
Photonic Interconnects Beyond High Bandwidth

Ke Wen

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017

© 2017
Ke Wen

All Rights Reserved

ABSTRACT

Photonic Interconnects Beyond High Bandwidth

Ke Wen

The extraordinary growth of parallelism in high-performance computing requires

efficient data communication for scaling compute performance. High-performance

computing systems have been using photonic links for communication of large

bandwidth-distance product during the last decade. Photonic interconnection net-

works, however, should not be a wire-for-wire replacement based on conventional

electrical counterparts. Features of photonics beyond high bandwidth, such as trans-

parent bandwidth steering, can implement important functionalities needed by ap-

plications. In another aspect, application characteristics can be exploited to design

better photonic interconnects. Therefore, this thesis explores codesign opportunities

at the intersection between photonic interconnect architectures and high-performance

computing applications. The key accomplishments of this thesis, ranging from system

level to node level, are as follows.

Chapter 2 presents a system-level architecture that leverages photonic switching

to enable a reconfigurable interconnect. The architecture, called Flexfly, reconfig-

ures the inter-group level of the widely-used Dragonfly topology using information

about the application’s communication pattern. It can steal additional direct band-

width for communication-intensive group pairs. Simulations with applications such

as GTC, Nekbone and LULESH show up to 1.8x speedup over Dragonfly paired with

UGAL routing, along with halved hop count and latency for cross-group messages.

To demonstrate the effectiveness of our approach, we built a 32-node Flexfly proto-

type using a silicon photonic switch connecting four groups and demonstrated 820 ns

interconnect reconfiguration time. This is the first demonstration of silicon photonic

switching and bandwidth steering in a high-performance computing cluster.

Chapter 3 extends photonic switching to the node level and presents a recon-

figurable silicon photonic memory interconnect for many-core architectures. The

interconnect targets at important memory access issues, such as network-on-chip

hot-spots and non-uniform memory access. Integrated with the processor through

2.5D/3D stacking, a fast-tunable silicon photonic memory tunnel can transparently

direct traffic from any off-chip memory to any on-chip interface – thus alleviating

the hot-spot and non-uniform access effects. We demonstrated the operation of our

proposed architecture using a tunable laser, a 4-port silicon photonic switch (four

wavelength-routed memory channels) and a 4x4 mesh network-on-chip synthesized

by FPGA. The emulated system achieves a 15-ns channel switching time. Simula-

tions based on a 12-core 4-memory model show that for such switching speeds the

interconnect system can realize a 2x speedup for the STREAM benchmark in the

hot-spot scenario and a reduction of execution time for data-intensive applications

such as 3D stencil and K-means clustering by 23% and 17%, respectively.

Chapters 4 explores application-level characteristics that can be exploited to hide

photonic path setup delays. In view of the frequent reuse of optical circuits by many

applications, we proposed a circuit-cached scheme that amortizes the setup overhead

by maximizing circuit reuses. In order to improve circuit “hit” rates, we developed

a reuse-distance based replacement policy called “Farthest Next Use”. We further

investigated the tradeoffs between the realized hit rate and energy consumption.

Finally, we experimentally demonstrated the feasibility of the proposed concept using

silicon photonic devices in an FPGA-controlled network testbed.

Chapter 5 proceeds to develop an application-guided circuit-prefetch scheme. By

learning temporal locality and communication patterns from upper-layer applications,

the scheme not only caches a set of circuits for reuses, but also proactively prefetches

circuits based on predictions. We applied this technique to communication patterns

from a spectrum of science and engineering applications. The results show that

setup delays via circuit misses are significantly reduced, showing how the proposed

technique can improve circuit switching in photonic interconnects.

Contents

List of Figures iv

List of Tables x

Acknowledgements xi

1 Introduction 1

1.1 Communication Requirement within HPC 1

1.2 The Memory Wall in Post Moore’s Law and Many-core Era 3

1.3 Photonic Interconnects . 5

1.4 Beyond Just High Bandwidth . 6

Part I: Leveraging Photonic Switching 9

2 Photonics Enabled Flexible Topology – A Dragonfly Example 10

2.1 Motivation . 10

2.2 The Dragonfly Topology . 11

2.3 Traffic Characterization on Dragonfly 12

2.4 Flexfly: A Reconfigurable Dragonfly 14

2.5 Link Stealing Algorithm . 19

2.6 Routing in Flexfly . 20

2.7 Simulation . 22

i

2.8 Experimental Demonstration . 25

2.9 Large-Scale Implementation and Cost 30

2.10 Power Penalty Analysis . 32

2.11 Related Work . 34

2.12 Summary . 36

3 Reconfigurable Memory Interconnect for Many-core Processors 37

3.1 Motivation . 38

3.2 Integrated Photonic Memory Interconnect for Reconfigurability . . . 41

3.3 Optimizing Core-Memory Affinity . 42

3.4 Alleviating Hotspots . 44

3.5 Performance Evaluation . 45

3.6 Hardware Demonstration . 52

3.7 Summary . 57

Part II: Avoiding Path Setup Overhead 58

4 Reusing Optical Circuits in HPC Applications 59

4.1 Motivation . 60

4.2 Source of Delays in Silicon Photonic Links 62

4.3 A Reuse Distance Based Approach 63

4.4 Profiling Circuit Reuse Distance . 64

4.5 Predicting Circuit Reuse Distance . 66

4.6 Optimizing Circuit Replacements . 68

4.7 Energy Consumption Tradeoff . 70

4.8 Experimental Demonstration . 73

4.9 Summary . 77

5 Prefetching Optical Circuit for Further Latency Avoidance 79

ii

5.1 Motivation . 79

5.2 Circuit Prefetch Using Application-specific Predictors 80

5.3 Performance Evaluation . 83

5.4 Summary and Discussion . 89

6 Conclusion and Remarks 91

7 Future Work Recommendations 93

7.1 On Reconfigurable Networks . 93

7.2 On Setup Delay Avoidance . 94

Bibliography 96

Appendix: Relevant Author Publications 111

iii

List of Figures

1.1 Diverse communication patterns of the “Seven Dwarf” applications identi-

fied by Phillip Colella [8] and a group of experts from Berkeley [9]. Figure

compiled from [9], [10]. 2

1.2 (left) Cache size normalized by GFLOPS. (right) Normalized cache area. 4

1.3 (left) Absolute off-chip memory bandwidth. (right) off-chip byte per

FLOP ratio. 4

1.4 Microring-based silicon photonic link. 5

1.5 (a) Rewiring links or steering bandwidth using a circuit switch. (b) Pho-

tonics enabled flexible topologies. 7

2.1 (a) A six-group Dragonfly, all-to-all both inter- and intra- group. (b)

Connectivity matrix. 11

2.2 Group-to-group traffic matrices of applications run on a 32-group Drag-

onfly. 13

2.3 Construction flow of the Flexfly architecture. 15

2.4 Representative ETM’s from applications using the three association strate-

gies; here switch radix r = 8, hence ETM size is 8× 8. 18

2.5 Decomposition of an example ETM into three switching modes (r = 8). . 20

2.6 Global link allocation with switch radix r = 8 (upper) and r = 32 (lower).

Note that the color scales are differnet across sub-figures. 22

iv

2.7 (Top) Speedup of Flexfly (r = 2, 4, 8, 16, 32) with various routing mecha-

nisms over Dragonfly with minimal routing (normalized to 1.0x). (Middle

and bottom) Hops and latencies of cross-group messages. Val and UGAL

are used on Dragonfly. Min-Val and Min-UGAL are used on Flexfly. . . . 25

2.8 (a) Socketed switch chip mounted on a PCB; (b) Bar and cross configu-

rations for ports 1 and 4 in the six-MZI Benes switch. 26

2.9 (a) 32-node Flexfly prototype and (b) corresponding topology diagram

(2×2×4); (c) Comparing round trip time over 8 pairs of servers (each pair

in different groups), in Dragonfly or Flexfly configurations. 27

2.10 Silicon photonic switch setup time for (a) bar and (b) cross states. 28

2.11 (a-d) Measured throughput of servers in a data transfer between G1 to G4

and G2 to G3. G: group, R: router, S: server. Throughput is higher in the

Flexfly-adapted configuration (bar state) as two global links are awarded

to each of the above group pairs. 29

2.12 Demonstration of on-the-fly reconfiguration across the Flexfly prototype.

Reconfiguration is performed at second 15 approximately and one extra

global link is provided between the two groups. 29

2.13 (a) Organization of cables within Flexfly. For clarity only the links orig-

inated in the highlighted set of groups are shown. These r(G − 1) links

first connect to a Flexfly blade located in the middle of the row (in or-

ange). From there, r(r− 1) connect back to the same row (in blue), while

(G
r
− 1)r2 links are distributed across the remaining groups (in green), (b)

32-node Flexfly prototype snapshot. 31

2.14 (a) Structure of a 2×2 MZI-based switch. (b) Thru and Cross transmission

as a function of phase shifter loss. (c) and (d) are schematics of the switch

in Cross and Bar states. 33

v

2.15 (top) 4×4 Beneš and Omega topologies based on optimized 2×2 switches.

(bottom) Worst-case of insertion loss and crosstalk for all possible map-

pings from the input ports to the output ports. 33

3.1 A many-core multi-memory architecture using a SiP demux as reconfig-

urable memory fabric. Dashed red path: 10 hops on NoC; solid red path:

1 hop only. 39

3.2 A 2.5D stacking solution using a Silicon interposer with an embedded

active Silicon photonic interconnect. 41

3.3 Architectural benefit of SiP switch: alleviating hotspots (left) and opti-

mizing core-memory affinity (right). 43

3.4 Simulated 12-core 4-MC architecture in ring and mesh configuration. . . 45

3.5 Execution time of STREAM with different kernels (read, copy and

TRIAD), under fixed or TDM-switched memory connection modes. . . . 46

3.6 (a) Respective memory request latencies of 12 cores (in mesh topology)

under fixed vs. TDM modes, request size = 64B; (b) Mean memory

request latency across all 12 cores. 48

3.7 Execution time of various STREAM kernels using native or affinity-

optimized memory interfaces. 49

3.8 Run time of streamcluster with fixed and reconfigurable (TDM) mem-

ory connections . 51

3.9 Execution time of 3D-stencil, under fixed or TDM-switched memory con-

nection modes. 52

3.10 (a) Many-core multi-memory testbed based on a fast tunable laser, a SiP

wavelength demux and an OpenSoC NoC. (b) Chip image with probes

landed and fiber array attached. (c) Measured eye diagrams. 53

3.11 Experimental demonstration of time-sequenced switching diagrams with

a channel switching time of 15 ns. 54

vi

3.12 OpenSoC switch fabric outputs showing four cores simulatenously receiv-

ing memory data from four memory interfaces 55

4.1 Distribution of reuse distances for HPC benchmarks (64 nodes). Each bin

corresponds to a range between its own label (included) and the next label

(excluded), same below. 65

4.2 Distribution of reuse distances for HPC benchmarks (256 nodes); 512

nodes for LULESH. 65

4.3 Distribution of time-based reuse distances for HPC benchmarks (64

nodes). For miniMD, GTC and HPCCG, a high percentage of circuit

reuses are within 16 µs. 66

4.4 Example for Transition Matrix Based Preditor. Upper: reuse distance

sequence of a circuit. Lower: modeling of the sequence transition using

a Markov chain. Each state of the Markov chain corresponds to a bin in

the distribution histogram. 68

4.5 Reuse distance prediction accuracy of Transition Matrix Based Preditor

(TMBP) versus Maximum Likelihood Based Predictor (MLBP), across

different benchmarks and different numbers of nodes. TMBP shows as

much as 40% and 36% higher accuracy than MLBP in cases of miniMD

and HPCCG, respectively. 68

4.6 Circuit hit rates (64 nodes) for replacement policies: LRU, Farthest Next

Use and Minimum Reuse Score, across different benchmarks. 71

4.7 Circuit hit rate (256 nodes) for replacement policies: LRU, Farthest Next

Use and Minimum Reuse Score. 512 nodes for LULESH. 71

4.8 Circuit hit rate (geometric mean of all benchmarks except LULESH) when

maximum vacant time is set to infinity, 1 ms and 1 µs. 72

vii

4.9 Energy consumption of circuits versus maximum vacant time. Left: max

circuits per node = 6, Right: max circuits per node = 16. All energy

values are normalized to the infinite-vacant-time case. 73

4.10 Experimental setup for dynamic WDM circuit reconfiguration (Only one

switch to demultiplexer path is shown). 75

4.11 Left: optically-switched WDM data: (i) 1550 nm and (ii) 1552 nm through

one path of the 2x2 MZI switch; (iii) 1550 nm and (iv) 1552 nm through

the other path of the switch. Right: optical eye patterns of modulated data. 76

4.12 (a) Optical circuit switching latencies detected using a high speed digital

communications analyser. The bottom waveform is the electrical driving

signal, and the top waveform is the optical output of the switch. (b-c)

Rise and fall times measrued from 10-90%, the fall time is slower because

of free-carrier lifetime. (d) demux thermal wavelength locking latencies.

Time is on the x-axis and a set of wavelength shifts is located on the right.

The ramp waveform shows the time it takes for the output heater voltage

to stabilize to the wavelength offsets. 76

5.1 A sequence of destinations that a rank of a parallel Adaptive Mesh Re-

finement application communicates to. The blue arrows indicates charac-

teristic predecessor (90) - follower (84, 55, 114) patterns. 81

5.2 Circuit hit rates achieved by the caching-plus-prefetch scheme (dashed)

with different tail lengths k, versus the caching-only scheme (solid), in a

256-rank simulation. Both schemes employ the least recently used replace-

ment policy. 85

5.3 Prefetch efficiency against different tail lengths k. The prefetch efficiency

is a percentage of prefetches that result in a hit, out of the total prefetches. 87

viii

5.4 Message latency of caching-plus-prefetch scheme (dashed) with different

tail lengths k, versus the caching-only scheme (solid), in a 256-rank sim-

ulation. Both schemes use the least recently used replacement policy.

Circuit setup latency is 100 ns, circuit bandwidth is 100 Gb/s. 88

ix

List of Tables

2.1 Quality of association with G = 32, r = 8 17

2.2 Application size and parameters . 23

2.3 Content of Flexfly racks . 31

3.1 Routing latency (clocks) from port (0, 0) to port (X, Y) in unit of clock

cycles . 56

3.2 Breakdown table of latency, and scaling the emulator by a factor of 10 . 56

5.1 Description of benchmarks used in the simulation and their communica-

tion features (numbers mearsured at 256 ranks). 83

x

Acknowledgements

I would like to thank my advisor, Professor Keren Bergman, for advising my PhD

study. Without her support and guidance, I would not be able to work in such an

interesting field.

I also want to acknowledge US Department of Energy, Sandia Nation Labs and

Lawrence Berkeley Lab for sponsoring my research. Special thanks to Jeremiah Wilke

and John Shalf who led me into the core of high performance computing and provided

valuable comments.

To my colleagues in Lightwave Research Lab, I owe them a lot for the generous

help in all aspects. I would like to thank Sébastien Rumley, David Calhoun, Payman

Samadi, Christine Chen, Hang Guan, Meisam Bahadori, Yiwen Shen and many others

for their collaboration and contribution in my research projects.

I would also like to thank all the members in the dissertation committee, Professor

Keren Bergman, Professor Luca Carloni, Professor Michal Lipson, Professor Vishal

Misra, and John Shalf.

xi

Chapter 1

Introduction

1.1 Communication Requirement within HPC

The performance of extreme-scale high-performance computing (HPC) systems relies

heavily on the interconnection network as concurrency increase results in massive

data exchange between network endpoints [1]–[4]. Designing networks that properly

balance compute capability is challenging: over-provisioning the network incurs un-

necessary cost [5], while under-provisioning negates the benefits of extra concurrency.

A relatively simple way to denote the computer capability is the number of float-

ing point operations per second (FLOP/s), measured by the LINPACK benchmark.

Since the stall of clock frequency around 2004 [6] due to the end of Dennard Scaling

[7], increasing the number of cores has been the new driving force for performance

improvement. By decomposing a problem to a larger number of “workers”, reduction

of total execution time is expected. The reduction, however, is often disproportional

to the core increase, as parallelism implies communication. With the extraordinary

growth in parallelism at all system scales, the performance of today’s systems is in-

creasingly determined by how data is communicated among the numerous compute

resources rather than by the total raw computation resources available. Assuming

1

BIPSBIPS P2P Topology Overview

0

Max

T
o
ta

l
M

es
sa

g
e

V
o
lu

m
e

BIPSBIPS P2P Topology Overview

0

Max

T
o
ta

l
M

es
sa

g
e

V
o
lu

m
e

Figure 1.1: Diverse communication patterns of the “Seven Dwarf” applications iden-
tified by Phillip Colella [8] and a group of experts from Berkeley [9]. Figure compiled
from [9], [10].

a 0.01 byte/FLOP node verbosity, i.e. each node injects 0.01 byte of data into the

network per FLOP, a future exascale supercomputer (1018 FLOP/s) will require 10

PB/s data movement capability. This number is about three orders of magnitude

higher than today’s global Internet bandwidth usage (about 28 TB/s, 2015).

The need for high bandwidth is not the only aspect. In HPC, the application

communication pattern can be highly diverse. In 2004, Phillip Colella [8] identified

“seven dwarfs” – seven numerical methods important for scientific computing – which

have distinctive communication patterns [9], [10] (see Fig. 1.1). In production runs,

the patterns can further diverge due to different domain decomposition strategies,

mapping strategies, communication algorithms, etc. Such diversity poses a big chal-

lenge to interconnect design, since having a single topology that works well for all

applications is almost impossible. Over the last decade, the interconnect topology

has seen a transition from multidimensional torus (as in IBM BlueGene/P and Blue-

Gene/Q) to Dragonfly (as in Cray XC series). While each generation works best for

a certain class of applications – for example, the BlueGene 5D torus for neighbor

intensive applications and the Cray Dragonfly for all-to-all applications like FFT –

they often fail to do so for another class. It is thus desirable to have a reconfigurable

network that can create different topologies for different applications – just as how

reconfigurable computing (like FPGA) adapt for heterogeneous compute needs.

2

1.2 The Memory Wall in Post Moore’s Law and

Many-core Era

The critical role of memory in computing roots in the long-live von Neumann model,

where the memory acts as the source and sink of the processing unit. When the flow

injection or egression gets congested, the processing unit will have to stall. Memories

in exascale have an even higher bandwidth demand than the system interconnect for

its higher byte-per-FLOP ratio (0.1 byte/FLOP in general). That is, an exascale

machine will need 100 PB/s memory access bandwidth in total.

Due to the lag-behind of DRAM performance scaling as compared to transistor

performance scaling, there has been a “memory wall” in the last two decades. A

major remedy for this has been putting more caches on the processor chip, which is

enabled by Moore’s Law scaling. However, Moore’s Law is ending as we enter the

last years of shrinking transistors. Chip designers will thus have to use the available

transistors more effectively. One may interpret a few already signs of this trend.

As shown in Fig. 1.2, area devoted to cache on a supercomputer processor chip is

decreasing, both in terms of (a) MB per FLOP/s and (b) normalized chip area –

cache size (MB) × features size (nm2) / die size (mm2). Especially, a sharp fall is

clear as the industry gets into the many-core era (around 2013). Interestingly, this

cache cliff matches the time when Moore’s Law was said to be dead in the economic

sense – starting from 2013, the number of transistors bought per dollar has stayed

flat. The fact that chipmakers are willingly trading the cache area for more FLOPs,

along with the rise of data-centric throughput computing, calls for much higher off-

chip memory bandwidth. Fig. 1.3 shows this trend: the sharp increase of the off-chip

memory bandwidth matches the cache cliff of Fig. 1.2. This increase, however, is still

not enough to balance the FLOPS increase as the bytes per flop ratio continues to

drift away from the ideal point.

3

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Cache	Size	(MB)	Per	GFLOPS	

Xeon	X5670	(Tianhe)	

IBM	Power7	

IBM	BQC	(Sequoia)	

AMD	Opteron	6274	(Titan)	

Intel	Xeon	E5-2692	v2	(Tianhe-2)	

KNC/Intel	Xeon	Phi	

KNL	(Cori)	

SW26010	(Sunway	Taihu	Light)	
0	

10	

20	

30	

40	

50	

60	

70	

80	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Normalized	Cache	Area	

cache size (MB) × feature size (nm2) / die area (mm2) MB Per GFLOPS

Figure 1.2: (left) Cache size normalized by GFLOPS. (right) Normalized cache area.

0	

100	

200	

300	

400	

500	

600	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Off-Chip	Memory	Bandwidth	(GB/s)	

Xeon	X5670	(Tianhe)	

IBM	Power7	

IBM	BQC	(Sequoia)	

AMD	Opteron	6274	(Titan)	

Intel	Xeon	E5-2692	v2	(Tianhe-2)	

KNC/Intel	Xeon	Phi	

KNL	(Cori)	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Memory	Bandwidth	Per	GFLOPS	(Bytes/Flop)	

GB/s byte per flop

Figure 1.3: (left) Absolute off-chip memory bandwidth. (right) off-chip byte per
FLOP ratio.

The memory bandwidth increase is also rapidly stressing the pin count limit of the

processor package. For example, KNL requires 3647 pins in the socket, plus 1024 pins

in the interposer for each of the eight on-package memory stacks. The pin density

of standard chip package, however, cannot scale indefinitely. The ever-increasing

bandwidth demand thus requires a more efficient chip I/O technology for processors

beyond the Moore’s Law.

There is more to this grim description. As many-core architectures start to get

widely adopted, effects such as hotspots and non-uniform-memory-access (NUMA)

emerge as a result of using network-on-chip to access memory [11]. These effects, in

addition to the bandwidth bottleneck, place a detrimental scaling barrier to data-

intensive computing. Moreover, they require careful designs that can accurately de-

4

Germanium Photodetector

Microring
Modulator

Bus Waveguide

Optical Die

Multiwavelength
Laser Source

Single-Mode
Fiber

Data

Germanium Photodetectors

Microring
Filter Bus Waveguide

Multiwavelength
Laser Source

Optical Die

Data

SiP Interconnect

2x2 Microring Switch

Figure 1.4: Microring-based silicon photonic link.

liver the bandwidth to where needed, rather than purely increasing the memory

bandwidth in a brute-force way.

