to determine if the same timeline holds for mild bTBI
367, 368, 371-373

.  The 
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window of vulnerability following bTBI is critical information that is necessary for military 

physicians to gauge when soldiers can safely return-to-duty.   

In Chapter 5, we investigated the time course of blast-induced LTP deficits and found 

that deficits could spontaneously resolve between 7 and 10 days post-injury; however, this 

recovery was dependent on blast intensity
56

.  Other research from our group (not presented in 

this thesis) reported that the window of heightened vulnerability for LTP deficits to subsequent 

primary blast in OHSCs may be 72 to 144 hours long
176

.  For comparison, our group (not 

presented in this thesis) identified the same window of heightened vulnerability for LTP deficits 

to subsequent mild stretch injury in OHSCs
204

.  This research suggests that the timeline for 

spontaneous recovery from mild bTBI is about 6-10 days, which closely aligns with LTP and 

behavioral research from non-blast TBI studies
256, 367, 374, 375

. 

 

6.7.2 Enhancing military helmet technology 

Another route to protect soldiers from the effects of primary blast injury is altering 

helmet design to mitigate the biomechanical forces of the shock wave.  Current helmet 

technology, known as the Advanced Combat Helmet (ACH), in combination with advances in 

personal protective equipment for other areas of the body (i.e. thoracic protection), have 

increased survival rates in the current military conflicts as compared to previous conflicts
5, 14, 376

.  

Although fewer soldiers are perishing from blast exposure, increased survival has resulted in 

increased diagnosis of TBI
57, 377

.  Engineers designed the ACH to protect against penetrative 

injury, blunt impact, and skull fracture
188, 378

.  Its design consists of an outer shell, composed of a 

polymer-matrix and Kevlar fibers, and an inner-suspension system, composted of elastomeric 
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foam pads derived from ethylene vinyl acetate
379

. Due to the lack of understanding of primary 

blast injury, it is unclear how the ACH protects the brain against primary blast (shock wave) 

exposure.  Additionally, researchers continue to debate whether primary blast exposure can cause 

injury and if this capability is even necessary.  Chapters 3-5 of this thesis have demonstrated that 

primary blast forces, in isolation, are indeed capable of disrupting neurological function and 

protein pathways, suggesting that engineers may need to redesign military helmets to account for 

the shock wave. 

Computational simulations investigating the protective ability of the ACH against 

primary blast exposure have come to mixed conclusions. One study modeled an non-helmeted 

human head, a head wearing the ACH, and a head wearing the ACH with a conceptual face 

shield and exposed each to a frontal blast wave with incident overpressure of 10atm 

(~1000kPa)
188

.  The ACH slightly mitigated intracranial stresses as compared to the non-

helmeted head; however, it did not prevent direct transmission of stress waves into the 

intracranial cavity.  In contrast, the ACH and face shield combination impeded direct 

transmission of stress waves to the face and resulted in lower intracranial stresses.  Another 

computational study predicted that the ACH provided efficient protection against tertiary phase 

bTBI, but only partial protection against the shock wave by reducing its intensity in the 

intracranial cavity by about 5-7%
380

.  Conversely, investigation into directional-dependence of 

blast exposure revealed that, regardless of head protection, maximum principal strains within the 

brain from shock exposure remained below 8%
381

.  This strain level corroborates computational 

simulations of our in vitro injury model
49

 and our in vitro data from Chapter 2.  While our 

findings indicate 8% strain delivered at a high rate can initiate LTP deficits, this strain level is 
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less than the threshold for inertia-induced functional deficiencies defined by non-blast TBI 

studies
95, 97

.   

Another design concern for helmet technologies is potential underwash overpressures that 

develop due to the way in which the shock wave envelops protective equipment.  A 

computational study predicted that while a helmet with an attached face shield mitigated 

underwash overpressures for front and side blasts, the helmet/face shield gap entrapped pressure 

waves and caused additional reflections when the blast was initiated behind the subject
382

.  

Helmet designers will need to be cognizant of this phenomenon when adapting equipment for 

shock exposure. 

Another approach to reduce shock wave-induced injury that has demonstrated both 

computational and experimental success was the use of a polyurea-based external coating on the 

ACH
379

. When exposing head-forms to 67 grams of pentolite explosive at a 1.07m standoff 

distance (SOD), the polyurea-coated ACH reduced intracranial levels of impulse and 

acceleration by approximately 50%, as compared to an uncoated ACH.  Interestingly, the rate-

sensitivity of the polyurea material provided for improved protection at shorter SOD versus 

longer, i.e. shorter duration shock exposures.  Other studies have found that the current ACH 

helmet is more effective in mitigating high intensity-short duration blast waves versus lower 

intensity-longer duration pulses
381

. 

