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ABSTRACT

Frequency Response Based Repetitive Control for Periodic Coefficient Systems

Motivated by Cam Followers

Henry Yau

Cam follower systems are generally designed to operate at a fixed speed or a range

of fixed speeds. However manufacturing defects, wear, or a change of design goals may

require altering the camsha speed to produce a follower trajectory which is not possible

using a fixed speed. e follower trajectory may also be optimized for some performance

criteria such as minimizing vibration and wear. Like most real world systems, the differ-

ential equations governing a cam follower system are nonlinear.

A common approach for controlling a nonlinear system is to first linearize the system

about a nominal operating point, then apply linear control laws. In many cases, such as

the cam follower system, one can create a trajectory and numerically solve the nonlinear

system for the inputs required to follow it.

Linearizing about this solution creates a linear time varying system whose states are

deviations from the desired solution. e speed trajectory in the cam follower system is

periodic, which results in a linear system with periodic coefficients.

Repetitive control creates control systems that aim to converge to zero tracking error

following a periodic command, or aim to completely cancel the effects of a periodic dis-

turbance. Using the inverse of the steady state frequency response as a compensator has

been shown to be very effective for linear time invariant systems. at idea is applied

here to linear time periodic systems. e periodic state matrices lend themselves well to



frequency domain representations, which can be used to construct a matrix form of the

steady state frequency response.

e first law studied in this work analyzes a moving window implementation which

monitors the output errors and previous commands to create an update to the change in

the command for the current time step using the inverse of the steady state frequency

response matrix. Asymptotic convergence conditions for zero tracking error are derived.

When the number of samples in one period is not an integer number, the moving

window method is not feasible without interpolation. erefore a second method based

on the projection algorithm from adaptive control is developed and analyzed.

In linear constant coefficient systems, one generally needs to incorporate a frequency

cutoff filter to robustify to high frequency model error. e additional intricacies of de-

signing a cutoff filter for periodic systems is considered, aiming to handle the fact that for

periodic coefficient systems, addressing error components below the intended cutoff can

excite harmonics above the cutoff.

e control laws developed in this work are applicable to any nonlinear system which

may be linearized about a periodic trajectory.

Development of these control laws is motivated by improving the performance of a

cam follower system. Additional improvements in cam follower behavior can be done

through parameter optimization. is includes optimizing a nonlinear follower spring

such that it provides just sufficient force to maintain contact while reducing the load on

the cam.
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I

Motivation

Cams are mechanical components which transmit motion to a follower by direct contact.

rough the design of the cam profile, the prescribed motion of the follower is nearly

limitless. is versatility, in addition to their high precision and reliability, make cam fol-

lower systems the preferred method for actuating valves in internal combustion engines as

well as a ubiquitous component in many types of automated machinery including presses,

such as forming presses or punch presses, textile machines and many others.

e cam profile is produced by first determining the desired follower trajectory and

the follower configuration. is cam is generally designed to operate at a fixed speed or a

range of fixed speeds. However one might desire beer performance on these preexisting

cams systems, e.g. by reducing contact stress or resistance torque, even at off design

speeds. ere also exists the case where the manufactured cam profile suffers from defects

or is altered through excessive wear. One may desire to obtain the same behavior of the

original design of a cam follower system using a defective cam. Finally changes in the

design of a manufactured product may require an entirely different follower motion in
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a tool. Rather than manufacturing a new cam to replace a preexisting one, it would be

advantageous to optimize what is available.

If the cam follower system geometry is to remain the same, there are two areas which

may be targeted for optimization. e first is parameter optimization of some component.

e second is optimization of the cam speed trajectory to produce the desired follower

behavior. To take advantage of the laer requires the development of new intelligent

control laws.

Methodology

ough this work was motivated by cam follower systems, the ideas may be applied to

many feedback control system. Using a holistic approach, there are three aspects with

regard to feedback control systems which can be targeted for optimization: optimization

of the input function history, the development of methods to make hardware perform the

input history, and the optimization of design parameters.

e first chapter presents a model of a cam follower system controlled by a servo mo-

tor. e nonlinear system equations are linearized about a periodic trajectory resulting in

a linear periodic coefficient system. Details on a method to generate the periodic camsha

speed trajectory is outlined in Appendix B.

is leads to the major area of interest, tracking a desired trajectory. Typical feedback

control systems like PID used in servo motors will always exhibit error in the presences

of a periodic disturbance. Repetitive control is part of a class of controllers which can

theoretically track a periodic trajectory with zero error.
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e specific class of systems which need to be addressed by the controller are linear

systems with periodic coefficients. A specialized form of repetitive control is developed

to address this type of system in Chapters 2 and 3. e bulk of this work is in the devel-

opment of this repetitive control law and studying its efficacy and stability.

Finally, parameters of the follower spring can be optimized to produce a nonlinear

force to displacement behavior which provide just sufficient force to maintain follower

contact. ese parameter optimization studies are presented in the Appendices C and D.

Literature review

ere have been several studies on varied aspects of cam profile optimization through the

use of optimal control theory[1, 2, 3, 4, 5, 6, 7, 8, 9]. e desired motion of the follower

must be achieved through skillful design of the cam profile, as there are always tradeoffs

between design goals. is optimal control problem with a nonlinear model requires

sophisticated numerical methods and consideration of multiple competing objectives. In

this work, we assume that there is an existing cam and we would like to prescribe a

follower trajectory by controlling the speed of the cam rotation. is can be viewed as

two problems. Perhaps the timing of the follower trajectory is not as important as another

cost goal such as minimizing the total contact force between the follower and cam or the

energy required to rotate the cam. en one could design a follower trajectory which

minimizes that cost functional. Another situation which may arise when there is a defect

in manufacturing or excessive wear which causes the current cam shape to produce a

flawed follower trajectory. In this case it may be possible to create a cam speed trajectory

3



which produces a desired follower trajectory. ese are referred to as so-called “morphing

cams” in [10, 11] or “variable speed cams” in [12, 13].

In [10] and [11], iterative learning control and repetitive control are used respectively

to make a 2-3 polynomial cam emulate the behavior of a 3-4-5 polynomial cam by the

online learning of an input history which minimizes the difference between the two cam

profiles. Providing an optimized cam profile computed using the previously mentioned

methods, this technique could in theory provide the same kinematic output for the fol-

lower as long as the cam speed and acceleration are slow enough that there are not large

changes in the inertial load of the follower.

Variable-speed trajectories for mechanisms including cams has been researched exten-

sively by Yan et al. References [14, 12, 13, 15] use an offline approach where the cam speed

trajectory is determined through traditional optimization methods. In particular [15] use

sequential quadratic programming to minimize cost functions in creating a speed trajec-

tory described by a Bézier spline. is is similar to the approach taken in this dissertation

to construct a cam speed profile. is speed trajectory is then applied to a cam follower

system controlled by a PID controller. Although the PID controller is the de facto stan-

dard in control systems, it cannot obtain zero tracking error in situations with periodic

disturbances.

Most cam follower systems rely on helical springs that have linear displacement to

force behavior to maintain follower contact. Replacing a linear spring with a carefully

designed nonlinear spring can reduce energy loss and wear in a cam follower system by

minimizing the contact force throughout the cam cycle while still maintaining sufficient

force to maintain contact. A nonlinear spring may be created by a variety of methods in-

4



cluding varying the wire diameter, coil diameter, and coil pitch. In this work, a nonlinear

spring model which accounts for coil close is developed and used to perform parameter

optimization studies on the coil pitch. We show energy savings can be achieved by re-

ducing the friction throughout the majority of the cam cycle by optimizing these spring

parameters. ere have been previous studies on the analysis of springs with nonlinear

force [16, 17], however none with the focus on cam follower systems nor on parameter

optimization. Similarly there are studies regarding follower separation [18, 19], however

without the focus on parameter optimization.

Accurate speed control of the cam actuator is important in many applications. e

periodic disturbances due to inertia and resistance torque prevent traditional feedback

control schemes from being able to precisely control the follower. ese traditional con-

trol schemes perform poorly because of their ignorance of the periodic nature of the dis-

turbances. So called intelligent control methods, such as repetitive control (RC), take into

consideration the history of previous control actions and their results and thus can make

corrective measures to exactly correct for disturbances, see [20, 21, 22, 23]. e precision

that intelligent control systems provide also allow designed paths to be followed accu-

rately. With regards to the cam follower system, the accurate speed tracking allows the

systems to precisely follow the cam speed trajectories developed in part two.

e disturbance torque on the cam is a function of position and the duration for each

cam cycle may vary. is is an atypical situation for repetitive control which generally

assumes the periodic disturbance is periodic in time. In this situation one could set an

interrupt at the start of each cam cycle and create special cases for over runs and under

runs as suggested in [24]. A more flexible solution is examined by [25] which introduces

5



a repetitive control law specifically for this type of spatially periodic disturbance.

e approach taken in this work linearizes a nonlinear system about a desired periodic

trajectory. In [26], nonlinear systems are linearized about nominal trajectories to be used

in learning control. e resultant system is linear with periodic coefficients which has

been studied in the frequency domain by Ref. [27]. In this work, specialized RC laws

are developed and analysed to address the linear time periodic systems by addressing

the frequency coefficients of the output error. is is similar in concept to the matched

basis function approach in [28, 29, 30, 31, 32, 33], though none of those works applied the

concept to periodic coefficient systems. An additional issue addresses is when the period

of the disturbance is not an integer multiple number of sample time steps. is type of

RC law is addressed in [34, 35] for power conversion using fractional delays filters and in

[36] using interpolators. In this work, both a moving window with interpolation and a

direct projection scheme are used.
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C 1

M     

 

1.1 Introduction

is chapter illustrates the original motivation for developing a repetitive control theory

for linear systems with periodic coefficients. e results have broad applications to other

nonlinear systems. Some general terminology and background information on cam fol-

lower systems is presented here to provide a sufficient knowledge base for the reader.

For a more in depth discussion on cams, please refer to specialized texts such as [37, 38].

ough a cam can be any mechanical component designed to actuate a follower through

direct contact, this work addresses a specific subset of cam systems, i.e. rotating plate

cams actuating a translating follower with a helical follower spring to maintain contact.

e follower may be of any configuration such as knife edge, flat faced or roller follower.

Figure 1.1 provides an illustration of the necessary concepts for a roller follower. is
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illustrations shows a simple direct acting cam follower system with a rollor follower ac-

tuating a valve.

e motion a designer wants the follower to travel is called the cam li curve or the

follower trajectory whose position at camsha angle θ(t) is s(θ). e follower trajectory

is defined as the displacement of the follower from some initial zero position for a cycle

of the cam rotation. is initial zero position is the prime circle whose radius is defined

as rp = rb + rf where rb is the cam base radius and rf is the follower radius.

With a selected follower configuration and using the follower trajectory, the pitch

curve can be created. e pitch curve traces out a theoretical point on the follower called

the trace point. For a roller follower, the trace point is the center of the roller. For a knife-

edged follower, the point is the tip of the follower. A cam profile, the actual shape of the

cam, is then determined using the desired follower trajectory, the offset of the follower,

and the follower configuration. For a knife-edged follower the cam profile is the same as

the pitch curve. e pressure angle α(θ) is the angle between the direction of the follower

motion and the normal to the cam pitch curve.

1.2 Modeling of the cam, motor, and controller

e servomotor of a driven cam follower system is modeled as a DC motor with speed

controlled by a feedback controller. e follower imparted torque is treated as an exoge-

nous forcing function which is a function of rotational position of the motor and back

electromotive force is modeled as viscous damping.
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Figure 1.1: Cam and roller follower for valve

Cam follower system model

As the motor rotates the radial cam, the follower spring is displaced which produces a

force at the cam follower interface. is interface location is typically offset from the

axis of rotation and thus the force generates a torque on the cam sha. e derivation

for the disturbance torque caused by a radial cam with a reciprocating roller follower is

described in the following section. For simplicity, we first consider a single degree of

freedom translation model with the following assumptions:

1. A roller follower is used therefore cam and follower interface friction assumed to

be negligible.
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2. Contact between the follower and cam must always be maintained.

3. e line of motion of the follower intersects with the center of cam rotation.

3. A linear follower spring model is used, though later a nonlinear spring model is

developed.

e pressure angle α(θ) is the angle between the motion of the follower and normal

of the contact between the roller and cam surface. is is shown in Figure 1.2. During

dwell portions of the cam cycle, α(θ) = 0. As the pressure angle increases, the amount

of torque resisting rotation increases. If the pressure angle is too large(as α(θ) → π/4),

the cam will jam against the follower.

From Figure 1.2, the applied follower force is shown as F = (s(θ) + sp)ks, where sp

is the spring preload displacement and ks is the spring stiffness. It is clear then that the

tangential force applied to the cam is FT = F tanα. Finally then the disturbance torque

caused by the spring load is TL(θ) = FT r = F (θ)r(θ) tanα(θ), where r is the trace point.

For roller followers the trace point is the distance from the center of the cam sha to the

center of the roller.

We desire TL to be a function of θ. To do this, a relationship between the pressure

angle α and the rotation angle θ needs to be established. One method which leads to a

significant simplification is shown in Fig. 1.3.

For some infinitesimally small rotation dθ the follower moves an infinitesimally small

displacement dR. From the figure, tanα = dr
rdθ

. Dividing the numerator and denominator

gives tanα = dr
dt
/ rdθ

dt
. By definition dr

dt
= ṡ and r dθ

dt
= rω, therefore tanα = ṡ

rω
.
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Figure 1.2: Roller follower torque de-
scribed using pressure angle

Figure 1.3: Torque due to roller follower
described using small displacements

Replacing the above into the torque equations gives

TL(θ) = Fr
ṡ

rω
=

F (θ)ṡ(θ)

ω(θ)
(1.1)

TL(θ) = F (θ)
ds(θ)

dθ
(1.2)

Note that the roller follower radius rf has not been required in any portion of the deriva-

tion. e li profile is generally provided. is li profile s(θ) is then used with the base

radius rb and follower radius rf to construct the cam shape. e distance from the cam

center to the follower center is wrien as r(θ) = rb + s(θ) + rf .

Deriving motor equations

Following Ref. [39], we derive the system equations for a DC motor controlling speed by

varying the input voltage. e motion of the DC motor with respect to voltage can be
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described by combining Kirscho’s voltage law and Newton’s 2nd law.

From Kirscho’s Law:

La
dia(t)

dt
= ea(t)−Raia(t)eb(t) (1.3)

where La is the armature inductance, ia(t) is armature current, ea(t) is armature voltage,

Ra is armature resistance, and eb(t) is back eletromotive force (back em). Back emf is

defined as eb = Kbω(t) where Kb is the back emf damping constant and ω(t) is the motor

velocity.

From Newton’s Law:

Jm
d2θ(t)

dt
= Tm(t)− TL(t)−Bm

dθ(t)

dt
(1.4)

where Jm is inertia, θ(t) is motor position, Tm(t) is motor torque, Bm is motor damping,

and TL(t) is the torque load. e motor torque is defined as Tm(t) = Kiia(t) where Ki is

the magnetic field constant.

Writing the laws in the Laplace domain:

Ia(s) =
Ea(s)− sKbΘ(s)

Las+Ra

(1.5)

Θ(s)(Jms
2 +Bms) = KiIa(s)− TL(s) (1.6)
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then combining yields:

Θ(s)
[
(Jms

2 +Bms)(Las+Ra) +KiKps
]
= KiEa(s)− (Las+Ra)TL(s) (1.7)

Neglecting the external torque TL gives the following transfer functions:

Θ(s)

Ea(s)
=

Ki

JmLas3 + (JmRa +BmLa)s2 + (BmRa +KiKp)s
(1.8)

or

Ω(s)

Ea(s)
=

Ki

JmLass + (JmRa +BmLa)s+ (BmRa +KiKp)
(1.9)

In SI units, Ki (Nm/Amp) and Kb(V/rad/sec) are equivalent due to the nature of their

description. e definition of electrical power is given as P (t) = ia(t)ea(t). Using the

definitions of motor torque and back emf, this may be rewriten as P (t) = Tm(t)
Ki

Kbω(t),

however the definition of mechanical power can be wrien as P (t) = Tm(t)ω(t). ere-

fore, in SI units Kb=Ki.

erefore Equation (0.2.7) can be slightly simplified to:

Ω(s)

Ea(s)
=

K

JmLas2 + (JmRa +BmLa)s+ (BmRa +K2)
(1.10)

e roots of the characteristic polynomial are λ1 =
−b+

√
b2−4ac
2a

and λ2 =
−b−

√
b2−4ac
2a

. By

observing that root λ2 is much larger than λ1the system appears to be a good candidate
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for order reduction. e transfer function is factored:

G(s) =
k

JmLa

1

(s− λ1)(s− λ2)
=

k

JmLa

1

λ1λ2

1

( s
λ1

− 1)( s
λ2

− 1)
(1.11)

To maintain the DC gain of the original system one must cancel the fast pole as follows:

Gr(s) = G(s)(
s

λ2

− 1) =
K

JmLa

1

λ1λ2

1

( s
λ1

− 1)
(1.12)

To simplify notation, the system can be wrien as Gr(s) =
a

s+b
, where a = − K

λ2JmLa
and

b = −λ2.

e model of the DC motor can now be coupled with a feedback controller. For ex-

ample, using a proportional controller the system can be wrien as:

Gp(b) =
Ω(s)

Ωd(s)
=

KpG

1 +KPGr

=
Kpa

s+ b+Kpa
(1.13)

Similarly, using a proportional integral (PI) controller we get:

Gpi =
Ω(s)

Ωd(s)
=

aKps+ aKi

s2 + (b+ aKp)s+ aKi

(1.14)

Writing the system equations

By combining the results of the previous sections, one may finally write the equations for

a proportional controller of the reduced motor model as:

ω̇(t) + (b+Kpa)ω(t) = Kpaωd(t) +
Tr(t)

Jm
(1.15)
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Without using an integral controller, the proportional controller has a DC offset. To

eliminate this offset, one can change the the desired velocity ωd fed to the controller to a

different velocity ω′
d. Leing ω′

d = (b +Kpa)/
Kpa

ω d
and including the repetitive control

action u then:

ω̇(t) + (b+Kpa)ω(t) = (b+Kpa)(ωd(t) + u(t)) +
TL(t)

Jm
(1.16)

For illustrative purposes in the example to be used in the proceeding linearization

section, we set the example torque load to be a simple trigonometric function TL(θ) =

ϵ1 cos θ. Finally the reduced DC motor equation with proportional velocity control with

RC and the example disturbance torque is given as:

ω̇(t) + (b+Kpa)ω(t) = (b+Kpa)(ωd(t) + u(t)) +
ϵ1 cos θ(t)

Jm
(1.17)

Linearizing the motor equations

With an equation now available to study, the next step in the procedure is to linearize

the motor equations about a nominal trajectory. ere are various ways one can pro-

ceed. First, one may simply use the steady state output for one period for a constant

speed command. It is then up to the RC law to track the actual desired periodic speed

trajectory. is method may be sufficient provided that the desired speeds do not de-

viate significantly from the trajectory produced from a constant speed. Alternatively,

one could numerically solve the system to find the command history required to follow

a desired cam speed trajectory. is allows a greater degree of allowable variation from
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the desired output trajectory at the cost of actually computing and storing the nominal

command trajectory. Repeated relinearizations may also be performed about updated

nominal trajectories to minimize potential error. Details on constructing a cam speed

trajectory are give in Appendix B. Aer determining a follower trajectory, the system

must be solved for the nominal camsha speed trajectory ω0(t) and nominal camsha

position θ0(t) =
∫
ω0(t)dt.en states may be wrien as deviations from the nominal

path.

