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ABSTRACT

Multi-Agent Control in Sociotechnical Systems

Yu Luo

Process control is essential in chemical engineering and has diverse applications in au-
tomation, manufacturing, scheduling, etc. In this cross-disciplinary work, we shift the
domain focus from the control of machines to the control of multiple intelligent agents. Our
goal is to improve the optimization problem-solving process, such as optimal regulation of
emerging technologies, in a multi-agent system. Achieving that improvement would have
potential value both within and outside the chemical engineering community. This work
also illustrates the possibility of applying process systems engineering techniques, especially
process control, beyond chemical plants.

It is very common to observe crowds of individuals solving similar problems with similar
information in a largely independent manner. We argue here that the crowds can become
more efficient and robust problem-solvers, by partially following the average opinion. This
observation runs counter to the widely accepted claim that the wisdom of crowds deteri-
orates with social influence. The key difference is that individuals are self-interested and
hence will reject feedbacks that do not improve their performance. We propose a multi-agent
control-theoretic methodology — soft regulation — to model the collective dynamics and
compute the degree of social influence, i.e., the level to which one accepts the population
feedback, that optimizes the problem-solving performance.

Soft regulation is a modeling language for multi-agent sociotechnical systems. The
state-space formulation captures the individual learning process (i.e., open loop dynamics)
as well as the influence of the population feedback in a straightforward manner. It can
model a diverse set of existing multi-agent dynamics. Through numerical analysis and
linear algebra, we attempt to understand the role of feedback in multi-agent collective

dynamics, thus achieving multi-agent control in sociotechnical systems.



Our analysis through mathematical proofs, simulations, and a human subject experi-
ment suggests that intelligent individuals, solving the same problem (or similar problems),
could do much better by adaptively adjusting their decisions towards the population average.
We even discover that the crowd of human subjects could self-organize into a near-optimal
setting. This discovery suggests a new coordination mechanism for enhancing individual

decision-making. Potential applications include mobile health, urban planning, and policy-

making.
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CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

Chapter 1

Multi-Agent Collective Dynamics

and Control

IMaking Crowds “Smarter”| (p. This cross-disciplinary work addresses a simple

yet important question: How could a group collectively become better problem-solvers?
How could crowds become “smarter”? The goal is to show how the answer to this question
can be obtained as derived results by modeling rigorously, through control theory, the

collective dynamics of multi-agent systems.

|Collective Intelligence| (p. @ We discuss here the collective dynamics of multi-

“wisdom

agent systems. We first distinguish our work from the popular notion of the
of crowds,” which has been studied for over a century, and introduce the concept of the
“wisdom of learners.” We then briefly review existing approaches to modeling collective

dynamics.

IMulti-Agent Control in Sociotechnical Systems| (p. This is an overview of

multi-agent control, its related work, and our contribution of incorporating it to sociotech-

nical systems. This section is a prelude to our main methodology: soft regulation.



CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

1.1 Making Crowds “Smarter”

1.1.1 Chemical Engineering Beyond Plants

Process control is indispensable to many complex engineering systems. This research dis-
cipline has evolved from the early feedback control to the modern optimal control. In
chemical engineering, for example, every syllabus of process control begins with feedback
control, i.e., adaptively changing the input of a process based on feedback from the output.
Such setup aims to steer the system towards the setpoint. Feedback control is simple, el-
egant, and usually, implementing it does not require a model. On the other hand, given a
reliable model of the process dynamics, one can then develop sophisticated control schemes
such as optimal control to achieve higher precision. In such case, the controller solves an
optimization problem by selecting the most viable path that minimizes the “cost” of oper-
ation. Regardless of its execution (i.e., feedback control, optimal control, or other types),
every process control deals with open loop and closed loop dynamics. Open loop dynamics
is the subject of process control; closed loop dynamics is the result.

The control problems or open loop dynamics we encounter in chemical engineering are
often related to chemical processes, manufacturing, scheduling, etc. In other words, they
are the control of machines. Meanwhile, complex sociotechnical systewuﬂ7 such as modern
financial systems and the Internet, are characterized by similar interdependencies and a
large number of units one often observes in a chemical plant. In fact, we showed in our
previous work that one can model the “flowsheet” of a financial system (Fig. p-13) and
capture the complex dynamics in a signed digraph (Fig. p- 13) as often applied to fault
diagnosis in a chemical plant [Bookstaber et al., 2015]. It is tempting to wonder, what
would be the process control in sociotechnical systems beyond chemical plants?

Control in sociotechnical systems has several implications for chemical engineering. One
example we will introduce in Chapter [2| (p. describes the problem of optimal regulation

and policy. Quite often, the regulator or policymaker is as uncertain about an emerging

L Sociotechnical systems: an approach to complex organizational work design that recognizes the interac-
tion between people and technology in workplaces. The term also refers to the interaction between society’s

complex infrastructures and human behavior
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technology or business as other individuals in the system. Controversial topics such as
fracking and carbon pricing have generated heated debates in recent years both within and
outside the chemical engineering community [Gold, 2014; Bloomberg and Krupp, 2014].
How can we strike the right balance between over- and under-regulation? Is there a way
to accelerate the process of optimizing the regulation of emerging technologies and busi-
nesses? These are among the many questions we attempt to answer in this work. They
represent the control of intelligent agents. Consequently, there are new challenges such as
self-interest, rationality, and incentives beyond process control in engineering systems. We
will address those challenges both through theory (Chapter [3| p. as well as simulations
and experiments (Chapter [d] p. [51)).

Feedback control has long been recognized as an essential feature of complex adaptive
systems where causes and effects are intertwined. There have been several attempts over
the years to understand the dynamics of social systems in terms of feedback control (see,
e.g., [Powers, 1973; (Carver and Scheier, 1982; Trochim et al., 2006; Leveson, 2011]). In
addition, Venkatasubramanian and Zhang developed a seven-layer hierarchical framework
TeCSMART (Fig. p- ) to describe complex sociotechnical systems from a unifying
process systems engineering (PSE ﬂ perspective [Venkatasubramanian and Zhang, 2016).

TeCSMART provides a structural framework by describing complex systems in terms
of feedback loops and their ensembles. Techniques in PSE are readily transferrable to
the modeling, design, and control of systems beyond chemical plants. The hierarchy con-
sists of seven layers: process, plant, company, market, local government /regulatory agency,
(federal) government, and society. The seven layers can be further divided into small sub-
systems, e.g., the subsystem of processes and plant, companies and market, as well as
regulators and government. Our focus in this work is primarily on those subsystems that

consist of multiple decision makers.

2 Process systems engineering (PSE): study of the design, control, scheduling, optimization, and risk

management of large-scale chemical systems
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CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

1.1.2 Can We Make Crowds “Smarter”?

Often, a large cmwcﬂ of decision makers are attempting to solve the same problem with
similar information in a largely independent manner. For the common man, these problems
could be as simple as choosing the most appropriate product or improving personal fitness.
For a crowd of local governments or nations, the problem could be optimal taxation to
promote economic growth. The process of identifying the appropriate decision involves an
expensive trial and error process to explore the entire space. Minimizing this search cost by
coordinating and improving this collective leammgﬂ process, by making crowds “smarter,”
has immense societal value.

Optimization typically involves balancing trade-offs. Consider the problem of optimal
taxation. Under-taxation results in insufficient funds towards public services and govern-
ment functioning, whereas over-taxation drives businesses to places where taxes are lower,
leading once again to a deficit for the state. Local governments face similar dilemma when
setting expenditure to balance between under- and over-spending. The main question we
address in this work is whether one can accelerate convergence by making the crowd of
fifty states “smarter.” Even a small improvement in the convergence rate, magnified by the
scale of the problem, could potentially save the nation billions of dollars while improving

the overall welfare.

Definition 1.1 (problem statement). A crowd consists of n intelligent individuals (or
agents). KEach agent attempts to solve a unique optimization problem of which the so-
lution is identically 6*. The time series z;(t) denotes the learning process of the i-th agent.
The time series of the column vector z(t) = [z1(t),...,2,(t)]T denotes the crowd’s collec-
tive learning process, of which the performance is measured by the mean squared error
MSE(t) = 1 [|z(t) — 6*1])3. The objective — making the crowd “smarter” — is to acceler-
ate convergence of the collective learning process, i.e., the decay of MSE(t) or the speed of

convergence of z(t) towards 6*1.

3Crowd: n intelligent individuals (people, organizations, governments, etc.) who attempt to solve the
same optimization problem (e.g., finding the ideal diet that maximizes one’s health and fitness)
4 Learning: an optimization process that begins with an initial guess of the solution and gradually con-

verges to the solution in probability
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Definition 1.2 (action z;(t)). z;(t) denotes the i-th agent’s action at time ¢. Actions
can be decisions, strategies, policies, etc., that would generate certain payoff, reward, or

(evolutionary) fitness, which the i-th agent tries to maximize.

Definition 1.3 (solution #*). 6* denotes the optimal action (or solution) that would gen-

erate the maximum expected payoff, reward, or (evolutionary) fitness.

Assumption 1.4 (convergence of learning). Each learning process converges to the solution
in probability (regardless of the initial condition):

lim E[z(#)]2(0)] = 6*. (1.1)

t—o00

1.1.3 Existing Solutions

Using a coordinated crowd or swarm to solve complex problems is well studied in the
literature. Particle swarm optimization (PSO) [Kennedy, 2010] is a widely adopted global
optimization technique that uses a crowd of simple solvers to explore the fitness landscape
of a problem. This swarm of PSO solvers mimics the swarming behavior observed in nature,
e.g., among bees, ants, and birds. Each PSO solver revises its search direction based on
its past performance and the position of the solver that observes the highest fitness. The
PSO technique is very effective in solving deterministic problems that have multiple local
extrema. However, PSO or any other parallel computing methodology cannot help us in
improving the rate for learning in the optimal regulation and policy setting. The critical
difference is that in the PSO setting each solver observes the same function; however, the
reward or fitness of an individual in a crowd is typically subjective, private, very noisy, and
often, not even numerically expressible. On the other hand, the inputs, i.e., actions, are
often numerically well defined. We exploit this feature to develop a learning algorithm.
Wisdom of crowds describes the phenomenon — first introduced as voz populi in 1907
by Francis Galton |Galton, 1907b], then rediscovered and popularized by James Surowiecki
a century later [Surowiecki, 2005 — that the average opinion of a crowd is remarkably
close to the otherwise unknown truth although the opinions of individuals in the crowd are
very erroneous. This phenomenon partially justifies the efficiency of polling and prediction

markets, where a surveyor can gather an accurate estimate of an unknown variable by



CHAPTER 1. MULTI-AGENT COLLECTIVE DYNAMICS AND CONTROL

averaging over multiple independent and informed guesses. Explanations [De Condorcet,
2014; Bergman and Donner, 1964; Simons, 2004] for the success of the wisdom of crowds
assume that individuals’ estimates are unbiased and independently distributed [Surowiecki,
2005; |Kittur and Kraut, 2008; |(Goldstone and Gureckis, 2009; |Alvarez, 2011; Lorenz et al.,
2011} |Quinn and Bederson, 2011]. Social influence renders the wisdom of crowds ineffective
[Goldstone and Gureckis, 2009; [Sumpter and Pratt, 2009; Lorenz et al., 2011], and in order
to guarantee accuracy, interactions among the respondents should be discouraged. Since
individuals make decisions solely based on their prior knowledge and expertise, some even
suggest vox expertorum, instead of vox populi, to be a more suitable name |Galton, 1907a;

Conradt and Roper, 2005; |Goldstone and Gureckis, 2009].

Definition 1.5 (degree of social influence ;). The degree of social influence (f;) is the
percent adjustment of the i-th agent’s action z;(t) towards another agent’s action z;(t).

The adjusted action becomes

2t +1) = (1= B)s(t) + Bz (0): (1.2)

In the absence of social influence (i.e., 5; = 0 or open loop), each agent sticks to its own
action. If 8; = 100%, the i-th agent simply copies the j-th agent’s action and overrides its

Oow1l.

Increasingly, today individuals are getting all their information from highly inter-connected
online social networks; thus, truly independent opinions are becoming rare. The existing lit-
erature suggests that voxr populi should not be effective. And yet, online networks with very
high degree of social interaction appear to be able to harness information effectively to ben-
efit the individuals. We are relying on polling evermore, for selecting movies, restaurants,
books, shows, etc. The polls appear to be working in identifying good options, even though
the votes are highly correlated. The crowd benefits from these interactions by converging
to optimum faster. Social influence here improves, rather than undermines, the collective
learning process. How does one reconcile with the previous results on the degradation of
the impact of voz populi in the presence of social influence? Is there an optimal degree of

social influence for a learning crowd? This is the question we address in this study.
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1.2 Collective Intelligence

1.2.1 Wisdom of Experts v. Wisdom of Learners

Multi-agent collective dynamics is a prevalent phenomenon in nature. Examples include
self-assembly, coupled oscillators, cell migration, quorum sensing, birds flocking, ant colony,
etc., which all share something in common: Individuals interact with the crowds that
they belong to and benefit from such interactions. The wisdom of crowds, a century-old
discovery in statistics, offers an intuitive explanation: The average opinion of a crowd can be
remarkably close to the otherwise unknown truth even though the opinions of individuals in
the crowd are very erroneous. We briefly introduced the wisdom of crowds in Section [I.1.3]
(p- 7).

This concept, also known as vox populi, was introduced in 1907 by the British poly-
math Francis Galton |Galton, 1907b]. He observed an ox weighing contest where 800
contestants tried to best guess the weight of an ox. After analyzing 787 valid ballots,
Galton discovered that the average guess was merely one pound off of the ox’s true weight.
Thus, the average opinion was strikingly close to the otherwise unknown truth. A cen-
tury later, James Surowiecki popularized the same concept in his book The Wisdom of
Crowds [Surowiecki, 2005] and re-started a discussion among experts in decision theory, busi-
ness, and ecology [Sumpter, 2006; Kittur and Kraut, 2008; Goldstone and Gureckis, 2009;
Krause et al., 2010; Huizingh, 2011}; Lorenz et al., 2011; Quinn and Bederson, 2011].

In Surowiecki’s book, the examples are even more remarkable, among which, the Chal-
lenger explosion story is, to say the least, quite intriguing. Within minutes after the news
broke out on January 28, 1986, the stock market started to respond to this tragic event:
Investors began selling the stocks of the four major contractors who had participated in the
Challenger mission. Their stock prices plummeted. Among the four, Morton Thiokol — the
actual manufacturer of the O-ring seals — was hit the hardest: By the end of the day, its
stock price was down nearly 12 percent while the other three rebounded to only 3 percent
down. In hindsight, this distinction was not surprising. For it was revealed six months later
that the O-ring seals indeed became less resilient and created gaps that allowed the gases

to leak out [Challenger and Rogers, 1986]. In other words, Morton Thiokol, among the four
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contractors, bore the direct blame for the disaster. But how could the investors knew that
collectively?

Here is Surowiecki’s explanation:

[It’s] plausible that once you aggregated all the bits of information about the
explosion that all the traders in the market had in their heads that day, it added
up to something close to the truth ... [Even] if none of the traders was sure that

Thiokol was responsible, collectively they were certain it was.

There are several problems with this explanation. As a journalist, James Surowiecki focused
primarily on describing the stories and offering qualitative insights. While the insights are as
persuasive as folk wisdom, they lack the mathematical vigor. Similar views are often quoted
to support the notion that the stock market is forward looking. However, we all know that
the stock market can and often do overreact to news instead of truly reflecting the values
and sustainability of market as Paul Samuelson famously mocked such notion [Samuelson,

1966/
The stock market has forecast nine of the last five recessions.

The central limit theorem, Condorcet’s jury theorem [De Condorcet, 2014], and many
wrongs principle [Simons, 2004], all provide partial explanations for the success of the
wisdom of crowds under the assumption that the individuals’ estimates are unbiased and
independently distributed. By averaging out the error (or white noise), one can estimate the
mean with greater confidence. The contestants in Galton’s game and the investors in the
Challenger aftermath all possessed certain knowledge despite the great uncertainty: The
contestants were butchers and farmers who weighed livestock for a living |Galton, 1907a).
The investors devoted constant attention to Thiokol’s performance. In other words, they
formed knowledgeable crowds with each individual decision drawn from a distribution. As
long as their knowledge was not systematically biased, the average would be a distribution
more narrowly peaked around the true value. In some sense, since individuals make decisions
solely based on their prior knowledge and expertise, the term voz expertorum (or wisdom of
experts) instead of vox populi might be more suitable to describe the two examples |Galton,

1907a).