1.3 Photonic Interconnects

Optical interconnects have emerged as a promising technology for large-scale systems

as they can support transmission of very high data rates in an energy-efficient manner.

By using wavelength division multiplexing (WDM), a single optical fiber or waveguide

can transmit tens of independent channels achieving terabit/s aggregate bandwidth.

In addition, due to the low loss of the optical medium, the high bandwidth data

movement can scale over warehouse distances and provide end-to-end connectivity in

a distance-agnostic manner. Photonic interconnects thus have the potential to satisfy

the bandwidth demand for exascale.

Silicon photonic technology, in particular, presents a potential platform for real-

izing photonic components in a cost-effective manner. The technology uses silicon

rather than conventional materials as the core transmission medium. It thus allows

the formation of optical communication devices (including modulators, switches, fil-

ters, detectors, etc.) in the same materials and process platform as used in the

complementary metal oxide semiconductor (CMOS) industry [12]. This capability

brings many advantages, including small device footprints, low power consumption

and the potential for low-cost large-scale integration.

5

Fig. 1.4 shows a silicon photonics link. It consists of modulators, switches, wave-

length demultiplexer and photo detectors. Modulators are usually based on a ring

structure. By tuning the ring’s resonance on or off with respect to the laser wave-

length, on-off keying can be implemented. For fast modulation, mechanisms that

change the carrier density within the optical mode are often employed, including

carrier injection, depletion and accumulation [13]. The carrier density changes the

refractive index of the waveguide and hence the resonance wavelength of the ring. By

cascading multiple rings on the same waveguide working on different resonance, WDM

transmission is possible. In this case, each ring modulates a different wavelength.

At the reception side, a wavelength demultiplexer is required to separate the

wavelengths, i.e. dropping them at different ports. The demux can be also based on

the ring structure. Different from modulation, the tuning of the demux (as well as any

other switching devices) might not need to operate as fast. Thermal tuning methods

are thus widely employed. Heating or cooling the ring will change its dimension,

hence the distance experienced by light and hence the resonance.

1.4 Beyond Just High Bandwidth

Due to the lack of practical buffers in the optical domain, current high-performance in-

terconnection networks employ optical interconnects to transmit data while electronic

routers are used for switching and routing. While these designs resolve the bandwidth

× distance problem, they require multiple optical-electronic-optical (O/E/O) conver-

sions at the interfaces. As the power consumption of the electronic switching and the

O/E/O interfaces scale poorly with the increased serial data rate, such switch de-

signs might not be able to scale in a power efficient manner to address the growing

communication needs of HPC.

As an alternative solution, electronically controlled optical switching (Fig. 1.4),

6

	

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

X X X

Bandwidth steering (bandwidth A-B steered to A-C)
based on physical rewiring Bandwidth steering based on circuit switches

(a)

Insertion of multiple
low-radix SiP switches

Fixed Dragonfly One of many Flexfly instances!

(b)

Figure 1.5: (a) Rewiring links or steering bandwidth using a circuit switch. (b)
Photonics enabled flexible topologies.

in which the data signals remain primarily in the optical domain, have been proposed

and demonstrated [14]–[18]. In these photonic switches, the energy consumption is

essentially decoupled from the data rate [19] and can therefore scale in an energy ef-

ficient manner. Moreover, the switches can provide bandwidth steering (i.e. dynamic

rewiring) functionality for their electrical clients. See Fig. 1.5a for a simple example

based on a 2-by-2 switch. We can hence utilize this bandwidth steering/rewiring fea-

ture to reconfigure network topologies for the diverse communication requirements,

covering, for example, both all-to-all and neighbor-intensive patterns (Fig. 1.5b).

Part I of this thesis (“Leveraging Photonic Switching”) will explore this direction in

the context of system interconnect (Chapter 2) and memory interconnect (Chapter

3), respectively.

Another feature of photonic interconnects beyond just bandwidth is its end-to-end

connectivity. In a network with node-to-node optical connections, energy dissipation

7

due to electrical packet switching can be eliminated, and network architecture flat-

tened. However, due to the circuit switched nature, such network may suffer from

path setup time. Part II of this thesis (“Avoiding Path Setup Overhead”) develops

remedy approaches for this aspect by observing and leveraging application-level char-

acteristics. Chapters 4 and 5 present passive and active latency-hiding techniques,

respectively.

8

Part I:

Leveraging Photonic Switching

9

Chapter 2

Photonics Enabled Flexible

Topology – A Dragonfly Example

2.1 Motivation

The Dragonfly network [20], [21] has emerged as a low-diameter, high-radix solution

for HPC interconnects. A Dragonfly has two levels: in the lower level, intra-group

routers are connected in local networks called groups, usually in an all-to-all or 2D-

flattened butterfly (2D-FB) topology [22]; in the upper level, groups are connected

through an all-to-all or high-degree topology.

With its high-connectivity at both levels, Dragonfly can greatly reduce the net-

work diameter over topologies such as multidimensional torus or fat tree. A Dragonfly

can connect any two routers within a distance of 5 if the intra-group network is a

2D-FB or a distance of 3 if an all-to-all network. A price for the high-connectivity,

however, is diluted per-link bandwidth. In particular, the bandwidth of inter-group

(global) links, carrying all the traffic between two large sets of routers, becomes the

most scarce resource and can become bottleneck for the entire network [23]. Many

scientific applications on a Dragonfly platform, unfortunately, tend to concentrate

10

(a)

Group
size

Number of groups

Intra-group
connections
(here: all-to-all)

Inter-group
connections

Connectivity
between
two groups
(only one
connection)

Router
topology

size

(b)

Figure 2.1: (a) A six-group Dragonfly, all-to-all both inter- and intra- group. (b)
Connectivity matrix.

traffic on only a few of these links. +1/-1 neighbor-group based communication

pattern, for example, is prevalent for many applications (detailed later). Moreover,

inter-group traffic matrix is often sparse, leading to bandwidth allocated for idle pairs.

Ideally, total available bandwidth should be allocated where most needed. Being

a fixed topology, however, Dragonfly can only try to achieve this through global or

adaptive routing. Numerous routing strategies [20], [24]–[29] have been proposed, but

they result in longer-distance paths and cross-group interference [30]–[32].

2.2 The Dragonfly Topology

Dragonfly is a direct topology that partitions S routers into G groups. Figure 2.1a

illustrates a six-group Dragonfly. Each router is connected to C compute nodes (not

shown in the figure), enabling a direct network of N = C ∗ S total compute nodes.

Links in Dragonfly are segregated into two tiers. Bottom-tier links connect routers

of the same group, they are thus local, intra-group links. Top-tier links go over

group boundaries and are thus global, inter-group links. There are no strict rules

for the intra-group topology. For groups composed of a small number of routers

11

(e.g. n < 20), an all-to-all topology is practical. For larger groups, a 2D-Flattened

Butterfly (2D-FB) [33] is generally retained, meaning that routers form a 2D lattice

and are fully-connected in each row and column. As for the upper tier, the groups

are usually fully connected. That is, the global links are disposed such that any

pair of groups are connected by k links. Each group thus has k(G− 1) outgoing and

incoming links. To allow a balanced distribution of the links over the n routers within

a group, k(G− 1) should be a multiple of n. In the simplest (“canonical” Dragonfly),

k = 1 and n = G− 1, and each router within a group is a gateway to one particular

remote group. The total number of routers is then S = G(G− 1), while the number

of global links is the same. If an all-to-all intra-group topology is used, there are

G(G − 1)(G − 2) intra-group links; for a 2D-FB intra-group topology, the number

is 2G(G − 1)(
√
G− 1 − 1). The number of intra-group links exceeds the number of

inter-group links by a factor of O(G) for all-to-all or O(
√
G) for 2D-FB.

A key feature of Dragonfly topologies is their strictly bounded diameter. In the

worst case, a message towards another group must i) route to the corresponding

gateway within the source group, ii) traverse the global link, and iii) route to the

destination router within the destination group. The diameter D of Dragonfly thus

equals 1+2Dintra, where Dintra is the diameter of the intra-group topology. Hence, if

the intra-group network is all-to-all, then D = 3; if the intra-group network is 2D-FB,

then D = 5.

2.3 Traffic Characterization on Dragonfly

Although Dragonfly has many advantages as mentioned above, its bandwidth alloca-

tion at the inter-group level can consistently mismatch the executed traffic pattern.

In Fig. 2.2(b-f), group-to-group (G2G) traffic matrices are collected from a set of rep-

resentative HPC applications. The figures show that G2G traffic matrices are far from

12

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10

11
1e+kGTC Nekbone LULESH

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10
1e+kMiniFE FillBoundary

Figure 2.2: Group-to-group traffic matrices of applications run on a 32-group Drag-
onfly.

being uniform and many pairs of groups do not communicate at all (black regions).

Also apparent: a large portion of traffic concentrates on just a few source-destination

pairs, e.g. +1/-1 neigbors.

Among these evaluated applications, GTC (Gyrokinetic Toroidal Code) [34], [35]

is a particle-in-cell simulation for plasma microturbulence and features neighbor-

intensive point-to-point communications. The most distinguishing feature of GTC is

(cyclic-shifted) diagonal lines with the heaviest traffic on the +1/-1 neighbor groups,

which is also referred to as the “worst-case” adversarial traffic pattern for Dragonfly.

Nekbone represents the main computational kernel of Nek5000 [36], an application for

large eddy simulations and direct numerical turbulence simulations based on spectral

element methods. The Nekbone kernel studied in this paper solves a Poisson equation

using conjugate gradient iteration with no preconditioner. In addition to intensive

traffic along the diagonal, Nekbone also has a complement (anti-diagonal) pattern

13

due to collectives. LULESH [37] is a proxy-app representing typical hydrocodes. In

this paper, LULESH partitions the problem into a collection of volumetric elements

defined by a 3D mesh and features 3D neighbor based communications. LULESH

has a thick ribbon-shape pattern along the diagonal. MiniFE is a Finite Element

mini-app from the Mantevo suite [38]. It assembles and solves a sparse linear system

from a conduction equation using a conjugate-gradient algorithm. Its traffic pattern

is characterized by an absence of diagonal lines. Lastly, FillBoundary is a simple

code designed to profile communication patterns associated with ghost cell exchanges.

We simulated the halo update of a BoxLib-based [39] production partial differential

equation (PDE) solver. FillBoundary has an irregular traffic matrix and induces

traffic between about half of the group pairs (with the heaviest traffic concentrated

on a few pairs).

For many applications like the above ones, the traffic pattern is known a-priori.

This information can be used for configuring the interconnect at, for example, job

launch time. For other applications that are more dynamic, an iterative aspect usu-

ally exists in traffic patterns, and the runtime middleware should easily be able to

characterize network traffic based on the first few iterations and then perform the

reconfiguration.

2.4 Flexfly: A Reconfigurable Dragonfly

We propose Flexfly, a silicon photonics (SiPh) based architecture that enables flexible

allocation of Dragonfly global links. In Flexfly, the global links initially composing

the all-to-all topology can be “stolen” from their original destination groups, and reas-

signed to traffic-intensive ones. By trading the global links in this way, Flexfly creates

additional direct bandwidth for intensively-communicating group pairs, matching the

topology to the application traffic. Flexfly achieves such reconfigurability through

14

Source Group
0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
es

tin
at

io
n

G
ro

up

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source
Groups

Optical
Switches

Destination
Groups

G
0

G
2

G
4

G
6

G
1

G
3

G
5

G
7

(a1) Group association masks (G=8, r=4)

(a2) Extracted traffic
matrix (4x4)

(a3) Connections in an Association (switch states showing a DFly configuration)

Mask on G2G
traffic matrix

G1 G3 G5 G7

G
0

 G
2

 G
4

 G
6

Form Association

Stride

Block Block-Src-Stride-Dst

Select one
(e.g. Stride)

Figure 2.3: Construction flow of the Flexfly architecture.

transparent SiPh circuit switching. Unlike previous optical switching solutions which

rely on large port counts (equal to the number of nodes, racks, routers [40] or groups

[41]), Flexfly is designed in a way to support the use of low-radix optical switches,

independently of the global system scale. Such low radices enable massive low-cost

fabrication through current SiPh technologies and realizable SiPh switch designs. As

compared to adaptive routing, Flexfly creates multiple minimal paths and mitigates

the need for indirect routing.

In this section, we describe how Dragonfly groups, in topologies of any size, can

be interconnected with arbitrary-radix SiPh switches and how the link re-allocation

is performed.

A construction flow for the Flexfly architecture is shown in Fig. 2.4. A group

association mask is used to extract a sub traffic matrix from the group-to-group

traffic matrix. Examples of mask for G = 8, r = 4 (r being the optical switch

radix), and the extracted traffic matrix (ETM) corresponding to the Stride mask, are

shown in Fig. 2.4. Also corresponding to the mask is a set of source and destination

groups, which we call an Association. These groups are originally fully-connected in

Dragonfly. In Flexfly, r optical switches each of radix r are inserted in the middle of

the r2 optical connections owned by each Association, as shown in Fig. 2.4(3). An

Association is thus composed of r source groups and r destination groups. The source

15

and destination groups do not have to be the same. The ETM size is also r × r.

In Fig. 2.4(3), the state of the switches ensures an all-to-all connectivity among

the Association. This corresponds to the “original” Dragonfly connectivity. In pres-

ence of non-uniform traffic, this all-to-all connectivity can be reconfigured to re-

allocate global bandwidth to traffic intensive source-destination group pairs. Con-

sidering, for example, the ETM in Fig. 2.42, switches can be configured such that

all four links originated at G1, G3, G5 and G7 are destined to G0, G2, G4 and G6,

respectively. In that case, the bandwidth concentration within the Association is

maximal (r = 4-fold). It should be noted that associating the groups will not lead to

network isolations, since a group can appear in multiple Associations.

Group Association Strategies

Multiple strategies exist when creating Associations contained in a Dragonfly, cor-

responding to different group association masks. Each strategy results in different

sets of ETMs, which may exhibit variable potential for link concentration. In this

set of possibilities, we are interested in the strategies that a) distribute traffic evenly

across associations, b) provide flexibility that can be exploited by major HPC traffic

patterns, and c) allow easy cabling across the supercomputer cabinets. With respect

to b), remark that in Fig. 2.4(2), all the “dark” (unused) links can be re-allocated to

the four active group pairs. We therefore look for strategies favoring such situations.

Here we propose three major strategies for comparison: Stride association, Block as-

sociation, and Block-Source-Stride-Destination (BSSD) association. Their respective

masks are shown in Fig. 2.4(1). We will evaluate the “quality of association” of these

strategies based on the applications shown in Section 2.

The Stride strategy selects groups with a stride of k = G/r in both source and

destination dimensions. This strategies generally allows the distribution of heavy

traffic spots into different associations. The stride k, however, should avoid coupling

16

Table 2.1: Quality of association with G = 32, r = 8

std of number of
nonzeros (σnz)

std of traffic per-
centage (σpct)

max number of
nonzeros in a line
(nNZL)

Block 13.12 6.72 2.86
Stride 10.23 6.09 2.56
Block-Src-
Stride-Dst

7.14 0.93 4.38

with the distance between two intensive destinations. By contrast, the Block strategy

selects r continuous groups in both source and destination dimensions. Block relies

on an assumption that neighboring sources tend to “favor” the same configuration

when connecting to destinations – for example, in GTC each source group prefers

connections to their +1 neighbors. Such “harmony” allows for skewing the original

source-destination (s-d) connections within a switch by the same amount, thus sim-

plifying the determination of the switch state. The Block strategy, however, fails to

efficiently distribute the traffic across Associations in presence of traffic concentrated

along the diagonal (for neighbors-intensive communication patterns as in LULESH).

Hence, it results in higher chance of creating fully occupied ETMs on one side, and

purely dark ETM’s on the other side. The third strategy, BSSD, is a mixture of

the previous two for comparison purpose. Fig. 2.4 show how the different strategies

generate distinct ETMs.

Evaluation of Association Strategies

We evaluate which association strategy provides flexibility in the most relevant way

for HPC applications. We use three metrics from the ETM pool as a measure of

“quality of association”: 1) standard deviation of the number of nonzeros across

ETM’s (σnz), 2) standard deviation of the traffic percentage across ETM’s (σpct) and

3) average of maximum number of nonzeros in a line (row or column) of an ETM

17

GTC Nekbone LULESH MiniFE

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

Source Group
1 2 3 4 5 6 7 8

D
es

tin
at

io
n

G
ro

up

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
1e+k

FillBoundary

Stride
Assoc.

Block
Assoc.

Block-Src-
Stride-Dst

(b)

Figure 2.4: Representative ETM’s from applications using the three association
strategies; here switch radix r = 8, hence ETM size is 8× 8.

(nNZL). The first two metrics are intended to indicate how evenly the G2G traffic is

distributed across different ETMs/associations. The third metric nNZL, by contrast,

indicates the maximum communication degree of a source or destination group within

an association, i.e. how many links are necessary for a source or destination to cover

its non-zero traffic. The higher this value, the lower the flexibility, as “necessary”

links cannot be stolen (described later in Sec. 2.5).

Since it is impossible to find a single association strategy that works best for every

application, we use a statistical approach to evaluate the above strategies based on

the application set described in Sec. 2.3. The statistics are hence a pool of ETM’s

extracted from the G2G traffic matrices of those applications, using respectively the

three association strategies.

The evaluation result is shown in Table 2.1. BSSD achieves the smallest σnz and

σpct, i.e. it distributes traffic most evenly among the ETM’s. However, for nNZL, the

performance of BSSD is the worst; indeed, the nNZL of BSSD is much higher than

that resulting from the Stride strategy or Block strategy. This means that BSSD

18

requires more “necessary” switching modes to cover the nonzeros in ETM, reducing

the amount of free links (flexibility) useable for intensive traffic. The Stride strategy,

in comparison, achieves the lowest nNZL and hence the highest flexibility. Therefore,

we use it in later application-based simulations.

2.5 Link Stealing Algorithm

After forming the associations, Flexfly applies a link stealing algorithm to each of the

associations for allocating global bandwidth based on the ETM (note that in practice,

associations are formed once for all at design time, whereas to link stealing algorithm

is applied for each new application). The task of the link stealing algorithm is to

find a set of switch states for the r optical switches owned by an association. Since

each association is independent, the link stealing algorithm can be applied in parallel.

Furthermore, limited radixes r ensures that each problem remains small in scale.

A decomposition example for r = 8 is shown in Fig. 2.5. Rather than using the 8

switches for forming an all-to-all topology, Flexfly picks permutation matrices (each

corresponding to a switch state) to cover the heavy traffic, resulting in a 2 to 3 times

bandwidth increase for each nonzero s-d pair.

Here we formulate the link stealing problem with a min-max rule: given a non-

negative r × r ETM T = (tij), find a set of r permutation matrices {P1, P2, ..., Pr},

such that

max
i,j

Tij

(
∑r

k=1 Pk)ij
→ min

It is already known that a decomposition problem with a min-max optimization

rule is NP-hard [42]. Here we give a heuristic algorithm yielding an efficient decom-

position.

In the algorithm, a nonzero entry T will be given a weight close to infinity if

that entry has not been allocated a link. In this way, the algorithm makes sure that

19

è3 x + 3 x + 2 x

Figure 2.5: Decomposition of an example ETM into three switching modes (r = 8).

Algorithm 1 Min-Max Decomposition
Require: Tr×r

1: inf← a large number
2: Dr×r ← 0
3: Define a bipartite graph G = (V,E), where (i, j) ∈ E has weight:

wij =

{
Tij/(Dij + 1), if Dij ≥ 1

Tij · inf, otherwise

4: Find a maximum weight matching Pk in G
5: D ← D + Pk

6: If k = r, STOP; else go to 3.

an uncovered nonzero entry will have higher priority in getting picked than those

already covered, even if the latter has much more traffic to send. Due to the nature

of permutation matrices, whereby the line sum of each row and column is always 1,

the final allocation matrix D will have a line sum of r for each row and column. This

means that the number of transmitters needed by a source group for that association,

i.e. row sum of D, does not exceed r; and similarly, the number of receivers needed per

destination group, i.e. column sum of D, does not exceed r either. Each permutation

matrix in {P1, ..., Pr}, which corresponds to an input-output mapping, can be carried

out by one optical switch in that association.

2.6 Routing in Flexfly

In this section, we discuss the routing schemes for Flexfly. Since in Flexfly there can

be multiple direct links to the same destination group, the routing scheme must be

20

able to efficiently utilize these links.

Minimal Valiant Routing

In Flexfly, to load-balance the traffic across multiple minimal paths, the Valiant

algorithm approach can be used to randomizes the path selection. This algorithm,

which we call Min-Val, takes three steps for a source router Rs in group Gs:

1. If Gs ̸= Gd, Rs randomly selects a router Ra in Gs that has a global channel to

Gd (Ra can be Rs itself) and route within Gs from Rs to Ra;

2. traverse the global channel from Ra to reach router Rb in Gd;

3. If Rb ̸= Rd, route within Gd from Rb to Rd.

Different from the Valiant routing in Dragonfly, MIN-VAL in Flexfly does not

involve intermediate groups, i.e., the path selection is always among minimal paths.

This ensures exactly one global hop for all cross-group packets, enabling more than

50% throughput in global level.

Minimal UGAL Routing

The Min-Val algorithm works well in load-balancing traffic evenly across multiple

minimal paths. However, it does not consider different congestion states of differ-

ent paths. Minimal UGAL (Min-UGAL) overcomes this drawback by using queue

lengths to estimate network delay and choose the path with minimal delay. Sim-

ilar to Min-Val, Min-UGAL does not involves intermediate group either. For the

UGAL-L version [43], which uses local queue information at the current router, the

algorithm is described as follows: if qmHm ≤ qnmHnm, route minimally; else route

non-minimally. Here, the minimal and non-minimal paths both take one global hop,

and differ only in the number of hops within source/destination groups.

21

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

18

20

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

2

4

6

8

10

12

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10

11

Source Group
5 10 15 20 25 30

D
es

tin
at

io
n

G
ro

up

5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

18

Figure 2.6: Global link allocation with switch radix r = 8 (upper) and r = 32 (lower).
Note that the color scales are differnet across sub-figures.

