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ABSTRACT

Multi-Agent Control in Sociotechnical Systems

Yu Luo

Process control is essential in chemical engineering and has diverse applications in au-

tomation, manufacturing, scheduling, etc. In this cross-disciplinary work, we shift the

domain focus from the control of machines to the control of multiple intelligent agents. Our

goal is to improve the optimization problem-solving process, such as optimal regulation of

emerging technologies, in a multi-agent system. Achieving that improvement would have

potential value both within and outside the chemical engineering community. This work

also illustrates the possibility of applying process systems engineering techniques, especially

process control, beyond chemical plants.

It is very common to observe crowds of individuals solving similar problems with similar

information in a largely independent manner. We argue here that the crowds can become

more efficient and robust problem-solvers, by partially following the average opinion. This

observation runs counter to the widely accepted claim that the wisdom of crowds deteri-

orates with social influence. The key difference is that individuals are self-interested and

hence will reject feedbacks that do not improve their performance. We propose a multi-agent

control-theoretic methodology — soft regulation — to model the collective dynamics and

compute the degree of social influence, i.e., the level to which one accepts the population

feedback, that optimizes the problem-solving performance.

Soft regulation is a modeling language for multi-agent sociotechnical systems. The

state-space formulation captures the individual learning process (i.e., open loop dynamics)

as well as the influence of the population feedback in a straightforward manner. It can

model a diverse set of existing multi-agent dynamics. Through numerical analysis and

linear algebra, we attempt to understand the role of feedback in multi-agent collective

dynamics, thus achieving multi-agent control in sociotechnical systems.



Our analysis through mathematical proofs, simulations, and a human subject experi-

ment suggests that intelligent individuals, solving the same problem (or similar problems),

could do much better by adaptively adjusting their decisions towards the population average.

We even discover that the crowd of human subjects could self-organize into a near-optimal

setting. This discovery suggests a new coordination mechanism for enhancing individual

decision-making. Potential applications include mobile health, urban planning, and policy-

making.
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CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

Chapter 1

Multi-Agent Collective Dynamics

and Control

1.1 Making Crowds “Smarter” (p. 2) This cross-disciplinary work addresses a simple

yet important question: How could a group collectively become better problem-solvers?

How could crowds become “smarter”? The goal is to show how the answer to this question

can be obtained as derived results by modeling rigorously, through control theory, the

collective dynamics of multi-agent systems.

1.2 Collective Intelligence (p. 9) We discuss here the collective dynamics of multi-

agent systems. We first distinguish our work from the popular notion of the “wisdom

of crowds,” which has been studied for over a century, and introduce the concept of the

“wisdom of learners.” We then briefly review existing approaches to modeling collective

dynamics.

1.3 Multi-Agent Control in Sociotechnical Systems (p. 18) This is an overview of

multi-agent control, its related work, and our contribution of incorporating it to sociotech-

nical systems. This section is a prelude to our main methodology: soft regulation.

1



CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

1.1 Making Crowds “Smarter”

1.1.1 Chemical Engineering Beyond Plants

Process control is indispensable to many complex engineering systems. This research dis-

cipline has evolved from the early feedback control to the modern optimal control. In

chemical engineering, for example, every syllabus of process control begins with feedback

control, i.e., adaptively changing the input of a process based on feedback from the output.

Such setup aims to steer the system towards the setpoint. Feedback control is simple, el-

egant, and usually, implementing it does not require a model. On the other hand, given a

reliable model of the process dynamics, one can then develop sophisticated control schemes

such as optimal control to achieve higher precision. In such case, the controller solves an

optimization problem by selecting the most viable path that minimizes the “cost” of oper-

ation. Regardless of its execution (i.e., feedback control, optimal control, or other types),

every process control deals with open loop and closed loop dynamics. Open loop dynamics

is the subject of process control; closed loop dynamics is the result.

The control problems or open loop dynamics we encounter in chemical engineering are

often related to chemical processes, manufacturing, scheduling, etc. In other words, they

are the control of machines. Meanwhile, complex sociotechnical systems1, such as modern

financial systems and the Internet, are characterized by similar interdependencies and a

large number of units one often observes in a chemical plant. In fact, we showed in our

previous work that one can model the “flowsheet” of a financial system (Fig. 1.1, p. 3) and

capture the complex dynamics in a signed digraph (Fig. 1.2, p. 3) as often applied to fault

diagnosis in a chemical plant [Bookstaber et al., 2015]. It is tempting to wonder, what

would be the process control in sociotechnical systems beyond chemical plants?

Control in sociotechnical systems has several implications for chemical engineering. One

example we will introduce in Chapter 2 (p. 23) describes the problem of optimal regulation

and policy. Quite often, the regulator or policymaker is as uncertain about an emerging

1Sociotechnical systems: an approach to complex organizational work design that recognizes the interac-

tion between people and technology in workplaces. The term also refers to the interaction between society’s

complex infrastructures and human behavior

2



CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

Figure 1.1: “Flowsheet” of a financial network: funding map of a bank/dealer

system.

Figure 1.2: Signed digraph for a bank/dealer system.

3



CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

technology or business as other individuals in the system. Controversial topics such as

fracking and carbon pricing have generated heated debates in recent years both within and

outside the chemical engineering community [Gold, 2014; Bloomberg and Krupp, 2014].

How can we strike the right balance between over- and under-regulation? Is there a way

to accelerate the process of optimizing the regulation of emerging technologies and busi-

nesses? These are among the many questions we attempt to answer in this work. They

represent the control of intelligent agents. Consequently, there are new challenges such as

self-interest, rationality, and incentives beyond process control in engineering systems. We

will address those challenges both through theory (Chapter 3, p. 37) as well as simulations

and experiments (Chapter 4, p. 51).

Feedback control has long been recognized as an essential feature of complex adaptive

systems where causes and effects are intertwined. There have been several attempts over

the years to understand the dynamics of social systems in terms of feedback control (see,

e.g., [Powers, 1973; Carver and Scheier, 1982; Trochim et al., 2006; Leveson, 2011]). In

addition, Venkatasubramanian and Zhang developed a seven-layer hierarchical framework

TeCSMART (Fig. 1.3, p. 5) to describe complex sociotechnical systems from a unifying

process systems engineering (PSE)2 perspective [Venkatasubramanian and Zhang, 2016].

TeCSMART provides a structural framework by describing complex systems in terms

of feedback loops and their ensembles. Techniques in PSE are readily transferrable to

the modeling, design, and control of systems beyond chemical plants. The hierarchy con-

sists of seven layers: process, plant, company, market, local government/regulatory agency,

(federal) government, and society. The seven layers can be further divided into small sub-

systems, e.g., the subsystem of processes and plant, companies and market, as well as

regulators and government. Our focus in this work is primarily on those subsystems that

consist of multiple decision makers.

2Process systems engineering (PSE): study of the design, control, scheduling, optimization, and risk

management of large-scale chemical systems
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Figure 1.3: TeCSMART framework.
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1.1.2 Can We Make Crowds “Smarter”?

Often, a large crowd3 of decision makers are attempting to solve the same problem with

similar information in a largely independent manner. For the common man, these problems

could be as simple as choosing the most appropriate product or improving personal fitness.

For a crowd of local governments or nations, the problem could be optimal taxation to

promote economic growth. The process of identifying the appropriate decision involves an

expensive trial and error process to explore the entire space. Minimizing this search cost by

coordinating and improving this collective learning4 process, by making crowds “smarter,”

has immense societal value.

Optimization typically involves balancing trade-offs. Consider the problem of optimal

taxation. Under-taxation results in insufficient funds towards public services and govern-

ment functioning, whereas over-taxation drives businesses to places where taxes are lower,

leading once again to a deficit for the state. Local governments face similar dilemma when

setting expenditure to balance between under- and over-spending. The main question we

address in this work is whether one can accelerate convergence by making the crowd of

fifty states “smarter.” Even a small improvement in the convergence rate, magnified by the

scale of the problem, could potentially save the nation billions of dollars while improving

the overall welfare.

Definition 1.1 (problem statement). A crowd consists of n intelligent individuals (or

agents). Each agent attempts to solve a unique optimization problem of which the so-

lution is identically θ∗. The time series zi(t) denotes the learning process of the i-th agent.

The time series of the column vector z(t) = [z1(t), . . . , zn(t)]> denotes the crowd’s collec-

tive learning process, of which the performance is measured by the mean squared error

MSE(t) = 1
n ‖z(t)− θ∗1‖22. The objective — making the crowd “smarter” — is to acceler-

ate convergence of the collective learning process, i.e., the decay of MSE(t) or the speed of

convergence of z(t) towards θ∗1.

3Crowd: n intelligent individuals (people, organizations, governments, etc.) who attempt to solve the

same optimization problem (e.g., finding the ideal diet that maximizes one’s health and fitness)

4Learning: an optimization process that begins with an initial guess of the solution and gradually con-

verges to the solution in probability
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Definition 1.2 (action zi(t)). zi(t) denotes the i-th agent’s action at time t. Actions

can be decisions, strategies, policies, etc., that would generate certain payoff, reward, or

(evolutionary) fitness, which the i-th agent tries to maximize.

Definition 1.3 (solution θ∗). θ∗ denotes the optimal action (or solution) that would gen-

erate the maximum expected payoff, reward, or (evolutionary) fitness.

Assumption 1.4 (convergence of learning). Each learning process converges to the solution

in probability (regardless of the initial condition):

lim
t→∞

E
[
zi(t)|zi(0)

]
= θ∗. (1.1)

1.1.3 Existing Solutions

Using a coordinated crowd or swarm to solve complex problems is well studied in the

literature. Particle swarm optimization (PSO) [Kennedy, 2010] is a widely adopted global

optimization technique that uses a crowd of simple solvers to explore the fitness landscape

of a problem. This swarm of PSO solvers mimics the swarming behavior observed in nature,

e.g., among bees, ants, and birds. Each PSO solver revises its search direction based on

its past performance and the position of the solver that observes the highest fitness. The

PSO technique is very effective in solving deterministic problems that have multiple local

extrema. However, PSO or any other parallel computing methodology cannot help us in

improving the rate for learning in the optimal regulation and policy setting. The critical

difference is that in the PSO setting each solver observes the same function; however, the

reward or fitness of an individual in a crowd is typically subjective, private, very noisy, and

often, not even numerically expressible. On the other hand, the inputs, i.e., actions, are

often numerically well defined. We exploit this feature to develop a learning algorithm.

Wisdom of crowds describes the phenomenon — first introduced as vox populi in 1907

by Francis Galton [Galton, 1907b], then rediscovered and popularized by James Surowiecki

a century later [Surowiecki, 2005] — that the average opinion of a crowd is remarkably

close to the otherwise unknown truth although the opinions of individuals in the crowd are

very erroneous. This phenomenon partially justifies the efficiency of polling and prediction

markets, where a surveyor can gather an accurate estimate of an unknown variable by
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averaging over multiple independent and informed guesses. Explanations [De Condorcet,

2014; Bergman and Donner, 1964; Simons, 2004] for the success of the wisdom of crowds

assume that individuals’ estimates are unbiased and independently distributed [Surowiecki,

2005; Kittur and Kraut, 2008; Goldstone and Gureckis, 2009; Alvarez, 2011; Lorenz et al.,

2011; Quinn and Bederson, 2011]. Social influence renders the wisdom of crowds ineffective

[Goldstone and Gureckis, 2009; Sumpter and Pratt, 2009; Lorenz et al., 2011], and in order

to guarantee accuracy, interactions among the respondents should be discouraged. Since

individuals make decisions solely based on their prior knowledge and expertise, some even

suggest vox expertorum, instead of vox populi, to be a more suitable name [Galton, 1907a;

Conradt and Roper, 2005; Goldstone and Gureckis, 2009].

Definition 1.5 (degree of social influence βi). The degree of social influence (βi) is the

percent adjustment of the i-th agent’s action zi(t) towards another agent’s action zj(t).

The adjusted action becomes

zi(t+ 1) = (1− βi)zi(t) + βizj(t). (1.2)

In the absence of social influence (i.e., βi = 0 or open loop), each agent sticks to its own

action. If βi = 100%, the i-th agent simply copies the j-th agent’s action and overrides its

own.

Increasingly, today individuals are getting all their information from highly inter-connected

online social networks; thus, truly independent opinions are becoming rare. The existing lit-

erature suggests that vox populi should not be effective. And yet, online networks with very

high degree of social interaction appear to be able to harness information effectively to ben-

efit the individuals. We are relying on polling evermore, for selecting movies, restaurants,

books, shows, etc. The polls appear to be working in identifying good options, even though

the votes are highly correlated. The crowd benefits from these interactions by converging

to optimum faster. Social influence here improves, rather than undermines, the collective

learning process. How does one reconcile with the previous results on the degradation of

the impact of vox populi in the presence of social influence? Is there an optimal degree of

social influence for a learning crowd? This is the question we address in this study.
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1.2 Collective Intelligence

1.2.1 Wisdom of Experts v. Wisdom of Learners

Multi-agent collective dynamics is a prevalent phenomenon in nature. Examples include

self-assembly, coupled oscillators, cell migration, quorum sensing, birds flocking, ant colony,

etc., which all share something in common: Individuals interact with the crowds that

they belong to and benefit from such interactions. The wisdom of crowds, a century-old

discovery in statistics, offers an intuitive explanation: The average opinion of a crowd can be

remarkably close to the otherwise unknown truth even though the opinions of individuals in

the crowd are very erroneous. We briefly introduced the wisdom of crowds in Section 1.1.3

(p. 7).

This concept, also known as vox populi, was introduced in 1907 by the British poly-

math Francis Galton [Galton, 1907b]. He observed an ox weighing contest where 800

contestants tried to best guess the weight of an ox. After analyzing 787 valid ballots,

Galton discovered that the average guess was merely one pound off of the ox’s true weight.

Thus, the average opinion was strikingly close to the otherwise unknown truth. A cen-

tury later, James Surowiecki popularized the same concept in his book The Wisdom of

Crowds [Surowiecki, 2005] and re-started a discussion among experts in decision theory, busi-

ness, and ecology [Sumpter, 2006; Kittur and Kraut, 2008; Goldstone and Gureckis, 2009;

Krause et al., 2010; Huizingh, 2011; Lorenz et al., 2011; Quinn and Bederson, 2011].

In Surowiecki’s book, the examples are even more remarkable, among which, the Chal-

lenger explosion story is, to say the least, quite intriguing. Within minutes after the news

broke out on January 28, 1986, the stock market started to respond to this tragic event:

Investors began selling the stocks of the four major contractors who had participated in the

Challenger mission. Their stock prices plummeted. Among the four, Morton Thiokol — the

actual manufacturer of the O-ring seals — was hit the hardest: By the end of the day, its

stock price was down nearly 12 percent while the other three rebounded to only 3 percent

down. In hindsight, this distinction was not surprising. For it was revealed six months later

that the O-ring seals indeed became less resilient and created gaps that allowed the gases

to leak out [Challenger and Rogers, 1986]. In other words, Morton Thiokol, among the four
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contractors, bore the direct blame for the disaster. But how could the investors knew that

collectively?

Here is Surowiecki’s explanation:

[It’s] plausible that once you aggregated all the bits of information about the

explosion that all the traders in the market had in their heads that day, it added

up to something close to the truth . . . [Even] if none of the traders was sure that

Thiokol was responsible, collectively they were certain it was.

There are several problems with this explanation. As a journalist, James Surowiecki focused

primarily on describing the stories and offering qualitative insights. While the insights are as

persuasive as folk wisdom, they lack the mathematical vigor. Similar views are often quoted

to support the notion that the stock market is forward looking. However, we all know that

the stock market can and often do overreact to news instead of truly reflecting the values

and sustainability of market as Paul Samuelson famously mocked such notion [Samuelson,

1966]:

The stock market has forecast nine of the last five recessions.

The central limit theorem, Condorcet’s jury theorem [De Condorcet, 2014], and many

wrongs principle [Simons, 2004], all provide partial explanations for the success of the

wisdom of crowds under the assumption that the individuals’ estimates are unbiased and

independently distributed. By averaging out the error (or white noise), one can estimate the

mean with greater confidence. The contestants in Galton’s game and the investors in the

Challenger aftermath all possessed certain knowledge despite the great uncertainty: The

contestants were butchers and farmers who weighed livestock for a living [Galton, 1907a].

The investors devoted constant attention to Thiokol’s performance. In other words, they

formed knowledgeable crowds with each individual decision drawn from a distribution. As

long as their knowledge was not systematically biased, the average would be a distribution

more narrowly peaked around the true value. In some sense, since individuals make decisions

solely based on their prior knowledge and expertise, the term vox expertorum (or wisdom of

experts) instead of vox populi might be more suitable to describe the two examples [Galton,

1907a].
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In nature, however, such prior knowledge-based wisdom of crowds is less common. Flock-

ing birds, for example, are not a knowledgeable crowd. The environment (weather, predators,

food, etc.) changes constantly. The uncertainty makes any prior knowledge of migration

route useless. In other words, there isn’t a static true value like the ox’s weight or the

O-ring malfunction, but a dynamic solution that adapts to the changing environment. So

instead, the birds gather local information, follow their closest neighbors, and revise direc-

tions constantly. They are the learning crowds. In his famous paper “Flocks, herds and

schools: a distributed behavioral model,” Craig Reynolds enumerated three principles for

the flocking phenomenon [Reynolds, 1987]:

1. Collision avoidance: avoid collisions with nearby flockmates

2. Velocity matching: attempt to match velocity with nearby flockmates

3. Flock centering: attempt to stay close to nearby flockmates

Cell migration, an orchestrated movement of cells in particular directions to specific loca-

tions, is another example of nature’s wisdom of crowds. Similar to birds flocking, cells also

only have access to local information and rely on interactions to function properly as a

group. So why does the stock market overreact to news while birds and cells benefit from

interactions? What is the fundamental difference between these two types of crowds?

To make the comparison less confusing, let’s call the phenomenon described by Galton

and Surowiecki the “wisdom of experts,” and call what we observe in nature the “wisdom of

learners.” Note that experts in this context refer to individuals who voice informed opinions

based on prior knowledge, regardless of the quality of such knowledge (this is a generalization

of the conventional definition of an expert, i.e., a person who has a comprehensive and

authoritative knowledge of or skill in a particular area). Learners, on the other hand,

refer to individuals who revise and attempt to improve their decisions or opinions based on

information they receive via rational trial and error.

Even though both the wisdom of experts and the wisdom of learners fall under the um-

brella of the wisdom of crowds, they have a few key differences. For instance, interaction is

missing from the wisdom of experts, often done so purposely to avoid correlated opinions.

Researchers tend to agree that social influence poses a big threat to the wisdom [Lorenz et
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al., 2011], and in order to guarantee accuracy, interactions among the respondents should

be discouraged. The reasoning is simple: Interactions violate the independency and thus

undermine such wisdom. The consequence is a much undesired situation called group-

think5 [Sunstein and Hastie, 2014]. So why is the wisdom of learners seemingly immune to

this deterioration from interactions?

There are two possible explanations: First, interactions prove advantageous because

self-interested learners are likely to filter feedback they deem unhelpful and only make use

of the one that improves their performance. This self-interest based filtering appears to

be key to the success of the wisdom of learners in a correlated environment. Another key

difference between learners and experts is that learners are both respondents who generate

new information, and surveyors who poll their social networks to improve their decisions.

For each decision, the learner receives either a gain or a loss associated with it. On the

other hand, for the wisdom of experts, information flows in only one direction, i.e., from

the respondents to the surveyor. Decisions are only of importance to the surveyor.

Second, the influence of others’ opinions is not as prominent as a decision factor for

learners as it is for experts. Literature [Lorenz et al., 2011; Krishnamurthy and Poor,

2014] suggests that, given the chance of revising one’s decision after observing others’,

the individual tends to flock towards a consensus that might be off from the true value.

For learning crowds, however, the learners receive information not only from the crowd’s

feedback but also by learning on their own.

1.2.2 Applications of Collective Intelligence

The wisdom of crowds sees its applications in many modern settings. Crowdsourcing,

for example, loosely adapts such concept. It combines the words crowd and outsourcing,

meaning to obtain (information or input into a particular task or project) by enlisting the

services of a number of people. In today’s world where individuals are members of highly

connected social networks, one would expect the collective wisdom to be ineffective under

the traditional wisdom of crowds setting (or as defined earlier, wisdom of experts). And

5Groupthink: a psychological phenomenon that occurs within a group of people in which the desire for

harmony or conformity in the group results in an irrational or dysfunctional decision-making outcome
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yet, we are relying on polling evermore, for selecting movies, restaurants, books, shows,

etc. Such polls appear to be working in identifying good options even though votes are

correlated.

We are witnessing the coexistence of three types of crowdsourcing. The first type,

primarily supported by the wisdom of experts, is polling before the Internet (and social

networks) era. The surveyor (pollster) outsources his/her problem of finding certain true

value by collecting the average opinion among independent individuals. It is always a one-

shot action. Neither interaction nor revision of opinion is allowed so that independency is

preserved. Galton’s vox populi, literally voice of the people, laid down the scientific foun-

dations for democratic voting and other polling measures. As Galton himself commented

after observing the ox weighing contest:

The result seems more creditable to the trustworthiness of a democratic judg-

ment than might have been expected.

Independency critically determines the polling accuracy. For a very long time, pollsters

collect opinions by calling landline numbers randomly from the yellow page. This helps elim-

inate the demographic bias and preserve the independency. As landline is becoming obsolete,

such polling method also faces dire challenges. The response rate has dropped from 40% in

the 1990s [Craighill and Clement, 2014] to 9% in 2012 [Edwards-Levy and Jackson, 2016].

Even though communication has shifted from telephones to the Internet, such transition is

not happening soon for polling because it is very difficult to find an unbiased demography.

Each website has its own dominant demographics. There are, thankfully, ongoing efforts

to correct such bias. For instance, in “Forecasting elections with non-representative polls,”

researchers managed to process a highly biased opinion poll (game console XBOX users,

predominantly young males) and predict the 2012 election statistics [Wang et al., 2015].

The second type of crowdsourcing lies between the wisdom of experts and the wisdom

of learners. Whoever uses the Internet should be familiar with this type of crowdsourcing.

They are the online review systems. Similar to the first type, an online rating also takes the

average opinion and the users usually only participate once. Feedback is the key difference

here: The average is publicly available to the new participants. Let’s take the online

restaurant review Yelp as an example. The truth in this case would be the quality of
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restaurants being reviewed by Yelp’s users. Except for the very first few customers, people

who review a restaurant are not making independent decisions because they are aware

of others’ opinions. In this case, the customers are both the respondents who provide

information and the surveyors who poll opinions to better make decisions.

There are debates over whether the online review system is able to identify the best

options. One criticism towards the reviews is that the final rating is sensitive to the initial

conditions [Salganik et al., 2006; Krishnamurthy and Poor, 2014]. That is to say, if an

otherwise fine product receives a few negative reviews at the very beginning, it might

prevent customers from giving it a second chance and discovering its true value. There are

also a growing number of studies on the effect of social influence. The general consensus

is that social influence undermines the wisdom of crowds [Goldstone and Gureckis, 2009;

Sumpter and Pratt, 2009; Lorenz et al., 2011].

We are now transitioning towards the third type of crowdsourcing that reflects the

massive collective intelligence of learners. The wisdom of learners, as introduced in the last

section, is not an entirely new concept because it is essentially nature’s wisdom of crowds:

Individuals interact with one another to survive and proliferate. Neither is this concept new

for the human society: Team collaboration, research conferences, think tank, etc., are all

“offline” examples of such collective intelligence. As the society shifts towards the highly

connected social networks, where people can easily and quickly get updated information on

a variety of topics in almost real-time, the wisdom of learners is experiencing a paradigm

shift from centralization to distributed networks, from small or moderate scales to massive

scales, and from delayed information exchange to real-time updates.

For the third type of crowdsourcing, there are two driving forces of the crowd dynamics.

At the individual level, each tries to maximize his/her own utility by exploring and learning

from the past. Let’s call it the learning force. At the social network level, one’s decision

also influences others and consensus might eventually be reached. Let’s call it the consensus

force. The two forces are the key of success for the third type of crowdsourcing.

On one hand, the learning force moves the crowd towards the right direction. Such force

is fueled by the individual self-interest. Every trial and error is associated with either a

gain or a loss. It is of the individual’s interest to move along the gradient and climbs the
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fitness landscape. The force is therefore the gradient signal one receives by interfacing with

the problem itself. However, because of one’s limited learning capacity, this gradient signal

might be noisy or inaccurate. Just like the individual opinions from the wisdom of experts,

the individual learning forces might not be enough to discover the truth.

On the other hand, the consensus force induces convergence. Consensus forming is

a well-studied subject in the multi-agent research community. Recent efforts have been

focused on how network structures affect the process [Tanner, 1984], distributed consensus

protocols [Nedic and Ozdaglar, 2009], and continuum modeling [Perthame and Tadmor,

1991]. Despite receiving much more attention than the learning force does, consensus alone

cannot drive the system to the truth: A purely consensus-based dynamics does converge,

but not necessarily to the optimum. That is why the wisdom of experts does not work well

under social influence. Each individual opinion is based on prior knowledge. The revision

is determined by the social influence instead of learning. Consensus forms at the cost of

inaccuracy.

1.2.3 Modeling Collective Dynamics

Multi-agent collective dynamics describes the emergent system-wide behavior from the inter-

actions of multiple self-organizing agents. We discussed in Section 1.2.1 (p. 9) two different

forms of collective dynamics in terms of the wisdom of learners in nature and the wisdom

of experts in statistics. Such study of collective dynamics envelopes a wide spectrum of

research fields. We offer here a glimpse of this topic and do not attempt to exhaust the

list. There are three broad schools of research: collective dynamics of physical phenomena,

nature inspired science and engineering, and multi-agent control.

The physical angle of collective dynamics has existed long before the terms “collec-

tive dynamics” or “multi-agent systems” were coined. In physics, the study of molecular

phenomena has been an ongoing effort to bridge molecules to macroscopic behaviors such

as thermodynamics, heat and mass transfer, and hydrodynamics. Statistical mechanics,

for example, connects thermodynamics to the statistical nature of molecules. The dis-

covery of entropy being a logarithmic function of microscopic rearrangement of states,

i.e., S = k logW [Boltzmann, 1877], was one of the many efforts to convince the world
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that tiny particles really exist.

Such connection has fascinated not only physicists but also people from outside the

physics discipline, or even outside the scientific research world. Think about it: Dumb

molecules bump into one another in a seemingly random way. A thermodynamics system,

however, exhibits orderly behaviors from such chaotic molecular phenomena. What if the

molecules are replaced with goal-driven and intelligent individuals? What would be the

statistical mechanics for a social system?

Economics is one of the first fields that well embrace such connection. Economists are

constantly simulating macroeconomic phenomena with physics in mind. At its extreme

form, such mimicking results in a brand new subject called econophysics6. One of the

topics in econophysics that has attracted much attention recently is income distribution

and income inequality, as summarized by our earlier work [Venkatasubramanian et al.,

2015]:

The increasing inequality in income and wealth in recent years, and the associ-

ated excessive pay packages of CEOs in the U.S. and elsewhere, is of growing

concern among policy makers as well as the common person. However, there

seems to be no satisfactory answer, in conventional economic theories and mod-

els, to the fundamental questions of what kind of income distribution we ought

to see, at least under ideal conditions, in a free market environment, and whether

this distribution is fair.

Many attempted to answer such question [Champernowne, 1953; Champernowne and Cow-

ell, 1998; Piketty et al., 2014; Saez and Zucman, 2014]. We pursued a bottom-up approach

in the paper “How much inequality in income is fair? A microeconomic game theoretic

perspective” [Venkatasubramanian et al., 2015]. Instead of forcing the narrative into any

particular physics model, we started with a game-theoretic formulation where each individ-

ual has his/her own utility function based on his/her income as well as interactions with

other individuals. Game theory is a native economics branch that is both mathematical

6Econophysics: an interdisciplinary research field, applying theories and methods originally developed by

physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes

and nonlinear dynamics
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and takes behaviors into consideration. Population games and evolutionary dynamics [Sand-

holm, 2010], a recent addition to game theory, is an ideal framework for the income dis-

tribution problem: It is suitable for a large number of agents and instead of the one-shot

setting in classical game theory, this new framework integrates utility-maximizing agents

into a dynamical system. The connection between population games and thermodynamics

is difficult to ignore: Entropy is a measure of fairness in a social system with goal-driven

and self-interested agents. We also proposed a new measure of income distribution as an

alternative to the widely used yet controversial Gini index. By examining income data of

twelve countries from 1920 to 2012 under the new measure, our analysis suggests that the

Scandinavian countries have managed to get close to the ideal distribution for the bottom

99% of the population, while the U.S. and U.K. remain less fair at the other extreme.

Fluid dynamics, like thermodynamics, also inspires new endeavors in social science.

The opinion (or consensus) forming is an important subject of collective dynamics. A

general approach is the so-called environmental averaging [Motsch and Tadmor, 2014]. The

idea is simple: Each individual updates his/her own opinion by selectively averaging others’

opinions. As the number of individuals approaches infinity, this multi-agent system becomes

a continuum thereby the name social hydrodynamics [Tadmor, 2015]. Many findings of

opinion forming are about how network structure and the weights of averaging affects the

consensus forming. For instance, the subdominant eigenvalue of the adjacency matrix of

the social network determines how fast a consensus forms [Tanner, 1984].

Biology and ecology also inspire numerous pursuits in multi-agent collective dynam-

ics. For instance, particle swarm optimization [Kennedy, 2010] (mentioned in Section 1.1.3,

p. 7) borrows the concept of swarm intelligence (i.e., flocking) from nature, and applies

it to solving complex optimization problems. A typical swarm optimization problem has

multiple local extrema in the “fitness landscape,” (a fitness landscape visualizes the prob-

lem by mapping the state-space to the corresponding fitness, i.e., utility and payoff). A

large number of elementary solvers form a swarm. Each solver, while exploring the fitness

landscape, also occasionally follows the “leader,” (the solver that has the best solution so

far). This wisdom of learners type of optimization appears to be capable of finding a global

optimum even when the fitness landscape is rugged with many local extrema.
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Lastly, multi-agent control is the control engineering community’s approach to collective

dynamics. Controlling a large number of agents faces many challenges. The optimization

problem becomes exponentially harder, and eventually intractable, as the number of agents

increases. A centralized control is simply too costly to implement. There has been grow-

ing efforts in distributed control that breaks down the global optimization into localized

problems that individual controllers can solve by themselves. A practical challenge is to im-

plement distributed mechanisms that can reach consensus steadily and timely [Olfati-Saber

and Murray, 2002; Olfati-Saber et al., 2007]. That consensus can then be incorporated into

local optimizations.

What about the control of multiple self-interested agents in sociotechnical systems? We

now have the tools to model the behavior of intelligent agents (econophysics, population

games, opinion dynamics, etc.); we also have the tools to control multiple agents (control

theory, mechanism design, etc.). It is only natural to step forward and begin the quest

from understanding complex collective dynamics to coordinating multiple self-interested

agents. In the next section, we will discuss how to approach this problem and our modeling

philosophy.

1.3 Multi-Agent Control in Sociotechnical Systems

Multi-agent control in sociotechnical systems (or “MACISTS”) is the study of dynamical

systems with multiple intelligent individuals and how the collective behavior is “controlled”

by feedback. MACISTS here refers to a broader definition of control than that of process

control, where the input can be manipulated directly (e.g., opening of the fuel valve of

an automobile). In sociotechnical systems, such manipulation has to be subtler and more

indirect. Often, there might involve “nudges” that carefully steer crowds towards certain

desired behaviors [Thaler and Sunstein, 2008]. We hope to approach MACISTS in a general

and mathematical manner such that we can generate unambiguous and quantitative con-

clusions. Our motivation can be perfectly summarized by Geoffrey West from the Santa Fe

Institute, when he commented on the mathematical regularities underlying both biological

and social systems [West, 2012]:
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Are there any principles at work? Can we put this into a mathematical frame-

work? Can we make it a quantitative and predictive science of these phenomena?

Part of that is purely for the understanding and for the satisfaction of under-

standing. And the last part is, this is the great hope, in some ways can it actually

be of practical importance and have a significant impact on the wellbeing of my

fellow human beings.

The first step in MACISTS, like other concepts in control theory, is the study of open

loop dynamics. We can always model the behavior of a specific agent i (i = 1, . . . , n) as if

it follows the evolution below:

zi(t+ 1) = z̄i(t) ≡ gi
(
zi(t)

)
+ ωi(t). (1.3)

The mapping gi (later we will formally define it as the “learning function”) encodes the i-th

agent’s rational respond to its current action zi(t), while the zero-mean random variable

ωi(t) indicates a white noise that affects the action z̄i(t) this agent takes. Should gi satisfy

certain regularity criteria (such as the existence of a unique and attracting fixed point θ∗,

Assumption 1.4, p. 7), agent i would in probability converge to an equilibrium state and

thus reach its goal (without external feedback).

The goal for any rational individual is always to maximize certain utility or payoff:

yi(t) = fi
(
zi(t)

)
+ νi(t). (1.4)

yi is the output variable and subject to another white noise νi(t). An acceptable gi, therefore,

is supposed to have its fixed point θ∗ that maximizes fi.

Then we introduce interactions among agents via selective averaging mediated by the

degree of social influence βi, i.e.,

zi(t+ 1) =
∑
j

sij
[
(1− βi)z̄i(t) + βizj(t)

]
,

= (1− βi)z̄i(t) + βi
∑
j

sijzj(t).
(1.5)

We will formally introduce the social network parameter sij in the next chapter. For the i-

th agent, sij always sums up to 1. In the simplest situation, sij ≡ 1/n. The above equation
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indicates that the i-th agent adjusts itself partially towards the wisdom of crowds by a

factor of βi. Based on the actual social network sij , this agent then finalizes its decision by

aggregating the effects from all the signals it receives. Note that unless otherwise stated,

we use
∑

i instead of
∑n

i=1 to indicate the summation over n agents for simplicity.

The state-space representation used here is the standard language of modern control

theory. Open loop dynamics encodes how the state of a system evolves without the in-

terference of control as depicted in (1.3), while closed loop dynamics considers feedback,

e.g., (1.5). Nonetheless, open and closed loop systems are relative and scale-dependent. For

instance, in the control of an intelligent agent, the open loop dynamics reflects the agent’s

own decision process that navigates from current state to the next in the absence of social

influence. Such decision process, if examined under microscope, actually consists of closed

loop neurological and physiological feedback processes.