10
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In nature, however, such prior knowledge-based wisdom of crowds is less common. Flock-
ing birds, for example, are not a knowledgeable crowd. The environment (weather, predators,
food, etc.) changes constantly. The uncertainty makes any prior knowledge of migration
route useless. In other words, there isn’t a static true value like the ox’s weight or the
O-ring malfunction, but a dynamic solution that adapts to the changing environment. So
instead, the birds gather local information, follow their closest neighbors, and revise direc-
tions constantly. They are the learning crowds. In his famous paper “Flocks, herds and
schools: a distributed behavioral model,” Craig Reynolds enumerated three principles for

the flocking phenomenon [Reynolds, 1987]:
1. Collision avoidance: avoid collisions with nearby flockmates
2. Velocity matching: attempt to match velocity with nearby flockmates
3. Flock centering: attempt to stay close to nearby flockmates

Cell migration, an orchestrated movement of cells in particular directions to specific loca-
tions, is another example of nature’s wisdom of crowds. Similar to birds flocking, cells also
only have access to local information and rely on interactions to function properly as a
group. So why does the stock market overreact to news while birds and cells benefit from
interactions? What is the fundamental difference between these two types of crowds?

To make the comparison less confusing, let’s call the phenomenon described by Galton
and Surowiecki the “wisdom of experts,” and call what we observe in nature the “wisdom of
learners.” Note that experts in this context refer to individuals who voice informed opinions
based on prior knowledge, regardless of the quality of such knowledge (this is a generalization
of the conventional definition of an expert, i.e., a person who has a comprehensive and
authoritative knowledge of or skill in a particular area). Learners, on the other hand,
refer to individuals who revise and attempt to improve their decisions or opinions based on
information they receive via rational trial and error.

Even though both the wisdom of experts and the wisdom of learners fall under the um-
brella of the wisdom of crowds, they have a few key differences. For instance, interaction is
missing from the wisdom of experts, often done so purposely to avoid correlated opinions.

Researchers tend to agree that social influence poses a big threat to the wisdom [Lorenz et

11
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al., 2011], and in order to guarantee accuracy, interactions among the respondents should
be discouraged. The reasoning is simple: Interactions violate the independency and thus
undermine such wisdom. The consequence is a much undesired situation called group-
thinkﬂ [Sunstein and Hastie, 2014]. So why is the wisdom of learners seemingly immune to
this deterioration from interactions?

There are two possible explanations: First, interactions prove advantageous because
self-interested learners are likely to filter feedback they deem unhelpful and only make use
of the one that improves their performance. This self-interest based filtering appears to
be key to the success of the wisdom of learners in a correlated environment. Another key
difference between learners and experts is that learners are both respondents who generate
new information, and surveyors who poll their social networks to improve their decisions.
For each decision, the learner receives either a gain or a loss associated with it. On the
other hand, for the wisdom of experts, information flows in only one direction, i.e., from
the respondents to the surveyor. Decisions are only of importance to the surveyor.

Second, the influence of others’ opinions is not as prominent as a decision factor for
learners as it is for experts. Literature |[Lorenz et al., 2011; [Krishnamurthy and Poor,
2014] suggests that, given the chance of revising one’s decision after observing others’,
the individual tends to flock towards a consensus that might be off from the true value.
For learning crowds, however, the learners receive information not only from the crowd’s

feedback but also by learning on their own.

1.2.2 Applications of Collective Intelligence

The wisdom of crowds sees its applications in many modern settings. Crowdsourcing,
for example, loosely adapts such concept. It combines the words crowd and outsourcing,
meaning to obtain (information or input into a particular task or project) by enlisting the
services of a number of people. In today’s world where individuals are members of highly
connected social networks, one would expect the collective wisdom to be ineffective under

the traditional wisdom of crowds setting (or as defined earlier, wisdom of experts). And

5 Groupthink: a psychological phenomenon that occurs within a group of people in which the desire for

harmony or conformity in the group results in an irrational or dysfunctional decision-making outcome
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yet, we are relying on polling evermore, for selecting movies, restaurants, books, shows,
etc. Such polls appear to be working in identifying good options even though votes are
correlated.

We are witnessing the coexistence of three types of crowdsourcing. The first type,
primarily supported by the wisdom of experts, is polling before the Internet (and social
networks) era. The surveyor (pollster) outsources his/her problem of finding certain true
value by collecting the average opinion among independent individuals. It is always a one-
shot action. Neither interaction nor revision of opinion is allowed so that independency is
preserved. Galton’s vox populi, literally voice of the people, laid down the scientific foun-
dations for democratic voting and other polling measures. As Galton himself commented

after observing the ox weighing contest:

The result seems more creditable to the trustworthiness of a democratic judg-

ment than might have been expected.

Independency critically determines the polling accuracy. For a very long time, pollsters
collect opinions by calling landline numbers randomly from the yellow page. This helps elim-
inate the demographic bias and preserve the independency. As landline is becoming obsolete,
such polling method also faces dire challenges. The response rate has dropped from 40% in
the 1990s [Craighill and Clement, 2014} to 9% in 2012 [Edwards-Levy and Jackson, 2016].
Even though communication has shifted from telephones to the Internet, such transition is
not happening soon for polling because it is very difficult to find an unbiased demography.
Each website has its own dominant demographics. There are, thankfully, ongoing efforts
to correct such bias. For instance, in “Forecasting elections with non-representative polls,”
researchers managed to process a highly biased opinion poll (game console XBOX users,
predominantly young males) and predict the 2012 election statistics [Wang et al., 2015].

The second type of crowdsourcing lies between the wisdom of experts and the wisdom
of learners. Whoever uses the Internet should be familiar with this type of crowdsourcing.
They are the online review systems. Similar to the first type, an online rating also takes the
average opinion and the users usually only participate once. Feedback is the key difference
here: The average is publicly available to the new participants. Let’s take the online

restaurant review Yelp as an example. The truth in this case would be the quality of
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restaurants being reviewed by Yelp’s users. Except for the very first few customers, people
who review a restaurant are not making independent decisions because they are aware
of others’ opinions. In this case, the customers are both the respondents who provide
information and the surveyors who poll opinions to better make decisions.

There are debates over whether the online review system is able to identify the best
options. One criticism towards the reviews is that the final rating is sensitive to the initial
conditions [Salganik et al., 2006; Krishnamurthy and Poor, 2014]. That is to say, if an
otherwise fine product receives a few negative reviews at the very beginning, it might
prevent customers from giving it a second chance and discovering its true value. There are
also a growing number of studies on the effect of social influence. The general consensus
is that social influence undermines the wisdom of crowds |Goldstone and Gureckis, 2009;
Sumpter and Pratt, 2009; Lorenz et al., 2011].

We are now transitioning towards the third type of crowdsourcing that reflects the
massive collective intelligence of learners. The wisdom of learners, as introduced in the last
section, is not an entirely new concept because it is essentially nature’s wisdom of crowds:
Individuals interact with one another to survive and proliferate. Neither is this concept new
for the human society: Team collaboration, research conferences, think tank, etc., are all
“offline” examples of such collective intelligence. As the society shifts towards the highly
connected social networks, where people can easily and quickly get updated information on
a variety of topics in almost real-time, the wisdom of learners is experiencing a paradigm
shift from centralization to distributed networks, from small or moderate scales to massive
scales, and from delayed information exchange to real-time updates.

For the third type of crowdsourcing, there are two driving forces of the crowd dynamics.
At the individual level, each tries to maximize his/her own utility by exploring and learning
from the past. Let’s call it the learning force. At the social network level, one’s decision
also influences others and consensus might eventually be reached. Let’s call it the consensus
force. The two forces are the key of success for the third type of crowdsourcing.

On one hand, the learning force moves the crowd towards the right direction. Such force
is fueled by the individual self-interest. Every trial and error is associated with either a

gain or a loss. It is of the individual’s interest to move along the gradient and climbs the
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fitness landscape. The force is therefore the gradient signal one receives by interfacing with
the problem itself. However, because of one’s limited learning capacity, this gradient signal
might be noisy or inaccurate. Just like the individual opinions from the wisdom of experts,
the individual learning forces might not be enough to discover the truth.

On the other hand, the consensus force induces convergence. Consensus forming is
a well-studied subject in the multi-agent research community. Recent efforts have been
focused on how network structures affect the process [Tanner, 1984], distributed consensus
protocols [Nedic and Ozdaglar, 2009|, and continuum modeling [Perthame and Tadmor,
1991]. Despite receiving much more attention than the learning force does, consensus alone
cannot drive the system to the truth: A purely consensus-based dynamics does converge,
but not necessarily to the optimum. That is why the wisdom of experts does not work well
under social influence. Each individual opinion is based on prior knowledge. The revision
is determined by the social influence instead of learning. Consensus forms at the cost of

inaccuracy.

1.2.3 Modeling Collective Dynamics

Multi-agent collective dynamics describes the emergent system-wide behavior from the inter-
actions of multiple self-organizing agents. We discussed in Section (p. E[) two different
forms of collective dynamics in terms of the wisdom of learners in nature and the wisdom
of experts in statistics. Such study of collective dynamics envelopes a wide spectrum of
research fields. We offer here a glimpse of this topic and do not attempt to exhaust the
list. There are three broad schools of research: collective dynamics of physical phenomena,
nature inspired science and engineering, and multi-agent control.

The physical angle of collective dynamics has existed long before the terms “collec-
tive dynamics” or “multi-agent systems” were coined. In physics, the study of molecular
phenomena has been an ongoing effort to bridge molecules to macroscopic behaviors such
as thermodynamics, heat and mass transfer, and hydrodynamics. Statistical mechanics,
for example, connects thermodynamics to the statistical nature of molecules. The dis-
covery of entropy being a logarithmic function of microscopic rearrangement of states,

i.e., S = klogW |Boltzmann, 1877], was one of the many efforts to convince the world
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that tiny particles really exist.

Such connection has fascinated not only physicists but also people from outside the
physics discipline, or even outside the scientific research world. Think about it: Dumb
molecules bump into one another in a seemingly random way. A thermodynamics system,
however, exhibits orderly behaviors from such chaotic molecular phenomena. What if the
molecules are replaced with goal-driven and intelligent individuals? What would be the
statistical mechanics for a social system?

Economics is one of the first fields that well embrace such connection. Economists are
constantly simulating macroeconomic phenomena with physics in mind. At its extreme
form, such mimicking results in a brand new subject called econophysic:ﬁ One of the
topics in econophysics that has attracted much attention recently is income distribution
and income inequality, as summarized by our earlier work [Venkatasubramanian et al.,

2015]:

The increasing inequality in income and wealth in recent years, and the associ-
ated excessive pay packages of CEOs in the U.S. and elsewhere, is of growing
concern among policy makers as well as the common person. However, there
seems to be no satisfactory answer, in conventional economic theories and mod-
els, to the fundamental questions of what kind of income distribution we ought
to see, at least under ideal conditions, in a free market environment, and whether

this distribution is fair.

Many attempted to answer such question [Champernowne, 1953 |(Champernowne and Cow-
ell, 1998; Piketty et al., 2014; Saez and Zucman, 2014]. We pursued a bottom-up approach
in the paper “How much inequality in income is fair? A microeconomic game theoretic
perspective” [Venkatasubramanian et al., 2015]. Instead of forcing the narrative into any
particular physics model, we started with a game-theoretic formulation where each individ-
ual has his/her own utility function based on his/her income as well as interactions with

other individuals. Game theory is a native economics branch that is both mathematical

S Econophysics: an interdisciplinary research field, applying theories and methods originally developed by
physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes

and nonlinear dynamics
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and takes behaviors into consideration. Population games and evolutionary dynamics |[Sand-
holm, 2010], a recent addition to game theory, is an ideal framework for the income dis-
tribution problem: It is suitable for a large number of agents and instead of the one-shot
setting in classical game theory, this new framework integrates utility-maximizing agents
into a dynamical system. The connection between population games and thermodynamics
is difficult to ignore: Entropy is a measure of fairness in a social system with goal-driven
and self-interested agents. We also proposed a new measure of income distribution as an
alternative to the widely used yet controversial Gini index. By examining income data of
twelve countries from 1920 to 2012 under the new measure, our analysis suggests that the
Scandinavian countries have managed to get close to the ideal distribution for the bottom
99% of the population, while the U.S. and U.K. remain less fair at the other extreme.

Fluid dynamics, like thermodynamics, also inspires new endeavors in social science.
The opinion (or consensus) forming is an important subject of collective dynamics. A
general approach is the so-called environmental averaging [Motsch and Tadmor, 2014]. The
idea is simple: Each individual updates his/her own opinion by selectively averaging others’
opinions. As the number of individuals approaches infinity, this multi-agent system becomes
a continuum thereby the name social hydrodynamics |[Tadmor, 2015]. Many findings of
opinion forming are about how network structure and the weights of averaging affects the
consensus forming. For instance, the subdominant eigenvalue of the adjacency matrix of
the social network determines how fast a consensus forms [Tanner, 1984].

Biology and ecology also inspire numerous pursuits in multi-agent collective dynam-
ics. For instance, particle swarm optimization [Kennedy, 2010] (mentioned in Section m
p- borrows the concept of swarm intelligence (i.e., flocking) from nature, and applies
it to solving complex optimization problems. A typical swarm optimization problem has
multiple local extrema in the “fitness landscape,” (a fitness landscape visualizes the prob-
lem by mapping the state-space to the corresponding fitness, i.e., utility and payoff). A
large number of elementary solvers form a swarm. Each solver, while exploring the fitness
landscape, also occasionally follows the “leader,” (the solver that has the best solution so
far). This wisdom of learners type of optimization appears to be capable of finding a global

optimum even when the fitness landscape is rugged with many local extrema.
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Lastly, multi-agent control is the control engineering community’s approach to collective
dynamics. Controlling a large number of agents faces many challenges. The optimization
problem becomes exponentially harder, and eventually intractable, as the number of agents
increases. A centralized control is simply too costly to implement. There has been grow-
ing efforts in distributed control that breaks down the global optimization into localized
problems that individual controllers can solve by themselves. A practical challenge is to im-
plement distributed mechanisms that can reach consensus steadily and timely [Olfati-Saber
and Murray, 2002; |Olfati-Saber et al., 2007]. That consensus can then be incorporated into
local optimizations.

What about the control of multiple self-interested agents in sociotechnical systems? We
now have the tools to model the behavior of intelligent agents (econophysics, population
games, opinion dynamics, etc.); we also have the tools to control multiple agents (control
theory, mechanism design, etc.). It is only natural to step forward and begin the quest
from understanding complex collective dynamics to coordinating multiple self-interested
agents. In the next section, we will discuss how to approach this problem and our modeling

philosophy.

1.3 Multi-Agent Control in Sociotechnical Systems

Multi-agent control in sociotechnical systems (or “MACISTS”) is the study of dynamical
systems with multiple intelligent individuals and how the collective behavior is “controlled”
by feedback. MACISTS here refers to a broader definition of control than that of process
control, where the input can be manipulated directly (e.g., opening of the fuel valve of
an automobile). In sociotechnical systems, such manipulation has to be subtler and more
indirect. Often, there might involve “nudges” that carefully steer crowds towards certain
desired behaviors [Thaler and Sunstein, 2008]. We hope to approach MACISTS in a general
and mathematical manner such that we can generate unambiguous and quantitative con-
clusions. Our motivation can be perfectly summarized by Geoffrey West from the Santa Fe
Institute, when he commented on the mathematical regularities underlying both biological

and social systems [West, 2012]:
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Are there any principles at work? Can we put this into a mathematical frame-
work? Can we make it a quantitative and predictive science of these phenomena?
Part of that is purely for the understanding and for the satisfaction of under-
standing. And the last part is, this is the great hope, in some ways can it actually
be of practical importance and have a significant impact on the wellbeing of my

fellow human beings.

The first step in MACISTS, like other concepts in control theory, is the study of open
loop dynamics. We can always model the behavior of a specific agent ¢ (i = 1,...,n) as if

it follows the evolution below:
Zz'(t + 1) = Ez(t) = gz(zz(t)) + wi(t). (1.3)

The mapping g; (later we will formally define it as the “learning function”) encodes the i-th
agent’s rational respond to its current action z;(t), while the zero-mean random variable
wi(t) indicates a white noise that affects the action z;(¢) this agent takes. Should g; satisfy
certain regularity criteria (such as the existence of a unique and attracting fixed point 6*,
Assumption p- , agent ¢ would in probability converge to an equilibrium state and
thus reach its goal (without external feedback).

The goal for any rational individual is always to maximize certain utility or payoff:

yi(t) = fi(zi(t)) + vi(t). (1.4)

y; is the output variable and subject to another white noise v;(t). An acceptable g;, therefore,
is supposed to have its fixed point #* that maximizes f;.
Then we introduce interactions among agents via selective averaging mediated by the

degree of social influence g;, i.e.,

Zi(t+1) = Z sij[(1— Bi)Zi(t) + Biz;(1)],
J (1.5)
=(1-75)z(t) + B Z $ij2j(t).

J
We will formally introduce the social network parameter s;; in the next chapter. For the i-

th agent, s;; always sums up to 1. In the simplest situation, s;; = 1/n. The above equation
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indicates that the i-th agent adjusts itself partially towards the wisdom of crowds by a
factor of ;. Based on the actual social network s;;, this agent then finalizes its decision by
aggregating the effects from all the signals it receives. Note that unless otherwise stated,
we use y . instead of )" | to indicate the summation over n agents for simplicity.