2.7 Simulation

In this section, we use the HPC applications from Sec. 2.3 to evaluate Flexfly per-

formance relative to minimal and UGAL routing for Dragonfly. The application

configurations are shown in Table. 2.2. In the simulation, we assume the Dragonfly

network has an all-to-all topology in the upper level and a 2D-flattened Butterfly in

the lower level. We assume 3 GB/s for both intra- and inter- group links and an

injection bandwidth of 8 GB/s. Switch hop latencies are 40 ns. The applications are

simulated either in form of mini-apps (GTC, MiniFE and LULESH) or by replaying

timestamped MPI traces using the DUMPI tracing tool (Nekbone and FillBound-

ary). Both forms are simulated through the SST simulator (SST/macro) [44]. Trace

replay uses a coarse-grained packet simulator that models routing and control-flow

at the level of packets [45]. Traces were collected in a MPI-only fashion on CPU-only

machines. Here we examine “optimistic” scenarios for on-node parallelism, assuming

a compute time speedup factor of 1/1152 leveraging abundant on-node parallelism

(multi-threading with accelerators) in future applications. The traces were obtained

from a NERSC web portal on characterization of DoE mini-apps [46].

Fig. 2.6 shows the global link allocation generated by the link stealing algorithm

22

for different applications. With a modest radix r = 8, the allocation matrices already

become very similar to the G2G traffic matrices in Sec. 2.3. As r increases, more

“unused” links can be stolen for intensive traffic pairs. When r = G = 32 (full

reconfigurability) every unused link can be stolen for traffic and the allocation matrix

pattern matches the G2G traffic matrix.

Table 2.2: Application size and parameters

Application Size X Y G Concentra-
tion

Parameter

GTC 1024 4 8 32 1 npartdom=32
Nekbone 1024 4 8 32 1 DUMPI trace
LULESH 4096 4 8 32 4 nx = 256
MiniFE 1024 4 8 32 1 nx = 256
FillBoundary 1000 4 8 32 1 DUMPI trace

Application Speedup

Fig. 2.7 (top chart) shows the speedup of Flexfly (Ffly) with different switch radices as

compared to Dragonfly (Dfly). Here we use minimal, Valiant and UGAL routing for

Dragonfly, and minimal, Min-Val and Min-UGAL routing for Flexfly. For comparison

purpose, the speed of Dfly-Min is normalized to 1.0x. When minimal routing is

used, Flexfly achieves at most 7.1x speedup over Dfly-Min and 1.8x speedup over

Dfly-UGAL in the case of GTC (the most neigbor intensive application). When

Min-UGAL routing is used, these two speedup numbers are 8x and 2x. In the case

of LULESH, Flexfly with r = 32 and any routing algorithm achieves 5x speedup

over Dfly-Min and 1.7x over Dfly-UGAL. For MiniFE and FillBoundary, Flexfly also

shows better performance than both Dfly-Min and Dfly-UGAL, but with a modest

speedup (< 1.5x). This limited speedup is due to the less sparse traffic matrix of

these two application, which results in reduced stealing possibility. Another reason

for MiniFE is that its communication is not very intensive, rendering the performance

23

more compute-bounded. Within Flexfly, the performance also improves in general as

the switch radix r increases (due to more flexibility).

From the above results, one can see that the sparser the traffic matrix is, the more

free links Flexfly can steal, and hence the better the performance. In light of this,

a more aggressive approach would be to sparsify the traffic matrix before applying

the link stealing algorithm. This is done by eliminating the light traffic dots that are

not “worth” allocating one full link of bandwidth. A possible approach is to use two

links that would be allocated for two heavy traffic dots to provide a two-hop path

for the light traffic dot (similar to indirect routing). In this way, the link that would

have been allocated to the light traffic dot can be freed for servicing heavy traffic.

Although indirect paths are used, it is used for the light traffic, creating little impact

on the network load. By contrast, in UGAL or other indirect routing approaches

for Dragonfly, the indirect paths are often used by heavy traffic, which can quickly

consume the capacity of the network.

Hop Counts and Latency

A closer look of the architecture performance can be found in the middle and bottom

charts of Fig. 2.7. On the hop count experienced by global messages, Valiant and

UGAL routing result in much more hops than minimal routing in Dragonfly due to

the traversal of intermediate groups (about 40-50% increase). By contrast, Flexfly

with any switch radix and any of Min, Min-Val and Min-UGAL routing, requires even

less hops than Dfly-Min. There are two reasons for that: (1) the three Flexfly routing

algorithms all rely on direct global links rather than intermediate groups, and (2) the

increased distribution of wanted global links in the group plane reduces the distance

to/from cross-group gateways. Specifically, Ffly-Min halves the hop count compared

to Dfly-UGAL in cases of GTC and LULESH. With respect to the latency of global

messages, the same trend is observed, as a combined result of reduced hop counts

24

Figure 2.7: (Top) Speedup of Flexfly (r = 2, 4, 8, 16, 32) with various routing mech-
anisms over Dragonfly with minimal routing (normalized to 1.0x). (Middle and
bottom) Hops and latencies of cross-group messages. Val and UGAL are used on
Dragonfly. Min-Val and Min-UGAL are used on Flexfly.

and increased cross-group bandwidth. In cases of GTC, LULESH and FillBoundary,

Ffly-Min (r = 32) achieves 2x, 2.5x and 3.2x reduction in global message latency over

Dfly-UGAL. The difference in message latencies across application is mainly due to

different message sizes.

2.8 Experimental Demonstration

We built a 32-node Flexfly prototype using a 2-by-2 SiPh switch to evaluate the

implementation complexity and performance improvements compared to Dragonfly.

25

(a)

MZ1

MZ2

MZ3

MZ5

MZ4

MZ6

input0

input1

output0

output1

Bar State

MZ1

MZ2

MZ3

MZ5

MZ4

MZ6

input0

input1

output1

output0

Cross State

(b)

Figure 2.8: (a) Socketed switch chip mounted on a PCB; (b) Bar and cross configu-
rations for ports 1 and 4 in the six-MZI Benes switch.

Silicon Photonic Switch

The SiPh switch (Figure 2.8a) embedded in the HPC testbed was manufactured

through the OpSIS [47] foundry. The chip was mounted in a plastic leaded chip carrier

socket that was soldered on a printed circuit board (PCB). The SMA input/output

from the board is connected to the bias control units (Fig. 2.8a). The switch is a re-

arrangeably non-blocking 4×4 Beneš topology [48], comprised of three stages and six

2 × 2 Mach-Zehnder interferometer (MZI) elements. Further characterization of the

device is reported in [49]. For this particular demonstration, the switch is biased to

either a bar or a cross state, turning it as a 2× 2 as illustrated in Fig. 2.8b. Dynamic

extinction ratios are maximally 15 dB and minimally 7 dB in the bar state, while

in the cross state it ranges from 19 to 24 dB. A Data Acquisition (DAQ) unit was

employed to generate the voltages applied to the device. A C program controls the

DAQ and is directly callable by a controller server.

Flexfly Prototype

The 32-node prototype comprises 16 routers divided in four groups. This structure,

shown in Fig. 2.9b, corresponds to a G = 5 Dragonfly whose fifth group has been

26

Se
rv
er
s

Controller

Ro
ut
er
s

(a)
1 4

3 2

4 1
2 3

4 1
2 3

Group 1

Group 2 Group 3
1

3 2

Group 4

4
(b)

1 MB Message

La
te

nc
y

(m
s)

0

1

2

3

4

5

6

7

FFly
DFly

10 MB Message

La
te

nc
y

(m
s)

0

10

20

30

40

50

60

70

100 MB Message

La
te

nc
y

(m
s)

0

100

200

300

400

500

600

700

800

900

(c)

Figure 2.9: (a) 32-node Flexfly prototype and (b) corresponding topology diagram
(2×2×4); (c) Comparing round trip time over 8 pairs of servers (each pair in different
groups), in Dragonfly or Flexfly configurations.

removed (due to Ethernet switch limited port count). Two servers are connected to

each router (C = 2), as shown in Fig. 2.9b and Fig. 2.15. Each server is equipped

with a dual-core Intel Xeon processor, 10 GB RAM, and a 10Gbps Network Interface

Card (NIC). Routers are 10G OpenFlow [50] Ethernet switches. The intra group

links are 10G Direct-Attached Cables. For inter-group links, 10G SFP+ transceivers

are connected to a 3-meter long Single-Mode Fiber (SMF). One of the servers (the

controller server) sends reconfiguration commands to the DAQ for switching between

the bar and cross states and to the routers for updating the flow table rules.

Experimental Results

We began by measuring the switching time of the silicon photonic switch, controlled

by the DAQ. Figures 2.10a and 2.10b show the switching time of the bar and cross

states. We were able to achieve 820 ns switching time using a DAQ supporting

mega-sample per second analog output. Note that faster switching times could be

reached using an RF driver rated for GHz range instead (the intrinsic switching time

of the MZI-based switch with P-N junctions being in nanoseconds-range [49]). This

measurement shows that switch reconfigurations can be applied rapidly.

27

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.5

1

1.5

2

Time (us)

Am
pl

itu
de

 (V
)

Electrical Control Signal
Optical Output

820 ns

A
m

pl
itu

de
 (V

)

Time (µs)

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.2

0.4

0.6

0.8

Time (us)

Am
pl

itu
de

 (V
)

Electrical Control Signal
Optical Output

820
nsA

m
pl

itu
de

 (V
)

Time (µs)

(b)

Figure 2.10: Silicon photonic switch setup time for (a) bar and (b) cross states.

By injecting traffic using the Hpcbench MPI benchmark [51], we measured the

message round-trip delay between 8 pairs of servers located in two groups. For the

traffic pattern, we had each server in G1 communicating with a corresponding server

in G4. In the cross state, which corresponds to the original Dragonfly topology,

there is one global link between the two groups. Setting the switch in the bar state

grants an additional link to this G1–G4 group pair. We measured the message round-

trip delay between each pair of servers using messages of 1MB, 10MB and 100MB.

The experiment was averaged over 10 runs. Fig. 2.9c shows the average latency

over the 8 pairs of servers. In the Flexfly-adapted configuration, the round trip delay

reduces by 33%, 35% and 47% compared to Dragonfly, for 1, 10, and 100MB messages

respectively.

We then generated four point-to-point traffic flows between routers 3 and 4 of

Group 1 and Group 4, and four other flows between routers 3 and 4 of Groups 2

and 3 (as indicated by the gray arrows in Fig. 2.9b). The routing scheme utilizes

minimal routing, i.e., the direct global link between the groups are used for inter-group

transmission. The traffic is generated by iperf [52], a network measurement tool. We

measured the throughput between servers. In Dragonfly configuration (cross state of

the SiPh switch), there is an optical global link between each two groups. In this

28

0 10 20 300

2

4

6
Flexfly

Time (s)

Th
ro

ug
hp

ut
 (G

bp
s)

Dragonfly

(a) (G1, R3, S2) to (G4,
R3, S2)

0 10 20 300

2

4

6

Time (s)

Th
ro

ug
hp

ut
 (G

bp
s)

Flexfly
Dragonfly

(b) (G1, R4, S1) to (G4,
R4, S1)

0 10 20 300

2

4

6

Time (s)

Th
ro

ug
hp

ut
 (G

bp
s)

Flexfly
Dragonfly

(c) (G2, R3, S1) to (G3,
R3, S1)

0 10 20 300

2

4

6

Time (s)

Th
ro

ug
hp

ut
 (G

bp
s)

Flexfly
Dragonfly

(d) (G2, R4, S2) to (G3,
R3, S2)

Figure 2.11: (a-d) Measured throughput of servers in a data transfer between G1
to G4 and G2 to G3. G: group, R: router, S: server. Throughput is higher in the
Flexfly-adapted configuration (bar state) as two global links are awarded to each of
the above group pairs.

Time (s)

0 10 20 30

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

1

2

3

4

5

6

7
Server1
Server2

(a) Group 1, Router 3
Time (s)

0 10 20 30

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

1

2

3

4

5

6
Server1
Server2

(b) Group 1, Router 4
Time (s)

0 10 20 30

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

1

2

3

4

5

6

7
Server1
Server2

(c) Group 2, Router 3
Time (s)

0 10 20 30

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

1

2

3

4

5

6
Server1
Server2

(d) Group 2, Router 4

Figure 2.12: Demonstration of on-the-fly reconfiguration across the Flexfly prototype.
Reconfiguration is performed at second 15 approximately and one extra global link
is provided between the two groups.

case, all G1–G4 traffic is routed over the global link attached to routers 4. Similarly,

all G2–G3 traffic goes over the global link attached to routers 3. That is, these two

global links are each shared by four flows. In contrast, the global links between G1–

G3 and G2–G4 are unused. By configuring the switch from cross to bar (Flexfly),

these unused global links are allocated to the G1–G4 and G2–G3 pairs, resulting in

superior throughput improvement (about 2x as shown in Fig. 2.11). Note that in the

Dragonfly configuration, flows that have to take extra intra-group hops (Figs. 2.11a

and 2.11d) retains a lower share of the global bandwidth. These extra hops, which

increases the round-trip time, can potentially affect the flow control, resulting in

lowered bandwidth. In contrast, in the Flexfly configuration, all flows can be routed

over minimal hops, leading to a fairer bandwidth access in that particular case.

Finally, we performed on-the-fly reconfiguration on the Flexfly prototype. The

29

setup is the same as the previous experiment except that the transmission starts in

the cross configuration (i.e. Dragonfly) and is then switched to bar (i.e. Flexfly). This

requires i) the controller server to send a command to the DAQ to modify the driving

voltages, and ii) updating the flow tables of the routers to add the new route enabled

by the extra link. To improve flow update performance, we avoid flow deletion and

simply add new rules with higher priority. Previous rules are automatically deleted

after an idle time. The script uses OpenVSwitch [53] to update the flows. In our

implementation flow rules are added sequentially. This process could, however, be

expedited by leveraging a standard controller such as OpenDayLight (ODL) [54].

ODL can insert hundred flow rules in milisecond range [55]. We used clusterSSH

[56] in the controller server and applied the updates on the routers and the DAQ

simultaneously. Fig. 2.12 shows the results. Each plot represents two servers that are

connected to the respective router/groups. Servers on G1, R3 and G2, R4 had lower

initial throughput and a dip in the throughput during the reconfiguration. This is

due to the change in their routing from one global link to the other and as well as

sequential update of the flow rules. We expect that improving the flow rule insert

speed will reduce the overall reconfiguration time.

2.9 Large-Scale Implementation and Cost

In this section we show how Flexfly could be integrated in a practical supercomputer.

Refering to Cray XC40 [57], a group typically spans over one or two cabinets. We

therefore assume that r groups on the same row forms a Flexfly supergroup , resulting

in G
r

supergroups . A Flexfly switch blade is introduced to each supergroup . This

blade contains all the SiPh switches corresponding to the inter-group links originating

from the supergroup . Specifically, a Flexfly switch blade will have G − 1 switches.

Hence, with G − 1 links per group and r groups per supergroup , a supergroup has

30

Figure 2.13: (a) Organization of cables within Flexfly. For clarity only the links
originated in the highlighted set of groups are shown. These r(G − 1) links first
connect to a Flexfly blade located in the middle of the row (in orange). From there,
r(r− 1) connect back to the same row (in blue), while (G

r
− 1)r2 links are distributed

across the remaining groups (in green), (b) 32-node Flexfly prototype snapshot.

Table 2.3: Content of Flexfly racks

G r # of supergroups # of switches # of connectors
8 4 2 7 56
16 4 4 15 120
16 8 2 15 240
32 4 8 31 248
32 8 4 31 496

r(G − 1) links that fully connect to the G − 1 switches, each with r ports. Each

Flexfly switch blade also has 2r(G − 1) fiber connectors. Table 2.3 provides the

number of switches and connectors per blade for various G and r values. Due to

the compatibility of SiPh with CMOS foundry, a large number of switches can be

put on a single chip, reducing the packaging cost and space. Next to the SiPh chip

containing the optical switches, each Flexfly switch blade also includes a controller

for accepting reconfiguration commands and actuating on the switches. Since only

G/r such blades are required and SiPh chips can be massively produced via CMOS

fabrication, the cost and space needed for incorporating Flexfly in a Dragonfly-based

supercomputer are deemed minimal.

31

The impact of Flexfly on cabling lengths is also minimal compared to conventional

Dragonfly-based systems. Flexfly simply requires every cable to first reach the Flexfly

blade of the supergroup . In the worst case, this results in an cable length increase

by the distance of r cabinets (to the blade and back); in the best case, there is no

penalty at all (if the blade is on the way of the fiber to a remote group).

2.10 Power Penalty Analysis

With optical switches inserted, optical power penalty is accrued as the signal experi-

ences losses and receives crosstalk [58], [59]. In an effort to alleviate concerns about

power penalty, especially as the size of switch radix scales, we perform power penalty

analysis of SiPh switch designs required by our platform. We consider Mach-Zehnder

interferometers (MZI) based designs [60] exclusively, MZI being far less sensitive to

thermal changes than ring resonators [61].

The structure of a 2×2 MZI based switch is drawn in Fig. 2.14(a). Propagation

loss and phase shift introduced by each phase shifter arm of the MZI are the main

parameters used in our analysis. Applying a voltage on the arm induces a change

of material refractive index. This in turn modifies light propagation speed, and the

optical loss. Fig. 2.14(b) shows the dependence of the power at the output ports as a

function of phase shifter loss when a single signal is presented at one input port. The

Cross state shown in Fig. 2.14(c) refers to the case where no voltage is applied to the

phase shifter. In that case, signals traverse the switch with minimal perturbations,

they also minimally “leak” in the non-desired output port (Fig. 2.14(d)). This

translates into a power penalty of 0.25 dB. In the Thru state, in contrast, attenuation

and leakage are more important, even when applying the ideal shift, as shown in Fig.

2.14(d). The power penalty raises to 1.36 dB.

A non-blocking 4×4 Beneš switch can be constructed with the optimized 2×2

32

Figure 2.14: (a) Structure of a 2×2 MZI-based switch. (b) Thru and Cross transmis-
sion as a function of phase shifter loss. (c) and (d) are schematics of the switch in
Cross and Bar states.

Figure 2.15: (top) 4×4 Beneš and Omega topologies based on optimized 2×2 switches.
(bottom) Worst-case of insertion loss and crosstalk for all possible mappings from the
input ports to the output ports.

switches [61]. The schematic of the 4×4 switch is presented in Fig. 2.15, which also

summarizes the analysis of worst-case insertion loss and crosstalk levels for the 4×4

Beneš topology. The worst-case of insertion loss for the 4x4 Beneš topology is about

3.7 dB, the worst-case of crosstalk is about -17 dB and the worse-case overall power

penalty is about 4 dB.

33

With power penalties < 5dB, the insertion of SiPh switches of radix r = 4 should

remain transparent to optical transceivers, which generally have an optical budget in

excess of 10dB. For higher radixes, or to reduce the power penalty of r = 4 switches,

an alternative 4×4 Omega topology can be constructed from optimized 2×2 switches

(schematic is shown in Fig. 2.15). Reducing one stage of the 2×2 switches will

decrease the worst-case of insertion loss from 3.77 dB to 2.42, hence saving 1.35

dB of penalty. The crosstalk performance is also better for the Omega topology

(improvement from -17 dB to -20 dB) due to the lower number of crossings. The

worst-case penalty for the Omega structure is about 2.6 dB.

Omega switches do not provide the same flexibility as Beneš. They are, how-

ever, able to realize all circular shift permutations. Therefore, they can support all

“diagonal” ETMs, which are frequent when the stride strategy is used (Fig. 2.4).

2.11 Related Work

Traffic Engineering Methods

Indirect adaptive routing (IAR) methods have been proposed to leverage underuti-

lized, “dark” global links. Among them, Valiant (VAL) routing [20] scatters traffic

hotspots by sending cross-group traffic to a randomly selected intermediate group,

resulting in two global hops for most packets. Universal Globally-Adaptive Load-

balanced (UGAL) routing [20] balances between minimal routing and valiant routing

by comparing an estimated queuing delay of both paths. Due to the unavailibility of

global queuing information, such estimation is embodied by a product of local queue

lengths and hop counts (UGAL-L, assuming each hop has the same queue length as

the local one). However, this often leads to misestimation and degraded performance.

Jiang et al [24] explored four IAR methods to obtain non-local queuing information:

credit round trip (CRT), progressive adaptive routing (PAR), piggyback routing (PB)

34

and reservation routing (RES). Still, due to the indirect routing nature, these IAR

methods saturate before reaching 50% throughput for neighbor-group intensive traf-

fic.

Optical Circuit Switching

Various approaches have been proposed to include optical circuit switching (OCS) in

both on-chip and large-scale interconnection networks. The on-chip approaches [62]–

[66], focusing on nanoscale SiPh-electronics integration, are mainly used for core-to-

core packet switching. For the large-scale networks (data-centers or supercomputers),

the proposed approaches can be classified into two groups. In the parallel group, OCS

is often used for “elephant” flows for mitigating the load on the EPS counterpart, as

described in Barker et al [67], Farrington et al [68], [69] and Wang et al [70]. In the

unparallel group ([40], [41]), Shalf et al [71] proposed an architecture called HFAST

that connects compute nodes to “active” packet switches. A common feature of these

approaches is that they require a large-radix optical switch whose port count equals

to the number of compute nodes, racks or Dragonfly groups, and has to increase as

the system size scales.

Silicon photonics offers the capability of creating photonic integrated circuits

through a CMOS-compatible process [72]. As the technology becomes mature, Silicon

photonics is an attractive platform for integrated OCS because high-density devices,

for example, ten of switches, can be integrated on a chip [73]. As for a single switch,

however, the demonstrated port count is still at a modest level. This is because the

majority of SiPh switches comprise multiple stages of small switching elements such

as 2-by-2’s, which, scales the optical insertion loss with the port count. To date, the

largest SiPh switches of this kind are 8-by-8 [74], [75].

35

2.12 Summary

Most supercomputing platforms currently employ a fixed network topology which can

match only a few traffic patterns. Thus, these interconnection networks may become

a bottleneck for next-generation exa-flop platforms whose application may vary over a

wide range. In this work, we propose the Flexfly architecture, which utilizes the circuit

switching capability of Silicon photonics for a reconfigurable Dragonfly network. Our

solution shows a way to increase the global-level bandwidth of Dragonfly by r fold

given radix-r SiPh switches. We have analyzed 5 parallel workloads that represent a

wide spectrum of scientific applications and associated communication patterns. We

show that these patterns consistently mismatch the global link allocation of Dragonfly,

and often resembles “worst-case” traffic scenario for Dragonfly. We show that Flexfly

can solve the above problem by dynamically allocating links based on the G2G traffic

demands. Numerical evaluation with the analyzed applications shows at most 7.1x

and 1.8x speedup over Dragonflies that use minimal and UGAL routing, respectively.