The input is a variable that one can change hoping to steer the system towards a desired

state. In industrial process control such as temperature control and velocity control, the

input is usually designed by heuristics (see “PID control” [Seborg et al., 2010]) and the

open loop dynamics is often modeled as a black box. Tuning the controller parameters

(proportional gain, integral gain, derivative gain, etc.) brings certain optimality to the

control system. It requires trials and errors to obtain a suitable tuning. Biological control

(e.g., blood sugar control) falls under this category. The controller gains are primarily de-

termined by one’s genes and it takes generations of evolution to “optimize.” Here the degree

of social influence βi is the input in MACISTS. Note that we avoid using the alternative

terminology “manipulated variable” for the input βi because in a sociotechnical setting,

we cannot directly manipulate the social influence. But we still hope that, by understand-

ing how social influence affects the collective dynamics, we can implement MACISTS in

significant and practical ways.

The output determines how good or bad the state is. In modern optimal control, the

input is determined in such a way that the trajectory of the system dynamics is optimized:

The total payoff is maximized (or the total cost is minimized) and the final state is inside

an acceptable region (see “model predictive control” [Rawlings and Mayne, 2009]). To find

an optimal control, one solves an optimization problem. On rare occasions, the system
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is simple enough that a closed-form analytical solution is possible by transforming the

optimization problem into a Bellman equation or its variations (such as Hamilton-Jacobi-

Bellman equation). Surprisingly, such technique was first discovered in the 18th century as

the “principle of least action” and later widely applied to the fields of theory of relativity

and quantum mechanics. The term “action” is in fact the cost of a particular trajectory

of a system, and every physical law follows the trajectory that minimizes such action. It

is beyond the scope of this work but always worth thinking: What is the fundamental

connection between physical laws in nature and the very artificial optimal control? Are

cities and other man-made systems following the same principles as biological and ecological

systems?

We choose the state-space representation to model multi-agent control because its for-

mulation matches the multi-agent collective dynamics. As mentioned earlier, the open loop

dynamics is how agents decide their next-moves internally. The input reflects the interac-

tion among agents and the social influence from the crowd. The output is the utility an

individual receives by exploring the state-space. Also, by formulating the problem this way,

we can apply existing theories in optimal control to collective dynamics.

Selective averaging via βi and sij is what makes MACISTS unique by bringing self-

interest and intelligence into the picture. Since agents can selectively choose between their

own internal decision and the crowd’s opinion, such control is softer than conventional pro-

cess control and robotics, as the titular name soft regulation suggests. The social influence

parameter βi can be any real number, but we are particularly interested in the case where

βi ∈ [0, 100%] because such range also defines a spectrum of behaviors from being totally

independent (βi = 0) to blindly copying others (βi = 100%).

Selective averaging is a common practice. In particle swarm optimization (mentioned

in Section 1.1.3, p. 7 and Section 1.2.3, p. 15), velocity of each particle is a convex combi-

nation between its own and the leader. In statistics, the James-Stein estimator [Efron and

Morris, 1977] dominates the more intuitive least squares approach by shrinking the least

squares estimator towards a global mean. What is surprising about this estimator is that

even if the variables are unrelated to each other (e.g., baseball player’s batting statistics

and demographics of a country), such shrinking can still provide marginally better estima-

21



CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

tion considering the accuracy of all variables combined. This is also known as the Stein’s

paradox. In opinion dynamics, researchers also discover that on average people tend to com-

promise between their own opinions and others’ by a factor of 30% (i.e., βi = 30%) [Lim

and O’Connor, 1995; Harvey and Fischer, 1997; Yaniv and Kleinberger, 2000; Yaniv, 2004;

Soll and Larrick, 2009].

In the context of the wisdom of learners, selective averaging provides a self-interest

based filtering. Such filtering balances the two driving forces, i.e., the learning force and

the consensus force (p. 14). If selective averaging is leaning towards learning (with a small

βi), the dynamics is close to open loop. On the other hand, if the selective averaging is

leaning towards consensus (with a large βi), there is more sharing and less exploration.

Neither extreme might be ideal. How βi affects the overall system-level dynamics and what

the optimal βi is are among the central questions of this work.
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Chapter 2

Soft Regulation: A Multi-Agent

Systems Toolset

2.1 Etymology: Hard Regulation v. Soft Regulation (p. 24) Soft regulation is

our approach to multi-agent control in sociotechnical systems (or MACISTS). We introduce

here the origin of the name “soft regulation” to contrast the often punitive mandates known

as hard regulation. Soft regulation was first discussed in [Luo et al., 2016] as an alternative

to regulating emerging industries.

2.2 Taxonomy: A Multi-Agent Collective Dynamics and Control Framework

(p. 31) In this section, we formally introduce soft regulation as a toolset for multi-agent

systems research: It can model multi-agent collective dynamics for a variety of situations;

it is a control-theoretic framework that quantitatively describes the collective intelligence; it

is also an implementable algorithm that could make crowds “smarter.” We generalize the

soft regulation model from [Luo et al., 2016] into a state-space control formula. We also

elaborate on the possible topics that this model is suitable for.
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2.1 Etymology: Hard Regulation v. Soft Regulation

2.1.1 Regulating Emerging Industries

Regulating emerging technologies is challenging, and often controversial; requiring a careful

trade-off between stability, security, performance, and cost in an uncertain environment.

Recent examples of emerging technologies include hydraulic fracturing, carbon sequestra-

tion, deep sea mining, geoengineering, and personalized medicine. Hydraulic fracturing,

for example, has grown to be a transforming force in the petrochemical industries in re-

cent years with its proponents and opponents debating passionately about its benefits and

costs to the society with the attendant regulatory challenges [Bloomberg and Krupp, 2014;

Gold, 2014].

The regulator’s (or central planner’s) dilemma with regard to emerging technologies is to

strike the appropriate balance in regulation. Under-regulation can result in damage to plant

personnel, surrounding communities, and the environment. Over-regulation, on the other

hand, can hamper economic growth and security. When a technology is new, the inherent

risks and benefits are not immediately obvious and only become clear over time, making

it harder for the regulatory agency to strike the correct balance in the early stages. This

uncertainty necessitates a framework that allows for a very close collaboration between the

regulatory agency and the regulated entities that have direct access to field performance,

and hence have direct knowledge of what worked and what did not.

In a typical regulatory environment involving conventional technologies, regulators issue

mandates that have to be followed by the regulated agents. The agents face fines and

other punitive consequences for non-compliance. We call this approach hard regulation.

We argue that hard regulation is not very effective for regulating emerging technologies.

Hard regulation also hinders innovation [Krupp, 2008]. The regulation of the Internet

illustrates these issues very well. Laws like Digital Millennium Copyright Act (DMCA) and

Stop Online Piracy Act (SOPA) have been criticized [Congress, 1998; Rai, 1999; Smith,

2011; Tribe, 2011; Phillips, 2012], as they arguably “reduce freedom of expression and

undermine the dynamic, innovative global Internet.” In addition, while attempting to

protect intellectual property, these laws hurt computer security by inhibiting research on
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Table 2.1: Control and learning in sociotechnical systems

Control Learning

Hard feedback control, model pre-

dictive control, hard regula-

tion, robot formation, laws,

etc.

machine learning, stochas-

tic approximation, Kalman

filter, evolutionary dynam-

ics, etc.

Soft persuasion, soft paternalism,

peer pressure, social engi-

neering, mechanism design,

etc.

social sensing, social learn-

ing, pervasive mobile com-

puting, etc.

security related issues [Higgins, 2014]. During the period when a new technology is still

maturing, the regulator is just as unsure as the regulated agents about the risk-benefit trade-

off, and therefore, hard regulation, through its unintended consequences, could potentially

do more harm than good. Instead of issuing potentially misdirected mandates, the regulator

and the agents should jointly participate in learning about the emerging technology and its

payoff structure. The focus of this work is on how to achieve this elusive goal through an

intellectual framework that facilitates both control and learning in sociotechnical systems.

Control and learning are essential elements in managing risk and regulating behavior

in sociotechnical systems (Table 2.1, p. 25). In a purely technical setting, i.e., when all

the elements of the systems are machines, the common practice to maintain an efficient

and stable system is to use hard control where the entities follow strictly specified poli-

cies. Process control, robotics, etc., are all examples of hard regulation or hard control.

Especially in feedback control, the feedback is hard and has to be followed. When there

is no reliable model or a desirable setpoint available, one needs to simultaneously learn

and control the system dynamics. We call techniques, such as machine learning, stochastic

approximation, etc., hard learning techniques since they also require the entities to follow

strict instructions.
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However, in a sociotechnical system with active human participants, hard control, or

strict mandates, may not always be appropriate. Mandates can potentially do more harm

than good as we argued earlier. A more appropriate course of action would be to offer op-

tions to agents that are adopted only when they are incentive compatible. We call such ap-

proaches soft control [Han et al., 2006; Zhang and Parkes, 2008]. Examples of this approach

include the soft paternalism approach for modifying social behavior [Thaler and Sunstein,

2003] wherein carefully designed options “nudge” people to make better decisions [Thaler

and Sunstein, 2008]; or policy teaching [Zhang and Parkes, 2008] wherein the regulator

allocates rewards in such a way that the induced action of agents maximizes the regulator’s

value. Other examples include efforts by utility companies to induce consumers to minimize

power wastage by reporting average consumption [Brotman, 2014]; and health tracking de-

vices, e.g., Fitbit and Apple Watch, that all incorporate social nudging to motivate physical

activities. The soft control policy using peer pressure is shown to promote cooperation

in these and other settings, both in theory and in practice [Kandel and Lazear, 1992;

Aharony et al., 2011; Mani et al., 2013; Shmueli et al., 2014].

As in the case with hard control, soft control can be used only when there is a reliable

model and a well-defined setpoint. Soft paternalism and similar social mechanisms are

effective because we understand saving energy and staying physically active are the right

things to do. What if we do not know what is best for the agents? Soft learning is a

class of learning mechanisms that appropriately incentivize agents in a social network to

aggregate important information. Examples of soft learning include social sensing and social

learning [Rendell et al., 2010; Krishnamurthy and Poor, 2014; Shmueli et al., 2014] in the

context of real-time traffic information and online reviews (such as Yelp).

We propose soft regulation as a new regulatory paradigm that combines features of

soft control and soft learning. The regulator aggregates key system-level statistics in a

privacy-preserving [Abbe et al., 2012] manner (individuals do not need to explicitly disclose

their actions) and shares these statistics with all agents. The agents have the flexibility to

accept, reject, or partially accept the recommendations from the regulator based on their

own self interests. The recommendations are simply “nudges” [Thaler and Sunstein, 2008].

The mechanism does not interrupt the regulated entities who have direct access to field
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performance. It creates a collective learning environment for both the regulator and the

agents. Soft regulation seeks a balance between over- and under-regulation: Agents have

the freedom to rely on both individual exploration and social learning.

We expect soft regulation to be effective when the system has the following features:

1. Imperfect information: The action-utility payoff structure is poorly understood, i.e., the

data are noisy and the models are absent or incomplete. Each individual may only

possess partial information about the unknown process. Agents rely on inaccurate

measurements, approximations, or subjective evaluations to optimize.

2. Weak interaction: The agents can optimize their own actions without taking into

consideration the response of other agents, i.e., each’s utility or payoff is only a function

of the agent’s own state, and the optimal setpoint is identical among agents. A good

example of such a setting is the initial stages of a new technology; the resources being

exploited are abundant and the profits of the agents are not limited by competition

but by their ability to exploit the resource effectively. Although the reward an agent

receives while operating at a setpoint may vary, the setpoint itself, however, is likely

to be identical or at least restricted to a narrow range. The discovered setpoints (by

soft regulation or traditional methods) will later become the industry standards when

the technology matures. Another example of setting with weak or no interaction is

when humans improve their own health conditions by changing habits, medications, or

even environments. The interaction among agents is usually minimal. Although each

has his/her own unique physiological configurations, grouped by characteristics such

as age, gender, profession, etc., they are likely to exhibit common optimal setpoints

within groups.

3. Bounded rationality: Agents are autonomous and self-interested, and they always

move in a direction that locally improves utility, subject to available information.

Despite the name, soft regulation has applications beyond industrial regulation (Sec-

tion 4.1, p. 53). The soft regulator module can be integrated in different control systems

and problem-solving scenarios (Table 2.2, p. 28). We only analyze a specific and stylized
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Table 2.2: Soft regulation applications

Action → Utility

health behavior: → health condition

e.g., sleep habit, exercise fre-

quency, diet, etc.

e.g., sleep quality, BMI,

etc.

operating condition: → yield

e.g., T , P , feed ratio, flow

rate, catalyst, etc.

e.g., production rate,

etc.

workplace environment: → productivity

e.g., indoor temperature,

lighting, etc.

e.g., profitability, etc.

infrastructure planning: → efficiency

e.g., traffic light control, hos-

pital resource, budget alloca-

tion, etc.

e.g., congestion time,

etc.

model here to illustrate the efficacy of the mechanism. In practice, soft regulation should

be implemented and modified in a case by case manner.

The medical domain is another applicable area of soft regulation (Section 4.2, p. 65).

Powered by mobile phones and wearables, researchers can now collect timely mass medical

data (via Apple’s ResearchKit [Apple, 2015] for example). Soft regulation is suitable in

this scenario because medical research satisfies all three features, i.e., imperfect information

(unknown relationships between patient behaviors and health conditions), weak interaction

(one patient’s condition is not affected by another’s), and bounded rationality (patients

always wish to improve their own health, however, have limited information). In addition,

thanks to the convenience of mobile devices, we expect good participation rate. A large

population size further ensures the accuracy of recommendation. Patients can optimize

their own health while contributing to medical research. Even if patients do not want to
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optimize themselves, medical researchers may implement the soft regulation module to do

that based on data collected locally.

2.1.2 A Stylized Model

We analyze a model of soft regulation that preserves the essential features discussed in the

previous section. This multi-agent system consists of one regulator and n agents. Agent

i wants to select an action zi that maximizes the value of the real-valued and strongly

concave utility function f̃i(zi) over a convex compact set Z ⊆ R. We assume that although

the individual utility functions f̃i might be different for each agent, the solution θ∗ =

arg maxz∈Z E
[
f̃i(z)

]
is identical.

We also assume that the utility function f̃i(zi) is not explicitly known, nor is it deter-

ministic; agents cannot solve the optimization problem explicitly. In theory, by averaging

out the noise, one can obtain a more accurate mapping of the utility function. However, in

our setting of regulating emerging industries, each sample corresponds to actual utility each

agent receives; therefore, they might not have the incentive to oversample at the location

where the utility is low. The agents update individual actions using the following learning

dynamics:

z̄i(t) ≡ gi
(
zi(t)

)
+ ωi(t), (2.1)

where gi denotes the optimization algorithm (or the “learning function” to be introduced

later in Definition 2.4, p. 31) used by the i-th agent and ωi(t) denotes the noise associated

with such optimization process. In practice, gi can be any function that maps an old

action zi to a new action z̄i. In order to converge to the optimal θ∗, the function must

satisfy regularity conditions. More specifically, gi should converge to a unique fixed point

regardless of the initial value of zi (Assumption 1.4, p. 7). For instance, the Kiefer-Wolfowitz

stochastic gradient method is a commonly used algorithm [Kiefer et al., 1952] where

g̃i
(
zi(t), t

)
≡ gi

(
zi(t), t

)
+ ωi(t) = zi(t) +

a(t)

c(t)
·
(
f̃i
(
zi(t) + c(t)

)
− f̃i

(
zi(t)− c(t)

))
. (2.2)

At time t, the i-th agent samples the payoff twice at the vicinity of its current action zi(t),

which is only known to the agent. The parameters a(t) and c(t) are known and predefined.

The agent then computes the next step according to (2.2). This algorithm is guaranteed to
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converge in probability when

E
[
f̃i − E[f̃i]

]2
<∞, lim

t→∞
c(t) = 0,

∞∑
t=1

a(t) =∞,
∞∑
t=1

a(t)2

c(t)2
<∞. (2.3)

We call a setting where an agent updates its action based on its own measurement the open

loop scenario (or asocial learning as in [Rendell et al., 2010]).

In the soft regulation setting the regulator computes a feedback recommendation u(t).

The agents then combine u(t) with z̄i(t) to compute a new action zi(t+ 1) in the following

manner:

zi(t+ 1) = hi
(
zi(t)

)
≡ (1− βi)g̃i

(
zi(t)

)
+ βiu(t) = (1− βi)z̄i(t) + βiu(t), (2.4)

where βi ∈ [0, 1] or [0, 100%] is a measure of the influence that the recommendation has on

the i-th agent (Definition 1.5, p. 8). Action changes are relatively independent of recom-

mendation for agents with small β (the explorers), and action remains in the vicinity of u

for agents with large β (the followers).

Note that soft regulation is not an example of direct social learning as described in [Ren-

dell et al., 2010]: There is no “best agent” or “leader” to follow because the payoffs are

private information and noisy. That said, explorers do resemble the asocial innovators

and the followers resemble the copying agents in the social learning setting [Rendell et al.,

2010]. The value of βi may be indirectly related to peer pressure [Kandel and Lazear, 1992;

Aharony et al., 2011; Mani et al., 2013; Shmueli et al., 2014]: The followers experience a

higher peer pressure than the explorers, and therefore, set a higher value of βi. Also note

that hi
(
zi
)

can be re-written as follows:

hi(zi) = zi + (1− βi)(z̄i − zi) + βi(u− zi). (2.5)

The soft regulation feedback function resembles the feedback seen in bird flocks and swarm

intelligence [Kennedy, 2010].
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2.2 Taxonomy: A Multi-Agent Collective Dynamics and Con-

trol Framework

2.2.1 A General State-Space Model

The previous section offers a specific example of soft regulation that first appeared in [Luo

et al., 2016] where the term was created. We generalize the model and discuss the essential

components of soft regulation in this section.

Definition 2.1 (generalized soft regulation). Here we generalize soft regulation as a mod-

eling framework for multi-agent control in sociotechnical systems (MACISTS, Section 1.3,

p. 18)

zi(t+ 1) =
(
1− βi(t)

)(
gi
(
zi(t)

)
+ ωi(t)

)
+ βiui(t), (2.6)

xi(t) = zi(t)− θ∗i , (2.7)

yi(t) = fi
(
xi(t)

)
+ νi(t). (2.8)

Definition 2.2 (state xi(t) of the i-th agent). The state variable xi(t) = zi(t) − θ∗i is the

decision error, i.e., difference between the individual decision/action zi(t) and the solution

θ∗i (Definition 1.3, p. 7). As a general case here, the solutions can be different. x∗i = 0 thus

indicates the state where the i-th agent reaches the solution θ∗i .

Definition 2.3 (payoff function fi(·) and noise νi(t)). fi(·) is the payoff (or utility/fitness)

function of the i-th agent. The solution x∗i = 0 maximizes fi(x). The realized payoff yi(t) is

disturbed by a zero-mean random variable νi(t). Note that we used fi
(
zi(t)

)
in (1.4) (p. 19).

One can easily replace zi(t) with xi(t) using (2.7) and construct a payoff function that takes

xi(t) as argument. With an abuse of notation, we retain the symbol fi to describe payoff

as a function of the state. Similar reasoning is used in Definition 2.4 (p. 31) next.

Definition 2.4 (learning function gi(·) and noise ωi(t)). The learning function gi of the i-th

player encodes the process where the agent makes a decision, observes the corresponding

payoff, and then updates the state.

With an abuse of notation, we also define the learning function in terms of the state
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variable xi(t) as gi(·). The open loop time series xi(t) is given as

xi(t+ 1) = gi
(
xi(t)

)
+ ωi(t). (2.9)

ωi(t) is a zero-mean random variable with variance σ2ω sampled at t. It represents the

impact of the error in function evaluation on the decision. Such error can be a result of noise

in measurement or external disturbance. If the learning function gi is based on evaluation

of the payoff fi (e.g., the Kiefer-Wolfowitz algorithm introduced in the last section), ωi(t)

will also be correlated with νi(t).

Assumption 2.5 (regularity of the learning function). For all i ∈ {1, . . . , n}, the function

gi is differentiable, x∗ = 0 is the unique attracting fixed point of gi, and furthermore, gi is

a contraction [Browder, 1965], i.e., |g′i(x)| < 1 for all 1 ≤ i ≤ n and x ∈ Z (domain Z was

defined on p. 29). The closer |g′i(x)| is to 1, the slower gi(x) converges. This assumption

is motivated by the fact that all agents converge to the solution in the open loop setting

independent of the starting guess.

Definition 2.6 (learning gain g̃′i). From mean value theorem, we can also establish that

gi(x)/x = g′i(δx), where 0 ≤ δ ≤ 1 and x 6= 0, is strictly less than 1. We define learning

gain, denoted by g̃′i ≡ gi(x)/x, as the amplification of decision error. We also define g̃′i = 0

when x = 0.

Definition 2.7 (learning spectrum g′ and its width σg). We define g′ = [g̃′1, . . . , g̃
′
n]> as

the learning spectrum of the system. We let its standard deviation σg =
√

1
n

∑
i (g̃′i − g̃′)

2

denote the width of the learning spectrum, where g̃′ ≡ 1
n

∑
j g̃
′
j is the average (or represen-

tative) learning gain.

The learning function is one of the two most important features of soft regulation (social

influence, in Definition 1.5, p. 8, of course, is the other one). By defining the learning

function in this way, we bypass the complexity and specificity of how individual agents

optimize their payoffs. But rather, we only observe the stochastic convergence of the states

xi (or actions zi).

Definition 2.8 (social network S). S is an n-by-n matrix with each element represents

the weight of connection. For a completely connected social network with equal weights,

S = 1
n11>.
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Assumption 2.9 (stochasticity of social network). S satisfies
∑

j sij = 1, i.e., row sum is

1.

Definition 2.10 (soft feedback ui(t)). We denote the soft feedback as the weighted popu-

lation average:

ui(t) ≡
∑
j

sijzj(t), (2.10)

where sij is the i-th row and j-th column of the social network S. Again, unlike feedback

in control theory, soft feedback does not have to be followed.

Definition 2.11 (condensed soft regulation given identical solution). If θ∗i ≡ θ∗, by sub-

tracting θ∗ from both LHS and RHS of(2.6), we have the x-version of (2.6)

xi(t+ 1) =
(
1− βi(t)

)(
gi
(
xi(t)

)
+ ωi(t)

)
+ βiui(t), (2.11)

where ui(t) is, with an abuse of notation,
∑

j sijxi(t). (2.11) will be the governing equation

used for the majority of analysis in this study.

There are a few special cases of the soft feedback. For instance, if S = 1
n11>, the

soft feedback is the wisdom of crowds feedback discussed in the last section, where ui(t) is

simply the arithmetic average of xi(t).

Lastly, social influence was defined earlier (Definition 1.5, p. 8): βi denotes the weight

the i-th player places on the soft feedback while learning. βi = 0 reduces the soft regulation

setting in (2.11) to the open loop setting in (2.9).

2.2.2 Soft Regulation as a Toolset for Multi-Agent Systems

As the title of this chapter suggests, soft regulation provides a toolset for multi-agent

systems. In Table 2.3 (p. 35), we present a partial coverage of scenarios where soft regulation

could model. The list includes but is not limited to particle swarm optimization [Kennedy,

2011], James-Stein estimator [Efron and Morris, 1977], social learning [Rendell et al., 2010],

the wisdom of crowds [Galton, 1907b; Surowiecki, 2005], and collective dynamics [Perthame

and Tadmor, 1991; Motsch and Tadmor, 2014; Tadmor, 2015]. A taxonomy is also included

in Fig. 2.1 (p. 36).
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Let’s now analyze the different elements of soft regulation. First, the learning function

can be identical across all agents or different. For the simplest (i.e., linear) learning function

gi(x) = gix, if it is identical, gi = g. In the next chapter, we will focus primarily on the

mathematical property of soft regulation under this situation (also known as the represen-

tative agent assumption in economics). Particularly, for identical linear learning function,

increasing the degree of social influence slows down the speed of convergence in a noiseless

setting.

Next, degree of social influence is the input for MACISTS (p. 18). It critically determines

the performance of collective learning. There always exists an optimal degree of social

influence such that the performance of collective learning is maximized. In the next chapter,

we will have an in-depth discussion about this topic.

There are many ways to generate the soft feedback. In this study, we primarily focus on

the grand average scenario where the feedback is simply the population arithmetic average

from all individuals (i.e., vox populi). In the context of collective dynamics, how such

feedback is generated can significantly affect how fast consensus is formed.

We assumed identical solution in our problem statement (Definition 1.1, p. 6). We will

also briefly analyze the situation where the solutions are unique and different, and argue

that if the solutions are sufficiently close, soft regulation would still improve the collective

learning process. This has applications such as multi-product revenue management. It is

related to the Stein’s Paradox [Efron and Morris, 1977].

Lastly, the payoff function can be convex/concave or non-convex. A non-convex payoff

function would require a global optimization technique. As we discussed in the last section,

the learning function (Definition 2.4, p. 31) contains all information about optimizing payoff.

Therefore, our analysis of soft regulation does not explicitly depend on the type of payoff

function.
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Table 2.3: Examples: soft regulation as a toolset for multi-agent systems

Scenario Learning function Social influence Soft feedback Solution Payoff

Particle swarm optimization Local best [0, 100%] Leader Identical Non-convex

James-Stein estimator LMS estimator [0, 100%] Grand average Different Squared error

Social learning Asocial learning {0, 100%} Leader Identical Non-convex

Wisdom of crowds - - Grand average Identical -

Collective dynamics - 100% Weighted average - -
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Chapter 3

Mathematical Properties of Soft

Regulation

3.1 Convergence (p. 38) We investigate here the convergence properties of soft regula-

tion. More specifically, we show that, in a noiseless setting, partially following the average

converges to the solution if 0 ≤ βi < 100%.

3.2 Robustness (p. 42) We show here that soft regulation is also robust against bounded

noises. That is to say, the equilibrium (where every agent reaches the solution) can be

restored when the system is disturbed by bounded noises.

3.3 Efficiency (p. 42) How much better can soft regulation improve the performance

of collective problem-solving? We simplify the system such that βi = β is identical across

agents. Doing so enables us to look closely into how a representative degree of social

influence affects the efficiency of soft regulation.

3.4 Optimal Degree of Social Influence (p. 45) What is the theoretically maximum

efficiency at which a crowd can solve a problem via soft regulation? We use control theory

and linear algebra to answer this question.

3.5 Different Solutions (p. 49) We show here that even if the solution to each agent’s

problem is different, soft regulation can still improve the collective problem solving process.
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3.1 Convergence

3.1.1 Mathematical Preliminaries

We first present here nearly verbatim a few important theorems from Peter J. Olver’s Nu-

merical Analysis Lecture Notes [Olver, 2008]. The notes are well written and useful for

deriving our convergence result in Section 3.1.2 (p. 40).

Definition 3.1 (linear iterative system). A linear iterative system takes the form

x(t+ 1) = Jx(t). (3.1)

The coefficient matrix J has size n × n. For t = 1, 2, 3, . . ., the solution x(t) is uniquely

determined by the initial conditions x(0).

Theorem 3.2 (eigenvalue iteration). If the coefficient matrix J is complete, then the general

solution to the linear iterative system (3.1) is given by

x(t) =
∑
i

ciλ
t
ivi, (3.2)

where v1, . . . ,vn are the linearly independent eigenvectors and λ1, . . . , λn are the corre-

sponding eigenvalues of J . The coefficients c1, . . . , cn are arbitrary scalars and are uniquely

prescribed by the initial conditions x(0).

Proof. Since we already know that (3.2) is a solution to the system for arbitrary c1, . . . , cn,

it suffices to show that we can match any prescribed initial conditions. To this end, we need

to solve the linear system

x(0) =
∑
i

civi. (3.3)

Completeness of J implies that its eigenvectors form a basis of Rn, and hence (3.3) always

admits a solution.

Definition 3.3 (convergent matrix). A matrix J is called convergent if its powers converge

to the zero matrix, J t → O, meaning that the individual entries of J t all go to 0 as t→∞.

Definition 3.4 (spectral radius ρ). The spectral radius ρ(J) of a matrix J is its largest

absolute eigenvalue, i.e., ρ(J) = max1≤i≤n |λi|.
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Theorem 3.5 (convergence determined by the spectral radius). The matrix J is convergent

if and only if its spectral radius is strictly less than one: ρ(J) ≡ max1≤i≤n |λi| < 1.

Proof. If J is complete, then we can apply the triangle inequality to (3.2) to estimate

‖x(t)‖ =

∥∥∥∥∥∑
i

ciλ
t
ivi

∥∥∥∥∥ ,
≤
∑
i

|λi|t ‖civi‖ ,

≤ ρ(J)t
∑
i

|ci| ‖vi‖ ,

(3.4)

where ‖·‖ denotes any (vector) norm on Rn (e.g., 1-norm, Euclidean norm, infinity norm).

If ρ(J) < 1, then

‖x(t)‖ → 0 as t→∞. (3.5)

Definition 3.6 (induced matrix norm). If ‖·‖ is any norm on Rn, then the quantity

‖J‖ ≡ max
‖v‖=1

‖Jv‖ , (3.6)

defines the induced matrix norm of J .

Theorem 3.7 (spectral radius and induced matrix norm). The spectral radius of a matrix

is bounded by its induced matrix norm:

ρ(J) ≤ ‖J‖ . (3.7)

Proof. If λ is a real eigenvalue, and v a corresponding unit eigenvector, so that Jv = λv

with ‖v‖ = 1, then

‖Jv‖ = ‖λv‖ = |λ| ‖v‖ = |λ|. (3.8)

Since ‖J‖ is the maximum of ‖Jv‖ over all possible unit vectors, according to Definition 3.6,

this implies that

|λ| ≤ ‖J‖ . (3.9)

If all the eigenvalues of J are real, then the spectral radius is the maximum of their absolute

values, and so it too is bounded by ‖J‖, proving (3.7). We omit the proof here for complex

eigenvalues. See [Olver, 2008] for the detailed proof.
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3.1.2 Convergence of Noiseless Soft Regulation

Recall the noiseless closed loop soft regulation dynamics:

xi(t+ 1) = (1− βi)gi
(
xi(t)

)
+ βi

1

n

∑
j

xj(t). (3.10)

The individual learning functions {gi(·) : 1 ≤ i ≤ n} are assumed to satisfy the regularity

condition in Assumption 2.5 (p. 32). Let x ≡ [x1, . . . , xn]> denote the state vector for the

n agents. The noiseless soft regulation map for the vector x is given by x(t+ 1) = h
(
x(t)

)
where the map

h(x) =


(1− β1)g1(x1) . . . 0

...
. . .

...

0 . . . (1− βn)gn(xn)

+
1

n


β1
...

βn

1>x. (3.11)

Definition 3.8 (Jacobian matrix evaluated at x). The Jacobian matrix of the nonlinear

iterative system (3.11) is the matrix of all first-order partial derivatives of h(x) evaluated

at x:

J(x) ≡


∂h1
∂x1

. . . ∂h1
∂xn

...
. . .

...

∂hn
∂x1

. . . ∂hn
∂xn

 ,

=


(1− β1)g′1(x1) . . . 0

...
. . .

...

0 . . . (1− βn)g′n(xn)

+
1

n


β1
...

βn

1>.

(3.12)

Since h(0) = 0, the mean value theorem implies that

h(x) =


J1(δ1x)

...

Jn(δnx)

x, (3.13)

for some δi ∈ [0, 1], i = 1, . . . , n, and Ji(δix) denotes the i-th row of the Jacobian of h(δix).

Definition 3.9 (coefficient matrix J based on the Jacobian matrix). The nonlinear iterative

system x(t+ 1) = h
(
x(t)

)
is converted into a linear iterative system x(t+ 1) = Jx(t) with
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a time-varying coefficient matrix J where

J =


(1− β1)g′1(δ1x1) . . . 0

...
. . .

...

0 . . . (1− βn)g′n(δnxn)

+
1

n


β1
...

βn

1>. (3.14)

g′i(δixi) is the learning gain (Definition 2.6, p. 32).

We first show that the state vector x(t) converges to the solution x∗ = 0 if the learning

functions {gi(·) : 1 ≤ i ≤ n} satisfy Assumption 2.5 (p. 32) and 0 ≤ maxi βi < 1.

Theorem 3.10 (upper bond of spectral radius). The spectral radius ρ(J) of the coefficient

matrix J (Definition 3.9, p. 40) satisfies ρ(J) ≤ m ≡ max1≤i≤n,x∈Z
[
(1−βi)|g′i(x)|+βi

]
< 1.

Proof. The induced ∞-norm ‖J(x)‖∞ of J satisfies

‖J‖∞ ≡ max
‖v‖∞=1

‖Jv‖∞,

= max
‖v‖∞=1

max
1≤i≤n

|Ji(δix)v|,

= max
‖v‖∞=1

max
1≤i≤n

[
(1− βi)|g′i(δixi)|vi +

1

n
βi(1

>v)
]
,

≤ m.

(3.15)

The result follows from Theorem 3.7 (p. 39) that ρ(J) ≤ ‖J‖∞ = m. It is easy to see that

m < 1 whenever max1≤i≤n βi < 1.

Theorem 3.11 (convergence of noiseless soft regulation). The soft regulation iteration

converges to x∗ ≡ 0 if 0 ≤ βi < 1.

Proof. Since m < 1 for all 0 ≤ βi < 1, according to Theorem 3.5 (p. 39), the coefficient

matrix J is convergent because ρ(J) ≤ m < 1.

This proof is also applicable for time-varying gi. As long as gi(·) satisfies Assumption 2.5

(p. 32) for t > T and T < ∞, the convergence result will hold. Note that |g′(·)| < 1 is

sufficient but not necessary for h to converge. A weaker regularity condition |g(x)/x| < 1,

for instance, also ensures convergence, however, only for x 6= 0. We stick to |g′(·)| < 1 for

the convenience that it applies to the entire domain x ∈ Z.
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3.2 Robustness

In reality, the learning function gi is subjected to noise because of the noisy payoff f̃i or the

uncertainty associated with evaluating f̃i.

Theorem 3.12 (robustness against bounded noises). The equilibrium fixed point x∗ = 0

of the map h is robust when subjected to bounded disturbances.