It is challenging to compare computational studies as material properties and head models 

vary between studies.  Groups often extract inconsistent biomechanical data (ICP, strain, stress, 

acceleration, etc.), which hinders comparisons between models and comparisons to 

experimentally determined injury threshold data.  Although computational models provide 
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insight into experimental designs that are too expensive, difficult, or dangerous to conduct in the 

laboratory, experimental validation of data is critical.  This thesis provides insight into strain/rate 

(Chapter 2) and blast overpressure/impulse (Chapters 3-4) design criteria to incorporate into 

computational and experimental models, thus providing guidelines for preventing shock-induced 

neurological deficits. 

 

6.7.3 Identification of new therapeutic targets 

At present, no pharmacotherapy has been clinically approved to ameliorate 

neurocognitive effects attributed to mild TBI
370

.  Some cognitive benefits have been found for 

TBI patients with off-label pharmaceuticals known to improve cognition in neurodegenerative 

disease, such as methylphenidate or amantadine
383

.  Doctors prescribe medications only for 

presented symptoms such as headaches, musculoskeletal pain, depression/anxiety, sleep 

disturbance, fatigue, or poor emotional control.  To date, more than 30 clinical trials 

investigating neuroprotection in TBI patients have already failed and there are over 300 more 

that are currently active
384

.  As previously mentioned, a Phase II clinical study of NAC in blast-

exposed soldiers found that executive function improved after a week of treatment; however, 

they did not examine any hippocampal dependent tasks
315

.  Most successful pre-clinical therapies 

have focused on severe TBI, but have not translated from bench-to-bedside
385

.  The present lack 

of approved therapies demonstrates the need to identify and investigate new pharmacological 

therapies for memory deficits following mild bTBI.   

One therapeutic category currently under clinical investigation for reversal of memory 

deficits in a number of neurological disorders is PDE4 inhibitors.  Although PDE4 inhibitors 
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have yet to be clinically investigated for TBI, a recent Phase II study has begun to investigate 

whether  the pan-PDE4 inhibitor roflumilast improves memory, attention, information 

processing, or executive function in healthy humans
386

.  Two other PDE4 inhibitors (MK0952 

and HT07152) have reached Phase II clinical trials investigating whether treatment improves 

cognition for Alzheimer’s disease and age-associated memory impairment, respectively
387, 388

.  

No pre-clinical study has investigated PDE4 inhibition following blast exposure, but 

PDE4 inhibition reversed LTP and cognitive deficits in rats following FPI
147, 293

.  In Chapter 5, 

we found that the roflumilast restored LTP when delivered 6 hours (or less) following TBI.  We 

also identified that roflumilast could restore protein expression or phosphorylation that was 

altered by primary blast.  Roflumilast was specifically chosen for this thesis as it is a PDE4 

inhibitor that is already FDA-approved for treating chronic obstructive pulmonary disorder
157

.  

This finding demonstrates that the safety of roflumilast is not a concern, but proof of clinical 

efficacy is necessary.  Although additional studies are necessary to verify roflumilast efficacy 

using in vivo blast injury models, it presents significant therapeutic potential in a field where no 

pharmacotherapies currently exist. 

 

 Limitations 6.8

This thesis employed the OHSC model for all experiments.  Although there are many 

benefits to using this model, one drawback is that we only capture the response of the 

hippocampus to blast forces.  In reality, blast exposure loads the entire brain, head, and body, 

which all could potentially influence the hippocampal injury response.  Hippocampal slice 
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cultures also lack vasculature that could further influence response.  The lack of vasculature 

limits the thickness of slice cultures to below 500µm, thus limiting the layers of cells
389

.  One 

way to account for this limitation is to implement a complex tissue model, such as endothelial 

BBB cells co-cultured with OHSCs
390

.  Another alternative is to implement an in vivo injury 

model to capture the entire brain response.  This step is necessary for rigorously defining the 

onset of blast-induced functional deficits, safe rest and return-to-duty periods, and therapeutic 

efficacy established within this thesis.  Although as mentioned previously, one benefit of the in 

vitro model that is extremely difficult with in vivo models is the fine control of the injury 

biomechanics. 