The network distance and latency for global messages are also significantly reduced.

We have also built a 32-node prototype based on a SiPh switch connecting 4 groups

and observed 2x improvement in cross-group throughput in a realistic SiPh-based

platform. On-the-fly reconfiguration of the SiPh switch has also been demonstrated

and exhibits 820 ns latency.

36

Chapter 3

Reconfigurable Memory

Interconnect for Many-core

Processors

Abstract

Off-chip memory accesses for manycore processors can incur considerable

non-uniform-memory-access (NUMA) latency and points of bandwidth con-

tention hot-spots as they traverse multiple network-on-chip (NoC) links. Data-

intensive applications typically issue many concurrent memory requests from

each core, creating further contention at the memory controller (MC) and

across the NoC fabric. We address the NUMA issue and NoC-hotspot issue

using fast-tunable silicon photonics (SiP) memory tunnel interconnects. In-

tegrated with the processor through 2.5D/3D stacking, the SiP tunnels can

transparently direct traffic from any off-chip memory to any on-chip MC, thus

alleviating the above effects.

We demonstrate the operation of our proposed architecture using a tunable

laser, a 4-port SiP switch (four wavelength-routed memory channels) and a 4x4

mesh NoC synthesized in FPGA. The emulated system achieves a 15-ns channel

37

switching time. Simulations based on a 12-core 4-memory model show that for

such switching speeds the interconnect system can realize a 2x speedup for the

STREAM benchmark in the hotspot scenario and a reduction of execution time

for data-intensive applications such as 3D stencil and K-means clustering by

23% and 17%, respectively.

3.1 Motivation

As computational density for high-performance computing and big-data services con-

tinues to scale, performance scalability of next generation computing systems is

becoming increasingly constrained by limitations in memory access, power dissipa-

tion and chip packaging. The processor-memory communication bottleneck, a major

challenge in current multicore processors due to limited pin-out and power budget,

presents a detrimental scaling barrier to data-intensive computing. These critical is-

sues present two key challenges for next-generation many-core multi-memory systems:

1) What is the most cost-effective way to provide enough bandwidth for processor

cores to interface with off-chip memory modules? and 2) How should we address the

non-uniform memory access (NUMA) and hotspot effect as NoCs keep scaling up?

The first challenge is directly related to the fundamental bandwidth density limits

of electrical packages as we approach the physical limits of information density over

conventional electrical wires [76], [77], specifically:

• Pin limits and bandwidth density: Although Moore’s Law continues to improve

transistor density and consequent performance density, there is no “Moore’s

Law” for increasing the number of electrical connections for a standard chip

package. Conventional Ball Grid Array (BGA) packages have reached peak

density.

• Packaging costs: To overcome BGA limitations, manufacturers have moved

38

λ1
MOD E-

M
U

X

WDM Link

λ2
MOD

Ph
ot

on
ic

 M
ux

E-
M

U
X

E-
M

U
X

E-
M

U
X

λ3
MOD

λ4
MOD

Processor

A

Photonic D
em

ux

Core

Core A ’s data

intf 4

intf 2
1

2

3

4

DRAM/NVRAM Silicon Photonic Microring-
based Wavelength Demux

intf 1

intf 3

Silicon Photonic Waveguide

Figure 3.1: A many-core multi-memory architecture using a SiP demux as reconfig-
urable memory fabric. Dashed red path: 10 hops on NoC; solid red path: 1 hop
only.

to memory stacking and silicon carrier technologies to provide a boost in pin

density. The substantial packaging expense and limited memory capacity of

these solutions create an opportunity for photonic approaches.

• Bandwidth vs. Capacity Exclusiveness: Because of area and bandwidth den-

sity limitations of current packaging technologies, memory technologies are con-

signed to delivering either bandwidth or capacity exclusiveness, but not both.

The second challenge is due to the fact that the memory interfaces in the NoC are

“disseminated,” and the mapping/physical layout of these memory interfaces to the

off-chip memory stacks are fixed. Because the physical address space of a multicore

system is globally shared, all cores transparently access all memory modules and

access to remote memory modules must traverse the on-chip interconnect creating

much longer latency than accessing local counterparts.

Optimizing data accesses in NoC-based many-core systems has recently attracted

much research interest. Proposed strategies include careful design of cache ac-

39

cess/lookup strategies [78]–[80] and on-chip access localization [81], [82] to avoid very

high costs of remote memory accesses. Other work [11] explores the congestion on

interconnect links and in memory controllers, two factors that can dramatically hurt

performance.

While these approaches have provided excellent advances in the optimization of

data accesses, we propose a completely new way to simultaneously address the insuf-

ficient memory-access bandwidth, NUMA effect, and hotspot effect. Optical inter-

connects, especially cutting-edge silicon photonics, offers a path to a new generation

of computing systems with interconnects that enable much higher bandwidth density

through WDM and fast link reconfigurability. These features satisfy the requirements

of emerging high-performance memory systems such as the HMC and HBM. With

recent rapid progress in small-footprint CMOS-compatible Silicon Photonic (SiP)

devices, a variety of optically connected memory systems [83]–[85] have been exper-

imentally demonstrated. The cost can be further driven down when the chips go

through mass production.

This chapter describes the architecture of a new photonics-enabled reconfigurable

memory interconnect, our implementation of a technology demonstration platform

to validate the concept, and the benchmark results from a synthetic data-intensive

workload to demonstrate its performance potential. Our approach based on fast

tunable SiP memory tunnels is a feasible and cost-effective solution to interconnect

the many-core processor with the off-chip memory stacks.

40

(a) Plan View

Memory Stack Memory Stack Processor

SiP Switch
Optical Waveguide Silicon Interposer

Optical TX

modulators TSV

Photoreceivers (at front/rear ends)

(b) Cross-section

Figure 3.2: A 2.5D stacking solution using a Silicon interposer with an embedded
active Silicon photonic interconnect.

3.2 Integrated Photonic Memory Interconnect for

Reconfigurability

2.5D Stacking based Implementation

The flexibility and transparency of photonic connections can provide an energy-

efficient solution to NUMA and hotspot effect. The central piece in this solution

is a Si-photonic interposer chip which contains active photonic components, specifi-

cally transmitters for each memory stack and the SiP switch (Fig. 3.2) . Electronic

devices such as the processor and memory stacks, stacking on the interposer, connect

to the photonic components through flip-chip bonding [86] or through-silicon vias

(TSV) [87]–[89]. The SiP switch, capable of routing optical data without Optical-

Electrical-Optical (OEO) conversions, allows the processor to communicate to all

memory stacks or to selected memory stacks via any desired interfaces with no addi-

tional propagation latency.

The processor may also contain a control section to configure the photonic

switch based on communication demand. This connectivity can be configured to

achieve single-wavelength connection (if using wavelength demultiplexers) or multiple-

wavelength connections (if using broadband spatial switches such as MZIs), depend-

ing on the bandwidth requirement of individual memory modules such as HBM and

NVRAM. Control information can also be also used to adjust NoC routing rules.

41

Switching Implementation

In this work, we used a programmable tunable laser[90], [91] and a SiP demultiplexer

to construct the optical link. Co-integration of tunable lasers with the silicon wafers

has been demonstrated [92]–[94]. The 4-channel SiP demultiplexer is first tuned to the

designated wavelengths and maintains wavelength stability during the experiment.

The fast tunable laser is then triggered to switch among four channels in a circular

order. Different wavelengths will be selectively dropped by the SiP demultiplexer

to different output ports, thus reaching different MCs (Fig. 3.10c). Unlike electrical

switching, SiP switching does not require per-flit latching, thus can be highly energy

efficient. From the memory’s perspective, the connections are transparently re-wired

to a desired MC tile, bringing them closer to the requesting cores. The reason we chose

to switch the tunable laser instead of the micro-rings is because the tunable laser, as

shown later in section 4, can achieve WDM channel switching time of 15 ns, which is

two orders of magnitude smaller than previously-shown conventional thermally-tuned

experiments [95]. It is also shorter than the transaction latency of state-of-the-art

memory modules (HBM and HMC, about 40 ns). Such short switching time thus

enables dynamic optimization of memory-MC connections during application run

time, with fine granularity.

3.3 Optimizing Core-Memory Affinity

We consider how individual CPU cores fundamentally communicate with the memory.

For many-core processors, a 1D ring or a 2D mesh NoC is typically used in commercial

chip designs such as Intel Knight’s Corner (ring) and Knight’s Landing (mesh). In

these designs, the memory interface works as an endpoint on the NoC: instead of a

NoC tile with a processor core, it is a NoC tile with a memory controller. The NoC

therefore carries two types of traffic: core-to-core traffic (such as coherence messages)

42

Processor

Photonic	Sw
itch	

intf 4

intf 2 intf 1

intf 3

Optical Waveguide

Processor

A

Photonic	Sw
itch	

Core intf 4

intf 2 intf 1

intf 3

Optical Waveguide

Mem	
Congestion

Mem	

Mem	

Mem	

Mem	

Mem	

Mem	

Mem	

Figure 3.3: Architectural benefit of SiP switch: alleviating hotspots (left) and opti-
mizing core-memory affinity (right).

and core-to-memory traffic, with the bandwidth shared between the two.

In an n-by-n mesh NoC, the hop distance between a core and a memory controller

can vary between 1 and 2(n − 1). When n is greater than 6, this range would span

over one order of magnitude, severely limiting the scalability of the core count. In

addition, when a core needs to access a remote interface, the throughput will taper

as the hop distance will increase the amount of congestions encountered by the flow.

A reconfigurable SiP switch can dynamically change the injection interface of the

memory data, enabling the use of an injection point near the destination core. In

this way, the number of on-chip hops can be effectively reduced. For instance, in

Fig. 3.3(right), the hop count decreases from 10 (dashed red, as in native connection)

to one (solid red, after reconfiguration). The hop reduction can not only cut down

the latency experienced by the memory traffic, but also reduce the load of on-chip

links and routers. The latter effect makes additional bandwidth available for other

on-chip traffic such as core-to-core messaging and cache coherence communication.

43

3.4 Alleviating Hotspots

While the NoC-based many-core architecture requires well-balanced workload and

memory assignment where each core accesses each memory stack uniformly, real ap-

plication usually fails to show this uniformity. For example, in Fig. 3.3(left), the

cores on the left half may simultaneously access the memory interfaces on the right,

creating a bisectional bandwidth requirement of 256 GB/s (assuming each memory

stack supports a bandwidth of 128 GB/s). If the NoC link is 64-bit wide and runs

at a 2.1 GHz clock, then the 7 bisection links will provide a bisection bandwidth of

117.6 GB/s, less than half of the 256 GB/s requirement. To make matters worse, the

cores may also simultaneously access a single memory module, creating congestion in

the NoC around that single MC tile.

For this hotspot scenario, the SiP switch can TDM shuffle the response traffic

(memory to cores) through multiple injection interfaces of the chip. This unique

capability of photonics thus distributes the memory traffic over different sections of

the NoC, thereby alleviating the load of the congested MC tile by k times, where k

is the total MC number. For efficiency of data transmission, the system may switch

the memory channel with coarse time granularity, rather than on a per-packet basis.

The choice of time granularity may depend on the buffer size at the on-chip memory

interface. One example is to switch to the next interface when the buffer of current

one fills up.

It should be noted that for the read (injection) traffic, no change to the NoC

or the message header is needed, because the NoC can always route the message to

correct core based on the core ID, no matter from which interface the message enters

the NoC. On the other hand, for the write traffic, if the interface-memory mapping

has changed from the natural mapping, some engineering of the destination tag may

be needed to direct the packet to the correct interface. One lightweight approach is

to apply mapping from a logical tag to a physical tag based on the switching state of

44

C C

C C C C

C C C C

C C

MC MC

MC MC

C C

C

C

C

C

C

C

C

C

C C

MC MC

MC MC

Core

L1

L2

Rtr

Mem

Dir

Rtr

Figure 3.4: Simulated 12-core 4-MC architecture in ring and mesh configuration.

the SiP switch.

3.5 Performance Evaluation

We use three data-intensive applications – STREAM , 3D stencil, and K-mean clus-

tering benchmarks to compare system performance under both fixed-connection mode

and photonic-switching mode. The simulated architecture consists of 12 cores and 4

memory controllers connected in a ring, mesh, or torus topology (Fig. 3.4). In the

ring case, there is a memory controller every three cores. In the mesh and torus cases,

the memory controllers are located at the four corners of the NoC. Each core has 32

KB of L1 cache and 256 KB of L2 cache. Each memory interface includes a directory.

Each memory stack has 96 GB/s bandwidth, and an access latency of 30 ns. The

links on the ring are bi-directional, with a width of 8 B for each direction. The clock

frequency of the processor is 2.1 GHz. Considering the communication overhead, we

assume that a NoC link has a bandwidth of 12.6 GB/s (6B × 2.1 GHz). In this study,

we assume only the read (injection) direction uses the switching functionality of SiP

devices, while the write direction still uses fixed connections. This complies with the

fact that a SiP switching plane is usually used for one direction of communication.

45

(a) STREAM-Read

8 16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

0

100

200

300

400

500

600

700
STREAM-Copy [Ring]

Fixed
TDM 0 ns
TDM 10 ns
TDM 100 ns
TDM 500 ns

Request Size (Byte)
8 16 32 64 128

0

100

200

300

400

500

600

700
STREAM-Copy [Mesh]

8 16 32 64 128
0

100

200

300

400

500

600

700
STREAM-Copy [Torus]

(b) STREAM-Copy

8 16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

0

100

200

300

400

500

600

700

800

900

1000

1100
STREAM-TRIAD [Ring]

Fixed
TDM 0 ns
TDM 10 ns
TDM 100 ns
TDM 500 ns

Request Size (Byte)
8 16 32 64 128

0

100

200

300

400

500

600

700

800

900

1000

1100
STREAM-TRIAD [Mesh]

8 16 32 64 128
0

100

200

300

400

500

600

700

800

900

1000

1100
STREAM-TRIAD [Torus]

(c) STREAM-TRIAD

Figure 3.5: Execution time of STREAM with different kernels (read, copy and
TRIAD), under fixed or TDM-switched memory connection modes.

STREAM Benchmark

The STREAM benchmark is a simple synthetic benchmark program that measures

sustainable memory bandwidth and corresponding computation rate for simple vector
46

kernels. We evaluate three kernels for STREAM :

• READ: Each core reads its part of an array from the main memory; no other

operation is performed.

• COPY: Each core reads its part of the array and writes the data to a second

array, i.e. a(i) = b(i).

• TRIAD: Each core reads its part of two input arrays and performs a MULT-

ADD operation, i.e. a(i) = b(i) + q ∗ c(i), and writes the result to a third

array.

The READ kernel evaluates the pure data injection capability of the system,

while the COPY kernel evaluates patterns with balanced reads and writes (the write

operation still takes the fixed memory interface). The TRIAD kernel evaluates actual

compute performance by further mixing memory accesses with FLOP operations.

Hotspot Scenario

To mimic the hotspot effect, the address space to be accessed is set to reside in the

first memory module. This arrangement creates high traffic load, including both

memory read requests and responses, around the first MC tile. The execution time

of STREAM kernels with fixed injection points vs. TDM-switched injection points is

shown in Fig. 3.5. For the TDM case, channel switching latencies ranging from 0 ns

to 500 ns are considered. On the X-axis, we vary the burst length of each memory

request from 8 bytes to 32 bytes. For switching latencies less than 100 ns, the TDM-

switched injection achieves lower execution time than the fixed injection in all three

tests. And the fixed injection has similar performance to that of TDM with 500 ns

switching latency. Additionally, the speedup increases as the request size increases.

For the READ kernel, which maximizes the benefit of switched injection over fixed

injection, the speedup reaches about 2x when the request size approaches 64 bytes –

the cache line size of most modern processors. The reason for this increase in speedup

47

(a)

(b)

Figure 3.6: (a) Respective memory request latencies of 12 cores (in mesh topology)
under fixed vs. TDM modes, request size = 64B; (b) Mean memory request latency
across all 12 cores.

is that bigger request size more easily congests the NoC in the fixed-injection mode. In

comparison, the switched-injection mode can evenly distribute the memory response

traffic over all available injection points, alleviating the hotspot effect by a factor of

4x.

A comparison of memory request latencies (MRL) under the fixed mode versus

the TDM mode is presented in Fig. 3.6 for the READ kernel. Fig. 3.6a shows the

MRL of respective cores of the 4x4 mesh topology, with a request size of 64 bytes

(size of a cache line). The four corner tiles are not shown since they are memory

controllers. It is clear that the TDM mode, with 10 ns switching latency in this case,

cuts down the MRL by half compared to the fixed case. Another observed effect is

that Core (1,0), being relatively closer to the first MC, has lower MRL than the other

48

Figure 3.7: Execution time of various STREAM kernels using native or affinity-
optimized memory interfaces.

cores, which is in line with the NUMA effect. Fig. 3.6b shows the average MRLs

across all 12 cores under different topologies and request sizes. The TDM mode also

significantly reduces the average MRLs by avoiding NoC congestions.

49

Affinity Scenario

To demonstrate the benefit of photonic switch enabled core-memory affinity, we as-

sume that data is stored in the memory in a non-local fashion. While the cores still

perform jobs in parallel, each core must access its data via a distant memory. Specif-

ically, we assume that the mismatch distance is half a ring. With a SiP switch, one

can change the mapping between the interfaces and memory modules and compensate

for this mismatch, thereby eliminating the non-local efficent.

Fig. 3.7 shows the execution time of the three kernels in both fixed-connection

mode (affinity-suboptimized) and switched mode (affinity-optimized). For the READ

and COPY kernels, the switchable mode can achieve a constant speedup of 2x, re-

gardless of the request size. For TRIAD, the speedup increases as the request size

increases.

K-means Clustering

We include K-means clustering in our evaluation because of the prevalence of data

mining and machine learning algorithms. Specifically, we use streamcluster from

the PARSEC benchmark suite [96] to emulate a K-means clustering method with

streaming characteristics. streamcluster solves an online clustering problem faced

by many machine learning applications [97]: For a stream of input points, find a

predetermined number of medians such that each point is assigned to its nearest

cluster center. streamcluster has an intensive memory-to-FLOPS instruction ra-

tio of 9.48 : 11.6 as reported in [96]. The streamcluster kernel simulated here

implements a data-parallel pthreads model and has a medium-level parallelization

granularity.

The memory access of streamcluster has a typical hotspot pattern. As reported

in [11], 97% of the memory accesses are towards the first memory module, creating

much congestion in the section of the NoC near the first MC.

50

16-Stop Ring 4x4 Mesh 4X4 Torus

E
xe

cu
tio

n
T

im
e

(m
s)

60

80

100

120

140

160
Fixed
TDM (0 ns)
TDM (10 ns)
TDM (100 ns)
TDM (500 ns)

Figure 3.8: Run time of streamcluster with fixed and reconfigurable (TDM) mem-
ory connections

Fig. 3.8 shows the simulation result comparing the fixed memory connection versus

the TDM memory connection. With the topologies evaluated, maximum runtime

reductions (under 0ns TDM switching) are 17% for ring, 15% for mesh, and 15%

for torus. Another trend seen in the data is that even when TDM switching delay

increases (up to 100 ns), the run time is not significantly affected, which means that

some real applications like streamcluster can be very tolerant to optical switching

latency.

3D Stencil

3D stencil is employed by a large fraction of scientific applications including heat

diffusion, electromagnetics, and fluid dynamics. The operation sweeps over a spatial

grid and performs nearest neighbor-based computation (called stencil). In this work,

we set the stencil size to 27, 3 points in each of the XYZ dimensions. Since the data

structure swept by the stencil operation is typically much larger than the available

cache space, 3D stencil is often intensive in off-chip memory access. To address

this problem, software strategies such as tiling [98] and auto-tuning [99]–[101] have

51

8 16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

0

50

100

150

200

250

300

350

400
3D Stencil [Ring]

Fixed
TDM 0 ns
TDM 10 ns
TDM 100 ns
TDM 500 ns

Request Size (Byte)
8 16 32 64 128

0

50

100

150

200

250

300

350

400
3D Stencil [Mesh]

8 16 32 64 128
0

50

100

150

200

250

300

350

400
3D Stencil [Torus]

Figure 3.9: Execution time of 3D-stencil, under fixed or TDM-switched memory
connection modes.

been proposed to improve cache reuse (i.e. temporal locality). Effective core-memory

bandwidth, however, is still identified as a major performance bottleneck [100], [102].

In our simulation, we set the stencil problem size to nx = ny = 10, nz = 20, which

allows data to be stored continuously in memory. We iterate over the data width space

(i.e. size of each grid point) from 8B to 128B, and show the corresponding simulation

result in Fig. 3.9. Mesh topology shows maximum performance difference between

the fixed and TDM cases, where TDM with 10ns switching reduces the run time by

23% over the fixed case under 128B grid point size.

3.6 Hardware Demonstration

Experimental Setup

Fig. 3.10a shows the implemented experimental configuration. Two Altera Stratix

V GX FPGAs with 4x10-Gbps transceivers were used to emulate, respectively, a

many-core processor and four memories. The four memories were mapped to a single

transceiver channel, with the transmitter coupled to a LiNbO3 commercial modulator

via a QSFP-to-SMA interface to drive on-off keying (OOK) non-return-to-zero (NRZ)

data onto the tunable laser output. The tunable laser was programmed to switch

52

(a) Memory connected to OpenSoC NoC via a SiP de-
mux

(b) SiP demux
chip

(c) Eye diagram

Figure 3.10: (a) Many-core multi-memory testbed based on a fast tunable laser, a
SiP wavelength demux and an OpenSoC NoC. (b) Chip image with probes landed
and fiber array attached. (c) Measured eye diagrams.

among four channels (λ1=1548.1 nm; λ2=1551.3 nm; λ3=1554.5 nm; λ4=1557.7 nm)

in a round-robin fashion. The optically modulated channels were amplified with an

erbium-doped fiber amplifier (EDFA), and a single WDM lightpath at 14 dBm was

injected into the SiP demultiplexer. Four rings in this device were used to selectively

drop the four data channels to different output ports. At each drop port, a 12.5

GHz PIN/TIA optical-to-electrical converter and limiting amplifier (LA) were used to

receive and condition the signal injecting electrical data into the processor’s memory

interface.