Proof. Let V (x) ≡ ‖x‖∞. Thus,

V
(
h(x)

)
= ‖h(x)‖∞ = ‖Jx‖∞ ≤ ‖J‖∞ ‖x‖∞ ≤ m ‖x‖∞ . (3.16)

The first inequality follows from the property of induced matrix norm. Since the continuous

function V (x) is a Lyapunov function for h, the result follows from standard results in

stability theory [Teel, 2004].

3.3 Efficiency

Assumption 3.13 (representative agent). We will henceforth assume that βi values are

identically equal to the representative degree of social influence β:

βi ≡ β. (3.17)

The representative agent assumption regards a system with heterogeneous agents equiv-

alent to the one with identical agents (i.e., typical or representative agents) if the latter

demonstrates the same aggregate behavior as the former. Despite receiving criticisms from

economists, the representative agent is among the very few techniques that can model

multi-agent systems analytically (i.e., no simulation is performed).

Definition 3.14 (largest singular value σ1). The largest singular value of a matrix J is its

induced 2-norm:

σ1(J) ≡ ‖J‖2 ≡ max
‖v‖2=1

‖Jv‖2 . (3.18)

Definition 3.15 (upper bound of open loop spectral radius mg). We define mg as the

maximum learning gain:

mg ≡ max
1≤i≤n,x∈Z

|g′i(x)|. (3.19)

It is the upper bound of spectral radius m in the open loop setting.
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Theorem 3.16 (contraction of the Euclidean norm). Suppose βi are all identically equal to

β (Assumption 3.13, p. 42). Then ‖h(x)‖2 ≤ m ‖x‖2, where m ≡ (1−β) max1≤i≤n,x∈Z |g′i(x)|+

β = (1− β)mg + β.

Proof. Let G′ ≡ diag
(
g′1(δ1x1), . . . , g

′
n(δnxn)

)
. Then J = (1− β)G′ + β

n11>.∥∥G′∥∥2
2
≡ max
‖v‖2=1

∥∥G′v∥∥2
2

= max
‖v‖2=1

∑
i

|g′i(δix)|2v2i ≤ max
1≤i≤n

|g′i(δixi)|2 ≤ max
1≤i≤n,x∈Z

|g′i(x)|2.

(3.20)

Thus, ‖G′‖2 ≤ max1≤i≤n,x∈Z |g′i(x)|. Therefore,

‖J‖22 ≡ max
‖v‖2=1

‖Jv‖22 ,

= max
‖v‖2=1

{
(1− β)2

∥∥G′v∥∥2
2

+
β2

n2
(1>v)2 ‖1‖22 +

2β(1− β)

n
(1>v)(1>G′v)

}
,

≤ (1− β)2
∥∥G′∥∥2

2
+ β2 +

2β(1− β)

n

(
max
‖v‖2=1

|1>v|
)(

max
‖v‖2=1

|1>G′v|
)
,

≤ (1− β)2
∥∥G′∥∥2

2
+ β2 +

2β(1− β)√
n

‖1‖2
(

max
‖v‖2=1

∥∥G′v∥∥
2

)
,

= (1− β)2
∥∥G′∥∥2

2
+ β2 + 2β(1− β)

∥∥G′∥∥
2

= m2.

(3.21)

Since h(x) = Jx, it follows that ‖h(x)‖2 = ‖Jx‖2 ≤ ‖J‖2 ‖x‖2 ≤ m ‖x‖2.

Next, we introduce noise. Let {ω(t) ∈ Rn : t ≥ 0} denote an IID sequence of random

vectors where ω(t) = [ω1(t), . . . , ωn(t)]>, and each ωi(t) is an IID sample of a zero mean

random variable with variance σ2ω. The noisy collective dynamics is given by

xi(t+ 1) = (1− βi)
(
gi
(
xi(t)

)
+ ωi(t)

)
+ βi

1

n

∑
j

xj(t). (3.22)

We first define the metrics of performance as follows.

Definition 3.17 (stage cost v). We define the mean squared error v(t) ≡ MSE(t) as the

stage cost at time t:

v(t) ≡ 1

n

∑
i

xi(t)
2 =

1

n
‖x(t)‖22 . (3.23)

Note that MSE is only one of many indicators of performance. Total realized payoff,∑
i yi(t) for example, also measures how well a system performs. The state of a system

with a better realized payoff, however, is not unambiguously better than another state due

to disturbances and measurement noises.
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Definition 3.18 (cumulative cost V ). The cumulative cost for a finite time horizon T is

defined as

V (T ) ≡
T−1∑
t=0

v(t). (3.24)

Definition 3.19 (optimal control). We define the following optimal control problem for

computing the optimal degree of social influence β that minimizes the expected cost function

V :

min
β

E
[
V
(
β; x(0),ω(t), T

)]
, (3.25)

s. t. x(t+ 1) = h
(
x(t)

)
, (3.26)

Based on our previous results, we have the follow recursion of the stage cost

E
[
v(t+ 1) | x(t)

]
=

1

n
E
[
‖x(t+ 1)‖22 | x(t)

]
, (3.27)

=
1

n
E
[
‖h(x(t)) + (1− β)ω(t)‖22 | x(t)

]
, (3.28)

=
1

n
‖h(x(t))‖22 +

(1− β)2

n
E
[
‖ω(t)‖22

]
, (3.29)

≤ 1

n
‖J‖22 ‖x(t)‖22 + (1− β)2σ2ω, (3.30)

≤ m2v(t) + (1− β)2σ2ω, (3.31)

where (3.29) follows from the fact that ω(t) is independent of x(t), and (3.30) follows from

the bound in Theorem 3.16 (p. 43). Iterating the bound (3.31) we get

E[v(t)] ≤ m2tv(0) +
(1− β)2(1−m2t)

(1−m2)
σ2ω. (3.32)

Definition 3.20 (steady-state mean squared error v∞). The mean squared error for a large

t can be approximated by equating the LHS and the RHS of (3.32):

v∞ ≡ lim
t→∞

E
[
v(t)

]
,

≈ (1− β)2σ2ω
1−m2

,

=
(1− β)σ2ω(

1−mg)
[
β(1−mg) +mg + 1)

] .
(3.33)

Note that v∞ decreases monotonically as β increases.
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We can then obtain the upper bound on the expected total cost easily:

E
[
V (T )

]
≤ 1−m2T

1−m2
v(0) +

(
T − 1−m2T

1−m2

)
(1− β)2σ2ω

1−m2
,

=
1−m2T

1−m2

(
v(0)− v∞

)
+ Tv∞.

(3.34)

Solving the β∗ that minimizing RHS of (3.34) gives a conservative measure of the optimal

degree of social influence.

3.4 Optimal Degree of Social Influence

We briefly discussed how β affects the efficiency of soft regulation in Section 3.3 (p. 42).

By minimizing the RHS of (3.34), one can obtain the optimal β that minimizes the worst

case E
[
V (T )

]
, i.e., expected cumulative MSE. In the following segments, we will look into

two aspects of how β affects the performance of soft regulation.

3.4.1 Maximum Contraction

We established in (3.30) that the reduction of MSE is controlled by the contraction property

of J (as well as the noise reduction term (1 − β)2σ2ω, which we will discuss in the next

segment). More specifically, the contraction determines how MSE decreases in the absence of

noise. We used the induced 2-norm (Definition 3.14, p. 42) of J to quantify such contraction

in the context where MSE is the metric of performance.

It is apparent that the smaller the spectral radius, the faster x goes to 0. The contraction

property can then be approximated by the spectral radius of J . One can interpret the

contraction property as this:
‖Jx‖
‖x‖

≤ ρ(J) (x 6= 0). (3.35)

In (3.35), the contraction is not state (x) dependent. That simplifies the analysis because

for any state x 6= 0 at any time t, (3.35) would hold and the spectral radius only depends

on J (instead of depending on both J and x). In contrast, the actual contraction, i.e., the

LHS of (3.35) can only be measured after the dynamics (3.1) takes place. Similarly, we

have
‖Jx‖2
‖x‖2

≤ σ1(J) (x 6= 0), (3.36)
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where σ1 is the largest singular value (Definition 3.14, p. 42).

The optimal β that maximizes contraction would therefore be the one that minimizes

either the spectral radius or the largest singular value of J . Even though Theorem 3.10

(p. 41) and Theorem 3.16 (p. 43) suggest that increasing β monotonically increases the

upper bond of ρ(J) and σ1(J), the actual relationship is more complex.

Conjecture 3.21 (maximum contraction). For a coefficient matrix J(β) = (1−β)G′+βS

(Definition 3.9, p. 40) as a function of β, given σg 6= 0 (Definition 2.7, p. 32), there exists a

β∗ > 0 such that ρ (or σ1) is minimized. In other words, there exists an optimal degree of

social influence that maximally improves the noiseless contraction of soft regulation.

We do not attempt a proof for this Conjecture. Instead, we demonstrate here a simple

system with G′ = diag
(
− 0.68,−0.029, 0.60, 0.91, 0.94

)
. When β = 0, J = G′ thus ρ(J) =

0.94. As β increases, ρ(J) first decreases then increases until ρ(J) = 1 when β = 1. A few

ρ(J) values against different β values are listed in Table 3.1 (p. 47). Interested readers can

use the following MATLAB code to recreate the results:

>> g = [-0.68; -0.029; 0.60; 0.91; 0.94];

>> rho = @(beta) max(abs(eig((1-beta) * diag(g) + beta * ones(5) / 5)));

>> sv = @(beta) norm((1-beta) * diag(g) + beta * ones(5) / 5, 2);

>> beta_best_rho = fminbnd(rho, 0, 1)

beta_best_rho =

0.44

>> beta_best_sv = fminbnd(sv, 0, 1)

beta_best_sv =

0.44

3.4.2 Maximum Noise Reduction

The noise reduction effect from β is much more straightforward than the contraction effect.

Using expected MSE as the performance metric leads to the following noise term in (3.30):

(1− β)2σ2ω. (3.37)
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Table 3.1: Illustration of Conjecture 3.21

β ρ(J) σ1(J)

0 0.94 0.94

0.1 0.88 0.88

0.2 0.84 0.84

0.3 0.81 0.81

0.4 0.80 0.80

0.44 0.79 0.79

0.5 0.80 0.80

0.6 0.82 0.82

0.7 0.85 0.85

0.8 0.89 0.89

0.9 0.94 0.94

1 1.0 1.0

As a result, increasing β makes the noise reduction stronger and leads to a smaller steady-

state error (Definition 3.20, p. 44). β, however, cannot increase indefinitely because a large

β would hurt the contraction as discussed earlier. For a system where σω � σg, we can

safely use the worst case formulation (3.34) to identify the optimal β∗ (Fig. 3.1, p. 48).

47



CHAPTER 3. MATHEMATICAL PROPERTIES OF SOFT REGULATION

Learning gain
0 0.2 0.4 0.6 0.8 1

O
pt

im
al

 d
eg

re
e 

of
 s

oc
ia

l i
nf

lu
en

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03

0.05

0.1

1

10 (noise ratio)

Figure 3.1: Optimal social influence from robust control by minimizing the RHS

of (3.34). The general trend is that a moderately strong social influence is desirable if

the system is uncertain (high noise-to-initial-MSE ratio) or the learning gain is low (fast

open loop convergence). An interesting observation is that as the learning gain crosses a

certain threshold (e.g., 0.9), the optimal social influence rapidly increases as the learning

gain increases. For a high learning gain, the contraction becomes insensitive to the change

in β while the noise reduction still does.
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3.5 Different Solutions

There are situations where the solutions are similar but not identical to all agents. We

discuss here how soft regulation performs under such circumstance.

Definition 3.22 (solution spectrum θ∗ and its width σθ). Similar to the naming convention

for the learning spectrum (Definition 2.7, p. 32), we let θ∗ ≡ [θ∗1, . . . , θ
∗
n]> denote the

solution spectrum and σθ ≡
√

1
n (θ∗i − θ∗)

2 denote the width of the solution spectrum,

where θ∗ ≡ 1
n

∑
j θ
∗
j is the average (or representative) solution.

Consider the open loop learning dynamics:

x̄i(t) = gi
(
xi(t)

)
+ ωi(t). (3.38)

Replacing the LHS x̄i with z̄i − θ∗i , we have

z̄i(t) = gi
(
xi(t)

)
+ ωi(t) + θ∗i , (3.39)

and subsequently we also have

zi(t+ 1) = (1− β)z̄i(t) + β
1

n

∑
j

zj(t),

= (1− β)
(
gi
(
xi(t)

)
+ ωi(t) + θ∗i

)
+ β

1

n

∑
j

(
xj(t) + θ∗j

)
.

(3.40)

Subtracting θ∗i from both LHS and RHS, we have

xi(t+ 1) = (1− β)
(
gi
(
xi(t)

)
+ ωi(t)

)
+ β

1

n

∑
j

xj(t) + β
1

n

∑
j

(θ∗j − θ∗i ). (3.41)

We can convert (3.41) into a linear iterative system by replace gi(x) with g̃′ix where the

learning gain (Definition 2.6, p. 32):

x(t+ 1) = Jx(t) + (1− β)ω + β(S − I)θ∗, (3.42)

where J = (1−β)G′+βS is identical to what we defined earlier (Definition 3.9, p. 40) with

G′ = diag
(
g′
)

and S = 1
n11>. It is not difficult to extend (3.30) and obtain the following

inequality:

E
[
‖x(t+ 1)‖2 |x(t)

]
≤ σ1(J) ‖x(t)‖2 + (1− β)

√
nσω +

√
nσθ. (3.43)
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Definition 3.23 (root mean squared error (RMSE) v(t)). We define the root mean squared

error of the system as the stage cost v(t) = 1√
n
‖x(t)‖.

The RMSE version of (3.43) is therefore

E
[
v(t+ 1)|v(t)

]
≤ σ1(J)v(t) + (1− β)σω + βσθ. (3.44)

The steady-state expected RMSE (similar to Definition 3.20, p. 44) is therefore bounded

by the following equation:

v∞ ≡ lim
t→∞

E
[
v(t)] ≤ (1− β)σω + βσθ

1− σ1(J)
. (3.45)

Should the deviation of solution (i.e., the width of the solution spectrum) be sufficiently

small (in other words, σθ ≤ σω), there would exist a β∗ ∈ (0, 1) such that the worst case

steady-state RMSE is minimized.
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Chapter 4

Implementing Soft Regulation

4.1 Regulating Emerging Industries (p. 53) The term soft regulation was first cre-

ated in the context of regulating emerging industries (Section 2.1, p. 24), where one needs

to properly balance between being too conservative (i.e., over-regulation) and being too lib-

eral (i.e., under-regulation). In this section, we use an agent-based simulation to model the

collective optimization process of an emerging technology. We discuss how soft regulation

could improve the overall welfare of the system by accelerating the convergence.

4.2 Mobile Health (p. 65) We focus here on healthcare. Mobile fitness tracking services

have been integrated into many’s daily lives: We often change our health behaviors such as

sleep, dietary, and exercise patterns in order to improve fitness. Can we use soft regulation

to help multiple consumers identify the optimal health behaviors? We present the results

from an Amazon Mechanical Turk experiment with human subjects. We analyze experiment

data and estimate, through control theory, the optimal degree of social influence that would

maximally improve the open loop problem-solving process.

4.3 Local Regulation and Policy: U.S. State Tax and Expenditure Case Study

(p. 76) We return to the topic of optimal regulation and policy. In this case study,

instead of a federal oversight or a central planner (Section 4.1, p. 53), local regulators and

policymakers form a decision-making crowd. Our optimal control analysis indicates that

soft regulation could have accelerated the convergence of state tax and expenditure.
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4.4 Multi-Product Revenue Management (p. 86) Even if individual solutions are

different, soft regulation can still improve the collective problem-solving process. This

discovery is applicable to cases such as multi-product revenue management. We propose

here an improved algorithm based on the Besbes-Zeevi dynamic pricing model.
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4.1 Regulating Emerging Industries

4.1.1 Background

Consider the following situation: There are one central planner (regulator) and n regulated

entities (companies, i = 1, . . . , n) in an emerging industry. Since the technology or busi-

ness has just been discovered or developed, there lacks an industry standard that properly

balances production, stability, and environmental impact. The optimal operating standard

θ∗ is unknown to either the regulator or the companies. As more time and resources are

devoted to R&D, individual companies can gradually improve their operations and eventu-

ally discover the optimum independently. In the meantime, the regulator periodically issues

recommendations (instead of mandates). The companies can accept, reject, or partially

accept the recommendations based on how confident they feel towards the regulator. The

confidence level β is an alternative form of the degree of social influence present in the

system. In this exercise, we implement an agent-based simulation to understand how 1)

different types of recommendations and 2) different confidence levels affect the performance

of soft regulation.

4.1.2 Agent-Based Simulation

There are several ways to generate feedbacks for soft regulation. We focus on two method-

ologies here: the best recommendation and the crowd recommendation. As their names

suggest, best recommendation corresponds to the case where the regulator has full infor-

mation and computes the feedback by solving a centralized optimal control problem; the

crowd recommendation on the other hand, is simply the average of the agents’ actions

(i.e., the wisdom of crowds). We show that, despite its simplicity, crowd recommendation

is as good as the best recommendation for a wide range of confidence levels.

When the regulator is fully informed about the functions f̃i, g̃i, and βi (Section 2.1.2,

p. 29), the optimal feedback u∗ can be computed explicitly by solving the following cen-

tralized optimal control problem that maximizes social welfare (cumulative payoff) over the
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projected trajectory:

max
T−1∑
t=0

n∑
i=1

E
[
f̃i
(
zi(t)

)∣∣u(·)
]
,

s. t. zi(t+ 1) = (1− βi)g̃i
(
zi(t)

)
+ βiu(t).

(4.1)

We call the solution u∗ to this problem the best recommendation.

Since the function f̃i, g̃i, and the parameter βi are only privately known to the agents,

in practice, it is unlikely that the regulator knows the functions and the parameters. Fol-

lowing [Brotman, 2014; Surowiecki, 2005; Sunstein and Hastie, 2014], we assume that the

regulator, instead, reports the average, i.e., u ≡ 1
n

∑
i zi. We call this recommendation

the crowd recommendation. Note that using privacy-preserving computations [Abbe et al.,

2012], the regulator can compute the crowd recommendation without ever learning any in-

dividual input zi. We demonstrate that the crowd recommendation ensures the convergence

to the optimal setpoint; moreover, it is as good as the best recommendation for a wide range

of confidence levels.

We have established the convergence and robustness properties of soft regulation in the

previous chapter. For practical applications, it is important to understand the transient or

finite-time dynamics of soft regulation, and more specifically, the role of confidence level

βi in setting the transient performance. We are able to illustrate with a few additional

assumptions about the system.

In this section, our analysis will be focused on the simplest concave function, namely an

identical and quadratic utility function f̃i(zi) = f̃(zi) = f(zi) + ν = −k(zi − θ∗)2 + ν. Rep-

resentative agents are helpful in identifying the effect of confidence level (Assumption 3.13,

p. 42). In order to study the convergence behavior, one can without loss of generality,

assume that θ∗ = 0 (i.e., decision error xi = zi). This particular choice for f is motivated

by the fact that any strongly concave function can be approximated by a quadratic func-

tion near its optimum. The noise is ν ∼ N (0, σν). Agents only observe the noisy function

values — the underlying structure is not known to the agents.

Definition 4.1 (optimization efficiency η). We define the optimization efficiency as the

54



CHAPTER 4. IMPLEMENTING SOFT REGULATION

percent reduction in MSE (or stage cost v, Definition 3.17, p. 43):

η(t) ≡ v(0)− v(t)

v(0)
× 100%. (4.2)

The efficiency is 100% when the system reaches optimum.

We simulated the agent dynamics in NetLogo (Appendix A, p. 104). The agent set

was randomized by a fixed random seed in the program to ensure consistency. For each

set of parameters, we ran the simulation five times and took the average. The observed

standard error is insignificant; therefore we omit error bars in the figures. The model

parameter values are listed in Table 4.1 (p. 55). The noise ν ∼ N (0, σν) has the same

variance as another random variable ε ∼ U(−
√

3σν ,
√

3σν). We chose σν to be 200/
√

3

so that it is computationally equivalent to a uniform ±200 noise. The parameters do not

represent practical meanings. The particular values were chosen such that the results are

easily identifiable.

Table 4.1: Agent-based simulation parameters

n σν θ∗ k a(t) c(t)

1000 200/
√

3 0 100 1/t 1/(t+ 200)1/3

We first run the simulation for soft regulation with best recommendation. Given the

quadratic utility, Kiefer-Wolfowitz algorithm (p. 29), and system-wide confidence level, the

regulator can easily compute best recommendation by solving the optimal control prob-

lem (4.1). One can obtain the noiseless system dynamics to be

x(t+ 1) = (1− β)
(
1− 4ka(t)

)
x(t) + β1u(t). (4.3)

Since the stage cost does not penalize input u, the optimal u∗ at stage t can be solved as

follows

u∗(t) = −

[
(1− β)

(
1− 4ka(t)

)
β

]
· 1

n

∑
i

xi(t). (4.4)

In Fig. 4.1 (p. 57), we plot the efficiency η after 200 iterations against different confidence

levels β. We observe the efficiency increases monotonically as the confidence level increases.
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This result is not surprising. As the confidence level increases, the regulator has a stronger

influence on the agents, therefore, exerting a more efficient control. Even though for each

confidence level, the regulator issues the best recommendation, the recommendation is only

effective when the agents choose to listen.

In Fig. 4.2 (p. 57) and Fig. 4.3 (p. 62), we plot the efficiency against confidence level

for soft regulation with crowd recommendation. The results from Fig. 4.1 (p. 57) are also

included as a reference. It is remarkable that soft regulation with crowd recommendation

is as good as the one with best recommendation for a wide range of confidence levels (from

0 to 99%). The real advantage of best recommendation only appears when the confidence

level is close to 100%. However, to achieve such best recommendation or even hard regu-

lation, the regulator needs information about utility function, optimization algorithm, and

the confidence level. This practice, despite being efficient under the setting of complete

information, is costly, impractical, and error prone in practical settings. Especially for hard

regulation, additional cost of enforcement needs to be considered.

The results in Fig. 4.2 (p. 57) and Fig. 4.3 (p. 62) indicate that the confidence level

should be set to a large value but not too close to 100%. The open loop system only

reaches about 70% optimum. The system performance is more than 90% optimal when the

confidence level is 50% (i.e., the agent takes an average between its own optimization result

and the recommendation). We also see a sharp decline in performance when confidence

level is too close to 100%. Beyond this “cliff,” the agents explore very little and essentially

stay where they are.

In Fig. 4.4 (p. 62), we plot the time series of efficiency for different confidence levels.

When confidence level is low (β = 0 or 10%), the MSE increases (efficiency declines) before

converging. This is caused by large initial step sizes. As confidence level increases, the

system begins convergence earlier. As the confidence level further increases, the system

shifts from the regime dominated by exploration to the one dominated by conformity, and

the recommendation does not have enough time to converge to optimum before agents start

conforming.

In order to better understand the connections between the confidence level and the

performance that we hypothesized in the previous section and observed in the simulation
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Figure 4.1: Efficiency of soft regulation with best recommendation.
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Figure 4.2: Efficiency of soft regulation with crowd recommendation.
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results, we now attempt to compute a closed-form expression for the system state. Recall

that xi denotes the current state of the i-th agent. The updated state x+i implied by the

gradient-based update scheme in (2.2) is given by

x+i = (1− β)(1− 4ka)xi + βu+ a · 1− β
c
· ν̂i (4.5)

where ν̂i ∼ N (0,
√

2σν) is the effective noise resulting from computing the discrete ap-

proximation to the gradient in (2.2) on p. 29. Recall that the crowd recommendation is

u =
∑

i xi/n. Thus, the updated u+ of the recommendation is given by

u+ =
[
1− 4ka(1− β)

]
u+ a · 1− β

c
· 1

n

∑
i

ν̂i. (4.6)

When n� 1, the expected u(t) can be treated as a deterministic variable. When β is small,

u(t) quickly converges to 0. Let U(t) ≡ E[u(t)]. Since E[ν̂] = 0, we have that

U(t+ 1)− U(t) = −4ka(t)(1− β)U(t). (4.7)

Note that the variance of u(t + 1) is 2a(t)2(1 − β)2σ2ν/
(
c(t)2n

)
� 1 for n � 1. Therefore,

compared to xi(t), the recommendation u(t) can be safely treated as a deterministic variable

i.e., u(t) ≈ U(t). Especially when |4ka(t)(1− β)| � 1, one can approximate the difference

equation by the ODE
dU(t)

dt
= −4ka(t)(1− β)U(t). (4.8)

E[u(t)] can be approximated as follows:

E[u(t)] ≈ u(0) exp

[
−4k(1− β)

∫ t

0
a(τ)dτ

]
. (4.9)

For the wisdom of crowds, this implies that a group is smart only when the population

is large (n � 1) and agents are not strongly conforming (β � 100%). Surowiecki’s

book [Surowiecki, 2005] shares the same insights. Unlike the averaging method in the

book, soft regulation is a continuous feedback process. Even though the open loop (β = 0)

system has the fastest converging recommendation, agents cannot make use of it unless

they at least partially accept (β > 0). This paradox suggests some trade-off and balancing

between consensus and efficiency.

In addition, as k increases, u(t) approaches the solution faster, i.e., a more sensitive

utility function implies a more reliable recommendation. Unless an agent can estimate the
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curvature (∼ k for a quadratic function) of the payoff accurately, it is safer to rely on the

recommendation when curvature is larger.

From (4.5) it follows that

v(t+ 1) ≡ 1

n

∑
i

x2i (t+ 1),

=(1− β)2
(
1− 4ka(t)

)2 1

n

∑
i

x2i (t) + β2u(t)2

+ 2(1− β)
(
1− 4ka(t)

)
u(t)

1

n

∑
i

xi(t) +
1

n
a(t)2

(1− β)2

c(t)2

∑
i

ν̂2i (t)

+
1

n

∑
i

[
(1− β)

(
1− 4ka(t)

)
xi(t) + βu(t)

]
a(t)

(1− β)

c(t)
ν̂i(t).

(4.10)

Since u ≡
∑

i xi/n, u(t) ≈ U(t), and E[ν̂i] = 0, we have

E [v(t+ 1)] =(1− β)2
(
1− 4ka(t)

)2E[ 1

n

∑
i

x2i (t)

]

+ β
[
2(1− β)

(
1− 4ka(t)

)
+ 1
]
U(t)2

+ 2a(t)2
(1− β)2

c(t)2
σ2ν .

(4.11)

We therefore define X(t) ≡ E[v(t)]. It follows that the update for X(t) is given by recursion

X(t+ 1) = A(t)X(t) +B(t), (4.12)

where

A(t) ≡ (1− β)2
(
1− 4ka(t)

)2
, (4.13)

and

B(t) ≡ β
[
2(1− β)

(
1− 4ka(t)

)
+ 1
]
U(t)2 + 2a(t)2

(1− β)2

c(t)2
σ2ν . (4.14)

Since limt→∞A(t) = A∞, limt→∞B(t) = B∞, and limt→∞X(t + 1) = B∞/(1 − A∞), one

would expect that when t is large,

X(t+ 1) ≈ B(t)

1−A(t)
, (4.15)

=
2a(t)2(1− β)2σ2ν/c(t)

2 + β
[
2(1− β)

(
1− 4ka(t)

)
+ 1
]
U(t)2

1− (1− β)2
(
1− 4ka(t)

)2 . (4.16)
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This approximation in fact agrees with the simulation (see lines in all simulation result

figures).

From (4.16), it follows that MSE converges to 0 (soft regulation is optimal). Meanwhile,

when confidence level is low, i.e., β ≈ 0 (explorers), the dependence on u(t) vanishes very

quickly, and (4.16) can be simplified as follows:

E[v(t+ 1)] ≈ 2a(t)2σ2ν/c(t)
2

1/(1− β)2 −
(
1− 4ka(t)

)2 , (4.17)

and MSE monotonically decreases as β increases. On the other hand, when confidence level

is high, i.e., β ≈ 100% (followers), the u2(t) term dominates σ2ν , one can simplify (4.16) to

E[v(t+ 1)] ≈ β
{
u(0) exp

[
−4k(1− β)

∫ t

0
a(τ)dτ

]}2

, (4.18)

and MSE monotonically increases as β increases. This estimation agrees well with our

previous hypotheses and simulation results (Fig. 4.2, p. 57 to Fig. 4.4, p. 62).

An interesting fact arises from this approximation, i.e., imperfect information is neces-

sary for soft regulation to add value. If the system has very low noise or noise-free, the σ2ν

term will be dominated by u2(t), and an increase in β hurts performance. That is to say,

for a deterministic process, soft regulation with crowd recommendation may not be a good

mechanism for agents to adopt.

In practice, each individual may have a distinct confidence level and personal traits

(as opposed to Assumption 3.13, p. 42). Modeling such rich details as well as formulating

related best recommendation is beyond the scope of this exercise. Nevertheless, for purposes

of illustration, we propose the following adaptive confidence mechanism:

β(xi, u) = e−b(xi−u)
2

(b > 0). (4.19)

The rationale for this update scheme is as follows. When an agent’s action is far away

from the recommendation, the agent is fairly skeptical. Suppose, by incorporating the

recommendation, the agent’s action moves further away from the recommendation, the

agent would rely even less on the regulator. However, when the action comes closer to the

recommendation, agent is likely to be more confident about the regulator, and incorporate

the recommendation in future updates. One flaw in this adaptive mechanism is that if
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everyone performs the same action in the beginning, this results in an identical confidence

level β = 100% for all agents, and the system will not move at all. This situation might

be remedied with an occasional, small perturbation. In Fig. 4.5 (p. 64), we plot two new

simulation results, i.e., 1) agents have uniformly distributed confidence levels (Dist.), and

2) agents have uniformly distributed initial confidence levels and the confidence is adaptive

(Dist.+adap.) according to the update scheme above. We also include previous results with

fixed and identical confidence level to the graph. We observe a fairly good performance.

4.1.3 Discussion

In the soft regulation setting, the regulator’s role is to help agents learn, understand, and

optimize an unknown process without interrupting normal operations. The essence of this

mechanism is to take guided decisions by updating actions using the map x+i = (1 −

βi)x̄i + βiu, where x̄i is the i-th agent’s open loop action and u is the regulator’s soft

feedback (or crowd recommendation). Self-interested agents have the freedom to choose to

partially accept the regulator’s recommendation. Soft regulation provides a more balanced

coordination: Unlike hard regulation, it does not force the agents; this creates a collective

learning environment and avoids possibly erroneous mandates. On the other hand, a soft

regulatory system is not under-regulated or uncoupled. The exploration of some agents

benefits others. Useful information is shared indirectly instead of being wasted in an asocial

learning environment.

We notice the efficiency of soft regulation is impacted by the following factors:

Population Because of noise, recommendation is subject to uncertainty. However, when

n � 1, the variance becomes negligible, and the recommendation becomes deterministic

(very close to mean) and accurate. This dependence on population size is intuitive: The

information aggregated from a large population should be more useful compared to the one

from a small population.

Process We have proved that soft regulation with crowd recommendation preserves op-

timality. The advantage of the mechanism, however, is especially pronounced when the

system is very noisy and the payoff function is very sensitive. A rule of thumb for the
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Figure 4.3: Efficiency of soft regulation with crowd recommendation (large con-

fidence levels).
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Figure 4.4: Efficiency of soft regulation with crowd recommendation over time.
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agents would be when a large sensitivity of the process is observed (either because of high

noise or large curvature), the agents may be better off relying on the recommendation. Un-

certainty drives the system towards cooperation. Soft regulation can potentially stabilize

an open loop unstable process. This result also provides some insights on the wisdom of

crowds. For example, the average performance can outperform the best individual when

the system is very uncertain. In that sense, the “expert” knowledge may not be as useful

in an emerging industry as the collective wisdom.

Confidence level β We conclude that the best confidence level should be large but not

too close to 100%. This is especially true when the system is very noisy and the process

is very sensitive. In such setting, agents should put a substantial amount of trust on the

regulator’s recommendations. Because of the trade-off between consensus and efficiency, in

the early stage of soft regulation, the confidence level should be kept low for recommendation

to quickly converge. As time proceeds, agents can be more and more confident regarding

the recommendation.
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Figure 4.5: Efficiency of soft regulation with crowd recommendation over time

(distributed agents).
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4.2 Mobile Health

4.2.1 Background

There are n consumers of certain fitness service such as Fitbit or Apple Watch. They form

a social network. Each individual consumer attempts to adjusts his/her health behavior zi

in terms of sleep, dietary, or exercise pattern such that his/her fitness yi is maximized. S/he

can also poll the social network to see the others’ behaviors (or the population average).

Based on the degree of social influence βi, the i-th consumer adjusts his/her decisions.

4.2.2 Experimental Design

We conducted three sets of online experiments on Amazon Mechanical Turk with human

subjects (Appendix B, p. 112). We focus our analysis on experiment set B (N = 194)

but present the final results for all three sets. Each set consisted of five replications of the

experiment with its unique conditions.

The participants (or players) were asked to estimate the “diet level” that maximizes the

“fitness” of a virtual character in the “Fitness Game” designed by us. The true relationship

between the diet level and fitness was a given deterministic and concave function f(zi),

however, the players received a noisy value f̃(zi) ≡ f(zi) + ν of the fitness associated with

the guessed diet level zi. This noise ν, in reality, could be from other external factors such

as environment and mood. The players were allowed multiple guesses, and were rewarded

instantly based on the character’s fitness level. The players also received monetary rewards

based on their relative performances.

In each replication p ∈ {1, . . . , 5} of the “Fitness Game,” the np participants first entered

a session (control group) where they played the game in an open loop for 240 seconds

(four minutes). In this session, each participant entered a series of guesses to best predict

the unknown optimal diet level θ∗ ∈ [2000, 2500] kcal. When a player entered a guess,

the interface would refresh and the player would see the virtual character’s fitness level

(maximum 100%) for the guessed value. The player could then enter a new value until this

session ended.

Subsequently, the same cohort entered the closed loop session (treatment group) where
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they played the same game with a population feedback. The game was reset and a new

optimal diet level θ∗ was chosen. In this session, in addition to the fitness level corresponding

to their own guess z, players also received a soft feedback saying “We recommend 1
np

∑np
i=1 zi

kcal,” where zi denotes the most recent guess of the i-th player. This feedback only updated

when the players took actions. The players had the option of using the feedback in any

manner they desired.