θ(t) = θ0(t) + ∆θ(t) (1.18)

ω(t) = ω0(t) + ∆ω(t) (1.19)

Using these two states representations in the motor equation derived in the previous sec-

tion yields:

ω̇(t) + (b+Kpa)ω(t) = (b+Kpa)(ωd(t) + u(t)) +
ϵ1 cos θ(t)

Jm
(1.20)

∆ω̇(t) + (b+Kpa)(∆ω(t)) = (b+Kpa)u(t) +
ϵ1 cos(θ0(t) + ∆θ(t))

Jm
(1.21)

e nonlinear trigonometric functions found in the torque disturbance can be linearized

with small angle approximations:

cos(θ0(t) + ∆θ(t)) = cos θ0(t) cos∆θ(t)− sin θ0(t) sin∆θ(t) (1.22)

cos(θ0(t) + ∆θ(t)) ≈ cos θ0(t)− sin θ0(t)∆θ(t) (1.23)
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Finally, to further clean up the notation redefine ϵ = ϵ1/Jm, and rewrite the system:

∆θ̈(t) + (b+Kpa)(∆θ̇(t)) + ϵ sin θ0(t)∆θ(t) = (b+Kpa)u(t) + ϵ cos θ0(t) (1.24)

Let the state variables be x1 = ∆θ and x2 = ∆θ̇, then finally the state variable form can

be wrien as:

ẋ(t) =

 0 1

ϵ sin θ0(t) −(b+Kpa)

 x(t) +

 0

b+Kpa

u(t) +

 0

ϵ cos θ0(t)

 (1.25)

or

ẋ(t) = Ac(t)x(t) +Bc(t)u(t) + TL(t)

is resultant system is linear with periodic coefficients and forms the basis for the mo-

tivation in developing control laws.
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C 2

F R B R

C D F L S

 P C

2.1 Introduction

Typical feedback control systems exhibit a periodic error as a result of a periodic distur-

bance. Repetitive control (RC) is a relatively new field that uses knowledge of the period of

a disturbance, and makes use of the error one period back to adjust the current command

to a feedback control system. is is done in such a way that the effect of the disturbance

on the output can in theory be completely canceled (References [40, 41, 20]).

RC also applies to control systems that execute a periodic command. Again, typical

feedback control of linear constant coefficient systems will not perfectly follow a periodic

command, as indicated by the frequency response of the command to output transfer
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function. e associated concept of bandwidth is an indicator of the error in following

such a command. A cam follower system experiences a nonlinear position dependent

torque. When the cam follower model is linearized about the desired periodic motion, it

results in linear equations, but with periodic time varying coefficients. It is the purpose of

this chapter to create a new RC design methodology for such systems, that aims to make

the output of a feedback control system converge to zero tracking error.

For constant coefficient linear systems, the ideal RC law is the inverse of the feedback

control system transfer function. RC must be implemented with digital control since it

must store and retrieve error information from the previous period. A continuous time

differential equation system, fed by the zero order hold on the output of a digital controller,

can be modeled perfectly at the sample times by a difference equation. Equivalently, it

can be modeled by the corresponding z-transfer function. However, for reasonable sample

rates, the inverse of this discrete time z-transfer function will be unstable for pole excesses

of 3 or more (Reference [42]). is precludes use of the inverse model. Reference [31] (see

also [24]) solves this problem by making the RC compensator mimic the inverse of the

steady state frequency response, rather than the inverse of the transfer function. e

result is a very effective design method.

In the development of the RC law, one generates a heuristic formula giving the change

in all frequency components of the error from one period to the next. It is heuristic since

it uses the concept of a frequency transfer function. is only applies to steady state

frequency response, and hence does not rigorously apply from period to period during

the convergence process. Hence, the development assumes the system can be modeled

as quasi steady state during this process. is appears to be a serious limitation, but
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numerical simulations showed that the law is not only convergent, but converges very

fast, within a few iterations. e explanation is given in Reference [33] (and [24]).

e heuristic formula suggests convergence to zero tracking error for any RC law that

results in decrease of the amplitude of every frequency component of the error from one

period to the next, based on the quasi steady state assumption of the frequency transfer

function applied to each period of data. is heuristic stability condition has been used

in many RC publications over many years. Routine rigorous stability analysis based on

the Nyquist stability criterion is prohibitively complicated to apply because of the large

number of poles on the stability boundary. Reference [21] makes an important reformu-

lation of the equations so that one can apply Nyquist criterion concepts, and proves that

the heuristic condition is in fact the if and only if stability condition for convergence to

zero error for all possible disturbance or command periods, and all possible initial error

histories. Reference [23] (and [24]) gives a parallel theory for multi-input, multi-output

systems.

e purpose of this chapter is to apply parallel reasoning to develop a theory of repet-

itive control that applies to linear systems with periodic coefficients. e aim is to mimic

the above RC law design based on the inverse of the steady state frequency response as

a compensator. e first need is to establish a method of representing the frequency re-

sponse of such systems. e RC law is developed totally in the frequency domain. It uses

frequency analysis of a moving window of error data for one period immediately preced-

ing the current time step. It then converts to the time domain to give the updated control

action at the current step. For clarity of exposition, all needed formulas start from one

basic statement: that any periodic function of time can be wrien in the form of a Fourier
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series. e development oen proceeds using a chosen small number of time steps per

period to illustrate the process, and then gives the general result.

Periodic coefficient linear systems have appeared in RC previously, when one de-

signs the RC law to make use of sinusoidal basis functions. One evaluates the frequency

components of the error in real time using the projection algorithm of adaptive control,

projecting the error onto the sinusoids of interest, and this results in periodic coefficients

in the RC law. To study linear systems with periodic coefficients, one has two choices to

convert to a time invariant formulation that one can analyze. One can use Floquet theory

as was done in Reference [28], which can also be called time domain raising when one

packages all time steps of error in a period, and produces an update from period to period

that is time invariant. is is the approach used to evaluate the stability of the RC law de-

veloped here. Alternatively, one can do frequency domain raising (References [43], [44],

and [45]) as was done in References [46] and [30]. e RC law developed here uses this

approach.

2.2 Very Effective RC Design for Constant Coefficient

Systems Based on Frequency Response Inverse

is section summarizes the very effective repetitive control design approach introduced

in Reference [31] (also [24]) for constant coefficient linear systems. It is based on using a

compensator that mimics the inverse of the frequency response of the system, and results

in very fast seling time of the RC system. Reference [33] (also [24]) studies the learning
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Figure 2.1: Structure of Repetitive Control System

speed and shows that once the period of the periodic disturbance or command is longer

than the seling time of the feedback control system, the RC system seles in one period

plus a fraction for learning the command needed to eliminate error. We further comment

that the RC law design from this approach can be made purely from frequency response

tests, there is no need to create a mathematical model of the system (Reference [47]).

Figure 2.1 shows the RC system block diagram. e G(z) represents the transfer func-

tion of an existing feedback control system, whose input U(z) is normally the desired out-

put Y ∗(z). Transfer function R(z) is the repetitive control law that observes the tracking

error E(z) = Y ∗(z) − Y (z) (or in the time domain: e(kT ) = y∗(kT ) − y(kT ) with T

the sample time interval, and k the time step) and adjusts the input aiming to converge to

that input that produces the desired output. e V (z) is the equivalent periodic output

disturbance corresponding to a periodic disturbance anywhere in the feedback control

system. In this chapter, the feedback control system has periodic coefficients of the same

period as the disturbance or command so that it is not easily represented by a z-transfer

function, and similarly for the repetitive control block, but otherwise the structure is the

same.

e simplest form of RC adjusts the control system input u(kT ) = u((k−N)T )+ϕe((k−

N + 1)T ) by looking at the error one period back, considered to be integer N time steps.
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Stated in words, if the error one period back were +2 units, increase the current command

by two units multiplied by gain ϕ. is is generalized to include a compensator F (z)

creating

U(z) = z−N [U(z) + ϕF (z)E(z)] (2.1)

R(z) = ϕF (z)/[zN − 1]

Block diagram algebra gives the difference equation for the error as a function of time

step

[(zN − 1) + ϕF (z)G(z)]E(z) = (zN − 1)[Y ∗(z)− V (z)] (2.2)

Because the command and the disturbance are periodic with period N time steps one can

write

zNE(z) = [1− ϕF (z)G(z)]E(z) (2.3)

e square bracket term appears like a transfer function from the error in one period to

the error in the next period. is suggests that if we require that the frequency transfer

function version of this makes every frequency component of the error become smaller

from one period to the next, i.e.

∣∣1− ϕF (eiωT )G(eiωT )
∣∣ < 1 ∀ ω (2.4)

then the repetitive control system would converge to zero tracking error. is thinking

is not rigorous because the frequency transfer function assumes steady state, and if the

system is stable the steady state error is already zero. To use it while the error is still
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converging requires making a quasi steady state assumption, i.e. the learning must be

slow for the equation to be approximately correct.

Reference [31] creates a repetitive control law that designs the compensator F (z) as

an FIR real time filter that mimics the inverse of the system frequency response. e filter

coefficients minimize the square of the le hand side of Equation (2.4). Reference [22] can

use a moving window discrete Fourier transform instead.

We give the basic idea underlying the development in Reference [33] that explains

why the quasi steady state assumption is not really an issue under normal circumstances,

and the seling time for convergence can typically be one and a fraction periods. e

main stability issue comes from the N roots on the stability boundary when the gain ϕ

is zero, zN − 1 = 0. Consider any such root zj aer turning up the gain. e magnitude

of this root is the decay of the associated solution from one time step to the next, and

this root is related to the frequency component of the error for the root on the unit circle.

As a root of the characteristic polynomial satisfies |zj|N = |1− ϕF (zj)G(zj)|. Even if

the right hand side that is close to the supposed decay rate from period to period for the

associated frequency is 0.95, the associated root location is the N th root of 0.95. If N is

only 80 time steps then the root is at 0.00006486, which is very fast convergence from one

time step to the next.

e derivation of the convergence condition Equation (2.4) is not rigorous. One might

try to use Nyquist stability criterion to develop a rigorous condition. Direct application

asks to evaluate ϕF (z)G(z)/[zN − 1] as z goes around the Nyquist contour containing

everything outside the unit circle in the z plane. But there are N roots on the stability

boundary requiring that the contour go around each, resulting in the plot going to infin-
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ity and back N times. Reference [21] solves this problem by re-writing the characteristic

polynomial in the form z−N [1 − ϕF (z)G(z)] = 1. e roots on the unit circle are no

longer a problem, and z−N has magnitude one on the unit circle part of the contour. If

one is to have asymptotic stability for all possible N , then one must satisfy Equation (2.4).

And if Equation (2.4) is violated even for a very short distance, the phase of z−N rotates

very fast for any reasonable number of time steps N , and this makes the plot encircle

+1 and produces instability. Hence, designing the compensator as the inverse of the fre-

quency response satisfies Equation (2.4) and is even a necessary and sufficient condition

for stability for all possible periods. e purpose of this chapter is to imitate the RC law

Equation (2.1), but for linear systems with periodic coefficients. We write the law in the

frequency domain, then find the time domain control action for the present time u(kT ).

e first task is to develop a method of computing the steady state frequency response

of linear systems with periodic coefficients, or more precisely, we need the inverse of the

relationship. is is the new version of F (z) in Equation (2.1). en we need to develop

a real time computation of the frequency components of the error. is is done using

a recursive computation of each component for data from a moving window that is one

period long. is creates the new version frequency domain version of E(z) in Equation

(2.1). And we use the same technique on a moving window of the previous control inputs,

the frequency domain version of U(z) in Equation (2.1).
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2.3 Frequency Response of Periodic Coefficient Systems –

Preliminaries

Representations of Discrete Time Periodic Functions

Any periodic function of time can be wrien in terms of a Fourier series

y(t) = Y0 +
∞∑
j=1

[Ycj cos(jωot) + Ysj sin(jωot)] (2.5)

where ωo = 2π/Tp and Tp is the period. Here we must use digital control so that time

is sampled t = kT with k the integer indicating the time step, and T is the sample time

interval. We wish to handle discrete time systems where the period is an integer number

of time steps N, such that Tp = NT .

For simplicity of exposition, we will first consider case where the period is N = 7 time

steps. To avoid aliasing, one wants to have no frequency components above the Nyquist

frequency, which has two samples per fundamental period Tp. In this case we only need

to include j = 1, 2, 3 in the summation. Sines and cosines for any larger j are equivalent

to a modified value of the coefficient for a j in the range from 1 to 3. For j = 4

cos(4ωokT ) = cos(2πk(4/7)) = cos(2πk(7− 2)/7) = cos(2πk(−2/7)) = cos(2ωokT )

(2.6)

and similarly sin(4ωokT ) = − sin(2ωokT ). e j = 5 and 6 terms behave analogously.

And then for j = 0, 1, 2, 3, 4, 5, 6 one can always add to j an integer number ℓ times

7, the period in time steps, without changing the values of the trigonometric functions.
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erefore, we can write

y(kT ) = Y0 + Yc1 cos(ωokT ) + Ys1 sin(ωokT )

+Yc2 cos(2ωokT ) + Ys2 sin(2ωokT )

+Yc3 cos(3ωokT ) + Ys3 sin(3ωokT )

(2.7)

e coefficients in this equation completely define the periodic function in terms of its

components on the constant function, the fundamental frequency of the given period,

and all harmonics up to Nyquist. ey give the periodic function when evaluated at time

kT. Knowing these coefficients one may be interested in knowing what the function is at

time (k+1)T . Substitute (k+1)T for kT in the above equation, and use the trigonometric

identities

cos((k + 1)jωoT ) = [cos(jωoT )] cos(jωokT )− [sin(jωoT )] sin(jωokT )

sin((k + 1)jωoT ) = [sin(jωoT )] cos(jωokT ) + [cos(jωoT )] sin(jωokT )

(2.8)

to obtain the modified coefficients for the periodic signal at the next time step

y(k + 1)T ) = Y0 +
∑3

j=1[Ycj cos(jωoT ) + Ysj sin(jωoT )] cos(jωokT )

+
∑3

j=1[−Ycj sin(jωoT ) + Ysj cos(jωoT )] sin(jωokT )

(2.9)

Frequency Response of Periodic Coefficient Systems – Sine and Cosine Components

Examine the frequency response of the following simple system

y((k + 1)T )− sin(ωokT )y(kT ) = bu(kT ) (2.10)
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where ωo = 2π/(7T ), so that there are 7 time steps per period in the periodic coefficient.

e same method will produce the frequency response of any higher order system. For

repetitive control, we are interested in obtaining zero tracking error at the sample times

for a periodic command input or disturbance, and the period of the command coincides

with the period of the periodic coefficients. Of course, there is a frequency response to any

sampled frequency input, but repetitive control is interested in zero error to the command

of the given period, corresponding to the constant or DC response, the fundamental fre-

quency for that period, and all harmonics up to Nyquist. Here we only look for frequency

response at these frequencies.

For frequency response of the constant coefficient model we examine the response to

u(kT ) = cos(ωkT ) and observe that the response to u(kT ) = sin(ωkT ) is given by the

corresponding change in phase applied to both input and output. is will not apply in

the case of periodic coefficients, since changing the phase of the input, changes its phase

relative to the coefficients. Hence, we need to know the response separately for both

sine and cosine. For any phase shi between these two, superposition applies since the

periodic coefficient equations are still linear. And the values of ω are restricted to the

values indicated above.

e periodic representation for y(kT ) is given above, as is the corresponding repre-

sentation for y((k + 1)T ). Give u(kT ) as

u(kT ) = U0 + Uc1 cos(ωokT ) + Us1 sin(ωokT )

+Uc2 cos(2ωokT ) + Us2 sin(2ωokT )

+Uc3 cos(3ωokT ) + Us3 sin(3ωokT )

(2.11)
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In each case ωo = 1 for the simple problem considered. It remains to represent the fre-

quency components of sin(kT )y(kT ). Multiply the y(kT ) above by sin(kT ), and use the

trigonometric identities

cosα cos β = 1
2

cos(α− β) + 1
2

cos(α + β)

sinα sin β = 1
2

cos(α− β)− 1
2

cos(α+ β)

(2.12)

sinα cos β = 1
2

sin(α + β) + 1
2

sin(α− β)

cosα sin β = 1
2

sin(α + β)− 1
2

sin(α− β)

e effect of these equations is to produce the sums and differences of every frequency

in the input with every frequency in the coefficient. Equating the coefficients of the cor-

responding linearly independent sines and cosines on each side of the equation results in

the following equation for the steady state solution for any periodic input of the given

period

(1/b)



1 0 1
2

0 0 0 0

0 cT sT 0 −1
2

0 0

−1 −sT cT 1
2

0 0 0

0 0 1
2

c2T s2T 0 −1
2

0 −1
2

0 −s2T c2T 1
2

0

0 0 0 0 1
2

c3T s3R

0 0 0 −1
2

0 −s3T c3T





Y0

Yc1

Ys1

Yc2

Ys2

Yc3

Ys3



=



U0

Uc1

Us1

Uc2

Us2

Uc3

Us3



(2.13)
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or

LscY sc = U sc;Y sc = L−1
sc U sc (2.14)

where cjT = cos jωoT , sjT = sin jωoT , and the subscript sc is used to indicate the

coefficients in the sine and cosine representation of the periodic functions, which we use

in this section. If there were more than one frequency in the periodic coefficient, we

would have more sums and differences, introducing more nonzero entries in matrix Lsc.

e response to cos(kT ) is obtained by seing the second entry inU sc to one, and all other

entries to zero, and then the periodic solution is given by the numbers in Y sc substituted

into Equation (2.7). us, L−1
sc is the frequency response matrix for this system. Note

that Lsc is the inverse of the frequency response, which we wish to use in making our

repetitive control law.