The state-space representation used here is the standard language of modern control
theory. Open loop dynamics encodes how the state of a system evolves without the in-
terference of control as depicted in , while closed loop dynamics considers feedback,
e.g., . Nonetheless, open and closed loop systems are relative and scale-dependent. For
instance, in the control of an intelligent agent, the open loop dynamics reflects the agent’s
own decision process that navigates from current state to the next in the absence of social
influence. Such decision process, if examined under microscope, actually consists of closed
loop neurological and physiological feedback processes.

The input is a variable that one can change hoping to steer the system towards a desired
state. In industrial process control such as temperature control and velocity control, the
input is usually designed by heuristics (see “PID control” [Seborg et al., 2010]) and the
open loop dynamics is often modeled as a black box. Tuning the controller parameters
(proportional gain, integral gain, derivative gain, etc.) brings certain optimality to the
control system. It requires trials and errors to obtain a suitable tuning. Biological control
(e.g., blood sugar control) falls under this category. The controller gains are primarily de-
termined by one’s genes and it takes generations of evolution to “optimize.” Here the degree
of social influence 5; is the input in MACISTS. Note that we avoid using the alternative
terminology “manipulated variable” for the input 3; because in a sociotechnical setting,
we cannot directly manipulate the social influence. But we still hope that, by understand-
ing how social influence affects the collective dynamics, we can implement MACISTS in
significant and practical ways.

The output determines how good or bad the state is. In modern optimal control, the
input is determined in such a way that the trajectory of the system dynamics is optimized:
The total payoff is maximized (or the total cost is minimized) and the final state is inside
an acceptable region (see “model predictive control” [Rawlings and Mayne, 2009]). To find

an optimal control, one solves an optimization problem. On rare occasions, the system
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is simple enough that a closed-form analytical solution is possible by transforming the
optimization problem into a Bellman equation or its variations (such as Hamilton-Jacobi-
Bellman equation). Surprisingly, such technique was first discovered in the 18th century as
the “principle of least action” and later widely applied to the fields of theory of relativity
and quantum mechanics. The term “action” is in fact the cost of a particular trajectory
of a system, and every physical law follows the trajectory that minimizes such action. It
is beyond the scope of this work but always worth thinking: What is the fundamental
connection between physical laws in nature and the very artificial optimal control? Are
cities and other man-made systems following the same principles as biological and ecological
systems?

We choose the state-space representation to model multi-agent control because its for-
mulation matches the multi-agent collective dynamics. As mentioned earlier, the open loop
dynamics is how agents decide their next-moves internally. The input reflects the interac-
tion among agents and the social influence from the crowd. The output is the utility an
individual receives by exploring the state-space. Also, by formulating the problem this way,
we can apply existing theories in optimal control to collective dynamics.

Selective averaging via 3; and s;; is what makes MACISTS unique by bringing self-
interest and intelligence into the picture. Since agents can selectively choose between their
own internal decision and the crowd’s opinion, such control is softer than conventional pro-
cess control and robotics, as the titular name soft regulation suggests. The social influence
parameter 3; can be any real number, but we are particularly interested in the case where
Bi € [0,100%)] because such range also defines a spectrum of behaviors from being totally
independent (3; = 0) to blindly copying others (3; = 100%).

Selective averaging is a common practice. In particle swarm optimization (mentioned
in Section p. m and Section p. [15)), velocity of each particle is a convex combi-
nation between its own and the leader. In statistics, the James-Stein estimator |[Efron and
Morris, 1977] dominates the more intuitive least squares approach by shrinking the least
squares estimator towards a global mean. What is surprising about this estimator is that
even if the variables are unrelated to each other (e.g., baseball player’s batting statistics

and demographics of a country), such shrinking can still provide marginally better estima-
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tion considering the accuracy of all variables combined. This is also known as the Stein’s
paradox. In opinion dynamics, researchers also discover that on average people tend to com-
promise between their own opinions and others’ by a factor of 30% (i.e., 3; = 30%) |Lim
and O’Connor, 1995; Harvey and Fischer, 1997 [Yaniv and Kleinberger, 2000; [Yaniv, 2004;
Soll and Larrick, 2009).

In the context of the wisdom of learners, selective averaging provides a self-interest
based filtering. Such filtering balances the two driving forces, i.e., the learning force and
the consensus force (p. . If selective averaging is leaning towards learning (with a small
Bi), the dynamics is close to open loop. On the other hand, if the selective averaging is
leaning towards consensus (with a large f3;), there is more sharing and less exploration.
Neither extreme might be ideal. How f; affects the overall system-level dynamics and what

the optimal §; is are among the central questions of this work.
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Chapter 2

Soft Regulation: A Multi-Agent
Systems Toolset

[Etymology: Hard Regulation v. Soft Regulation| (p. Soft regulation is

our approach to multi-agent control in sociotechnical systems (or MACISTS). We introduce

here the origin of the name “soft regulation” to contrast the often punitive mandates known
as hard regulation. Soft regulation was first discussed in [Luo et al., 2016| as an alternative

to regulating emerging industries.

[Taxonomy: A Multi-Agent Collective Dynamics and Control Framework|

(p. In this section, we formally introduce soft regulation as a toolset for multi-agent
systems research: It can model multi-agent collective dynamics for a variety of situations;
it is a control-theoretic framework that quantitatively describes the collective intelligence; it
is also an implementable algorithm that could make crowds “smarter.” We generalize the
soft regulation model from [Luo et al., 2016] into a state-space control formula. We also

elaborate on the possible topics that this model is suitable for.
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2.1 Etymology: Hard Regulation v. Soft Regulation

2.1.1 Regulating Emerging Industries

Regulating emerging technologies is challenging, and often controversial; requiring a careful
trade-off between stability, security, performance, and cost in an wuncertain environment.
Recent examples of emerging technologies include hydraulic fracturing, carbon sequestra-
tion, deep sea mining, geoengineering, and personalized medicine. Hydraulic fracturing,
for example, has grown to be a transforming force in the petrochemical industries in re-
cent years with its proponents and opponents debating passionately about its benefits and
costs to the society with the attendant regulatory challenges [Bloomberg and Krupp, 2014}
Gold, 2014].

The regulator’s (or central planner’s) dilemma with regard to emerging technologies is to
strike the appropriate balance in regulation. Under-regulation can result in damage to plant
personnel, surrounding communities, and the environment. Over-regulation, on the other
hand, can hamper economic growth and security. When a technology is new, the inherent
risks and benefits are not immediately obvious and only become clear over time, making
it harder for the regulatory agency to strike the correct balance in the early stages. This
uncertainty necessitates a framework that allows for a very close collaboration between the
regulatory agency and the regulated entities that have direct access to field performance,
and hence have direct knowledge of what worked and what did not.

In a typical regulatory environment involving conventional technologies, regulators issue
mandates that have to be followed by the regulated agents. The agents face fines and
other punitive consequences for non-compliance. We call this approach hard regulation.
We argue that hard regulation is not very effective for regulating emerging technologies.
Hard regulation also hinders innovation |[Krupp, 2008|. The regulation of the Internet
illustrates these issues very well. Laws like Digital Millennium Copyright Act (DMCA) and
Stop Online Piracy Act (SOPA) have been criticized [Congress, 1998; Rai, 1999; [Smith,
2011; Tribe, 2011; [Phillips, 2012], as they arguably “reduce freedom of expression and
undermine the dynamic, innovative global Internet.” In addition, while attempting to

protect intellectual property, these laws hurt computer security by inhibiting research on

24



CHAPTER 2. SOFT REGULATION: A MULTI-AGENT SYSTEMS TOOLSET

Table 2.1: Control and learning in sociotechnical systems

Control Learning

Hard feedback control, model pre- machine learning, stochas-
dictive control, hard regula- tic approximation, Kalman
tion, robot formation, laws, filter, evolutionary dynam-
etc. ics, etc.

Soft  persuasion, soft paternalism, social sensing, social learn-
peer pressure, social engi- ing, pervasive mobile com-
neering, mechanism design, puting, etc.

etc.

security related issues |[Higgins, 2014]. During the period when a new technology is still
maturing, the regulator is just as unsure as the regulated agents about the risk-benefit trade-
off, and therefore, hard regulation, through its unintended consequences, could potentially
do more harm than good. Instead of issuing potentially misdirected mandates, the regulator
and the agents should jointly participate in learning about the emerging technology and its
payoff structure. The focus of this work is on how to achieve this elusive goal through an
intellectual framework that facilitates both control and learning in sociotechnical systems.

Control and learning are essential elements in managing risk and regulating behavior
in sociotechnical systems (Table p- . In a purely technical setting, i.e., when all
the elements of the systems are machines, the common practice to maintain an efficient
and stable system is to use hard control where the entities follow strictly specified poli-
cies. Process control, robotics, etc., are all examples of hard regulation or hard control.
Especially in feedback control, the feedback is hard and has to be followed. When there
is no reliable model or a desirable setpoint available, one needs to simultaneously learn
and control the system dynamics. We call techniques, such as machine learning, stochastic
approximation, etc., hard learning techniques since they also require the entities to follow

strict instructions.
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However, in a sociotechnical system with active human participants, hard control, or
strict mandates, may not always be appropriate. Mandates can potentially do more harm
than good as we argued earlier. A more appropriate course of action would be to offer op-
tions to agents that are adopted only when they are incentive compatible. We call such ap-
proaches soft control [Han et al., 2006; |Zhang and Parkes, 2008]. Examples of this approach
include the soft paternalism approach for modifying social behavior [Thaler and Sunstein,
2003] wherein carefully designed options “nudge” people to make better decisions |Thaler
and Sunstein, 2008]; or policy teaching [Zhang and Parkes, 2008] wherein the regulator
allocates rewards in such a way that the induced action of agents maximizes the regulator’s
value. Other examples include efforts by utility companies to induce consumers to minimize
power wastage by reporting average consumption |[Brotman, 2014]; and health tracking de-
vices, e.g., Fitbit and Apple Watch, that all incorporate social nudging to motivate physical
activities. The soft control policy using peer pressure is shown to promote cooperation
in these and other settings, both in theory and in practice [Kandel and Lazear, 1992;
Aharony et al., 2011; [Mani et al., 2013; Shmueli et al., 2014].

As in the case with hard control, soft control can be used only when there is a reliable
model and a well-defined setpoint. Soft paternalism and similar social mechanisms are
effective because we understand saving energy and staying physically active are the right
things to do. What if we do not know what is best for the agents? Soft learning is a
class of learning mechanisms that appropriately incentivize agents in a social network to
aggregate important information. Examples of soft learning include social sensing and social
learning [Rendell et al., 2010; Krishnamurthy and Poor, 2014; [Shmueli et al., 2014] in the
context of real-time traffic information and online reviews (such as Yelp).

We propose soft regulation as a new regulatory paradigm that combines features of
soft control and soft learning. The regulator aggregates key system-level statistics in a
privacy-preserving [Abbe et al., 2012] manner (individuals do not need to explicitly disclose
their actions) and shares these statistics with all agents. The agents have the flexibility to
accept, reject, or partially accept the recommendations from the regulator based on their
own self interests. The recommendations are simply “nudges” [Thaler and Sunstein, 2008].

The mechanism does not interrupt the regulated entities who have direct access to field

26



CHAPTER 2. SOFT REGULATION: A MULTI-AGENT SYSTEMS TOOLSET

performance. It creates a collective learning environment for both the regulator and the
agents. Soft regulation seeks a balance between over- and under-regulation: Agents have
the freedom to rely on both individual exploration and social learning.

We expect soft regulation to be effective when the system has the following features:

1. Imperfect information: The action-utility payoff structure is poorly understood, i.e., the
data are noisy and the models are absent or incomplete. Each individual may only
possess partial information about the unknown process. Agents rely on inaccurate

measurements, approximations, or subjective evaluations to optimize.

2. Weak interaction: The agents can optimize their own actions without taking into
consideration the response of other agents, i.e., each’s utility or payoff is only a function
of the agent’s own state, and the optimal setpoint is identical among agents. A good
example of such a setting is the initial stages of a new technology; the resources being
exploited are abundant and the profits of the agents are not limited by competition
but by their ability to exploit the resource effectively. Although the reward an agent
receives while operating at a setpoint may vary, the setpoint itself, however, is likely
to be identical or at least restricted to a narrow range. The discovered setpoints (by
soft regulation or traditional methods) will later become the industry standards when
the technology matures. Another example of setting with weak or no interaction is
when humans improve their own health conditions by changing habits, medications, or
even environments. The interaction among agents is usually minimal. Although each
has his/her own unique physiological configurations, grouped by characteristics such
as age, gender, profession, etc., they are likely to exhibit common optimal setpoints

within groups.

3. Bounded rationality: Agents are autonomous and self-interested, and they always

move in a direction that locally improves utility, subject to available information.

Despite the name, soft regulation has applications beyond industrial regulation (Sec-
tion p- . The soft regulator module can be integrated in different control systems
and problem-solving scenarios (Table p. . We only analyze a specific and stylized
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Table 2.2: Soft regulation applications

Action

Utility

health behavior:

e.g., sleep habit, exercise fre-
quency, diet, etc.

operating condition:

eg., T, P, feed ratio, flow
rate, catalyst, etc.

workplace environment:

health condition

e.g., sleep quality, BMI,
etc.

yield

e.g., production rate,
ete.

productivity

e.g., indoor temperature, e.g., profitability, etc.

lighting, etc.

infrastructure planning: — efficiency

e.g., traffic light control, hos- e.g., congestion time,
pital resource, budget alloca- etc.

tion, etc.

model here to illustrate the efficacy of the mechanism. In practice, soft regulation should
be implemented and modified in a case by case manner.

The medical domain is another applicable area of soft regulation (Section p. .
Powered by mobile phones and wearables, researchers can now collect timely mass medical
data (via Apple’s ResearchKit [Apple, 2015] for example). Soft regulation is suitable in
this scenario because medical research satisfies all three features, i.e., imperfect information
(unknown relationships between patient behaviors and health conditions), weak interaction
(one patient’s condition is not affected by another’s), and bounded rationality (patients
always wish to improve their own health, however, have limited information). In addition,
thanks to the convenience of mobile devices, we expect good participation rate. A large
population size further ensures the accuracy of recommendation. Patients can optimize

their own health while contributing to medical research. Even if patients do not want to
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optimize themselves, medical researchers may implement the soft regulation module to do

that based on data collected locally.

2.1.2 A Stylized Model

We analyze a model of soft regulation that preserves the essential features discussed in the
previous section. This multi-agent system consists of one regulator and n agents. Agent
1 wants to select an action z; that maximizes the value of the real-valued and strongly
concave utility function f,(zz) over a convex compact set Z C R. We assume that although
the individual utility functions f; might be different for each agent, the solution 6* =
arg max,cyz, E[ﬁ(z)} is identical.

We also assume that the utility function fl(zl) is not explicitly known, nor is it deter-
ministic; agents cannot solve the optimization problem explicitly. In theory, by averaging
out the noise, one can obtain a more accurate mapping of the utility function. However, in
our setting of regulating emerging industries, each sample corresponds to actual utility each
agent receives; therefore, they might not have the incentive to oversample at the location
where the utility is low. The agents update individual actions using the following learning
dynamics:

Z‘(t) = gi(zi(t)) —|—wi(t), (2.1)

where g; denotes the optimization algorithm (or the “learning function” to be introduced
later in Definition p. used by the i-th agent and w;(t) denotes the noise associated
with such optimization process. In practice, g; can be any function that maps an old
action z; to a new action z;. In order to converge to the optimal 6*, the function must
satisfy regularity conditions. More specifically, g; should converge to a unique fixed point
regardless of the initial value of z; (Assumption p. . For instance, the Kiefer-Wolfowitz

stochastic gradient method is a commonly used algorithm [Kiefer et al., 1952] where

Gi(zi(t),t) = gi(2i(t), ) +wilt) = z(t) + :((? : (ﬁ-(zi(t) +e(t)) — fi(zi(t) - c(t))>. (2.2)

At time ¢, the i-th agent samples the payoff twice at the vicinity of its current action z;(t),

which is only known to the agent. The parameters a(t) and ¢(t) are known and predefined.

The agent then computes the next step according to (2.2)). This algorithm is guaranteed to
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converge in probability when
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We call a setting where an agent updates its action based on its own measurement the open
loop scenario (or asocial learning as in [Rendell et al., 2010]).

In the soft regulation setting the regulator computes a feedback recommendation wu(t).
The agents then combine wu(t) with Z;(¢) to compute a new action z;(¢t + 1) in the following

manner:

wlt+1) = hi(=(0) = (1= B (=(0) + Bou(t) = (1 B)z(t) + But),  (24)

where 3; € [0, 1] or [0,100%)] is a measure of the influence that the recommendation has on
the i-th agent (Definition p- . Action changes are relatively independent of recom-
mendation for agents with small 8 (the explorers), and action remains in the vicinity of u
for agents with large 8 (the followers).