In this treatment group, we revealed the population average of the diet level to each

player. Thus, the choices of the players were not independent. However, we allowed the

players the freedom to accept, reject, or partially accept such a population feedback, i.e., set

the diet level to be a combination of their individual guesses and the feedback.

In the previous section (p. 61), we had introduced the possibility of partial acceptance

of population recommendation in the context of regulating emerging industries. We also

argued that soft regulation is appropriate and efficient (and desirable) when the observed

outcomes are very noisy, individual decision makers are rational utility-maximizing agents,

and the agents are exploiting abundant resources, and therefore, not competing. Medical

research and health optimization using large-scale social interactions, for example via Ap-

ple’s ResearchKit and CareKit [Apple, 2016], are examples of systems that satisfy these

three conditions. The “Fitness Game” is meant to mimic these conditions.

Upon completion, participants received monetary rewards based on their relative game

scores within the same cohort. We hoped to incentivize the participants in this way so that

they would make rational decisions and actively optimize their virtual character’s fitness,

instead of making random guesses to get the participation rewards.

Detailed Description of the Experiment Environment We developed the “Fitness

Game” using Google Apps Script (Appendix C, p. 117). All the data were stored in Google

Sheets. Once the players accepted the task, they were first asked to carefully read the game

instructions (Fig. 4.6, p. 68). The total task duration was ten minutes. The open loop

(game level 1) and soft regulation (game level 2) sessions lasted precisely four minutes each.

Players who wished to practice could enter the practice mode (game level 0) any time before

open loop session began. After completing both open loop and soft regulation sessions, the
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players received a message about compensation information.

The interactive app (Fig. 4.7, p. 69) consists of the following components: The upper

left panel shows the number of attempted guesses, the most recent guess, the fitness level,

and the latest score. The panel changes from red to green whenever the player scores one

point. In the soft regulation session, an additional message recommends the current vox

populi population feedback (see Fig. 4.7, bottom). The upper right panel records latest

game scores. The lower left scatter chart plots the ten most recent entries (fitness versus

diet). The lower right line chart plots the fitness history of the ten most recent entries.

The virtual character’s random fitness level f̃(x) as a function of player’s decision error

x = z − θ∗ was given by

f̃(x) ≡ y∗ −
(x
κ

)2
+ ν,

where y∗ = 98% is the maximum achievable fitness, κ = 500 kcal is the scale of the fitness

function, and ν is a sample from a random variable uniformly distributed over [−2%, 2%].

The player was awarded one score point whenever the guess led to a fitness level of 99% or

higher.

4.2.3 Results and Discussion

Wisdom of Crowds Effect Let’s begin with the analysis of the wisdom of crowds effect.

We plot the time series of each individual player’s decision error (xi) as well as that of

the wisdom of crowds (u) in Fig. 4.8 (p. 70). The performance of the wisdom of crowds is

clearly superior: u steadily and quickly reaches the solution within the first minute while

individual players lag behind.

Fig. 4.8 (p. 70) also confirms the behavior observed in the literature: The wisdom of

crowds significantly outperforms the individual estimates, but such effect is weakened by

social influence. The average in the soft regulation setting slightly lags behind that in the

open loop.

Improvement from Soft Regulation Now, let’s analyze how soft regulation improves

the crowd’s learning performance. By visually inspecting Fig. 4.8 (p. 70), we observe the

narrowing of individual error distribution in the soft regulation setting: There are fewer ex-
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Figure 4.6: Instructions for the “Fitness Game”.
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Figure 4.7: Game interface.
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Figure 4.8: Learning process of each individual player and the wisdom of

crowds. Top: open loop setting. Bottom: soft regulation setting. Each colored dashed

line represents an individual participant’s time series of decision error. The solid line is the

arithmetic average of individual decision errors. Error bars reflect the standard errors of

the mean.
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treme errors than those in the open loop setting; most guesses are confined within ±100 kcal

around optimum. In contrast, there are a significant number of players making completely

off guesses (±500 kcal) in the open loop (even towards the end of sessions).

In Fig. 4.9 (p. 72) we plot the MSE time series to quantitatively assess the crowd’s

performance. The total MSE is approximately 30% lower in the soft regulation setting

than in the open loop setting. Unlike the deterioration in the performance of wisdom of

crowds, here social influence improves convergence and reduces the effect of noise. The

critical feature of soft regulation is that the players can ignore the feedback. Since self-

interested individuals reject feedbacks that appear unhelpful, the self-filtered social feedback

significantly improves performance.

The observed improvement from soft regulation indicates that, without external inter-

ference, partially following the average opinion helped the players solve the “Fitness Game”

problems. Next, we will characterize the system and estimate how much social influence

was present in the experiment, and the optimal degree of social influence that would have

optimized the crowd’s performance.

System Identification We assume the learning function to be gi(x) ≡ g(x) = gx + ω

and the degree of social influence to be βi ≡ β (Assumption 3.13, p. 42). The estimate

ĝ(x) = 0.75x+ω and σ̂ω = 60 (r2 = 0.97) was computed using the open loop results. From

(3.31) on p. 44, we first estimated g and σω by regressing MSE time series values v(t + 1)

against v(t). Using these estimates as an initial guess, we then ran a Monte Carlo (MC)

simulation with 5000 samples and computed the expected MSE time series. By minimizing

the mean squared difference between that with the open loop MSE time series, we obtained

the g and σω estimates (Appendix D, p. 138). The corresponding MSE evolution is plotted

in Fig. 4.9 (p. 72).

The estimate β̂ = 32% (r2 = 0.99) for the degree of social influence was computed

using the treatment group results where the players received the population feedback. The

corresponding MSE evolution is plotted in Fig. 4.9 (p. 72). Following the studies [Soll

and Larrick, 2009; Moussäıd et al., 2013] that have established that people rely more on

themselves when the opinions of others are very dissimilar, we computed an “opinion dis-
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from system identification.
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tance” function β(d), where d ≡ |g(x)−u| is the distance of an individual decision from the

population feedback. We found it to be β̂(d) = exp(−0.011d) (r2 = 0.98).

Optimal Degree of Social Influence Given the estimates ĝ(x) and σ̂ω, one can compute

the optimal degree of social influence β∗ that, hypothetically, would optimize the closed

loop soft regulation performance. The results are summarized in Table 4.2 (p. 75), and the

associated MSE time series are displayed in Fig. 4.10 (p. 74). We first consider the case

where the degree of social influence β is fixed. The empirical estimate β̂ of social influence

computed from experiment data is listed as a reference. The robust social influence β∗R was

calculated by minimizing the RHS in (3.34) (p. 45), i.e., optimizing the worst case cumulative

expected MSE. The MC estimate β∗MC was calculated by minimizing the cumulative MSE

V (T ) in (3.25) (p. 44) with the expectation approximated by a Monte Carlo estimate. We

regard β∗MC as the true optimal degree of social influence. In Table 4.2 (p. 75), the column

labeled ∆MSE lists the decrease of the cumulative expected MSE from the open loop to the

soft regulation setting. The performances of the empirical estimate β̂, the robust estimate

β∗R, and the optimal value β∗MC are quite close. It is comforting to know that the social

influence present in the experiment was close to the optimum.

We expect the degree of social influence, a function of the opinion distance or a function

of time, to likely improve convergence. The β̂(d) profile estimated from experimental data

results in ∆MSE = 30%, which is not distinguishable from the performance of a constant

β. However, the optimal β profile β∗MC(d) with ∆MSE = 47% is significantly superior. The

performance of the optimal dynamic robust social influence β∗R(t) is also listed in Table 4.2

(p. 75). Since we do not have evidence to suggest the subjects used a dynamic value for β,

and the performance of β̂(d) is close to β̂, we assume that the subjects used the constant β̂

for the rest of our results.

Discussion There is a fundamental difference between vox populi and the soft regulation

mechanism proposed in this work. Even though both come under the umbrella of “collec-

tive intelligence,” the vox populi aggregates the wisdom of experts while the latter harnesses

the wisdom of learners (Section 1.2.1, p. 9). Experts base their opinions on prior knowl-

edge. Such knowledge comes from experience and beliefs, which are unlikely to change.
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Figure 4.10: Monte Carlo simulation of the expected MSE time series.
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Table 4.2: Optimal degree of social influence

Type Value ∆MSE

β (observed) β̂ = 32% 29%

β (robust) β∗R = 23% 27%

β (MC, true optimum) β∗MC = 30% 29%

β profile (observed) β̂(d) = exp(−0.011d) 30%

β profile (MC, true optimum) β∗MC(d) = exp(−0.026d) 47%

Dynamic β (robust) β∗R(t) 39%

Table 4.3: The “Fitness Game” experiment results

Description Duration Crowd size (n) Horizon (T ) Learning gain (ĝ) Noise (σ̂ω) r2 Noise ratio Optimal β ∆MSE

The Fitness Game (Set B) 0-240s 39 30 0.75 60 0.97 5% 30% 29%

The Fitness Game (Set N) 0-240s 41 30 0.7 57 0.98 4% 32% 25%

The Fitness Game (Set S) 0-240s 9 30 0.65 51 0.98 3% 30% 17%

Independency and diversity of opinions prevent the “groupthink” behavior — undesirable

convergence of individual estimates [Sunstein and Hastie, 2014]. In this setting, social

influence, which violates independency, reduces the accuracy of the wisdom of crowds.

Learners, on the other hand, revise their decisions by interacting with the problem as

well as other learners. Consider, for example, flocking birds. The birds have to adapt to

changing weather; they gather local information, follow their closest neighbors, and revise

directions constantly [Reynolds, 1987]. In this collective learning environment, individuals,

like the flocking birds, are both respondents who generate new information, and surveyors

who poll their social networks to improve decisions.

It appears that a social influence degree of 30% is robust across many different scenarios.

In Table 4.3 (p. 75), the optimal degree of social influence ranges from 30% to 32% for the

three sets of the “Fitness Game” experiment. Prior literature [Lim and O’Connor, 1995;

Harvey and Fischer, 1997; Yaniv and Kleinberger, 2000; Yaniv, 2004; Soll and Larrick,

2009] also reports 30% to be the commonly observed degree of social influence on average.

Whether this value is a mere coincidence requires further investigation.
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The self-interested filtering of the feedback is key to ensuring the accuracy and efficiency

of the soft regulation mechanism. Individuals will reject the feedbacks that appear useless.

The experimentally observed magnitude of soft regulation is close to the theoretically pre-

dicted value for the optimal degree of social influence. This discovery suggests the promise

of soft regulation for challenging real-world problems that require collective learning and

action.

4.3 Local Regulation and Policy: U.S. State Tax and Expen-

diture Case Study

4.3.1 Background

There are 50 states in the U.S. (n = 50, or n = 51 if we consider the District of Columbia).

Individual states constantly revise their tax and expenditure policies to maximize the over-

all wellbeing (economic growth, political stability, etc.). In this case study, the policy or

strategy zi for the i-th state here is the percentage of a particular tax (or expenditure)

revenue from the total revenue (or spending). Such percentage reflects the relative impor-

tance of the tax/expenditure item. The main question we address here is whether one can

accelerate the convergence thereby making the crowd of fifty states “smarter.”

4.3.2 Results and Discussion

We apply the same control-theoretic analysis used in Section 4.2 (p. 65) to the state tax and

expenditure case study. Here the optimal taxation or expenditure policy θ∗ is unknown.

To compute the MSE, and subsequently carrying out the system identification, we assume

that the arithmetic mean of individual policies (i.e., the wisdom of crowds) has converged

to the optimum in the last decade. This is a reasonable assumption that resonates with

observations made by Galton and Surowiecki [Galton, 1907b; Surowiecki, 2005] as well as

our observations from the experiment (Fig. 4.8, p. 70). Another critical assumption we

are making here is that there exists a true optimal taxation/expenditure policy and it is

identical to all the states.

The results are displayed in Table 4.4 (p. 77). We plot the time series of individual and
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Table 4.4: U.S. optimal state tax and expenditure results

Description Duration Crowd size (n) Horizon (T ) Learning gain (ĝ) Noise (σ̂ω) r2 Noise ratio Optimal β ∆MSE

Total Gen Sales Tax (T09) 1946-2014 50 69 0.96 4 0.89 3% 35% 73%

Total License Taxes (C118) 1946-2014 50 69 0.97 0.82 0.89 0.4% 14% 34%

Alcoholic Beverage Lic (T20) 1946-2014 50 69 0.93 0.04 0.99 0.09% 20% 34%

Individual Income Tax (T40) 1946-2014 50 69 0.98 2.9 0.86 1% 14% 32%

Educ-NEC-Dir Expend (E037) 1977-2013 51 37 0.96 0.097 0.85 1% 28% 54%

Emp Sec Adm-Direct Exp (E040) 1977-2013 51 37 0.93 0.037 0.99 0.6% 11% 14%

Total Highways-Dir Exp (E065) 1977-2013 51 37 0.93 0.76 0.89 3% 31% 53%

Liquor Stores-Tot Exp (E107) 1977-2013 51 37 0.95 0.17 0.95 1% 42% 67%

crowd decision errors as well as MSE in Fig. 4.11 (p. 78) to Fig. 4.18 (p. 85) for four tax

cases and four expenditure cases. The learning gains (Definition 2.6, p. 32) of the states

are all very close to 1, i.e., in a noiseless setting, the convergence is very slow. A possible

explanation is that drastic change of tax and expenditure strategies is either prohibited

or discouranged. A larger noise (see e.g., T09 and E065) or a smaller learning gain (see

e.g., T20 and E65) calls for a larger optimal degree of social influence, which is consistent

with the results presented in Fig. 3.1 (p. 48). The improvement from soft regulation ranges

from 14% to 73%. Even a small improvement could make a significant difference in the

nation’s overall welfare.
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Figure 4.11: Optimal taxation: total general sales taxes (T09). Top: time series

of decision errors (individual and crowd). Bottom: time series of MSE (open loop in blue

dashed line and closed loop in red dash-dot line). Fig. 4.12 (p. 79) to Fig. 4.18 (p. 85) follow

the same legend style.
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Figure 4.12: Optimal taxation: total license taxes (C118).
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Figure 4.13: Optimal taxation: alcoholic beverage license taxes (T20).
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Figure 4.14: Optimal taxation: individual income taxes (T40).

81



CHAPTER 4. IMPLEMENTING SOFT REGULATION

Time (year)
1980 1985 1990 1995 2000 2005 2010

P
er

ce
nt

ag
e 

of
 to

ta
l s

pe
nd

in
g

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (year)
1980 1985 1990 1995 2000 2005 2010

M
S

E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.15: Optimal spending: expense item “(E037) Educ-NEC-Direct Ex-

pend”.
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Figure 4.16: Optimal spending: expense item “(E040) Emp Sec Adm-Direct

Exp”.
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Figure 4.17: Optimal spending: expense item “(E065) Total Highways-Dir Exp”.
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Figure 4.18: Optimal spending: expense item “(E107) Liquor Stores-Tot Exp”.
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4.4 Multi-Product Revenue Management

4.4.1 Background

Consider the following multi-product pricing problem: A company like Amazon sells n

similar products. For the i-th product, the (noisy) demand curve d̃i(pi), i.e., how the market

reacts to the price of the i-th product pi, is unknown. The optimal price p∗i that maximizes

the expected revenue E
[
r̃i(pi)

]
= piE

[
d̃i
]

might differ from product to product (or from

market to market for the same product). How can we coordinate the individual revenue

management processes to maximize the cumulative revenue over a finite time horizon?

4.4.2 Model

We adopt the linear demand model and the pricing terminology from [Besbes and Zeevi,

2015].

Definition 4.2 (linear demand d̃i and its revenue r̃i). Linear demand is a commonly used

model in economics:

d̃i(pi) ≡ di(pi) + νi ≡ ai − cipi + νi, (4.20)

where the demand parameters ai and ci ≥ 0 differ among products. Note that the actual

demand is subject to disturbances νi ∈ N (0, σ2ν). The optimal price that maximizes the

expected revenue is p∗i = ai/2ci. We rewrite the expected revenue in terms of the decision

error xi(t) = pi(t)− p∗i as follows:

E[r̃i(t)] = pi(t)di
(
pi(t)

)
,

= pi(t)
(
ai − cipi(t)

)
,

=
(
xi(t) + p∗i

)[
ai − ci

(
xi(t) + p∗i

)]
,

=

(
xi(t) +

ai
2ci

)[
ai − ci

(
xi(t) +

ai
2ci

)]
,

=
a2i
4ci
− cixi(t)2.

(4.21)

Definition 4.3 (regret vi). In revenue management, it is more common to use the regret

as a metric of performance. Regret is the difference between the current revenue and the
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maximum expected revenue based on the optimal price:

vi(t) ≡ max
p

E[r̃i(t; p)]− E[r̃i
(
t; pi(t)

)
] = cixi(t)

2. (4.22)

It represents the gain in revenue if the i-th product is priced optimally.

The average regret of the n products is a weighted MSE:

v(t) ≡ 1

n

∑
i

vi(t) =
1

n

∑
i

cixi(t)
2. (4.23)

If ci ≈ c values do not differ significantly from each other, we can approximate v(t) directly

as a function of MSE, i.e., v(t) ≈ cMSE(t). The average revenue is a function of the average

regret:

y(t) ≡ 1

n

∑
i

r̃i(t),

= y∗ − v(t) +
1

n

√∑
i

pi(t)2 · ν(t),

≈ y∗ − v(t),

(4.24)

where y∗ ≡ 1
n

∑
i a

2
i /4ci is the maximum expected average revenue and random variable

ν(t) is identical to the previously defined νi(t). As n � 1, the term containing ν(t) can

be safely omitted. Similarly, the time average of cumulative revenue per product can be

approximated as

Y (T ) ≡ 1

nT

T−1∑
t=0

n∑
i=1

r̃i(t),

≈ y∗ − V (T ),

(4.25)

where V (T ) ≡ 1
T

∑T−1
t=0 v(t) is the time average of cumulative regret per product. Note that

one can only sample y(t) and Y (T ) but not v(t) or V (T ) at each time point t = 0, 1, 2, . . .

or for each length of time T = 1, 2, 3, . . ..

We first assume identical and linear learning function, i.e., g(x) ≡ gx + ω, and that ci

values are close, i.e., v(t) ≈ cMSE(t). We approximate the regret dynamics to be

v(t+ 1) ≈ m2v(t) + (1− β)2cσ2ω, (4.26)
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where m ≡ (1− β)g + β. Thus, we have the following equations:

v(t) ≈ m2tv(0) +
(1−m2t)(1− β)2

1−m2
cσ2ω, (4.27)

y(t) = y∗ − v(t), (4.28)

V (T ) ≈ 1

T

1−m2T

1−m2
v(0) +

[
1

1−m2
− 1

T

1−m2T

(1−m2)2

]
(1− β)2cσ2ω, (4.29)

Y (T ) = y∗ − V (T ). (4.30)

Especially in the open loop setting where β = 0, one can shorten (4.29) and (4.30) above as

Y (T ) ≈ y∞ −
1− g2T

T
∆, (4.31)

where y∞ ≡ y∗ − v∞, ∆ ≡
(
v(0) − v∞

)
/(1 − g2), and v∞ ≡ cσ2ω/(1 − g2). By fitting

Y (T ) data observed for different time horizon T values, one can solve uniquely y∞, ∆,

and g. Unfortunately, v(0) and v∞ are not linearly independent in those equations and

cannot be uniquely recovered from this method. In the next section, we will approach this

identification problem from analyzing price data.

4.4.3 Multi-Product Revenue Optimization Algorithm

Our algorithm is inspired by the Besbes-Zeevi (BZ) dynamic pricing model [Besbes and

Zeevi, 2015] and the James-Stein (JS) estimator [Stein, 1956; James and Stein, 1961; Efron

and Morris, 1977]. In the context of soft regulation, the BZ model represents individual

open loop dynamics and the JS estimator introduces soft feedback.

The BZ model is straightforward (Algorithm 1, p. 89): For the i-th product, the al-

gorithm first starts with an initial guess pi(0), then sets some new prices, observes the

demand, estimates the optimal pricing, and repeats. Before the algorithm advances to the

t-th stage1, the price has changed 2t− 2 times.At the t-th stage, the product manager now

sets two new prices. One is the current estimate of the optimal price pi(2t−1) = p̂∗i (if this is

the beginning, the initial guess is used). The other is a perturbation to it pi(2t) = p̂∗i + δ(t).

1With an abuse of notation, we use t to indicate the iteration number (or the t-th stage), instead of the

number of times when the price is set; similarly, T here is the total number of stages. The 0-th stage marks

the initial guess.
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Algorithm 1 Besbes-Zeevi Dynamic Pricing Model

p̂∗i ← pi(0)

for t = 1, . . . , T do

for i = 1, . . . , n do

p̂∗i ← BZ(p̂∗i ,t)

end for

end for

function BZ(p̂∗i ,t)

pi(2t− 1) = p̂∗i

pi(2t) = p̂∗i + δ(t)

(âi, ĉi)← arg mina,c
∑2t

τ=1

[
d̃i(τ)−

(
a− cpi(τ)

)]2
return p̂∗i ← min

(
p,max(p, âi2ĉi )

)
end function

By linearly fitting all observed demands including the ones with newly set prices, one can

estimate the linear demand curve, thereby updating the estimate of the optimal price p̂∗i

(capped by the lower bound p and upper bound p). The algorithm repeats for T stages

in total. The perturbation δ(t) shrinks with time with a step size coefficient ρ. For illus-

tration purposes, we follow the numerical example from [Besbes and Zeevi, 2015] and set

δ(t) = ρt−1/4.

The JS estimator describes a phenomenon that when estimating a set of random vari-

ables, one can improve the overall estimate by shrinking the individual estimators towards

their grand average [Efron and Morris, 1977]. For instance, the least mean square estimator

of the expectation of a single random variable is its sample mean. If the number of random

variables to be estimated is larger than two and performance of an estimator is measured

by its MSE, then the JS estimator would perform no worse than the sample mean. This

is an interesting result because the expectations need not be the same. They do have to

be close in order for the JS estimator to significantly outperform sample mean. The re-

semblance between the JS estimator and soft regulation makes us wonder if we can relax

the constraint of identical solution (Definition 1.1, p. 6). Based on the result of Section 3.5

(p. 49), we propose Algorithm 2 (p. 90) to improve the performance of Algorithm 1 (p. 89)
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for multi-product revenue management.

Algorithm 2 Multi-Product Revenue Management with Soft Regulation

for t = 1, . . . , T do

u← 1
n

∑
i p̂
∗
i

for i = 1, . . . , n do

p̂∗i ← BZ(p̂∗i ,t)

end for

if t ≥ 3 then

for i = 1, . . . , n do

(k̂i, ŝi)← arg mink,s
∑t−1

τ=1

[
pi(2τ + 1)−

(
kpi(2τ − 1) + s

)]2
ĝi ← min

(
g,max(g, k̂i)

)
θ̂∗i ← min

(
p,max(p, ŝi

(1−k̂i)
)
)

(k̂i, ŝi)←
(
ĝi, (1− ĝi)θ̂∗i

)
σ̂2ωi ←

1
t−1
∑t−1

τ=1

[
pi(2τ + 1)−

(
k̂ipi(2τ − 1) + ŝi

)]2
end for

σ̂2ω ← 1
n

∑
i σ̂

2
ωi

σ̂2θ ←
1
n

∑
i

(
θ̂∗i − 1

n

∑
j θ̂
∗
j

)2
σ1(β)←

∥∥(1− β) diag
(
ĝ1, . . . , ĝn

)
+ β 1

n11>
∥∥
2

β̂∗ ← arg min0≤β<1
(1−β)σ̂ω+βσ̂θ

1−σ1(β)

for i = 1, . . . , n do

p̂∗i ← (1− β̂∗)p̂∗i + β̂∗u

end for

end if

end for

4.4.4 Results and Discussion

We include the numerical simulation results in Table 4.5 (p. 91). The simulation considers

the following three factors that affect the performance of Algorithm 2 (p. 90): number of

stages T , demand noise σν , and step size ρ. The corresponding revenues are averaged over
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a set of 50 repetitions (± reflects the standard error of the mean).

The demand curve used in this simulation follows [Besbes and Zeevi, 2015], i.e., d̃i(pi) ≡

ai − cipi + νi where ai ∼ U(0.8, 1), ci ∼ U(0.2, 1), and νi ∼ N (0, σ2ν).

We measure the improvement with respect to the regret (Definition 4.3, p. 86) difference.

For instance, a regret difference ∆V (T ) = 20.2% indicates that Algorithm 2 (p. 90) reduces

the regret from Algorithm 1 (p. 89) by 20.2%. From this simple exercise, we find a significant

improvement in performance by partially setting prices towards the grand average. We plot

the revenue simulation and MSE time series for both algorithms in Fig. 4.19 (p. 92) and

Fig. 4.20 (p. 93).

Table 4.5: Multi-product revenue management simulation result

Revenue

ρ Maximum Algorithm 1 Algorithm 2 ∆V (T )

T = 12 σν = 0.25 0.25 292 188± 3 209± 3 20.2%

0.5 206± 3 209± 3 3.49%

σν = 0.5 0.25 152± 3 182± 3 21.4%

0.5 175± 3 194± 3 16.2%

T = 24 σν = 0.25 0.25 583 440± 7 472± 7 22.4%

0.5 454± 7 455± 7 0.775%

σν = 0.5 0.25 357± 6 418± 6 27.0%

0.5 398± 7 428± 7 16.2%
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Figure 4.19: Multi-product total revenue time series. Top: Algorithm 1 (p. 89).

Bottom: Algorithm 2 (p. 90)
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Chapter 5

Conclusion

This cross-disciplinary work addresses a simple yet important question: How could a group

collectively become better problem-solvers? Our analysis suggests that intelligent individ-

uals, solving the same problem (or similar problems), could do much better by adaptively

adjusting their decisions towards the population average. Both theory, simulations, and an

experiment with human subjects confirm the validity of our coordination mechanism. This

work conveys the following important messages.

First, we lay down both the theoretical and empirical grounds for improving collective

problem-solving processes. We illustrate the potential far-reaching impact of this work on

case studies involving regulation of emerging industry and business, health optimization,

optimal levels of U.S. state taxation and expenditure, and multi-product revenue manage-

ment. Even a small improvement, magnified by the scale of affected population or volume,

could have significantly promoted the overall welfare of a system.

Second, we quantitatively justify the unique and critical roles of social influence in

collective intelligence. Scholars have long regarded social influence as detrimental to the

accuracy of polls and other prediction instruments. And yet, we are relying on polling such

as online review systems evermore nowadays. The polls appear to be working in identifying

good options even though votes are correlated. Our model implies that social influence

helps self-interested individuals better solve optimization problems subject to uncertainty.

Third, we discover from our experiment with human subjects that the participants were

able to reach the theoretically predicted maximum performance by selectively filtering the
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average opinion. This discovery suggests a new coordination mechanism for enhancing

individual decision making. Potential applications of this mechanism include topics as

diverse as mobile health, taxation, and urban planning.

Fourth, this work extends multi-agent optimal control to include human behaviors.

It bridges engineering and social sciences in a way that can quantitatively describe the

collective dynamics of interacting and intelligent individuals. Such multidisciplinary effort

would have positive implications for both research communities. For it shows the possibility

of incorporating human decision-making in engineered systems. Techniques such as optimal

control would also be readily transferable to solving high-impact problems that have a strong

social significance.

Last but not least, to our best knowledge, this is the first time that a human subject

experiment was used to test a control-theoretic hypothesis. We faced many challenges in the

process such as designing the experiment and analyzing the data. Our methodology would

be helpful for future empirical research on multi-agent control in sociotechnical systems.
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APPENDIX A. AGENT-BASED SIMULATION WITH NETLOGO

Appendix A

Agent-Based Simulation with

NetLogo

A.1 NetLogo Simulation Environment (p. 105) We briefly introduce the NetLogo

simulation environment here. This simulation exercise corresponds to the results discussed

in Section 4.1 (p. 53).

A.2 Script “SR.nlogo” (p. 106) This single NetLogo script includes the model of the

agent-based simulation in Section 4.1 (p. 53).
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A.1 NetLogo Simulation Environment

NetLogo offers a graphical user face for agent-based simulation (Fig. A.1, p. 105). This

object-oriented programming language is widely used for motion-based simulation such as

moving particles or flocking birds. Even though our simulation in Section 4.1 (p. 53) does

not involve actual movement, we chose NetLogo for its ease of coding and the capability

of handling a large number of parallel computations. The simulation interface can be

partitioned into two. The left panel contains all the parameters and controls. The right

panel contains all the plots.

Figure A.1: NetLogo interface.
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Appendix B

Amazon Mechanical Turk

Experiment

B.1 Institutional Review Board (p. 113) We include the institutional review board

(IRB) details here for conducting experiments with human subjects.

B.2 Amazon Mechanical Turk (p. 116) We include the Amazon Mechanical Turk

details here such as the ad and sample result page.
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B.1 Institutional Review Board

This human subject experiment is approved by the Columbia University Institutional Re-

view Board. Included next are the approval letter and the information sheet of the experi-

ment.
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October 29, 2015

Venkat Venkatasubramanian
ENG Chemical Engineering - 521100X
819 S.W. Mudd
4721

Protocol Number: IRB-AAAQ2603
Title: Experiment to Test the Effectiveness of Soft Regulation with "Crowd Recommendation"
Approval Date: 10/19/2015    Expiration Date: 10/18/2020

Dear Professor Venkatasubramanian, 

On October 19, 2015, the Chair of the Columbia University Institutional Review Board (IRB) reviewed the above mentioned protocol and 
determined that this research meets the criteria for exemption under category 2:  

(2) Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), survey procedures, interview 
procedures or observation of public behavior unless: (i) information obtained is recorded in such a manner that human subjects can be 
identified, directly or through identifiers linked to the subjects; and (ii) any disclosure of the human subjects’ responses outside the 
research could reasonably place the subjects at risk of criminal or civil liability or be damaging to the subjects’ financial standing, 
employability, or reputation.

Therefore, this research is exempt from further IRB review in accordance with the Department of Health and Human Service (HHS) 
regulations at 45 CFR Part 46.101(b)(2).

If you propose to change the protocol in any manner such that the criteria listed above no longer apply, you must submit a modification 
with the proposed changes to the IRB for review and approval prior to the implementation of the revised protocol.  

For tracking purposes, you will be required to submit an abbreviated status report to the IRB prior to the expiration date listed above.  The 
purpose of the submission is to confirm that the research is ongoing, which will facilitate accurate accounting at the University of all 
active research projects involving human subjects.

If you have any questions, please call Gloria Gaines at (212) 851-7043.

Columbia University appreciates your commitment towards the ethical conduct of human research. 

Sincerely,

Annie Barry
Assistant Manager
Human Research Protection Office (HRPO)-Morningside

Electronically signed by: Barry, Annie

10/18/2020

Figure B.1: IRB approval letter.
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Columbia University in the City of New York 
Institutional Review Board – Research Participant Consent Form 
 

I. Purpose of the research study 
You are invited to participate in a research study conducted by Yu Luo, Garud 
Iyengar, and Venkat Venkatasubramanian. The purpose of this study is to understand 
how certain information influences decision for a multi-player optimization problem.  
 

II. What you will be asked to do 
If you decide to be in this study, you will be asked to interact with an online interface. 
Your participation in this study will take approximately 10 minutes. 
 

III. Foreseeable risks or discomforts 
There is minimal risk to participating in this study. You may feel anxious if game 
score is low. You are free to withdraw from participation at any time.  
 

IV. Benefits 
While there may be no direct benefit to you from participating in this study, the 
indirect benefit of participating will be knowing that you helped researchers better 
understand how people respond to certain feedbacks during decision making 
processes.  
 

V. Confidentiality 
Any information provided by you will be kept in a password-protected Google Sheet. 
All data collected from you will be coded with a random alpha-numeric value. Your 
MTurk ID will never be recorded or shared.  
 

VI. Compensation 
If you participate in the study and successfully complete all sessions, the researcher 
will give you $0.50 to $5.00 based on your performance through your MTurk 
account. 
 

VII. Voluntary nature of this research 
Your participation in this study is completely voluntary. You do not have to do this, 
and you can quit at any time.  
 

VIII. Contact information 
If you have any question about this research, you may contact 
softgamequestions@outlook.com  

Figure B.2: IRB information sheet.
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B.2 Amazon Mechanical Turk

Included below are the Amazon Mechanical Turk ad and result page. The payment rules

are described as follows:

• Reward = $1.25 base pay upon approval + bonus (up to $3.75) based on performance

• Combined scores of the open loop and closed loop settings are ranked within each

batch

• $5, $4, and $3 are awarded to the top 3 players

• $2 or higher if the player is ranked above the median

• $1.5 or higher if the player submits a valid confirmation code

Figure B.3: Amazon Mechanical Turk.
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Appendix C

Online Experiment with Google

Apps Script

C.1 Google Apps Script (p. 118) We briefly introduce the Google Apps Script lan-

guage here. It was used to program the “Fitness Game” interface in Section 4.2 (p. 65).

C.2 Script “Code.gs” (p. 119) This is the main code that includes the interactive

features of the “Fitness Game.”

C.3 Script “Engine.gs” (p. 133) This is the main function that computes the fitness

level, score, feedback, etc.
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C.1 Google Apps Script

Google Apps Script (GAS) is a scripting language for light-weight application development

in the Google Apps platform. In the case of the “Fitness Game,” we used GAS to create

the game interface and Google Sheets to store data.

There are two scripts for the interface: “Code.gs” encodes the overall structure and

“Engine.gs” encodes the core computations and data processing.