VHSIC Hardware Description Language (VHDL) was used to code synthesizable

hardware for a communication backend to inject and collect user-defined data. Other

VHDL was implemented to control four digital-to-analog converters (DACs), used

to tune the four rings’ resonances via integrated heaters, providing programmable

reconfiguration of the SiP demux. VHDL-coded, state-based logic was written to re-

configure and synchronize the four transceiver channels together with reconfiguration

of the SiP demux.

53

Figure 3.11: Experimental demonstration of time-sequenced switching diagrams with
a channel switching time of 15 ns.

Characterization of Optical Switching

Physical layer network performance was evaluated by collecting 10-Gbps eye patterns

generated by FPGA-driven 231-1 pseudorandom data on the four optical channels,

routed in various static configurations of a 1-by-4 network (Fig. 3.10c). Clear and

open eyes indicate that the physical layer of the network is capable of error-free data

transmission.

Fig. 3.11 depicts the measured responses at the four drop ports of the SiP demux

using a four-channel oscilloscope. It shows that the four channels are turned on/off

in a cyclic order due to the switching of the fast tunable laser. The duration of

the channel-on state is set to 2.02 microseconds, for transmitting 2 KB data. The

54

Figure 3.12: OpenSoC switch fabric outputs showing four cores simulatenously re-
ceiving memory data from four memory interfaces

measured switching time (defined by the rise/fall time) of the fast tunable laser is

15 ns. Based on the above-described simulation results, this reconfigurable memory

interconnect with a switching time of 15 ns can bring significant speedup compared

to the conventional fixed case.

OpenSoC Fabric for NoC

We take a step further by implementing a 4-by-4 mesh NoC in the processor-side

FPGA. The RTL of the NoC is generated by OpenSoC Fabric [103], a Chisel based

on-chip network generator. This fabric allows the flits to be routed from any mem-

ory interface to any destination core. It adopts the backpressure-based flow-control

schemes, and generates ready and valid signals at the I/O ports of each tile. In the

second experiment, the control logic at the processor side initiates the data trans-

mission. As a response, the four memory modules send response data using separate

55

Table 3.1: Routing latency (clocks) from port (0, 0) to port (X, Y) in unit of clock
cycles

X=0 X=1 X=2 X=3
Y=0 9 14 19 24
Y=1 14 19 24 29
Y=2 19 24 29 34
Y=3 24 29 34 39

Table 3.2: Breakdown table of latency, and scaling the emulator by a factor of 10

Component FPGA-Emulated Actual System
Channel Switching 15 ns 15ns

Clock Data Recovery 200 ns 20 ns
OpenSoC Routing 50 ns 5 ns

Total Latency 255 ns 40 ns

wavelength channels. The control logic tunes the four SiP rings to drop the four data

streams at their respective memory interfaces – four corners of the OpenSoC mesh

(tile ID 0, 3, 12, and 15). The flits are then routed by the synthesized routers to their

respective destination core.

Fig. 3.12 depicts the output timing diagram captured using SignalTap tool offered

by Altera’s Quartus-II development environment. The top-most signal is a 100 MHz

clock signal that drives the OpenSoC fabric. The following 16 signals are the output

valid flags of the 16 NoC tiles from the router to the core. Output ports 5, 6, 9, 10,

corresponding to the four requesting cores, have flits coming out successfully, while

other ports remain quiet.

Table 3.1 shows the latency of the OpenSoC fabric from input port 0 to different

output ports. Latency increases by 5 clock cycles as the hop distance increases by 1.

When the average hop distance is reduced by 5 (equal to 25 clock cycles) by using

the reconfigurable multi-core to many-memory interconnects, the average latency is

reduced by 25 ns with a clock speed of 1 GHz.

Table 3.2 shows the breakdown of the read latency from the memory to the core.

The values listed in the “FPGA-Emulated” column are the measured results in the

56

experiment using FPGA at a clock of 100 MHz. The values listed in the “Actual

System” column are the results we think our proposed scheme can achieve in a real

CPU system when using an application-specific integrated circuit (ASIC) with a clock

of 1 GHz. The overall latency of the “Actual system”, with the optical switching

operation, is 40 ns. This latency is comparable to memory transaction latencies of

state-of-the-art memories like HMC and HBM [104].

3.7 Summary

We developed a method to deliver memory traffic to the requesting cores in a

network-distance-efficient manner using fast tunable lasers and SiP demultiplexers, at

nanosecond-level memory channel switching latency. Performance evaluation based

on a many-core processor model verified that this fast tunability has the potential to

significantly improve the performance of data-intensive benchmarks. We believe that

the proposed reconfigurable SiP memory interconnect, in conjunction with the ongo-

ing switching time improvement from both industry and research, can be a promising

solution to memory access issues such as NUMA and NoC hotspots in the many-core

era.

57

Part II:

Avoiding Path Setup Overhead

58

Chapter 4

Reusing Optical Circuits in HPC

Applications

Abstract

Optical interconnects can support high-bandwidth, end-to-end connectiv-

ity over warehouse-scale distance. However, due to the circuit switching nature

and additional peculiarities, optical links generally show longer path setup de-

lays. These delays are a major obstacle in exploiting the high bandwidth of

optics for application speedups, especially when low-latency communication is

required. These limitations can be overcome by maintaining a set of frequently

used optical circuits based on the temporal locality of the application and by

maximizing the number of reuses to amortize the overheads. However, since

circuits cannot be simultaneously maintained between all source-destination

pairs, the set of selected circuits must be carefully managed. This chapter ap-

plies techniques inspired by cache optimizations to intelligently manage circuit

resources with the goal of maximizing the circuit “hit rate”. We propose the

concept of “circuit reuse distance” and design circuit replacement policies based

on this metric.

59

4.1 Motivation

Silicon photonic (SiP) interconnects, which have been shown to provide large band-

width densities at high energy efficiencies, can scale over warehouse distances and

provide end-to-end connectivity across HPC platforms [105]. Despite this reach ad-

vantage, SiP interconnects also have a set of peculiarities and special operation re-

quirements. For example, resonance based devices such as microring resonators will

require wavelength tuning to reach the designed operating wavelengths [106]. Res-

onator devices are also sensitive to surrounding environmental temperature due to

the high thermal-optic constant of silicon, and thus require thermal stabilization or

re-initialization [107]. These requirements add up to longer link initialization de-

lays compared to electronic links. The link initialization delays further increase with

cascaded switching components.

The optical interconnect system delays directly add to the execution time of HPC

applications and are a major obstacle in exploiting the high bandwidth of optics for

application speedup. In particular, the latency penalty could be especially detrimen-

tal in scenarios when remote direct memory access (RDMA) [108] is enabled or when

small messages are used.

Compared with traditional two-sided communications, RDMA mitigates synchro-

nization overheads such as tag matching between the sending and receiving processes

[109]. Instead, communication can be initiated by only one side using tools such as

MPI One-sided [110], [111], OpenSHMEM [112], PGAS [113], etc. RDMA enables

a process to directly access remote memory space of another without involvement

of the latter. To maximize this advantage, physical layer communication with small

initialization overhead is desirable. Increasing setup delays can easily negate the

advantages of RDMA, making the link similar in performance to having two sided

synchronization delay. Instead, latencies for remote and local memory access laten-

cies should be unified as in a flattened memory architecture. Thus it is critical for

60

SiP circuit-switched networks to provide circuits in such way that an RDMA request

can immediately find a corresponding circuit upon arrival (we call this a circuit hit).

Otherwise, the request sees a circuit miss and has to suffer from the setup penalty.

The role of circuits in a circuit-supported RDMA system resembles that of caches in

microarchitectures.

Although the initialization delay of SiP devices is hard to minimize presently due

to the limitation of the silicon thermal constant [114], such penalty can be overcome

through careful architectural design. One such method is to explore the temporal

locality in an application’s communication pattern, where a node could reference a re-

mote memory space multiple times within a short period. If the circuit corresponding

to the requested end point already exists, messages can be immediately transmitted,

avoiding the circuit setup penalties. Taking advantage of temporal locality, a set of

optical circuits can be maintained for the frequently accessed neighbors, significantly

increasing the circuit hit rate and hence the application performance. Maximizing the

number of reuses of these circuits also helps amortize their initialization overheads.

A requested circuit, of course, will not always exist to be reused. This is because

optical connections cannot be maintained for all source-destination pairs, and be-

cause application communication patterns can change over time. The challenge then

becomes to carefully select and update the set of circuits to maintain.

We apply techniques inspired by cache optimizations to intelligently manage cir-

cuit resources with the goal of maximizing the circuit hit rate. We propose the

concept of “circuit reuse distance” and design circuit replacement policies based on

this metric in order to avoid circuit setup penalty. Since our work focuses on opti-

mizing replacement performance at runtime, an estimation of the next reuse distance

of a circuit is needed. We propose two predictors for predicting the circuit reuse dis-

tance and show that a novel Transition Matrix Based Predictor (TMBP) can provide

up to 40% accuracy gain compared to the traditional Maximum Likelihood Based

61

Predictor (MLBP). Two reuse distance-based replacement policies are also studied:

the Farthest Next Use (FNU) policy and the Minimum Reuse Score (MRS) policy.

Simulations based on scientific benchmarks show that both policies have the potential

to achieve much higher hit rates than the Least Recently Used policy. Considering

the distinction between circuits and caches, we also investigate the tradeoff between

the hit rate and energy consumption. Finally, we collect data on the circuit setup

delay using an FPGA-controlled network testbed containing the latest SiP devices.

4.2 Source of Delays in Silicon Photonic Links

The reliance on resonance makes microring devices highly sensitive to environmental

temperature and fabrication variation. The high thermal optic coefficient of silicon

means that device resonance varies strongly with temperature, which must be main-

tained within sub-kelvin accuracy for normal system operation. To overcome this

thermal dependence a variety of methods have been demonstrated [107], with very

promising results using active control systems to drive a local integrated heater to

maintain temperature stabilization. Active control systems increase the circuit setup

latency because they require time to stabilize [114].

Fabrication variation causes an inherent offset between realized microring reso-

nances and the laser wavelengths in the system. The overall silicon photonic control

system must be also capable of initializing microring elements to their operating wave-

lengths in an operation called wavelength locking. The time required to do so is on

the order of tens to hundreds of microseconds and is limited by the thermal time

constant of the device [114]. It should be noted that most currently demonstrated

control systems require optical power going into the circuit to maintain stability.

When the path is turned off device temperature will no longer be stable and can

require re-initialization. This is another motivation to selectively maintain active

62

circuits and maximize reuse.

4.3 A Reuse Distance Based Approach

Efforts have been made to explore the use of optical circuits at system scale [71], [115]

or for memory access [116]–[118]. The author in [119] proposed an “asynchronous

circuit programming” model, which explicitly setup circuits before communication.

However, none of these works considers minimizing setup penalties, especially, in view

of the temporal use patterns. In this work, we investigate the reuse patterns of circuit

communications and optimize the circuit management based on the metric of reuse

distance.

Reuse distance has been an important metric in cache performance optimizations

[120]. In this work we consider reuse distance from the circuit perspective and specif-

ically, in view of a source node. A reuse distance of a circuit is defined as the number

of circuit requests from its source node S between two consecutive calls to this cir-

cuit. For example, if a sequence of circuit requests made by node S is C,A,B, F,E,C

(labeled by destination nodes), then the reuse distance of circuit C is 4. We also call

the outgoing circuits maintained by a source node its circuit set. Despite this specific

perspective, the proposed techniques can also apply in view of destination nodes or

the entire network.

The reuse distance of a circuit can be also measured in time. However, the count-

based distance as described above (short as “reuse distance” hereafter) and time-based

distance (short as “time distance” hereafter) may play different roles in different

optimization problems. Similar to cache optimization, we rely on the former for

circuit replacement design. However, a difference between circuits and cachelines is

that circuits consume static power due to use of lasers. While flushing a cacheline

before a miss makes little sense, turning off a circuit that is not likely to be used in

63

near future could save energy. We hence also repy on the time distance for optimizing

the tradeoff between hit rate and energy consumption.

4.4 Profiling Circuit Reuse Distance

For measuring the temporal locality in scientific applications, we start by analyzing

the distribution of reuse distances based on a group of representative HPC applica-

tions (whose description is in Appendix A). This will guide us in designing prediction

and replacement policies. As a node progresses through its workload, it issues com-

munication requests. The node counts the number of circuit requests it makes and

maintains a table to keep track of the last request index for each of its circuits. Upon

a new circuit request, the entry corresponding to the circuit is consulted, and the

difference between the current and the last request index of the circuit is a sample of

the reuse distance of the circuit. By collecting such samples along program execution,

an estimation of the reuse distance distribution is obtained. A fine-grained estimation

of the distribution is not necessary. Instead, we cover a wide distance range and use

power-of-two based bin divisions, i.e. [0], [20], [21, 22), [22, 23), etc. The time distance

can be similarly collected based real time elapsed on the node.

The resulting distance histograms are shown in Figs. 4.1-4.3. Each application

leads to a different reuse pattern. Applications such as miniMD show very nonuni-

form distributions, while some others (e.g. GTC) are more uniform. Such difference

is related to the application’s communication degree (i.e. the number of nodes toward

which a given node issues most of its traffic), as well as irregularity of the communi-

cation pattern. The results show a high probability that a source node will reuse its

circuits within a small distance. For instance, reuse distances in miniMD with a value

smaller than 8 comprise 90% of the samples, while this percentage is of 43%, 70%

and 60% for miniFE, GTC and HPCCG, respectively. Applications such as miniMD,

64

0 1 2 4 8 16 32
0

10

20

30

40

50

60
miniMD

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
miniFE

Reuse Distance
%

 C
irc

ui
t R

eq
ue

st
s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
GTC

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
HPCCG

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
LULESH

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

81% 62%

Figure 4.1: Distribution of reuse distances for HPC benchmarks (64 nodes). Each bin
corresponds to a range between its own label (included) and the next label (excluded),
same below.

0 1 2 4 8 16 32
0

10

20

30

40

50

60
LULESH

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
miniMD

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
miniFE

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
GTC

Reuse Distance

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32
0

10

20

30

40

50

60
HPCCG

Reuse Distance
%

 C
irc

ui
t R

eq
ue

st
s

Figure 4.2: Distribution of reuse distances for HPC benchmarks (256 nodes); 512
nodes for LULESH.

miniFE and GTC even show a high percentage for reuse distances from 0 to 2. Only

LULESH shows relatively longer distances, which is due to its higher communication

degree. Fig. 4.3 presents the time distance distribution and show that a large portion

of the circuits are reused within tens of microseconds. Applications such as miniMD,

GTC and HPCCG, even show a high percentage for time distances less than 16 µs.

These results provide evidence that there is a high potential to reuse a circuit

for multiple near requests, thereby amortizing setup delays. While analyzing a pos-

teriori communication patterns is helpful, using such information for better runtime

optimization is yet another thing. In particular, we need to determine which cir-

cuit should be maintained to seize the reuse opportunities, given that the size of the

circuit set is limited. We hence explore online techniques that utilize the observed

circuit-use history at runtime to optimize circuit replacements.

65

0

5

10

15

20

25

30

35

40

45

50
miniMD

Time Distance (μs)

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32 6412
8
> 2

56
0

5

10

15

20

25

30

35

40

45

50
miniFE

Time Distance (μs)

%
 C

irc
ui

t R
eq

ue
st

s
0 1 2 4 8 16 32 6412

8
> 2

56
0

5

10

15

20

25

30

35

40

45

50
GTC

Time Distance (μs)

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32 6412
8
> 2

56
0

5

10

15

20

25

30

35

40

45

50
HPCCG

Time Distance (μs)

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32 6412
8
> 2

56
0

5

10

15

20

25

30

35

40

45

50
LULESH

Time Distance (μs)

%
 C

irc
ui

t R
eq

ue
st

s

0 1 2 4 8 16 32 6412
8
> 2

56

Figure 4.3: Distribution of time-based reuse distances for HPC benchmarks (64
nodes). For miniMD, GTC and HPCCG, a high percentage of circuit reuses are
within 16 µs.

4.5 Predicting Circuit Reuse Distance

One key step of utilizing observed reuse history for circuit replacement is to predict

the reuse distance for replacement candidates when a circuit miss occurs. In this

way, the circuit that is the least likely used in the near future can be removed. In

this section, we describe two techniques for predicting the reuse distance. Our online

methods presented here differ from previous works that considered offline cases. We

also compare the prediction accuracy of the two predictors.

Maximum Likelihood Based Predictor

The Maximum Likelihood Based Predictor (MLBP) looks at the currently-collected

reuse distance distribution of a circuit and selects the bin with the highest frequency as

the prediction. Although the prediction has the maximum likelihood, MLBP suffers

from two major drawbacks: 1) its prediction accuracy largely depends on distribution

pattern: if the distribution has one or more bins with comparable frequency to the

highest bin, the prediction accuracy is hindered; 2) MLBP neglects the temporal

pattern of the reuse distance sequence collected.

66

Transition Matrix Based Predictor

The Transition Matrix Based Predictor (TMBP) avoids the drawbacks of MLBP. It

explores the temporal aspect of the reuse distance sequence observed for a circuit and

offers prediction based on transition patterns in the sequence. To extract the pattern,

TMBP models the transition of reuse distance using a Markov chain (Fig. 4.4). The

states of the Markov chain correspond to the histogram bins, while the transition

matrix represents the probability of the reuse distance transiting from one bin to

another. Each time a reuse distance sample is collected, the matrix element corre-

sponding to the transition from the last bin to the current bin increments by 1. Upon

predicting the next reuse distance, TMBP finds the bin to which the current bin has

the greatest transition probability. Such Markov chain is maintained per circuit.

Prediction Performance

Fig. 4.5 shows how our two prediction techniques lead to different prediction accura-

cies across the applications and problem sizes. Each time a circuit is used, its distance

until the next use is predicted. If this prediction has the same log2 value as the reuse

distance observed (at the next use), then the prediction is considered accurate; oth-

erwise, it is considered not accurate. In the case of miniMD, MLBP sees a severe

accuracy drop when the number of nodes increases from 64 to 128 and 256. The

reason lies in Figs. 4.1 and 4.2, where the distribution of miniMD transforms from

a single-tower shape into a two-tower one. In comparison, the accuracy of TMBP

remains at high, with a gain of 40% and 36% over MLBP observed in the cases of

miniMD and HPCCG, respectively.

67

Reuse distance sequence of a circuit:

 9 6 1 6 1 6 1 2 2 2 2 2 9 6 1 6 . . .

[1] [2, 3] [4, 7] [8, 15]

110.8

0.75

0.25

0.2

Figure 4.4: Example for Transition Matrix Based Preditor. Upper: reuse distance
sequence of a circuit. Lower: modeling of the sequence transition using a Markov
chain. Each state of the Markov chain corresponds to a bin in the distribution
histogram.

Figure 4.5: Reuse distance prediction accuracy of Transition Matrix Based Predi-
tor (TMBP) versus Maximum Likelihood Based Predictor (MLBP), across different
benchmarks and different numbers of nodes. TMBP shows as much as 40% and 36%
higher accuracy than MLBP in cases of miniMD and HPCCG, respectively.

4.6 Optimizing Circuit Replacements

Prediction of circuit reuse distances allows us to approximate an optimal replacement

algorithm because we can attempt to preempt future communication patterns with

68

appropriate circuit configurations. The circuit that is the least likely used in the near

future is “sacrificed” when a circuit miss occurs. In this section, we describe two ways

of using the reuse distance information for circuit replacement.

Farthest Next Use (FNU)

The FNU policy selects for replacement the circuit that is going to be reused in the

farthest future. Each time a circuit miss occurs, circuits that are currently maintained

but not in data transmission become replacement candidates. Similar to [120], the

estimated time to access (ETA) a circuit can be calculated by adding the predicted

reuse distance to the circuit’s last use time minus the current time. However, not

every circuit has a positive ETA, some may have a negative value due to the passing of

its expected access. In this case, the decay time is used, i.e. how much time a circuit

has not been used. Different from [120], we also use the decay time if credibility of

the ETA prediction is not high. The circuit with the largest value for ETA or decay

time will be replaced.

Minimum Reuse Score (MRS)

In MRS, each circuit is associated with a score regarding its frequency of reuse.

Instead of granting every reuse with equal weight, reuses within smaller distances

retain higher “values”. Each time a circuit is used, its score increases by (2maxbin -

reuse distance). Each time a replacement is needed, the vacant circuit with the lowest

score is replaced.

Replacement Performance

Performance of the two aforementioned replacement policies is compared with the

Least Recently Used (LRU) policy via simulation. Our simulation assumes a fully-

69

connected network topology and that the destination node has adequate receivers

(slightly greater than its communication degree) to receive incoming circuits. These

assumptions make sure that network contention and receiver contention will not affect

the state and replacement of the circuit set at source nodes. Global network-based or

destination-based replacement can be also investigated with our proposed techniques

and will be included in our future work.

As Fig. 4.6 and 4.7 show, in most cases FNU (based on the prediction result of

TMBP) and MRS lead to much better or comparable hit rate than the LRU policy,

and hence the setup penalty due to circuit misses is minimized. It is worth noting

that FNU and MRS perform better than the other in different cases. The reason is

that the two policies account circuit history differently. MRS collects scores from the

beginning of an application; a circuit’s score acquired during an early phase could still

secure its position in the circuit set in a later phase even if the circuit is not frequently

used in the latter. Such effect could keep dead circuits that have long been vacant from

exiting the circuit set. In the case of FNU, if a circuit has long passed its expected

access time, the increased decay time will flush it out of the circuit set. Hence, the

performance of FNU is better than MRS in many cases, except for LULESH. From

the distribution, we know that LULESH shows more likelihood towards long reuse

distances. FNU replaces these long-distance circuits, which however, contribute most

reuse opportunities.