For this research, we harvested cultures at P8-10 and maintained some cultures out to P10 

+ 27 days in vitro.  Sprague-Dawley rats do not develop to sexual maturity until P42
391

, which 

indicates that the cultures used in this thesis are representative of juvenile rat hippocampi.  For a 

better developmental comparison to adult brains, older OHSCs would be more appropriate; 

however, brain slice cultures are healthiest when cultured from P8-10 pups and maintaining 

cultures past P40 before testing would be difficult
389

.  Thus, the conclusions of this thesis are 

limited to the response of juvenile rat brains. 

As mentioned in Chapter 1, we utilized a shock tube to expose our custom-built in vitro 

receiver, and the OHSCs housed within the receiver, to blast.  Exposure levels used in this thesis 

fall within the range of human-relevant exposures and those physiologically scaled for the rat
53, 

55
. There is much debate within the bTBI community regarding proper scaling of injury 

conditions for animal studies
13, 243

.  Within our receiver, tissue samples are positioned 8 cm from 

the top of the cylindrical PVC column and surrounded by water, which mimics the physiological 
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barrier from the shock wave provided by surrounding brain tissue, fluid, and skull.  The column 

sits on a drum of water, totaling 57L in volume, which hinders reflections of the blast wave.  Due 

to this unique design, the applied scaling relationships may need adjusting for our custom-built 

receiver. 

Our injury model delivers a single Friedlander waveform, the classic free-field blast 

injury input
392

.  Although this is beneficial for gaining initial understanding of the injury 

response and mechanisms, it does not represent the complexity of blast exposures experienced in 

combat.  For soldiers, blast exposure(s) often occurs in tight urban environments where there are 

many surfaces for wave reflections (e.g. buildings, vehicles, etc.)
392

.  Although blast intensities 

used in this thesis represent realistic exposures, the waveforms may need added complexity to 

mimic real world battlefield conditions more closely. 

In Chapters 3-5, we quantified the electrophysiological response of brain tissue to 

primary blast exposure.  We represented spontaneous function with GSI, basal evoked function 

with SR curves and PPF, and synaptic plasticity with LTP.  Although these measures have 

correlation to higher-order cognitive function, it is difficult to extrapolate in vitro 

electrophysiological changes to behavioral changes in vivo.  The observed changes in this thesis 

require further verification with in vivo behavioral studies. 

A major finding of this thesis is that LTP is more sensitive to blast exposure than other 

measures we tested, and that primary blast alters proteins involved in LTP induction.  The LTP 

induction pathway is very complex, involving many different presynaptic and postsynaptic 

components
80, 393

.  For this study, we chose to focus only on critical components for LTP 
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induction that previous studies had demonstrated susceptibility to non-blast TBI.  It is possible 

that primary blast exposure could influence many other components involved in LTP induction. 

In Chapters 4 & 5, we explored the therapeutic potential of the PDE4 inhibitor 

roflumilast against blast-induced neurological deficits.  Although we observed efficacy in these 

experiments, one major limitation of roflumilast is that it does not readily pass the BBB, which 

could limit its effectiveness when orally-administered after in vivo injury
158

.  Our group 

demonstrated (data not shown here) poor extravasation of sodium fluorescein (376 Da) in control 

animals, which corroborates the reduced passage of roflumilast (400 Da) across healthy BBB
40

.  

The same study observed that 70kDa molecules can extravasate into the brain due to acute BBB 

opening after in vivo blast injury in mice, suggesting that oral delivery of roflumilast acutely 

after bTBI may be possible due to blast-induced opening of the BBB
40

.  Previous studies have 

reported blast-induced BBB opening to last at least 6 hours after injury
355, 394

.  This suggests that 

the BBB will not limit oral delivery of roflumilast in animals or humans following blast.  

 

 Future Directions 6.9

Soldiers in combat often are exposed to complex blast waveforms when encountering 

explosions in spatially confined environments.  Future work is necessary to understand the 

pathobiology and biological mechanisms of complex loading conditions.  Previous studies have 

investigated the effect of a complex blast waveform on brain histology following in vivo 

injury
395, 396

.  This concept could be adapted using our in vitro injury model by altering the shock 

tube or introducing surfaces for reflections within the sample receiver. 
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Another future study could explore other complex loading conditions in which in vitro 

cultures are exposed to both primary and tertiary phase blast in controlled isolation.  Studies have 

shown that blast-only loading versus combined blast-blunt loading leads to distinct symptoms in 

humans, while others have demonstrated that blast overpressure and rotational acceleration lead 

to different behavioral etiologies in rats
74, 175, 273

.  Current in vivo blast injury models expose 

animals to combined primary-tertiary blast loading
24, 30, 40

. In these studies, the influence of 

inertial blast forces is limited by varying the level of head restraint, although it is extremely 

difficult to remove this component completely.  Our group has already established a stretch 

model of inertial-driven TBI (tertiary) that we can employ following primary blast exposure
16, 95

.  