Frequency Response of Periodic Coefficient Systems – Exponential

Components

As in the case of finding frequency response of constant coefficient systems, it can be

beneficial to express the frequency response in terms of exponentials. In Equation (2.7)

one can substitute

cos(jωokT ) =
1
2
[ei(jωokT ) + e−i(jωokT )]

sin(jωokT ) =
1
2i
[ei(jωokT ) − e−i(jωokT )]

(2.15)
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to obtain

y(kT ) = Y0 + [1
2
Yc1 +

1
2i
Ys1]e

iωokT + [1
2
Yc1 − 1

2i
Ys1]e

−iωokT

+ [1
2
Yc2 +

1
2i
Ys2]e

i2ωokT + [1
2
Yc2 − 1

2i
Ys2]e

−i2ωokT

+ [1
2
Yc3 +

1
2i
Ys3]e

i3ωokT + [1
2
Yc3 − 1

2i
Ys3]e

−i3ωokT

(2.16)

or

y(kT ) = Y0 + Y1e
iωokT + Y2e

i2ωokT + Y3e
i3ωokT + Y4e

−i3ωokT + Y5e
−i2ωokT + Y6e

−iωokT

(2.17)

In this form, the coefficients are complex, and in order that y(kT ) be real, Y6, Y5, Y4 must

be complex conjugates of Y1, Y2, Y3. Note that e−i3ωokT = e+i4ωokT e−i7ωokT = e+i4ωokT ,

and similarly for the other negative exponentials. Hence, we have the preferred form for

representing periodic functions

y(kT ) = Y0 + Y1e
iωokT + Y2e

i2ωokT + Y3e
i3ωokT + Y4e

i4ωokT + Y5e
i5ωokT + Y6e

i6ωokT

(2.18)

u(kT ) = U0 + U1e
iωokT + U2e

i2ωokT + U3e
i3ωokT + U4e

i4ωokT + U5e
i5ωokT + U6e

i6ωokT

(2.19)

Now proceed to find the steady state periodic solution of Eq. (2.10) expressed in this form,

equivalent to the solution in Eq. (2.13). Shiing one time step forward produces

y((k + 1)T ) = Y0 + (Y1e
iωT )eiωokT + (Y2e

i2ωT )ei2ωokT + (Y3e
i3ωT )ei3ωokT

+(Y4e
i4ωT )ei4ωokT + (Y5e

i5ωT )ei5ωokT + (Y6e
i6ωT )ei6ωokT

(2.20)
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To deal with the periodic coefficient term, substitute Equation (2.15) into the coeffi-

cient in Equation (2.10) to produce the following terms where we have to acknowledge

the folding of frequencies that go above Nyquist

eiωokTy(kT ) =Y0e
iωokT + Y1e

i2ωokT + Y2e
i3ωokT + Y3e

i4ωokT + Y4e
i5ωokT (2.21)

+ Y5e
i6ωokT + Y6

e−iωokTy(kT ) =Y0e
i6ωokT + Y1 + Y2e

iωokT + Y3e
i2ωokT + Y4e

i3ωokT

+ Y5e
i4ωokT + Y6e

i5ωokT

Substituting these expressions into Eq. (2.10) and equating coefficients of like exponen-

tials produces the following periodic solution

(1/b)



1 1
2i

0 0 0 0 − 1
2i

− 1
2i

eiωoT 1
2i

0 0 0 0

0 − 1
2i

ei2ωoT 1
2i

0 0 0

0 0 − 1
2i

ei3ωoT 1
2i

0 0

0 0 0 − 1
2i

ei4ωoT 1
2i

0

0 0 0 0 − 1
2i

ei5ωoT 1
2i

1
2i

0 0 0 0 − 1
2i

ei6ωoT





Y0

Y1

Y2

Y3

Y4

Y5

Y6



=



U0

U1

U2

U3

U4

U5

U6


(2.22)

or

LY = U ; Y = L−1U (2.23)

e steady state periodic solution y(kT ) wrien in the complex form of the first of Equa-
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tions (2.18) and (2.19) is given by solving for Y , given any periodic input of interest u(kT )

given in the form in Equations (2.18) and (2.19). Again, matrix L is the inverse of the

frequency response which we are interested in using for the design of the repetitive con-

troller.

e product of two periodic functions

In the previous example, the periodic coefficient contained only one frequency. Consider

the product of two general periodic functions

C0 + C1e
iωokT + C2e

i2ωokT + · · ·+ C6e
i6ωokT = (2.24)

(A0 + A1e
iωokT + · · ·+ A6e

i6ωokT )(B0 +B1e
iωokT + · · ·+B6e

i6ωokT )

Let zo = eiωoT , and zko = eiωokT . For purposes of finding the periodic function repre-

sented by the product, we can ask for one period of this function, considering values of

time step k from 0 through 6. Compute all products needed on the right. Note that by

folding from above Nyquist, zo to the 7, 8, 9, 10, 11, 12 powers can be replaced by zo to

the 0, 1, 2, 3, 4, 5, 6 powers. en equate coefficients of like powers of zo on each side of

the equation. e coefficients of zero power on the right are the sums of all terms with

subscripts on A plus subscript on B adding to 0 or 7. For the coefficient of the first power
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the subscripts add to 1 or 1+7, etc. In matrix form



C0

C1

C2

C3

C4

C5

C6



=



A0 A6 A5 A4 A3 A2 A1

A1 A0 A6 A5 A4 A3 A2

A2 A1 A0 A6 A5 A4 A3

A3 A2 A1 A0 A6 A5 A4

A4 A3 A2 A1 A0 A6 A5

A5 A4 A3 A2 A1 A0 A6

A6 A5 A4 A3 A2 A1 A0





B0

B1

B2

B3

B4

B5

B6



(2.25)

We use the following notation to represent such products

C = AB (2.26)

More generally, given Fourier series representations for two functions with coefficients

AiandBi of lengthN, the product of the two power series can be wrien as another Fourier

series
N−1∑
m=0

Cmz
km
0 =

N−1∑
p=0

N−1∑
m=0

AmBpz
k(m+p)
0 (2.27)

As zkN0 is the N th root of unity, this can then be viewed as a discrete convolution akin to

a Cauchy product, with the coefficient Ciof the Fourier series of the product being

Cm =
N−1∑
p=0

Am−pBp (2.28)

Frequency response of periodic state variable systems
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With the results of the previous sections we are prepared to look for the steady state

response of a periodic coefficient state space difference equation to any periodic input

of the same period as the coefficients, and this time we include any periodic disturbance

converted to its equivalent output disturbance if necessary:

x((k + 1)T ) = A(k)x(kT ) +B(k)u(kT )

y(kT ) = C(k)x(kT ) + f(kT )

(2.29)

e desired output is y∗(kT ) and the output error is defined as e(kT ) = y∗(kT )− y(kT ).

e coefficients and the disturbance f(kT ) are periodic with period N steps, again we

use N = 7 for illustrative purposes. We can consider multi-input, multi-output models.

For differential equations fed by a zero order hold, one should have a one time step delay

from input to output in sampled time, and this delay is inherent in the matrices of the

state space equation. If these equations represent a digital feedback control system, then

in addition to the one step delay through the plant, one normally has a one time step

delay through the digital controller, producing a two time step delay from command to

response. In either case, the delay is built into the phase information of the steady state

response to a periodic input.

e periodic coefficients can be wrien in terms of their frequency components as

before, but we now need to express periodic scalar functions, vectors, and matrices. is

makes the frequency components become vectors or matrices as needed. Again it is suf-

ficient to consider only one period with k going from 0 to 6, so we can use the notation
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zo = eiωoT . ese periodic functions, vectors, or matrices become

A(k) = A0 + A1zo + A2z
2
o + · · ·+ A6z

6
o

B(k) = B0 +B1zo +B2z
2
o + · · ·+B6z

6
o

C(k) = C0 + C1zo + C2z
2
o + · · ·+ C6z

6
o

f(kT ) = F0 + F1zo + F2z
2
o + · · ·+ F6z

6
o

u(kT ) = U0 + U1zo + U2z
2
o + · · ·+ U6z

6
o

x(kT ) = X0 +X1zo +X2z
2
o + · · ·+X6z

6
o

(2.30)

Since

x((k + 1)T ) = X0 +X1e
iωo(k+1)T +X2e

iωo(2k+2)T + · · ·+X6e
iωo(6k+6)T (2.31)

the periodic solution viewed one time step later can be wrien as

x((k + 1)T ) = X0 + (X1zo)zo + (X2z
2
o)z

2
o + · · ·+ (X6z

6
o)z

6
o (2.32)

and the new frequency components viewed with this time shi can be wrien as



z0oI 0 0 · · · 0

0 z1oI 0 · · · 0

0 0 z2oI · · · 0

... ... ... . . . ...

0 0 0 · · · z6oI





X0

X1

X2

...

X6


= SI X (2.33)
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where I is the appropriate size identity matrix. Making use of the double underbar nota-

tion in Equation (2.34), and then one can write that the steady state and output frequency

components must be related to those of the input and the disturbance according to

SIX = AX +B U

Y = C X + F

(2.34)

is produces the input-output relations steady state periodic response relationship

Y = [C(SI − A )−1B]U + F (2.35)

is gives the steady state frequency components of the periodic output in terms of the

frequency components of the periodic input u(kT ) and the periodic disturbance f(kT ).

e frequency response function is [C(SI − A )−1B]. What we are interested in for the

design of the repetitive control law is the inverse of this frequency response function, i.e.

L = [C(SI − A )−1B]−1 (2.36)

which corresponds to Equation (2.23) for the previous simple example. e mathematics

automatically handles multi-input multi-output systems. For repetitive control, we nor-

mally ask for one input control variable at each time step for every output variable for

which we seek zero tracking error at each time step. In the event that one has more input

variable than output variable, then one can pick the Moore-Penrose pseudo-inverse in L,

thus aiming for the minimum Euclidean norm input that can produce zero tracking error.
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Converting from time domain to frequency components and vice versa

Define the Vandermonde matrix

H =



1 1 1 · · · 1

1 z−1
o z−2

o · · · z−6
o

1 z−2
o z−4

o · · · z−12
o

... ... ... . . . ...

1 z−6
o z−12

o · · · z−36
o


(2.37)

and note that its complex conjugate H∗ is obtained by replacing the minus signs by plus

signs in the exponents. Writing u(kT ) for time steps k from 0 to 6, produces 6 equations

that can be packaged as

H∗U =



u(0)

u(T )

...

u(6)


(2.38)

Note that H∗H = NI where N is the number of time steps in a period, N = 7 in this

case. To obtain the frequency components from one period of time history, note that

(H∗)−1 = (1/N)H so that

U = (1/N)H



u(0)

u(T )

...

u(6)


(2.39)
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Introduce a time step argument on the frequency component vector indicating the fre-

quency components computed from the most recent period

Uk =



Uk(0)

Uk(1)

...

Uk(6)


= (1/N)H



u((k − 6)T )

u((k − 5)T )

...

u(kT )


;H∗Uk =



u((k − 6)T )

u((k − 5)T )

...

u(kT )


(2.40)

us, the last row ofH∗, denoted (H∗)N , timesUk produces u(kT ). We can propagate this

function one time step forward to produce u((k + 1)T ) from the frequency components,

in the same manner as done above with the state variables

u((k+1)T ) = U0+(U1e
iωoT )eiωokT +(U2e

i2ωoT )ei2ωokT + · · ·+(U6e
i6ωoT )ei6ωokT (2.41)

en to create the value of u((k + 1)T ) from the frequency components obtained from

knowing u(kT ) for one period of data ending at time step k (i.e. going back to u((k−6)T ))

one computes SIU(k). Use the identity matrix of appropriate dimension in the case of

multiple inputs, otherwise it is just unity and can be eliminated. e predicted value for

u((k + 1)T ) is given by

u((k + 1)T ) = (H∗)NSIUk (2.42)

Note that when substituting the powers of zo this produces the value of the input sequence

at the time step one period back, since we are examining a periodic function.
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2.4 Inverse frequency response based repetitive control

laws for periodic coefficients systems

Having developed a matrix that represents the inverse of the steady state frequency re-

sponse of a periodic coefficient system, we can now imitate the very effective repetitive

control approach for constant coefficient systems that is based on the inverse frequency

response (Reference [31]). e logic in developing that RC approach required one make

a quasi static assumption from period to period, meaning that the learning process con-

verges slowly enough that one can model the error history each repetition in terms of

steady state frequency response to the current input, and make updates in the control

action accordingly. We make the same assumption again here. Aer having made this

assumption to develop the mathematics for the constant coefficient case, it was discov-

ered and explained why one could converge quite fast without violating the quasi-static

assumption.

To produce the periodic coefficient repetitive control law, we need the current fre-

quency components of the error and the command input, updated each time step k. Ini-

tially, we consider that we can base the computation of u(kT ) on data for one period of

error whose most recent entry is e(kT ). Later we will discuss appropriate modifications

to allow one time step for computation so that the most recent error that can be used is

e((k − 1)T ). We also assume that the time delay is one time step from the step at which

the input is changed to the first time step in the output that is influenced by the change.

Again, we will discuss what one might do if the delay is more than one step. With these

assumptions, the frequency contents of the input and output functions are given by
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Ek =
1

N
Hek ; ek =



e((k −N + 1)T )

e((k −N + 2)T )

...

e(kT )


(2.43)

Uk−1 =
1

N
Huk−1 ; uk−1 =



u((k −N)T )

u((k −N + 1)T )

...

u((k − 1)T )


(2.44)

e first of these is part of the control law, is needed at time step k = N as an initial start

up of the RC law below. Also below, it can be wrien in a recursive form from this time

forward. e second is also used only at time step k = N as an initial start up condition,

and the control law updates the Uk and the u(kT ) each step thereaer.

Premultiplying Ek by L produces the change in the frequency content of the control

action that would eliminate the error in steady state. We can multiply this by a gain ϕ to

adjust the aggressiveness of the convergence rate. We add this to the frequency content

of the control action, using SIUk−1 to propagate forward to the present time step. is

produces RC Law 1

Uk = SIUk−1 + ϕLEk

u(kT ) = (H∗)NUk

(2.45)

Comments on the Computations: Examining (H∗)NSIUk−1 one finds that it is equal
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to e((k−N)T ). Recursive computation of the entries in Ek are easily made. For example,

examine the third entry denoted by Ek(2.2) corresponding to one of the two terms related

to the first harmonic. en

Ek(2) =
1
N
{(z−2

o )0e((k −N + 1)T ) + (z−2
o )2e((k −N + 2)T ) + · · ·+ (z−2

o )N−1e(kT )}

Ek+1(2) =
1
N
{(z−2

o )0e((k −N + 2)T ) + (z−2
o )2e((k −N + 3)T )

+ · · ·+ (z−2
o )N−2e(kT ) + (z−2

o )N−1e((k + 1)T )} (2.46)

And the second can be computed updating the first by multiplying by z+2
o and subtracting

a term and adding a term

Ek+1(2) = z+2
o Ek(2)− 1

N
z+2
o e((k −N + 1)T ) + 1

N
(z−2

o )N−1e((k + 1)T ) (2.47)

More generally, the jth frequency component at step k can be wrien as

Ek+1(j) = zj0
(
Ek(j)− 1

N
e((k −N + 1)T )

)
+ z

−j(N−1)
0

1
N
e((k + 1)T ) (2.48)

However due to the periodicity in powers of zj0, we may write

z
−(N−1)j
0 = z−jN

0 zj0 =
(
zN0
)−j

zj0 = zj0 (2.49)

is results in the following equation to update the frequency components

Ek+1(j) = zj0
(
Ek(j) +

1
N
(e((k + 1)T )− e((k −N + 1)T )))

)
(2.50)
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e update can be viewed as a modification to a Goertzel filter. Whereas the Goertzel

filter aempts to recover the Fourier coefficients of specific harmonics through the in-

cremental inclusion of each step, we update all Fourier coefficients up to Nyquist for a

moving window. Fast Fourier transforms have logarithmic computational cost O(N logN )

while the standard discrete Fourier transform has a quadratic computational cost O(N 2).

e method as describe above requires only N complex multiplications and 2N complex

additions (if roots of unity are pre-computed) and therefore has a linear cost O(N ) .

Comments on Start Up: Apply any chosen inputs u(0), u(T ), . . . , u((N−1)T ). Usu-

ally the system is a feedback control system, so that these can be command inputs equal

to the desired output. It is the job of the repetitive controller to fix any tracking errors

from the control action, including cancelling the effects of the periodic disturbance. Ob-

serve the resulting outputs and associated errors (desired output minus measured output).

en one knows UN−1 and EN . Equation (2.45) produces UN and u(NT ). e system

produces the next output with its error e((N+1)T ), allowing one to use update Eq. (2.50)

to produces EN+1, and the recursive process is started.

Repetitive Control Law Enhancements: One might want to use different gains for

different frequency components. In particular, smaller learning gains at high frequency

can improve robustness to high frequency model errors. is is accomplished by the

modified RC Law 2

Uk = SIUk−1 + LΦEN+1 (2.51)

u(kT ) = (H∗)NUk

Φ = diag(ϕ0I, ϕ1I, . . . , ϕN−1I)
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Here diag indicates a diagonal matrix, and the I are identity matrices in case the RC law

aims to fix multiple outputs each time step. Of course one must pick the same gain for both

frequency components associated with a given frequency, e.g. one must pick ϕ1 = ϕN−1.

In the case of constant coefficient equations, one can need to cut off the learning

process above some frequency because the model error, particularly phase error, gets too

large. It is easy for us to create such a filter in the periodic coefficient case, because we

already have the signals represented in terms of their frequency components. is can be

done by seing the gains in the Φ of Eq. (2.51) to zero for frequencies to be cutoff. Denote

this modified gain matrix by ΦD. en generate a modified identity matrix ID where the

entries corresponding to those made zero in ΦD are also made zero in ID. en RC Law

3 is

Uk = SIIDUk−1 + LΦDEk (2.52)

e frequency cutoff raises various issues in the periodic coefficient case because the input

excitation at one frequency can excite higher frequencies. Nevertheless, such a cutoff can

restore stability of the repetitive control system in the presence of high frequency model

error.

Adjusting for Delays: RC Law 1 assumed that once the measurement e(kT ) became

available, one could finish the computation of u(kT ) sufficiently fast to not lose a time

step for computation. is assumes the output is done in an interrupt mode, applying the

result as soon as it is available, and the delay time is negligible compared to a time step.

In order to allow one time step for the computation we need to make the computation of

u(kT ) based on Ek−1, and then propagate forward one step. is replaces Ek by SIEk−1.
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e data for Uk−1 is still available, so one can choose RC Law 4

Uk = SIUk−1 + ϕLSIEk−1 (2.53)

Doing this raises an issue. Since the frequency components of the error history are being

computed based on e((k − 1)T ), e((k − 2)T ), . . . , e((K −N)T ), perhaps the frequency

components of the control inputs should be computed based on the control time steps that

produced these errors. is suggests looking back an extra time step in the error history,

producing RC Law 5

Uk = S2
IUk−2 + ϕLSIEk−1 (2.54)

We have been assuming that there is a one time step delay from change in input to

the first resulting change in output. is delay could easily be 2 time steps for a digital

feedback control system, that uses one time step for control computation, and one time

step from zero order hold input to the plant, to the plant output. Whatever this delay is,

it is embedded in the structure of the matrices A(k), B(k), C(k), and consequently, the

reciprocal of the frequency response matrix, L, already includes the phase delay effects.

en RC Law 1 can apply to this situation in the following sense. e logic used to create

the law is that the system is in quasi-steady state, so we can compute the frequency com-

ponents of U and E using the most recent data available. If there is no time step delay

for computation, RC Law 1 will again apply to this case, and if one time step is needed

for computation, RC Law 4 can apply.

e above thinking might apply, where we wish to compute the input frequency com-
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ponents based only on the inputs that influenced the errors used. en with no time delay

for computation, but two time steps delay through the system, one might want to pick

RC Law 6

Uk = S2
IUk−2 + ϕLEk (2.55)

Close to steady state response, these distinctions may not be important, but in the pres-

ence of transients and random disturbances, making this kind of adjustment might be

important.

2.5 Stability criterion

Now we generate a stability criterion that indicates whether the repetitive control laws

above will converge. For simplicity we consider only Repetitive Control Law 2, but it is

obvious how to modify the criterion for other laws. We can define a state vector at time

step k for the full repetitive control system as Uk−1, ek, and x(kT ). Consider how to write

each of the quantities for the next time step in terms of the values at the current time step.

For Uk and x((k + 1)T )

Uk = SIUk−1 + LΦEk = SIUk−1 + LΦ 1
N
Hek (2.56)

x((k + 1)T ) = A(k)x(kT ) +B(k)u(kT ) = A(k)x(kT ) +B(k)(H∗)NUk

= A(k)x(kT ) +B(k)(H∗)N [SIUk−1 + LΦ 1
N
Hek] (2.57)
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e error vector ek+1 is a bit more complicated,

ek+1 = ISek + INe((k + 1)T ) (2.58)

where IS is the identity matrix but with the ones along the diagonal each moved up one

entry in the matrix, and IN =

[
0 ... 0 1

]T
⊗
[
0 ... 0 1

]
is the last column of

the identity matrix, all zero except for one in the last entry. To rewrite this equation in

terms of the state vector at time k above

ek+1 = ISek + IN [y
∗((k + 1)T )− y((k + 1)T )]

= ISek + IN [y
∗((k + 1)T )− F ((k + 1)T )]− INC(k + 1)x((k + 1)T ) (2.59)

Examine the last term

INC(k + 1)x((k + 1)T ) = INC(k + 1)[A(k)x(kT ) + B(k)(H∗)NUk] (2.60)

and substitute Uk from above. e state update from one time step to the next is then

given by


Uk

ek+1

x((k + 1)T )

 = Ā(k)


Uk−1

ek

x(kT )

+


0

IN [y
∗((k + 1)T )− F ((k + 1)T )]

0

 (2.61)

where

48



Ā(k) = (2.62)
SI LΦ 1

N
H 0

−INC(k + 1)B(k)(H∗)NSI IS − INC(k + 1)B(k)(H∗)NLΦ
1
N
H −INC(k + 1)A(k)

B(k)(H∗)NSI B(k)(H∗)NLΦ
1
N
H A(k)



Form the product of the coefficient matrix for N successive time steps to construct a mon-

odromy matrix, i.e. for one period

Â = Ā(N − 1)Ā(N − 2) · · · Ā(1)Ā(0) (2.63)

Stability is determined by the homogeneous equation, and this matrix propagates the

state from step 0 to step N. e same matrix propagates from any integer multiple ℓ of

N to ℓ + 1 times N, so this is now a time invariant system from the state at the start of

one period to the state at the start of the next period. Convergence of the state at these

times is guaranteed for all possible initial conditions provided all eigenvalues of Â have

magnitudes less than unity. And if the state at these time steps that are multiples of N go

to zero for the homogeneous equation, then the states for all time steps in between will

go to zero also. e equation has a forcing function, in fact two forcing functions, the

desired output periodic history, and the periodic disturbance. Of course, we are asking

that the error ek tend to zero as k → ∞, but x(kT ) and Uk histories need to converge

to nonzero values that have the property that they make the output follow the desired

output, and do so in spite of the periodic disturbance.
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2.6 Numerical Examples

To demonstrate various properties of the proposed control laws and their efficacy, numer-

ical examples are introduced in this section. e following periodic coefficient difference

equation represents a discrete system with a rate feedback control system.

x((k + 1)T ) =

 1 + T T

TK sin(ω0kT )− TKp 1− TKd

 x(kT ) +

 0

TKp

u(kT )

y(kT ) =

[
1 0

]
x(kT ) (2.64)

e examples presented use the following coefficient values: K=-98, Kp = 500,Kd =

50, T = 1/2π, and ω0 = 2π. e command to the feedback control system is a periodic

trajectory. When the system has reached a steady state, the repetitive controller is then

applied using the output of the feedback system to generate a new control action. By

studying the eigenvalues of Equation (2.63) for a range of RC learning gains ϕ, the fastest

learning rate and range of stability can be easily determined. Figure 2.2 shows the largest

eigenvalues of the monodromy matrix Â for a set of learning gains ranging from 0 to 2

using N=128 steps per period.

