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ABSTRACT

Advances in Credit Risk Modeling

Richard Neuberg

Following the recent financial crisis, financial regulators have placed a strong em-

phasis on reducing expectations of government support for banks, and on better man-

aging and assessing risks in the banking system. This thesis considers three current

topics in credit risk and the statistical problems that arise there.

The first of these topics is expectations of government support in distressed banks.

We utilize unique features of the European credit default swap market to find that

market expectations of European government support for distressed banks have de-

creased — an important development in the credibility of financial reforms.

The second topic we treat is the estimation of covariance matrices from the per-

spective of market risk management. This problem arises, for example, in the central

clearing of credit default swaps. We propose several specialized loss functions, and

a simple but effective visualization tool to assess estimators. We find that proper

regularization significantly improves the performance of dynamic covariance models

in estimating portfolio variance.

The third topic we consider is estimation risk in the pricing of financial products.

When parameters are not known with certainty, a better informed counterparty may

strategically pick mispriced products. We discuss how total estimation risk can be

minimized approximately. We show how a premium for remaining estimation risk

may be determined when one counterparty is better informed than the other, but

a market collapse is to be avoided, using a simple example from loan pricing. We

illustrate the approach with credit bureau data.
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CHAPTER 1. INTRODUCTION AND OUTLINE OF THE THESIS 1

Chapter 1

Introduction and Outline of the

Thesis

Credit (from Latin credit, meaning trust) is used in this thesis to refer to a finan-

cial contract in which one counterparty, the lender, loans another counterparty, the

borrower, an amount of money. The contract specifies the terms of the loan, such

as interest payments and repayment date. A default occurs if the borrower does not

meet their contractual obligations, in particular with respect to interest and principal

repayments. Default risk is the possibility of a default. The interest rate of the loan

reflects the default risk.

We will us the term credit risk to refer to any type of risk that is associated

with a credit, including, but not limited to, default risk and price change risk. For

example, while a loan is outstanding, the creditworthiness of the borrower may change

in response to new information about the borrower and the general economic climate,

thereby altering the value of the loan. Such price changes can be observed every day

for loans that are traded on an exchange, such as bonds.

A derivative is a financial contract whose value depends on the value of another

financial contract. The derivative we will pay special attention to in this thesis is the

credit default swap (CDS). A CDS provides protection against the default of a bond,
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by guaranteeing to pay for any money lost on the bond in a default. The value of a

CDS rises when the default risk of the bond increases, all else equal. CDS can be used

to hedge the risk of the bond if, for example, selling the bond is not feasible because

the bond is not traded liquidly. More generally, a CDS can serve as protection against

the default of the bond issuer, without the CDS buyer necessarily owning the bond.

CDS can also be used for speculation.

Following the recent financial crisis, governments have made considerable changes

in financial regulation. A main goal for governments is to avoid having to bail out

bondholders in future banking crises. In Chapter 2, we investigate how expectations

of government support in distressed banks have changed in response to changes in

European banking regulation. Utilizing unique features of the European CDS market,

we find that market expectations of the likelihood of government intervention in

distressed banks that do not receive a bailout have reduced considerably since 2014,

even as overall spreads have increased. Simultaneously, the likelihood of losses on

senior bonds in a credit event has increased strongly. We provide evidence that the

likelihood of bailout given distress has not increased over the same time period. Taken

together, this suggests that market expectations of government support for banks in

distress have decreased in response to changes in European banking regulation.

Another goal for financial regulators has been to shift derivatives trading towards

exchanges or central clearing houses, to reduce systemic risk from bilateral trading.

Covariance matrices are a central object in portfolio risk assessment, and, for ex-

ample, used in the central clearing of CDS to set portfolio margin requirements. In

Chapter 3, we analyze covariance matrix estimation from the perspective of market

risk management, where the goal is to obtain accurate estimates of portfolio risk

across essentially all portfolios — even those with small standard deviations. We use

the portfolio perspective to determine estimators, loss functions and regularizers par-

ticularly suitable for market risk management. We propose several specialized loss

functions, and a simple but effective visualization tool to assess estimators. Proper
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regularization significantly improves dynamic covariance models. Among the methods

we test, the graphical lasso estimator performs particularly well. The graphical lasso

and a hierarchical clustering estimator also yield economically meaningful representa-

tions of market structure through a graphical model and a hierarchy, respectively. We

find that credit default swap log-differences are driven by a strong market factor. The

additional effect of natural candidates for other observable market factors is small,

but there are latent factors and direct pairwise dependencies at play.