It is possible that the initial primary blast exposure will alter the tolerance of OHSCs to 

subsequent tertiary blast.  One experimental concern is that the temporal delay between injuries 

is limited due to the need for transitioning the sample between injury devices (seconds to 

minutes), whereas in reality the phases occur within milliseconds of each other.  Additionally, 

we grow cultures for stretch injury on non-porous, silicone membranes, whereas we grow 

cultures for blast injury on porous Teflon membranes.  Adjustments to the experimental protocol 

will be necessary to combine these injury models.  

Another future area to study is expanding the in vitro blast model to alternative brain 

regions.  Other brain regions known to be vulnerable to TBI include the cortex, prefrontal cortex, 

cerebellum, amygdala, and the brain stem
397

.  Our group has previously generated tolerance 

criteria for in vitro stretch injury in cortical slice cultures
205

 and other groups have developed 

either slice culture models for the cerebellum, amygdala, and brain stem
398-400

.  As mentioned 

previously, studies could implement a co-culture model of the hippocampus (or alternative 

regions) and BBB endothelial cells in order to investigate how blast affects more complex tissue 
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cultures.  Future work could apply the methodologies and results from this thesis to other 

biological tissue explants to further the understanding of brain tolerance to primary blast 

exposure. 

In this thesis, we investigated how primary blast exposure affected LTP using 

electrophysiology and western blotting techniques; however, information could also be gained 

from observing structural changes to the neuron.  Changes to hippocampal dendritic spine 

structure and composition underlie the development of LTP, ultimately contributing to learning 

and memory
401

.  The focus of this thesis was on key LTP proteins localized in and around the 

PSD; however, it is known that the overall spine size, spine density along the dendrite, and 

internal stabilization of the spine change during LTP
401, 402

.  These changes can be quantified 

using confocal microscopy or quantitative electron microscopy.  Researchers previously 

observed that non-blast TBI in rats altered spine anatomy in both the hippocampus and forebrain, 

with one study observing concomitant deficits in LTP
85, 403

.  Researchers have yet to investigate 

spine changes following blast injury, making it an intriguing future line of research. 

We found in this thesis that PDE4 inhibition restored PSD-95 expression following blast 

exposure, which we hypothesized was key to restoring LTP post-treatment.  However, we did 

not extend the study to investigate the mechanism by which this restoration occurs.  As 

suggested in Section 6.5, future studies could explore ubiquitination inhibition, blocked 

calcineurin signaling, proteasome inhibition, or calpain deactivation as possible therapeutic 

mechanisms of PDE4 inhibition. 

Finally, another line of future research is to replicate the studies of this thesis with an in 

vivo blast injury model to verify if our conclusions translate to the whole brain and animal. The 
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first necessary step is to confirm the findings from Chapters 3-4, including blast-induced 

thresholds for electrophysiological dysfunction, onset time of functional deficits, and 

spontaneous recovery of function following in vivo blast injury with acute slice culture 

electrophysiology.  Next, researchers can investigate blast-induced cognitive dysfunction with 

behavioral tasks that target hippocampal-dependent memory, such as MWM, Radial Arm Maze, 

or NOR
404-406

.  This experimental process enables translation of primary blast-induced 

electrophysiological deficits into whole-animal cognitive dysfunction.    It is also important to 

examine if the reported cellular injury mechanisms also translate to in vivo injury, as protein 

alterations ultimately define the resulting electrophysiological dysfunction.  This transition 

defines critical implications for improving soldier protective equipment and pharmacotherapies 

at the human level. 

Similarly, the PDE4 inhibitor treatment paradigm should be investigated following in 

vivo injury.  The first step is to determine if PDE4 inhibition prevents in vivo blast-induced LTP 

deficits using acute slice electrophysiology.  As stated above, the next step would be to test the 

therapeutic efficacy of PDE4 inhibitors by transitioning to hippocampal-dependent behavioral 

tasks.  PDE4 inhibitor efficacy following in vivo blast lends further support to the treatment 

paradigm, as well as increases confidence in our in vitro primary blast model.  Successive 

experiments should investigate drug efficacy against aforementioned blast-induced cognitive 

dysfunction, while at the same time determining proper dosing and duration of the therapeutic 

window.  
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