Note that soft regulation is not an example of direct social learning as described in [Ren-
dell et al., 2010]: There is no “best agent” or “leader” to follow because the payoffs are
private information and noisy. That said, explorers do resemble the asocial innovators
and the followers resemble the copying agents in the social learning setting [Rendell et al.,
2010]. The value of 8; may be indirectly related to peer pressure [Kandel and Lazear, 1992;
Aharony et al., 2011; Mani et al., 2013; |[Shmueli et al., 2014]: The followers experience a
higher peer pressure than the explorers, and therefore, set a higher value of §;. Also note

that h; (zz) can be re-written as follows:
hi(zi) = zi + (1 = Bi)(Zi — zi) + Bi(u — z). (2.5)

The soft regulation feedback function resembles the feedback seen in bird flocks and swarm

intelligence [Kennedy, 2010].
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2.2 Taxonomy: A Multi-Agent Collective Dynamics and Con-

trol Framework

2.2.1 A General State-Space Model

The previous section offers a specific example of soft regulation that first appeared in [Luo
et al., 2016] where the term was created. We generalize the model and discuss the essential

components of soft regulation in this section.

Definition 2.1 (generalized soft regulation). Here we generalize soft regulation as a mod-

eling framework for multi-agent control in sociotechnical systems (MACISTS, Section

p. [1§)

Lt +1) = (1-Bi(t)) (gz- (z(t)) + wi(t)> + Brui(t), (2.6)
zi(t) = zi(t) — 67, (2.7)
yi(t) = fi(zi(t)) + vi(t). (2.8)

Definition 2.2 (state z;(t) of the i-th agent). The state variable z;(t) = z;(t) — 0 is the
decision error, i.e., difference between the individual decision/action z;(¢) and the solution
67 (Definition p- . As a general case here, the solutions can be different. z} = 0 thus

indicates the state where the i-th agent reaches the solution ;.

Definition 2.3 (payoff function f;(-) and noise v;(t)). fi(+) is the payoff (or utility/fitness)
function of the i-th agent. The solution x} = 0 maximizes f;(z). The realized payoft y;(t) is
disturbed by a zero-mean random variable v;(t). Note that we used f;(z;(t)) in (p. .
One can easily replace z;(t) with x;(t) using and construct a payoff function that takes
x;(t) as argument. With an abuse of notation, we retain the symbol f; to describe payoff

as a function of the state. Similar reasoning is used in Definition (p. next.

Definition 2.4 (learning function g;(-) and noise w;(t)). The learning function g; of the i-th
player encodes the process where the agent makes a decision, observes the corresponding
payoff, and then updates the state.

With an abuse of notation, we also define the learning function in terms of the state
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variable x;(t) as g;(-). The open loop time series z;(t) is given as

zi(t +1) = gi(i(t)) + wi(t). (2.9)

2

~ sampled at ¢. It represents the

w;(t) is a zero-mean random variable with variance o
impact of the error in function evaluation on the decision. Such error can be a result of noise
in measurement or external disturbance. If the learning function g; is based on evaluation

of the payoff f; (e.g., the Kiefer-Wolfowitz algorithm introduced in the last section), w;(t)

will also be correlated with v;(t).

Assumption 2.5 (regularity of the learning function). For all i € {1,...,n}, the function
g; is differentiable, z* = 0 is the unique attracting fixed point of g;, and furthermore, g; is
a contraction [Browder, 1965], i.e., [gi(z)| < 1 for all 1 <i < n and = € Z (domain Z was
defined on p. 29). The closer |g/(z)| is to 1, the slower g;(z) converges. This assumption
is motivated by the fact that all agents converge to the solution in the open loop setting

independent of the starting guess.

Definition 2.6 (learning gain g}). From mean value theorem, we can also establish that
gi(x)/x = g.(6x), where 0 < 6 < 1 and x # 0, is strictly less than 1. We define learning
gain, denoted by g. = g;(z)/z, as the amplification of decision error. We also define g/ = 0
when x = 0.

Definition 2.7 (learning spectrum g’ and its width o ). We define g’ = [§],...,3,] " as

the learning spectrum of the system. We let its standard deviation o4 = %ZZ G —-q )2

denote the width of the learning spectrum, where §’ = % > i g; is the average (or represen-

tative) learning gain.

The learning function is one of the two most important features of soft regulation (social
influence, in Definition p. [8l of course, is the other one). By defining the learning
function in this way, we bypass the complexity and specificity of how individual agents
optimize their payoffs. But rather, we only observe the stochastic convergence of the states

x; (or actions z;).

Definition 2.8 (social network S). S is an n-by-n matrix with each element represents
the weight of connection. For a completely connected social network with equal weights,

— 19971
S=111T.
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Assumption 2.9 (stochasticity of social network). S satisfies 3, s;; = 1, i.e., row sum is

1.

Definition 2.10 (soft feedback w;(t)). We denote the soft feedback as the weighted popu-

lation average:

ul(t) = Zsijzj(t), (2.10)
J

where s;; is the i-th row and j-th column of the social network S. Again, unlike feedback

in control theory, soft feedback does not have to be followed.

Definition 2.11 (condensed soft regulation given identical solution). If 67 = 6*, by sub-

tracting 0* from both LHS and RHS of (2.6]), we have the z-version of ({2.6))

zilt +1) = (1= 5i(0)) (g5 (wi(t)) +wilt) ) + Brus(0), (2.11)

where u;(t) is, with an abuse of notation, - s;jz;(t). (2.11) will be the governing equation

used for the majority of analysis in this study.

There are a few special cases of the soft feedback. For instance, if S = %11T, the
soft feedback is the wisdom of crowds feedback discussed in the last section, where u;(t) is
simply the arithmetic average of x;(t).

Lastly, social influence was defined earlier (Definition p- : B; denotes the weight

the i-th player places on the soft feedback while learning. 3; = 0 reduces the soft regulation

setting in (2.11)) to the open loop setting in (2.9)).

2.2.2 Soft Regulation as a Toolset for Multi-Agent Systems

As the title of this chapter suggests, soft regulation provides a toolset for multi-agent
systems. In Table (p-35)), we present a partial coverage of scenarios where soft regulation
could model. The list includes but is not limited to particle swarm optimization [Kennedy,
2011], James-Stein estimator [Efron and Morris, 1977], social learning [Rendell et al., 2010],
the wisdom of crowds [Galton, 1907bt Surowiecki, 2005], and collective dynamics [Perthame

and Tadmor, 1991; Motsch and Tadmor, 2014; Tadmor, 2015]. A taxonomy is also included
in Fig. (p. [36)).
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Let’s now analyze the different elements of soft regulation. First, the learning function
can be identical across all agents or different. For the simplest (i.e., linear) learning function
gi(x) = g;x, if it is identical, g; = g. In the next chapter, we will focus primarily on the
mathematical property of soft regulation under this situation (also known as the represen-
tative agent assumption in economics). Particularly, for identical linear learning function,
increasing the degree of social influence slows down the speed of convergence in a noiseless
setting.

Next, degree of social influence is the input for MACISTS (p. . It critically determines
the performance of collective learning. There always exists an optimal degree of social
influence such that the performance of collective learning is maximized. In the next chapter,
we will have an in-depth discussion about this topic.

There are many ways to generate the soft feedback. In this study, we primarily focus on
the grand average scenario where the feedback is simply the population arithmetic average
from all individuals (i.e., vox populi). In the context of collective dynamics, how such
feedback is generated can significantly affect how fast consensus is formed.

We assumed identical solution in our problem statement (Definition p. [6). We will
also briefly analyze the situation where the solutions are unique and different, and argue
that if the solutions are sufficiently close, soft regulation would still improve the collective
learning process. This has applications such as multi-product revenue management. It is
related to the Stein’s Paradox [Efron and Morris, 1977].

Lastly, the payoff function can be convex/concave or non-convex. A non-convex payoff
function would require a global optimization technique. As we discussed in the last section,
the learning function (Deﬁnition p.[31)) contains all information about optimizing payoff.
Therefore, our analysis of soft regulation does not explicitly depend on the type of payoff

function.
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Table 2.3: Examples: soft regulation as a toolset for multi-agent systems

Scenario Learning function Social influence Soft feedback Solution Payoff
Particle swarm optimization Local best [0,100%] Leader Identical ~ Non-convex
James-Stein estimator LMS estimator [0,100%)] Grand average  Different Squared error
Social learning Asocial learning {0,100%} Leader Identical ~ Non-convex
Wisdom of crowds - - Grand average  Identical -
Collective dynamics - 100% Weighted average - -
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Chapter 3

Mathematical Properties of Soft

Regulation

(p. We investigate here the convergence properties of soft regula-

tion. More specifically, we show that, in a noiseless setting, partially following the average

converges to the solution if 0 < 3; < 100%.

(p. We show here that soft regulation is also robust against bounded

noises. That is to say, the equilibrium (where every agent reaches the solution) can be

restored when the system is disturbed by bounded noises.

(p- How much better can soft regulation improve the performance

of collective problem-solving? We simplify the system such that §; =  is identical across
agents. Doing so enables us to look closely into how a representative degree of social

influence affects the efficiency of soft regulation.

[3.4)[Optimal Degree of Social Influence| (p. What is the theoretically maximum

efficiency at which a crowd can solve a problem via soft regulation? We use control theory

and linear algebra to answer this question.

[3.5|[Different Solutions| (p. We show here that even if the solution to each agent’s

problem is different, soft regulation can still improve the collective problem solving process.
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3.1 Convergence

3.1.1 Mathematical Preliminaries

We first present here nearly verbatim a few important theorems from Peter J. Olver’s Nu-

merical Analysis Lecture Notes |Olver, 2008]. The notes are well written and useful for

deriving our convergence result in Section (p. [40).

Definition 3.1 (linear iterative system). A linear iterative system takes the form
x(t+1) = Jx(t). (3.1)

The coefficient matrix J has size n x n. For t = 1,2,3,..., the solution x(¢) is uniquely

determined by the initial conditions x(0).

Theorem 3.2 (eigenvalue iteration). If the coefficient matriz J is complete, then the general

solution to the linear iterative system (3.1) is given by
x(t) = Zci)\ﬁvi, (3.2)
i

where vi,...,Vvy, are the linearly independent eigenvectors and Ai,...,\, are the corre-
sponding eigenvalues of J. The coefficients c1, ..., c, are arbitrary scalars and are uniquely

prescribed by the initial conditions x(0).

Proof. Since we already know that (3.2) is a solution to the system for arbitrary ¢y, ..., ¢y,
it suffices to show that we can match any prescribed initial conditions. To this end, we need

to solve the linear system

x(0) = Z Civi. (3.3)

Completeness of J implies that its eigenvectors form a basis of R™, and hence (3.3)) always

admits a solution. O

Definition 3.3 (convergent matrix). A matrix J is called convergent if its powers converge

to the zero matrix, J¢* — O, meaning that the individual entries of J! all go to 0 as t — oo.

Definition 3.4 (spectral radius p). The spectral radius p(J) of a matrix J is its largest

absolute eigenvalue, i.e., p(J) = maxj<i<n |Ail.
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Theorem 3.5 (convergence determined by the spectral radius). The matriz J is convergent

if and only if its spectral radius is strictly less than one: p(J) = maxi<i<n |Ai] < 1.

Proof. If J is complete, then we can apply the triangle inequality to (3.2) to estimate

Zci)\gvi
< Z Xl llesvall, (3.4)

%)l =

bl

< ()Y lel lvill,

where ||-|| denotes any (vector) norm on R" (e.g., 1-norm, Euclidean norm, infinity norm).
If p(J) < 1, then
|x(t)]| =0 as t— oo. (3.5)

O
Definition 3.6 (induced matrix norm). If ||-|| is any norm on R", then the quantity

171 = i 17l (3.6)

defines the induced matrix norm of J.

Theorem 3.7 (spectral radius and induced matrix norm). The spectral radius of a matriz

18 bounded by its induced matrix norm:
p(J) < |17 (3.7)
Proof. If X is a real eigenvalue, and v a corresponding unit eigenvector, so that Jv = Av
with ||v] = 1, then
[TV = IAvil = [Al[[v]] = [A]. (3.8)
Since ||J| is the maximum of || Jv|| over all possible unit vectors, according to Definition 3.6}

this implies that
AL < 1] (3.9)

If all the eigenvalues of J are real, then the spectral radius is the maximum of their absolute
values, and so it too is bounded by ||J||, proving (3.7). We omit the proof here for complex

eigenvalues. See |Olver, 2008 for the detailed proof. O
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3.1.2 Convergence of Noiseless Soft Regulation

Recall the noiseless closed loop soft regulation dynamics:
1
zi(t+1) = (1= B)gi(2:(t)) + Bi ij(t). (3.10)
J

The individual learning functions {g;(-) : 1 < i < n} are assumed to satisfy the regularity
condition in Assumption (p. . Let x = [z1, ... ,xn]T denote the state vector for the
n agents. The noiseless soft regulation map for the vector x is given by x(t + 1) = h(x(t))

where the map
(1-B)gi(a1) .. 0 b
h(x) = : : + L P 1T (3.11)
0 ce (1 - ﬂn)gn(xn) Bn

Definition 3.8 (Jacobian matrix evaluated at x). The Jacobian matrix of the nonlinear

iterative system (3.11)) is the matrix of all first-order partial derivatives of h(x) evaluated

at x: -~
Oh1 Ohy
Ox1 """ Ozn
Ohn  Ohn
-on o (3.12)
(1= B)gi(z1) .. 0 b
: . : Ly T
— : o]
n
T C S A ) I
Since h(0) = 0, the mean value theorem implies that
Jl ((51X)
h(x) = : X, (3.13)
In(0nX)

for some 0; € [0,1], ¢ =1,...,n, and J;(d;x) denotes the i-th row of the Jacobian of h(J;x).

Definition 3.9 (coefficient matrix J based on the Jacobian matrix). The nonlinear iterative

system x(¢ + 1) = h(x(t)) is converted into a linear iterative system x(t + 1) = Jx(t) with
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a time-varying coefficient matrix J where

(1= pB1)g1(0171) ... 0 Bi
J= : : 41 Sl (3.14)
0 coe (1= Bn)gh(0nan) Bn

gi(d;x;) is the learning gain (Definition p. [32).

3

We first show that the state vector x(¢) converges to the solution x* = 0 if the learning

functions {g;(-) : 1 <14 < n} satisfy Assumption (p. and 0 < max; 8; < 1.

Theorem 3.10 (upper bond of spectral radius). The spectral radius p(J) of the coefficient
matriz J (Deﬁm'tion . @) satisfies p(J) < m = maxi<i<neez [(1-5i)|gi(@)|+5i] < 1.

Proof. The induced oo-norm ||J(x)||oc of J satisfies

[]loc = max |[Jv]|oo,
IVlioe=

— TS
||5ﬁi’iu??g’%’ i(0x)v,

. (3.15)
_ — BV (S s+ —B:(17
= max | max [(1= 8)lgl(0w)lvi + - i1Tv)].

<m.

The result follows from Theorem (p. that p(J) < ||J||,, = m. It is easy to see that

m < 1 whenever max;<;<, 8; < 1. ]

Theorem 3.11 (convergence of noiseless soft regulation). The soft regulation iteration

converges to x* =0 if 0 < B; < 1.

Proof. Since m < 1 for all 0 < ; < 1, according to Theorem (p. , the coefficient

matrix J is convergent because p(J) < m < 1. O

This proof is also applicable for time-varying g;. As long as g;(-) satisfies Assumption
(p. for ¢t > T and T < oo, the convergence result will hold. Note that |¢/(-)] < 1 is
sufficient but not necessary for h to converge. A weaker regularity condition |g(z)/x| < 1,
for instance, also ensures convergence, however, only for z # 0. We stick to |¢/'()| < 1 for

the convenience that it applies to the entire domain = € Z.
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3.2 Robustness

In reality, the learning function g¢; is subjected to noise because of the noisy payoff ﬁ or the

uncertainty associated with evaluating f;.

Theorem 3.12 (robustness against bounded noises). The equilibrium fixed point x* = 0

of the map h is robust when subjected to bounded disturbances.
Proof. Let V(x) = ||x||oo. Thus,
V(h(x)) = [hx)ll = 7]l < 1]l 1%l < m x|l - (3.16)

The first inequality follows from the property of induced matrix norm. Since the continuous
function V(x) is a Lyapunov function for h, the result follows from standard results in

stability theory [Teel, 2004]. O

3.3 Efficiency

Assumption 3.13 (representative agent). We will henceforth assume that /3; values are

identically equal to the representative degree of social influence :
Bi = 0. (3.17)

The representative agent assumption regards a system with heterogeneous agents equiv-
alent to the one with identical agents (i.e., typical or representative agents) if the latter
demonstrates the same aggregate behavior as the former. Despite receiving criticisms from
economists, the representative agent is among the very few techniques that can model

multi-agent systems analytically (i.e., no simulation is performed).

Definition 3.14 (largest singular value o1). The largest singular value of a matrix .J is its
induced 2-norm:

o1(J) = ||J]ly = max |[Jv]],. (3.18)

HV||2:1
Definition 3.15 (upper bound of open loop spectral radius mgy). We define my as the

maximum learning gain:

— !
my = _max_ lgi(z)]|. (3.19)

It is the upper bound of spectral radius m in the open loop setting.