For the chosen parameters, the learning gain which produces the smallest maximum

eigenvalue is approximately ϕ = 0.75 and beyond ϕ = 1.25 the repetitive controller

no longer guarantees convergence.

In Figure 2.3, the correlation between rate of learning and smallest maximum eigenvalue

can be seen by observing that indeed ϕ = 0.75(dashed line) produces the fastest learning.
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Figure 2.3: RMS error of various learning gains

All the displayed gains show the learning law converges to machine tolerance. Of course

in the real world, one would not expect to achieve such performance due to model error

and the presence of noise. RC Laws 2 and 3 aempt to accommodate these issues by

aenuating the gains for high frequencies and cuing them off altogether respectively.

One might target a set of specific frequencies or one may simply choose gains to linearly

decrease the influence of higher frequencies. is is the strategy employed for RC Law 2

in Figure 2.4 where the learning gains are constant until the tenth harmonic then linearly

decrease to zero at Nyquist. Once again using the optimal learning gain of ϕ = 0.75,

the learning laws are now applied to the same system with white noise. In addition to
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the varying gains, RC Law 3 introduces a cutoff filter beyond the 40th harmonic. RC

Laws 2 and 3 (doed and dashed lines) show improvement over RC Law 1 (dash-dot line),

converging to the optimal control given the noise slightly faster. For comparison the

simplest RC law, one which uses only the command and error one period back plus delays,

is displayed with a solid line. For the same learning gain, it is unstable. One may take note

in this example that the original law, RC Law 1, performs admirably without the explicit

use of a filter or aenuating gains for higher frequencies. is is due to the construction of

the law, where the stored previous command is always represented by a periodic function.

is leads to a command history which is continuous and therefore not as susceptible

to random noise as a typical time sample memory based controller would be. For this

example, RC Law 3 has lile difference from RC Law 2 as the magnitudes of the high

frequencies are too small, particularly aer gain aenuation, to exert significant influence.

52



C 3

D R C 

P C S 

NI N  T S

 P

3.1 Introduction

e previous chapter utilized a moving window discrete Fourier transform (DFT) to

compute the frequency coefficients of the output error. A shortcoming is that when the

period is not an integer number of time steps, the DFT cannot converge and will exhibit

beats. In practice the period will never be exactly an integer number of time steps and

would likely vary significantly while learning. e current chapter develops methods to

address this particular situation and to presents additional improvements. One approach
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to addressing periods of non-integer number of steps is to introduce an interpolator. A

second approach is to replace the moving window DFT with the projection algorithm to

compute the Fourier coefficients. e projection algorithm has been used to good effect

as a method for determining the coefficients for matched basis function repetitive control,

see Refs. [30, 28].

In the repetitive control of constant coefficient systems it can be important to use a

zero phase low pass filter to cut off the learning process above some frequency, in order

to robustify to high frequency unmodeled dynamics. is chapter investigates the extra

issues when considering periodic coefficient systems. In addition, one may desire such a

filter to function as an anti-aliasing filter. Extra properties appear when the number of

time steps in a period is not an integer so that the folding is not onto the periodic functions

below Nyquist frequency. Finally, with a non-integer number of steps in a period, the

stability of the control law can no longer be analyzed by studying the eigenvalues of the

monodromy matrix from Floquet theory. An alternative stability condition needs to be

developed to address this concern.

3.2 Time Invariant Representations of Periodic

Coefficient Systems

e background work with regard to the time invariant representation was presented in

the previous chapter, but only for systems where the period of the periodic coefficient was

an integer multiple of the sample time interval. For clarity of exposition, the procedure is
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presented here, but with the necessary modifications to generalize to any length period.

Some notational differences are introduced to enhance clarity. A general discrete time

periodic coefficient state space system is given by

x[k + 1] = A[k]x[k] +B[k]u[k]

y[k] = C[k]x[k] + f [k]

(3.1)

where the bracket notation y[k] indicates that the output signal y is sampled at the kth

time step using the implied sampling time step size T, i.e. y[k]=y(kT ), and state matrices

are periodic in N steps, i.e. A[k+N ]=A[k]. en the period of the coefficients in time is

Tp = NT . Although we call N the number of steps within a period, we need not restrict

ourselves to an integer number of steps. e step size is a property of the sampler whereas

the period depends on the system. It is likely that the length of the period will not match

an integer number of time steps. Periodic systems can be reformulated into LTI systems

which allow us to apply the general principles of RC.

Frequency Space Representation with Exponentials

A periodic continuous signal y(t) may be wrien as a Fourier series

y(t) =
∞∑

j=−∞

Yje
ijωot (3.2)

where ωo = 2π/Tp is the fundamental frequency in radians per second of the periodic

signal, Tp is the period in seconds, Yj is the jth Fourier coefficient, andeijωot is the corre-

sponding basis function.
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Rather than restricting N to be a positive integer number of time steps, we allow N to

be any positive real number N ∈ R+. We wish to exclude all frequencies above Nyquist

frequency, which is two samples per period. If the sample step size is T seconds per sam-

ple, the sample rate is 1/T samples per second and Nyquist is 1/(2T ) samples per second.

Nyquist can be expressed in terms of the fundamental frequency of the periodic coeffi-

cient ωo as Nωo/2 in radians per second. To avoid exceeding the Nyquist frequency, the

highest frequency basis function is restricted to exp(i ⌊N/2⌋ωot), where lower brackets

⌊•⌋ describes the integer floor operation on a real number. is is true whether N is an

integer or not. If N is strictly an integer, harmonics beyond Nyquist will fold onto lower

frequencies already represented, e.g. exp[ijωok] = exp[−i(N − j)ωok].

y[k] =

⌊N/2⌋∑
j=−⌊N/2⌋

Yj[k] exp[jiωok] (3.3)

u[k] =

⌊N/2⌋∑
j=−⌊N/2⌋

Uj[k] exp[jiωok] (3.4)

We model our signal using Eq. (3.3) and command with Eq. (3.4). Consider the influ-

ence of frequencies above Nyquist in the data. When N is an integer, the frequencies in

the error signal beyond Nyquist will fold onto lower frequencies which are present in Eq.

(3.3). As the RC law aims for zero error at the sample points, these errors will be corrected

as if they were at lower frequencies which results in zero error at the sample points but

produces errors between the sample times. When N is not an integer, the frequencies in

the error signal beyond Nyquist will fold onto lower frequencies not represented by the

56



basis functions in Eq. (3.3). Instead, they fold onto new frequencies which are altogether

ignored by the RC law. In either case, the folded frequencies produce errors.

As in the previous chapter the frequency coefficients can then related using, LY [k] =

U [k] and Y [k] = GU [k], where G = L−1 is the steady state frequency response matrix

for the periodic coefficient system.

Unlike constant coefficient systems, input frequencies below Nyquist may produce

output frequencies above Nyquist. Multiplying a signal by a periodic coefficient means

using frequency coefficients of harmonics and subharmonics of the signal at each basis

function. Consider the periodic term of the system in Eq. (2.10)

sin[ωok]y[k] =
1
2i
[e[iωok] − e−[iωok]]

⌊N/2⌋∑
j=−⌊N/2⌋

Yj[k]e
[jiωok]

= 1
2i

⌊N/2⌋∑
j=−⌊N/2⌋

Yj[k]e
[(j+1)iωok] − 1

2i

⌊N/2⌋∑
j=−⌊N/2⌋

Yj[k]e
[(j−1)iωok]

(3.5)

When j = 0, the frequency component term for DC is
(

1
2i
e[iωok] − 1

2i
e[−iωok]

)
Y0[k], for j =

1,
(

1
2i
e[iωok] − 1

2i
e0
)
Y1[k] and so forth. It is interesting to note what happens to the har-

monics beyond the Nyquist frequency for both integer and non-integer N. First leing N

be an integer N=7, Y3[k] and Y−3[k] are the highest frequency coefficients. For Y3[k], we

have
(

1
2i
e[(3+1)iωok] − 1

2i
e[(3−1)iωok]

)
Y3[k]. Or course e[(3+1)iωok] = e[4iωok], but this basis

function can also be wrien as e[−(7−4)iωok] = e[−3iωok]which is already part of the set of

basis functions used. erefore the frequency response matrix includes a frequency 3ω0

which generates a harmonic at 4ω0 that folds back onto 3ω0. Zero error at the sample

times means that corrective action for 3ω0 uses components of the signal related to 4ω0
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which produces error between sample times. If N is not an integer, e.g. N =7.12, then we

again would produce a harmonic at 4ω0 but this time it is not folded onto an existing lower

frequency basis function since e[4iωok] = e[−(7.12−4)iωok] = e[−3.12iωok]. is is a fundamen-

tal issue when using a non-integer N, the folding of frequencies onto lower harmonics

which do not exist among the fundamental frequency and its harmonics. Whether N is

an integer or not, the periodic coefficient means using a simple low pass anti-aliasing fil-

ter is not sufficient. e cutoff of what frequencies will be addressed must be such that

the harmonics generated in fixing that frequency are also below Nyquist.

3.3 Computing Frequency Coefficients

e previous chapter describes an efficient moving window to compute the frequency

coefficients of the output. We include only a brief summary with modifications for non-

integer number of steps per period. As a moving window requires a discrete number

of sample points, when there is a non-integer number of sample steps in a period, the

window will either be too long or too short to encompass a single period.

One solution is to create an interpolated signal which uses a window longer than the

known period. e interpolated signal is resampled at equally spaced intervals which fit

into the actual period with an integer number. is can be accomplished by multiplying

the signal of length equal to the extended window by a single matrix M described below.

However as the objective is to compute the frequency coefficients, we wish to perform

the equivalent operation in frequency space. We can multiply the frequency component

vector created from the moving window with a resampling matrix R, which is constructed
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by using a DFT similarity transformation on M.

Following that, an alternative scheme using the projection algorithm is described. Un-

like the moving window DFT, the projection algorithm does not require any modification

to work with non-integer number of steps per period. e method works by recursively

updating the frequency coefficient estimates by changes in the coefficients to minimize

the error between the measured value and the estimate at the next time step. Directly

computing the frequency coefficients bypasses the need for any resampling making it a

more natural choice to use. An additional benefit of the projection method is that indi-

vidual frequency coefficients can be targeted, effectively acting as a cutoff filter.

A. Moving Window DFT with Resampling

A computationally efficient iterative moving window DFT can be constructed using a

modified Goertzel filter. Modifications must be made to allow for the method to be used

with a non-integer number of samples per period. e procedure is split into two parts: a

startup phase that initializes the first DFT estimate and an iterative method which updates

the estimate using new signal data while removing old data. ere is a choice for the

designer to make regarding the window length. Using ⌊N⌋ steps does not capture the

entire periodic signal, so we choose to use the ceiling of N, ⌈N⌉, instead. While the DFT

is being computed for the first period, the previous samples are stored up to ⌈N⌉ + 1

samples. e DFT estimate of the error is computed by the following procedure for the

first ⌈N⌉ samples

Ej [k + 1] = exp(−iωoTj/r)
(
Ej [k] +

1
Nc
e [k + 1]

)
(3.6)
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for j = −⌊N/2⌋ to ⌊N/2⌋ where subscript j is the index of the frequency coefficient

and where r = TNc/Tp is the ratio between the sampler step size and the time of one

period divided by the integer number of frequency coefficients to be computed, in this

case Tp/Nc. e procedure can also be done as a vector operation, for consistency seing

DC to the first index. e inclusion of the constant r rescales the basis functions so that

they are periodic in integerNc steps. At each subsequent step aer the first ⌈N⌉ steps,

each frequency coefficient is updated by removing the influence of the signal from ⌈N⌉

steps prior and including the newest sample of the signal

Ej [k + 1] = exp(−iωoTj/r)
(
Ej [k] +

1
Nc

(e [k + 1]− e [k + 1− ⌈N⌉])
)

(3.7)

e error frequency coefficient vector constructed with Eq. (3.7) uses a different set of

basis functions than the plant model when N is not an integer. To make note of this

difference we call this error frequency coefficient vectorĒr[k]. To remain consistent with

the plant model and compensator, Ēr[k]must be resampled to share the same basis. A

resampling matrix constructed with the designer’s choice of interpolator may be used to

get the approximate frequency coefficients of the error signal with the actual period. For

illustration, a resampling matrix with a linear interpolator is described here. e matrix

is constructed such that the values are interpolated beginning with the most current time

step and going backwards in time. Let Tr = Tp/Nc be the desired resample time step size

and vector k̄ be constructed such that the ith component k̄iis the most recent integer time

step not smaller than iTr using the actual sampler time step size T, i.e. iTr < k̄iT . en

the fractional distance to the nearest next sampled time step is
(
iTr − k̄iT

)
/T . With this
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knowledge, a resampling matrix M can be constructed as

Mi,k̄i = 1−
(
(i−Nc)Tr −

(
k̄i −Nc

)
T
)
/T

Mi,k̄i+1 =
(
(i−Nc)Tr −

(
k̄i −Nc

)
T
)
/T

(3.8)

for 1 ≤ i ≤ Nc − 1, with MNc,Nc = 1 and zero elsewhere. For example if Nc=4, then the

resampling matrix would be

M =



1 + (3Tr − 3T ) /T − (3Tr − 3T ) /T 0 0

0 1 + (2Tr − 2T ) /T − (2Tr − 2T ) /T 0

0 0 1 + (Tr − T ) /T − (Tr − T ) /T

0 0 0 1


(3.9)

When M is multiplied with a vector of error data lengthNc sampled at T intervals, the

output is a resampled error vector also of lengthNcwhich terminates at the same time but

spansNc time steps of Tr which spans the same total time asN steps of size T. To apply this

to the frequency coefficient vector estimate Ēr[k] we must perform a similarity transform

R = HMH−1where H is the DFT matrix, creating the frequency coefficient vector in the

same basis used by the steady state frequency response model Ē[k] = RĒr[k].

B. Using the Projection Algorithm to Compute Frequency Coefficients

e projection method is also known as Kaczmarz’s method or the algebraic reconstruc-

tion technique in other fields. Essentially the algorithm functions as an iterative solver for

a linear system. Recognizing that Eq. (3.3) is a linear relationship between frequency co-
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efficients and the signal, we can apply the projection method to compute those frequency

coefficients. At each time step, the recursive scheme updates the current frequency coef-

ficients estimate of the signal with a change in the coefficients such that the error between

the measured signal and estimate is minimized. is may be wrien in vector form as

E[k + 1] = E[k] + λ/ ⌊N⌋
(
e[k]−

⟨
E[k], H[k]

⟩)
H[k] (3.10)

where λ is the projection gain which may range from 0 to 2, e[k] is the sampled error of

the system, and H[k] is a vector of exponential basis functions evaluated at step k. is

vector can be constructed directly. A single frequency basis function for some index l is

Hl[k] = e−(l(k−⌊N/2⌋)Tω0j) (3.11)

for the index integer l where l ∈ [−⌊N/2⌋ , ⌊N/2⌋]. e index l may be shied to begin

at the first index as needed. e inner product
⟨
E[k], H[k]

⟩
is a true inner product for

complex vectors E[k] and H[k]. We choose to keep the conjugate linearity on H[k], so

we define
⟨
E[k], H[k]

⟩
:= H[k]†E[k] where † is the conjugate transpose.

3.4 Frequency Response of a Periodic Coefficient System

e previous chapter discusses creating the steady state frequency response matrix for

integer N steps. Consider a general periodic coefficient system as in Eq. (3.1) which may

be multi-input, multi-output. Each state matrix is periodic in N steps, which might not

be an integer. A method for developing the steady state frequency response matrix is
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described in this section for this more general situation. In practice, it is impractical to

compute the steady state frequency response matrix G analytically as shown in the Nu-

merical Examples section. Here we choose, with the same reasoning as above, to use Nc

coefficients. We wish to construct a time invariant steady state frequency space repre-

sentation of the periodic system in Eq. (3.1). When a sinusoid is applied to the system

and aer all the transients decay, the states and output are sinusoids representing the

steady state for that frequency input. is information can be stored as the frequency

coefficients in the steady state vectors X̄ , Ȳ , and Ū which represent the state vector, out-

put, and input respectively. Relating the frequency coefficient vectors are the frequency

raised versions of the periodic system matrices A, B, and C which create the frequency

raised version of Eq. (3.1)

SX = AX +B U

Y = C X + V

(3.12)

where S is a matrix which shis the frequency components of the states one time step

ahead. e frequency raised version of the system matrix, A, is constructed using the

frequency coefficients computed for each element of A[k]. We can represent all of the

periodic elements using their frequency coefficients

x[k] =
∑⌊N/2⌋

j=−⌊N/2⌋Xj[k] exp[jiωok]

v[k] =
∑⌊N/2⌋

j=−⌊N/2⌋ Vj[k] exp[jiωok]

A[k] =
∑⌊N/2⌋

j=−⌊N/2⌋ Aj[k] exp[jiωok]

B[k] =
∑⌊N/2⌋

j=−⌊N/2⌋ Bj[k] exp[jiωok]

C[k] =
∑⌊N/2⌋

j=−⌊N/2⌋Cj[k] exp[jiωok]

(3.13)
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Unlike representing the error signal of the RC problem, the state matrices are genuinely

periodic. erefore their frequency coefficients are quickly converged to using the pro-

jection algorithm or interpolating moving window. To demonstrate using the projection

method, let matrix A[k] be n× n, then an n× (nNc) vector of frequency coefficients A

is constructed using

A[k + 1] = A[k] + λ/ ⌊N⌋
(
A[k]−

⟨
A[k], H[k]

⟩)
H[k] (3.14)

whereH[k]must be the appropriate size basis function evaluation vector and λ is a projec-

tion gain. In this case,H[k] has dimensions (nNc)×nwith eachn×n block corresponding

to a particular frequency. Aer several iterative steps, the procedure converges to the fre-

quency coefficient vectorA. is in turn will be used to assemble the (nNc)×(nNc)matrix

A in Eq. (3.11) which must be formaed to match the coefficients of the corresponding

frequency state vector X . Aer constructing all of the frequency representations of the

system matrices in Eq. (3.12), the input-output steady state periodic response relationship

can be wrien as

Y = [C(S − A )−1B]U + V (3.15)

e steady state frequency response transfer function matrix is then

G = [C(S − A )−1B] (3.16)

is steady state frequency response matrix is the basis for the RC laws which follow.