4.7 Energy Consumption Tradeoff

Although circuit set and cache share many similarities in shaping the hit/miss char-

acteristics of data accesses, several notable differences persist. An obvious difference

is that maintaining a circuit explicitly costs time-proportional energy consumption

(e.g. laser power), while maintaining a cacheline costs little. Maintaining circuits as

70

4 8 12 16
0

0.2

0.4

0.6

0.8

1

Circuits Per Node

C
irc

ui
t H

it
R

at
e

miniMD

4 8 12 16

0.4

0.5

0.6

0.7

0.8

0.9

1

Circuits Per Node

C
irc

ui
t H

it
R

at
e

miniFE

4 8 12 16
0.5

0.6

0.7

0.8

0.9

1

Circuits Per Node

C
irc

ui
t H

it
R

at
e

GTC

4 8 12 16

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Circuits Per Node

C
irc

ui
t H

it
R

at
e

HPCCG

4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Circuits Per Node

C
irc

ui
t H

it
R

at
e

LULESH

LRU
Min Reuse Score
Farthest Next Use

Figure 4.6: Circuit hit rates (64 nodes) for replacement policies: LRU, Farthest Next
Use and Minimum Reuse Score, across different benchmarks.

4 8 12 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Circuits Per Node

H
it

R
at

e

miniMD

4 8 12 16
0.4

0.5

0.6

0.7

0.8

0.9

Circuits Per Node

H
it

R
at

e

miniFE

4 8 12 16
0.5

0.6

0.7

0.8

0.9

1

Circuits Per Node

H
it

R
at

e
GTC

4 8 12 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Circuits Per Node

H
it

R
at

e

HPCCG

4 8 12 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Circuits Per Node

H
it

R
at

e

LULESH

LRU
Min Reuse Score
Farthest Next Use

Figure 4.7: Circuit hit rate (256 nodes) for replacement policies: LRU, Farthest Next
Use and Minimum Reuse Score. 512 nodes for LULESH.

long as possible can help further reduce the miss rate; however, such reduction comes

at a price of excessive energy consumption and the reduction might not be propor-

tional to the price paid. A long-time-no-use circuit can still remain in the circuit

set if no replacement occurs. In this case, a mechanism is needed to actively turn

off the circuits without the help of replacement. One such method is to predict the

time distance of a circuit—if the circuit is not going to be used again until far in the

future, it will be turned off. Note that such proactive turn-off (PTO) will not lead

to additional penalty if the circuit is to be replaced by a miss before a reuse. How-

ever, PTO could indeed lead to the drop of hit rate if the time-distance prediction is

not accurate and a circuit reuse does arrive. Instead, if the time-distance prediction

is trustworthy, a circuit could be turned off right after its use if its predicted next

71

4 6 8 10 12 14 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Circuits Per Node

H
it

R
at

e

max vacant time = ∞
max vacant time = 1 ms
max vacant time = 1 µs

Figure 4.8: Circuit hit rate (geometric mean of all benchmarks except LULESH)
when maximum vacant time is set to infinity, 1 ms and 1 µs.

distance is larger than an allowed maximum vacant time (MVT). Such a method can

provide more energy savings than waiting until a circuit’s decay time reaches MVT.

The change in hit rate with respect to MVT is presented in Fig. 4.8, where the

MVT is set to infinity, 1 ms and 1 µs, respectively. The energy consumption of the

circuit set, however, may not necessarily drop as MVT becomes tighter. If the circuit

set size is small (e.g. 6 per node, left of Fig. 4.9), PTO could lead to counter effects on

energy consumption. For example, the energy consumption of miniMD and HPCCG

increases as MVT shrinks. The reason is that too eager PTO creates more misses,

and more energy is consumed during miss penalty periods. However, if the circuit

set size is relatively large (e.g. 16 per node, right of Fig. 4.9) – in which case the

circuit resource might be overprovisioned – PTO adaptively shuts down the excessive

resources and the energy consumption is reduced.

72

inf 1 ms 1 us

1/2

1

2

4

8

Max Vacant Time

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

inf 1 ms 1 us
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Max Vacant Time
N

or
m

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

miniMD
miniFE
GTC
HPCCG
LULESH

Figure 4.9: Energy consumption of circuits versus maximum vacant time. Left: max
circuits per node = 6, Right: max circuits per node = 16. All energy values are
normalized to the infinite-vacant-time case.

4.8 Experimental Demonstration

We demonstrate dynamic reconfiguration of optical circuits using state-of-the-art sil-

icon photonic devices interfaced to high-speed FPGAs. We construct a 20 Gbps

wavelength division multiplexed (WDM) optical network that can be rapidly recon-

figured using a silicon photonic switch driven by the FPGA, and then wavelength

filtered using a silicon photonic demultiplexing device. We characterize all latencies

involved in network reconfiguration. The motivation is to provide parameters for the

circuit reuse design optimization.

Experimental Setup

The experimental setup is shown in Fig. 4.10. An Altera Stratix V GT Signal In-

tegrity Kit FPGA is used to generate PRBS 231 − 1 data at 10 Gbps. The data

73

is modulated on two DFB laser outputs (1550 nm and 1552 nm) using commercial

LiNbO3 modulators and combined using a 50:50 passive optical splitter. The data

is then amplified and launched onto a silicon photonic Mach-Zehnder interferometer

(MZI)-based 2x2 switch. A second Altera FPGA drives a 40 mVpp, 12 ns-period

square wave having a DC offset of 92.2 mV to change the switch between the cross

and bar states. The output of the switch is sent to a microring based demultiplexer

(demux) for wavelength filtering. The filtered wavelengths are then amplified for

data reception through PIN/TIA optical-to-electrical converters and 12.5 GHz lim-

iting amplifiers interfaced directly to another Stratix V FPGA. The 2x2 MZI switch

was fabricated through the OpSIS multi-project-wafer foundry service and features

both thermal and fast P-I-N electrical switching functionality. The switch is capable

of 15 dB cross-bar port extinction ratio and has a fast switch speed of 2 µs [121]. The

demux device was fabricated at the Cornell Nanofabrication Facility on a standard

silicon-on-insulator (SOI) platform and contains localized heaters for thermal tuning.

The device has a measured extinction ratio of 15 dB and a thermal time constant of

4 µs.

Experimental Results

Fig. 4.11 show the temporal response of the MZI switch simultaneously switching two

wavelengths. We show optical eye patterns for λ1 and λ2 passing through each output

state and after filtering by the demultiplexing filter. This demonstration shows a 1.0

ns rise time and 2.2 ns fall time, which is the fastest time achieved yet for OpSIS

MZI switch devices. This optical response shown in the figure is the result of the

aforementioned 12 ns-period digital square wave used for switching. The electrical

rise and fall times are 144 ps and 256 ps, respectively. Fig. 4.12(a-c) shows the

optical switching properties of the OpSIS 2x2 MZI according to the aforementioned

electrical control signal. Fig. 4.12d shows the thermal tuning and stabilization time

74

Figure 4.10: Experimental setup for dynamic WDM circuit reconfiguration (Only one
switch to demultiplexer path is shown).

for the demux ring filter for a variety of wavelength offsets. The time is on the x-axis

and shows stabilization time on the order of 200 µs for a large wavelength offset.

This initialization time is added each time the device is not locked to its operation

wavelengths and each time wavelength assignments change. For the temporal figures

shown previously the thermal tuning is assumed to be complete and unchanged.

Hardware description language (HDL) was used to implement state-based logic,

which counted execution times of essential steps in PHY initialization and synchro-

nization logic. PHY initialization requires time to setup electrical transmit and re-

ceive component, such as phase-locked-loops and shift registers. We measure an

average of 2.635 ms for the PHYs driving each optical datapath. Optical errors are

not reflected in the ultimate data delivery due to adaptive equalization of receiver

components in the PHY; however, optical errors are reflected in the word alignment

process of PHY initialization. We implement a syncword-based word alignment that

relies on successful delivery of 5 successive syncwords before the link is available for

data transmission. We measure an average synchronization time of 1.2 µs – after ini-

75

Figure 4.11: Left: optically-switched WDM data: (i) 1550 nm and (ii) 1552 nm
through one path of the 2x2 MZI switch; (iii) 1550 nm and (iv) 1552 nm through the
other path of the switch. Right: optical eye patterns of modulated data.

Figure 4.12: (a) Optical circuit switching latencies detected using a high speed digital
communications analyser. The bottom waveform is the electrical driving signal, and
the top waveform is the optical output of the switch. (b-c) Rise and fall times
measrued from 10-90%, the fall time is slower because of free-carrier lifetime. (d)
demux thermal wavelength locking latencies. Time is on the x-axis and a set of
wavelength shifts is located on the right. The ramp waveform shows the time it takes
for the output heater voltage to stabilize to the wavelength offsets.

tialization – for data delivery over each optical data path. We demonstrate successful

delivery of 5 × 1012 bits (5 Tb) of PRBS data consecutively on each optical circuit

without error. The experimental results show combined latency characteristics of the

link initialization process. Faster PHY initialization times are possible using com-

mercial ASICs. Considering the SiP circuit setup latencies, however, we still see the

need for circuit reuse design optimization.

76

4.9 Summary

In this work, we study architectural solutions for avoiding the setup penalty of sil-

icon photonic circuits. The investigation of circuit reuse distances based on HPC

benchmarks provides evidence for the temporal locality of circuit requests and the

opportunity to amortize setup overheads. Inspired by previous cache optimization

techniques, we investigate the performance of reuse distance based circuit replacement

techniques. The proposed Transtion Matrix Based Predictor is shown to provide

much higher prediction accuracy than previous maximum likelihood prediction for

HPC communications. Based on the reuse distance prediction, the two replacement

policies – Farthest Next Use and Minimum Reuse Score – also effectively increase the

circuit hit rate compared to the LRU policy and hence avoid the setup penalty.

Our future work will include a comprehensive evaluation of application perfor-

mance improvement and energy savings when using the proposed approach. Specifi-

cally, we will focus on how the improvement of circuit hit rates could translate into

application runtime speedup. We will also study methods for determining the optimal

maximum vacant time (MVT) in order to optimize the performance-energy trade-off.

APPENDIX

miniMD, miniFE and HPCCG are developed by the Mantevo project [38]. miniMD

is a proxy application for molecular dynamics simulations. It has a single kernal with

a few AllReduce collectives [122]. HPCCG is a simple conjugate gradient bench-

mark and “intended to be the best approximation to an unstructured implicit finite

element or finite volume application in 800 lines or fewer” [38]. miniFE is also an

proxy application for unstructured implicit finite element codes, but with complete

computation steps. LULESH (Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics) intends to mimic computation of hydrodynamic simulations [123].

77

LULESH allows perfect weak scaling over distributed architectures [124]. GTC (Gy-

rokinetic Toroidal Code) solves a set of non-linear partial differential equations and

is extensively used for fusion energy research. It has a “toroidal” communication

pattern and is further described in [35].

78

Chapter 5

Prefetching Optical Circuit for

Further Latency Avoidance

This chapter develops an application-guided circuit management technique that fur-

ther hides path setup latency. By learning the temporal locality and communication

patterns from upper-layer applications, the technique not only caches a set of circuits

to maximize reuse, but also prefetches predicted circuits to actively hide the setup la-

tency. We apply the technique to communication patterns from a spectrum of science

and engineering applications. The results show that setup delays via circuit misses

are significantly reduced, showing how the proposed technique can improve circuit

switching in HPC optical interconnects.

5.1 Motivation

In last chapter, we describe a cache-cached technique that amortizes path setup delays

by reusing optical circuits. This technique, however, relies on circuit misses to update

the cached circuit set – that is, the architecture does not replace a circuit until a miss

occurs. This reactive strategy thus constitutes a drawback: if a required circuit is

not yet in the cache set, its setup latency will never be hidden.

79

To address the reactive replacement problem, this chapater further proposes an ac-

tive circuit prefetching approach based on the circuit-cached scheme. By prefetching

circuits before real requests arrive, the approach can further reduce or even eliminate

the setup delays. Specifically, an application-specific predictor is proposed to learn

characteristic predecessor-follower destination patterns in an application’s communi-

cation behavior. Simulation based on a broad spectrum of benchmarks shows that

the proposed caching-plus-prefetch scheme significantly enhance the hit rate perfor-

mance compared to the previous caching-only scheme (by a rate increase as large as

95%).

5.2 Circuit Prefetch Using Application-specific

Predictors

Accurate prediction of incoming circuit requests is critical to efficient circuit prefetch-

ing. The prediction can be made by learning the communication behavior of an

upper-running application. In this paper, we consider the learning process in an on-

line fashion and use as learning material the destination sequence generated by a

network end point, for example, an application rank. In particular, we are inter-

ested in extracting characteristic predecessor-follower patterns from the destination

sequence. These patterns, repeated due to workload iterations, can provide useful

information regarding which circuit would be requested after the current one, thus

enhancing the prediction accuracy.

Fig. 5.1, for example, shows a sequence of destinations addressed by one rank

of a parallel Adaptive Mesh Refinement (AMR) application along the time axis. In

this example, circuit requests towards destinations 84, 55 and 114 often follow the

request towards destination 90. With knowledge of such a follower pattern, a cir-

cuit management runtime can prefetch the most probable follower circuits when still

80

Source: ExaCT

90 84 55 42 42 42 42
…

90 55 84 90 55 114
…

90 84 127 90 114
…

90 55 84 114
…

~
… t

hit due to cached circuit

Figure 5.1: A sequence of destinations that a rank of a parallel Adaptive Mesh Re-
finement application communicates to. The blue arrows indicates characteristic pre-
decessor (90) - follower (84, 55, 114) patterns.

communicating with the current destination, hiding the setup delay from the applica-

tion. It should be noted that although a caching-only approach without prefetching

can also achieve circuit hits when there are recurring communication requests – for

example, the repeated requests to 42 in Fig. 5.1 – it misses the follower pattern that

could further reduce the setup latency.

Predicting the follower circuits is an important step of effective prefetching. Sev-

eral prediction techniques have been proposed in the realm of cache management

[125]–[127]. These techniques, however, are designed for optimizing memory accesses,

which often have constant access strides in the address space (e.g. when accessing an

array in the memory). Hence, a prediction is often made by adding or subtracting a

constant stride to or from the current address. The circuit communication considered

81

in this paper, by contrast, does not always have a constant “stride” in the destina-

tion ID sequence. Such a lack-of-stride feature is even more common for applications

with irregular communication patterns. Therefore, conventional stride-based cache

prefetch techniques may not work for the circuit communication scenario considered

in this paper.

To solve the above problem, the circuit prefetch runtime proposed in this work uses

a lookup table (LUT) to learn the characteristic follower patterns. The LUT, main-

tained by each node, uses a predecessor ID as an entry’s key, and the corresponding

followers’ ID (with their repeat frequency) as the entry’s value. By observing the local

communication history of an application rank, the node constantly updates the LUT

to record the k most frequent followers of each predecessor. Here, we call parameter

k the tail length, the maximum number of follower circuits for a given predecessor

circuit. In Fig. 5.1, the predecessor 90 has three followers 55, 84, 144, giving a tail

length k = 3. The tail length impacts the actuation costs induced by prefetching,

including the power consumed by circuit setup. The tail length also determines the

size of the LUT and the update complexity. Thus, the tail length k imposes a trade-

off effect in circuit prefetching: increasing k may result in more prefetched circuits

and hence a potentially higher hit rate, but it may also induce more actuation energy

consumption, a larger LUT footprint and higher update complexity. We will analyze

such trade-offs in the next section.

When a circuit request arrives and is recognized as a recorded predecessor, its cor-

respondent follower circuits will be prefetched by the circuit management runtime,

unless the follower circuit is already cached. In this paper, we assume that the replace-

ment policy used for prefetching is the same as that used for circuit misses. We also

assume that only vacant circuits that are not in data transmission can be considered

as a replacement candidate. Furthermore, upon circuit misses (hard replacement), a

prefetched circuit can be preempted.

82

Table 5.1: Description of benchmarks used in the simulation and their communication
features (numbers mearsured at 256 ranks).

Application Description Neighbor-
to-Rank
Ratio

Reuse
Distance [5]

HPCCG [38] Conjugate gradient code
for 3D chimney domain

simulation

4.69% [8,16)

miniFE [38] Unstructured implicit finite
element codes

10.04% 0, [8,16)

miniMD [38], [122] Molecular dynamics for
spatial-decomposition
particle simulations

5.18% 1, [8,16)

LULESH [123], [124] Livermore Unstructured
Lagrangian Explicit Shock

Hydrodynamics

17.71% [32,64)

Multigrid [128] Differential equations
solver using a hierarchy of

discretizations

14.46% [32,64)

CNS [128] Compressible Navier Stokes
equations with constant
viscosity and thermal

conductivity

17.30% [32,64)

5.3 Performance Evaluation

Methodology

To evaluate the effectiveness of the proposed prefetch scheme, we compare its per-

formance with the caching-only scheme in Ref. [5]. In both cases, a Least Re-

cently Used (LRU) replacement policy is used. We use multiple mini-apps that cover

a wide spectrum of scientific computations as upper-running benchmarks. These

benchmarks, representing different communication patterns, are simulated based on

a non-blocking circuit-switched network implementing one of the two latency-avoiding

schemes above. The applications are simulated using trace replay from a library of

DUMPI traces in conjunction with the macro-scale components of the SST simu-

lator [129]. Time gaps between consecutive communication calls are derived from

83

timestamps within the traces. To reflect how the application behaviors impact the

effectiveness of the schemes, we assume there is only one application rank per node. In

this way, the destination sequence seen by every local circuit runtime is a reflection

of single-rank communication behavior. The simulation assumes a 256-node non-

blocking optical network, and hence 256 ranks for the applications, except LULESH,

which consists of 125 ranks due to a three-dimension decomposition requirement of

the problem. Although a non-blocking optical network [130], [131] represents an ideal

network scenario, in this paper we only use it as a platform to facilitate an initial

comparison of different circuit management strategies. Furthermore, the proposed

application-guided prefetching methodology is migratable to blocking networks and

our future work will include research in this direction.

Table 5.1 provides a brief description of the benchmarks as well as information

regarding their neighbor-to-rank ratios and reuse distances. Here, the neighbor-to-

rank ratio is a ratio of the average number of communication neighbors per rank to

the number of ranks, indicating a diversity of communication destinations. The reuse

distance represents how often a destination is re-addressed by a source [5]. Consider a

destination sequence from a single source s. If the number of destinations interposed

in the sequence between two requests for a destination t is d, then d is the reuse

distance of destination t in view of source s. Each application has a “maximum-

likelihood” set of reuse distances. These reuse distances are binned logarithmically

by powers of 2 in Table 5.1, showing the most common reuse distances.

Hit Rate

Fig. 5.2 shows the hit rate performance of the caching-only and the caching-plus-

prefetch schemes with different tail lengths (k = 1, 2, 3), against various numbers of

circuits per node (p = 2, 3, ..., 8). It should be noted that in case p is smaller than k,

the circuit management runtime would fetch no more than p most probable circuits

84

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Circuits Per Node

H
it

R
at

e
miniMD

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Circuits Per Node
H

it
R

at
e

miniFE

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Circuits Per Node

H
it

R
at

e

HPCCG

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Circuits Per Node

H
it

R
at

e

LULESH

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Circuits Per Node

H
it

R
at

e

MultiGrid

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Circuits Per Node

H
it

R
at

e

Compressible Navier Stokes

cache only
cache plus prefetch (k=1)

cache plus prefetch (k=2)
cache plus prefetch (k=3)

Figure 5.2: Circuit hit rates achieved by the caching-plus-prefetch scheme (dashed)
with different tail lengths k, versus the caching-only scheme (solid), in a 256-rank
simulation. Both schemes employ the least recently used replacement policy.

out of the k predicted ones.

Compared to the caching-only scheme, the caching-plus-prefetch scheme signifi-

cantly increases the circuit hit rate in all of the applications. In applications such

as HPCCG, miniFE and miniMD, the hit rate increase is as high as 40%. This

number is even larger for LULESH (60%), Multigrid (90%) and CNS (80%). Re-

garding when the maximal enhancement is achieved by the prefetching scheme, a

difference exists between the high-communication-degree (long-reuse-distance) and

modest-communication-degree (modest-reuse-distance) applications. Here, we refer

the communication degree to the average number of communication neighbors per

85

node, which is proportional to the neighbor-to-rank ratio listed in Table 5.1.

For modest-communication-degree (modest-reuse-distance) applications, such as

HPCCG and miniMD, the maximal hit rate enhancement by the prefetching scheme

occurs at small circuit provision numbers – for example, this provision number is two

circuits per node for HPCCG and four for miniMD. As the number of provisioned

circuits increases, the hit rate of the caching-only scheme grows fast because the

“circuit cache size” becomes large enough to cover most of the modest reuse distances,

narrowing the performance difference from the prefetching scheme.

For high-communication-degree (long-reuse-distance) applications, such as

LULESH, Multigrid and CNS, provisioning more circuits improves the hit rate by

a limited amount in the caching-only case. The reason for the limited improvement

is that the number of circuits provisioned in the simulation, which is two to eight

per node, is still smaller than the communication degree or the most probable reuse

distances of the application. Take Multigrid for example, it has a communication

degree of 37 (out of the 256 ranks) and a most probable reuse distance in the range

of [32, 64), both of which are significantly larger than the maximum number of cir-

cuit provisioned. Therefore, the circuit cache size is not large enough to cover the

communication degree or reuse distance, resulting in limited hit rate improvement in

the caching-only case.

In comparison, the prefetching scheme does not require a large circuit cache size, a

small communication degree, or a short reuse distance. The principle of the prefetch-

ing scheme merely relies on the existence of correlated communications. In this sense,

the prefetch scheme is capable of creating circuit hits even when the number of circuit

is small compared to the communication degree or reuse distance. See, for example,

the hit rate of Multigrid and CNS in Fig. 5.2, where the prefetching scheme improves

the hit rate from almost 0% to almost 100% compared to the caching-only scheme.

Such capability is extremely important for a wide range of applications, 1) which by

86

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HPCCG miniFE miniMD LULESH Multigrid CNS

Pr
ef

et
ch

 E
ffi

ci
en

cy

Tail Length = 1 Tail Length = 2 Tail Length = 3

Figure 5.3: Prefetch efficiency against different tail lengths k. The prefetch efficiency
is a percentage of prefetches that result in a hit, out of the total prefetches.

problem definition have a large communication degree, or 2) whose communication

degree increases significantly as the parallelism degree scales. This also means that

the prefetching scheme is more scalable than the caching-only scheme.

Tradeoff of Tail Length

The tail length parameter determines the number of followers to be learned by the

predictor and the number of circuits to be prefetched when a predecessor is recognized.