42



CHAPTER 3. MATHEMATICAL PROPERTIES OF SOFT REGULATION

Theorem 3.16 (contraction of the Euclidean norm). Suppose 3; are all identically equal to
Ié] (Assumption p.. Then |h(x)||, < m||x],, wherem = (1—f) maxi<ij<nzez |9;(x) |+
B=@1—pB)mg+p.

Proof. Let G' = diag (g{(6121),...,9},(6nzy)). Then J = (1 - B)G' + gllT.

16715 = o, vl = max, 37 li(0er) ot < o a6 < | _max_ o)l

1<i<n 1<i<n,z€Z
(3.20)
Thus, |G'||, < maxi<i<nzez |9;(x)|. Therefore,
1713 = max [|Jv]3,
vil,=1
2 28(1 —
= max {a- a2 eVl amvr g+ 2E =P amaTem ),
v|y=
28(1 —
<182 )2+ 52+ P22 (1T0]) ( max (17 Gv), (3.21)
n v ”2_1 Ivll,=1
28(1 - 8)
G+ 8%+ max ||G'v
< Q=8P 16+ 2+ 2O ), 61,
= (1= 8)*|&|I, + B>+ 2801 = B) |||, = m*.
Since h(x) = Jx, it follows that [|h(x)|l, = |[Jx|y < || J]l5 [|x]ls < m[J2]]5- O

Next, we introduce noise. Let {w(t) € R : ¢ > 0} denote an IID sequence of random
vectors where w(t) = [wi(t),...,w,(t)]", and each w;(t) is an IID sample of a zero mean

random variable with variance 2. The noisy collective dynamics is given by
1
zi(t+1)=(1-8) (gi (i(t)) + wi(t)> + B D (). (3.22)
J
We first define the metrics of performance as follows.

Definition 3.17 (stage cost v). We define the mean squared error v(t) = MSE(t) as the

stage cost at time ¢:

0= Y w0P = x5, (323)

Note that MSE is only one of many indicators of performance. Total realized payoff,
> vi(t) for example, also measures how well a system performs. The state of a system
with a better realized payoff, however, is not unambiguously better than another state due

to disturbances and measurement noises.
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Definition 3.18 (cumulative cost V). The cumulative cost for a finite time horizon T is
defined as
V(T) = v(t). (3.24)

Definition 3.19 (optimal control). We define the following optimal control problem for
computing the optimal degree of social influence 8 that minimizes the expected cost function

V.

min E[V(ﬁ; x(O),w(t),T)], (3.25)

s. t. x(t+ 1) = h(x(t)), (3.26)

Based on our previous results, we have the follow recursion of the stage cost

Efot+1) | x(t)] = [ Ix(t + DIE | x(0)]. (3.27)
::%E[mwxa»+wl—w%wu»@|xuﬂ, (3.28)
= Lpneeoi + L ), 3.2)
< IR IIE + (1~ 5%, (330)
< m?o(t) + (1 — B)%02, (3.31)

where (3.29) follows from the fact that w(t) is independent of x(¢), and (3.30) follows from
the bound in Theorem (p. [43)). Iterating the bound (3.31)) we get
(1-8°1—m*) ,

Elu(0)] < m*o(0) + =g ol

(3.32)

Definition 3.20 (steady-state mean squared error vo,). The mean squared error for a large

t can be approximated by equating the LHS and the RHS of (3.32):

Voo = tl_ifgoE[v(t 1,

1—-8)%2
~ (1_13; (3.33)
(1-p)o2

(1 —mg)[B(l —mg) +mg + 1)]

Note that vs, decreases monotonically as [ increases.
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We can then obtain the upper bound on the expected total cost easily:

1— 2T 1— 2T 1— 2 2
E[V(T)] € T——v(0)+ (T— — > ( : _’62120% -
3.34
_ 2T

Solving the §* that minimizing RHS of (3.34]) gives a conservative measure of the optimal

degree of social influence.

3.4 Optimal Degree of Social Influence

We briefly discussed how g affects the efficiency of soft regulation in Section (p- .
By minimizing the RHS of (3.34)), one can obtain the optimal £ that minimizes the worst
case E[V(T)], i.e., expected cumulative MSE. In the following segments, we will look into

two aspects of how ( affects the performance of soft regulation.

3.4.1 Maximum Contraction

We established in (3.30]) that the reduction of MSE is controlled by the contraction property

2 which we will discuss in the next

of J (as well as the noise reduction term (1 — j3)%02,

segment). More specifically, the contraction determines how MSE decreases in the absence of
noise. We used the induced 2-norm (Definition p. of J to quantify such contraction
in the context where MSE is the metric of performance.

It is apparent that the smaller the spectral radius, the faster x goes to 0. The contraction
property can then be approximated by the spectral radius of J. One can interpret the
contraction property as this:

o <) (x#0). (3.35)
In , the contraction is not state (x) dependent. That simplifies the analysis because
for any state x # 0 at any time ¢, would hold and the spectral radius only depends
on J (instead of depending on both J and x). In contrast, the actual contraction, i.e., the

LHS of (3.35) can only be measured after the dynamics (3.1)) takes place. Similarly, we

have
[BEIP

[l

o1(J) (x#0), (3.36)
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where o7 is the largest singular value (Definition p. .

The optimal 8 that maximizes contraction would therefore be the one that minimizes
either the spectral radius or the largest singular value of J. Even though Theorem [3.10
(p- 41) and Theorem (p. suggest that increasing § monotonically increases the

upper bond of p(J) and o1(J), the actual relationship is more complex.

Conjecture 3.21 (maximum contraction). For a coefficient matrix J(8) = (1 — 3)G'+ 58S
(Definition p- as a function of 3, given o4 # 0 (Definition p- , there exists a
B* > 0 such that p (or o1) is minimized. In other words, there exists an optimal degree of

social influence that maximally improves the noiseless contraction of soft regulation.

We do not attempt a proof for this Conjecture. Instead, we demonstrate here a simple
system with G’ = diag (— 0.68,—0.029, 0.60,0.91,0.94). When 3 =0, J = G’ thus p(J) =
0.94. As [ increases, p(J) first decreases then increases until p(J) =1 when g = 1. A few
p(J) values against different § values are listed in Table (p. [47). Interested readers can
use the following MATLAB code to recreate the results:

>> g = [-0.68; -0.029; 0.60; 0.91; 0.94];
>> rho = @(beta) max(abs(eig((l-beta) * diag(g) + beta * ones(5) / 5)));
>> sv = @(beta) norm((l-beta) * diag(g) + beta * ones(5) / 5, 2);
>> beta_best_rho = fminbnd(rho, 0, 1)
beta_best_rho =
0.44
>> beta_best_sv = fminbnd(sv, 0, 1)
beta_best_sv =

0.44

3.4.2 Maximum Noise Reduction

The noise reduction effect from S is much more straightforward than the contraction effect.

Using expected MSE as the performance metric leads to the following noise term in (3.30)):

(1—B)%c2. (3.37)
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Table 3.1: Ilustration of Conjecture [3.21

B p(J) o1(J)
0 0.94 0.94

0.1 0.88 0.88
0.2 0.84 0.84

0.3 0.81 0.81
0.4 0.80  0.80
0.44 0.79 0.79
0.5 0.80  0.80
0.6 0.82 0.82
0.7 0.85 0.85
0.8 0.89 0.89
0.9 094 094
1 1.0 1.0

As a result, increasing 8 makes the noise reduction stronger and leads to a smaller steady-
state error (Definition p.[44). B8, however, cannot increase indefinitely because a large

B would hurt the contraction as discussed earlier. For a system where o, > 04, we can

safely use the worst case formulation (3.34]) to identify the optimal 5* (Fig. p. [48).
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0 0.2 0.4 0.6 0.8 1
Learning gain

Figure 3.1: Optimal social influence from robust control by minimizing the RHS
of . The general trend is that a moderately strong social influence is desirable if
the system is uncertain (high noise-to-initial-MSE ratio) or the learning gain is low (fast
open loop convergence). An interesting observation is that as the learning gain crosses a
certain threshold (e.g., 0.9), the optimal social influence rapidly increases as the learning
gain increases. For a high learning gain, the contraction becomes insensitive to the change

in B while the noise reduction still does.
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3.5 Different Solutions

There are situations where the solutions are similar but not identical to all agents. We

discuss here how soft regulation performs under such circumstance.

Definition 3.22 (solution spectrum 6" and its width oy). Similar to the naming convention
for the learning spectrum (Definition p- , we let 8% = [0%,...,05]T denote the
solution spectrum and og = /1 (67 — 0*)? denote the width of the solution spectrum,

=1

where 6% = . >, 67 is the average (or representative) solution.

Consider the open loop learning dynamics:
Zi(t) = gi(wi(t)) + wi(t). (3.38)
Replacing the LHS z; with z; — 67, we have
zZi(t) = gi(@i(t)) + wi(t) + 67, (3.39)
and subsequently we also have

S+ 1) = (- B)z(0) + B 3 55(0),
7 . (3.40)
= (1= ) (gs(@s(®) +wilt) +07) + B> (2,() + 05)-

J

Subtracting 67 from both LHS and RHS, we have

it +1) = (1= ) (gs(as0) + () + 5 w0+ 530 -0 (34

J

We can convert (3.41)) into a linear iterative system by replace g;(z) with glz where the
learning gain (Definition p- :

x(t+1) = Jx(t) + (1 — Bw + B(S — 1)6", (3.42)

where J = (1— )G’ + S is identical to what we defined earlier (Definition p. with
G’ = diag (g') and S = 1117, It is not difficult to extend (3.30) and obtain the following

inequality:
E[[x(t+ 1)l [x(t)] < o1(J) %), + (1 = B)v/now + v/nop. (3.43)
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Definition 3.23 (root mean squared error (RMSE) v(t)). We define the root mean squared

error of the system as the stage cost v(t) = ﬁ llx(t)]]-

The RMSE version of (3.43) is therefore
Elv(t+ Do(t)] < o1(J)v(t) + (1 — B)ow + Boy. (3.44)

The steady-state expected RMSE (similar to Definition p. 44) is therefore bounded
by the following equation:

Voo = lim Ev(t)] < (1= Fow + 500.

t—00 1—o0y (J) (3.45)

Should the deviation of solution (i.e., the width of the solution spectrum) be sufficiently
small (in other words, oy < 0y,), there would exist a 5* € (0,1) such that the worst case

steady-state RMSE is minimized.
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Chapter 4

Implementing Soft Regulation

[Regulating Emerging Industries| (p. The term soft regulation was first cre-

ated in the context of regulating emerging industries (Section p. , where one needs
to properly balance between being too conservative (i.e., over-regulation) and being too lib-
eral (i.e., under-regulation). In this section, we use an agent-based simulation to model the
collective optimization process of an emerging technology. We discuss how soft regulation

could improve the overall welfare of the system by accelerating the convergence.

|Mobi1e Health| (p. We focus here on healthcare. Mobile fitness tracking services

have been integrated into many’s daily lives: We often change our health behaviors such as
sleep, dietary, and exercise patterns in order to improve fitness. Can we use soft regulation
to help multiple consumers identify the optimal health behaviors? We present the results
from an Amazon Mechanical Turk experiment with human subjects. We analyze experiment
data and estimate, through control theory, the optimal degree of social influence that would

maximally improve the open loop problem-solving process.

|Local Regulation and Policy: U.S. State Tax and Expenditure Case Study]|

(p- We return to the topic of optimal regulation and policy. In this case study,
instead of a federal oversight or a central planner (Section p. , local regulators and
policymakers form a decision-making crowd. Our optimal control analysis indicates that

soft regulation could have accelerated the convergence of state tax and expenditure.
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[Multi-Product Revenue Management| (p. Even if individual solutions are

different, soft regulation can still improve the collective problem-solving process. This
discovery is applicable to cases such as multi-product revenue management. We propose

here an improved algorithm based on the Besbes-Zeevi dynamic pricing model.
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4.1 Regulating Emerging Industries

4.1.1 Background

Consider the following situation: There are one central planner (regulator) and n regulated
entities (companies, i = 1,...,n) in an emerging industry. Since the technology or busi-
ness has just been discovered or developed, there lacks an industry standard that properly
balances production, stability, and environmental impact. The optimal operating standard
#* is unknown to either the regulator or the companies. As more time and resources are
devoted to R&D, individual companies can gradually improve their operations and eventu-
ally discover the optimum independently. In the meantime, the regulator periodically issues
recommendations (instead of mandates). The companies can accept, reject, or partially
accept the recommendations based on how confident they feel towards the regulator. The
confidence level 5 is an alternative form of the degree of social influence present in the
system. In this exercise, we implement an agent-based simulation to understand how 1)
different types of recommendations and 2) different confidence levels affect the performance

of soft regulation.

4.1.2 Agent-Based Simulation

There are several ways to generate feedbacks for soft regulation. We focus on two method-
ologies here: the best recommendation and the crowd recommendation. As their names
suggest, best recommendation corresponds to the case where the regulator has full infor-
mation and computes the feedback by solving a centralized optimal control problem; the
crowd recommendation on the other hand, is simply the average of the agents’ actions
(i.e., the wisdom of crowds). We show that, despite its simplicity, crowd recommendation
is as good as the best recommendation for a wide range of confidence levels.

When the regulator is fully informed about the functions f;, §;, and S; (Section m,
p- , the optimal feedback u* can be computed explicitly by solving the following cen-

tralized optimal control problem that maximizes social welfare (cumulative payoff) over the
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projected trajectory:

max Z ZE[ﬁ (Zz(t)) ‘U()} )

.t zi(t+1) = (1—B)gi(z(t) + Biu(t).
We call the solution u* to this problem the best recommendation.

Since the function fi, Ji, and the parameter (5; are only privately known to the agents,
in practice, it is unlikely that the regulator knows the functions and the parameters. Fol-
lowing [Brotman, 2014; Surowiecki, 2005; Sunstein and Hastie, 2014), we assume that the
regulator, instead, reports the average, i.e., u = %Zz z;. We call this recommendation
the crowd recommendation. Note that using privacy-preserving computations [Abbe et al.,
2012|, the regulator can compute the crowd recommendation without ever learning any in-
dividual input z;. We demonstrate that the crowd recommendation ensures the convergence
to the optimal setpoint; moreover, it is as good as the best recommendation for a wide range
of confidence levels.

We have established the convergence and robustness properties of soft regulation in the
previous chapter. For practical applications, it is important to understand the transient or
finite-time dynamics of soft regulation, and more specifically, the role of confidence level
Bi in setting the transient performance. We are able to illustrate with a few additional
assumptions about the system.

In this section, our analysis will be focused on the simplest concave function, namely an
identical and quadratic utility function f;(z;) = f(z) = f(z) +v = —k(z; — 6*)2 + 1. Rep-
resentative agents are helpful in identifying the effect of confidence level (Assumption
p- . In order to study the convergence behavior, one can without loss of generality,
assume that 0* = 0 (i.e., decision error x; = z;). This particular choice for f is motivated
by the fact that any strongly concave function can be approximated by a quadratic func-
tion near its optimum. The noise is v ~ N (0,0,). Agents only observe the noisy function

values — the underlying structure is not known to the agents.

Definition 4.1 (optimization efficiency n). We define the optimization efficiency as the
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percent reduction in MSE (or stage cost v, Definition p. [43):

_ v(0) —v(?)
n(t) = @ 100%. (4.2)

The efficiency is 100% when the system reaches optimum.

We simulated the agent dynamics in NetLogo (Appendix p. . The agent set
was randomized by a fixed random seed in the program to ensure consistency. For each
set of parameters, we ran the simulation five times and took the average. The observed
standard error is insignificant; therefore we omit error bars in the figures. The model
parameter values are listed in Table (p. . The noise v ~ N(0,0,) has the same
variance as another random variable ¢ ~ U(—+v/30,,v/30,). We chose o, to be 200/v/3
so that it is computationally equivalent to a uniform +200 noise. The parameters do not
represent practical meanings. The particular values were chosen such that the results are

easily identifiable.

Table 4.1: Agent-based simulation parameters

n oy 0k a(t) c(t)

1000 200/v/3 0 100 1/t 1/(t+200)Y/3

We first run the simulation for soft regulation with best recommendation. Given the
quadratic utility, Kiefer-Wolfowitz algorithm (p. , and system-wide confidence level, the
regulator can easily compute best recommendation by solving the optimal control prob-

lem (4.1)). One can obtain the noiseless system dynamics to be
x(t+1) = (1 - B)(1 — 4ka(t))x(t) + fLlu(t). (4.3)

Since the stage cost does not penalize input u, the optimal u* at stage ¢ can be solved as

follows

u*(t):— [(1—5)(15—4ka(t))] ;Z%(t) (4'4)

In Fig. (p- , we plot the efficiency 7 after 200 iterations against different confidence

levels 8. We observe the efficiency increases monotonically as the confidence level increases.
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This result is not surprising. As the confidence level increases, the regulator has a stronger
influence on the agents, therefore, exerting a more efficient control. Even though for each
confidence level, the regulator issues the best recommendation, the recommendation is only
effective when the agents choose to listen.