64



3.5 Frequency Response Based RC Laws

Inverse Steady State Frequency Response Compensator While

Employing Projection Algorithm

With methods to compute the frequency coefficients of the output error and a steady state

frequency response matrix, we may now construct the RC laws. e very effective law for

constant coefficients described in the second section uses a compensator which mimics

the inverse of the frequency response. For periodic coefficient systems, we now use the

inverse of the steady state frequency response matrix L = G−1. If the system has more

input variables than output variables, then one can use the Moore-Penrose pseudo-inverse

to create the learning matrix, thus aiming for the minimum Euclidean norm input that can

produce zero tracking error. e RC update is applied to the frequency coefficients of the

commandU [k] and is then used to compute the desired applied control with another inner

product

Ū[k + 1] = Ū[k]+ΦLĒ[k]/ ⌊N⌋

u[k + 1] =
⟨
Ū [k + 1], H̄[k + 1]

⟩
Φ = diag(ϕ0, ϕ1, . . . , ϕ−1)

(3.17)

Φ is a diagonal matrix of learning gains, where the same gain must be used for both fre-

quency components associated with a given frequency, e.g. one must pick ϕ1 = ϕ−1. Ē[k]

is a vector of frequency coefficients of the error computed from the projection algorithm

in Eq. (3.10).
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Inverse Steady State Frequency Response Compensator While

Employing Moving Window DFT

To use the learning law described by Eq. (3.17), using the error frequency coefficient

vector constructed from the moving window DFT in Eq. (3.7),Ēr[k]must first be resampled

into the same domain as the inverse steady state frequency response matrix with the

matrix R. Whereas the projection method re-evaluates the basis function vector H̄ at each

time step, the moving window DFT must rely on using fractional shis to maintain the

correct time steps. e command vector is also in the resampled domain, so it is shied

a fraction r of one step. us the command vector update and applied command at [k+1]

with a time delay between receiving the error and computation of the new command is

Ū[k+1] = SrŪ[k]+ΦLRĒr[k]/ ⌊N⌋

u[k + 1] = C⌊N⌋H
−1U [k + 1]

(3.18)

whereC⌊N⌋is a row vector with zero everywhere but element ⌊N⌋ whose value is 1. is

vector is used to select the applied command from the inverse DFT of the command fre-

quency coefficient vector. Compared to Eq. (3.17), the computational tradeoff for replac-

ing the basis functions evaluation at each time step is the raising of a shiing matrix with

a non-integer power. ough Sr is constant and only needs to be computed once, the

command vector needs to be transformed each time step.
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3.6 Designing a Cutoff Filter

For constant coefficient systems it is difficult to create a model which is accurate at high

frequencies. Being off by 180 degrees will destabilize the RC system, therefore in practice

it is necessary to use a cutoff filter to make the learning law robust to high frequency

model errors. e cutoff filter must be zero phase so it does not exacerbate the issue and

can be implemented as an FIR filter. In general the cutoff is determined by the error in the

model, so must be tuned in hardware. is is also true for the periodic coefficient system

with an additional caveat. Correcting errors below a cutoff frequency may require using

inputs at harmonics above the cutoff frequency. erefore to correct errors below some

chosen cutoff frequency, the command must be cutoff at a frequency above that chosen

frequency to include all important harmonic components needed by the control action.

If the cutoff filter is being used for robustness, the input cutoff frequency is determined

by the model confidence. If the filter is being used for anti-aliasing, again it is the input

cutoff that dictates the filter design.

e learning law described in Eq. (3.17) generates the command update using the in-

verse steady state frequency response matrix L and the output vector Y. A pure cutoff filter

Q, which keeps only the frequencies below the cutoff, is applied to the entire command

as shown in Eq. (3.17).

U[k + 1] =Q
(
U[k]+ΦLE[k]/ ⌊N⌋

)
(3.19)

To visualize the effects of the filter in Eq. (3.19), imagine a rich output Ȳ ∗with each

frequency component having magnitude of one. ere exists a steady state input Ū∗ =
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Figure 3.1: Steady state output with typ-
ical cutoff filter

Figure 3.2: Steady state output with typ-
ical cutoff filter

LȲ ∗ which produces this output. e quantityQLȲ ∗ is the filtered command, so in the

steady state sense GQLȲ ∗ is the output due to filtered command. For illustration we use

a filter Q which eliminates all harmonics of the command beyond the 10th. e magnitude

of the frequency coefficients of GQLȲ ∗ for a sample periodic coefficient system G from

Eq. (3.37) of the example section is shown in Figure 3.1. ough the input has been

trimmed to exclude beyond the 10th harmonic, the 8th through 12th harmonics of the

output are not strictly 1 nor 0. e output at the 10th harmonic is incorrect because a

command with the 11th harmonic was not applied. e output at the 11th harmonic is not

zero because a command with the 10th harmonic was applied.

To address this issue, we need to know how many harmonics are affected by the pe-

riodic system at the cutoff frequency. One may choose to compute the frequency coeffi-

cients of the error up to some limit which acts as a zero phase cutoff filter. is limit is

chosen to be a frequency beyond the other cutoff frequency which eliminates undesired

effects at the cutoff boundary. e command update with the combined filters may be

68



described as

U[k + 1] =Q1

(
U[k]+ΦLQ2E[k]/ ⌊N⌋

)
(3.20)

e steady state output of the error can be wrien as GQ1LQ2Ȳ
∗. e magnitude of

the frequency coefficients of this quantity are shown in Figure 3.2. e coefficients around

the 10th harmonic are now much closer to 1 and 0. With an appropriately designed control

law, the errors below the cutoff will decay to zero. e errors which exist beyond the cutoff

will continue to exist so it is important to be able to show that they will not grow. In the

following section, a method for studying stability of RC laws is introduced. With regard

to the cutoff filter, it can be used to show the conditions for ensuring the decay of all error

harmonics and therefore show that errors beyond the cutoff will not grow. e presence

of high frequency model error is expected, so a good cutoff filter should be designed to

cut off the high frequencies without compromising the learning rate.

3.7 Stability of RC Laws

e moving window DFT stability criteria for the RC laws presented previously relied on

creating a monodromy matrix which related the states at any time step to the states at

the next period. is matrix was a product of the individual state transition matrices of

the sample steps during one period. In the case of using a non-integer number of steps

per period, this is no longer possible as we can no longer traverse exactly one period

using a discrete number of steps. Instead, we must ensure that each of the state transition

matrices which advances an integer number of steps⌊N⌋starting from any point within

an interval with the length of the actual period converges to zero error.
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State Transition Matrix for the RC Law Using the Moving Window

Method

e minimum representation of the states required to progress from one time step to the

next includes the frequency components of the command, the output error, and the state

vector. is section develops the update equations for each. ese elements are assembled

into an augmented state vector. e state transition matrix which advances these states

to the next time step is constructed from the steps below. is differs from the previously

described state transition matrix in the previous chapter by the inclusion of cutoff filters

described in Eq. (3.20), and elements needed for accommodating non-integer N such as

partial time step shiing matrices and the resampling matrix of Eq. (3.8).

e behavior of the moving window DFT is the same whether we use the efficient

method described in Eq. (3.7) or use a DFT matrix to perform the transform, so the DFT

matrix is used in the following stability analysis to simplify the notation which may be

expressed as

Ēr [k] = Hrē[k] (3.21)

where Ēr [k] is the frequency coefficients of the resampled output error, ē[k]is a⌈N⌉ length

vector of output error history whose last element e⌈N⌉[k] = e[k]andHr is a DFT matrix

whose basis functions are as described in Eq. (3.7) which produces a lengthNc vector of

frequency coefficients. Inserting the moving window DFT learning law from Eq. (3.18)

into the periodic coefficient system from Eq. (3.1), we form a relationship between the

state variable x[k+1] and the frequency coefficients of the command U [k] and the output
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error Ēr[k]

x[k + 1] = A[k]x[k] + B[k]u[k] = A[k]x[k] +B[k]C⌊N⌋H
−1U [k]

= A[k]x[k] + B[k]C⌊N⌋H
−1
(
SrŪ[k − 1]+ΦLRĒr[k]/ ⌊N⌋

) (3.22)

To update output error vector ē[k], we use a non-circulant shiing matrix SNc which shis

the indices of the vector up by one while seing the last element to zero. is last element

is set to e[k + 1] using the row vectorCNcdescribed earlier. is operation is wrien as

ē[k + 1] = SNc ē[k] + CT
Nc
e[k + 1] (3.23)

e computation of e[k + 1]uses the definition of output error

e[k + 1] = y∗[k + 1]− y[k + 1]

= y∗[k + 1]− C[k + 1]x[k + 1]− v[k + 1]

(3.24)

So finally, the error vector update can be wrien as

ē[k + 1] = SNc ē[k] + CT
Nc

(y∗[k + 1]− C[k + 1]x[k + 1]− v[k + 1]) (3.25)

e command history, output error and state vector are assembled into an augmented

state vector and then combining Eqs. (3.18), (3.22) and (3.25) the state transition matrix is
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assembled as


U [k]

e[k + 1]

x[k + 1]

 = As[k]


U [k − 1]

e[k]

x[k]

+


0

CT
Nc

(y∗[k + 1]− v[k + 1])

0

 (3.26)

where

As[k] =


Q1S

r Q1LΦQ2RHr
1

⌊N⌋ 0

−CT
Nc
C[k + 1]B[k](H†)⌊N⌋Q1S

r SNc − CT
Nc
C[k + 1]B[k](H†)⌊N⌋Q1LΦQ2RHr

1
⌊N⌋ −CT

Nc
C[k + 1]A[k]

B[k](H†)⌊N⌋Q1S
r B[k](H†)⌊N⌋Q1LΦQ2RHr

1
⌊N⌋ A[k]


(3.27)

where (H†)NC
is the last row of the complex conjugate of the DFT matrix. Equation

(3.26) is a non-homogeneous equation, but the stability is determined by the homogeneous

portion. erefore we may study the just he homogenous equation


U [k]

ē[k + 1]

x[k + 1]

 = As[k]


U [k − 1]

ē[k]

x[k]

 (3.28)
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Projection Method State Transition Matrix

By applying the projection RC law of Eq. (3.17) to the periodic system in Eq. (3.1), we

develop the steps required to propagate state vector tox[k + 1]

x[k + 1] = A[k]x[k] + B[k]u[k]

= A[k]x[k] + B[k]H[k]†Ū [k]

(3.29)

en by combining Eqs. (3.10), (3.17), and (3.28) we can create a state transition matrix

which transforms a concatenated state vector from step k to k+1 using the projection

method to compute the frequency coefficients as


Y [k + 1]

U [k + 1]

x[k + 1]

 =


(
I − λH[k]⊗H[k]†/ ⌊N⌋

)
0 λH[k]† ⊗ C[k]/ ⌊N⌋

−Q1ΦLQ2/ ⌊N⌋ Q1I 0

0 B[k]H[k]† A[k]




Y [k]

U [k]

x[k]



+


V [k + 1]

Q1ΦLQ2Ȳ
∗/ ⌊N⌋

0


(3.30)

where ⊗ is the Kronecker product, or as X̄S[k+1] = AS[k]X̄S[k] + V̄ [k]. Again we may

study stability using the homogenous equation

XS[k + 1] = AS[k]XS[k] (3.31)
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e Monodromy Matrix, Stability and Convergence

e state transition matrices AS[k] from both methods are periodic in N steps. When

N is an integer we can compute a monodromy matrix using the product of all the state

transition matrices within the period as

AS[k] =
N−1∏
l=0

AS[k + l] (3.32)

XS[k +N ] = AS[k]XS[k] (3.33)

Since AS[k] is periodic in an integer number of steps, ensuring the singular values of

AS[k] are less than one for any k is a sufficient condition for stability and monotonic

decay as the deviations from period to period need decay to zero. If every eigenvalue of

AS[k] is less than one in magnitude, the method is convergent but monotonic decay is not

guaranteed.

When we allow N to be any positive real number, advancing one period ahead we end

up at a time which is not necessarily represented using an integer multiple of the time

step. us, the tactic is to ensure that for any starting point within a period, show that

the system will be stable when it is advanced an integer ⌊N⌋steps ahead. For any time

[k + s], where 0 ≤ s ≤ Tp/T , we can construct a state transition matrix which updates

the states vector an integer ⌊N⌋ number of steps forward.

AS[k + s] =

⌊N⌋−1∏
l=0

AS[k + s+ l] (3.34)
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XS[k + s+ ⌊N⌋] = AS[k + s]XS[k + s] (3.35)

To ensure monotonic decay, all the singular values of AS[k+ s] must be less than one for

all s where0 ≤ s ≤ Tp/T . For periodic coefficients systems this is difficult to achieve as

the states are multiplied by a periodic signal. For a more practical metric of stability and

convergence, the requirement for monotonic decay is ignored.

An approximate stability condition can be stated as, when all the eigenvalues ofAS[k+

s] are less than one in magnitude for all s where 0 ≤ s ≤ Tp/T , then the learning law

converges to zero error. ough this appears to construct a reasonable estimate of the

stability boundary as the procedure is never off by more than a fraction of a time step, it

cannot be considered rigorous as there is no statement guaranteeing the eigenvalues of

the product of monodromy matrices starting at different points within a period being less

than one in magnitude.

We can approach the stability issue by taking a longer view. Let τ = N − ⌊N⌋ be

the difference between the actual number of samples required per period and the integer

number of samples actually used for representation. For implementable digital systems

τ = m
n

is a rational number, so a state transition matrix can be constructed to transform

XS[k] toXS[k + nN ] as

XS[k + nN ] = XS[k + n ⌊N⌋+m] =

n⌊N⌋+m∏
l=0

AS[k]XS[k] (3.36)

is new state transition matrix transforms the state vector to a time step representable
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by an integer multiple of the actual period which is reachable with an integer number

of sample steps. From this we can conclude that if the maximum absolute value of the

eigenvalues of
∏n⌊N⌋+m

l=0 AS[k] is less than 1, then the learning law is stable. While it is

true that for digital systems, τ will be by definition a rational number, the denominator n

may be extremely large. One could argue that there exists another pair of integers with a

much smaller denominator that approximates the original rational number well enough

that we could apply eigenvalue perturbation theory and create a bounded eigenvalue

estimate.

3.8 Numerical Examples

Model description

e following examples use this periodic coefficient difference equation of a feedback

control system with a periodic coefficient plant

x[k + 1] =

 1 + T T

TK sin(θ[k])− TKp 1− TKd

x[k] +

 0

TKp

 u[k]

y[k] =

[
1 0

]
x[k]

(3.37)

with a proportional controller with gain Kp = 500, rate feedback with gain Kd = 50, and

a constantK = −490. Let the nominal periodic function θ[k] = 0.3 sin[ω0k]+1, where

ω0 = 2π rad/s. Finally a periodic desired trajectory with the same period as the periodic

coefficient is set to y∗[k] = 0.2 + 0.2 sin[5kω0].

76



Comparison of Convergence of Methods

First consider the case where the sample time size T=1/33 seconds, and the time of one

period is Tp=1s, then numerically we have an integer number of steps to represent the

periodic signalN=33. Figure 3.3 shows the output error when using a learning gain of ϕ =

1 for all frequencies and methods and a projection gain of λ = 1 for the projection method.

ere is lile difference between the methods, converging at the same rate and to the same

numerical zero. e only difference is the moving window DFT with interpolation uses

the efficient DFT scheme which requires an additional period of start up to initialize the

method. When we consider the case where T=0.03 and Tp=1 seconds, then the number

of steps in the periodic signal is now N = 331/3. In Figure 3.4, as expected the moving

DFT window method is unable to converge to zero error and oscillates around an average

error of 0.02. e DFT window does not capture the period of disturbance exactly and

therefore exhibits beats in the output. For the given parameters, the projection method

converges more quickly to a numerical zero error than the moving window DFT method

with interpolation.

Computational Performance

ere are a number of factors which may affect the computational efficiency of the RC

laws. e most significant is the number of samples used to perform the frequency coeffi-

cient computation. Figure 3.5 shows the computation time per time step for each method

without a cutoff filter. Performing a DFT using matrices as expected has a computational

cost which scales exponentially with the number of samples. e efficient moving win-
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dow DFT scheme is the fastest method for a small number of samples. However, the

burden of multiplying the command with a shiing matrix grows exponentially with the

number of samples and the method is quickly outperformed by the projection method.

e shiing matrix is raised to a non-integer power and is constant so it can be pre-

computed, and lead to significant savings but not enough to keep up with the projection

method whose computational cost only increases linearly with the number of samples.

To maintain the linear computational performance cost, matrix multiplication must be

avoided. For example the cutoff filters can be restricted to on or off for each frequency

component and implemented as a mask. is applies to the learning gain matrix Φ as

well, where using a single gain ϕ applied to all frequencies will save another matrix mul-

tiplication.

Stability

If N is an integer, one would expect the monodromy matrix at each step within a period

to share the same eigenvalues. is is seen in Figs. 3.6 and 3.7 where the maximum
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eigenvalues of the monodromy matrices for the two methods are shown for one period.

e parameters of the system were deliberately chosen to contrast the differences with

the following non-integer N case.

To study the stability of the learning laws for a non-integer N, we use the approximate

condition that the absolute value of the largest eigenvalue of the state transition matrix for

Nc steps sampled across an entire λ = 1 period and ensure none exceed one. Whereas the

integer N case was stable for all demonstrated gains, a gain of ϕ = 2.0 appears unstable

for both methods as shown in Figs. 3.8 and 3.9. In Fig. 3.8, the moving window DFT with
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interpolation displays relatively lile variation throughout the period until the learning

gain exceeds the stability bounds of 1. Contrast this with the projection method in Fig. 3.9

with a projection gain of λ = 1 which has a large amount of fluctuation throughout the

period. e interpolation method resamples the domain into a domain which is periodic

in an integer number of steps. e problem once again becomes linear time invariant, so

it does not maer where in the period we start. By including the suggested cutoff filters,

the maximum eigenvalues are reduced significantly with all eigenvalues less than one for

every gain, though the periodic structure becomes less apparent.

Region of Stability of Projection Method

e performance of the projection method may be tuned by adjusting the projection gain

λ and the learning gains in Φ. For this stability study, a single learningϕis applied to

all frequency coefficients. Figures 3.10 and 3.11 show the regions of stability and the

relative size of the absolute value of the largest eigenvalue within one period. e black

dots indicate the eigenvalues are less than or equal to one, where the smaller the dot, the
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smaller the eigenvalue. e white area indicates where the method is unstable for the

given combination of gains. When λ = 0orϕ = 0, the RC law is marginally stable as no

control action is applied. In a somewhat counterintuitive result, using lower projection

gains appear to be less stable than using a full gain of unity. e simulations indicate that

the classifying a pairs of gains as unstable may be too strict, as simulations with lower

projection gains converge in a less direct manner but do not exhibit instability. at is

to say there is not monotonic convergence, however the learning law does converge to

zero error. Figure 3.11 shows the stability for the same system with the cutoff filters. e

cutoff filters widen the stability region significantly allowing larger learning gains for any

given projection gain. From the size of the maximum eigenvalues, it should be clear that

using a projection gain near unity is optimal in almost all conditions.

If there is a periodic disturbance whose base frequency is unrelated to the periodic

coefficient system, we expect the output to be represented by a combination of product of

the disturbance with each of the harmonics of the system. at is: if ω0 is the frequency

of the periodic system and the disturbance frequency can be wrien as a product of that
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frequency and some coefficient α, then output is composed of frequencies αω0 times the

harmonics nαω, where n equals 0 to N/2 + 1. Products of sinusoids may wrien as

sinusoids of sums and differences. So the output must be wrien in terms of ω0(α + n)

and ω0(α − n). If α is an integer or if there is an integer m such that mα = 1, then the

original frequency representation is sufficient to describe the output. If not, then we need

to somehow represent all of the frequencies described by the sums and differences to have

a complete picture of the output. is may not be practical to do, but one could use just

the first few harmonics to create an estimate.

For α = 2.1, we show using the disturbance frequency and periodic system frequency for

RC laws. en also including the frequencies ω0(α + 1) and ω0(α− 1). Finally all of the

previous frequencies and ω0(α + 2) and ω0(α− 2).