Although a longer tail length, namely, more prefetches, can generally lead to a higher

hit rate, as Fig. 5.2 shows, it can also increase the reconfiguration cost. We investigate

such a tradeoff by evaluating the prefetch efficiency under different tail lengths. The

prefetch efficiency is a percentage of prefetches resulting into a hit out of the total

number of prefetches. Fig. 5.3 captures the prefetch efficiency when the number of

circuits per node is three. While the efficiency is in general high for all applications

when the tail length is 1, the result also shows that increasing the tail length may

decrease the prefetch efficiency, by different extents and based on the applications.

Such decrease depends on the length of typical predecessor-follower patterns in the

87

2 3 4 5 6 7 8
0

20

40

60

80

Circuits Per Node

M
es

sa
ge

 L
at

en
cy

 (n
s)

miniMD

2 3 4 5 6 7 8
0

20

40

60

80

Circuits Per Node
M

es
sa

ge
 L

at
en

cy
 (n

s)

miniFE

2 3 4 5 6 7 8
0

20

40

60

80

100

Circuits Per Node

M
es

sa
ge

 L
at

en
cy

 (n
s)

HPCCG

2 3 4 5 6 7 8
100

200

300

400

500

600

Circuits Per Node

M
es

sa
ge

 L
at

en
cy

 (n
s)

LULESH

2 3 4 5 6 7 8
0

20

40

60

80

100

120

Circuits Per Node

M
es

sa
ge

 L
at

en
cy

 (n
s)

MultiGrid

2 3 4 5 6 7 8
0

50

100

150

200

250

300

Circuits Per Node

M
es

sa
ge

 L
at

en
cy

 (n
s)

Compressible Navier Stokes

cache only
cache plus prefetch (k=1)

cache plus prefetch (k=2)
cache plus prefetch (k=3)

Figure 5.4: Message latency of caching-plus-prefetch scheme (dashed) with different
tail lengths k, versus the caching-only scheme (solid), in a 256-rank simulation. Both
schemes use the least recently used replacement policy. Circuit setup latency is 100 ns,
circuit bandwidth is 100 Gb/s.

application, as well as the repeat frequency of the learned patterns defined by the

selected tail length.

Latency

Message latencies of the two approaches are compared in Fig. 5.4. The simulation

assumes a reconfiguration latency of 100 ns and a link bandwidth of 100 Gb/s. The

reconfiguration latency assumed includes the time to release the old circuit (tens of

ns), the time to switch the lightpath (tens of ns [132]), and the time for the hand-

shake of the new circuit (tens of ns). As the results show, the prefetch approach

88

significantly reduces the average message latency thanks to a reduced missed rate.

In applications such as miniFE and miniMD, a maximal latency reduction of 65%

is achieved (at four circuits per node). In Multigrid, an even higher reduction of

90% is achieved (at five circuits per node). These results show that the proposed

prefetching scheme can effectively hide the setup latency from application-oriented

message communications.

We expect that the above latency-hiding capability would be especially useful

to small-message communication in high-bandwdith optical networks. Consider a

small message of 1KB, its transmission time is 1024 × 8/100 = 81.92 ns under the

assumed link bandwidth (100Gb/s). Such a transmission time is even shorter than

the circuit reconfiguration time, which makes hiding the reconfiguration latency even

more important for the small-message case.

5.4 Summary and Discussion

In this chapter, we build on the circuit-cached architecture and develop a circuit

prefetch approach, to actively avoid the circuit setup latency. We show a prefetch

predictor that learns application-specific predecessor-follower patterns from the des-

tination sequence, with a variable control on the length of such patterns. Simulation

results based on a wide spectrum of scientific applications, which represent vari-

ous communication degrees and circuit reuse distances, show that the prefetching

scheme significantly improves the circuit hit rate over the caching-only scheme. The

prefetching scheme is also shown to effectively hide the setup latency from application

communication, which capability is important for small-message scenarios.

The current work is only an introductory exploration of reconfiguration in optical

interconnection networks providing end-to-end communication circuits. Many issues

deserve further study. A high circuit hit rate may not directly translate into a short

89

execution time for the application. More detailed system-level simulations at larger

scale could further explore the performance impacts, particularly under more detailed

circuit NIC and switch contention models. The current work does not follow the

popular MPI-everywhere model with one rank per core. Future study could explore

the tradeoffs involved in increasing the number of MPI ranks per node. However,

the current work should be considered part of a co-design process, exploring how new

technologies might tip the design point for balancing distributed- and shared-memory

parallelism.

90

Chapter 6

Conclusion and Remarks

In this thesis, a lesson learned is that many innovations and exciting research exist in

the intersection of two or multiple areas. One can design a photonic interconnection

network purely based on random traffic generation. However, such designs may not

bring specific benefits to the applications of interest. Architecture and application

co-design is what we need for achieving exascale.

The circuit-switched nature of photonics determines that it may not work as a

standalone, generalized solution. The essential difference between a circuit-switched

network and a packet-switched one – while many people believe is in the switching

granularity – lies in whether there is pipelining. The DataVortex network [133]–

[135] is a success because it is a pipelined optical design. Unfortunately, the number

of fibers (working as buffers) in DataVortex is beyond the sustainable number for

a large-scale network. We can, instead, design for a balance between optical and

electrical switching and let them do what they are good at. Flexfly is an example.

In this regard, the role of photonic switching in HPC can be to enable reconfigurable

topologies, or to create dynamic locality, as we have shown in both macroscale and

microscale (Chapters 2 and 3, respectively).

Of course, the balance point may shift based on technology and cost changes.

91

These changes, in future, may include: i) photonic transceivers (bandwidth) becomes

cheaper and cheaper, ii) electronic switches cannot sustain the ever-increasing switch-

ing rate or iii) the bandwidth out of a single node to the even first switching level

exceeds the physical limit of copper wires. These factors may gradually drive photon-

ics into lower and lower hierarchies of a network. At a point where photonics is used

node-to-node or where centralized control is no longer possible, the path setup de-

lay should be carefully managed. The circuit-cached and circuit-prefetched schemes

developed in this thesis are early explorations in this direction. We believe that the

application-level characteristics, as explored in Chapters 4 and 5, can help us relax

the design requirement and obtain better networks.

92

Chapter 7

Future Work Recommendations

7.1 On Reconfigurable Networks

On the topic of reconfigurable networks, the following research ideas are suggested:

Using Flexfly in a multi-job environment:

While Chapter 2 only investigates benefit of Flexfly for a single application spanning

over the entire machine, the benefit of Flexfly for a multi-job workload is also obvious.

Since network partitions for different jobs will have no communication between each

other, the inter-partition links can be wired back to their own partition through

photonic switching. Here, each network partitions can contain several Dragonfly

groups, hence those inter-partition links, being global links, can be used for intensive

group pairs inside a partition.

Integrating topology reconfiguration into job schedulers:

The job scheduler is in charge of node allocation and job placement in supercomputers.

Hence the scheduler may have knowledge of, or predict with high accuracy, the future

traffic pattern in the supercomputer network. The scheduler can then reconfigure the

93

topology, using the bandwidth steering functionality, to “carve” out a partition for

the job to be launched.

Co-optimizing topology reconfiguration and task mapping:

Topology-aware task mapping (TATM) are prevalent in optimizing communication

locality and avoiding network congestions. For the Dragonfly topology alone, there

proposed numerous mapping approaches in literature [29], [136], including linear,

blocked node, blocked supernode, random, hybrid, etc. Designed for the same goal,

TATM and Flexfly represent a top-down and a bottom-up approach, respectively,

and there is an obvious inter-dependency between task mapping and topology recon-

figuration. A joint optimization of the two may lead to even better performance.

Two-level reconfigurability enabled by spatial and wavelength switching:

Photonic switching works in both spatial and wavelength domains. By coupling recon-

figurable wavelength demultiplexers to an optical spatial switch (so called “broadband

switches” such as MZI), two-level switching is possible. Although this kind of switch

is a blocking type, it maps well with two-level networks such as Dragonfly. There is

hence a chance to achieve both inter- and intra- group reconfigurability at the same

time.

7.2 On Setup Delay Avoidance

On the topic of setup delay avoidance, the following research ideas are suggested:

Investigating “MPI-everywhere” model:

The MPI-everywhere model assumes one rank per core, while the present thesis as-

sumes one rank per node. Future study could explore the tradeoffs involved in in-

94

creasing the number of MPI ranks per node, exploring how new technologies like

photonic circuits might tip the design point for balancing distributed- and shared-

memory parallelism.

Leveraging knowledge of asynchronous task runtimes:

Asynchronous task runtimes like DHARMA [137] may look ahead for future commu-

nications due to task movements. Such knowledge, available ahead of time, is perfect

for guiding circuit prefetches. This synergy also brings a rationale for integrating

circuit communication runtime with task runtime.

95

Bibliography

[1] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hyperx:
topology, routing, and packaging of efficient large-scale networks,” in Proceed-
ings of the Conference on High Performance Computing Networking, Storage
and Analysis, ACM, 2009, p. 41.

[2] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoefler,
J. Joyner, J. Lewis, J. Li, et al., “The percs high-performance interconnect,” in
High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium
on, IEEE, 2010, pp. 75–82.

[3] M. Besta and T. Hoefler, “Slim fly: a cost effective low-diameter network topol-
ogy,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE Press, 2014, pp. 348–
359.

[4] S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman,
“Silicon photonics for exascale systems,” Journal of Lightwave Technology,
vol. 33, no. 3, pp. 547–562, 2015.

[5] K. Wen, D. Calhoun, S. Rumley, X. Zhu, Y. Liu, L. W. Luo, R. Ding,
T. B. Jones, M. Hochberg, M. Lipson, et al., “Reuse distance based circuit
replacement in silicon photonic interconnection networks for hpc,” in High-
Performance Interconnects (HOTI), 2014 IEEE 22nd Annual Symposium on,
IEEE, 2014, pp. 49–56.

[6] P. Kogge and J. Shalf, “Exascale computing trends: adjusting to the new
normal for computer architecture,” Computing in Science & Engineering, vol.
15, no. 6, pp. 16–26, 2013.

[7] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[8] P. Colella, “Defining software requirements for scientific computing,” 2004.

96

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al., “The land-
scape of parallel computing research: a view from berkeley,” Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley,
Tech. Rep., 2006.

[10] S. Kamil, J. Shalf, L. Oliker, and D. Skinner, “Understanding ultra-scale ap-
plication communication requirements,” in IEEE International. 2005 Proceed-
ings of the IEEE Workload Characterization Symposium, 2005., IEEE, 2005,
pp. 178–187.

[11] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V.
Quema, and M. Roth, “Traffic management: a holistic approach to memory
placement on numa systems,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ser. ASPLOS ’13, Houston, Texas, USA: ACM, 2013, pp. 381–394,
isbn: 978-1-4503-1870-9. doi: 10.1145/2451116.2451157. [Online]. Available:
http://doi.acm.org/10.1145/2451116.2451157.

[12] C. Gunn, “Cmos photonics for high-speed interconnects,” Micro, IEEE, vol.
26, no. 2, pp. 58–66, 2006, issn: 0272-1732. doi: 10.1109/MM.2006.32.

[13] G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical
modulators,” Nature photonics, vol. 4, no. 8, pp. 518–526, 2010.

[14] A. Shacham, B. Lee, and K. Bergman, “A scalable, self-routed, terabit capac-
ity, photonic interconnection network,” in High Performance Interconnects,
2005. Proceedings. 13th Symposium on, 2005, pp. 147–150. doi: 10.1109/
CONECT.2005.6.

[15] A. Shacham and K. Bergman, “Building ultralow-latency interconnection net-
works using photonic integration,” IEEE Micro, vol. 27, no. 4, pp. 6–20, 2007,
issn: 0272-1732. doi: http://doi.ieeecomputersociety.org/10.1109/MM.
2007.64.

[16] A. Shacham, B. A. Small, O. Liboiron-Ladouceur, and K. Bergman, “A fully
implemented 12 ? 12 data vortex optical packet switching interconnection net-
work,” J. Lightwave Technol., vol. 23, no. 10, p. 3066, Oct. 2005.

[17] O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P.
Lai, A. Biberman, and K. Bergman, “The data vortex optical packet switched
interconnection network,” J. Lightwave Technol., vol. 26, no. 13, pp. 1777–
1789, Jul. 2008.

97

[18] X. Ye, Y. Yin, S. J. B. Yoo, P. Mejia, R. Proietti, and V. Akella, “Dos: a
scalable optical switch for datacenters,” in Proceedings of the 6th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems,
ser. ANCS ’10, La Jolla, California: ACM, 2010, 24:1–24:12, isbn: 978-1-4503-
0379-8. doi: 10.1145/1872007.1872037.

[19] B. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb
switch for multiwavelength message routing in silicon photonic networks,”
Photonics Technology Letters, IEEE, vol. 20, no. 10, pp. 767–769, 2008, issn:
1041-1135. doi: 10.1109/LPT.2008.921100.

[20] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable
dragonfly topology,” in ACM SIGARCH Computer Architecture News, IEEE
Computer Society, vol. 36, 2008, pp. 77–88.

[21] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Cost-efficient dragonfly topology
for large-scale systems,” in Optical Fiber Communication Conference, Optical
Society of America, 2009, OTuI2.

[22] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip
networks,” in Proceedings of the 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, IEEE Computer Society, 2007, pp. 172–182.

[23] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Analyzing
network health and congestion in dragonfly-based supercomputers,” in Pro-
ceedings of the International Parallel and Distributed Processing Symposium,
ser. IDPDS ’16, Chicago, Illinois: IEEE Press, 2016.

[24] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large scale
interconnection networks,” in ACM SIGARCH Computer Architecture News,
ACM, vol. 37, 2009, pp. 220–231.

[25] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing through-
put on a dragonfly network,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE
Press, 2014, pp. 336–347.

[26] G. Michelogiannakis, N. Jiang, D. Becker, and W. J. Dally, “Channel reserva-
tion protocol for over-subscribed channels and destinations,” in Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, ACM, 2013, p. 52.

[27] N. Jiang, D. U. Becker, G. Michelogiannakis, and W. J. Dally, “Network con-
gestion avoidance through speculative reservation,” in High Performance Com-

98

puter Architecture (HPCA), 2012 IEEE 18th International Symposium on,
IEEE, 2012, pp. 1–12.

[28] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero, “Efficient
routing mechanisms for dragonfly networks,” in Parallel Processing (ICPP),
2013 42nd International Conference on, IEEE, 2013, pp. 582–592.

[29] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, ACM,
2011, p. 76.

[30] M. García, E. Vallejo, R. Beivide, M. Valero, and G. Rodríguez, “Ofar-cm:
efficient dragonfly networks with simple congestion management,” in High-
Performance Interconnects (HOTI), 2013 IEEE 21st Annual Symposium on,
Aug. 2013, pp. 55–62. doi: 10.1109/HOTI.2013.16.

[31] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg, and T.
Hoefler, “Efficient task placement and routing of nearest neighbor exchanges
in dragonfly networks,” in Proceedings of the 23rd international symposium
on High-performance parallel and distributed computing, ACM, 2014, pp. 129–
140.

[32] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the neigh-
borhood: performance degradation due to nearby jobs,” in Proceedings of the
International Conference on High Performance Computing, Networking, Stor-
age and Analysis, ACM, 2013, p. 41.

[33] B. Alverson, E. Froese, L. Kaplan, and D. Roweth. (). Cray xc series net-
work, [Online]. Available: http://www.cray.com/sites/default/files/
resources/CrayXCNetwork.pdf.

[34] K. Madduri, K. Z. Ibrahim, S. Williams, E.-J. Im, S. Ethier, J. Shalf, and L.
Oliker, “Gyrokinetic toroidal simulations on leading multi-and manycore hpc
systems,” in Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ACM, 2011, p. 23.

[35] K. Z. Ibrahim, K. Madduri, S. Williams, B. Wang, S. Ethier, and L. Oliker,
“Analysis and optimization of gyrokinetic toroidal simulations on homoge-
nous and heterogenous platforms,” International Journal of High Performance
Computing Applications, vol. 27, no. 4, pp. 454–473, 2013.

[36] I. Ivanov, J. Gong, D. Akhmetova, I. B. Peng, S. Markidis, E. Laure, R.
Machado, M. Rahn, V. Bartsch, A. Hart, and P. Fischer, “Evaluation of paral-
lel communication models in nekbone, a nek5000 mini-application,” in Cluster

99

Computing (CLUSTER), 2015 IEEE International Conference on, Sep. 2015,
pp. 760–767. doi: 10.1109/CLUSTER.2015.131.

[37] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito, R.
Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still, “Ex-
ploring traditional and emerging parallel programming models using a proxy
application,” in 27th IEEE International Parallel & Distributed Processing
Symposium (IEEE IPDPS 2013), Boston, USA, May 2013.

[38] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich,
“Improving performance via mini-applications,” Sandia National Laboratories,
Tech. Rep. SAND2009-5574, vol. 3, 2009.

[39] J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski, A. Non-
aka, and W. Zhang, “Boxlib user’s guide,” Technical Report, CCSE,
Lawrence Berkeley National Laboratory. Available at: https://ccse. lbl.
gov/BoxLib/BoxLibUsersGuide. pdf, Tech. Rep., 2012.

[40] Y. Xia, M. Schlansker, T. S. E. Ng, and J. Tourrilhes, “Enabling topological
flexibility for data centers using omniswitch,” in 7th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 15), Santa Clara, CA: USENIX Associ-
ation, Jul. 2015. [Online]. Available: https://www.usenix.org/conference/
hotcloud15/workshop-program/presentation/xia.

[41] C. Minkenberg, G. Rodriguez, B. Prisacari, L. Schares, P. Heidelberger, D.
Chen, and C. Stunkel, “Performance benefits of optical circuit switches for
large-scale dragonfly networks,” in Optical Fiber Communication Conference,
Optical Society of America, 2016, W3J–3.

[42] M. Prais and C. C. Ribeiro, “Reactive grasp: an application to a matrix de-
composition problem in tdma traffic assignment,” INFORMS Journal on Com-
puting, vol. 12, no. 3, pp. 164–176, 2000.

[43] A. Singh, “Load-balanced routing in interconnection networks,” PhD thesis,
Stanford University, 2005.

[44] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M.
Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob, “The
structural simulation toolkit,” SIGMETRICS Perform. Eval. Rev., vol. 38, no.
4, pp. 37–42, Mar. 2011, issn: 0163-5999. doi: 10.1145/1964218.1964225.

[45] J. J. Wilke, K. Sargsyan, J. P. Kenny, B. Debusschere, H. N. Najm, and G.
Hendry, “Validation and uncertainty assessment of extreme-scale hpc simula-
tion through bayesian inference,” in Proceedings of the 19th International Con-

100

ference on Parallel Processing, ser. Euro-Par’13, Aachen, Germany: Springer-
Verlag, 2013, pp. 41–52, isbn: 978-3-642-40046-9. doi: 10.1007/978-3-642-
40047-6_7.

[46] (). Characterization of the doe mini-apps, [Online]. Available: http://portal.
nersc.gov/project/CAL/doe-miniapps.htm.

[47] (). Opsis, [Online]. Available: http://opsisfoundry.org/.

[48] G. M. Masson and B. W. Jordan, “Generalized multi-stage connection net-
works,” Networks, vol. 2, no. 3, pp. 191–209, 1972, issn: 1097-0037. doi:
10.1002/net.3230020303. [Online]. Available: http://dx.doi.org/10.
1002/net.3230020303.

[49] C. P. Chen, X. Zhu, Y. Liu, K. Wen, M. S. Chik, T. Baehr-Jones, M.
Hochberg, and K. Bergman, “Programmable dynamically-controlled silicon
photonic switch fabric,” Journal of Lightwave Technology, vol. PP, no. 99,
pp. 1–1, 2015, issn: 0733-8724. doi: 10.1109/JLT.2015.2505314.

[50] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar.
2008, issn: 0146-4833. doi: 10.1145/1355734.1355746. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746.

[51] Hpcbench, High Performance Networks Benchmarcking. [Online]. Available:
http://hpcbench.sourceforge.net/.

[52] Iperf. [Online]. Available: https://iperf.fr/.

[53] OpenvSwitch. [Online]. Available: http://openvswitch.org/.

[54] The OpenDayLight Platform. [Online]. Available: https : / / www .
opendaylight.org/.

[55] Crossproject:integration group:performance tests. [Online]. Available: https:
//wiki.opendaylight.org/view/CrossProject:Integration.

[56] Cluster SSH- Cluster Admin Via SSH. [Online]. Available: https://github.
com/duncs/clusterssh.

[57] Cray xc40. [Online]. Available: http://www.cray.com/sites/default/
files/resources/CrayXC40Brochure.pdf.

101

[58] R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical networks: a practical
perspective. Morgan Kaufmann, 2009.

[59] M. Bahadori, S. Rumley, D. Nikolova, and K. Bergman, “Comprehensive de-
sign space exploration of silicon photonic interconnects,” IEEE Journal of
Lightwave Technology, 2016.

[60] N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt,
D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-
insertion-loss and low-crosstalk broadband 2x2 mach-zehnder silicon photonic
switches,” Journal of Lightwave Technology, vol. 33, no. 17, pp. 3597–3606,
2015.

[61] N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt,
D. M. Gill, W. M. J. Green, and C. L. Schow, “Modeling and characterization
of a nonblocking 4x4 mach–zehnder silicon photonic switch fabric,” J. Light-
wave Technol., vol. 33, no. 20, pp. 4329–4337, Oct. 2015. [Online]. Available:
http://jlt.osa.org/abstract.cfm?URI=jlt-33-20-4329.

[62] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, “Firefly:
illuminating future network-on-chip with nanophotonics,” in ACM SIGARCH
Computer Architecture News, ACM, vol. 37, 2009, pp. 429–440.

[63] C. Batten, A. Joshi, V. Stojanovć, and K. Asanović, “Designing chip-level
nanophotonic interconnection networks,” in Integrated Optical Interconnect
Architectures for Embedded Systems, Springer, 2013, pp. 81–135.

[64] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M.
Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona:
system implications of emerging nanophotonic technology,” in ACM SIGARCH
Computer Architecture News, IEEE Computer Society, vol. 36, 2008, pp. 153–
164.

[65] J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P.
Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, et al., “Devices and
architectures for photonic chip-scale integration,” Applied Physics A, vol. 95,
no. 4, pp. 989–997, 2009.