In Fig. (p. and Fig. (p. , we plot the efficiency against confidence level
for soft regulation with crowd recommendation. The results from Fig. (p. are also
included as a reference. It is remarkable that soft regulation with crowd recommendation
is as good as the one with best recommendation for a wide range of confidence levels (from
0 to 99%). The real advantage of best recommendation only appears when the confidence
level is close to 100%. However, to achieve such best recommendation or even hard regu-
lation, the regulator needs information about utility function, optimization algorithm, and
the confidence level. This practice, despite being efficient under the setting of complete
information, is costly, impractical, and error prone in practical settings. Especially for hard
regulation, additional cost of enforcement needs to be considered.

The results in Fig. (p. and Fig. (p. indicate that the confidence level
should be set to a large value but not too close to 100%. The open loop system only
reaches about 70% optimum. The system performance is more than 90% optimal when the
confidence level is 50% (i.e., the agent takes an average between its own optimization result
and the recommendation). We also see a sharp decline in performance when confidence
level is too close to 100%. Beyond this “cliff,” the agents explore very little and essentially
stay where they are.

In Fig. (p. , we plot the time series of efficiency for different confidence levels.
When confidence level is low (8 = 0 or 10%), the MSE increases (efficiency declines) before
converging. This is caused by large initial step sizes. As confidence level increases, the
system begins convergence earlier. As the confidence level further increases, the system
shifts from the regime dominated by exploration to the one dominated by conformity, and
the recommendation does not have enough time to converge to optimum before agents start
conforming.

In order to better understand the connections between the confidence level and the

performance that we hypothesized in the previous section and observed in the simulation
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results, we now attempt to compute a closed-form expression for the system state. Recall
that x; denotes the current state of the ¢-th agent. The updated state :1:1+ implied by the
gradient-based update scheme in ([2.2)) is given by

:E;r:(l—ﬁ)(l—llka)a:i—f—ﬁu—ka-1;ﬁ-ﬁi (4.5)

where 7; ~ N(0,v/20,) is the effective noise resulting from computing the discrete ap-
proximation to the gradient in (2.2]) on p. Recall that the crowd recommendation is

uw =Y. x;/n. Thus, the updated u™* of the recommendation is given by

u+:[1—4ka(1—,6’)}u+a-1_5-71LZZ-. (4.6)

C

When n > 1, the expected u(t) can be treated as a deterministic variable. When £ is small,

u(t) quickly converges to 0. Let U(t) = E[u(t)]. Since E[#] = 0, we have that
Ut+1)—U(t) = —4ka(t)(1 — B)U(t). (4.7)

Note that the variance of u(t + 1) is 2a(t)*(1 — 8)%c2/(c(t)*n) < 1 for n > 1. Therefore,
compared to z;(t), the recommendation u(t) can be safely treated as a deterministic variable
ie., u(t) =~ U(t). Especially when |4ka(t)(1 — 8)| < 1, one can approximate the difference
equation by the ODE

dUdit) = —4ka(t)(1 — B)U(t). (4.8)
E[u(t)] can be approximated as follows:
E[u(t)] =~ u(0) exp [—4k(1 — ﬂ)/o a(T)dT:| . (4.9)

For the wisdom of crowds, this implies that a group is smart only when the population
is large (n > 1) and agents are not strongly conforming (5 < 100%). Surowiecki’s
book [Surowiecki, 2005] shares the same insights. Unlike the averaging method in the
book, soft regulation is a continuous feedback process. Even though the open loop (5 = 0)
system has the fastest converging recommendation, agents cannot make use of it unless
they at least partially accept (8 > 0). This paradox suggests some trade-off and balancing
between consensus and efficiency.

In addition, as k increases, u(t) approaches the solution faster, i.e., a more sensitive

utility function implies a more reliable recommendation. Unless an agent can estimate the
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curvature (~ k for a quadratic function) of the payoff accurately, it is safer to rely on the

recommendation when curvature is larger.

From (4.5) it follows that
1

t+1)=— t+1

v(t+1) an( +1),

—(1-B)2(1 - 4ka(t))2% > @i (t) + BPu(t)

i

a2 (4.10)
201 B)(1— dka()u(t) - 3 ailt) + a(t) (t)ﬁg) N0

+2 37 [(1= 81— aka(®)zi(0) + Bu(t)]a(t)
Since u =), z;/n, u(t) = U(t), and E[#;] = 0, we have

E[v(t+1)] =(1 — 8)2(1 — 4ka(t))’E

iZﬁ(t)]
+ 8201 - 8)(1 — tka(t) + 1] U1 (4.11)

2(1_B)2 2

+ 2a(t) FOE o5.

We therefore define X (t) = E[v(t)]. It follows that the update for X (¢) is given by recursion

X(t+1) = A#)X(t) + B(t), (4.12)
where
A(t) = (1 - B)2(1 — 4ka(t))?, (4.13)
and
_a\2
B(t)= 8 [2(1 — B8)(1 — dka(t)) + 1] U®t)?® + 2a(t)2<1€(t)ﬁ2)03. (4.14)

Since limy_,o0 A(t) = Ao, limy_yo0 B(t) = Boo, and limy oo X (¢ + 1) = By /(1 — Ax), one

would expect that when ¢t is large,

X(b+1) = - f(jfl)(t), (4.15)
2a(t)2(1 — B)202/c(t)? + B [2(1 — B)(1 — 4ka(t)) + 1] U(t)?
= . (4.16)

1—(1-B)2(1 — 4ka(t))”
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This approximation in fact agrees with the simulation (see lines in all simulation result
figures).

From , it follows that MSE converges to 0 (soft regulation is optimal). Meanwhile,
when confidence level is low, i.e., 8 = 0 (explorers), the dependence on u(t) vanishes very
quickly, and can be simplified as follows:

2a(t)%0y /c(t)”
1/(1 = B)2 — (1 — dka(t))*’
and MSE monotonically decreases as 8 increases. On the other hand, when confidence level

is high, i.e., 3 ~ 100% (followers), the u?(t) term dominates o2, one can simplify (4.16] to

E[o(t+ 1)] ~ (4.17)

2

Efu(t + 1)] ~ 8 {u(()) exp [—4k(1 _8) /0 t a(T)dT} } , (4.18)

and MSE monotonically increases as [ increases. This estimation agrees well with our
previous hypotheses and simulation results (Fig. p- |57 to Fig. p- .

An interesting fact arises from this approximation, i.e., imperfect information is neces-
sary for soft regulation to add value. If the system has very low noise or noise-free, the o2
term will be dominated by u2(¢), and an increase in 3 hurts performance. That is to say,
for a deterministic process, soft regulation with crowd recommendation may not be a good
mechanism for agents to adopt.

In practice, each individual may have a distinct confidence level and personal traits
(as opposed to Assumption p. . Modeling such rich details as well as formulating
related best recommendation is beyond the scope of this exercise. Nevertheless, for purposes

of illustration, we propose the following adaptive confidence mechanism:
Bz, u) = e~ bl@i—u)? (b > 0). (4.19)

The rationale for this update scheme is as follows. When an agent’s action is far away
from the recommendation, the agent is fairly skeptical. Suppose, by incorporating the
recommendation, the agent’s action moves further away from the recommendation, the
agent would rely even less on the regulator. However, when the action comes closer to the
recommendation, agent is likely to be more confident about the regulator, and incorporate

the recommendation in future updates. One flaw in this adaptive mechanism is that if
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everyone performs the same action in the beginning, this results in an identical confidence
level 5 = 100% for all agents, and the system will not move at all. This situation might
be remedied with an occasional, small perturbation. In Fig. (p. , we plot two new
simulation results, i.e., 1) agents have uniformly distributed confidence levels (Dist.), and
2) agents have uniformly distributed initial confidence levels and the confidence is adaptive
(Dist.+adap.) according to the update scheme above. We also include previous results with

fixed and identical confidence level to the graph. We observe a fairly good performance.

4.1.3 Discussion

In the soft regulation setting, the regulator’s role is to help agents learn, understand, and
optimize an unknown process without interrupting normal operations. The essence of this
mechanism is to take guided decisions by updating actions using the map x:r = (1-
Bi)Z; + Biu, where Z; is the i-th agent’s open loop action and w is the regulator’s soft
feedback (or crowd recommendation). Self-interested agents have the freedom to choose to
partially accept the regulator’s recommendation. Soft regulation provides a more balanced
coordination: Unlike hard regulation, it does not force the agents; this creates a collective
learning environment and avoids possibly erroneous mandates. On the other hand, a soft
regulatory system is not under-regulated or uncoupled. The exploration of some agents
benefits others. Useful information is shared indirectly instead of being wasted in an asocial
learning environment.

We notice the efficiency of soft regulation is impacted by the following factors:

Population Because of noise, recommendation is subject to uncertainty. However, when
n > 1, the variance becomes negligible, and the recommendation becomes deterministic
(very close to mean) and accurate. This dependence on population size is intuitive: The
information aggregated from a large population should be more useful compared to the one

from a small population.

Process We have proved that soft regulation with crowd recommendation preserves op-
timality. The advantage of the mechanism, however, is especially pronounced when the

system is very noisy and the payoff function is very sensitive. A rule of thumb for the
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agents would be when a large sensitivity of the process is observed (either because of high
noise or large curvature), the agents may be better off relying on the recommendation. Un-
certainty drives the system towards cooperation. Soft regulation can potentially stabilize
an open loop unstable process. This result also provides some insights on the wisdom of
crowds. For example, the average performance can outperform the best individual when
the system is very uncertain. In that sense, the “expert” knowledge may not be as useful

in an emerging industry as the collective wisdom.

Confidence level 5 We conclude that the best confidence level should be large but not
too close to 100%. This is especially true when the system is very noisy and the process
is very sensitive. In such setting, agents should put a substantial amount of trust on the
regulator’s recommendations. Because of the trade-off between consensus and efficiency, in
the early stage of soft regulation, the confidence level should be kept low for recommendation
to quickly converge. As time proceeds, agents can be more and more confident regarding

the recommendation.
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4.2 Mobile Health

4.2.1 Background

There are n consumers of certain fitness service such as Fitbit or Apple Watch. They form
a social network. Each individual consumer attempts to adjusts his/her health behavior z;
in terms of sleep, dietary, or exercise pattern such that his/her fitness y; is maximized. S/he
can also poll the social network to see the others’ behaviors (or the population average).

Based on the degree of social influence 3;, the i-th consumer adjusts his/her decisions.

4.2.2 Experimental Design

We conducted three sets of online experiments on Amazon Mechanical Turk with human
subjects (Appendix p- . We focus our analysis on experiment set B (N = 194)
but present the final results for all three sets. Each set consisted of five replications of the
experiment with its unique conditions.

The participants (or players) were asked to estimate the “diet level” that maximizes the
“fitness” of a virtual character in the “Fitness Game” designed by us. The true relationship
between the diet level and fitness was a given deterministic and concave function f(z;),
however, the players received a noisy value f (z;) = f(zi) + v of the fitness associated with
the guessed diet level z;. This noise v, in reality, could be from other external factors such
as environment and mood. The players were allowed multiple guesses, and were rewarded
instantly based on the character’s fitness level. The players also received monetary rewards
based on their relative performances.

In each replication p € {1,...,5} of the “Fitness Game,” the n, participants first entered
a session (control group) where they played the game in an open loop for 240 seconds
(four minutes). In this session, each participant entered a series of guesses to best predict
the unknown optimal diet level 8* € [2000,2500] kcal. When a player entered a guess,
the interface would refresh and the player would see the virtual character’s fitness level
(maximum 100%) for the guessed value. The player could then enter a new value until this
session ended.

Subsequently, the same cohort entered the closed loop session (treatment group) where
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they played the same game with a population feedback. The game was reset and a new
optimal diet level 6* was chosen. In this session, in addition to the fitness level corresponding
to their own guess z, players also received a soft feedback saying “We recommend nip Z:Z 1%
kcal,” where z; denotes the most recent guess of the i-th player. This feedback only updated
when the players took actions. The players had the option of using the feedback in any
manner they desired.

In this treatment group, we revealed the population average of the diet level to each
player. Thus, the choices of the players were not independent. However, we allowed the
players the freedom to accept, reject, or partially accept such a population feedback, i.e., set
the diet level to be a combination of their individual guesses and the feedback.

In the previous section (p. , we had introduced the possibility of partial acceptance
of population recommendation in the context of regulating emerging industries. We also
argued that soft regulation is appropriate and efficient (and desirable) when the observed
outcomes are very noisy, individual decision makers are rational utility-maximizing agents,
and the agents are exploiting abundant resources, and therefore, not competing. Medical
research and health optimization using large-scale social interactions, for example via Ap-
ple’s ResearchKit and CareKit [Apple, 2016], are examples of systems that satisfy these
three conditions. The “Fitness Game” is meant to mimic these conditions.

Upon completion, participants received monetary rewards based on their relative game
scores within the same cohort. We hoped to incentivize the participants in this way so that
they would make rational decisions and actively optimize their virtual character’s fitness,

instead of making random guesses to get the participation rewards.

Detailed Description of the Experiment Environment We developed the “Fitness
Game” using Google Apps Script (Appendix p. . All the data were stored in Google
Sheets. Once the players accepted the task, they were first asked to carefully read the game
instructions (Fig. p- . The total task duration was ten minutes. The open loop
(game level 1) and soft regulation (game level 2) sessions lasted precisely four minutes each.
Players who wished to practice could enter the practice mode (game level 0) any time before

open loop session began. After completing both open loop and soft regulation sessions, the
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players received a message about compensation information.

The interactive app (Fig. p- consists of the following components: The upper
left panel shows the number of attempted guesses, the most recent guess, the fitness level,
and the latest score. The panel changes from red to green whenever the player scores one
point. In the soft regulation session, an additional message recommends the current vox
populi population feedback (see Fig. bottom). The upper right panel records latest
game scores. The lower left scatter chart plots the ten most recent entries (fitness versus
diet). The lower right line chart plots the fitness history of the ten most recent entries.

The virtual character’s random fitness level f (z) as a function of player’s decision error
xr = z — 0* was given by

- N2

flz) =y - (;) +v,
where y* = 98% is the maximum achievable fitness, x = 500 kcal is the scale of the fitness
function, and v is a sample from a random variable uniformly distributed over [—2%, 2%)].
The player was awarded one score point whenever the guess led to a fitness level of 99% or

higher.

4.2.3 Results and Discussion

Wisdom of Crowds Effect Let’s begin with the analysis of the wisdom of crowds effect.
We plot the time series of each individual player’s decision error (x;) as well as that of
the wisdom of crowds (u) in Fig. [4.8| (p. [70). The performance of the wisdom of crowds is
clearly superior: u steadily and quickly reaches the solution within the first minute while
individual players lag behind.

Fig. 4.8 (p. also confirms the behavior observed in the literature: The wisdom of
crowds significantly outperforms the individual estimates, but such effect is weakened by
social influence. The average in the soft regulation setting slightly lags behind that in the

open loop.

Improvement from Soft Regulation Now, let’s analyze how soft regulation improves
the crowd’s learning performance. By visually inspecting Fig. M (p. , we observe the

narrowing of individual error distribution in the soft regulation setting: There are fewer ex-

67



CHAPTER 4. IMPLEMENTING SOFT REGULATION

- & script.google. 00EMUInKxB 0 kMnycpZ TmveWyHIV: ¢ o/ &t O

Time and Date

You will play this game at the same time with other MTurk workers (“Turkers"). Please start precisely at
8:00 AM Eastern Time, (Wednesday, April 20, New York, USA),

or in other time zones:
Wed 5:00 AM in Los Angeles, Wed 1:00 PM in London, Wed 2:00 PM in Paris, Wed 5:30 PM in Delhi, Wed 9:00 PM in Tokyo, and Wed 10:00 PM in Sydney.

The Fitness Game

You are asked to improve and "maximize" the fitness of three different game characters Joe (Practice Mode), Andy (Level 1), and Ben (Level 2). To find the "ideal diet," you
suggest how many calories each character eats in a day and monitor the next-day fitness. Each character's ideal diet is unique. The highest fitness one can achieve is 100%.
Note that external and uncontrollable factors other than diet also affect fitness, therefore for the same diet, you might observe high fitness on one day and low on another.
The disturbance is uniformly distributed around zero. Every time your character's fitness exceeds 99%, you get a point to your game score.

Game Levels

Level O (Practice Mode) Click the web link at the bottom (before it expires), you will enter Level 0 (Practice Mode) and monitor Joe's fitness. Points you score in this level
(8:00 AM to 8:02 AM) will not count tewards your bonus. You can't proceed to the next level unless you complete Practice Mode.

Level 1 At Level 1, Andy's ideal diet is different from Joe's. The web link below will expire once Level 1 begins. At this point, you will not be able to re-
(8:02 AM to 8:06 AM) enter the game.

Level 2 At Level 2 with Ben, you will see a dietary recommendation we calculate in real time from all Turkers who are also playing. This value
(8:06 AM to 8:10 AM) might be helpful for you to locate Ben's ideal diet. Use it (or not) as you see fit.