There are two Google Sheets that the game operates on: “Dashboard” (not included in

this appendix) and “Data” (not included).
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s
i
o
n
I
d
:
p
a
r
s
[
0
]
[
0
]
,

i
s
S
o
f
t
R
e
g
:
e
v
a
l
(
p
a
r
s
[
2
]
[
0
]
)
,

i
s
L
o
c
k
A
c
t
i
v
e
:
e
v
a
l
(
p
a
r
s
[
3
]
[
0
]
)
,

i
s
G
a
m
e
A
c
c
e
s
s
i
b
l
e
:
e
v
a
l
(
p
a
r
s
[
4
]
[
0
]
)
,

s
e
s
s
i
o
n
S
S
t
a
r
t
T
i
m
e
:
p
a
r
s
[
6
]
[
0
]
,

s
e
s
s
i
o
n
A
S
t
a
r
t
T
i
m
e
:
p
a
r
s
[
7
]
[
0
]
,

s
e
s
s
i
o
n
B
S
t
a
r
t
T
i
m
e
:
p
a
r
s
[
8
]
[
0
]
,

s
e
s
s
i
o
n
A
c
c
e
p
t
N
e
w
E
n
t
r
y
P
e
r
i
o
d
:
N
u
m
b
e
r
(
p
a
r
s
[
9
]
[
0
]
)

}
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v
a
r

t
i
m
e
s
t
a
m
p

=
n
e
w

D
a
t
e
(
)
;

v
a
r

s
e
s
s
i
o
n
T
y
p
e

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
t
y
p
e
;

v
a
r

s
e
s
s
i
o
n
P
r
o
g
r
e
s
s

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
p
r
o
g
r
e
s
s
;

v
a
r

s
e
s
s
i
o
n
T
i
m
e
L
e
f
t

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
t
i
m
e
L
e
f
t
;

v
a
r

s
e
s
s
i
o
n
S
u
b
j
e
c
t

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
s
u
b
j
e
c
t
;

v
a
r

i
n
p
u
t
T
e
x
t
B
o
x

=
a
p
p
.
c
r
e
a
t
e
T
e
x
t
B
o
x
(
)
.
s
e
t
W
i
d
t
h
(
’
4
0
0
p
x
’
)
.
s
e
t
N
a
m
e
(
’
i
n
p
u
t
’
)
.
s
e
t
I
d
(
’
i
n
p
u
t
’
)
.
s
e
t
T
e
x
t
(
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
T
e
x
t
I
n
p
u
t
)
;

v
a
r

u
s
e
r
M
e
s
s
a
g
e
H
t
m
l

=
a
p
p
.
c
r
e
a
t
e
H
T
M
L
(
’
’
)
.
s
e
t
I
d
(
’
u
s
e
r
M
e
s
s
a
g
e
’
)
.
s
e
t
W
i
d
t
h
(
’
4
0
0
p
x
’
)
.
s
e
t
H
e
i
g
h
t
(
’
7
5
p
x
’
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
e
l
c
o
m
e
)
;

v
a
r

s
u
b
j
e
c
t
M
e
s
s
a
g
e
H
t
m
l

=
a
p
p
.
c
r
e
a
t
e
H
T
M
L
(
s
e
s
s
i
o
n
S
u
b
j
e
c
t
+
’
:

"
H
e
l
l
o
!
"
’
)
.
s
e
t
I
d
(
’
s
u
b
j
e
c
t
M
e
s
s
a
g
e
’
)
.
s
e
t
W
i
d
t
h
(
’
4
0
0
p
x
’
)

.
s
e
t
H
e
i
g
h
t
(
’
1
5
p
x
’
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
e
l
c
o
m
e
)
;

v
a
r

p
r
o
g
r
e
s
s
B
a
r
I
m
a
g
e

=
a
p
p
.
c
r
e
a
t
e
H
T
M
L
(
s
e
s
s
i
o
n
P
r
o
g
r
e
s
s
)
.
s
e
t
I
d
(
’
p
r
o
g
r
e
s
s
B
a
r
I
m
a
g
e
’
)

v
a
r

p
r
o
g
r
e
s
s
B
a
r
H
t
m
l

=
a
p
p
.
c
r
e
a
t
e
H
T
M
L
(
s
e
s
s
i
o
n
T
i
m
e
L
e
f
t
)
.
s
e
t
I
d
(
’
p
r
o
g
r
e
s
s
B
a
r
H
t
m
l
’
)

v
a
r

v
e
r
s
i
o
n
L
a
b
e
l

=
a
p
p
.
c
r
e
a
t
e
L
a
b
e
l
(
v
e
r
s
i
o
n
)
;

v
a
r

r
a
n
d
o
m
S
t
r
i
n
g
V
a
l
u
e

=
m
a
k
e
I
d
(
)
;

v
a
r

r
a
n
d
o
m
S
t
r
i
n
g
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t

=
a
p
p
.
c
r
e
a
t
e
H
i
d
d
e
n
(
’
r
a
n
d
o
m
S
t
r
i
n
g
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
,
r
a
n
d
o
m
S
t
r
i
n
g
V
a
l
u
e
)
.
s
e
t
I
d
(
’
r
a
n
d
o
m
S
t
r
i
n
g
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
;

a
p
p
.
a
d
d
(
r
a
n
d
o
m
S
t
r
i
n
g
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

t
h
e
t
a
V
a
l
u
e
s

=
[
p
r
e
c
i
s
i
o
n
(
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d

+
M
a
t
h
.
r
a
n
d
o
m
(
)

*
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
,
/
/
s
a
n
d
b
o
x

s
e
s
s
i
o
n

p
r
e
c
i
s
i
o
n
(
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d

+
M
a
t
h
.
r
a
n
d
o
m
(
)

*
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
,
/
/
s
e
s
s
i
o
n

A

p
r
e
c
i
s
i
o
n
(
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d

+
M
a
t
h
.
r
a
n
d
o
m
(
)

*
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
]
;
/
/
s
e
s
s
i
o
n

B

v
a
r

t
h
e
t
a
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t

=
a
p
p
.
c
r
e
a
t
e
H
i
d
d
e
n
(
’
t
h
e
t
a
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
,

J
S
O
N
.
s
t
r
i
n
g
i
f
y
(
t
h
e
t
a
V
a
l
u
e
s
)
)
.
s
e
t
I
d
(
’
t
h
e
t
a
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
;

a
p
p
.
a
d
d
(
t
h
e
t
a
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

d
a
t
a
s
o
u
r
c
e

=
[
]
;

v
a
r

d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t

=
a
p
p
.
c
r
e
a
t
e
H
i
d
d
e
n
(
’
d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
,
J
S
O
N
.
s
t
r
i
n
g
i
f
y
(
d
a
t
a
s
o
u
r
c
e
)
)
.
s
e
t
I
d
(
’
d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
;

a
p
p
.
a
d
d
(
d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

p
r
o
g
O
p
t
i
o
n
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t

=
a
p
p
.
c
r
e
a
t
e
H
i
d
d
e
n
(
’
p
r
o
g
O
p
t
i
o
n
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
,
J
S
O
N
.
s
t
r
i
n
g
i
f
y
(
p
r
o
g
O
p
t
i
o
n
s
)
)
.
s
e
t
I
d
(
’
p
r
o
g
O
p
t
i
o
n
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
;

a
p
p
.
a
d
d
(
p
r
o
g
O
p
t
i
o
n
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

a
l
l
S
c
o
r
e
s

=
[
0
,
0
,
0
]
;

v
a
r

a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t

=
a
p
p
.
c
r
e
a
t
e
H
i
d
d
e
n
(
’
a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
,
J
S
O
N
.
s
t
r
i
n
g
i
f
y
(
a
l
l
S
c
o
r
e
s
)
)
.
s
e
t
I
d
(
’
a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
;

a
p
p
.
a
d
d
(
a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

s
c
o
r
e
P
r
o
g
r
e
s
s
H
t
m
l

=
a
p
p
.
c
r
e
a
t
e
H
T
M
L
(
g
e
t
S
c
o
r
e
H
t
m
l
(
a
l
l
S
c
o
r
e
s
)
)
.
s
e
t
I
d
(
’
s
c
o
r
e
P
r
o
g
r
e
s
s
H
t
m
l
’
)

.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
s
c
o
r
e
B
o
a
r
d
)
.
s
e
t
W
i
d
t
h
(
’
4
0
0
p
x
’
)
;

v
a
r

u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d

=
p
r
o
g
O
p
t
i
o
n
s
.
u
n
i
q
u
e
S
e
s
s
i
o
n
I
d
+
’
-
’
+
s
e
s
s
i
o
n
T
y
p
e
;

i
f
(
s
e
s
s
i
o
n
T
y
p
e
!
=
’
S
’
)
{
g
e
t
P
o
p
u
p
(
a
p
p
,
’
W
a
r
n
i
n
g
:

T
h
e

p
r
e
v
i
o
u
s

s
e
s
s
i
o
n

h
a
s

e
x
p
i
r
e
d
.
’
,
f
a
l
s
e
)
;
r
e
t
u
r
n

a
p
p
}

e
l
s
e
{
g
e
t
P
o
p
u
p
(
a
p
p
,
g
e
t
C
u
r
r
e
n
t
P
a
n
e
l
M
e
s
s
a
g
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
,
t
r
u
e
)
}
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i
f
(
!
p
r
o
g
O
p
t
i
o
n
s
.
i
s
G
a
m
e
A
c
c
e
s
s
i
b
l
e

&
&

t
i
m
e
s
t
a
m
p
.
v
a
l
u
e
O
f
(
)

<
D
a
t
e
.
p
a
r
s
e
(
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
S
S
t
a
r
t
T
i
m
e
)
)
{

g
e
t
P
o
p
u
p
(
a
p
p
,

’
T
h
e

g
a
m
e

h
a
s

n
o
t

b
e
g
u
n

y
e
t
!

P
l
e
a
s
e

c
o
m
e

b
a
c
k

l
a
t
e
r

o
r

r
e
f
r
e
s
h

t
h
e

p
a
g
e

a
t

’
+

U
t
i
l
i
t
i
e
s
.
f
o
r
m
a
t
D
a
t
e
(
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
S
S
t
a
r
t
T
i
m
e
,

"
A
m
e
r
i
c
a
/
N
e
w
_
Y
o
r
k
"
,

"
h
:
m
m

a
’

E
a
s
t
e
r
n

T
i
m
e
’
"
)
+
’
.
’
,
f
a
l
s
e
)
;

r
e
t
u
r
n

a
p
p

} v
a
r

s
c
a
t
t
e
r
D
a
t
a

=
C
h
a
r
t
s
.
n
e
w
D
a
t
a
T
a
b
l
e
(
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,

’
i
n
p
u
t
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,

’
A
b
o
v
e

t
a
r
g
e
t
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,

’
B
e
l
o
w

t
a
r
g
e
t
’
)

.
a
d
d
R
o
w
(
[
0
,
’
’
,
’
’
]
)

.
b
u
i
l
d
(
)
;

v
a
r

s
c
a
t
t
e
r
C
h
a
r
t

=
C
h
a
r
t
s
.
n
e
w
S
c
a
t
t
e
r
C
h
a
r
t
(
)

.
s
e
t
D
a
t
a
T
a
b
l
e
(
s
c
a
t
t
e
r
D
a
t
a
)

.
s
e
t
D
i
m
e
n
s
i
o
n
s
(
c
h
a
r
t
O
p
t
i
o
n
s
.
h
e
i
g
h
t
,
c
h
a
r
t
O
p
t
i
o
n
s
.
h
e
i
g
h
t
)

.
s
e
t
T
i
t
l
e
(
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
t
i
t
l
e
)

.
s
e
t
O
p
t
i
o
n
(
’
s
e
r
i
e
s
’
,
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
s
e
r
i
e
s
)

.
s
e
t
O
p
t
i
o
n
(
’
h
A
x
i
s
’
,
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
h
A
x
i
s
)

.
s
e
t
O
p
t
i
o
n
(
’
v
A
x
i
s
’
,
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
v
A
x
i
s
)

.
s
e
t
L
e
g
e
n
d
P
o
s
i
t
i
o
n
(
C
h
a
r
t
s
.
P
o
s
i
t
i
o
n
.
B
O
T
T
O
M
)

.
b
u
i
l
d
(
)
;

v
a
r

m
o
n
i
t
o
r
D
a
t
a

=
C
h
a
r
t
s
.
n
e
w
D
a
t
a
T
a
b
l
e
(
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,
’
t
i
m
e
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,
’
F
i
t
n
e
s
s
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,
’
T
a
r
g
e
t
’
)

.
a
d
d
R
o
w
(
[
1
,
’
’
,
’
’
]
)

.
b
u
i
l
d
(
)
;

v
a
r

m
o
n
i
t
o
r
C
h
a
r
t

=
C
h
a
r
t
s
.
n
e
w
L
i
n
e
C
h
a
r
t
(
)

.
s
e
t
D
a
t
a
T
a
b
l
e
(
m
o
n
i
t
o
r
D
a
t
a
)

.
s
e
t
D
i
m
e
n
s
i
o
n
s
(
c
h
a
r
t
O
p
t
i
o
n
s
.
w
i
d
t
h
,
c
h
a
r
t
O
p
t
i
o
n
s
.
h
e
i
g
h
t
)

.
s
e
t
T
i
t
l
e
(
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
t
i
t
l
e
)

.
s
e
t
L
e
g
e
n
d
P
o
s
i
t
i
o
n
(
C
h
a
r
t
s
.
P
o
s
i
t
i
o
n
.
B
O
T
T
O
M
)

.
s
e
t
O
p
t
i
o
n
(
’
s
e
r
i
e
s
’
,
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
s
e
r
i
e
s
)

.
s
e
t
O
p
t
i
o
n
(
’
h
A
x
i
s
’
,
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
h
A
x
i
s
)

.
s
e
t
O
p
t
i
o
n
(
’
v
A
x
i
s
’
,
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
v
A
x
i
s
)
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.
b
u
i
l
d
(
)
;

v
a
r

t
e
x
t
b
o
x
H
a
n
d
l
e
r

=
a
p
p
.
c
r
e
a
t
e
S
e
r
v
e
r
H
a
n
d
l
e
r
(
’
i
n
s
e
r
t
I
n
S
S
’
)

.
a
d
d
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
(
t
h
e
t
a
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)

.
a
d
d
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
(
r
a
n
d
o
m
S
t
r
i
n
g
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)

.
a
d
d
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
(
d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)

.
a
d
d
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
(
p
r
o
g
O
p
t
i
o
n
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)

.
a
d
d
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
(
a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)

.
a
d
d
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
(
p
a
n
e
l
)

.
v
a
l
i
d
a
t
e
L
e
n
g
t
h
(
i
n
p
u
t
T
e
x
t
B
o
x
,
4
,
4
)
.
v
a
l
i
d
a
t
e
R
a
n
g
e
(
i
n
p
u
t
T
e
x
t
B
o
x
,

m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
,

m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)

.
v
a
l
i
d
a
t
e
N
o
t
M
a
t
c
h
e
s
(
u
s
e
r
M
e
s
s
a
g
e
H
t
m
l
,
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
W
a
i
t
i
n
g
)
;

v
a
r

t
e
x
t
b
o
x
O
u
t
O
f
B
o
u
n
d
I
n
p
u
t
H
a
n
d
l
e
r

=
a
p
p
.
c
r
e
a
t
e
C
l
i
e
n
t
H
a
n
d
l
e
r
(
)

.
f
o
r
T
a
r
g
e
t
s
(
u
s
e
r
M
e
s
s
a
g
e
H
t
m
l
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
e
r
r
o
r
)

.
s
e
t
H
T
M
L
(
’
I
n
v
a
l
i
d

i
n
p
u
t
!
<
b
r
>
P
l
e
a
s
e

e
n
t
e
r

a
d
i
e
t

b
e
t
w
e
e
n

’
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
’

a
n
d

’
+

S
t
r
i
n
g
(
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
+
’
.
’
)

.
v
a
l
i
d
a
t
e
L
e
n
g
t
h
(
i
n
p
u
t
T
e
x
t
B
o
x
,
4
,
4
)
.
v
a
l
i
d
a
t
e
N
o
t
R
a
n
g
e
(
i
n
p
u
t
T
e
x
t
B
o
x
,
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
,

m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
;

v
a
r

t
e
x
t
b
o
x
O
u
t
O
f
B
o
u
n
d
I
n
p
u
t
C
l
e
a
r
H
a
n
d
l
e
r

=
a
p
p
.
c
r
e
a
t
e
C
l
i
e
n
t
H
a
n
d
l
e
r
(
)

.
f
o
r
E
v
e
n
t
S
o
u
r
c
e
(
)
.
s
e
t
T
e
x
t
(
’
’
)

.
v
a
l
i
d
a
t
e
L
e
n
g
t
h
(
i
n
p
u
t
T
e
x
t
B
o
x
,
4
,
4
)
.
v
a
l
i
d
a
t
e
N
o
t
R
a
n
g
e
(
i
n
p
u
t
T
e
x
t
B
o
x
,
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
,

m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
;

v
a
r

t
e
x
t
b
o
x
C
l
e
a
r
O
n
C
l
i
c
k
H
a
n
d
l
e
r

=
a
p
p
.
c
r
e
a
t
e
C
l
i
e
n
t
H
a
n
d
l
e
r
(
)

.
f
o
r
E
v
e
n
t
S
o
u
r
c
e
(
)
.
s
e
t
T
e
x
t
(
’
’
)
;

v
a
r

t
e
x
t
b
o
x
F
r
e
e
z
e
A
f
t
e
r
I
n
p
u
t
H
a
n
d
l
e
r

=
a
p
p
.
c
r
e
a
t
e
C
l
i
e
n
t
H
a
n
d
l
e
r
(
)

.
f
o
r
E
v
e
n
t
S
o
u
r
c
e
(
)
.
s
e
t
E
n
a
b
l
e
d
(
f
a
l
s
e
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
a
i
t
)

.
f
o
r
T
a
r
g
e
t
s
(
u
s
e
r
M
e
s
s
a
g
e
H
t
m
l
)
.
s
e
t
T
e
x
t
(
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
W
a
i
t
i
n
g
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
a
i
t
)

.
f
o
r
T
a
r
g
e
t
s
(
s
u
b
j
e
c
t
M
e
s
s
a
g
e
H
t
m
l
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
a
i
t
)

.
v
a
l
i
d
a
t
e
L
e
n
g
t
h
(
i
n
p
u
t
T
e
x
t
B
o
x
,
4
,
4
)
.
v
a
l
i
d
a
t
e
R
a
n
g
e
(
i
n
p
u
t
T
e
x
t
B
o
x
,

m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
,

m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
)
;

i
n
p
u
t
T
e
x
t
B
o
x

.
a
d
d
K
e
y
U
p
H
a
n
d
l
e
r
(
t
e
x
t
b
o
x
H
a
n
d
l
e
r
)

.
a
d
d
K
e
y
U
p
H
a
n
d
l
e
r
(
t
e
x
t
b
o
x
F
r
e
e
z
e
A
f
t
e
r
I
n
p
u
t
H
a
n
d
l
e
r
)

.
a
d
d
K
e
y
U
p
H
a
n
d
l
e
r
(
t
e
x
t
b
o
x
O
u
t
O
f
B
o
u
n
d
I
n
p
u
t
H
a
n
d
l
e
r
)

.
a
d
d
K
e
y
U
p
H
a
n
d
l
e
r
(
t
e
x
t
b
o
x
O
u
t
O
f
B
o
u
n
d
I
n
p
u
t
C
l
e
a
r
H
a
n
d
l
e
r
)

.
a
d
d
C
l
i
c
k
H
a
n
d
l
e
r
(
t
e
x
t
b
o
x
C
l
e
a
r
O
n
C
l
i
c
k
H
a
n
d
l
e
r
)
;

g
r
i
d

.
s
e
t
W
i
d
g
e
t
(
0
,
0
,
u
s
e
r
M
e
s
s
a
g
e
H
t
m
l
)
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.
s
e
t
W
i
d
g
e
t
(
0
,
1
,
s
c
o
r
e
P
r
o
g
r
e
s
s
H
t
m
l
)
/
/
p
r
o
g
r
e
s
s
B
a
r
I
m
a
g
e
)

.
s
e
t
W
i
d
g
e
t
(
1
,
0
,
s
u
b
j
e
c
t
M
e
s
s
a
g
e
H
t
m
l
)

.
s
e
t
W
i
d
g
e
t
(
1
,
1
,
p
r
o
g
r
e
s
s
B
a
r
H
t
m
l
)

.
s
e
t
W
i
d
g
e
t
(
2
,
0
,
i
n
p
u
t
T
e
x
t
B
o
x
)

.
s
e
t
W
i
d
g
e
t
(
2
,
1
,
v
e
r
s
i
o
n
L
a
b
e
l
)

.
s
e
t
W
i
d
g
e
t
(
3
,
1
,
m
o
n
i
t
o
r
C
h
a
r
t
)

.
s
e
t
W
i
d
g
e
t
(
3
,
0
,
s
c
a
t
t
e
r
C
h
a
r
t
)
;

p
a
n
e
l
.
a
d
d
(
g
r
i
d
)
;
a
p
p
.
a
d
d
(
p
a
n
e
l
)
;

r
e
t
u
r
n

a
p
p
;

} f
u
n
c
t
i
o
n

i
n
s
e
r
t
I
n
S
S
(
e
)
{

v
a
r

a
p
p

=
U
i
A
p
p
.
g
e
t
A
c
t
i
v
e
A
p
p
l
i
c
a
t
i
o
n
(
)
;

v
a
r

t
i
m
e
s
t
a
m
p

=
n
e
w

D
a
t
e
(
)
;

v
a
r

p
r
o
g
O
p
t
i
o
n
s

=
J
S
O
N
.
p
a
r
s
e
(
e
.
p
a
r
a
m
e
t
e
r
.
p
r
o
g
O
p
t
i
o
n
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

a
l
l
S
c
o
r
e
s

=
J
S
O
N
.
p
a
r
s
e
(
e
.
p
a
r
a
m
e
t
e
r
.
a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

v
a
r

d
a
t
a
b
a
s
e
I
d

=
p
r
o
g
O
p
t
i
o
n
s
.
d
a
t
a
b
a
s
e
I
d
;

v
a
r

s
h
e
e
t
D
b

=
S
p
r
e
a
d
s
h
e
e
t
A
p
p
.
o
p
e
n
B
y
I
d
(
d
a
t
a
b
a
s
e
I
d
)
;

v
a
r

s
h
e
e
t
D
a
t
a

=
s
h
e
e
t
D
b
.
g
e
t
S
h
e
e
t
B
y
N
a
m
e
(
’
D
a
t
a
’
)
;

v
a
r

s
h
e
e
t
U
s
e
r
s

=
s
h
e
e
t
D
b
.
g
e
t
S
h
e
e
t
B
y
N
a
m
e
(
’
U
s
e
r
s
’
)
;

v
a
r

u
n
i
q
u
e
S
e
s
s
i
o
n
I
d

=
p
r
o
g
O
p
t
i
o
n
s
.
u
n
i
q
u
e
S
e
s
s
i
o
n
I
d
;

v
a
r

s
e
s
s
i
o
n
T
y
p
e

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
t
y
p
e
;

v
a
r

s
e
s
s
i
o
n
P
r
o
g
r
e
s
s

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
p
r
o
g
r
e
s
s
;

v
a
r

s
e
s
s
i
o
n
T
i
m
e
L
e
f
t

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
t
i
m
e
L
e
f
t
;

v
a
r

s
e
s
s
i
o
n
I
n
d
e
x

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
i
n
d
e
x
;

v
a
r

s
e
s
s
i
o
n
S
u
b
j
e
c
t

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
.
s
u
b
j
e
c
t
;

v
a
r

r
a
n
d
o
m
S
t
r
i
n
g
V
a
l
u
e

=
e
.
p
a
r
a
m
e
t
e
r
.
r
a
n
d
o
m
S
t
r
i
n
g
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
;

v
a
r

u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d

=
u
n
i
q
u
e
S
e
s
s
i
o
n
I
d
+
’
-
’
+
s
e
s
s
i
o
n
T
y
p
e
;

v
a
r

u
n
i
q
u
e
U
s
e
r
I
d

=
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
+
’
-
’
+
S
t
r
i
n
g
(
r
a
n
d
o
m
S
t
r
i
n
g
V
a
l
u
e
)
;

v
a
r

i
s
S
R

=
f
a
l
s
e
;
i
f

(
s
e
s
s
i
o
n
T
y
p
e

=
=

’
S
’
)
{
i
s
S
R

=
p
r
o
g
O
p
t
i
o
n
s
.
i
s
S
o
f
t
R
e
g
}
;
i
f

(
s
e
s
s
i
o
n
T
y
p
e

=
=

’
B
’
)
{
i
s
S
R

=
t
r
u
e
}
;

125



APPENDIX C. ONLINE EXPERIMENT WITH GOOGLE APPS SCRIPT

i
f
(
s
e
s
s
i
o
n
T
y
p
e
=
=
’
E
’
)
{

v
a
r

c
o
m
b
i
n
e
d
S
c
o
r
e

=
a
l
l
S
c
o
r
e
s
[
1
]
+
a
l
l
S
c
o
r
e
s
[
2
]
;

v
a
r

e
n
d
M
e
s
s
a
g
e

=
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
S
e
s
s
i
o
n
C
o
m
p
l
e
t
e
d

+
’
<
p
>
M
T
u
r
k

c
o
n
f
i
r
m
a
t
i
o
n

c
o
d
e

i
s

<
b
>
’

+
u
n
i
q
u
e
U
s
e
r
I
d

+

’
.

P
l
e
a
s
e

u
s
e

r
i
g
h
t

c
l
i
c
k

t
o

c
o
p
y

t
h
e

c
o
d
e
.

C
t
r
l
+
C

d
o
e
s

n
o
t

w
o
r
k

h
e
r
e
.
<
/
b
>
<
/
p
>

<
p
>
Y
o
u

s
c
o
r
e
d

’
+

c
o
m
b
i
n
e
d
S
c
o
r
e
+

’
p
o
i
n
t
(
s
)

i
n

t
o
t
a
l

f
r
o
m

t
h
e

l
a
s
t

t
w
o

l
e
v
e
l
s

i
n

t
h
e

g
a
m
e
.

O
n
c
e

a
p
p
r
o
v
e
d
,

y
o
u
r

p
a
r
t
i
c
i
p
a
t
i
o
n

w
i
l
l

b
e

c
o
m
p
e
n
s
a
t
e
d

b
a
s
e
d

o
n

i
t
s

r
a
n
k
i
n
g
.
<
/
p
>
’
;

g
e
t
P
o
p
u
p
(
a
p
p
,
e
n
d
M
e
s
s
a
g
e
,
f
a
l
s
e
)
;

r
e
t
u
r
n

a
p
p
;

}
e
l
s
e
{

v
a
r

i
n
p
u
t

=
N
u
m
b
e
r
(
e
.
p
a
r
a
m
e
t
e
r
.
i
n
p
u
t
)
;
a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
i
n
p
u
t
’
)
.
s
e
t
V
a
l
u
e
(
’
’
)
;

v
a
r

t
h
e
t
a
V
a
l
u
e

=
J
S
O
N
.
p
a
r
s
e
(
e
.
p
a
r
a
m
e
t
e
r
.
t
h
e
t
a
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
[
s
e
s
s
i
o
n
I
n
d
e
x
]
;

t
r
y
{

v
a
r

d
a
t
a
s
o
u
r
c
e

=
J
S
O
N
.
p
a
r
s
e
(
e
.
p
a
r
a
m
e
t
e
r
.
d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
)
;

}

c
a
t
c
h
(
e
)
{

U
t
i
l
i
t
i
e
s
.
s
l
e
e
p
(
1
0
0
0
)

v
a
r

d
a
t
a
s
o
u
r
c
e

=
[
]
;

} t
r
y
{

v
a
r

a
n
s
w
e
r
s

=
e
n
g
i
n
e
(
t
i
m
e
s
t
a
m
p
,
u
n
i
q
u
e
U
s
e
r
I
d
,
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
,
i
n
p
u
t
,
t
h
e
t
a
V
a
l
u
e
,
s
e
s
s
i
o
n
T
y
p
e
,

p
r
o
g
O
p
t
i
o
n
s
,
d
a
t
a
s
o
u
r
c
e
,
s
h
e
e
t
D
a
t
a
,
s
h
e
e
t
U
s
e
r
s
,
a
l
l
S
c
o
r
e
s
)
;

d
a
t
a
s
o
u
r
c
e

=
a
n
s
w
e
r
s
.
d
a
t
a
s
o
u
r
c
e
;

a
l
l
S
c
o
r
e
s

=
a
n
s
w
e
r
s
.
a
l
l
S
c
o
r
e
s
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
d
a
t
a
s
o
u
r
c
e
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
.
s
e
t
V
a
l
u
e
(
J
S
O
N
.
s
t
r
i
n
g
i
f
y
(
d
a
t
a
s
o
u
r
c
e
)
)
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
a
l
l
S
c
o
r
e
s
C
a
l
l
b
a
c
k
E
l
e
m
e
n
t
’
)
.
s
e
t
V
a
l
u
e
(
J
S
O
N
.
s
t
r
i
n
g
i
f
y
(
a
l
l
S
c
o
r
e
s
)
)
;

v
a
r

o
u
t
p
u
t

=
a
n
s
w
e
r
s
.
o
u
t
p
u
t
;

v
a
r

m
o
n
i
t
o
r
C
h
a
r
t

=
a
n
s
w
e
r
s
.
m
o
n
i
t
o
r
C
h
a
r
t
;

v
a
r

s
c
a
t
t
e
r
C
h
a
r
t

=
a
n
s
w
e
r
s
.
s
c
a
t
t
e
r
C
h
a
r
t
;

v
a
r

s
o
f
t
R
e
c
o
m
m
e
n
d
a
t
i
o
n

=
p
r
e
c
i
s
i
o
n
(
M
a
t
h
.
m
i
n
(
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
+
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
R
a
n
g
e
,

M
a
t
h
.
m
a
x
(
m
o
d
e
l
P
a
r
s
.
t
h
e
t
a
L
o
w
e
r
B
o
u
n
d
,
a
n
s
w
e
r
s
.
r
e
c
U
s
e
r
)
)
)
;
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v
a
r

d
a
y
C
o
u
n
t
e
r

=
a
n
s
w
e
r
s
.
d
a
y
C
o
u
n
t
e
r
;

v
a
r

s
c
o
r
e
C
o
u
n
t
e
r

=
a
n
s
w
e
r
s
.
s
c
o
r
e
C
o
u
n
t
e
r
;

v
a
r

e
r
r
o
r

=
a
n
s
w
e
r
s
.
e
r
r
o
r
;

i
f
(
(
s
e
s
s
i
o
n
T
y
p
e
!
=
’
S
’
)
&
&
(
d
a
y
C
o
u
n
t
e
r
=
=
1
)
)
{

g
e
t
P
o
p
u
p
(
a
p
p
,
g
e
t
C
u
r
r
e
n
t
P
a
n
e
l
M
e
s
s
a
g
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
,
t
r
u
e
)
;

i
n
p
u
t

=
2
0
0
0
;

} v
a
r

i
n
p
u
t
A
v
e
r
a
g
e
M
e
s
s
a
g
e

=
’
’
;

i
f
(
i
s
S
R
)
{
i
n
p
u
t
A
v
e
r
a
g
e
M
e
s
s
a
g
e

=
’
<
s
p
a
n

s
t
y
l
e
=
"
b
a
c
k
g
r
o
u
n
d
-
c
o
l
o
r
:

#
0
0
0
0
F
F
"
>
<
b
>
<
i
>
W
E

R
E
C
O
M
M
E
N
D

’
+
s
o
f
t
R
e
c
o
m
m
e
n
d
a
t
i
o
n
+
’

k
c
a
l
<
/
i
>
<
/
b
>
<
/
s
p
a
n
>
’
}
;

v
a
r

u
s
e
r
M
e
s
s
a
g
e

=
"
<
b
>
D
a
y

"
+
d
a
y
C
o
u
n
t
e
r
+
"
<
/
b
>
:
"
;

u
s
e
r
M
e
s
s
a
g
e

=
u
s
e
r
M
e
s
s
a
g
e

+
"
<
b
r
>
D
i
e
t

=
"
+
i
n
p
u
t
+
"

k
c
a
l

"
+
i
n
p
u
t
A
v
e
r
a
g
e
M
e
s
s
a
g
e
+
"

<
b
r
>
F
i
t
n
e
s
s

=
"
+
o
u
t
p
u
t
+
"
&
#
3
7
;
"
;

i
f

(
o
u
t
p
u
t
<
p
r
o
g
O
p
t
i
o
n
s
.
o
u
t
p
u
t
T
a
r
g
e
t
)
{

u
s
e
r
M
e
s
s
a
g
e
=
u
s
e
r
M
e
s
s
a
g
e
+
"

(
b
e
l
o
w

t
a
r
g
e
t

"
+
p
r
o
g
O
p
t
i
o
n
s
.
o
u
t
p
u
t
T
a
r
g
e
t
+
"
&
#
3
7
;
)
"

a
p
p

.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
u
s
e
r
M
e
s
s
a
g
e
’
)

.
s
e
t
H
T
M
L
(
u
s
e
r
M
e
s
s
a
g
e
)

.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
o
u
t
p
u
t
L
o
w
)

} e
l
s
e
{

u
s
e
r
M
e
s
s
a
g
e
=
u
s
e
r
M
e
s
s
a
g
e
+
"

(
a
b
o
v
e

t
a
r
g
e
t

"
+
p
r
o
g
O
p
t
i
o
n
s
.
o
u
t
p
u
t
T
a
r
g
e
t
+
"
&
#
3
7
;
)
"

a
p
p

.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
u
s
e
r
M
e
s
s
a
g
e
’
)

.
s
e
t
H
T
M
L
(
u
s
e
r
M
e
s
s
a
g
e
)

.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
o
u
t
p
u
t
O
k
)

} u
s
e
r
M
e
s
s
a
g
e

=
u
s
e
r
M
e
s
s
a
g
e

+
"
<
b
r
>
S
c
o
r
e

=
"
+
s
c
o
r
e
C
o
u
n
t
e
r
;

v
a
r

s
u
b
j
e
c
t
M
e
s
s
a
g
e

=
s
e
s
s
i
o
n
S
u
b
j
e
c
t
+
’
:

"
’
+
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
S
u
b
j
e
c
t
C
h
a
t
s
[
M
a
t
h
.
f
l
o
o
r
(
M
a
t
h
.
r
a
n
d
o
m
(
)

*

m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
S
u
b
j
e
c
t
C
h
a
t
s
.
l
e
n
g
t
h
)
]
+
’
"
’
;

i
f
(
e
r
r
o
r
)
{

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
u
s
e
r
M
e
s
s
a
g
e
’
)

.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
e
r
r
o
r
)

.
s
e
t
H
T
M
L
(
’
U
h

o
h
,

w
h
a
t

a
c
o
i
n
c
i
d
e
n
c
e
!