3.9 Summary

is chapter expands upon the previous chapter in addressing RC laws for linear systems

with periodic coefficients by addressing periodic coefficients and disturbances with peri-
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ods of non-integer multiples of sample steps. A resampling matrix is added to the moving

window method which was introduced in the previous chapter to handle the periods of

non-integer multiples of sample steps. Due to the resampling, the RC law update requires

a partial time step shi so that the frequency components of the command are updated

using the correct time. A separate RC law based on the projection method from adaptive

control is also introduced. Unlike the moving window method, no additional modifica-

tions are necessary to allow the method to work for periods of non-integer multiples of

sample steps. From a computational standpoint, the projection method requires fewer

operations per command update. e computation time for the resampled moving win-

dow method grows exponentially with the number of frequency coefficients used while

the projection method can be implemented with a linear cost versus the number of fre-

quency coefficients used. For robustness and anti-aliasing, both methods require cutoff

filters. A pair of cutoff filters are needed so that the harmonics of the output around the

cutoff frequency are not excited due to the periodic coefficient. One cutoff filter is applied

to the error frequency coefficients and the second cutoff filter is applied to the command

at a higher frequency to include all the harmonic components needed by the control ac-

tion. e numerical examples show that the stability boundary for the projection method

is greatly expanded by including this type of cutoff filter. e numerical examples also

show that when the period is not an integer multiple of the time step size, the original

moving window method fails to converge to zero error. e projection method converges

more quickly than the resampled moving window method.
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C 4

N E  C

To illustrate a how the developed RC laws may be implement, a numerical example is pre-

sented in this chapter based on an actual cam follower system. e example in this chapter

are based on the experimental cam follower setup developed at Creative Machine Design

Lab at National Chen Kung University (NCKU). e cam follower testbed at NCKU uses

a Panasonic MDMA2002P1G servomotor driven by a MEDDT7364 driver and controlled

with a dSPACE DS1102. e follower position, follower force, relative sha position, and

sha torque are available measured outputs. Velocity estimates of the follower and sha

can be made using the position readings. e full specifications of the hardware can be

found in [15] and dimensions of the cam follower systems are shown in Table B.1 of the

appendix.

e first step in implementing the control law is acquiring a model of the system.

e system as described in [15] has a PI feedback controller on top of the existing PID

feedback control loop of the servomotor. System identification is performed without the
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outer feedback loop so that the order of the approximated system is of a manageable order.

e torque due to the cam follower can be treated as external disturbance, so by removing

the follower mechanism, a LTI model of just the servomotor with an inertial mass and its

controller can be made. A swept sine is applied as an input with a zero order hold at

1000 Hz with a base command speed of 170 RPM, magnitude of 60 RPM, with a starting

frequency of 1 Hz and increasing to 80 Hz. e output is likewise sampled at a rate of

1000 Hz.

A discrete linear ARX model constructed in Matlab using the swept sine as input and

sha position and velocity as outputs. e equivalent 4th order state space representation

produces an output with a 90.18% fit on sha velocity and 99% fit on sha position. e

numerical simulations which follow in this chapter are based on this model.

4.1 Linearizing about a periodic trajectory

e discrete state space linear model including the nonlinear torque load T (θ) from the

follower can be wrien as

xl[k + 1] = Axl[k] +Bul[k] +KT (θ) (4.1)

yl[k] = Cxl[k] (4.2)

where the output states y[k] = [ω[k] θ[k]]T . e loading torque T (θ) can be computed

using the methods described in Chapter 1 or can be recovered from the torque measure-

ments. e actual cam in the testbed setup is a modified sine cam, composed of piecewise
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sine components. For illustrative purposes the cam li curve in the following is defined

entirely by a single cosine function s(θ) = hc cos(θ). e actual modified cam may be

treated in the same way, divided into its piecewise components. From Eqn. (1.2), the

loading torque for the cosine cam can be described as

T [k] = −ks(sp + hc cos(θ[k]))hc sin(θ[k]) (4.3)

Again by following the procedure outlined in Chapter 1, the nonlinear torque can be dealt

with by linearizing the system about a nominal trajectory. is trajectory would ideally

be the command required to produce the desired output and the desired output itself. Of

course it is generally not possible to easily determine the required command. Instead, an

initial nominal command u∗[k] is used to generate a nominal output y∗[k]. Noting that

the torque is a function of θ[k], which is a component of the output state vector yl[k], we

substitute the expression of θ[k] = θ∗[k] + ∆θ[k]. A linearized expression for the torque

can be wrien as

T [k] ≈ dT [k]

dθ

∣∣
∗ ∆θ[k] + T [k]

∣∣
∗ (4.4)

is linearized approximation for the torque can then be used in the original sys-

tem. By expressing the state vector as xl[k] = x∗[k] + x[k] and output vector as

y[k] = y∗[k] + y[k], where x[k] and y[k] are deviations from the nominal state and output

vectors respectively, what remains is a system of only the deviations. is is the periodic
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coefficient system

x[k + 1] = A[k]x[k] +Bu[k] (4.5)

y[k] = Cx[k] (4.6)

where A[k] = A + KC2Tl[k] is now a periodic coefficient state matrix, with the matrix

C2 defined such that ∆θ[k] = C2x[k] and

Tl[k] =
dT [k]

dθ
= hc

2ks sin(θ∗[k])2 − hcks cos(θ∗[k])(hc cos(θ∗[k]) + sp) (4.7)

e system is now linear with periodic coefficients and can therefore be used to con-

struct the learning matrix as described in Chapter 3. As the learning laws converge to

the desired output, the nominal output used to create the initial system may no longer be

in the region where small angle approximations are valid. erefore the system should

be linearized about the updated output at some point during learning. is computation

is not trivial, therefore in actual implementation care must be taken to when and how to

relinearize the system.

4.2 Following the prescribed trajectory using proposed

RC laws

e practical application of RC in the cam follower system is to obtain zero error while

tracking a periodic trajectory. e cam speed trajectory can be designed such that it
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minimizes some design cost such as wear or friction. Details on the construction of a

speed trajectory are given ins Appendix B. is variable speed trajectory is used as the

initial command to the system. e steady state output to this input is used as the nominal

trajectory which the system will be linearized about. From this it can be noted that the

period for each rotation is not constant which also exemplifies the need to have a method

to accommodate non-integer number of steps per period. e desired cam speed profile

is computed as a spline, but to increase computation speed is evaluated at evenly spaced

angles and stored in a vector. Linear interpolation is then used to compute the desired

speed at any given time.

In the following examples, the proposed learning law aempts to track the prescribed

trajectory on the linear system with a nonlinear disturbance torque which is a function of

cam sha angle. e learning matrix is constructed with the periodic coefficient system

matrices. Figure 4.1 shows the root mean square error of the frequency response based

learning law of Chapter 3 when tracking a constant velocity. Figure 4.2 shows the root

mean square error of the frequency response based based learning law when tracking the

cam sha speed trajectory described in Appendix B. In both cases the learning gain is set

to ϕ = 0.25 and the final RMS error is around 10−3.

e actual period of the previous rotation must be continuously computed in order to

update the projection window so that it remains in-sync with the nominal trajectory. In

the examples in Figures 4.1 and 4.2, the value of the period is only updated once per cycle.

If the actual period is computed at every time step, the learning is smoother however the

final steady state error is higher.

One may question why the steady state error is not a numerical zero. is is due to
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Figure 4.2: Variable velocity trajectory

the way in which the nominal trajectories are stored and evaluated. Errors are introduced

by discretizing the b-spline and using linear interpolation to evaluate. By using a finer

decimation, error can be reduced at the cost of memory storage.
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C

is work develops new repetitive control laws for periodic coefficient systems. e work

was motivated by a cam follower system whose follower produces a nonlinear torque.

is torque is a function of the camsha angle, which is state variable. Linearization of

the system about a periodic trajectory produces a linear system with periodic coefficients.

ough initially motivated by the cam follower system, these control laws are applicable

to any nonlinear system which may be linearized about a periodic trajectory.

Development of the RC laws were guided by effective methods developed for constant

coefficient systems. Namely using a compensator which mimics the inverse frequency

response of the system. A procedure to map input frequency components to output fre-

quency components was developed and presented in the form of a frequency response

matrix of the periodic coefficient system. Several RC laws were developed using the in-

verse of this matrix as a basis. A procedure to determine stability of the laws using Floquet

theory also presented.

e RC laws were then further developed to consider the case where the period is not

an integer number of sample times. By utilizing the projection method from adaptive con-
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trol theory, the frequency components can be computed for any arbitrary period. Cutoff

filters designed specifically for periodic coefficient systems were the developed. Stability

analysis for these new RC laws were performed using the state transition matrices for an

entire period.

Finally, numerical experiments of a cam follower testbed show a possible scenario

where the developed RC laws may be employed. In addition to the development of the

RC laws, optimization to the follower spring and trajectory is also presented in the ap-

pendices. Taken as a whole, this work covers a process in which a cam follower system

is optimized, from trajectory planning and spring optimization to controller design.
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A A

N

α(θ) Pressure angle

α(s) Helix inclination

δ Spring deflection

ρ Material density

Θ normalized cam position

θ cam position

θ(s) Helix angle

θ(t) Cam sha angle

A Cross section area of spring

a(t) follower acceleration

E Young’s modulus

F Spring force

G Shear modulus

h cam stroke

I Moment of inertia

J Polar moment of area
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j(t) follower jerk

L Length of element

L0 Free length

Li Installation length

mf Mass of follower

N Number of coils

n Number of elements per coil

p(s) Spring pitch function

P1−7 Spring pitch control points

R Radius of spring helix

r Radius of spring wire

rb Cam base radius

rf Roller follower radius

rp Cam pitch radius

s Arc length

s(t) follower displacement

v(t) follower velocity

x(t), ẋ(t), ẍ(t) Cam li, velocity, acceleration
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A B

D    



B.1 Normalized cam equations

In analyzing cam follower systems, it is helpful to first normalize the system about one

rotation of the cam, creating a dimensionless system. is section follows the notation

in Ref. [14]. Given the cam angle θ for time t and a follower displacement function s(θ),

one can first write the li, velocity, acceleration, and jerk as

s(t) = s(θ(t)) (B.1)

v(t) = s′(θ(t))ω(t) (B.2)

a(t) = s′′(θ(t))ω2(t) + s′(θ(t))ω̇(t) (B.3)

j(t) = s′′′(θ(t))ω3(t) + 3s′′(θ(t))ω(t)ω̇(t) + s′(θ(t))ω̈(t) (B.4)

where s′(θ(t)) = df(θ(t))
dθ

. en let hc be the total stroke of the follower for one cam

rotation and let τ be the period of one revolution. One can then construct the normalized
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angle Θ(T ) = θ(t)/2π, normalized time T = t/τ , and normalized li S(T ) = s(t)/hc.

S(T ) = S(Θ(T )) (B.5)

V (T ) = S ′(Θ(T ))Ω(T ) (B.6)

A(T ) = S ′′(Θ(T ))Ω2(T ) + S ′(Θ(T ))Ω̇(T ) (B.7)

J(T ) = S ′′′(Θ(T ))Ω3(T ) + 3S ′′(Θ(T ))Ω(T )Ω̇(T ) + S ′(Θ(T ))Ω̈(T ) (B.8)

e actual follower states can then be wrien in terms of the normalized states

s(t) = hcS(T ) (B.9)

v(t) =
hc

τ
V (T ) (B.10)

a(t) =
hc

τ 2
A(T ) (B.11)

j(t) =
hc

τ 3
J(T ) (B.12)

Likewise, the actual cam position and speed can be wrien in terms of the normalized

states

θ(t) = 2πΘ(T ) (B.13)

θ̇(t) =
2π

τ
Θ̇(T ) (B.14)

B.2 Trajectory optimization

Determining the cost functional for optimizing cam profiles has been a subject of study in

many works [6, 7, 5, 4]. e core issue is determining which of the numerous competing

design tradeoffs to focus effort on. For example, to reduce the energy loss due to friction

one may decide to minimize the contact force between the follower and cam. However,

doing so naively may lead to increased residual vibrations.
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e problem addressed here is somewhat different. Rather than constructing an en-

tirely new cam profile, the cam profile must be created using an existing cam profile.

ough the methods to create the new cam profile are different, the goal is the same,

to create a beer apparent cam profile. A good cam is of course determined by its des-

ignated usage, however there are some universal performance metrics which all cams

should strive to optimize. Reducing the energy loss due to friction, minimizing wear, and

reducing Hertzian contact stress are all related to the contact force. erefore it should

be a primary goal to minimize the contact force. e follower force can be wrien as

ff (t) = mfa(t) + kss(t) + sp (B.15)

ff (t) = mf
hc

τ 2
A(T ) + kshcS(T ) + sp (B.16)

and the normalized follower force as

Ff (T ) = ff (t)/kfhc (B.17)

Ff (t) =
mf

kfτ 2
A(T ) +

ks
kf

S(T ) + Sp (B.18)

A cam optimized for a given design speed should not experience vibrations if the

model is correct. Running the cam off the design speed however may result in residual

vibrations. To minimize residual vibrations, one must aim to reduce the variations in the

follower force, which is due to the cam acceleration. is leads to the cost functional:

F =

∫ 1

0

(
W1F

2
f (T ) +W2J

2(T )
)
dT (B.19)

where W1 and W2 are weights. Reference [6] determined that penalizing the follower

force directly is ineffective as a means to minimize the follower force when optimizing

a cam shape using the third derivative of the cam shape. at work recommends a cost

functional which uses the third derivative of the follower force rather than using the
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follower force directly. When using the cam speed as the control variable, the resultant

optimizations do not significantly differ.

Cam morphing

Rather than optimizing the cam follower trajectory for dynamics consideration, one may

instead desire to strictly emulate the behavior of another cam. Given a normalized desired

follower trajectory Sd(T ) defined for 0 to 1, one can construct the simple cost functional

like Rather than optimizing the cam follower trajectory for dynamics consideration, one

may instead desire to strictly emulate the behavior of another cam. Given a normalized

desired follower trajectory Sd(T ) defined for 0 to 1, one can construct a simple cost func-

tional like

J =

∫ 1

0

(
(Sd(T )− S(T ))2

)
dT (B.20)

One might also include additional penalties so that the cam follower system is more robust

for a wider range of cam speeds.

B.3 Cam speed representation

e cam speed is chosen as the control variable in the optimization. ere are many

possible candidate cam speed representations, for instance reference [15] uses an n-point

Bezier curve. ough it is possible to have C2 continuity using Bezier curves, one loses

local control to enforce it as the control points depend on each another. erefore there

exists a large number of plausible curves which cannot be represented by Bezier curves.

So here, rather than a Bezier curve a B-spline is used. e B-spline, or basis spline, is a

piecewise polynomial function whose piecewise segments are Cp−1 continuous.
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B-splines are defined using two vectors, a knot vector with non-decreasing knots

K̄ = {k0, k1, ..., km} and a vector of control points sometimes called a control poly-

gon P̄ = {P0, P1, ..., Pn}. e knots define the extend of the control of the control

points. e degree of the spline is defined as p ≡ m − n − 1 and internal knots are

K̄i = {kp+1, kp+2, ..., kn}. If the internal knots are uniformly spaced, the B-spline is

known as a cardinal B-spline or uniform B-spline. If there are no internal knots, then the

B-spline is a Bezier curve.

By creating control points which are equally spaced along normalized time, we can

create a cam speed spline which can represent a wide variety of plausible speed curves

which is easily integrable and differentiable. To construct a cubic spline one could set first

4 knots to be the same and the last 4 knots to also be the same.

ese are so called Bezier end conditions which starts and terminates the curve on the

first and last control points. In addition, the curve is tangent to the control polygon at both

ends. As the cam speed curve should be periodic, a boundary condition imposing the first

and last control points to be equal must be enforced. is will also automatically enforce

a zero acceleration boundary condition on the end points. To automatically enforce a zero

jerk boundary condition, one could duplicate the start and end control points.

B.4 Example cam speed trajectory optimization

e cam parameters used in this example are the same as in reference [15] and are pre-

sented in Table B.1. e rise and return segments are modified sines. A cublic B-spline

defining the control velocity with 20 control points is initially set to 1.

Boundary conditions require Θ̇(0) = Θ̇(1). An equality condition requiring the cam

to make a single normalized rotation is wrien as
∫ 1

0
Θ̇(T )dT = 1. To ensure contact with

the cam the normalized follower force has the inequality condition Ff > 0. A minimax

optimization is performed to compute the control points which produces a B-spline that
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Figure B.1: Optimized speed trajectory of modified sine cam

minimize the cost functional from Eqn. B.19.

is optimized cam speed trajectory produces Figure B.1. e solid curve shows the

initial cam li curve while the doed line shows the apparent cam li curve aer opti-

mization. One notices that the optimization essentially creates ingress and egress ramps

for the top dwell portion. e dashed curve represents the normalized cam sha posi-

tion which is computed by integrating the cam sha speed, illustrated with the dash-dot

curve. ese are the two curves which must be linearized about to produce the periodic

coefficient system.
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Cam base radius rb = 40 mm
Cam inertia Ic =0.002306 kg·m2

Cam stroke hc =25 mm
Cam initial dwell duration β1 = 60 degrees
Cam rise duration β2 =120 degrees
Cam peak dwell duration β3 =60 degrees
Cam fall duration β4 =120 degrees
Follower mass mf = 1.075 kg
Follower radius rf = 12 mm
Follower spring stiffness ks =2.79 N/mm
Follower spring preload length sp = 5mm

Table B.1: Cam follower system parameters
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A C

M  NI V P

V S  U  A

C O

C.1 Introduction

As the U.S. federal government mandates increasingly more strict regulations on fuel

efficiency in automobiles, even minute improvements in the engine are sought aer. One

component that has been targeted for improvement is the engine valve train. e valve

train facilitates the engine breathing by opening and closing the intake and exhaust valves

which are currently universally actuated by cams. ere has been a concentration by

researchers in the past to design cams which improve certain performance aspects such

as minimizing the amount of vibration or reducing contact stress [2] [1] [8] [5] [4] [3] [6]

and [7]. By minimizing the contact force between the cams and the valve followers, the

frictional forces, which contribute up to 15 percent of all friction losses [48] in the engine,

are reduced. In addition when variable cam li profiles are introduced and combined with

variable cam timing, the valve train may be designed to act optimally for a large range of
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operating speeds [49].

e aim of this work is to study one oen overlooked component of the engine

valve train, the valve spring. e valve spring provides the force to keep the cam and

follower in contact. Previous works on cam optimization used an ideal linear spring to

model the valve spring. However, above a certain frequency, the internal resonance has

a significant effect on the spring stiffness [50]. A spring model that captures the effects

of internal resonance and varying pitch is developed. Insight on varying pitch is gained

by using this spring model to evaluate a cam follower system. e spring model will be

used when developing methods for optimizing the valve train considering the spring

pitch as an additional optimization variable.

Cam profile design:

e current state for designing automotive valve li profiles has seled for the blend-

ing of simple segments of polynomial with trigonometric functions [38] [51] to manually

manipulate the characteristic curves for li, velocity, acceleration and jerk for beer per-

formance. For automotive cams, the li profile can be separated into three distinct seg-

ments, the opening ramp event, the main event, and the closing ramp. e ramp events

(cosine, rectangular, or trapezoid) are used to minimize backlash [52] and control valve

seating velocity and seal. e main event is generally a polynomial curve computed using

polydyne theory to smoothly join the two ramps. Beer performance should be expected

by using optimal control theory to assist the cam designer as the most commonly used

commercial cam design sowares rely on the designer iteratively manipulating a control

spline and running simulations on simple valve train models.

Early investigations in optimal control theory applied to the design of high speed cam

follower systems were done in [4] and [6]. e notion of beer relative performance must

first be defined as is done by Sun et al. in [6] for high-speed cams operating at a fixed

speed. Two competing optimality criterion are introduced by the authors of [4], minimiz-
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ing the residual vibration and minimizing the contact stress. eir conclusion was that

to minimize residual vibration, a cycloid-like profile is desired and to minimize contact

stress, a parabolic-like profile is desired. e problems raised by high nonlinearities that

arise from the contact stress cost functional were not able to be easily addressed at the

time.