How to play?

Game control The text box accepts any 4-digit number between 2000 and 2500 (kcal). The game will not move on unless you enter something.
Goal Score as many points as possible. Each level ends fast. Keep entering new values and do not stop.

Charts The charts visualize your playing history. Use them to help you decide.

IMPORTANT The web link expires in about 15 minute(s) from now.

Disclaimer By clicking the link below, you confirm that you have read and understood the consent form, that you are willing to participate in this experiment, and that you
agree that the data you provide by participating can be used in scientific publications (no identifying information will be used). (Last updated: 12/9)

Click the link to start: https://goo.gl/cQRCIE

Figure 4.6: Instructions for the “Fitness Game”.
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Figure 4.8: Learning process of each individual player and the wisdom of
crowds. Top: open loop setting. Bottom: soft regulation setting. Each colored dashed
line represents an individual participant’s time series of decision error. The solid line is the

arithmetic average of individual decision errors. Error bars reflect the standard errors of

the mean.
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treme errors than those in the open loop setting; most guesses are confined within £100 kcal
around optimum. In contrast, there are a significant number of players making completely
off guesses (£500 kcal) in the open loop (even towards the end of sessions).

In Fig. 4.9] (p. we plot the MSE time series to quantitatively assess the crowd’s
performance. The total MSE is approximately 30% lower in the soft regulation setting
than in the open loop setting. Unlike the deterioration in the performance of wisdom of
crowds, here social influence improves convergence and reduces the effect of noise. The
critical feature of soft regulation is that the players can ignore the feedback. Since self-
interested individuals reject feedbacks that appear unhelpful, the self-filtered social feedback
significantly improves performance.

The observed improvement from soft regulation indicates that, without external inter-
ference, partially following the average opinion helped the players solve the “Fitness Game”
problems. Next, we will characterize the system and estimate how much social influence
was present in the experiment, and the optimal degree of social influence that would have

optimized the crowd’s performance.

System Identification We assume the learning function to be g;(z) = g(x) = gz + w
and the degree of social influence to be §; = f (Assumption p- . The estimate
§(z) = 0.752 + w and 6,, = 60 (r? = 0.97) was computed using the open loop results. From
on p. we first estimated g and o,, by regressing MSE time series values v(t + 1)
against v(t). Using these estimates as an initial guess, we then ran a Monte Carlo (MC)
simulation with 5000 samples and computed the expected MSE time series. By minimizing
the mean squared difference between that with the open loop MSE time series, we obtained
the g and o, estimates (Appendix @ p. . The corresponding MSE evolution is plotted
in Fig. (p.[72).

The estimate 8 = 32% (r? = 0.99) for the degree of social influence was computed
using the treatment group results where the players received the population feedback. The
corresponding MSE evolution is plotted in Fig. (p. [72)). Following the studies [Soll
and Larrick, 2009 [Moussaid et al., 2013] that have established that people rely more on

themselves when the opinions of others are very dissimilar, we computed an “opinion dis-
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Figure 4.9: MSE time series of human subject experiment results. Blue dots (or
red crosses) are the MSE values sampled at different points in time (7" = 30) in the open
loop (or soft regulation) setting. The dashed lines are simulation results based on models

from system identification.
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tance” function 3(d), where d = |g(z) — u| is the distance of an individual decision from the

population feedback. We found it to be B(d) = exp(—0.011d) (r? = 0.98).

Optimal Degree of Social Influence Given the estimates g(x) and 4,,, one can compute
the optimal degree of social influence S* that, hypothetically, would optimize the closed
loop soft regulation performance. The results are summarized in Table (p.|75)), and the
associated MSE time series are displayed in Fig. [4.10] (p. . We first consider the case
where the degree of social influence 3 is fixed. The empirical estimate B of social influence
computed from experiment data is listed as a reference. The robust social influence S5 was
calculated by minimizing the RHS in (p. , i.e., optimizing the worst case cumulative
expected MSE. The MC estimate By~ was calculated by minimizing the cumulative MSE
V(T) in (p. [44) with the expectation approximated by a Monte Carlo estimate. We
regard [y as the true optimal degree of social influence. In Table (p- , the column
labeled AMSE lists the decrease of the cumulative expected MSE from the open loop to the
soft regulation setting. The performances of the empirical estimate ,5’ , the robust estimate
Br, and the optimal value )~ are quite close. It is comforting to know that the social
influence present in the experiment was close to the optimum.

We expect the degree of social influence, a function of the opinion distance or a function
of time, to likely improve convergence. The B (d) profile estimated from experimental data
results in AMSE = 30%, which is not distinguishable from the performance of a constant
B. However, the optimal 3 profile 8y~ (d) with AMSE = 47% is significantly superior. The
performance of the optimal dynamic robust social influence S (t) is also listed in Table
(p- . Since we do not have evidence to suggest the subjects used a dynamic value for (3,
and the performance of B (d) is close to B , we assume that the subjects used the constant B

for the rest of our results.

Discussion There is a fundamental difference between vox populi and the soft regulation
mechanism proposed in this work. Even though both come under the umbrella of “collec-
tive intelligence,” the vox populi aggregates the wisdom of experts while the latter harnesses
the wisdom of learners (Section p- E[) Experts base their opinions on prior knowl-

edge. Such knowledge comes from experience and beliefs, which are unlikely to change.
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Figure 4.10: Monte Carlo simulation of the expected MSE time series.

74



CHAPTER 4. IMPLEMENTING SOFT REGULATION

Table 4.2: Optimal degree of social influence

Type Value AMSE
3 (observed) B =32% 29%
B (robust) B, = 23% 27%
B (MC, true optimum) Biic = 30% 29%
3 profile (observed) B(d) = exp(—0.011d) 30%
B profile (MC, true optimum) f3;o(d) = exp(—0.026d)  47%
Dynamic 8 (robust) Br(t) 39%

Table 4.3: The “Fitness Game” experiment results

Description Duration Crowd size (n) Horizon (T) Learning gain (§) Noise (6,) 72 Noise ratio Optimal 3 AMSE
The Fitness Game (Set B)  0-240s 39 30 0.75 60 0.97 5% 30% 29%
The Fitness Game (Set N)  0-240s 41 30 0.7 57 0.98 4% 32% 25%
The Fitness Game (Set S) 0-240s 9 30 0.65 51 0.98 3% 30% 17%

Independency and diversity of opinions prevent the “groupthink” behavior — undesirable
convergence of individual estimates [Sunstein and Hastie, 2014]. In this setting, social
influence, which violates independency, reduces the accuracy of the wisdom of crowds.

Learners, on the other hand, revise their decisions by interacting with the problem as
well as other learners. Consider, for example, flocking birds. The birds have to adapt to
changing weather; they gather local information, follow their closest neighbors, and revise
directions constantly [Reynolds, 1987]. In this collective learning environment, individuals,
like the flocking birds, are both respondents who generate new information, and surveyors
who poll their social networks to improve decisions.

It appears that a social influence degree of 30% is robust across many different scenarios.
In Table (p. , the optimal degree of social influence ranges from 30% to 32% for the
three sets of the “Fitness Game” experiment. Prior literature [Lim and O’Connor, 1995;
Harvey and Fischer, 1997; [Yaniv and Kleinberger, 2000 [Yaniv, 2004} |Soll and Larrick,
2009] also reports 30% to be the commonly observed degree of social influence on average.

Whether this value is a mere coincidence requires further investigation.
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The self-interested filtering of the feedback is key to ensuring the accuracy and efficiency
of the soft regulation mechanism. Individuals will reject the feedbacks that appear useless.
The experimentally observed magnitude of soft regulation is close to the theoretically pre-
dicted value for the optimal degree of social influence. This discovery suggests the promise
of soft regulation for challenging real-world problems that require collective learning and

action.

4.3 Local Regulation and Policy: U.S. State Tax and Expen-
diture Case Study

4.3.1 Background

There are 50 states in the U.S. (n = 50, or n = 51 if we consider the District of Columbia).
Individual states constantly revise their tax and expenditure policies to maximize the over-
all wellbeing (economic growth, political stability, etc.). In this case study, the policy or
strategy z; for the i-th state here is the percentage of a particular tax (or expenditure)
revenue from the total revenue (or spending). Such percentage reflects the relative impor-
tance of the tax/expenditure item. The main question we address here is whether one can

accelerate the convergence thereby making the crowd of fifty states “smarter.”

4.3.2 Results and Discussion

We apply the same control-theoretic analysis used in Section (p. to the state tax and
expenditure case study. Here the optimal taxation or expenditure policy 6* is unknown.
To compute the MSE, and subsequently carrying out the system identification, we assume
that the arithmetic mean of individual policies (i.e., the wisdom of crowds) has converged
to the optimum in the last decade. This is a reasonable assumption that resonates with
observations made by Galton and Surowiecki |Galton, 1907b; Surowiecki, 2005] as well as
our observations from the experiment (Fig. , p- . Another critical assumption we
are making here is that there exists a true optimal taxation/expenditure policy and it is
identical to all the states.

The results are displayed in Table (p. . We plot the time series of individual and

76



CHAPTER 4. IMPLEMENTING SOFT REGULATION

Table 4.4: U.S. optimal state tax and expenditure results

Description Duration ~ Crowd size (n) Horizon (T) Learning gain (§) Noise (6,,) 2 Noise ratio Optimal 5 AMSE
Total Gen Sales Tax (T09) 1946-2014 50 69 0.96 4 0.89 3% 35% 3%
Total License Taxes (C118) 1946-2014 50 69 0.97 0.82 0.89 0.4% 14% 34%
Alcoholic Beverage Lic (T20) 1946-2014 50 69 0.93 0.04 0.99 0.09% 20% 34%
Individual Income Tax (T40) 1946-2014 50 69 0.98 2.9 0.86 1% 14% 32%
Educ-NEC-Dir Expend (E037) 1977-2013 51 37 0.96 0.097 0.85 1% 28% 54%
Emp Sec Adm-Direct Exp (E040) 1977-2013 51 37 0.93 0.037 0.99 0.6% 11% 14%
Total Highways-Dir Exp (E065) 1977-2013 51 37 0.93 0.76 0.89 3% 31% 53%
Liquor Stores-Tot Exp (E107) 1977-2013 51 37 0.95 0.17 0.95 1% 42% 67%

crowd decision errors as well as MSE in Fig. (p. to Fig. (p. for four tax
cases and four expenditure cases. The learning gains (Definition p- of the states

are all very close to 1, i.e., in a noiseless setting, the convergence is very slow. A possible
explanation is that drastic change of tax and expenditure strategies is either prohibited
or discouranged. A larger noise (see e.g., T09 and E065) or a smaller learning gain (see
e.g., T20 and E65) calls for a larger optimal degree of social influence, which is consistent
with the results presented in Fig. m (p. . The improvement from soft regulation ranges
from 14% to 73%. Even a small improvement could make a significant difference in the

nation’s overall welfare.
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Figure 4.12: Optimal taxation: total license taxes (C118).

79



CHAPTER 4. IMPLEMENTING SOFT REGULATION

(&)
T

N

Percentage of total revenue
N w

[

0 sl
1950 1960 1970 1980 1990 2000 2010
Time (year)
251
2_
LT
I\
\
15
W |
g ;i
1 \[\
T
\
;
05F ﬁ%

0oL— ' e
1950 1960 1970 1980 1990 2000 2010
Time (year)

Figure 4.13: Optimal taxation: alcoholic beverage license taxes (T20).

80



CHAPTER 4. IMPLEMENTING SOFT REGULATION

D ~ (o]
o o o
T T 1

a1
o

w
o

Percentage of total revenue
S S

=
o

0 IS - : IR
1950 1960 1970 1980 1990 2000 2010

Time (year)

700

600 ¢

500

400

MSE

300

200

100

o 1 1 1 1 1 1 1
1950 1960 1970 1980 1990 2000 2010
Time (year)

Figure 4.14: Optimal taxation: individual income taxes (T40).

81



CHAPTER 4. IMPLEMENTING SOFT REGULATION

w B
w oA~ U
T 1

Percentage of total spending
= N
oo N o

o
ol

o

1985 1990 1995 2000 2005 2010
Time (year)

-
-
-

1980 1985 1990 1995 2000 2005 2010
Time (year)

Figure 4.15: Optimal spending: expense item “(E037) Educ-NEC-Direct Ex-

pend”.

82



CHAPTER 4. IMPLEMENTING SOFT REGULATION

B
N &
T I

=

o
o))

Percentage of total spending
o o
IN ™

o
N

0 1 1 1 1 .ll :
1980 1985 1990 1995 2000 2005 2010
Time (year)

0.3r
0.25
X
3

0.2 F |y

\

L 1
0 0.15 1
= AN

T

0.05}

iﬁiii%%Ei . £ _

-------- X e EsEES

1980 1985 1990 1995 2000 2005 2010
Time (year)

Figure 4.16: Optimal spending: expense item “(E040) Emp Sec Adm-Direct

2

Exp”.

83



18

[~ S T
N A O

Percentage of total spending
o
o

o N

30

25

20

A O ©

CHAPTER 4. IMPLEMENTING SOFT REGULATION

19I80 19I85 19‘9‘?‘im]égl(9y53ar2)060 20I05 20I10
gt
- e \%ﬁﬁﬁﬁﬁ‘%%ﬁﬁﬁﬂ

1980 1985 1990 1995 2000 2005 2010
Time (year)

Figure 4.17: Optimal spending: expense item “(E065) Total Highways-Dir Exp”.

84



CHAPTER 4. IMPLEMENTING SOFT REGULATION

~ (o] ©
T T 1

»
T

Percentage of total spending
N w AN a1

[

o

1080 1985 1090 1995 2000 2005 2010
Time (year)

MSE
N

1980 1985 1990 1995 2000 2005 2010
Time (year)

ool g

Figure 4.18: Optimal spending: expense item “(E107) Liquor Stores-Tot Exp”.

85



CHAPTER 4. IMPLEMENTING SOFT REGULATION

4.4 Multi-Product Revenue Management

4.4.1 Background

Consider the following multi-product pricing problem: A company like Amazon sells n
similar products. For the i-th product, the (noisy) demand curve d;(p;), i.e., how the market
reacts to the price of the i-th product p;, is unknown. The optimal price p; that maximizes
the expected revenue E[Fz(pz)] = p;E [CL] might differ from product to product (or from
market to market for the same product). How can we coordinate the individual revenue

management processes to maximize the cumulative revenue over a finite time horizon?

4.4.2 Model

We adopt the linear demand model and the pricing terminology from [Besbes and Zeevi,

2015].

Definition 4.2 (linear demand d; and its revenue 7;). Linear demand is a commonly used
model in economics:

di(pi) = di(pi) + vi = a; — cipi + v4, (4.20)

where the demand parameters a; and ¢; > 0 differ among products. Note that the actual
demand is subject to disturbances v; € N(0,02). The optimal price that maximizes the
expected revenue is p} = a;/2c¢;. We rewrite the expected revenue in terms of the decision

error z;(t) = p;(t) — p} as follows:

E[Fs(t)] = pi(t)d; (pi(t)),

=pi(t)(a; — cipi(t)),

::(an(t)%-pf)[ai-—th(aﬁ(t)4-P?)}7 (4.21)
_ x,(t)—i-;;l) [az ¢ <37i(t)+2acll>]7
__fi cizi(t)?

Definition 4.3 (regret v;). In revenue management, it is more common to use the regret

as a metric of performance. Regret is the difference between the current revenue and the
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maximum expected revenue based on the optimal price:

vi(t) = mng[Fi(t;p)] —E[Fi(Epi(t)] = cizi(t)? (4.22)

It represents the gain in revenue if the ¢-th product is priced optimally.
The average regret of the n products is a weighted MSE:

v(t) = %Z vi(t) = % Z cizi(t)?. (4.23)

If ¢; =~ ¢ values do not differ significantly from each other, we can approximate v(t) directly

as a function of MSE;, i.e., v(t) & ¢ MSE(t). The average revenue is a function of the average

regret: .
TCEED L
=y () + [ i) (), (4.24)
~yt—o(),

where y* = %Zl a?/4c; is the maximum expected average revenue and random variable
v(t) is identical to the previously defined v;(t). As n > 1, the term containing v(¢) can
be safely omitted. Similarly, the time average of cumulative revenue per product can be

approximated as

1 T-1 n
)= S e
nT 3o (4.25)
~y* - V(T),
where V(T') = Zt 0 ' u(t) is the time average of cumulative regret per product. Note that

one can only sample y(t) and Y (T') but not v(t) or V(T') at each time point ¢ = 0,1, 2,
or for each length of time T'=1,2,3,....
We first assume identical and linear learning function, i.e., g(x) = gz + w, and that ¢;

values are close, i.e., v(t) ~ ¢ MSE(t). We approximate the regret dynamics to be

v(t 4 1) = m?v(t) + (1 — B)3co2, (4.26)
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where m = (1 — 8)g + 8. Thus, we have the following equations:

L—m*)(1-B)* ,

v(t) =~ m*v(0) + cop,, (4.27)

e

y(t) =y" — (1), (4.28)
v~ e [ - L (1 - mz; (1-B)co?,  (429)
Y(T) = y* — V(T). (4.30)

Especially in the open loop setting where 5 = 0, one can shorten (4.29)) and (4.30)) above as

l—g

Y(T) ~ Yoo — T

A, (4.31)

where Yoo = y* — Voo, A = (v(0) — vs)/(1 = ¢?), and v = co2/(1 — g*). By fitting
Y (T') data observed for different time horizon T values, one can solve uniquely yoo, A,
and g. Unfortunately, v(0) and vy, are not linearly independent in those equations and
cannot be uniquely recovered from this method. In the next section, we will approach this

identification problem from analyzing price data.