I
t

s
e
e
m
s

t
h
a
t

a
n
o
t
h
e
r

T
u
r
k
e
r

i
s

t
r
y
i
n
g

t
o

a
c
c
e
s
s

t
h
e

d
a
t
a
b
a
s
e

a
t

E
X
A
C
T
L
Y

t
h
e

s
a
m
e

t
i
m
e

a
s

y
o
u
.
’

+
’

U
n
f
o
r
t
u
n
a
t
e
l
y
,

y
o
u
r

l
a
t
e
s
t

i
n
p
u
t

<
b
>
’
+
i
n
p
u
t
+
’
<
/
b
>

i
s

n
o
t

s
a
v
e
d
.

C
o
u
l
d

y
o
u

e
n
t
e
r

i
t

a
g
a
i
n
?
’
)

} e
l
s
e
{
a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
u
s
e
r
M
e
s
s
a
g
e
’
)
.
s
e
t
H
T
M
L
(
u
s
e
r
M
e
s
s
a
g
e
)
;
}

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
s
u
b
j
e
c
t
M
e
s
s
a
g
e
’
)
.
s
e
t
H
T
M
L
(
s
u
b
j
e
c
t
M
e
s
s
a
g
e
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
e
l
c
o
m
e
)
;
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a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
i
n
p
u
t
’
)
.
s
e
t
E
n
a
b
l
e
d
(
t
r
u
e
)
.
s
e
t
T
e
x
t
(
’
’
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
i
d
l
e
)
.
s
e
t
F
o
c
u
s
(
t
r
u
e
)
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
p
r
o
g
r
e
s
s
B
a
r
H
t
m
l
’
)
.
s
e
t
H
T
M
L
(
s
e
s
s
i
o
n
T
i
m
e
L
e
f
t
)
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
s
c
o
r
e
P
r
o
g
r
e
s
s
H
t
m
l
’
)
.
s
e
t
H
T
M
L
(
g
e
t
S
c
o
r
e
H
t
m
l
(
a
l
l
S
c
o
r
e
s
)
)
/
/
.
s
e
t
H
T
M
L
(
s
e
s
s
i
o
n
P
r
o
g
r
e
s
s
)
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
m
y
G
r
i
d
’
)
.
s
e
t
W
i
d
g
e
t
(
3
,
1
,
m
o
n
i
t
o
r
C
h
a
r
t
)
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
m
y
G
r
i
d
’
)
.
s
e
t
W
i
d
g
e
t
(
3
,
0
,
s
c
a
t
t
e
r
C
h
a
r
t
)
;

}
c
a
t
c
h
(
e
)
{

U
t
i
l
i
t
i
e
s
.
s
l
e
e
p
(
1
0
0
0
)

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
u
s
e
r
M
e
s
s
a
g
e
’
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
e
r
r
o
r
)

.
s
e
t
H
T
M
L
(
’
O
o
p
s
,

’
+
(
e
.
m
e
s
s
a
g
e
)
+
’
.
<
b
r
>
Y
o
u
r

l
a
t
e
s
t

i
n
p
u
t

<
b
>
’
+
i
n
p
u
t
+
’
<
/
b
>

i
s

n
o
t

s
a
v
e
d
.

C
o
u
l
d

y
o
u

e
n
t
e
r

i
t

a
g
a
i
n
?
’
)
;

v
a
r

s
u
b
j
e
c
t
M
e
s
s
a
g
e

=
s
e
s
s
i
o
n
S
u
b
j
e
c
t
+
’
:

"
’
+
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
S
u
b
j
e
c
t
C
h
a
t
s
[
M
a
t
h
.
f
l
o
o
r
(
M
a
t
h
.
r
a
n
d
o
m
(
)

*

m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
S
u
b
j
e
c
t
C
h
a
t
s
.
l
e
n
g
t
h
)
]
+
’
"
’
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
s
u
b
j
e
c
t
M
e
s
s
a
g
e
’
)
.
s
e
t
H
T
M
L
(
s
u
b
j
e
c
t
M
e
s
s
a
g
e
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
w
e
l
c
o
m
e
)
;

a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
i
n
p
u
t
’
)
.
s
e
t
E
n
a
b
l
e
d
(
t
r
u
e
)
.
s
e
t
T
e
x
t
(
’
’
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
m
e
s
s
a
g
e
S
t
y
l
e
O
p
t
i
o
n
s
.
i
d
l
e
)
.
s
e
t
F
o
c
u
s
(
t
r
u
e
)
;

r
e
t
u
r
n

a
p
p
;

} r
e
t
u
r
n

a
p
p
;

}

} f
u
n
c
t
i
o
n

a
r
t
i
f
i
c
i
a
l
L
o
c
k
(
)
{

v
a
r

l
o
c
k

=
L
o
c
k
S
e
r
v
i
c
e
.
g
e
t
S
c
r
i
p
t
L
o
c
k
(
)
;

l
o
c
k
.
w
a
i
t
L
o
c
k
(
1
0
0
0
)

U
t
i
l
i
t
i
e
s
.
s
l
e
e
p
(
2
5
0
0
0
)
;

l
o
c
k
.
r
e
l
e
a
s
e
L
o
c
k
(
)
;

} /
/
m
i
s
c

f
u
n
c
t
i
o
n
s

f
u
n
c
t
i
o
n

p
r
e
c
i
s
i
o
n
(
x
)
{

r
e
t
u
r
n

M
a
t
h
.
r
o
u
n
d
(
x

*
m
o
d
e
l
P
a
r
s
.
r
o
u
n
d
i
n
g
P
r
e
c
i
s
i
o
n
)

/
m
o
d
e
l
P
a
r
s
.
r
o
u
n
d
i
n
g
P
r
e
c
i
s
i
o
n

} f
u
n
c
t
i
o
n

f
(
x
,
t
h
e
t
a
V
a
l
u
e
)
{

r
e
t
u
r
n

p
r
e
c
i
s
i
o
n
(
m
o
d
e
l
P
a
r
s
.
b
a
s
e
R
e
w
a
r
d

-
m
o
d
e
l
P
a
r
s
.
c
u
r
v
a
t
u
r
e

*
(
x

-
t
h
e
t
a
V
a
l
u
e
)

*

(
x

-
t
h
e
t
a
V
a
l
u
e
)

+
m
o
d
e
l
P
a
r
s
.
n
o
i
s
e
M
a
g

*
(
2

*
M
a
t
h
.
r
a
n
d
o
m
(
)

-
1
)
)
;

}
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f
u
n
c
t
i
o
n

m
a
k
e
I
d
(
)

{

v
a
r

t
e
x
t

=
"
"
;

v
a
r

p
o
s
s
i
b
l
e

=
"
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
"
;

f
o
r
(

v
a
r

i
=
0
;

i
<

5
;

i
+
+

)

t
e
x
t

+
=

p
o
s
s
i
b
l
e
.
c
h
a
r
A
t
(
M
a
t
h
.
f
l
o
o
r
(
M
a
t
h
.
r
a
n
d
o
m
(
)

*
p
o
s
s
i
b
l
e
.
l
e
n
g
t
h
)
)
;

r
e
t
u
r
n

t
e
x
t
;

} f
u
n
c
t
i
o
n

g
e
t
D
u
r
a
t
i
o
n
(
t
i
m
e
)
{

i
f

(
t
i
m
e

>
2
4
*
6
0
*
6
0
*
1
0
0
0
)
{
r
e
t
u
r
n

’
i
n

a
b
o
u
t

’
+

M
a
t
h
.
f
l
o
o
r
(
t
i
m
e
/
(
2
4
*
6
0
*
6
0
*
1
0
0
0
)
)
+
’

d
a
y
(
s
)
.
’
}

e
l
s
e
{

i
f

(
t
i
m
e

>
6
0
*
6
0
*
1
0
0
0
)
{
r
e
t
u
r
n

’
i
n

a
b
o
u
t

’
+

M
a
t
h
.
f
l
o
o
r
(
t
i
m
e
/
(
6
0
*
6
0
*
1
0
0
0
)
)
+
’

h
o
u
r
(
s
)
.
’
}

e
l
s
e
{

i
f

(
t
i
m
e

>
6
0
*
1
0
0
0
)
{
r
e
t
u
r
n

’
i
n

a
b
o
u
t

’
+
M
a
t
h
.
f
l
o
o
r
(
t
i
m
e
/
(
6
0
*
1
0
0
0
)
)
+
’

m
i
n
u
t
e
(
s
)
.
’
}

e
l
s
e
{

i
f

(
t
i
m
e

>
1
0
0
0
)
{
r
e
t
u
r
n

’
i
n

a
b
o
u
t

’
+
M
a
t
h
.
f
l
o
o
r
(
t
i
m
e
/
1
0
0
0
)
+
’

s
e
c
o
n
d
(
s
)
.
’
}

e
l
s
e
{

i
f

(
t
i
m
e

>
0
)
{
r
e
t
u
r
n

’
i
n

a
b
o
u
t

a
s
e
c
o
n
d
.

E
n
t
e
r

a
n
e
w

v
a
l
u
e

n
o
w
!
’
}

e
l
s
e
{
r
e
t
u
r
n

’
n
o
w
!
’
}

}

}

}

}

} f
u
n
c
t
i
o
n

g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
{

v
a
r

t
i
m
e
V
a
l
u
e

=
t
i
m
e
s
t
a
m
p
.
v
a
l
u
e
O
f
(
)
;

v
a
r

s
e
s
s
i
o
n
S
S
t
a
r
t

=
D
a
t
e
.
p
a
r
s
e
(
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
S
S
t
a
r
t
T
i
m
e
)
;

v
a
r

s
e
s
s
i
o
n
A
S
t
a
r
t

=
D
a
t
e
.
p
a
r
s
e
(
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
A
S
t
a
r
t
T
i
m
e
)
;

v
a
r

s
e
s
s
i
o
n
B
S
t
a
r
t

=
D
a
t
e
.
p
a
r
s
e
(
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
B
S
t
a
r
t
T
i
m
e
)
;

v
a
r

s
e
s
s
i
o
n
B
E
n
d

=
D
a
t
e
.
p
a
r
s
e
(
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
B
S
t
a
r
t
T
i
m
e
)
+
p
r
o
g
O
p
t
i
o
n
s
.
s
e
s
s
i
o
n
A
c
c
e
p
t
N
e
w
E
n
t
r
y
P
e
r
i
o
d
*
6
0
*
1
0
0
0
;

v
a
r

s
e
s
s
i
o
n
S
D
u
r
a
t
i
o
n

=
s
e
s
s
i
o
n
A
S
t
a
r
t

-
s
e
s
s
i
o
n
S
S
t
a
r
t
;

v
a
r

s
e
s
s
i
o
n
A
D
u
r
a
t
i
o
n

=
s
e
s
s
i
o
n
B
S
t
a
r
t

-
s
e
s
s
i
o
n
A
S
t
a
r
t
;
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v
a
r

s
e
s
s
i
o
n
B
D
u
r
a
t
i
o
n

=
s
e
s
s
i
o
n
B
E
n
d

-
s
e
s
s
i
o
n
B
S
t
a
r
t
;

v
a
r

l
i
n
e

=
’
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
&
#
8
2
2
6
;
’
;

i
f
(
t
i
m
e
V
a
l
u
e

<
s
e
s
s
i
o
n
S
S
t
a
r
t
)
{

r
e
t
u
r
n

{

t
y
p
e
:
’
S
’
,

n
a
m
e
:
’
L
e
v
e
l

0
(
P
r
a
c
t
i
c
e

M
o
d
e
)
’
,

s
u
b
j
e
c
t
:
’
J
o
e
’
,

i
n
d
e
x
:
0
,

p
r
o
g
r
e
s
s
:
’
L
e
v
e
l

0
’
+
l
i
n
e
+
’
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

1
’
+
l
i
n
e
+
’
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

2
’
+
l
i
n
e
+
’
0
&
#
3
7
;
’
,

t
i
m
e
L
e
f
t
:
’
L
e
v
e
l

0
e
n
d
s

’
+
g
e
t
D
u
r
a
t
i
o
n
(
s
e
s
s
i
o
n
A
S
t
a
r
t

-
t
i
m
e
V
a
l
u
e
)

}

}
e
l
s
e
{

i
f
(
t
i
m
e
V
a
l
u
e

<
s
e
s
s
i
o
n
A
S
t
a
r
t
)
{

r
e
t
u
r
n

{

t
y
p
e
:
’
S
’
,

n
a
m
e
:
’
L
e
v
e
l

0
(
P
r
a
c
t
i
c
e

M
o
d
e
)
’
,

s
u
b
j
e
c
t
:
’
J
o
e
’
,

i
n
d
e
x
:
0
,

p
r
o
g
r
e
s
s
:
’
L
e
v
e
l

0
’
+
l
i
n
e
+
S
t
r
i
n
g
(
M
a
t
h
.
r
o
u
n
d
(
(
t
i
m
e
V
a
l
u
e
-
s
e
s
s
i
o
n
S
S
t
a
r
t
)
/
s
e
s
s
i
o
n
S
D
u
r
a
t
i
o
n
*
1
0
0
)
)
+
’
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

1
’
+
l
i
n
e
+
’
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

2
’
+
l
i
n
e
+
’
0
&
#
3
7
;
’
,

t
i
m
e
L
e
f
t
:
’
L
e
v
e
l

0
e
n
d
s

’
+
g
e
t
D
u
r
a
t
i
o
n
(
s
e
s
s
i
o
n
A
S
t
a
r
t

-
t
i
m
e
V
a
l
u
e
)

}

}
e
l
s
e
{

i
f
(
t
i
m
e
V
a
l
u
e

<
s
e
s
s
i
o
n
B
S
t
a
r
t
)
{

r
e
t
u
r
n

{

t
y
p
e
:
’
A
’
,

n
a
m
e
:
’
L
e
v
e
l

1
’
,

s
u
b
j
e
c
t
:
’
A
n
d
y
’
,

i
n
d
e
x
:
1
,

p
r
o
g
r
e
s
s
:
’
L
e
v
e
l

0
’
+
l
i
n
e
+
’
1
0
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

1
’
+
l
i
n
e
+
S
t
r
i
n
g
(
M
a
t
h
.
r
o
u
n
d
(
(
t
i
m
e
V
a
l
u
e
-
s
e
s
s
i
o
n
A
S
t
a
r
t
)
/
s
e
s
s
i
o
n
A
D
u
r
a
t
i
o
n
*
1
0
0
)
)
+
’
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

2
’
+
l
i
n
e
+
’
0
&
#
3
7
;
’
,

t
i
m
e
L
e
f
t
:
’
L
e
v
e
l

1
e
n
d
s

’
+
g
e
t
D
u
r
a
t
i
o
n
(
s
e
s
s
i
o
n
B
S
t
a
r
t

-
t
i
m
e
V
a
l
u
e
)

}

}
e
l
s
e
{
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i
f
(
t
i
m
e
V
a
l
u
e

<
s
e
s
s
i
o
n
B
E
n
d
)
{

r
e
t
u
r
n

{

t
y
p
e
:
’
B
’
,

n
a
m
e
:
’
L
e
v
e
l

2
’
,

s
u
b
j
e
c
t
:
’
B
e
n
’
,

i
n
d
e
x
:
2
,

p
r
o
g
r
e
s
s
:
’
L
e
v
e
l

0
’
+
l
i
n
e
+
’
1
0
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

1
’
+
l
i
n
e
+
’
1
0
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

2
’
+
l
i
n
e
+
S
t
r
i
n
g
(
M
a
t
h
.
r
o
u
n
d
(
(
t
i
m
e
V
a
l
u
e
-
s
e
s
s
i
o
n
B
S
t
a
r
t
)
/
s
e
s
s
i
o
n
B
D
u
r
a
t
i
o
n
*
1
0
0
)
)
+
’
&
#
3
7
;
’
,

t
i
m
e
L
e
f
t
:
’
L
e
v
e
l

2
e
n
d
s

’
+
g
e
t
D
u
r
a
t
i
o
n
(
s
e
s
s
i
o
n
B
E
n
d

-
t
i
m
e
V
a
l
u
e
)

}

}
e
l
s
e
{

r
e
t
u
r
n

{

t
y
p
e
:
’
E
’
,

n
a
m
e
:
’
E
n
d

o
f

g
a
m
e
’
,

s
u
b
j
e
c
t
:
’
B
e
n
’
,

i
n
d
e
x
:
2
,

p
r
o
g
r
e
s
s
:
’
L
e
v
e
l

0
’
+
l
i
n
e
+
’
1
0
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

1
’
+
l
i
n
e
+
’
1
0
0
&
#
3
7
;
’
+
’
<
b
r
>
’

+
’
L
e
v
e
l

2
’
+
l
i
n
e
+
’
1
0
0
&
#
3
7
;
’
,

t
i
m
e
L
e
f
t
:
’
Y
o
u

h
a
v
e

c
o
m
p
l
e
t
e
d

t
h
i
s

e
x
p
e
r
i
m
e
n
t
.
’

}

}

}

}

}

} f
u
n
c
t
i
o
n

g
e
t
P
o
p
u
p
(
a
p
p
,
m
e
s
s
a
g
e
,
a
u
t
o
H
i
d
e
)
{

v
a
r

p
o
p
u
p
M
e
s
s
a
g
e
H
t
m
l

=
a
p
p
.
c
r
e
a
t
e
H
T
M
L
(
m
e
s
s
a
g
e
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
h
t
m
l
O
p
t
i
o
n
s
)
;

v
a
r

p
o
p
u
p
M
e
s
s
a
g
e
P
a
n
e
l

=
a
p
p
.
c
r
e
a
t
e
P
o
p
u
p
P
a
n
e
l
(
f
a
l
s
e
,

t
r
u
e
)
;

p
o
p
u
p
M
e
s
s
a
g
e
P
a
n
e
l

.
a
d
d
(
p
o
p
u
p
M
e
s
s
a
g
e
H
t
m
l
)

.
s
e
t
P
o
p
u
p
P
o
s
i
t
i
o
n
(
p
o
p
u
p
O
p
t
i
o
n
s
.
p
o
s
i
t
i
o
n
.
l
e
f
t
,
p
o
p
u
p
O
p
t
i
o
n
s
.
p
o
s
i
t
i
o
n
.
t
o
p
)
.
s
e
t
S
t
y
l
e
A
t
t
r
i
b
u
t
e
s
(
p
o
p
u
p
O
p
t
i
o
n
s
.
s
t
y
l
e
)

.
s
e
t
G
l
a
s
s
E
n
a
b
l
e
d
(
f
a
l
s
e
)
.
s
e
t
A
n
i
m
a
t
i
o
n
E
n
a
b
l
e
d
(
t
r
u
e
)
.
s
e
t
A
u
t
o
H
i
d
e
E
n
a
b
l
e
d
(
a
u
t
o
H
i
d
e
)

.
s
h
o
w
(
)
;

i
f
(
!
a
u
t
o
H
i
d
e
)
{
a
p
p
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
’
m
y
G
r
i
d
’
)
.
s
e
t
V
i
s
i
b
l
e
(
f
a
l
s
e
)
}

}
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f
u
n
c
t
i
o
n

g
e
t
C
u
r
r
e
n
t
P
a
n
e
l
M
e
s
s
a
g
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
{

v
a
r

t
h
i
s
S
e
s
s
i
o
n

=
g
e
t
S
e
s
s
i
o
n
T
y
p
e
(
t
i
m
e
s
t
a
m
p
,
p
r
o
g
O
p
t
i
o
n
s
)
;

v
a
r

p
a
n
e
l
H
t
m
l

=
"
<
p
>
<
b
>
"
+
t
h
i
s
S
e
s
s
i
o
n
.
n
a
m
e
+
"
<
/
b
>
<
/
p
>
<
b
r
>

H
e
l
l
o
,

m
y

n
a
m
e

i
s

"
+
t
h
i
s
S
e
s
s
i
o
n
.
s
u
b
j
e
c
t
+

"
.

W
e
l
c
o
m
e

t
o

"
+
t
h
i
s
S
e
s
s
i
o
n
.
n
a
m
e
+
"
!

P
l
e
a
s
e

h
e
l
p

m
e

m
a
i
n
t
a
i
n

a
h
i
g
h

f
i
t
n
e
s
s
.
"
;

i
f

(
t
h
i
s
S
e
s
s
i
o
n
.
t
y
p
e
!
=
’
S
’
)
{
p
a
n
e
l
H
t
m
l
=
p
a
n
e
l
H
t
m
l
+
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
N
o
t
S
}
;

i
f

(
t
h
i
s
S
e
s
s
i
o
n
.
t
y
p
e
=
=
’
B
’
)
{
p
a
n
e
l
H
t
m
l
=
p
a
n
e
l
H
t
m
l
+
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
B
}
;

p
a
n
e
l
H
t
m
l

=
p
a
n
e
l
H
t
m
l

+
m
e
s
s
a
g
e
O
p
t
i
o
n
s
.
m
e
s
s
a
g
e
C
l
o
s
e
R
e
m
i
n
d
e
r
;

r
e
t
u
r
n

p
a
n
e
l
H
t
m
l
;

} f
u
n
c
t
i
o
n

g
e
t
S
c
o
r
e
H
t
m
l
(
a
l
l
S
c
o
r
e
s
)
{

v
a
r

m
e
s
s
a
g
e

=
"
Y
O
U
R

S
C
O
R
E
S
<
b
r
>
L
e
v
e
l

0
:
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
<
b
>
"
+
a
l
l
S
c
o
r
e
s
[
0
]
+

"
<
/
b
>
<
b
r
>
L
e
v
e
l

1
:
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
<
b
>
"
+
a
l
l
S
c
o
r
e
s
[
1
]
+

"
<
/
b
>
<
b
r
>
L
e
v
e
l

2
:
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
&
n
b
s
p
;
<
b
>
"
+
a
l
l
S
c
o
r
e
s
[
2
]
+
"
<
/
b
>
"
;

r
e
t
u
r
n

m
e
s
s
a
g
e

}
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C
.3

S
cr

ip
t

“
E

n
g
in

e
.g

s”

f
u
n
c
t
i
o
n

e
n
g
i
n
e
(
t
i
m
e
s
t
a
m
p
,
u
n
i
q
u
e
U
s
e
r
I
d
,
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
,
i
n
p
u
t
,
t
h
e
t
a
V
a
l
u
e
,
s
e
s
s
i
o
n
T
y
p
e
,
p
r
o
g
O
p
t
i
o
n
s
,
d
a
t
a
s
o
u
r
c
e
,
s
h
e
e
t
D
a
t
a
,
s
h
e
e
t
U
s
e
r
s
,
a
l
l
S
c
o
r
e
s
)
{

t
r
y
{

/
/
R
e
s
e
t

h
i
s
t
o
r
y

i
n

a
n
e
w

s
e
s
s
i
o
n

i
f
(
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
>
0
)
{

i
f
(
d
a
t
a
s
o
u
r
c
e
[
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
-
1
]
.
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
!
=
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
)
{

d
a
t
a
s
o
u
r
c
e

=
[
]
;

i
n
p
u
t

=
2
0
0
0
;

}

} /
/
C
h
a
r
t

d
a
t
a
t
a
b
l
e

v
a
r

s
c
a
t
t
e
r
D
a
t
a

=
C
h
a
r
t
s
.
n
e
w
D
a
t
a
T
a
b
l
e
(
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,

’
i
n
p
u
t
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,

’
A
b
o
v
e

t
a
r
g
e
t
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,

’
B
e
l
o
w

t
a
r
g
e
t
’
)
;

v
a
r

m
o
n
i
t
o
r
D
a
t
a

=
C
h
a
r
t
s
.
n
e
w
D
a
t
a
T
a
b
l
e
(
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,
’
t
i
m
e
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,
’
F
i
t
n
e
s
s
’
)

.
a
d
d
C
o
l
u
m
n
(
C
h
a
r
t
s
.
C
o
l
u
m
n
T
y
p
e
.
N
U
M
B
E
R
,
’
T
a
r
g
e
t
’
)
;

/
/
I
n
i
t
i
a
l
i
z
e

v
a
r
i
a
b
l
e
s

a
s
s
u
m
i
n
g

e
m
p
t
y

d
a
t
a
s
o
u
r
c
e

v
a
r

o
u
t
p
u
t

=
f
(
i
n
p
u
t
,
t
h
e
t
a
V
a
l
u
e
)
;

v
a
r

i
s
S
R

=
f
a
l
s
e
;
i
f

(
s
e
s
s
i
o
n
T
y
p
e

=
=

’
S
’
)
{
i
s
S
R

=
p
r
o
g
O
p
t
i
o
n
s
.
i
s
S
o
f
t
R
e
g
}
;
i
f

(
s
e
s
s
i
o
n
T
y
p
e

=
=

’
B
’
)
{
i
s
S
R

=
t
r
u
e
}
;

v
a
r

p
r
e
v
I
n
p
u
t

=
’
’
;

v
a
r

p
r
e
v
I
n
p
u
t
A
v
e
r
a
g
e

=
’
’
;

v
a
r

o
u
t
p
u
t
T
a
r
g
e
t

=
p
r
o
g
O
p
t
i
o
n
s
.
o
u
t
p
u
t
T
a
r
g
e
t
;

v
a
r

d
a
y
C
o
u
n
t
e
r

=
1
;

i
f
(
o
u
t
p
u
t
>
=
o
u
t
p
u
t
T
a
r
g
e
t
)
{
v
a
r

s
c
o
r
e
C
o
u
n
t
e
r

=
1
;
s
c
a
t
t
e
r
D
a
t
a
.
a
d
d
R
o
w
(
[
i
n
p
u
t
,
o
u
t
p
u
t
,
’
’
]
)
}

e
l
s
e
{
v
a
r

s
c
o
r
e
C
o
u
n
t
e
r

=
0
;
s
c
a
t
t
e
r
D
a
t
a
.
a
d
d
R
o
w
(
[
i
n
p
u
t
,
’
’
,
o
u
t
p
u
t
]
)
}

/
/
P
o
p
u
l
a
t
e

c
h
a
r
t

d
a
t
a

f
r
o
m

t
h
e

l
a
t
e
s
t

1
0

e
n
t
r
i
e
s

i
f
(
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
>
0
)
{

f
o
r

(
i
=
0
;
i
<
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
;
i
+
+
)
{

i
f

(
d
a
t
a
s
o
u
r
c
e

[
i
]
.
o
u
t
p
u
t
>
=
o
u
t
p
u
t
T
a
r
g
e
t
)
{
s
c
a
t
t
e
r
D
a
t
a
.
a
d
d
R
o
w
(
[
d
a
t
a
s
o
u
r
c
e

[
i
]
.
i
n
p
u
t
+
t
h
e
t
a
V
a
l
u
e

,
d
a
t
a
s
o
u
r
c
e

[
i
]
.
o
u
t
p
u
t
,
’
’
]
)
}

e
l
s
e
{
s
c
a
t
t
e
r
D
a
t
a
.
a
d
d
R
o
w
(
[
d
a
t
a
s
o
u
r
c
e

[
i
]
.
i
n
p
u
t
+
t
h
e
t
a
V
a
l
u
e

,
’
’
,
d
a
t
a
s
o
u
r
c
e

[
i
]
.
o
u
t
p
u
t
]
)
}
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m
o
n
i
t
o
r
D
a
t
a
.
a
d
d
R
o
w
(
[
d
a
t
a
s
o
u
r
c
e

[
i
]
.
d
a
y
C
o
u
n
t
e
r
,
d
a
t
a
s
o
u
r
c
e

[
i
]
.
o
u
t
p
u
t
,
o
u
t
p
u
t
T
a
r
g
e
t
]
)

} p
r
e
v
I
n
p
u
t

=
d
a
t
a
s
o
u
r
c
e

[
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
-
1
]
.
i
n
p
u
t
;

d
a
y
C
o
u
n
t
e
r

=
d
a
t
a
s
o
u
r
c
e
[
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
-
1
]
.
d
a
y
C
o
u
n
t
e
r

+
1
;

i
f

(
o
u
t
p
u
t
>
=
o
u
t
p
u
t
T
a
r
g
e
t
)
{
s
c
o
r
e
C
o
u
n
t
e
r

=
d
a
t
a
s
o
u
r
c
e
[
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
-
1
]
.
s
c
o
r
e
C
o
u
n
t
e
r

+
1
}

e
l
s
e
{
s
c
o
r
e
C
o
u
n
t
e
r

=
d
a
t
a
s
o
u
r
c
e
[
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
-
1
]
.
s
c
o
r
e
C
o
u
n
t
e
r
}
;

i
f
(
i
s
S
R
)
{
p
r
e
v
I
n
p
u
t
A
v
e
r
a
g
e

=
d
a
t
a
s
o
u
r
c
e
[
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
-
1
]
.
i
n
p
u
t
A
v
e
r
a
g
e
;
}

} m
o
n
i
t
o
r
D
a
t
a
.
a
d
d
R
o
w
(
[
d
a
y
C
o
u
n
t
e
r
,
o
u
t
p
u
t
,
o
u
t
p
u
t
T
a
r
g
e
t
]
)
;

s
c
a
t
t
e
r
D
a
t
a
.
b
u
i
l
d
(
)
;
m
o
n
i
t
o
r
D
a
t
a
.
b
u
i
l
d
(
)
;

i
f
(
s
e
s
s
i
o
n
T
y
p
e
=
=
’
S
’
)
{
a
l
l
S
c
o
r
e
s
[
0
]
=
s
c
o
r
e
C
o
u
n
t
e
r
}

i
f
(
s
e
s
s
i
o
n
T
y
p
e
=
=
’
A
’
)
{
a
l
l
S
c
o
r
e
s
[
1
]
=
s
c
o
r
e
C
o
u
n
t
e
r
}

i
f
(
s
e
s
s
i
o
n
T
y
p
e
=
=
’
B
’
)
{
a
l
l
S
c
o
r
e
s
[
2
]
=
s
c
o
r
e
C
o
u
n
t
e
r
}

v
a
r

m
o
n
i
t
o
r
C
h
a
r
t

=
C
h
a
r
t
s
.
n
e
w
L
i
n
e
C
h
a
r
t
(
)

.
s
e
t
D
a
t
a
T
a
b
l
e
(
m
o
n
i
t
o
r
D
a
t
a
)

.
s
e
t
D
i
m
e
n
s
i
o
n
s
(
c
h
a
r
t
O
p
t
i
o
n
s
.
w
i
d
t
h
,
c
h
a
r
t
O
p
t
i
o
n
s
.
h
e
i
g
h
t
)

.
s
e
t
T
i
t
l
e
(
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
t
i
t
l
e
)

.
s
e
t
L
e
g
e
n
d
P
o
s
i
t
i
o
n
(
C
h
a
r
t
s
.
P
o
s
i
t
i
o
n
.
B
O
T
T
O
M
)

.
s
e
t
O
p
t
i
o
n
(
’
s
e
r
i
e
s
’
,
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
s
e
r
i
e
s
)

.
s
e
t
O
p
t
i
o
n
(
’
h
A
x
i
s
’
,
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
h
A
x
i
s
)

.
s
e
t
O
p
t
i
o
n
(
’
v
A
x
i
s
’
,
m
o
n
i
t
o
r
O
p
t
i
o
n
s
.
v
A
x
i
s
)

.
b
u
i
l
d
(
)
;

v
a
r

s
c
a
t
t
e
r
C
h
a
r
t

=
C
h
a
r
t
s
.
n
e
w
S
c
a
t
t
e
r
C
h
a
r
t
(
)

.
s
e
t
D
a
t
a
T
a
b
l
e
(
s
c
a
t
t
e
r
D
a
t
a
)

.
s
e
t
D
i
m
e
n
s
i
o
n
s
(
c
h
a
r
t
O
p
t
i
o
n
s
.
h
e
i
g
h
t
,
c
h
a
r
t
O
p
t
i
o
n
s
.
h
e
i
g
h
t
)

.
s
e
t
T
i
t
l
e
(
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
t
i
t
l
e
)

.
s
e
t
O
p
t
i
o
n
(
’
s
e
r
i
e
s
’
,
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
s
e
r
i
e
s
)

.
s
e
t
O
p
t
i
o
n
(
’
h
A
x
i
s
’
,
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
h
A
x
i
s
)

.
s
e
t
O
p
t
i
o
n
(
’
v
A
x
i
s
’
,
s
c
a
t
t
e
r
O
p
t
i
o
n
s
.
v
A
x
i
s
)

.
s
e
t
L
e
g
e
n
d
P
o
s
i
t
i
o
n
(
C
h
a
r
t
s
.
P
o
s
i
t
i
o
n
.
B
O
T
T
O
M
)

.
b
u
i
l
d
(
)
;
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/
/
S
o
f
t

r
e
g
u
l
a
t
i
o
n

v
a
r

i
n
p
u
t
A
v
e
r
a
g
e

=
’
’
;

i
f
(
i
s
S
R
)
{

v
a
r

u
s
e
r
s
L
a
s
t
R
o
w

=
s
h
e
e
t
U
s
e
r
s
.
g
e
t
L
a
s
t
R
o
w
(
)
;

v
a
r

u
s
e
r
I
d
s

=
[
]
.
c
o
n
c
a
t
.
a
p
p
l
y
(
[
]
,
s
h
e
e
t
U
s
e
r
s
.
g
e
t
R
a
n
g
e
(
1
,
2
,
u
s
e
r
s
L
a
s
t
R
o
w
,
1
)
.
g
e
t
V
a
l
u
e
s
(
)
)
;

v
a
r

s
u
b
S
e
s
s
i
o
n
I
d
s

=
[
]
.
c
o
n
c
a
t
.
a
p
p
l
y
(
[
]
,
s
h
e
e
t
U
s
e
r
s
.
g
e
t
R
a
n
g
e
(
1
,
3
,
u
s
e
r
s
L
a
s
t
R
o
w
,
1
)
.
g
e
t
V
a
l
u
e
s
(
)
)
;

v
a
r

i
n
p
u
t
s

=
[
]
.
c
o
n
c
a
t
.
a
p
p
l
y
(
[
]
,
s
h
e
e
t
U
s
e
r
s
.
g
e
t
R
a
n
g
e
(
1
,
5
,
u
s
e
r
s
L
a
s
t
R
o
w
,
1
)
.
g
e
t
V
a
l
u
e
s
(
)
)
;

/
/
I
n
i
t
i
a
l
i
z
e

v
a
r
i
a
b
l
e
s

a
s
s
u
m
i
n
g

e
m
p
t
y

u
s
e
r
s

l
i
s
t

v
a
r

n
e
w
U
s
e
r

=
t
r
u
e
;

v
a
r

i
n
p
u
t
S
u
m

=
0
;

v
a
r

i
n
p
u
t
A
v
e
r
a
g
e

=
i
n
p
u
t

-
t
h
e
t
a
V
a
l
u
e
;