[66] R. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P.
Jouppi, M. McLaren, C. Santori, R. S. Schreiber, et al., “A nanophotonic inter-
connect for high-performance many-core computation,” in Integrated Photon-
ics and Nanophotonics Research and Applications, Optical Society of America,
2008, ITuD2.

102

[67] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K. Kerbyson, D.
Li, R. Melhem, R. Rajamony, E. Schenfeld, et al., “On the feasibility of optical
circuit switching for high performance computing systems,” in Proceedings of
the 2005 ACM/IEEE conference on Supercomputing, IEEE Computer Society,
2005, p. 16.

[68] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical
switch architecture for modular data centers,” in Proceedings of the ACM
SIGCOMM 2010 Conference, ser. SIGCOMM ’10, New Delhi, India: ACM,
2010, pp. 339–350, isbn: 978-1-4503-0201-2. doi: 10.1145/1851182.1851223.
[Online]. Available: http://doi.acm.org/10.1145/1851182.1851223.

[69] N. Farrington, A. Forencich, P.-C. Sun, S. Fainman, J. Ford, A. Vahdat, G.
Porter, and G. C. Papen, “A 10 us hybrid optical-circuit/electrical-packet
network for datacenters,” in Optical Fiber Communication Conference, Optical
Society of America, 2013, OW3H–3.

[70] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch,
and M. Ryan, “C-through: part-time optics in data centers,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 327–338, 2011.

[71] J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale applica-
tion communication requirements for a reconfigurable hybrid interconnect,”
in Proceedings of the 2005 ACM/IEEE conference on Supercomputing, IEEE
Computer Society, 2005, p. 17.

[72] P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen,
“Monolithic silicon photonic integrated circuits for compact 100+gb/s coher-
ent optical receivers and transmitters,” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 20, no. 4, 2014.

[73] M. Yang, W. M. J. Green, S. Assefa, J. V. Campenhout, B. G. Lee, C. V. Janes,
F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4
electro-optic silicon switch for on-chip photonic networks,” Optics Express, vol.
19, 2011.

[74] L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8x8 broadband
silicon optical switch,” Optics Express, vol. 20, no. 17, pp. 18 977–18 985, 2012.

[75] B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. Baks, R. Rimolo-
Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, S. M. Kiewra
E. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of
scaled photonic switch fabrics, cmos logic, and device driver circuits,” Journal
of Lightwave Technology, vol. 32, 2014.

103

[76] D. A. B. Miller, “Rationale and challenges for optical interconnects to elec-
tronic chips,” Proceedings of the IEEE, vol. 88, no. 6, pp. 728–749, Jun. 2000,
issn: 0018-9219. doi: 10.1109/5.867687.

[77] S. Rumley, R. Polster, S. D. Hammond, A. F. Rodrigues, and K. Bergman,
“End-to-end modeling and optimization of power consumption in hpc inter-
connects,” in Proc. of the 45th International Conference on Parallel Processing
Workshops, Philadelphia, PA, Aug. 2016.

[78] J. Lira, C. Molina, R. N. Rakvic, and A. González, “Replacement techniques
for dynamic nuca cache designs on cmps,” The Journal of Supercomputing,
vol. 64, no. 2, pp. 548–579, 2013.

[79] M. Chaudhuri, “Pagenuca: selected policies for page-grain locality manage-
ment in large shared chip-multiprocessor caches,” in 2009 IEEE 15th Interna-
tional Symposium on High Performance Computer Architecture, IEEE, 2009,
pp. 227–238.

[80] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Microarchitecture, 2004. MICRO-37 2004. 37th In-
ternational Symposium on, IEEE, 2004, pp. 319–330.

[81] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy, J. Ramanu-
jam, A. Rountev, P. Sadayappan, Y. Chen, H. Lin, et al., “Data layout trans-
formation for enhancing data locality on nuca chip multiprocessors,” in Parallel
Architectures and Compilation Techniques, 2009. PACT’09. 18th International
Conference on, IEEE, 2009, pp. 348–357.

[82] M. Kandemir, Y. Zhang, J. Liu, and T. Yemliha, “Neighborhood-aware data
locality optimization for noc-based multicores,” in Code Generation and Opti-
mization (CGO), 2011 9th Annual IEEE/ACM International Symposium on,
IEEE, 2011, pp. 191–200.

[83] D. Brunina, X. Zhu, K. Padmaraju, L. Chen, M. Lipson, and K. Bergman, “10-
gb/s wdm optically-connected memory system using silicon microring modu-
lators,” in European Conference and Exhibition on Optical Communication,
Optical Society of America, 2012, Mo.2.A.5. doi: 10.1364/ECEOC.2012.Mo.
2.A.5. [Online]. Available: http://www.osapublishing.org/abstract.cfm?
URI=ECEOC-2012-Mo.2.A.5.

[84] T. Shiraishi, Q. Li, Y. Liu, X. Zhu, K. Padmaraju, R. Ding, M. Hochberg, and
K. Bergman, “A reconfigurable and redundant optically-connected memory
system using a silicon photonic switch,” in Optical Fiber Communication Con-
ference, Optical Society of America, 2014, Th2A.10. doi: 10.1364/OFC.2014.

104

Th2A.10. [Online]. Available: http://www.osapublishing.org/abstract.
cfm?URI=OFC-2014-Th2A.10.

[85] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S.
Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, et al., “Single-chip micro-
processor that communicates directly using light,” Nature, vol. 528, no. 7583,
pp. 534–538, 2015.

[86] Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next
generation system integration platform,” IEEE Communications Magazine,
vol. 51, no. 3, pp. 72–77, 2013.

[87] C. Kopp, S. Bernabe, B. B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank,
H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-cmos
integration, fiber optical coupling, and packaging,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 17, no. 3, pp. 498–509, 2011.

[88] A. Masood, W. Bogaerts, J. Van Olmen, J. Van Aelst, D. Van Thourhout,
and D. S. Tezcan, “Photonics-cmos 3d integration: copper through-silicon-via
approach,” in Proc. of the 2009 Annual Symposium of the IEEE Photonics
Benelux Chapter, 2009, pp. 165–168.

[89] C. Sun, M. Georgas, J. Orcutt, B. Moss, Y.-H. Chen, J. Shainline, M. Wade,
K. Mehta, K. Nammari, E. Timurdogan, et al., “A monolithically-integrated
chip-to-chip optical link in bulk cmos,” IEEE Journal of Solid-State Circuits,
vol. 50, no. 4, pp. 828–844, 2015.

[90] J. Raring, E. Skogen, L. Johansson, M. Sysak, S. DenBaars, and L. Coldren,
“Widely tunable negative-chirp sg-dbr laser/ea-modulated transmitter,” Jour-
nal of lightwave Technology, vol. 23, no. 1, p. 80, 2005.

[91] C. Browning, K. Shi, A. D. Ellis, and L. P. Barry, “Optical burst-switched ssb-
ofdm using a fast switching sg-dbr laser,” Journal of Optical Communications
and Networking, vol. 5, no. 9, pp. 994–1000, 2013.

[92] B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A.
Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in
National Fiber Optic Engineers Conference, Optical Society of America, 2013,
PDP5C–8.

[93] S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le
Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, et al., “Demonstration of
a heterogeneously integrated iii-v/soi single wavelength tunable laser,” Optics
express, vol. 21, no. 3, pp. 3784–3792, 2013.

105

[94] T. Creazzo, E. Marchena, S. B. Krasulick, K. Paul, D. Van Orden, J. Y. Spann,
C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, et al., “Integrated tunable cmos
laser,” Optics express, vol. 21, no. 23, pp. 28 048–28 053, 2013.

[95] K. Wen, H. Guan, D. M. Calhoun, D. Donofrio, J. Shalf, and K. Bergman,
“Silicon photonic memory interconnect for many-core architectures,” in Proc.
IEEE High Perform. Extreme Comput. Conf, 2016.

[96] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in Proceedings of the 17th
international conference on Parallel architectures and compilation techniques,
ACM, 2008, pp. 72–81.

[97] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan, “Cluster-
ing data streams: theory and practice,” IEEE transactions on knowledge and
data engineering, vol. 15, no. 3, pp. 515–528, 2003.

[98] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michelogian-
nakis, A. Almgren, and J. Shalf, “Tida: high-level programming abstractions
for data locality management,” in High Performance Computing: 31st Inter-
national Conference, ISC High Performance 2016, Frankfurt, Germany, June
19-23, 2016, Proceedings, M. J. Kunkel, P. Balaji, and J. Dongarra, Eds.
Cham: Springer International Publishing, 2016, pp. 116–135, isbn: 978-3-319-
41321-1. doi: 10.1007/978-3-319-41321-1_7. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-41321-1_7.

[99] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures,” in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, IEEE Press, 2008, p. 4.

[100] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick,
“Auto-tuning the 27-point stencil for multicore,” in In Proc. iWAPT2009: The
Fourth International Workshop on Automatic Performance Tuning, 2009.

[101] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-tuning
framework for parallel multicore stencil computations,” in Parallel & Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on, IEEE,
2010, pp. 1–12.

[102] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Impact of modern
memory subsystems on cache optimizations for stencil computations,” in Pro-
ceedings of the 2005 workshop on Memory system performance, ACM, 2005,
pp. 36–43.

106

[103] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, and J. Shalf, “Opensoc
fabric: on-chip network generator: using chisel to generate a parameterizable
on-chip interconnect fabric,” in Proceedings of the 2014 International Work-
shop on Network on Chip Architectures, ACM, 2014, pp. 45–50.

[104] J. Jayaraj, A. F. Rodrigues, S. D. Hammond, and G. R. Voskuilen, “The poten-
tial and perils of multi-level memory,” in Proceedings of the 2015 International
Symposium on Memory Systems, ACM, 2015, pp. 191–196.

[105] M. Glick, “Optical interconnects in next generation data centers: an end to
end view,” in Optical Interconnects for Future Data Center Networks, Springer,
2013, pp. 31–46.

[106] K. Padmaraju, L.-W. Luo, X. Zhu, M. Glick, R. Dutt, M. Lipson, and K.
Bergman, “Wavelength locking of a wdm silicon microring demultiplexer us-
ing dithering signals,” in Optical Fiber Communication Conference, Optical
Society of America, 2014, Tu2E–4.

[107] K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon
microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, 2014.

[108] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based mpi imple-
mentation over infiniband,” International Journal of Parallel Programming,
vol. 32, no. 3, pp. 167–198, 2004.

[109] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. Lusk, “The importance
of non-data-communication overheads in mpi,” International Journal of High
Performance Computing Applications, vol. 24, no. 1, pp. 5–15, 2010.

[110] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp, and R. Thakur, “High
performance mpi-2 one-sided communication over infiniband,” in Cluster Com-
puting and the Grid, 2004. CCGrid 2004. IEEE International Symposium on,
IEEE, 2004, pp. 531–538.

[111] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. W. Barrett, R. Brightwell, W.
Gropp, V. Kale, and R. Thakur, “Leveraging mpi’s one-sided communication
interface for shared-memory programming,” in European MPI Users’ Group
Meeting, Springer, 2012, pp. 132–141.

[112] S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A. Curtis, and K.
Feind, “Openshmem-toward a unified rma model,” in Encyclopedia of Parallel
Computing, Springer, 2011, pp. 1379–1391.

[113] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. Hilfinger, P. Husbands, et al., “Productivity and

107

performance using partitioned global address space languages,” in Proceedings
of the 2007 international workshop on Parallel symbolic computation, ACM,
2007, pp. 24–32.

[114] X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson,
and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE
Photonics Technology Letters, vol. 26, no. 23, pp. 2365–2368, 2014.

[115] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K. Kerbyson,
D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C. Stunkel, and P.
Walker, “On the feasibility of optical circuit switching for high performance
computing systems,” in Proc. ACM/IEEE SC 2005 Conf. Supercomputing,
Nov. 2005, p. 16. doi: 10.1109/SC.2005.48.

[116] A. Shacham, B. G. Lee, A. Biberman, K. Bergman, and L. P. Carloni, “Pho-
tonic noc for dma communications in chip multiprocessors,” in 15th Annual
IEEE Symposium on High-Performance Interconnects (HOTI 2007), IEEE,
2007, pp. 29–38.

[117] G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L. Carloni, N. Bliss, and K.
Bergman, “Circuit-switched memory access in photonic interconnection net-
works for high-performance embedded computing,” in 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2010, pp. 1–12.

[118] M. R. Madarbux, A. Van Laer, and P. M. Watts, “Low latency scheduling
algorithm for shared memory communications over optical networks,” in 2013
IEEE 21st Annual Symposium on High-Performance Interconnects, IEEE,
2013, pp. 83–86.

[119] G. Hendry, “Decreasing network power with on-off links informed by scientific
applications,” in Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), 2013 IEEE 27th International, IEEE, 2013, pp. 868–
875.

[120] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement based
on reuse-distance prediction,” in Computer Design, 2007. ICCD 2007. 25th
International Conference on, IEEE, 2007, pp. 245–250.

[121] T. Shiraishi, Q. Li, Y. Liu, X. Zhu, K. Padmaraju, R. Ding, M. Hochberg,
and K. Bergman, “A reconfigurable and redundant optically-connected mem-
ory system using a silicon photonic switch,” in Optical Fiber Communication
Conference, Optical Society of America, 2014, Th2A–10.

108

[122] R. W. Numrich and M. A. Heroux, “A performance model with a fixed point for
a molecular dynamics kernel,” Computer Science-Research and Development,
vol. 23, no. 3-4, pp. 195–201, 2009.

[123] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito, M. Gokhale, R.
Haque, R. Hornung, J. Keasler, D. Laney, et al., “Lulesh programming model
and performance ports overview,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep, 2012.

[124] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. Devito,
R. Haque, D. Laney, E. Luke, F. Wang, et al., “Exploring traditional and
emerging parallel programming models using a proxy application,” in Parallel
& Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium
on, IEEE, 2013, pp. 919–932.

[125] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers,” in Proc. Symp. th Annual
Int Computer Architecture, May 1990, pp. 364–373. doi: 10.1109/ISCA.1990.
134547.

[126] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler
algorithm for prefetching,” in Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS V, Boston, Massachusetts, USA: ACM, 1992, pp. 62–73, isbn:
0-89791-534-8. doi: 10.1145/143365.143488. [Online]. Available: http://
doi.acm.org/10.1145/143365.143488.

[127] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A study of integrated prefetch-
ing and caching strategies,” SIGMETRICS Perform. Eval. Rev., vol. 23, no.
1, pp. 188–197, May 1995, issn: 0163-5999. doi: 10.1145/223586.223608.
[Online]. Available: http://doi.acm.org/10.1145/223586.223608.

[128] EXACT Mini Apps, http://portal.nersc.gov/project/CAL/exact.htm,
[Online].

[129] J. J. Wilke and J. P. Kenny, “Using discrete event simulation for programming
model exploration at extreme-scale: macroscale components for the structural
simulation toolkit (sst),” Sandia National Laboratories, Tech. Rep. SAND2015-
1027, 2015.

[130] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni, “Design exploration of
optical interconnection networks for chip multiprocessors,” in 2008 16th IEEE
Symposium on High Performance Interconnects, IEEE, 2008, pp. 31–40.

109

[131] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman,
and M. Lipson, “Optical 4× 4 hitless silicon router for optical networks-on-chip
(noc),” Optics express, vol. 16, no. 20, pp. 15 915–15 922, 2008, issn: 1094-4087.

[132] D. Calhoun, K. Wen, X. Zhu, S. Rumley, L. Luo, Y. Liu, R. Ding, T. Baehr-
Jones, M. Hochberg, and M. Lipson, “Dynamic reconfiguration of silicon pho-
tonic circuit switched interconnection networks,” in Proc. IEEE High Perform.
Extreme Comput. Conf, Citeseer, 2014.

[133] Q. Yang, K. Bergman, G. D. Hughes, and F. G. Johnson, “Wdm packet routing
for high-capacity data networks,” Journal of Lightwave Technology, vol. 19, no.
10, pp. 1420–1426, 2001.

[134] A. Shacham, B. A. Small, O. Liboiron-Ladouceur, and K. Bergman, “A fully
implemented 12 12 data vortex optical packet switching interconnection net-
work,” Journal of Lightwave Technology, vol. 23, no. 10, p. 3066, 2005.

[135] O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P.
Lai, A. Biberman, and K. Bergman, “The data vortex optical packet switched
interconnection network,” Journal of Lightwave Technology, vol. 26, no. 13,
pp. 1777–1789, 2008.

[136] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch out for the
bully! job interference study on dragonfly network,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC, vol. 16, 2016.

[137] J. C. Bennett, J. J. Wilke, N. L. Slattengren, K. Teranishi, K. Franko, G. D.
Sjaardema, P. Lin, and H. Kolla, “Dharma: distributed asynchronous adaptive
resilient management of applications.,” Sandia National Laboratories (SNL-
CA), Livermore, CA (United States); Sandia National Laboratories, Albu-
querque, NM, Tech. Rep., 2015.

110

Appendix

Relevant Author Publications

1. K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, J. Wilke,

K. Bergman, “Flexfly: Enabling a Reconfigurable Dragonfly Through Silicon

Photonics,” (Best Student Paper Award) The International Conference for High

Performance Computing, Networking, Storage and Analysis (SC) (Nov 2016).

2. K. Wen, S. Rumley, P. Samadi, C. P. Chen, K. Bergman, “Silicon Photonics

in Post Moore’s Law Era: Technological and Architectural Implications,” Post-

Moore’s Era Supercomputing (PMES) Workshop in conjuction with SC 2016.

3. K. Wen, H. Guan, D. M. Calhoun, D. Donofrio, J. Shalf, K. Bergman, “Sili-

con Photonic Memory Interconnect for Many-Core Architectures,” IEEE High

Performance Extreme Computing Conference (HPEC) (Sep 2016).

4. K. Wen, S. Rumley, J. Wilke, K. Bergman, “Latency-avoiding Dynamic Optical

Circuit Prefetching Using Application-specific Predictors,” First International

Workshop on Communication Architectures at Extreme Scale (ExaComm) (Jul

2015).

5. K. Wen, S. Rumley, P. Mantovani, L. Carloni, K. Bergman, “Characterization

of Accelerated 2D FFT with Off-Chip Optical Channels and Kernel Adaptation

for Efficient Utilization,” SEAK 2015: DAC Workshop on Suite of Embedded

Applications and Kernels (Jun 2015).

111

6. K. Wen, D. M. Calhoun, S. Rumley, X. Zhu, Y. Liu, L. Luo, R. Ding, T.

Baehr-Jones, M. Hochberg, M. Lipson, K. Bergman, “Reuse Distance Based

Circuit Replacement in Silicon Photonic Interconnection Networks for HPC,”

IEEE Symposium on High Performance Interconnects (Hot Interconnects) (Aug

2014).

7. K. Wen, J. Wilke, S. Rumley, K. Bergman, “Modeling Performance and En-

ergy Consumption of Silicon Photonic Interconnection Networks via Analytical

Cache Models,” Workshop on Modeling & Simulation of Systems and Applica-

tions (Aug 2014).

8. K. Wen, S. Rumley, K. Bergman, “Designing Silicon Photonic Interconnection

Networks for Deadline-Driven Applications (invited),” Opto Electronics and

Communications Conference (OECC) (Jul 2014).

9. K. Wen, S. Rumley, K. Bergman, “Reducing Energy per Delivered Bit in Silicon

Photonic Interconnection Networks,” IEEE Optical Interconnects Conference

(May 2014).

10. P. Samadi, K. Wen, J. Xu, K. Bergman, “Software-defined optical network for

metro-scale geographically distributed data centers,” Optics Express 24 (11)

(May 2016).

11. P. Samadi, K. Wen, J. Xu, Y. Shen, K. Bergman, “Reconfigurable Optical

Dragonfly Architecture for High Performance Computing,” Optical Fiber Com-

munication (OFC) Th2A.60 (Mar 2016).

12. S. Rumley, M. Bahadori, K. Wen, D. Nikolova, K. Bergman, “PhoenixSim:

Crosslayer Design and Modeling of Silicon Photonic Interconnects,” 1st Inter-

national Workshop on Advanced Interconnect Solutions and Technologies for

Emerging Computing Systems (AISTECS) (Jan 2016).

13. D. M. Calhoun, Q. Li, D. Nikolova, C. P. Chen, K. Wen, S. Rumley, K.

Bergman, “Hardware-Software Integrated Silicon Photonics for Computing Sys-

112

tems [Book Chapter],” Silicon Photonics III of the series Topics in Applied

Physics 122 pp 157-189 (Jan 9, 2016).

14. C. P. Chen, X. Zhu, Y. Liu, K. Wen, M. S. Chik, T. Baehr-Jones, M. Hochberg,

K. Bergman, “Programmable Dynamically-Controlled Silicon Photonic Switch

Fabric [invited],” IEEE/OSA Journal of Lightwave Technology 34 (12) 2952-

2958 (Dec 2015).

15. P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, K. Bergman, “Experimental Demon-

stration of Converged Inter/Intra Data Center Network Architecture,” 17th

International Conference on Transparent Optical Networks ICTON 2015 (Jul

2015).

16. P. Samadi, H. Guan, K. Wen, K. Bergman, “A Software-Defined Optical Gate-

way for Converged Inter/Intra Data Center Networks,” IEEE Optical Intercon-

nects Conference (Apr 2015).

17. D. M. Calhoun, K. Wen, X. Zhu, S. Rumley, L. Luo, Y. Liu, R. Ding, T.

Baehr-Jones, M. Hochberg, M. Lipson, K. Bergman, “Dynamic Reconfiguration

of Silicon Photonic Circuit Switched Interconnection Networks,” IEEE High

Performance Extreme Computing Conference (HPEC) (Aug 2014).

18. S. Rumley, D. Nikolova, R. Hendry, K. Wen, K. Bergman, “Modeling Silicon

Photonics in Distributed Computing Systems: From the Device to the Rack

[Invited],” Advanced Photonics for Communications JM4B.2 (Jul 2014).

19. K. Bergman, S. Rumley, N. Ophir, D. Nikolova, R. Hendry, Q. Li, K. Pad-

maraju, K. Wen, X. Zhu, “Silicon photonics for exascale systems (Tutorial),”

Optical Fiber Communications Conference and Exhibition (OFC) (Mar 2014).

113