4.4.3 Multi-Product Revenue Optimization Algorithm

Our algorithm is inspired by the Besbes-Zeevi (BZ) dynamic pricing model [Besbes and
Zeevi, 2015] and the James-Stein (JS) estimator [Stein, 1956; James and Stein, 1961} [Efron
and Morris, 1977]. In the context of soft regulation, the BZ model represents individual
open loop dynamics and the JS estimator introduces soft feedback.

The BZ model is straightforward (Algorithm |1}, p. : For the i-th product, the al-
gorithm first starts with an initial guess p;(0), then sets some new prices, observes the
demand, estimates the optimal pricing, and repeats. Before the algorithm advances to the
t-th stageﬂ the price has changed 2t — 2 times.At the ¢-th stage, the product manager now
sets two new prices. One is the current estimate of the optimal price p;(2¢—1) = p; (if this is

the beginning, the initial guess is used). The other is a perturbation to it p;(2t) = p; +d(t).

1'With an abuse of notation, we use ¢ to indicate the iteration number (or the t-th stage), instead of the
number of times when the price is set; similarly, T" here is the total number of stages. The 0-th stage marks

the initial guess.
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Algorithm 1 Besbes-Zeevi Dynamic Pricing Model
p;  pi(0)
fort=1,...,7 do

fori=1,...,n do
5« BZ(.)
end for
end for
function BZ(p}.t)
pi(2t — 1) = p;
pi(2t) = p; +4(t)
(Gi, &) — argming . Eztzl ~1-(7') - (a — Cpi(T)):| ’

return p} < min (p, max(p, 2aczZ )

end function

By linearly fitting all observed demands including the ones with newly set prices, one can
estimate the linear demand curve, thereby updating the estimate of the optimal price p;
(capped by the lower bound p and upper bound p). The algorithm repeats for T' stages
in total. The perturbation §(¢) shrinks with time with a step size coefficient p. For illus-
tration purposes, we follow the numerical example from [Besbes and Zeevi, 2015 and set
5(t) = pt=1/4,

The JS estimator describes a phenomenon that when estimating a set of random vari-
ables, one can improve the overall estimate by shrinking the individual estimators towards
their grand average [Efron and Morris, 1977]. For instance, the least mean square estimator
of the expectation of a single random variable is its sample mean. If the number of random
variables to be estimated is larger than two and performance of an estimator is measured
by its MSE, then the JS estimator would perform no worse than the sample mean. This
is an interesting result because the expectations need not be the same. They do have to
be close in order for the JS estimator to significantly outperform sample mean. The re-
semblance between the JS estimator and soft regulation makes us wonder if we can relax

the constraint of identical solution (Definition p.[6). Based on the result of Section
(p. , we propose Algorithm [2f (p. to improve the performance of Algorithm (1] (p.
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for multi-product revenue management.

Algorithm 2 Multi-Product Revenue Management with Soft Regulation
fort=1,...,7 do

U <= %2115;(
fori=1,...,ndo
pz % BZ(p'L’ )
end for
if ¢t > 3 then
fori=1,...,ndo
R B 2
(ki, ;) < arg miny, ZtT:ll |:pi(27' +1)— (kpi(QT - 1)+ s)}

J; < min (y, max(g, l;:))

9 < min (p, max(p, i = )))

(kiy 85) (9:, (1 — 9i)9z~)
62 — ZT 1 [p1(27 +1) - (]A{ipi(QT —1)+ 32)]2
end for
52— Ly 62
5 d 3 (0 -15,0)
o1(B) < ||(1 — B) diag (g1, ---,dn) + BE11T|,

- | 1=B)0utfo
B* + arg ming<g<1 (1*);771(5)06

fori=1,...,ndo
B (1= 6%)p; + B*u
end for
end if
end for

4.4.4 Results and Discussion

We include the numerical simulation results in Table 4.5 E p. . The simulation considers
the following three factors that affect the performance of Algorithm [2| (p. [00): number of

stages T', demand noise o, and step size p. The corresponding revenues are averaged over
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a set of 50 repetitions (£ reflects the standard error of the mean).

The demand curve used in this simulation follows [Besbes and Zeevi, 2015|, i.e., d; (pi) =
a; — c;p; + v; where a; ~U(0.8,1), ¢; ~U(0.2,1), and v; ~ N(0,02).

We measure the improvement with respect to the regret (Deﬁnition p- difference.
For instance, a regret difference AV(T') = 20.2% indicates that Algorithm [2] (p. reduces
the regret from Algorithm (p. by 20.2%. From this simple exercise, we find a significant
improvement in performance by partially setting prices towards the grand average. We plot

the revenue simulation and MSE time series for both algorithms in Fig. (p. and
Fig. [120] (0. B3).

Table 4.5: Multi-product revenue management simulation result

Revenue

p  Maximum Algorithm |1| Algorithm [2[ AV(T)

T=12 o0,=025 0.25 292 188 + 3 209 £3 20.2%
0.5 206 + 3 209+ 3 3.49%

o, =05 0.25 152+ 3 182+ 3 21.4%

0.5 175+ 3 194+ 3 16.2%

T=24 0,=025 0.25 o83 440 £ 7 472 £ 7 22.4%
0.5 454 + 7 455 £ 7 0.775%

o, =05 0.25 3576 418 £ 6 27.0%

0.5 398+ 7 428 £ 7 16.2%
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Chapter 5

Conclusion

This cross-disciplinary work addresses a simple yet important question: How could a group
collectively become better problem-solvers? Our analysis suggests that intelligent individ-
uals, solving the same problem (or similar problems), could do much better by adaptively
adjusting their decisions towards the population average. Both theory, simulations, and an
experiment with human subjects confirm the validity of our coordination mechanism. This
work conveys the following important messages.

First, we lay down both the theoretical and empirical grounds for improving collective
problem-solving processes. We illustrate the potential far-reaching impact of this work on
case studies involving regulation of emerging industry and business, health optimization,
optimal levels of U.S. state taxation and expenditure, and multi-product revenue manage-
ment. Even a small improvement, magnified by the scale of affected population or volume,
could have significantly promoted the overall welfare of a system.

Second, we quantitatively justify the unique and critical roles of social influence in
collective intelligence. Scholars have long regarded social influence as detrimental to the
accuracy of polls and other prediction instruments. And yet, we are relying on polling such
as online review systems evermore nowadays. The polls appear to be working in identifying
good options even though votes are correlated. Our model implies that social influence
helps self-interested individuals better solve optimization problems subject to uncertainty.

Third, we discover from our experiment with human subjects that the participants were

able to reach the theoretically predicted maximum performance by selectively filtering the
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average opinion. This discovery suggests a new coordination mechanism for enhancing
individual decision making. Potential applications of this mechanism include topics as
diverse as mobile health, taxation, and urban planning.

Fourth, this work extends multi-agent optimal control to include human behaviors.
It bridges engineering and social sciences in a way that can quantitatively describe the
collective dynamics of interacting and intelligent individuals. Such multidisciplinary effort
would have positive implications for both research communities. For it shows the possibility
of incorporating human decision-making in engineered systems. Techniques such as optimal
control would also be readily transferable to solving high-impact problems that have a strong
social significance.

Last but not least, to our best knowledge, this is the first time that a human subject
experiment was used to test a control-theoretic hypothesis. We faced many challenges in the
process such as designing the experiment and analyzing the data. Our methodology would

be helpful for future empirical research on multi-agent control in sociotechnical systems.
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APPENDIX A. AGENT-BASED SIMULATION WITH NETLOGO

Appendix A

Agent-Based Simulation with
NetLogo

|A.1|[NetLogo Simulation Environment| (p. [L05)) We briefly introduce the NetLogo

simulation environment here. This simulation exercise corresponds to the results discussed

in Section (p. p3).

|A.2|[Script “SR.nlogo”| (p.[106]) This single NetLogo script includes the model of the
agent-based simulation in Section (p. p3).
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A.1 NetLogo Simulation Environment

NetLogo offers a graphical user face for agent-based simulation (Fig. p- . This
object-oriented programming language is widely used for motion-based simulation such as
moving particles or flocking birds. Even though our simulation in Section (p. does
not involve actual movement, we chose NetLogo for its ease of coding and the capability
of handling a large number of parallel computations. The simulation interface can be

partitioned into two. The left panel contains all the parameters and controls. The right

panel contains all the plots.
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Figure A.1: NetLogo interface.
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APPENDIX B. AMAZON MECHANICAL TURK EXPERIMENT

Appendix B

Amazon Mechanical Turk

Experiment

[B.1|[Institutional Review Board| (p. [113) We include the institutional review board

(IRB) details here for conducting experiments with human subjects.

[B.2| [Amazon Mechanical Turk| (p. [116) We include the Amazon Mechanical Turk

details here such as the ad and sample result page.
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B.1 Institutional Review Board

This human subject experiment is approved by the Columbia University Institutional Re-
view Board. Included next are the approval letter and the information sheet of the experi-

ment.
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COLUMBIA UNIVERSITY
October 29, 2015 IN THE CITY OF NEW YORK

COLUMBIA INSTITUTIONAL REVIEW BOARD

Venkat Venkatasubramanian MORNINGSI DE OFFICE

ENG Chemical Engineering - 521100X
819 SW. Mudd
4721

Protocol Number: IRB-AAAQ2603
Title: Experiment to Test the Effectiveness of Soft Regulation with ""Crowd Recommendation”
Approval Date: 10/19/2015 Expiration Date: 10/18/2020

Dear Professor Venkatasubramanian,

On October 19, 2015, the Chair of the Columbia University Institutional Review Board (IRB) reviewed the above mentioned protocol and

determined that this research meets the criteria for exemption under category 2:

(2) Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), survey procedures, interview
procedures or observation of public behavior unless: (i) information obtained is recorded in such a manner that human subjects can be
identified, directly or through identifiers linked to the subjects; and (ii) any disclosure of the human subjects’ responses outside the
research could reasonably place the subjects at risk of criminal or civil liability or be damaging to the subjects’ financial standing,

employability, or reputation.

Therefore, this research is exempt from further IRB review in accordance with the Department of Health and Human Service (HHS)

regulations at 45 CFR Part 46.101(b)(2).

If you propose to change the protocol in any manner such that the criterialisted above no longer apply, you must submit a modification
with the proposed changes to the IRB for review and approval prior to the implementation of the revised protocol.

For tracking purposes, you will be required to submit an abbreviated status report to the IRB prior to the expiration date listed above. The
purpose of the submission is to confirm that the research is ongoing, which will facilitate accurate accounting at the University of all

active research projects involving human subjects.

If you have any questions, please call Gloria Gaines at (212) 851-7043.

Columbia University appreciates your commitment towards the ethical conduct of human research.
Sincerely,

Annie Barry

Assistant Manager
Human Research Protection Office (HRPO)-Morningside

Electronically signed by: Barry, Annie

615 West 131st Sereet, 3rd Floor  New York, NY 10027

212-851-7040  Fax 212-851-7044  hup://www.columbia.edu/cu/irb

Figure B.1: IRB approval letter.
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APPENDIX B. AMAZON MECHANICAL TURK EXPERIMENT

Columbia University in the City of New York
Institutional Review Board — Research Participant Consent Form

L

11.

I11.

1V.

VL

VIL

VIIL

Purpose of the research study

You ate invited to participate in a research study conducted by Yu Luo, Garud
Iyengar, and Venkat Venkatasubramanian. The purpose of this study is to understand
how certain information influences decision for a multi-player optimization problem.

What you will be asked to do
If you decide to be in this study, you will be asked to interact with an online interface.
Your participation in this study will take approximately 10 minutes.

Foreseeable risks or discomforts
There is minimal risk to participating in this study. You may feel anxious if game
score is low. You are free to withdraw from participation at any time.

Benefits

While there may be no direct benefit to you from participating in this study, the
indirect benefit of participating will be knowing that you helped researchers better
understand how people respond to certain feedbacks during decision making
processes.

Confidentiality

Any information provided by you will be kept in a password-protected Google Sheet.
All data collected from you will be coded with a random alpha-numeric value. Your
MTurk ID will never be recorded or shared.

Compensation

If you participate in the study and successfully complete all sessions, the researcher
will give you $0.50 to $5.00 based on your performance through your MTurk
account.

Voluntary nature of this research
Your participation in this study is completely voluntary. You do not have to do this,
and you can quit at any time.

Contact information
If you have any question about this research, you may contact
softeamequestions@outlook.com

Figure B.2: IRB information sheet.
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B.2 Amazon Mechanical Turk

Included below are the Amazon Mechanical Turk ad and result page. The payment rules

are described as follows:

e Reward = $1.25 base pay upon approval + bonus (up to $3.75) based on performance

e Combined scores of the open loop and closed loop settings are ranked within each
batch

e 35, $4, and $3 are awarded to the top 3 players

e $2 or higher if the player is ranked above the median

e $1.5 or higher if the player submits a valid confirmation code

Game begins at 2:15PM EST and lasts for 10 minutes only.

We will publish muitiple small batches (limited to 10 players each). Feel free to participate more than once.

Please read instructions (link below) carefully before starting the game.

When you are finished, return to this page and paste the confirmation code.

Based on ranking (instead of absolute score) of your performance in the last two game levels, you should expect to
receive between $1.25 and $5 of reward including bonus. Detailed payment rules are explained in debrief.

L RESERNI

There are known issues with Google Apps Script. Please expect a few-second lag between input and output. This happens to afl players so it won't
affect how much you get paid. If you believe there is an error that prevents you from continuing, please kindly provide a description (screenshat, error
message, your progress, etc.). Contact us through MTurk or email. We will respond i Email: i

Instructions: http://www.bit.ly/softgameins

Confirmation code: . | riuyzEucize

This game lasts for only 10 minutes. We welcome both new players and the regulars! Please enter the game precisely according to instructions.

| Delete |
Status: Pending
Review 88% submitted 100% published
Assignments Gompleted: 44 / 50 Average Time per Assignment: 35 minutes 59 seconds
Creation Time: December 03, 2015 6:16 AM PST Completion Time: December 03, 2015 7:56 AM PST
Results

Assignments pending review: 0

Assignments approved a4
Deseription: This game lasts for only 10 minutes. We welcome both new players and the Assignments rejected 0
’ regulars! Please enter the game precisely according to instructions
Keywords: survey, game, fun, real-time, collaboration, crowdsourcing, fitness game
Qualification Requirement:
Estimated Total Reward: $62.50
Estimated Fees to Mechanical Turk: $28.00 (fee detalls)
Number of Assignments per HIT: 50
Estimated Total Cost: $90.50
Reward per Assignment: $1.25 e ot ot only it il ll o gt e b
Cubmitad and reviewed

HIT expired on: December 03, 2015 6:46 AM PST
Assignment duration: 1 hour
Auto Approval Delay: 3 days

Figure B.3: Amazon Mechanical Turk.
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Appendix C

Online Experiment with Google

Apps Script

|C.1||Google Apps Script| (p. [118) We briefly introduce the Google Apps Script lan-

guage here. It was used to program the “Fitness Game” interface in Section (p. [65).

|C.2[[Script “Code.gs”| (p. [119)) This is the main code that includes the interactive

features of the “Fitness Game.”

|C.3|[Script “Engine.gs”| (p. [133) This is the main function that computes the fitness

level, score, feedback, etc.
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C.1 Google Apps Script

Google Apps Script (GAS) is a scripting language for light-weight application development
in the Google Apps platform. In the case of the “Fitness Game,” we used GAS to create
the game interface and Google Sheets to store data.

There are two scripts for the interface: “Code.gs” encodes the overall structure and
“Engine.gs” encodes the core computations and data processing.

There are two Google Sheets that the game operates on: “Dashboard” (not included in

this appendix) and “Data” (not included).
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Appendix D

Data Analysis with MATLAB

[D.1f[Script “readme.m”| (p. [139]) This is an inventory of the scripts, functions, and

important variables used for the data analysis in Section (p. . There are many scripts

used here. We only include the most important two in the following sections.

D.2|[Script “meanValue.m”| (p.[142) This script computes the average MSE from the

five replications within an experiment set. It also passes the processed data to “sysid.m”

for further system identification and optimal control procedures.

D.3|[Script “sysid.m”| (p. [149)) This script takes in the average MSE data and esti-

mate the learning function, noise, and social influence. It also estimates the optimal social

influence that would maximally reduce the expected cumulative MSE.
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