Similarly, the concerns of [6] was to increase the life of the cam by reducing the peak

forces (Hertzian contact stress) and minimizing the energy consumption due to friction.

e final recommendation for a cost function is to penalize the third derivative of the

follower force
…
F f and jerk

…
Y :

J =

∫ 1

0

(W1

…
Y

2
+W2

…
F

2

f )dτ (C.1)

with W1 and W2 as designer selected weights. Increasing the former places emphasis on

minimizing contact stress while increasing the laer emphasizes reducing the residual

vibrations. e proposed cost functional and system was later easily implemented in

MUSCOD-II [53], a suite of optimal control solvers, as it is quadratic in both the control

and state variables.

Of interest for engine valve-train usage is how the proposed cam behaves at off-

nominal design speeds. To avoid valve float, contact must be maintained between the

cam and follower for all operational speeds. Separation for the optimal cam occurs at

a higher speed than the polydyne cam with a lower spring pre-load but the residual

vibrations are higher, introducing another compromise. For an automotive cam that may

run from 400 rpm to 4500 rpm, minimizing the single cost functional at a fixed speed is

less than ideal as the minimum acceptable follower contact force Fc must be kept for the

entire range to prevent separation. [1] and [5] address the issue by designing the cam to

minimize the sum of the cost functionals for a chosen finite set of speeds.
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Optimizing Spring Properties to Maintain Contact:

To maintain contact between the cam and the follower in an engine, a helical spring is

almost universally used. At high speeds, separation occurs between the cam and follower

when the inertial effects of the valve follower overwhelm the force of the spring. is

behavior has been called valve jump or float and has been studied in [54]. Although it

is occasionally beneficial to have the follower leave the surface of the cam, such as in a

race engine where air exchange may be improved [18], the resultant impact with the cam

or valve seat makes float generally undesirable. e subsequent bouncing aer impact

prevents the valve from maintaining a complete seal.

Increasing the pre-load of the spring will solve the valve float problem but at the cost

of increasing the contact force and thus the contact stresses, wear, and fuel consumption.

In addition, the internal wave propagation of the spring coils results in separation at a

lower speed than would be expected using an ideal linear spring model as well as causing

higher residual vibrations.

One method to resolve these issues is to use a variable pitch spring. By varying the

pitch, the force to displacement curve has stiffening non-linearity and the internal coil

collisions damp the spring motion [19]. e first property is desirable as the varying

pitched spring allows for the ability to provide only the necessary force to ensure cam to

tappet contact throughout the operating range.

is current work develops a model to be used in optimizing the pitch of the valve

springs. is extra variable in spring design has not been previously studied in terms of

optimization for cam follower systems. With an accurate model, a valve spring’s pitch

may be optimized such that the spring provides sufficient force to maintain contact while

limiting the residual vibration to a tolerable amount. By decreasing the applied spring

force, the friction between the cam and the follower are reduced and leads to less energy

loss as well as reduced component wear. Previous work has concentrated on produc-

ing a cam which minimizes specified cost functionals. Future works will concentrate on
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Figure C.1: Physical considerations in cam optimization

optimizing both the cam and the spring pitch.

C.2 Valve Train Basics

e automotive valve train has evolved steadily over the past several decades. In many

regards it is the most critical component with regard to engine performance. e valve

train itself consists of essentially four components: the cam, the valve spring, the valve

follower, and the valve. e cam is a rigid oblong disk that is driven by the cranksha of

the engine, rotating at half the speed of the cranksha for four stroke engines. In modern

engine design it is common for each combustion cylinder to have two intake and two

exhaust valves with a single cam lobe actuating each valve.

When optimizing any component of the engine, several interconnected considerations

must be evaluated. ese interconnections for the valve train are shown in Fig. C.1 from

[2]. Some of these considerations were discussed earlier in terms of trade offs. Directly

relating to the valve spring is decreasing the contact force. Lower contact force means less

friction and thus lower fuel consumption, however it would also mean a lower separation

speed and increased residual vibrations. When coupled with optimizing the cam, the

complexity increases significantly.

Valve train configurations in use today can be generally classified into three categories
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[52]: direct acting, push-rod, and cam on rocker. e direct acting follower shown in Fig.

C.2(B) has a cam directly forcing the valve follower through a tappet. Due to cam and

tappet wear, the space between the two called lash increases so slivers of metal called

adjustment shims need to be placed under the tappet to reduce the lash back to the man-

ufactures specifications. Without regular maintenance of the lash, the performance of

the engine decreases and in extreme situation may lead to damage to the valve head and

seat. e use of hydraulic lash adjusters eliminates the problem by using the engine’s

oil pressure to maintain a consistent lash. Although not modeled here, it is necessary to

consider the hydraulic lash adjuster when optimizing the valve train as it has a significant

affect on valve seating. Hydraulic lash adjusters are used in both the cam on rocker arm

(CORA) and push-rod designs. In a CORA valve train, the adjuster is placed in the head of

the engine block. A finger follower rocker arm pivots about the tip of the adjuster while

the cam depresses the rocker arm either directly on a finished rounded surface or on a

roller placed within the rocker arm as shown on Fig. C.2(A). e push-rod valve train

positions the camsha near the cranksha of the engine is shown in Fig. C.2(C). A long

rod generally with a roller follower and a hydraulic lash adjuster is aached to a rocker

arm is actuated by the cam lobe. Most American automobile manufacturers favored this

configuration for decades. It is only relatively recently that American manufacturers have

switched to moving the camsha above the pistons. e long push-rod leads to severe

vibration problems at high speeds essentially limiting the maximum speed. e flat face

direct acting follower is used in this study as the other configurations may be interpreted

as a flat face follower with some special conditions on the tappet.

C.3 Modeling of the valve spring

As with any modeling, when implementing a spring model for use in optimization, a

balance between numerical efficiency and the level of model refinement must been made.
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Figure C.2: Various valve train configurations

ere are three key behaviors that the valve spring model must capture.

1. Due to the varying pitch, the model must be able to replicate the spring’s non-linear

stiffness.

2. e internal dynamics of the spring coils called spring surge.

3. e effects of a coil coming into contact with another coil called coil clash or coil

collisions.

Variable pit spring constant:

As the name implies, in a varying pitch spring the pitch or angle of inclination of

the spring wire changes along its length as seen on the le of Fig. C.3. As the spring is

compressed, the more gradually pitched coils, which are less stiff and closer in proximity

to each other, come into contact as seen on the right of the figure. is action is called coil

close. Unlike a uniformly pitched spring, the coils close at differing times. As the number

of active coils is reduced, the spring becomes more stiff.

In Fig. C.4 is a series of images depicting a valve spring simulated using a 7-mass

spring model. e propagation of a wave can be seen as the spring is released from com-

pression. Aer the spring has returned to its installation length, coils are still moving.

Solutions to the forced vibration of helical springs is given by [55][50] and [56]. How-

ever these do not consider varying spring pitch. In [57], a general model is developed

which does consider varying pitch and [16] develops a model which includes varying
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Figure C.3: A varying pitch spring
uncompressed and partially com-
pressed

Figure C.4: Simulation of valve spring de-
picting valve surge during closing of valve

pitch and coil clash. None of these provide closed form solutions which would be suitable

in optimization. Instead for this work a simple lumped multi-mass spring-damper model

is used. e individual spring stiffnesses and coil positions are determined by the pitch

through the spring.

e equation used for the stiffness of the spring sections is derived by [16]. Assuming

a constant spring radius r and a single active coil is represented by a mass element, the

stiffness k is given by:

k =
Es + IBGsAJ cos2 p

LIB cos2 p(EsJ cos2 p+GsJ sin2 p+ Esr2 cos2 p+ 3GsAJLr2 sin2 p)
(C.2)

where: IB moment of inertia of the wire cross-section about spring axial direction, Es

elastic modulus of spring material, Gs shear modulus of spring material, A area of spring

wire cross section, J polar moment, p pitch, and L is the length of the coil found by

L = 2πr
√
1 + tan2(p).

Friction:

Within the spring there is internal damping, however it is oen the case, particularly

for uniformly spaced springs, that the internal damping is not sufficient to eliminate the
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internal wave motions. One technique that manufacturers use is using the friction be-

tween the spring and a cylindrical sleeve or an internal spring to dampen the motion.

Here the friction force of each coil Ff is modeled as Coulomb friction:

Ff =

 −F |F | ≤ µsFn

−sgn(ẋ)µkFn |F | > µsFn

(C.3)

where Fn is the normal force between the spring coil and the sleeve, F is sum of all

forces acting on the coil excluding friction, µs the coefficient of static friction, and µk the

coefficient of kinetic friction. In an actual spring, as the spring is compressed the radius

expands and the normal force increases, however this aribute is not considered in the

model.

Coil Collisions:

e energy dissipated from coil collisions arises from several mechanisms including

elastic waves, plastic deformation, viscoelastic work. An overview of collision modeling

is given in [58]. A penalty method can be applied on contact creating a continuous force.

e most well known is the non-linear Hertz law for sphere to sphere collision Fc = kcδ
n,

where n = 1.5 for metallic spheres, δ is the approach or penetration distance, and kc is the

general stiffness constant dependent on the sphere dimensions and material properties.

Generally for metallic collisions the viscous work is insignificant and the collision behaves

elastically, however due to the high speeds involved in the coil collisions, it cannot be

neglected. e coil contact force uses the model developed by [59] that extends the non-

linear Hertz law to account for the viscous damping due to material hysteresis shown in

Eq. C.4.

Fc = kcδ
n

(
1 +

3(1− e2)δ̇

4δ̇i

)
(C.4)
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where e is the coefficient of restitution and is assumed to be constant, δ̇i is the relative

velocity at impact, and δ̇ is the instantaneous relative velocity of the colliding coils. e

more general contact force in Eq. C.4 should still be only applicable for sphere-to-sphere

contact, however [60] states a choice of n from 1 to 1.5 gives a good approximation of

cylinder-to-cylinder contact. ough models do exist for cylinder-to-cylinder collision

such as [61], they are typically non-linear as well as implicit and do not account for hys-

teresis damping. e stiffness of the spring coils on collision used in Eq. C.4 is given in

[16]:

kc =
2Es

3(1− ν2)

(
4

d

)−2

(C.5)

where d is the spring wire diameter, Es is the modulus of elasticity, and ν is Poisson’s

ratio. e approach distance δ for two cylinders is given in [60] as:

δ = [mδ̇i(g + 1)/2kc]
1/(1+g) (C.6)

where g = 3/2, and m is the mass of the coils which are in contact during the collision.

For simulations done in this paper, the penalty method is sufficient, however it

presents problems when viewed from the perspective of optimization. Using the penalty

method requires extremely small step sizes due to the high material stiffness. e alter-

native is to apply complementarity theory and use a constraint method as in [62] which

assumes that a collision occurs instantaneously and stops the integration at that point.

e integration is then restarted with updated initial conditions aer impact.

In Fig. C.5, the force-displacement diagram is presented for a 7-mass spring using the

penalty method to handle coil impacts. At no displacement the spring exerts 200 N/m of

pre-load force. As the coils close, the spring stiffness gradually increases resulting in a

non-linear force curve. e spring is displaced at a low speed so that there is no wave

propagation thus the curve is essentially piecewise linear.
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Figure C.5: Force displacement diagram of the lumped massed spring

C.4 Example of spring model use

e equations of motion for the lumped-parameter spring model can be wrien as:

Mẍ(t) + Ff (ẋ) + Kx(t) = F(t)− Fc(x, ẋ) (C.7)

where x is the position of the coils, M is the mass matrix computed using the density

of the spring material and the coil length and the mass of the follower, the friction force

vector Ff is found using Eq. C.3 for each mass, the stiffness matrix K is found using Eq.

C.2, F is the forcing function vector(cam acceleration applied to the follower mass), and

Fc is the force of impact from Eq. C.4 (zero on no penetration). e material properties

and dimensions of the steel spring and follower are ρ = 7800 kg/m3, modulus of elasticity

Es = 1.89e5 N/mm2, coefficient of restitution e = 0.6 is assumed to be constant, Poisson’s

ratio ν = 0.3, wire diameter d = .7 mm, spring radius r = 10 mm, installation length is

15 mm, and mass of the follower is 88 g. To examine some behaviors of the spring model

two sample cases are used. e first illustrates how valve float occurs at a slower speed

than predicted when using an ideal spring because of the internal dynamics of the spring.

e second example demonstrates how varying the pitch can prevent the float using the

same average stiffness as a uniformly pitched spring. e cam li profile used in these
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Figure C.6: Cam li profile, velocity and
acceleration used in experiment

Figure C.7: Peak valve float at 4125 RPM
in one mass spring model

Figure C.8: Force of ideal and multi-mass springs

two examples is a constant velocity ramp variety shown in Fig. C.6. is is a commonly

used automotive cam type favored due to its smooth rise transition which is intended to

avoid excessive vibrations.
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Valve Float:

Using an ideal linear spring with a stiffness of 16000 N/m and the cam rotating at a fast

speed of 4125 RPM, the spring force is sufficient to keep the cam and follower in contact

as shown on the le of Fig. C.8 as the force of the follower does not exceed the spring

force in the negative direction. As the cam rises, the force of the valve spring grows in

proportion to the displacement of the cam. Even as the cam reaches its limit of maximum

acceleration, there is still a sufficient gap between the force of the valve and the force

applied by the spring.

Using the 7-mass model with the same amount of spring pre-load and uniform pitch,

the valve train exhibits float where the arrow indicates on the right of Fig. C.8. e

oscillation of the multiple masses results in an unsteady force applied by the spring.

To solve the problem one could increase the spring pre-load, however the increased

stiffness would also cause increase friction and wear. An alternative solution is to adjust

the pitch throughout the spring so that vibrations are damped and the spring stiffness is

progressively increased.

Adjusting pit to prevent float:

In the second numerical experiment, the spring pitch is adjusted while the average

stiffness of the spring is constrained. In a one mass spring with the camsha rotating at

4125 RPM and the average stiffness of the two springs is 13938 N/m, the stiffness of the

first spring k1 is adjusted. e stiffness k1 is for the spring nearest the cam. e resultant

valve float height is shown in Fig. C.7.

As the stiffness of k1 reaches approximately 16000 N/m, valve float is prevented. As the

single spring mass is forced into contact with the ground the effective spring stiffness keff

increases to k1 which is sufficient to maintain contact. is idea can be extended to the

two mass model to create a progressive rate spring. As the number of masses increases,

the effects of coil collisions becomes more noticeable. e stiffness and thus the spacing
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decreases away from the cam. ose closely packed coils are the first to impact and close.

us as the spring is compressed, the number of active coils decreases and the overall

spring stiffness increases. e closely packed coils are also the first coils to collide and

dissipate energy.

C.5 Summary

e work presented builds a spring model which is numerically simple enough to be used

in optimization. e spring model exhibits the internal dynamics necessary to accurately

estimate the force of a spring in a high speed cam follower. A simple one mass spring was

evaluated by varying the individual pitches while maintaining the same average stiffness.

e limit where the spring would no longer result in valve float was found. e dispar-

ity between using an ideal linear spring model and multi-mass spring was demonstrated

by showing how the ideal linear spring model would over estimate the spring force in

situations where using the 7-mass lumped model spring would result in valve float.

e next logical step is to optimize the spring design for a fixed cam and constrained

to have no valve float. e spring parameters are adjusted such that Hertzian contact

stress or the energy loss per cycle is minimized. Aer this is performed successfully a

simultaneous spring and cam optimization can be done. e cam introduces additional

considerations such as area under the cam li profile. ese extra considerations substan-

tially increase the difficulty in defining the optimization criterion and constraints, and the

authors’ will use their previous experience with this process to combine the variable pitch

spring optimization with the cam optimization.
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A D

I    

    

     

 

D.1 Introduction

ere have been numerous investigations into reducing energy loss in cam follower

systems. In most of the studies, the focus is on optimizing the cam profile itself

[4, 2, 5, 6, 7, 8, 9]. At a given cam speed, or set of cam speeds, the contact force and

other cost metrics, such as Hertzian contact stress or residual vibration, is reduced by re-

shaping the cam. Other investigations have targeted reducing the masses of the various

components within the cam system [63] to reduce contact force.

One area which has not received as much aention for optimization is the shape of the

follower spring, specifically the pitch. By varying the pitch, spring resonance is thwarted

and provides for a progressive rate [57]. ough variable pitch springs have been used in
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applications such as engine valve trains, there is a lack of literature available regarding

the effects of the nonlinearities on energy savings.

In [57] a generalized helical spring model is presented which exhibits progressive be-

havior but does not include coil contacts. It is due to the coil contacts that the most sig-

nificant changes in spring rate occur. In [17] an improved method for computing natural

frequency in variable pitch springs is developed and demonstrates the significant effects

of the closed coils.

is study makes an initial assessment of the possible energy savings that can be

achieved by using a spring designed with a variable pitch. e contact force, also called

follower force, is computed as the difference between the applied force from the cam and

the force applied by the spring. is determines the resistive torque and the resulting

energy loss for a cam cycle.

e goal of the paper is to minimize the integral of the contact force over a cam cycle

duration.

D.2 Overview

In the majority of cam follower systems, a helical compression spring is used as the forc-

ing element to maintain contact between the follower and the cam. e choice of spring

parameters is dependent on the demands of the application, chiefly the physical con-

straints on dimensions and the amount of force that is provided throughout the compres-

sion range. Minimizing this force between the cam and the follower is important as the

cam-follower system itself may account for 15 percent of the energy usage in some en-

gines [48]. Additionally, reducing the spring force also mitigates the wear on the tappet

and cam.

When choosing a linear spring for a particular cam, the designer must evaluate the

trade-off between the spring preload, determined by the free length and installation length
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of the spring, and the stiffness. A lower preload results in lower energy loss during the

dwell and initial rise portion of the cam cycle at the cost of a high stiffness to counteract

the applied force of the cam during the rise to prevent follower separation. While using a

less stiff spring requires a higher preload and thus a higher energy loss during the dwell.

A spring with a nonlinear force-displacement relationship should be able to achieve both

desirable qualities of low force during dwell and higher force during the rise to prevent

potential follower separation.

It is noted that cam follower systems with a lash, a gap between the follower and

cam during dwell, such as on automotive valve trains, do not experience as significant

gains from reducing the preload. However the lower initial force and lower applied force

through the rise portion of the cycle still results in an advantage over the constant pitch

cam.

Of the bevy of parameters that could be varied to achieve a progressive rate, changing

pitch is one that can be manufactured without much additional effort, using the same

wire material and CNC spring coiling machine to form a spring with same installation

dimensions as a preexisting constant pitch spring. By varying the pitch along the spring

wire, the time and position of the coil contacts can be prescribed such that the spring

becomes progressively stiffer as it is being compressed.

Computed here is the dwell and rise portion of the cam cycle. In order to study the

effects of varying the pitch, a rudimentary spring model must first be developed. For

this study we choose to use an ideal spring model in the sense that the internal spring

dynamics are ignored.

D.3 Modeling of the spring

Due to the need to simulate the coil contact phenomenon, a numerical model is developed

to compute the static spring rate as the spring is being compressed. e dynamic and
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static equations for a general helical spring are derived in [57], which does not consider

coil close, while the dynamic and static equations for a conical spring are developed in

[16], which does include coil close. A helical compression spring with coil close is also

discussed in [64]. e static stiffness computations in this paper follow those developed

in [16] except rather than a conical constant pitched spring, a constant helix radius with

a varying pitch is used. As the numerical model discretizes the helix into segments with

constant pitch, the equations become simplified versions of those found in [16].