/
/
c
a
l
i
b
r
a
t
e
d

i
n
p
u
t

v
a
r

n
u
m
O
f
U
s
e
r
s

=
0
;

i
f
(
u
s
e
r
I
d
s
.
l
e
n
g
t
h
>
1
)
{

f
o
r

(
i
=
1
;
i
<
u
s
e
r
I
d
s
.
l
e
n
g
t
h
;
i
+
+
)
{

i
f
(
s
u
b
S
e
s
s
i
o
n
I
d
s
[
i
]
=
=
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
)
{

n
u
m
O
f
U
s
e
r
s

=
n
u
m
O
f
U
s
e
r
s

+
1
;

i
f
(
u
s
e
r
I
d
s
[
i
]
=
=
u
n
i
q
u
e
U
s
e
r
I
d
)
{

n
e
w
U
s
e
r

=
f
a
l
s
e
;

i
n
p
u
t
S
u
m

=
i
n
p
u
t
S
u
m

+
i
n
p
u
t

-
t
h
e
t
a
V
a
l
u
e
;

v
a
r

u
s
e
r
R
o
w

=
1

+
i
;

} e
l
s
e
{
i
n
p
u
t
S
u
m

=
i
n
p
u
t
S
u
m

+
i
n
p
u
t
s
[
i
]
}

}

}

} i
f
(
n
u
m
O
f
U
s
e
r
s

>
0
)
{
i
n
p
u
t
A
v
e
r
a
g
e

=
i
n
p
u
t
S
u
m

/
n
u
m
O
f
U
s
e
r
s
}

i
f
(
n
e
w
U
s
e
r
)
{
i
n
p
u
t
A
v
e
r
a
g
e

=
(
i
n
p
u
t
S
u
m

+
i
n
p
u
t

-
t
h
e
t
a
V
a
l
u
e
)
/
(
n
u
m
O
f
U
s
e
r
s

+
1
)
}

v
a
r

w
r
i
t
e
U
s
e
r
s

=
[
t
i
m
e
s
t
a
m
p
,
u
n
i
q
u
e
U
s
e
r
I
d
,
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
,
t
h
e
t
a
V
a
l
u
e
,
i
n
p
u
t

-
t
h
e
t
a
V
a
l
u
e
,
o
u
t
p
u
t
,
i
n
p
u
t
A
v
e
r
a
g
e
,
d
a
y
C
o
u
n
t
e
r
,
s
c
o
r
e
C
o
u
n
t
e
r
]
;

i
f
(
!
n
e
w
U
s
e
r
)
{
s
h
e
e
t
U
s
e
r
s
.
g
e
t
R
a
n
g
e
(
u
s
e
r
R
o
w
,
1
,
1
,
w
r
i
t
e
U
s
e
r
s
.
l
e
n
g
t
h
)
.
s
e
t
V
a
l
u
e
s
(
[
w
r
i
t
e
U
s
e
r
s
]
)
}

} /
/
U
p
d
a
t
e

h
i
s
t
o
r
y
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v
a
r

n
e
w
D
a
t
a
s
o
u
r
c
e

=
{

u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
:
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
,

i
n
p
u
t
:
(
i
n
p
u
t

-
t
h
e
t
a
V
a
l
u
e
)
,

o
u
t
p
u
t
:
o
u
t
p
u
t
,

d
a
y
C
o
u
n
t
e
r
:
d
a
y
C
o
u
n
t
e
r
,

s
c
o
r
e
C
o
u
n
t
e
r
:
s
c
o
r
e
C
o
u
n
t
e
r
,

i
n
p
u
t
A
v
e
r
a
g
e
:
i
n
p
u
t
A
v
e
r
a
g
e
,

d
a
y
C
o
u
n
t
e
r
:
d
a
y
C
o
u
n
t
e
r
,

s
c
o
r
e
C
o
u
n
t
e
r
:
s
c
o
r
e
C
o
u
n
t
e
r

} i
f
(
d
a
t
a
s
o
u
r
c
e
.
l
e
n
g
t
h
>
8
)
{
d
a
t
a
s
o
u
r
c
e
.
s
h
i
f
t
(
)
}

d
a
t
a
s
o
u
r
c
e
.
p
u
s
h
(
n
e
w
D
a
t
a
s
o
u
r
c
e
)
;

}
c
a
t
c
h
(
e
)
{

U
t
i
l
i
t
i
e
s
.
s
l
e
e
p
(
1
0
0
0
)
;

r
e
t
u
r
n

{
d
a
t
a
s
o
u
r
c
e
:
[
]
}

} v
a
r

a
p
p
e
n
d
C
o
n
t
e
n
t

=
[
t
i
m
e
s
t
a
m
p
,
u
n
i
q
u
e
U
s
e
r
I
d
,
u
n
i
q
u
e
S
u
b
S
e
s
s
i
o
n
I
d
,
t
h
e
t
a
V
a
l
u
e
,
i
n
p
u
t

-
t
h
e
t
a
V
a
l
u
e
,
o
u
t
p
u
t
,
i
n
p
u
t
A
v
e
r
a
g
e
,
d
a
y
C
o
u
n
t
e
r
,
s
c
o
r
e
C
o
u
n
t
e
r
,

p
r
e
v
I
n
p
u
t
,
i
n
p
u
t
-
t
h
e
t
a
V
a
l
u
e
,
p
r
e
v
I
n
p
u
t
A
v
e
r
a
g
e
,
i
n
p
u
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-
t
h
e
t
a
V
a
l
u
e
]
;

t
r
y
{

v
a
r

i
s
L
o
c
k
A
c
t
i
v
e

=
t
r
u
e
;

/
/
O
n
l
y

w
h
e
n

p
o
p
u
l
a
t
i
o
n

i
s

s
m
a
l
l

/
/
U
t
i
l
i
t
i
e
s
.
s
l
e
e
p
(
4
0
0
0
)
;

i
f
(
i
s
L
o
c
k
A
c
t
i
v
e
)
{

v
a
r

l
o
c
k

=
L
o
c
k
S
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r
v
i
c
e
.
g
e
t
S
c
r
i
p
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L
o
c
k
(
)
;

l
o
c
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.
w
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L
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c
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(
5
0
0
0
)
}
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.
a
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p
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R
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(
a
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p
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C
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n
t
e
n
t
)
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(
i
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R
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w
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s
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r
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s
e
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p
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i
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S
p
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.
f
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)
;
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f
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i
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c
k
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t
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c
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.
r
e
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o
c
k
(
)
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d
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o
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r
c
e
:
d
a
t
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s
o
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r
c
e
,
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p
u
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u
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n
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} c
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c
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u
t
:
o
u
t
p
u
t
,

r
e
c
U
s
e
r
:
(
i
n
p
u
t
A
v
e
r
a
g
e

+
t
h
e
t
a
V
a
l
u
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n
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n
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n
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r
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}

}

}
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Appendix D

Data Analysis with MATLAB

D.1 Script “readme.m” (p. 139) This is an inventory of the scripts, functions, and

important variables used for the data analysis in Section 4.2 (p. 65). There are many scripts

used here. We only include the most important two in the following sections.

D.2 Script “meanValue.m” (p. 142) This script computes the average MSE from the

five replications within an experiment set. It also passes the processed data to “sysid.m”

for further system identification and optimal control procedures.

D.3 Script “sysid.m” (p. 149) This script takes in the average MSE data and esti-

mate the learning function, noise, and social influence. It also estimates the optimal social

influence that would maximally reduce the expected cumulative MSE.
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s
t
,

s
t
a
t
e
M
a
t
r
i
x
]

=
s
y
s
v
a
l
(
v
a
r
s
,

b
e
t
a
,

t
a
u
,

P
a
r
s
)
*
:

%
M
o
n
t
e

C
a
r
l
o

s
i
m
u
l
a
t
i
o
n

o
f

t
h
e

M
S
E

t
i
m
e

s
e
r
i
e
s

b
a
s
e
d

o
n

s
y
s
t
e
m

p
a
r
a
m
e
t
e
r
s

%
%

F
r
e
q
u
e
n
t
l
y

u
s
e
d

n
o
n
-
s
t
r
u
c
t
u
r
e

v
a
r
i
a
b
l
e
s

%
#

*
b
a
t
c
h
K
e
y
*
:

w
h
i
c
h

b
a
t
c
h
/
s
e
t

t
o

b
e

a
n
a
l
y
z
e
d

(
’
B
a
s
i
c
’
,

.
.
.
)

%
#

*
b
e
t
a
*
:

s
o
c
i
a
l

i
n
f
l
u
e
n
c
e

%
#

*
b
e
t
a
I
d
*
:

e
s
t
i
m
a
t
e
d

s
o
c
i
a
l

i
n
f
l
u
e
n
c
e

b
a
s
e
d

o
n

e
x
p
e
r
i
m
e
n
t

d
a
t
a

%
#

*
b
e
t
a
B
e
s
t
*
:

o
p
t
i
m
a
l

s
o
c
i
a
l

i
n
f
l
u
e
n
c
e

b
a
s
e
d

o
n

M
C

s
i
m
u
a
l
t
i
o
n

(
t
r
u
e

b
e
s
t
)

%
#

*
b
e
t
a
R
o
b
u
s
t
*
:

o
p
t
i
m
a
l

s
o
c
i
a
l

i
n
f
l
u
e
n
c
e

b
a
s
e
d

o
n

r
o
b
s
u
t

c
o
n
t
r
o
l

%
#

*
b
e
t
a
D
y
n
*
:

o
p
t
i
m
a
l

d
y
n
a
m
i
c

s
o
c
i
a
l

i
n
f
l
u
e
n
c
e

t
h
a
t

c
h
a
n
g
e
s

o
v
e
r

t
i
m
e

%
#

*
d
i
a
g
o
n
a
l
P
o
l
y
*
:

[
0
,

0
,

.
.
.
,

0
,

1
,

0
]

r
e
p
r
e
s
e
n
t
s

f
(
x
)

=
x

d
i
a
g
o
n
a
l

%
#

*
g
a
i
n
*
:

f
i
r
s
t

d
e
r
i
v
a
t
i
v
e

o
f

*
g
F
u
n
*
,

i
.
e
.
,

t
h
e

l
e
a
r
n
i
n
g

g
a
i
n

%
#

*
g
a
m
e
L
i
s
t
*
:

a
c
e
l
l

t
o

s
t
o
r
e

*
G
a
m
e
*

s
t
r
u
c
t
u
r
e
s

%
#

*
g
a
m
e
N
a
m
e
L
i
s
t
U
n
i
q
u
e
*
:

l
i
s
t

o
f

g
a
m
e
s

(
u
s
u
a
l
l
y

5
i
n

a
b
a
t
c
h
)

%
#

*
g
F
u
n
*
:

(
l
i
n
e
a
r
)

l
e
a
r
n
i
n
g

f
u
n
c
t
i
o
n

%
#

*
m
s
e
*
:

m
e
a
n

s
q
u
a
r
e
d

e
r
r
o
r

%
#

*
n
T
i
m
e
*
:

n
u
m
b
e
r

o
f

d
i
s
c
r
e
t
i
z
e
d

t
i
m
e

s
t
e
p
s

i
n

e
q
u
a
l

i
n
c
r
e
m
e
n
t
s

%
#

*
n
P
l
a
y
e
r
*
:

n
u
m
b
e
r

o
f

p
l
a
y
e
r
s

(
i
n

a
b
a
t
c
h
,

o
r

i
n

a
g
a
m
e
)

%
#

*
n
P
o
l
y
O
r
d
e
r
*
:

p
o
l
y
f
i
t

h
i
g
h
e
s
t

o
r
d
e
r

(
l
i
n
e
a
r

o
r

q
u
a
d
r
a
t
i
c
)
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%
#

*
n
S
a
m
p
l
e
*
:

n
u
m
b
e
r

o
f

M
o
n
t
e

C
a
r
l
o

s
a
m
p
l
e
s

%
#

*
o
p
i
D
i
s
t
*
:

o
p
i
n
i
o
n

d
i
s
t
a
n
c
e

%
#

*
p
h
a
t
*
:

(
u
s
u
a
l
l
y
)

p
o
l
y
f
i
t

p
a
r
a
m
e
t
e
r
s

%
#

*
p
l
a
y
e
r
L
i
s
t
*
:

a
c
e
l
l

t
o

s
t
o
r
e

*
P
l
a
y
e
r
*

s
t
r
u
c
t
u
r
e
s

%
#

*
p
l
a
y
e
r
N
a
m
e
L
i
s
t
U
n
i
q
u
e
*
:

l
i
s
t

o
f

t
h
e

l
a
s
t

f
i
v
e

c
h
a
r
a
c
t
e
r
s

o
f

e
a
c
h

u
n
i
q
u
e

*
u
s
e
r
*

%
#

*
p
r
o
g
r
e
s
s
*
:

p
r
o
g
r
e
s
s

t
e
m
p
o
r
a
r
y

i
n
t
e
g
e
r

%
#

*
t
a
u
*
:

e
x
p
o
n
e
n
t
i
a
l

b
e
t
a

p
r
o
f
i
l
e

p
a
r
a
m
e
t
e
r

%
#

*
t
a
u
B
e
s
t
*
:

e
s
t
i
a
m
t
e
d

o
p
t
i
m
a
l

*
t
a
u
*

b
a
s
e
d

o
n

M
C

s
i
m
u
l
a
t
i
o
n

(
t
r
u
e

b
e
s
t
)

%
#

*
t
a
u
I
d
*
:

e
s
t
i
m
a
t
e
d

*
t
a
u
*

b
a
s
e
d

o
n

e
x
p
e
r
i
m
e
n
t

d
a
t
a

%
#

*
t
i
m
e
L
i
s
t
*
:

l
i
s
t

o
f

e
q
u
a
l
l
y

s
i
z
e
d

t
i
m
e

i
n
c
r
e
m
e
n
t
s

%
#

*
s
i
g
m
a
O
m
e
g
a
*
:

s
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

o
f

t
h
e

w
h
i
t
e

n
o
i
s
e

%
#

*
s
t
e
a
d
y
S
t
a
t
e
*
:

s
t
e
a
d
y

s
t
a
t
e

v
a
l
u
e

f
o
r

t
h
e

a
u
t
o
r
e
g
r
e
s
s
i
o
n

%
#

*
v
a
r
s
*
:

o
p
t
i
m
i
z
a
t
i
o
n

s
o
l
u
t
i
o
n

%
%

F
r
e
q
u
e
n
t
l
y

u
s
e
d

s
t
r
u
c
t
u
r
e

v
a
r
i
a
b
l
e
s

%
#

*
D
a
t
a
*
:

d
a
t
a

t
a
b
l
e

v
a
r
i
a
b
l
e

%
#

*
G
a
m
e
*
:

d
a
t
a

t
a
b
l
e

f
o
r

t
h
i
s

g
a
m
e

%
#

*
G
r
o
u
p
e
d
D
a
t
a
*
:

d
a
t
a

s
u
m
m
a
r
y

t
a
b
l
e

%
#

*
P
l
a
y
e
r
*
:

d
a
t
a

t
a
b
l
e

f
o
r

t
h
i
s

p
l
a
y
e
r

%
#

*
R
e
s
u
l
t
*
:

s
t
r
u
c
t
u
r
e

f
o
r

c
o
n
t
a
i
n
i
n
g

r
e
s
u
l
t
s

%
#

*
S
e
s
s
i
o
n
*
:

d
a
t
a

o
f

a
c
u
r
r
e
n
t

*
s
e
s
s
i
o
n
*

(
e
i
t
h
e
r

*
o
l
*

o
r

*
s
r
*
)

%
#

*
S
u
m
m
a
r
y
*
:

d
a
t
a

t
a
b
l
e

f
o
r

o
u
t
p
u
t

%
#

*
T
a
b
l
e
*
:

d
a
t
a

t
a
b
l
e

f
o
r

i
n
d
i
v
i
d
u
a
l

p
l
a
y
e
r
s

o
r

g
a
m
e
s

%
%

U
p
d
a
t
e
s

h
i
s
t
o
r
y

%
*

*
1
0
/
8
/
2
0
1
6
*
:

d
o
c
u
m
e
n
t

f
o
r

m
a
n
u
s
c
r
i
p
t

%
*

*
7
/
2
8
/
2
0
1
6
*
:

r
e
v
e
r
s
e

e
n
g
i
n
e
e
r

t
h
e

M
S
E

p
l
o
t

a
n
d

s
o
l
v
e

f
o
r

g
(
x
)
,

t
h
e

%
s
i
m
u
l
a
t
i
o
n

r
e
s
u
l
t
s

a
p
p
e
a
r

t
o

b
e

c
o
n
s
i
s
t
e
n
t

w
i
t
h

e
x
p
e
r
i
m
e
n
t

r
e
s
u
l
t
s

%
*

*
7
/
2
7
/
2
0
1
6
*
:

i
m
p
u
t
e

d
a
y

1
d
a
t
a

w
i
t
h

x
=

2
0
0
0

-
t
h
e
t
a

%
*

*
7
/
2
4
/
2
0
1
6
*
:

a
r
e
v
i
s
e
d

m
e
a
n
V
a
l
u
e

t
h
a
t

a
l
s
o

c
o
m
p
u
t
e
s

t
h
e

A
R

f
o
r

m
e
a
n

x

%
w
i
t
h
o
u
t

s
q
u
a
r
e

%
*

*
7
/
1
4
/
2
0
1
6
*
:

u
s
e
d

x
P
r
e
v
^
2

a
n
d

x
C
u
r
r
^
2

t
o

f
i
t

a
s
e
c
o
n
d

o
r
d
e
r

p
o
l
y
n
o
m
i
a
l
,

%
t
h
e

r
e
s
u
l
t

a
p
p
e
a
r
s

t
o

m
a
t
c
h

t
h
e

M
S
E

r
e
s
u
l
t

%
*

*
7
/
8
/
2
0
1
6
*
:

r
e
c
o
n
s
t
r
u
c
t
e
d

x
a
n
d

u
d
a
t
a

b
a
s
e
d

o
n

x
P
r
e
v

a
n
d

u
P
r
e
v
,

a
d
d
e
d

%
p
r
i
m
a
r
y

k
e
y
s

t
o

t
h
e

m
a
s
t
e
r

d
a
t
a

t
a
b
l
e

%
*

*
7
/
7
/
2
0
1
6
*
:

c
l
e
a
n
e
d

u
p

a
f
e
w

s
c
r
i
p
t
s
,

a
d
d
e
d

*
s
c
r
i
p
t
_
b
e
t
a
P
r
o
f
i
l
e
*

t
h
a
t

%
i
s

s
i
m
i
l
a
r

t
o

o
u
r

p
r
e
v
i
o
u
s

a
t
t
e
m
p
t

i
n

E
x
c
e
l

(
e
x
c
e
p
t

t
h
a
t

w
e

d
o
n
’
t

u
s
e

%
t
h
e

u
n
s
u
p
e
r
v
i
s
e
d

a
l
g
o
r
i
t
h
m

t
h
i
s

t
i
m
e
)
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D
.2

S
cr

ip
t

“
m

e
a
n

V
a
lu

e
.m

”

%
S
c
r
i
p
t

f
o
r

t
h
e

t
i
m
e

p
r
o
g
r
e
s
s
i
o
n

o
f

m
e
a
n

s
q
u
a
r
e
d

e
r
r
o
r
s

%
L
a
s
t

u
p
d
a
t
e
d
:

1
0
/
8
/
2
0
1
6

c
l
e
a
r
;

c
l
c
;

l
o
a
d

a
l
l
_
d
a
t
a
_
t
a
b
l
e

i
m
p
o
r
t

p
k
g
.
*

%
%

S
c
r
i
p
t

p
a
r
a
m
e
t
e
r
s

b
a
t
c
h
K
e
y

=
’
B
a
s
i
c
’
;

n
T
i
m
e

=
3
0
;

n
P
o
l
y
O
r
d
e
r

=
1
;

%
p
o
l
y
f
i
t

o
r
d
e
r

t
i
m
e
L
i
s
t

=
l
i
n
s
p
a
c
e
(
0
,
2
4
0
,
n
T
i
m
e
)
’
;

%
%

Q
u
e
r
y

D
a
t
a

=
D
a
t
a
T
a
b
l
e
(
s
t
r
c
m
p
(
D
a
t
a
T
a
b
l
e
.
b
a
t
c
h
,

b
a
t
c
h
K
e
y
)
,

:
)
;

g
a
m
e
N
a
m
e
L
i
s
t
U
n
i
q
u
e

=
u
n
i
q
u
e
(
D
a
t
a
.
g
a
m
e
N
a
m
e
)
;

n
G
a
m
e

=
n
u
m
e
l
(
g
a
m
e
N
a
m
e
L
i
s
t
U
n
i
q
u
e
)
;

n
P
l
a
y
e
r
T
o
t
a
l

=
n
u
m
e
l
(
u
n
i
q
u
e
(
D
a
t
a
.
p
l
a
y
e
r
N
a
m
e
)
)
;

s
e
s
s
i
o
n
L
i
s
t

=
{
’
O
l
’

’
A
’
;
’
S
r
’

’
B
’
}
;

%
%

T
a
b
l
e

R
e
s
u
l
t
.
O
l
.
M
s
e
.
d
a
t
a

=
z
e
r
o
s
(
n
T
i
m
e
,

n
G
a
m
e
)
;

R
e
s
u
l
t
.
S
r

=
R
e
s
u
l
t
.
O
l
;

R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d

=
[
]
;

%
a
l
l

d
a
t
a

d
i
g
i
t
i
z
e
d

i
n
t
o

n
T
i
m
e

s
a
m
p
l
e
s

R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d

=
[
]
;

S
u
m
m
a
r
y

=
t
a
b
l
e
(
)
;

g
a
m
e
L
i
s
t

=
c
e
l
l
(
1
,

n
G
a
m
e
)
;

%
%

C
o
m
p
u
t
a
t
i
o
n

p
r
o
g
r
e
s
s

=
0
;
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d
i
a
g
o
n
a
l
P
o
l
y

=
z
e
r
o
s
(
1
,

n
P
o
l
y
O
r
d
e
r

+
1
)
;

d
i
a
g
o
n
a
l
P
o
l
y
(
e
n
d

-
1
)

=
1
;

%
g
a
m
e

1
t
o

5

h
1
1

=
f
i
g
u
r
e
(
1
1
)
;

c
l
f
;

h
o
l
d

o
n

h
1
2

=
f
i
g
u
r
e
(
1
2
)
;

c
l
f
;

h
o
l
d

o
n

f
o
r

i
=

1
:
n
G
a
m
e

G
a
m
e

=
s
t
r
u
c
t
(
)
;

G
a
m
e
.
n
a
m
e

=
g
a
m
e
N
a
m
e
L
i
s
t
U
n
i
q
u
e
(
i
)
;

G
a
m
e
.
D
a
t
a

=
D
a
t
a
(
s
t
r
c
m
p
(
D
a
t
a
.
g
a
m
e
N
a
m
e
,

G
a
m
e
.
n
a
m
e
)
,

:
)
;

p
l
a
y
e
r
N
a
m
e
L
i
s
t
U
n
i
q
u
e

=
u
n
i
q
u
e
(
G
a
m
e
.
D
a
t
a
.
p
l
a
y
e
r
N
a
m
e
)
;

n
P
l
a
y
e
r

=
n
u
m
e
l
(
p
l
a
y
e
r
N
a
m
e
L
i
s
t
U
n
i
q
u
e

)
;

G
a
m
e
.
p
l
a
y
e
r
L
i
s
t

=
c
e
l
l
(
1
,

n
P
l
a
y
e
r
)
;

G
a
m
e
.
O
l
.
S
e
.
d
a
t
a

=
[
]
;

G
a
m
e
.
O
l
.
S
e
.
m
e
a
n

=
[
]
;

G
a
m
e
.
S
r

=
G
a
m
e
.
O
l
;

G
a
m
e
.
O
l
.
n
D
a
t
a

=
h
e
i
g
h
t
(
G
a
m
e
.
D
a
t
a
(
s
t
r
c
m
p
(
G
a
m
e
.
D
a
t
a
.
s
e
s
s
i
o
n
,

’
A
’
)
,

:
)
)
;

G
a
m
e
.
S
r
.
n
D
a
t
a

=
h
e
i
g
h
t
(
G
a
m
e
.
D
a
t
a
(
s
t
r
c
m
p
(
G
a
m
e
.
D
a
t
a
.
s
e
s
s
i
o
n
,

’
B
’
)
,

:
)
)
;

%
p
l
a
y
e
r

1
t
o

n
P
l
a
y
e
r

f
o
r

j
=

1
:
n
P
l
a
y
e
r

p
r
o
g
r
e
s
s

=
p
r
o
g
r
e
s
s

+
1
;

p
r
o
g
r
e
s
s
P
e
r
c
e
n
t

=
p
r
o
g
r
e
s
s

/
n
P
l
a
y
e
r
T
o
t
a
l

*
1
0
0

P
l
a
y
e
r

=
s
t
r
u
c
t
(
)
;

P
l
a
y
e
r
.
n
a
m
e

=
p
l
a
y
e
r
N
a
m
e
L
i
s
t
U
n
i
q
u
e
(
j
)
;

P
l
a
y
e
r
.
D
a
t
a

=
G
a
m
e
.
D
a
t
a
(
s
t
r
c
m
p
(
G
a
m
e
.
D
a
t
a
.
p
l
a
y
e
r
N
a
m
e
,

P
l
a
y
e
r
.
n
a
m
e
)
,

:
)
;

%
s
e
s
s
i
o
n

A
t
o

B

f
o
r

k
=

1
:
2
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s
e
s
s
i
o
n
N
a
m
e

=
s
e
s
s
i
o
n
L
i
s
t
(
k
,
1
)
;

%
s
e
s
s
i
o
n

O
l
/
S
r

s
e
s
s
i
o
n
L
e
t
t
e
r

=
s
e
s
s
i
o
n
L
i
s
t
(
k
,
2
)
;

%
s
e
s
s
i
o
n

A
/
B

S
e
s
s
i
o
n

=
s
t
r
u
c
t
(
)
;

S
e
s
s
i
o
n
.
D
a
t
a

=
P
l
a
y
e
r
.
D
a
t
a
(
s
t
r
c
m
p
(
P
l
a
y
e
r
.
D
a
t
a
.
s
e
s
s
i
o
n
,

s
e
s
s
i
o
n
L
e
t
t
e
r
)
,

:
)
;

S
e
s
s
i
o
n
.
s
i
z
e

=
h
e
i
g
h
t
(
S
e
s
s
i
o
n
.
D
a
t
a
)
;

i
f

S
e
s
s
i
o
n
.
s
i
z
e

>
=

1

i
f

k
=
=

1

f
i
g
u
r
e
(
1
1
)

p
l
o
t
(
S
e
s
s
i
o
n
.
D
a
t
a
.
t
i
m
e
,

S
e
s
s
i
o
n
.
D
a
t
a
.
x
,

’
:
’
)

R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d

=
[
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d
,

d
i
g
i
t
i
z
e
(
S
e
s
s
i
o
n
.
D
a
t
a
.
t
i
m
e
,

S
e
s
s
i
o
n
.
D
a
t
a
.
x
,

t
i
m
e
L
i
s
t
)
]
;

e
l
s
e

f
i
g
u
r
e
(
1
2
)

p
l
o
t
(
S
e
s
s
i
o
n
.
D
a
t
a
.
t
i
m
e
,

S
e
s
s
i
o
n
.
D
a
t
a
.
x
,

’
:
’
)

R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d

=
[
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d
,

d
i
g
i
t
i
z
e
(
S
e
s
s
i
o
n
.
D
a
t
a
.
t
i
m
e
,

S
e
s
s
i
o
n
.
D
a
t
a
.
x
,

t
i
m
e
L
i
s
t
)
]
;

e
n
d

S
e
s
s
i
o
n
.
s
e
L
i
s
t

=
d
i
g
i
t
i
z
e
(
S
e
s
s
i
o
n
.
D
a
t
a
.
t
i
m
e
,

S
e
s
s
i
o
n
.
D
a
t
a
.
x

.
^

2
,

t
i
m
e
L
i
s
t
)
;

P
l
a
y
e
r
.
(
s
e
s
s
i
o
n
N
a
m
e
{
1
}
)

=
S
e
s
s
i
o
n
;

G
a
m
e
.
(
s
e
s
s
i
o
n
N
a
m
e
{
1
}
)
.
S
e
.
d
a
t
a

=
[
G
a
m
e
.
(
s
e
s
s
i
o
n
N
a
m
e
{
1
}
)
.
S
e
.
d
a
t
a
,

S
e
s
s
i
o
n
.
s
e
L
i
s
t
]
;

e
n
d

e
n
d

G
a
m
e
.
p
l
a
y
e
r
L
i
s
t
{
j
}

=
P
l
a
y
e
r
;

e
n
d

G
a
m
e
.
O
l
.
S
e
.
m
e
a
n

=
m
e
a
n
(
G
a
m
e
.
O
l
.
S
e
.
d
a
t
a
,

2
)
;

G
a
m
e
.
S
r
.
S
e
.
m
e
a
n

=
m
e
a
n
(
G
a
m
e
.
S
r
.
S
e
.
d
a
t
a
,

2
)
;

G
a
m
e
.
T
a
b
l
e

=
t
a
b
l
e
(
)
;

G
a
m
e
.
T
a
b
l
e
.
g
a
m
e
N
a
m
e

=
G
a
m
e
.
n
a
m
e
;
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G
a
m
e
.
T
a
b
l
e
.
n
V
a
l
i
d
P
l
a
y
e
r

=
[
s
i
z
e
(
G
a
m
e
.
O
l
.
S
e
.
d
a
t
a
,

2
)
,

s
i
z
e
(
G
a
m
e
.
S
r
.
S
e
.
d
a
t
a
,

2
)
]
;

G
a
m
e
.
T
a
b
l
e
.
n
T
i
m
e

=
[
G
a
m
e
.
O
l
.
n
D
a
t
a
,

G
a
m
e
.
S
r
.
n
D
a
t
a
]

.
/

G
a
m
e
.
T
a
b
l
e
.
n
V
a
l
i
d
P
l
a
y
e
r
;

%
a
u
t
o
r
e
g
r
e
s
s
i
v
e

f
i
t
t
i
n
g

p
h
a
t
(
1
,

:
)

=
p
o
l
y
f
i
t
(
G
a
m
e
.
O
l
.
S
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

G
a
m
e
.
O
l
.
S
e
.
m
e
a
n
(
2
:
e
n
d
)
,

n
P
o
l
y
O
r
d
e
r
)
;

i
f

n
P
o
l
y
O
r
d
e
r

>
1

G
a
m
e
.
T
a
b
l
e
.
a
2
(
1
)

=
p
h
a
t
(
1
,

e
n
d

-
2
)
;

e
l
s
e

G
a
m
e
.
T
a
b
l
e
.
a
2
(
1
)

=
0
;

e
n
d

G
a
m
e
.
T
a
b
l
e
.
a
1
(
1
)

=
p
h
a
t
(
1
,

e
n
d

-
1
)
;

G
a
m
e
.
T
a
b
l
e
.
a
0
(
1
)

=
p
h
a
t
(
1
,

e
n
d
)
;

G
a
m
e
.
T
a
b
l
e
.
s
t
e
a
d
y
S
t
a
t
e
(
1
)

=
p
o
l
y
v
a
l
A
r
I
n
f
(
p
h
a
t
(
1
,

:
)
)
;

G
a
m
e
.
T
a
b
l
e
.
r
s
q
(
1
)

=
r
s
q
(
p
h
a
t
(
1
,

:
)
,

G
a
m
e
.
O
l
.
S
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

G
a
m
e
.
O
l
.
S
e
.
m
e
a
n
(
2
:
e
n
d
)
)
;

p
h
a
t
(
2
,

:
)

=
p
o
l
y
f
i
t
(
G
a
m
e
.
S
r
.
S
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

G
a
m
e
.
S
r
.
S
e
.
m
e
a
n
(
2
:
e
n
d
)
,

n
P
o
l
y
O
r
d
e
r
)
;

i
f

n
P
o
l
y
O
r
d
e
r

>
1

G
a
m
e
.
T
a
b
l
e
.
a
2
(
2
)

=
p
h
a
t
(
2
,

e
n
d

-
2
)

;

e
l
s
e

G
a
m
e
.
T
a
b
l
e
.
a
2
(
2
)

=
0
;

e
n
d

G
a
m
e
.
T
a
b
l
e
.
a
1
(
2
)

=
p
h
a
t
(
2
,

e
n
d

-
1
)
;

G
a
m
e
.
T
a
b
l
e
.
a
0
(
2
)

=
p
h
a
t
(
2
,

e
n
d
)
;

G
a
m
e
.
T
a
b
l
e
.
s
t
e
a
d
y
S
t
a
t
e
(
2
)

=
p
o
l
y
v
a
l
A
r
I
n
f
(
p
h
a
t
(
2
,

:
)
)
;

G
a
m
e
.
T
a
b
l
e
.
r
s
q
(
2
)

=
r
s
q
(
p
h
a
t
(
2
,

:
)
,

G
a
m
e
.
S
r
.
S
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

G
a
m
e
.
S
r
.
S
e
.
m
e
a
n
(
2
:
e
n
d
)
)
;

g
a
m
e
L
i
s
t
{
i
}

=
G
a
m
e
;

S
u
m
m
a
r
y

=
[
S
u
m
m
a
r
y
;

G
a
m
e
.
T
a
b
l
e
]
;

R
e
s
u
l
t
.
O
l
.
M
s
e
.
d
a
t
a
(
:
,

i
)

=
G
a
m
e
.
O
l
.
S
e
.
m
e
a
n
;

R
e
s
u
l
t
.
S
r
.
M
s
e
.
d
a
t
a
(
:
,

i
)

=
G
a
m
e
.
S
r
.
S
e
.
m
e
a
n
;

e
n
d

f
i
g
u
r
e
(
1
1
)
;

l
1
1

=
e
r
r
o
r
b
a
r
(
t
i
m
e
L
i
s
t
,

m
e
a
n
(
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d
,

2
)
,

s
t
d
(
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d
,

0
,

2
)

/
s
q
r
t
(
s
i
z
e
(
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d
,

2
)
)
,

’
b
*
-
’
)
;

f
i
g
u
r
e
(
1
2
)
;

l
1
2

=
e
r
r
o
r
b
a
r
(
t
i
m
e
L
i
s
t
,

m
e
a
n
(
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d
,

2
)
,

s
t
d
(
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d
,

0
,

2
)

/
s
q
r
t
(
s
i
z
e
(
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d
,

2
)
)
,

’
r
x
-
’
)
;
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%
l
e
g
e
n
d
(
l
1
1
,

’
A
v
e
r
a
g
e
’
)

%
l
e
g
e
n
d
(
l
1
2
,

’
A
v
e
r
a
g
e
’
)

R
e
s
u
l
t
.
O
l
.
t
i
m
e

=
t
i
m
e
L
i
s
t
;

R
e
s
u
l
t
.
S
r
.
t
i
m
e

=
t
i
m
e
L
i
s
t
;

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n

=
m
e
a
n
(
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d

.
^

2
,

2
)
;

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n

=
m
e
a
n
(
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d

.
^

2
,

2
)
;

R
e
s
u
l
t
.
O
l
.
M
s
e
.
s
e
m

=
s
t
d
(
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d

.
^

2
,

0
,

2
)

/
s
q
r
t
(
s
i
z
e
(
R
e
s
u
l
t
.
O
l
.
x
D
i
g
i
t
i
z
e
d
,

2
)
)
;

R
e
s
u
l
t
.
S
r
.
M
s
e
.
s
e
m

=
s
t
d
(
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d

.
^

2
,

0
,

2
)

/
s
q
r
t
(
s
i
z
e
(
R
e
s
u
l
t
.
S
r
.
x
D
i
g
i
t
i
z
e
d
,

2
)
)
;

G
a
m
e

=
s
t
r
u
c
t
(
)
;

G
a
m
e
.
T
a
b
l
e

=
t
a
b
l
e
(
)
;

G
a
m
e
.
T
a
b
l
e
.
g
a
m
e
N
a
m
e

=
’
A
v
e
r
a
g
e
’
;

x
q

=
(
0
:
n
T
i
m
e

-
1
)
’
;

p
h
a
t
(
1
,

:
)

=
p
o
l
y
f
i
t
(
R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
(
2
:
e
n
d
)
,

n
P
o
l
y
O
r
d
e
r
)
;

i
f

n
P
o
l
y
O
r
d
e
r

>
1

G
a
m
e
.
T
a
b
l
e
.
a
2
(
1
)

=
p
h
a
t
(
1
,

e
n
d

-
2
)
;

e
l
s
e

G
a
m
e
.
T
a
b
l
e
.
a
2
(
1
)

=
0
;

e
n
d

G
a
m
e
.
T
a
b
l
e
.
a
1
(
1
)

=
p
h
a
t
(
1
,

e
n
d

-
1
)
;

G
a
m
e
.
T
a
b
l
e
.
a
0
(
1
)

=
p
h
a
t
(
1
,

e
n
d
)
;

G
a
m
e
.
T
a
b
l
e
.
s
t
e
a
d
y
S
t
a
t
e
(
1
)

=
p
o
l
y
v
a
l
A
r
I
n
f
(
p
h
a
t
(
1
,

:
)
)
;

G
a
m
e
.
T
a
b
l
e
.
r
s
q
(
1
)

=
r
s
q
(
p
h
a
t
(
1
,

:
)
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
(
2
:
e
n
d
)
)
;

v
q
1

=
p
o
l
y
v
a
l
A
r
(
p
h
a
t
(
1
,

:
)
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
(
1
)
,

n
T
i
m
e
)
;

l
e
g
e
n
d
T
e
x
t
1

=
[
’
M
S
E
^
+

=
’
,
.
.
.