In order to describe the profile of a helical spring, some definitions need to be ex-

plained. Mathematically it is convenient to define the height at arc length s of the helix

as h(s). However engineers typically use pitches to describe the spring, so that is the

method which will be used here. Spring pitch is traditionally defined as the distance be-

tween two coils in a spring, though on occasion one may encounter ambiguity in the

nomenclature with terms such as pitch angle. Pitch is very oen defined only once per

coil as shown in Fig. D.1 with P1 being the pitch of the first coil. e lack of resolution

in defining pitch in this manner restricts the non-linearity in stiffness to being piecewise

constant, with the maximum number of step changes in stiffness equal the number of

coils minus one.

To achieve more freedom in manipulating the stiffness curve, pitch may be defined

as a continuous function of the arc length, p(s). By incorporating a pitch profile which

varies smoothly, the coil contact occurrences are dispersed throughout the compression

range and so the change in stiffness also varies smoothly. In the numerical experiments

performed in this paper, a B-spline is used to represent the pitch where the individual coil

pitches Pi form the control polygon.

Finally the height h(s) may be calculated from the pitch using the equation

h(s) =

∫ s

0

(
2r + p(ξ)

2πR

)
dξ (D.1)
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Figure D.1: Definition of pitch and inclination angle

e inclination angle α(s) as shown on Fig. D.1 can then be wrien as α(s) =

sin−1(h(s)/s)).

To account for coil contact and its contribution to the overall stiffness, the spring is

divided into n = 32 elements or segments per coil. Each spring element has a unique

stiffness because of its pitch and therefore the displacement of each segment is computed

separately as described in the following sections. Furthermore, the elements are restricted

to only vertical motions.

Defining the Coordinate Frame

e goal of the model is to compute the displacement for a given applied force and moment

to one end of the spring. e total displacement can be approximated by summing the

individual displacements of discretized points along the spring wire. To compute those

displacements, the force must first be described within a reference frame at that point.

is is achieved through the geometric description of the spring helix. A cylindrical helix

can be parameterized as

X̄(s) = R cos(θ(s))̂i+R sin(θ(s))ĵ + h(s)k̂ (D.2)
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Figure D.2: Coordinate system and dimensions definitions

e tangent at s is by definition computed by taking the derivative of X̄(s) with re-

spect to s

T̄ (s) =
dX̄(s)

ds
= −dθ

ds
R sin(θ(s))̂i+ dθ

ds
R cos(θ(s))ĵ + dh(s)

ds
k̂ (D.3)

Normalizing to get the unit tangent t̂

t̂(s) =
T̄

|T̄ |
=

−dθ
ds
R sin(θ(s))̂i+ dθ

ds
R cos(θ(s))ĵ + dh(s)

ds
k̂√

R2(dθ
ds
)2 +

(
dh(s)
ds

)2 (D.4)

e normal vector can be computed differentiating the tangent vector t̂ again

n̂(s) =
1

κ

dt̂

ds
=

Iî+ Jĵ + h′′k̂

D
(D.5)

where the curvature κ is defined as κ =
∣∣dt̂/ds∣∣, I = −Rθ′2 cos(θ), J = −Rθ′2 sin(θ),

D =
√
R2θ′4 + h′′2, h′ = dh(s)/ds, and θ′ = dθ(s)/ds. As the discretized model already
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assumes constant pitches for each node, the normal vector may be simplified to

n̂(s) = −cos(θ(s))̂i− sin(θ(s))ĵ (D.6)

Finally the third vector to complete the reference frame is the binormal b̂, which is resolved

by taking the cross product of t̂(s) and n̂(s)

b̂(s) = t̂(s)× n̂(s) =
h′ sin(θ)̂i− h′ cos(θ)ĵ +Rθ′k̂√

h′2 + (Rθ′)2
(D.7)

Model Equations

e static force applied to the spring P̄ = F k̂ can now be described in terms of the

components of the coordinate frame at a position s along the wire. Pt(s) and Pb(s) are

the components of the force vector P̄ in the reference coordinate system at s for the t̂(s)

and b̂(s) directions respectively.

Pt(s) = P̄ · t̂(s) = Fh′(s)√
R2θ′2(s) + h′2(s)

(D.8)

Pb(s) = P̄ · b̂(s) = FRθ′(s)√
h′2(s) + (Rθ(s)′)2

(D.9)

Similarly the components of bending moment M̄ = Rn̂ × P̄ = −RF sin(θ)̂i +

RF cos(θ)ĵ can be wrien as

Mt = M̄ · t̂ = FR2θ/
√

R2θ′2 + h′2 (D.10)

Mb = M̄ · b̂ = −RFh′/
√
R2θ′2 + h′2 (D.11)

With the force and moments now described within the reference frames, the relationship
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between force F and deflection δ can be described by Castigliano’s theorem

δi = ∂U i/∂F = F/ki (D.12)

where U i is the potential strain energy of the ith spring segment and δi is the deflection

in the k̂ direction for the ith segment. e summation of displacement δ’s of all the

nodes gives the total displacement of the spring. U may be computed by summing the

individual strain energy components for that ith segment. is method is used to find the

force-displacement relationship for each element of the spring.

e potential strain energies used in this model are axial strain, torsional strain, bend-

ing strain, and direct shear which are computed below. ese strains are used to compute

the corresponding displacements which are then summed to compute the deflection δi.

For axial tension and compression, i.e. forces that act along t̂, the axial stiffness rela-

tionship can be wrien as

kaxial =
Pt

δ
=

AE

L
(D.13)

e axial strain energy can then be wrien as

U1 =

∫
1

2
Ptδds =

∫ l

0

P 2
t (s)

2AE
ds (D.14)

Using Eqn. (D.12) and Eqn. (D.8), the defection δ1 due to force P̄ can be computed as shown

below in Eqn. (D.15) using the definition of α and the relation θ′(s) = cos(α(s))/R

δ1 =
∂U1

∂F
=

1

2AE

∫ l

0

∂P 2
t

∂F
ds =

Fl sin2(α)

AE
(D.15)

e torsional strain energy, which results from the angular distortion along t̂ due to

the moment Mt, is the largest contributor to the total strain. e torsional strain energy

and deflection can be wrien in a similar fashion to the tension equations as shown below
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U2 =

∫ l

0

M2
t (s)

2GJ
ds (D.16)

δ2 =
∂U2

∂F
=

1

2GJ

∫ l

0

∂M2
t

∂F
ds =

FlR2 cos2(α)
GJ

(D.17)

e bending strain energy which results from the change in curvature due to the

bending moment about b̂ is used to derive the deflection equation

U3 =

∫ L

0

M2
b (s)

2EI
ds (D.18)

δ3 =
∂U3

∂F
=

1

2EI

∫ l

0

∂M2
b

∂F
ds =

FlR2 sin2(α)

EI
(D.19)

Finally the direct shear contribution to deflection is computed

U4 =

∫ L

0

P 2
b (s)

2GA
ds (D.20)

δ4 =
∂U4

∂F
=

1

2EI

∫ l

0

∂P 2
b

∂F
ds =

Fl cos2(α)
GA

(D.21)

Coil Close

Coil close or binding occurs as a result of coils with smaller pitches being less stiff and

coming into contact with other coils. is phenomenon is handled by monitoring the

positions of each segment in the vertical direction. Once the difference in position for a

segment i and the segment immediately below i − n is less than 2r, that portion of the

coil is bound and the displacement contributions are no longer applied which behaves

like a perfectly inelastic collision. However the torsional moments still continue into the

closed coils according to [17]. Care must be taken to still account for the contribution.
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A torsion moment is applied to the endpoint equivalent to the magnitude of the entire

bound coil segment. e dispersion of the resonant frequencies throughout a range of

compression due to coil close is clearly a beneficial one as it mitigates the effects of spring

surge which if le uncontrolled may lead to a significant change in applied force and

follower separation.

Cam Model

e cam li profile used in the study is a symmetric dwell rise return (DRR) type resem-

bling a automotive cam. e return portion is not investigated since for the static case,

the spring compression would be identical to the rise portion for a knife-edge follower

where the applied force acts in line with center of the cam. Energy computations for a

flat face or roller follower requires a straight forward conversion to obtain a cam profile

so that the additional applied torque due to off centered loading during rise and return

may be computed. For the static analysis the result would yield no net loss nor gain if the

cam profile is symmetric.

e cam li profile is created by seing the negative portions of cos(ϕ) in the interval

−π < ϕ < π to zero. e profile is then discretized with 40 points and a weighted

linear least squares regression smoothing with a span of 8 data points is applied. Finally

a moving average with a span of 3 data points is applied and the curve is normalized.

ese data points are used to create the control points of a B-spline. e li curve can

then be scaled to the designed maximum li, in this case 20mm. e li curve is shown in

Fig. D.3 along with its velocity and acceleration curves (the curves are scaled in the y-axis

for visual clarity).
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Figure D.3: Cam li, velocity and acceleration

D.4 Verification

e spring properties for the numerical examples are stated in Tab. D.1. Additionally the

wire cross section is circular and constant throughout. To validate the numerical model

two checks are made. First the spring stiffness before contact can be approximated with

the formula: k = 2Gr/(8N(C3 + 0.5C)), where C = R/r. Using this formula yields

k = 13.9923 N/mm. Secondly the primary natural frequency can be approximated with

the SAE valve spring formula f = 1.79r×105/nR2. Applying the formula to the constant

pitch spring results in 366.45 Hz.

e numerical model using n = 32 elements per coil with seven coils yields a com-

parable spring rate of k = 14.188 N/mm before collision and a resonant frequency of

363.21 Hz aer solving the characteristic polynomial for the lowest frequency. e SAE

formula for natural frequency is known to overestimate the true value by upwards of 10%,

[17]. With these verifications within a reasonable tolerance, the numerical experiments

can proceeds with some degree of confidence.

D.5 Numerical experiments

For the example cam profile, the maximum force exerted by the cam occurs at the peak of

the li and at the highest angular velocity the cam may run. e chosen linear (constant-
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Table D.1: Dimensions and material properties of the spring

L0 50mm
Li 48mm
R 10.4mm
r 1.55mm
E 203.4× 103 N/mm2

G 77.2× 103 N/mm2

ρ 7.85× 10−6 kg/mm3
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Figure D.4: Applied cam force and linear spring force

pitch) spring must produce sufficient force to maintain the contact between the follower

and the cam with some margin of safety as shown in Fig. D.4. An optimal spring force

curve for a given preload would be tangent to the applied cam force at a point closest to

the maximum displacement as determined by the stiffness.

If the linear spring is designed to exactly meet the performance requirements at the

peak of rise of the cam cycle, the only energy savings that can be exploited exist during

the dwell section and earlier portion of the rise. With the spring length, helix radius and

wire radius constrained, altering only the pitch will not result in any significant change

in the initial stiffness which occurs during the dwell. Additional coils must be added to

the spring to reduce the overall initial stiffness. As a results the numerical experiments

will compare a seven coil springs to six coil springs.

e input to the spring model is force F with outputs being spring element deflections
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δi. As the force displacement relation is desired for a given cam displacement curve, the

force needed to compress the spring to the maximum deflection needs to be computed

first. is force is then used to create a force constant which is incrementally applied to

the spring and the displacements are then computed.

Reducing the initial stiffness also reduces the preload, which is determined by the

installation length. In most applications preload is required to either maintain contact

between the follower and cam during the dwell or in the case of a valve spring, ensure

a proper seal for a valve during dwell. us for each example two cases are considered.

First, if the spring length is fixed and second, if the spring length is allowed to vary. In

addition to those cases, the inclusion of a lash is also considered which removes the energy

loss during dwell.

Example 1

For the first example, the spring is designed to minimize energy loss for the dwell and rise

portion of a cam cycle.

Cost functional

From [2], friction between the follower and cam interface can be modeled as Coulomb

friction, ffriction(t) = µ(ff (t) − F (t)), where F (t) is the applied spring force and ff

is the static applied cam load which can be approximated by using the kinematic cam

acceleration ẍ in ff (t) = mf ẍ(t). If follower contact is maintained, this approximates an

infinitely stiff follower and cam. e rate of energy dissipation is then Ė = ffrictionω(Rb+

x(t)), where Rb is the base circle radius of the cam

fcost = µ

∫ 1

0

∥ω(Rb + x(t))(p0 + k(t)x(t)− ẍ(t)mf )∥dt (D.22)

e approximation for the applied cam load is appropriate as the spring force should
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always be sufficient to prevent follower separation. If the contact force, the difference

between the cam load and applied spring force, becomes negative, contact is no longer

maintained. erefore it is necessary to maintain a contact force greater than zero by

penalizing the negative forces shown below in the cost functional.

fcostNeg = −
∫ 1

0

min(ff (t)− F (t), 0)dt (D.23)

Constraints

If the spring is designed to fit an existing cam follower system, the spring dimensions must

adhere to some of the physical dimensions of the reference spring such as the installation

length Li.

Two cases are considered. First, when the free length L0 is fixed to be the same as the

reference six coil spring

h(2πNR) = L0 (D.24)

In addition Pi bounded by Pmin < Pi < Pmax. In the second case the free length is

allowed to vary. An inequality constraint is placed on the pitch control points so that

Li < h(2πNR) < Lmax, where Lmax is the maximum free length of the spring.

In addition to the free length constraint, a constraint on the relationship between the

pitches is imposed so that Pi < Pi+1. is is implemented to reduce the domain of the

solution space. It should be noted that reordering the same set of pitches will not yield

the same force-displacement relationship nor will it yield the same natural frequencies

particularly in this implementation as the pitch curve is interpolated using those set of

points.
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Figure D.5: Example 1 time-force curve

Results

e pitch control points Pi are optimized using sequential quadratic programming (SQP)

and the resulting values can be found in Tab. D.2 as Popt1. In Fig. D.5 the six coil con-

stant spring is shown to produce more than sufficient force to maintain follower contact,

whereas the seven coil constant spring cannot by a small margin, which can be seen by

noting the intersection of the two curves.

Figure D.6 shows that the stiffness of the varying pitch spring labeled fixed free

length remains constant throughout most of the rise portion with a change only occur-

ring around 12mm of compression. As Fig. D.7 shows, the change in stiffness is necessary

to avoid follower separation. e optimized spring force curve becomes tangent to the

cam load curve around 16mm of displacement as indicated by the arrow, just avoiding

separation.

us the progressive rate allows the spring to just maintain contact which results in

a 14.37% energy savings over the six coil spring. If a 0.25mm lash is included though

the total energy savings decrease significantly, the savings relative to the six coil spring

diminish only slightly to 14.36%.

e restriction for a fixed length is arbitrary so the optimization is performed again on

a more general approach leing the free lengths vary. is may lead to a preload of near

zero, which may not be desirable in many applications. A more realistic scenario would

137



2 4 6 8 10 12 14 16 18 20
14

14.5

15

15.5

16

16.5

displacement(mm)

sp
rin

g 
ra

te
 (

N
/m

m
)

 

 

6 coil constant pitch
7 coil constant pitch
7 coil variable pitch fixed free length
7 coil variable pitch

Figure D.6: Spring rates for example 1
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Figure D.7: Example 1 displacement-force detail

be if the needed preload is stated as an objective, but here the goal is to just observe

the potential of the spring design. A local minimum set of pitches which satisfies the

constraints is given as Popt1a in Tab. D.2 with the corresponding stiffness curve shown in

Fig. D.6. e change in stiffness occurs much earlier with respect to displacement and the

final stiffness also is higher to handle the lack of any preload.

e variable pitch spring can be compared against the constant pitch six and seven

coil springs with the free lengths optimized such that the cost functional Eqn. (D.22) is

minimized. is again may lead to a preload of zero as in the case of the six coil spring

which would have a constant pitch of 4.9mm and a free length of 48mm. e seven coil

spring has a pitch of 4.14mm with a rest length of 50.68mm. e results are shown in

Fig. D.8. e seven coil spring, with sufficient force to maintain follower contact now has
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Figure D.8: Time vs. force when free length allowed to vary for example 1

a preload of 44.2N which significantly exceeds that of the previous constant and variable

pitch. e six coil spring on the other hand has zero preload but does not match the

performance of the variable pitch spring as the variable pitch spring still has a 1.45%

savings over it.

Example 2

When designing a spring, it may be needed to meet performance criteria in addition to

being just sufficient to maintain contact. is may come in the form of a safety factor.

us the designer may opt to provide minimum force requirements at critical times. In

this example a target spring force curve is provided, the six coil constant pitch spring,

and needs to be matched by the variable pitched spring during the rise. e constraints

remain the same as in the previous example.

Cost functional:

e difference between the ideal spring force and the nonlinear spring force during rise

is minimized using the cost functional

fcost =

∫ 1

trise

∥k(0)(L0 − Li) + k(t)x(t)− (k6(L0 − Li) + k6x(t)) ∥dt (D.25)
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Figure D.9: Example 2 detail of optimized spring’s time-force curve

where k6 is the stiffness of the constant six coil spring.

Results

e le of Fig. D.9 shows the time-force curves of the optimized seven coil spring as well

as the curves of the constant pitch six and seven coil springs. e pitch control points Pi

are optimized using SQP and the resulting control point values can be found in Tab. D.2 as

Popt2 and the resulting displacement-stiffness curve is labeled fixed free length in Fig D.10.

As the optimized spring force matches that of the target curve during rise, the energy

savings are made during dwell and early rise. Without a lash there is a savings of 1.95%

over the 6 coil constant pitch curve. With the inclusion of a 0.25mm lash, due to the

dwell accounting for approximately one third of the cycle, the energy savings versus the

constant pitch spring exists only during the early portion of rise. e right of Fig. D.9

shows the details of the curves. Due to this, a savings of only 1.11% over the constant

pitch spring is observed.

e example is performed again with the free length allowed to vary. A set of pitch

control points for a local minimum are given in Tab. D.2 as Popt2b and the resulting time

versus force is shown in Fig. D.11. It is observed that the seven coil optimized pitch spring

can start off with nearly zero preload and match the desired force curve during the peak

of rise to give a savings of 7.75% over the constant pitch six coil spring when a lash is
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Figure D.10: Spring rate for example 2
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Figure D.11: Time vs. displacement when free length allowed to vary for example 2

Table D.2: Optimal control point pitches for seven coil spring in examples

P P1 P2 P3 P4 P5 P6 P7

Popt1 1.7080 2.5570 3.3373 3.4474 4.6767 4.6767 7.8970
Popt1a 0.5002 2.0434 4.0510 4.0510 4.0510 4.0512 7.5546
Popt2 0.5000 1.8301 3.4344 3.4344 3.4344 7.8334 7.8334
Popt2a 0.5000 1.6400 1.6400 5.7083 5.7083 5.7083 5.7083

included.

D.6 Summary

A numerical model for a variable pitch spring is developed to optimize the spring pitch

for two examples. is study gains some insights on the possibility of energy savings in
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cam systems by using a nonlinear spring.

e variable pitch seven coil spring was able to prevent valve separation whereas the

constant pitch seven coil spring was not. e energy savings over the six coil constant

pitch spring with the same free length was large, but as the constant pitch spring was not

optimized for the cam, the significance is diminished.

When the free length was allowed to vary, the seven coil constant pitch spring required

a significant amount of preload as the overall spring stiffness was lower. e seven coil

variable pitch spring and the six coil constant pitch spring were able to have zero preload

by having the rest length equal to the installation length. In this scenario, the variable

pitch spring performed slightly beer than the six coil spring. e performance of the

six coil spring could have been improved by altering the dimensions of the wire or helix.

A comparison with this optimized constant pitch spring with an optimized variable pitch

spring should be looked into.

In the second example, the seven coil spring is optimized to match a given force-

displacement curve throughout the rise portion of the cam cycle. Without the inclusion of

a lash, there is a large amount of energy that could be saved over the given six coil constant

pitch spring due to the lessened preload. However, with a lash those savings diminish

though the savings are still measurable. is work focused on using an additional coil

to obtain more freedom in the force-displacement relationship, however the restriction

to use entire coils is not needed. Future work should allow the use of partial coils. e

study shows there is promise in optimizing springs in this manner, though further work is

needed to show the range of applicability particularly when follower and spring dynamics

are included.

Once done the spring optimization may be performed simultaneously with cam profile

optimization to design more efficient cam follower systems.
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