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
a
2
(
1
)
,

2
)
,

’
M
S
E
^
2

+
’
,
.
.
.

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
a
1
(
1
)
,

2
)
,

’
M
S
E

+
’
,
.
.
.

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
a
0
(
1
)
,

2
)
,
.
.
.

’
(
r
^
2

=
’
,

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
r
s
q
(
1
)
,

2
)
,

’
)
’
]
;

p
h
a
t
(
2
,

:
)

=
p
o
l
y
f
i
t
(
R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
(
2
:
e
n
d
)
,

n
P
o
l
y
O
r
d
e
r
)
;

i
f

n
P
o
l
y
O
r
d
e
r

>
1

G
a
m
e
.
T
a
b
l
e
.
a
2
(
2
)

=
p
h
a
t
(
2
,

e
n
d

-
2
)

;

e
l
s
e

G
a
m
e
.
T
a
b
l
e
.
a
2
(
2
)

=
0
;

e
n
d
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G
a
m
e
.
T
a
b
l
e
.
a
1
(
2
)

=
p
h
a
t
(
2
,

e
n
d

-
1
)
;

G
a
m
e
.
T
a
b
l
e
.
a
0
(
2
)

=
p
h
a
t
(
2
,

e
n
d
)
;

G
a
m
e
.
T
a
b
l
e
.
s
t
e
a
d
y
S
t
a
t
e
(
2
)

=
p
o
l
y
v
a
l
A
r
I
n
f
(
p
h
a
t
(
2
,

:
)
)
;

G
a
m
e
.
T
a
b
l
e
.
r
s
q
(
2
)

=
r
s
q
(
p
h
a
t
(
2
,

:
)
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
(
1
:
e
n
d
-
1
)
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
(
2
:
e
n
d
)
)
;

v
q
2

=
p
o
l
y
v
a
l
A
r
(
p
h
a
t
(
2
,

:
)
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
(
1
)
,

n
T
i
m
e
)
;

l
e
g
e
n
d
T
e
x
t
2

=
[
’
M
S
E
^
+

=
’
,
.
.
.

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
a
2
(
2
)
,

2
)
,

’
M
S
E
^
2

+
’
,
.
.
.

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
a
1
(
2
)
,

2
)
,

’
M
S
E

+
’
,
.
.
.

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
a
0
(
2
)
,

2
)
,
.
.
.

’
(
r
^
2

=
’
,

n
u
m
2
s
t
r
(
G
a
m
e
.
T
a
b
l
e
.
r
s
q
(
1
)
,

2
)
,

’
)
’
]

G
a
m
e
.
T
a
b
l
e
.
n
V
a
l
i
d
P
l
a
y
e
r

=
m
e
a
n
(
S
u
m
m
a
r
y
.
n
V
a
l
i
d
P
l
a
y
e
r
)
;

G
a
m
e
.
T
a
b
l
e
.
n
T
i
m
e

=
m
e
a
n
(
S
u
m
m
a
r
y
.
n
T
i
m
e
)
;

S
u
m
m
a
r
y

=
[
S
u
m
m
a
r
y
;

G
a
m
e
.
T
a
b
l
e
]
;

%
%

O
u
t
p
u
t

S
u
m
m
a
r
y

f
i
g
u
r
e
(
1
1
)
;

x
l
i
m
(
[
-
1

2
5
0
]
)

%
t
i
t
l
e
(
[
’
b
a
t
c
h
K
e
y

=
’
,
b
a
t
c
h
K
e
y
,
’
,

s
e
s
s
i
o
n

=
A
,

a
n
d

n
T
i
m
e

=
’
,
n
u
m
2
s
t
r
(
n
T
i
m
e
)
]
)

x
l
a
b
e
l
(
’
T
i
m
e

(
s
e
c
o
n
d
)
’
)

y
l
a
b
e
l
(
’
D
e
c
i
s
i
o
n

e
r
r
o
r
’
)

h
o
l
d

o
f
f

f
i
g
u
r
e
(
1
2
)
;

x
l
i
m
(
[
-
1

2
5
0
]
)

%
t
i
t
l
e
(
[
’
b
a
t
c
h
K
e
y

=
’
,
b
a
t
c
h
K
e
y
,
’
,

s
e
s
s
i
o
n

=
B
,

a
n
d

n
T
i
m
e

=
’
,
n
u
m
2
s
t
r
(
n
T
i
m
e
)
]
)

x
l
a
b
e
l
(
’
T
i
m
e

(
s
e
c
o
n
d
)
’
)

y
l
a
b
e
l
(
’
D
e
c
i
s
i
o
n

e
r
r
o
r
’
)

h
o
l
d

o
f
f

%
h
1
3

=
f
i
g
u
r
e
(
1
3
)
;

%
c
l
f

%
h
o
l
d

o
n

%
e
r
r
o
r
b
a
r
(
R
e
s
u
l
t
.
O
l
.
t
i
m
e
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
s
e
m
,
’
b
*
’
)

%
p
l
o
t
(
R
e
s
u
l
t
.
O
l
.
t
i
m
e
,

v
q
1
,

’
b
-
-
’
)
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%
e
r
r
o
r
b
a
r
(
R
e
s
u
l
t
.
S
r
.
t
i
m
e
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
s
e
m
,
’
r
x
’
)

%
p
l
o
t
(
R
e
s
u
l
t
.
S
r
.
t
i
m
e
,

v
q
2
,

’
r
-
.
’
)

%
l
e
g
e
n
d
(
’
O
p
e
n

l
o
o
p
’
,

l
e
g
e
n
d
T
e
x
t
1
,

’
S
o
f
t

r
e
g
u
l
a
t
i
o
n
’
,

l
e
g
e
n
d
T
e
x
t
2
)

%
x
l
i
m
(
[
-
1

2
5
0
]
)

%
x
l
a
b
e
l
(
’
T
i
m
e

(
s
e
c
o
n
d
)
’
)

%
y
l
a
b
e
l
(
’
M
S
E
’
)

%
t
i
t
l
e
(
[
’
b
a
t
c
h
K
e
y

=
’
,
b
a
t
c
h
K
e
y
,
’

a
n
d

n
T
i
m
e

=
’
,
n
u
m
2
s
t
r
(
n
T
i
m
e
)
]
)

%
h
o
l
d

o
f
f

% %
h
1
4

=
f
i
g
u
r
e
(
1
4
)
;

%
c
l
f

%
h
o
l
d

o
n

%
p
l
o
t
(
R
e
s
u
l
t
.
O
l
.
t
i
m
e
,

v
q
1
,

’
b
-
-
’
)

%
p
l
o
t
(
R
e
s
u
l
t
.
S
r
.
t
i
m
e
,

v
q
2
,

’
r
-
.
’
)

%
l
e
g
e
n
d
(
[
’
O
p
e
n

l
o
o
p
:

’
,

l
e
g
e
n
d
T
e
x
t
1
]
,

[
’
S
o
f
t

r
e
g
u
l
a
t
i
o
n
:

’
,

l
e
g
e
n
d
T
e
x
t
2
]
)

%
x
l
i
m
(
[
-
1

2
5
0
]
)

%
x
l
a
b
e
l
(
’
T
i
m
e

(
s
e
c
o
n
d
)
’
)

%
y
l
a
b
e
l
(
’
M
S
E
’
)

%
t
i
t
l
e
(
[
’
b
a
t
c
h
K
e
y

=
’
,
b
a
t
c
h
K
e
y
,
’

a
n
d

n
T
i
m
e

=
’
,
n
u
m
2
s
t
r
(
n
T
i
m
e
)
]
)

%
h
o
l
d

o
f
f

m
s
e
M
a
t
r
i
x
.
O
l

=
[
R
e
s
u
l
t
.
O
l
.
M
s
e
.
d
a
t
a
,

R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
]
;

m
s
e
M
a
t
r
i
x
.
S
r

=
[
R
e
s
u
l
t
.
S
r
.
M
s
e
.
d
a
t
a
,

R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
]
;

s
w
i
t
c
h

b
a
t
c
h
K
e
y

c
a
s
e

’
B
a
s
i
c
’

s
a
v
e

m
e
a
n
V
a
l
u
e
_
B
a
s
i
c

R
e
s
u
l
t

n
T
i
m
e

S
u
m
m
a
r
y

m
s
e
M
a
t
r
i
x

c
a
s
e

’
N
o
i
s
y
’

s
a
v
e

m
e
a
n
V
a
l
u
e
_
N
o
i
s
y

R
e
s
u
l
t

n
T
i
m
e

S
u
m
m
a
r
y

m
s
e
M
a
t
r
i
x

c
a
s
e

’
S
m
a
l
l
’

s
a
v
e

m
e
a
n
V
a
l
u
e
_
S
m
a
l
l

R
e
s
u
l
t

n
T
i
m
e

S
u
m
m
a
r
y

m
s
e
M
a
t
r
i
x

e
n
d

c
u
r
r
D
i
r

=
c
d
(
)
;

s
e
t
(
h
1
1
,
’
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
)
;

p
o
s

=
g
e
t
(
h
1
1
,
’
P
o
s
i
t
i
o
n
’
)
;

s
e
t
(
h
1
1
,
’
P
a
p
e
r
P
o
s
i
t
i
o
n
M
o
d
e
’
,
’
A
u
t
o
’
,
’
P
a
p
e
r
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
,
’
P
a
p
e
r
S
i
z
e
’
,
[
p
o
s
(
3
)
,

p
o
s
(
4
)
]
)

s
a
v
e
a
s
(
h
1
1
,

[
c
u
r
r
D
i
r

’
/
o
u
t
p
u
t
/
’

b
a
t
c
h
K
e
y

’
F
i
g
’

n
u
m
2
s
t
r
(
1
1
)

’
.
p
d
f
’
]
)
;
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s
e
t
(
h
1
2
,
’
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
)
;

p
o
s

=
g
e
t
(
h
1
2
,
’
P
o
s
i
t
i
o
n
’
)
;

s
e
t
(
h
1
2
,
’
P
a
p
e
r
P
o
s
i
t
i
o
n
M
o
d
e
’
,
’
A
u
t
o
’
,
’
P
a
p
e
r
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
,
’
P
a
p
e
r
S
i
z
e
’
,
[
p
o
s
(
3
)
,

p
o
s
(
4
)
]
)

s
a
v
e
a
s
(
h
1
2
,

[
c
u
r
r
D
i
r

’
/
o
u
t
p
u
t
/
’

b
a
t
c
h
K
e
y

’
F
i
g
’

n
u
m
2
s
t
r
(
1
2
)

’
.
p
d
f
’
]
)
;

%
s
e
t
(
h
1
3
,
’
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
)
;

%
p
o
s

=
g
e
t
(
h
1
3
,
’
P
o
s
i
t
i
o
n
’
)
;

%
s
e
t
(
h
1
3
,
’
P
a
p
e
r
P
o
s
i
t
i
o
n
M
o
d
e
’
,
’
A
u
t
o
’
,
’
P
a
p
e
r
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
,
’
P
a
p
e
r
S
i
z
e
’
,
[
p
o
s
(
3
)
,

p
o
s
(
4
)
]
)

%
s
a
v
e
a
s
(
h
1
3
,

[
c
u
r
r
D
i
r

’
/
o
u
t
p
u
t
/
’

b
a
t
c
h
K
e
y

’
F
i
g
’

n
u
m
2
s
t
r
(
1
3
)

’
.
p
d
f
’
]
)
;

% %
s
e
t
(
h
1
4
,
’
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
)
;

%
p
o
s

=
g
e
t
(
h
1
4
,
’
P
o
s
i
t
i
o
n
’
)
;

%
s
e
t
(
h
1
4
,
’
P
a
p
e
r
P
o
s
i
t
i
o
n
M
o
d
e
’
,
’
A
u
t
o
’
,
’
P
a
p
e
r
U
n
i
t
s
’
,
’
I
n
c
h
e
s
’
,
’
P
a
p
e
r
S
i
z
e
’
,
[
p
o
s
(
3
)
,

p
o
s
(
4
)
]
)

%
s
a
v
e
a
s
(
h
1
4
,

[
c
u
r
r
D
i
r

’
/
o
u
t
p
u
t
/
’

b
a
t
c
h
K
e
y

’
F
i
g
’

n
u
m
2
s
t
r
(
1
4
)

’
.
p
d
f
’
]
)
;

D
.3

S
cr

ip
t

“
sy

si
d

.m
”

%
s
y
s
t
e
m

I
d

a
n
d

c
o
n
t
r
o
l

%
l
a
s
t

u
p
d
a
t
e
d
:

1
0
/
8
/
1
6

c
l
e
a
r
;

c
l
c
;

i
m
p
o
r
t

p
k
g
.
*

%
%

S
c
r
i
p
t

p
a
r
a
m
e
t
e
r
s

n
S
a
m
p
l
e

=
5
e
3
;

b
a
t
c
h
K
e
y

=
’
B
a
s
i
c
’
;

r
n
g
(
’
d
e
f
a
u
l
t
’
)
;

g
F
u
n
D
o
f

=
1
;

%
g
F
u
n

d
e
g
r
e
e
s

o
f

f
r
e
e
d
o
m

(
3
:

q
u
a
d
r
a
t
i
c
,

2
:

l
i
n
e
a
r

s
l
o
p
e

+
i
n
t
e
r
c
e
p
t
,

1
:

l
i
n
e
a
r

s
l
o
p
e

o
n
l
y
)
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i
s
S
y
s
t
e
m
I
d
C
o
n
t
r
o
l

=
f
a
l
s
e
;

g
a
m
e
I
d

=
0
;

i
f

g
a
m
e
I
d

~
=

0

i
s
S
y
s
t
e
m
I
d
C
o
n
t
r
o
l

=
t
r
u
e
;

e
n
d

%
%

S
i
m
u
l
a
t
i
o
n

p
a
r
a
m
e
t
e
r
s

s
w
i
t
c
h

b
a
t
c
h
K
e
y

c
a
s
e

’
B
a
s
i
c
’

l
o
a
d

m
e
a
n
V
a
l
u
e
_
B
a
s
i
c

c
a
s
e

’
N
o
i
s
y
’

l
o
a
d

m
e
a
n
V
a
l
u
e
_
N
o
i
s
y

c
a
s
e

’
S
m
a
l
l
’

l
o
a
d

m
e
a
n
V
a
l
u
e
_
S
m
a
l
l

e
n
d

v
a
r
s
0

=
[
0

s
q
r
t
(
S
u
m
m
a
r
y
.
a
1
(
e
n
d
,

1
)
)

0
s
q
r
t
(
S
u
m
m
a
r
y
.
a
0
(
e
n
d
,

1
)
)
]
;

b
e
t
a
0

=
0
.
5
;

t
a
u
0

=
0
;

i
f

g
a
m
e
I
d

~
=

0

n
P
l
a
y
e
r

=
r
o
u
n
d
(
m
e
a
n
(
S
u
m
m
a
r
y
(
g
a
m
e
I
d
,

:
)
.
n
V
a
l
i
d
P
l
a
y
e
r
)
)
;

M
s
e
L
i
s
t
.
o
l

=
m
s
e
M
a
t
r
i
x
.
O
l
(
:
,

g
a
m
e
I
d
)
;

M
s
e
L
i
s
t
.
s
r

=
m
s
e
M
a
t
r
i
x
.
S
r
(
:
,

g
a
m
e
I
d
)
;

g
a
m
e
N
a
m
e

=
S
u
m
m
a
r
y
.
g
a
m
e
N
a
m
e
{
g
a
m
e
I
d
}
;

e
l
s
e

n
P
l
a
y
e
r

=
r
o
u
n
d
(
m
e
a
n
(
S
u
m
m
a
r
y
(
e
n
d
,

:
)
.
n
V
a
l
i
d
P
l
a
y
e
r
)
)
;

M
s
e
L
i
s
t
.
o
l

=
R
e
s
u
l
t
.
O
l
.
M
s
e
.
m
e
a
n
;

M
s
e
L
i
s
t
.
s
r

=
R
e
s
u
l
t
.
S
r
.
M
s
e
.
m
e
a
n
;

g
a
m
e
N
a
m
e

=
S
u
m
m
a
r
y
.
g
a
m
e
N
a
m
e
{
e
n
d
}
;

e
n
d

P
a
r
s
.
n
T
i
m
e

=
n
T
i
m
e
;

P
a
r
s
.
n
P
l
a
y
e
r

=
n
P
l
a
y
e
r
;

P
a
r
s
.
n
S
a
m
p
l
e

=
n
S
a
m
p
l
e
;

t
i
m
e
L
i
s
t

=
l
i
n
s
p
a
c
e
(
0
,

2
4
0
,

n
T
i
m
e
)
’
;

o
p
i
D
i
s
t
L
i
s
t

=
0
:
5
0
0
;

s
t
a
t
e
L
i
s
t

=
-
5
0
0
:
5
0
0
;
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%
%

S
y
s
t
e
m

I
d

a
n
d

c
o
n
t
r
o
l

i
f

i
s
S
y
s
t
e
m
I
d
C
o
n
t
r
o
l

O
p
t
i
o
n
s
.
M
a
x
I
t
e
r

=
3
0
;

O
p
t
i
o
n
s
.
P
l
o
t
F
c
n
s

=
{
@
o
p
t
i
m
p
l
o
t
x

@
o
p
t
i
m
p
l
o
t
f
v
a
l
}
;

d
i
s
p
(
’
v
a
r
s
.
.
.
’
)

i
f

g
F
u
n
D
o
f

=
=

1

[
v
a
r
s
,

f
v
a
l
1
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

1
-

p
k
g
.
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
o
l
,

p
k
g
.
s
y
s
v
a
l
(
[
0
,

x
(
1
)
,

0
,

x
(
2
)
]
,

0
,

0
,

P
a
r
s
)
)
,
.
.
.

[
v
a
r
s
0
(
2
)
,

v
a
r
s
0
(
e
n
d
)
]
,
.
.
.

O
p
t
i
o
n
s
)

v
a
r
s

=
[
0
,

v
a
r
s
(
1
)
,

0
,

v
a
r
s
(
e
n
d
)
]

e
l
s
e

i
f

g
F
u
n
D
o
f

=
=

2

[
v
a
r
s
,

f
v
a
l
1
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

1
-

p
k
g
.
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
o
l
,

p
k
g
.
s
y
s
v
a
l
(
[
0
,

x
]
,

0
,

0
,

P
a
r
s
)
)
,

v
a
r
s
0
(
2
:
e
n
d
)
,

O
p
t
i
o
n
s
)

v
a
r
s

=
[
0
,

v
a
r
s
]

e
l
s
e

[
v
a
r
s
,

f
v
a
l
1
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

1
-

p
k
g
.
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
o
l
,

p
k
g
.
s
y
s
v
a
l
(
x
,

0
,

0
,

P
a
r
s
)
)
,

v
a
r
s
0
,

O
p
t
i
o
n
s
)

e
n
d

e
n
d

d
i
s
p
(
’
b
e
t
a
I
d
.
.
.
’
)

[
b
e
t
a
I
d
,

f
v
a
l
2
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

1
-

p
k
g
.
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
s
r
,

p
k
g
.
s
y
s
v
a
l
(
v
a
r
s
,

x
,

0
,

P
a
r
s
)
)
,

b
e
t
a
0
,

O
p
t
i
o
n
s
)

d
i
s
p
(
’
t
a
u
I
d
.
.
.
’
)

[
t
a
u
I
d
,

f
v
a
l
3
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

1
-

p
k
g
.
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
s
r
,

p
k
g
.
s
y
s
v
a
l
(
v
a
r
s
,

n
a
n
,

x
,

P
a
r
s
)
)
,

t
a
u
0
,

O
p
t
i
o
n
s
)

d
i
s
p
(
’
b
e
t
a
R
o
b
u
s
t
.
.
.
’
)

b
e
t
a
R
o
b
u
s
t

=
f
i
n
d
B
e
t
a
B
e
s
t
(
v
a
r
s
(
e
n
d
)

^
2

/
M
s
e
L
i
s
t
.
o
l
(
1
)
,

v
a
r
s
(
2
)
,

n
T
i
m
e
,

t
r
u
e
)

d
i
s
p
(
’
b
e
t
a
D
y
n
.
.
.
’
)

[
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
D
y
n
.
r
e
s
u
l
t
,

b
e
t
a
D
y
n
L
i
s
t
,

s
t
a
t
e
M
a
t
r
i
x
]

=
s
y
s
v
a
l
(
v
a
r
s
,

n
a
n
,

n
a
n
,

P
a
r
s
)
;

d
i
s
p
(
’
b
e
t
a
B
e
s
t
.
.
.
’
)

[
b
e
t
a
B
e
s
t
,

f
v
a
l
4
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

s
u
m
(
p
k
g
.
s
y
s
v
a
l
(
v
a
r
s
,

x
,

0
,

P
a
r
s
)
)

/
s
u
m
(
M
s
e
L
i
s
t
.
o
l
)
,

b
e
t
a
0
,

O
p
t
i
o
n
s
)

d
i
s
p
(
’
t
a
u
B
e
s
t
.
.
.
’
)

[
t
a
u
B
e
s
t
,

f
v
a
l
5
]

=
f
m
i
n
s
e
a
r
c
h
(
@
(
x
)

s
u
m
(
p
k
g
.
s
y
s
v
a
l
(
v
a
r
s
,

n
a
n
,

x
,

P
a
r
s
)
)

/
s
u
m
(
M
s
e
L
i
s
t
.
o
l
)
,

t
a
u
0
,

O
p
t
i
o
n
s
)
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d
i
s
p
(
’
I
d

a
n
d

c
o
n
t
r
o
l

d
o
n
e
!
’
)

S
o
l
u
t
i
o
n
.
v
a
r
s

=
v
a
r
s
;

S
o
l
u
t
i
o
n
.
b
e
t
a
I
d

=
b
e
t
a
I
d
;

S
o
l
u
t
i
o
n
.
t
a
u
I
d

=
t
a
u
I
d
;

S
o
l
u
t
i
o
n
.
b
e
t
a
R
o
b
u
s
t

=
b
e
t
a
R
o
b
u
s
t
;

S
o
l
u
t
i
o
n
.
b
e
t
a
D
y
n
L
i
s
t

=
b
e
t
a
D
y
n
L
i
s
t
;

S
o
l
u
t
i
o
n
.
b
e
t
a
B
e
s
t

=
b
e
t
a
B
e
s
t
;

S
o
l
u
t
i
o
n
.
t
a
u
B
e
s
t

=
t
a
u
B
e
s
t
;

e
l
s
e

s
w
i
t
c
h

b
a
t
c
h
K
e
y

c
a
s
e

’
B
a
s
i
c
’

l
o
a
d

s
y
s
i
d
_
B
a
s
i
c

c
a
s
e

’
N
o
i
s
y
’

l
o
a
d

s
y
s
i
d
_
N
o
i
s
y

c
a
s
e

’
S
m
a
l
l
’

l
o
a
d

s
y
s
i
d
_
S
m
a
l
l

e
n
d

v
a
r
s

=
S
o
l
u
t
i
o
n
.
v
a
r
s
;

b
e
t
a
I
d

=
S
o
l
u
t
i
o
n
.
b
e
t
a
I
d
;

t
a
u
I
d

=
S
o
l
u
t
i
o
n
.
t
a
u
I
d
;

b
e
t
a
R
o
b
u
s
t

=
S
o
l
u
t
i
o
n
.
b
e
t
a
R
o
b
u
s
t
;

b
e
t
a
D
y
n
L
i
s
t

=
S
o
l
u
t
i
o
n
.
b
e
t
a
D
y
n
L
i
s
t
;

b
e
t
a
B
e
s
t

=
S
o
l
u
t
i
o
n
.
b
e
t
a
B
e
s
t
;

t
a
u
B
e
s
t

=
S
o
l
u
t
i
o
n
.
t
a
u
B
e
s
t
;

d
i
s
p
(
’
P
r
e
v
i
o
u
s

s
y
s
t
e
m

I
d

a
n
d

c
o
n
t
r
o
l

r
e
s
u
l
t
s

l
o
a
d
e
d
’
)

e
n
d

%
%

S
i
m
u
l
a
t
i
o
n
s

d
i
s
p
(
’
M
S
E
.
.
.
’
)

g
F
u
n

=
v
a
r
s
(
1
:
3
)
;

s
i
g
m
a
O
m
e
g
a

=
v
a
r
s
(
e
n
d
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t

=
s
y
s
v
a
l
(
v
a
r
s
,

0
,

0
,

P
a
r
s
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
s
q

=
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
o
l
,

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
l
e
g
e
n
d

=
[
’
g
(
x
)

=
’
.
.
.

n
u
m
2
s
t
r
(
g
F
u
n
(
1
)
,

2
)

’
x
^
2

+
’
.
.
.

n
u
m
2
s
t
r
(
g
F
u
n
(
2
)
,

2
)

’
x

+
’
.
.
.

n
u
m
2
s
t
r
(
g
F
u
n
(
3
)
,

2
)

’
(
’
.
.
.

’
r
^
2

=
’

n
u
m
2
s
t
r
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
s
q
,

2
)
.
.
.

’
,

\
s
i
g
m
a
_
\
o
m
e
g
a

=
’

n
u
m
2
s
t
r
(
s
i
g
m
a
O
m
e
g
a
,

2
)
.
.
.

’
,

\
s
i
g
m
a
_
\
o
m
e
g
a
^
2
/
M
S
E
(
0
)

=
’

n
u
m
2
s
t
r
(
s
i
g
m
a
O
m
e
g
a

^
2

/
M
s
e
L
i
s
t
.
o
l
(
1
)
,

2
)
.
.
.

’
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
e
s
u
l
t

=
s
y
s
v
a
l
(
v
a
r
s
,

b
e
t
a
I
d
,

0
,

P
a
r
s
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
s
q

=
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
s
r
,

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
e
s
u
l
t
)
;
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S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
a
t
i
o

=
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
e
s
u
l
t
)

/
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
l
e
g
e
n
d

=
[
’
\
b
e
t
a

=
’

n
u
m
2
s
t
r
(
b
e
t
a
I
d
,

2
)
.
.
.

’
(
r
^
2

=
’

n
u
m
2
s
t
r
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
s
q
,

2
)
,
.
.
.

’
,

’
n
u
m
2
s
t
r
(
(
1

-
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
a
t
i
o
)

*
1
0
0
,

2
)
,

’
%

r
e
d
u
c
e
d
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
e
s
u
l
t

=
s
y
s
v
a
l
(
v
a
r
s
,

n
a
n
,

t
a
u
I
d
,

P
a
r
s
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
s
q

=
r
s
q
E
m
p
i
r
i
c
a
l
(
M
s
e
L
i
s
t
.
s
r
,

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
a
t
i
o

=
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
e
s
u
l
t
)

/
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
l
e
g
e
n
d

=
[
’
\
b
e
t
a
(
d
)

=
e
x
p
(
-
’

n
u
m
2
s
t
r
(
t
a
u
I
d
,

2
)

’
d
)
’
.
.
.

’
(
r
^
2

=
’

n
u
m
2
s
t
r
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
s
q
,

2
)
,
.
.
.

’
,

’
n
u
m
2
s
t
r
(
(
1

-
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
I
d
.
r
a
t
i
o
)

*
1
0
0
,

2
)
,

’
%

r
e
d
u
c
e
d
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t
.
r
e
s
u
l
t

=
s
y
s
v
a
l
(
v
a
r
s
,

b
e
t
a
B
e
s
t
,

0
,

P
a
r
s
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t
.
r
a
t
i
o

=
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t
.
r
e
s
u
l
t
)

/
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

i
f

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t
.
r
a
t
i
o

>
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
.
r
a
t
i
o

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t

=
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
I
d
;

b
e
t
a
B
e
s
t

=
b
e
t
a
I
d
;

e
n
d

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t
.
l
e
g
e
n
d

=
[
’
\
b
e
t
a
^
\
a
s
t
_
T

=
’

n
u
m
2
s
t
r
(
b
e
t
a
B
e
s
t
,

2
)
.
.
.

’
(
’

n
u
m
2
s
t
r
(
(
1

-
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
B
e
s
t
.
r
a
t
i
o
)

*
1
0
0
,

2
)
,

’
%

r
e
d
u
c
e
d
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
R
o
b
u
s
t
.
r
e
s
u
l
t

=
s
y
s
v
a
l
(
v
a
r
s
,

b
e
t
a
R
o
b
u
s
t
,

0
,

P
a
r
s
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
R
o
b
u
s
t
.
r
a
t
i
o

=
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
R
o
b
u
s
t
.
r
e
s
u
l
t
)

/
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
R
o
b
u
s
t
.
l
e
g
e
n
d

=
[
’
\
b
e
t
a
^
\
a
s
t
_
R

=
’

n
u
m
2
s
t
r
(
b
e
t
a
R
o
b
u
s
t
,

2
)
.
.
.

’
(
’

n
u
m
2
s
t
r
(
(
1

-
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
R
o
b
u
s
t
.
r
a
t
i
o
)

*
1
0
0
,

2
)
,

’
%

r
e
d
u
c
e
d
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
B
e
s
t
.
r
e
s
u
l
t

=
s
y
s
v
a
l
(
v
a
r
s
,

n
a
n
,

t
a
u
B
e
s
t
,

P
a
r
s
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
B
e
s
t
.
r
a
t
i
o

=
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
B
e
s
t
.
r
e
s
u
l
t
)

/
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
B
e
s
t
.
l
e
g
e
n
d

=
[
’
\
b
e
t
a
^
\
a
s
t
_
T
(
d
)

=
e
x
p
(
-
’

n
u
m
2
s
t
r
(
t
a
u
B
e
s
t
,

2
)

’
d
)
’
.
.
.

’
(
’

n
u
m
2
s
t
r
(
(
1

-
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
T
a
u
B
e
s
t
.
r
a
t
i
o
)

*
1
0
0
,

2
)
,

’
%

r
e
d
u
c
e
d
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
D
y
n
.
r
a
t
i
o

=
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
D
y
n
.
r
e
s
u
l
t
)

/
s
u
m
(
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
G
F
u
n
.
r
e
s
u
l
t
)
;

S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
D
y
n
.
l
e
g
e
n
d

=
[
’
D
y
n
a
m
i
c

\
b
e
t
a
^
\
a
s
t
_
R
(
t
)

M
S
E
’
.
.
.

’
(
’

n
u
m
2
s
t
r
(
(
1

-
S
i
m
u
l
a
t
i
o
n
.
M
s
e
.
B
e
t
a
D
y
n
.
r
a
t
i
o
)

*
1
0
0
,

2
)
,

’
%

r
e
d
u
c
e
d
)
’
]
;

S
i
m
u
l
a
t
i
o
n
.
g

=
p
o
l
y
v
a
l
(
g
F
u
n
,

s
t
a
t
e
L
i
s
t
)
;

d
i
s
p
(
’
b
e
t
a
.
.
.
’
)

o
p
i
D
i
s
t
L
i
s
t
S
h
o
r
t

=
l
i
n
s
p
a
c
e
(
m
i
n
(
o
p
i
D
i
s
t
L
i
s
t
)
,

m
a
x
(
o
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