Accurately estimating risks is key in the pricing of financial products, too. In

Chapter 4, we discuss the role of estimation risk in pricing. Financial product prices,

for example the value of a loan, often depend on unknown parameters. Their es-

timation introduces the risk that a better informed counterparty may strategically

pick mispriced products. Understanding estimation risk, and how to properly price

it, is essential. We discuss how total estimation risk can be minimized by selecting

a probability model of appropriate complexity. We show that conditional estimation

risk can be measured only if the probability model predictions have little bias. We

illustrate how a premium for conditional estimation risk may be determined when

one counterparty is better informed than the other, but a market collapse is to be

avoided. We use a simple example from pricing regime credit scoring, where a loan

applicant and a single bank engage in a zero-sum game. We find that in large sam-

ples kernelized logistic regression is at least as accurate as commonly used default

probability estimators such as logistic regression. That it also has little bias allows

estimating conditional estimation risk. Computations are fast using a model-based

approach. We empirically examine pricing under estimation risk using a panel data

set from a German credit bureau. From studying this panel data set we also find that

the accuracy of a credit scoring model can be improved by incorporating dynamic

information such as prior rating migrations and defaults.
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Chapter 2

The Market-Implied Probability of

European Government

Intervention in Distressed Banks

This chapter is based on a manuscript of the same title, authored by Richard Neuberg,

Paul Glasserman, Benjamin Kay, and Sriram Rajan. It is available at SSRN 2851177.

2.1 Introduction

Many regulatory changes following the financial crisis of 2007–9 have sought to reduce

the likelihood of financial distress at large, complex financial institutions. Some of

these reforms (particularly requirements for bail-in debt and resolution plans) have

also sought to reduce the likelihood that governments would provide financial support

if such an institution were facing failure. The ability of governments to commit to

ending bailouts continues to generate debate. Exploiting a 2014 change in credit

default swaps (CDS) on European banks, we find evidence that market expectations

of European government support for distressed banks have decreased. This trend

marks an important development in the credibility of financial reforms. At the same
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time, banks do not have sufficient subordinated debt to protect senior bondholders

in case of default.

A CDS contract provides the holder of a bond with insurance against default by

the issuer of the bond. Various types of events are covered by different contracts,

including missed payments, bankruptcy, and restructuring events. In 2014, the Inter-

national Swaps and Derivatives Association (ISDA), the trade association that defines

the terms of CDS contracts, introduced a new “government intervention” event and

made related changes to CDS contracts affecting European banks. The changes were

prompted by cases where government actions at ailing banks had indirectly reduced

the payments received by buyers of CDS protection on those banks, particularly CDS

protection on subordinated debt. For many of the largest European banks, CDS con-

tinue to trade under the previous terms (called the 2003 definitions) as well as the

new terms (called the 2014 definitions). CDS contracts on U.S. reference entities do

not ordinarily cover restructuring events since 2009 [Markit Group Ltd., 2009], so the

new definitions introduced in 2014 are not relevant to U.S. financial institutions.

The types of intervention contemplated by the 2014 definitions can broadly be

considered bail-in events, in the sense that they impose losses on creditors through

government actions, rather than through a missed payment, bankruptcy, or privately

negotiated restructuring. Although senior creditors can in principle be bailed in,

the government actions that prompted the change in CDS contracts imposed losses

on subordinated debt while supporting senior creditors. The difference (or basis)

between CDS spreads under the 2014 and 2003 definitions reflects the market price

of protection against such government actions. For most of our analysis, we work

with what we call the relative basis, which is the ratio of the basis to the 2014 spread.

We will interpret the relative basis as a measure of the market-implied conditional

probability of a “contained” bail-in, given financial distress, meaning a scenario in

which subordinated debt holders bear losses but senior creditors largely do not. (More

precisely, the relative basis measures a loss-weighted conditional probability because



CHAPTER 2. THE MARKET-IMPLIED PROBABILITY OF EUROPEAN
GOVERNMENT INTERVENTION IN DISTRESSED BANKS 6

a CDS spread reflects a loss given default as well as a probability of default.)

This interpretation of the relative basis is strongly supported by a loss severity

measure we calculate for each bank. Our loss severity measure is the ratio of the

CDS spread on senior debt to the CDS spread on subordinated debt, both using

2014 contract definitions. This ratio measures the market-implied conditional (loss-

weighted) probability of a default of senior debt given a default of subordinated debt:

this is the conditional probability that credit losses are not contained. Across the

twenty banks in our sample, the loss severity ratio evolves like the mirror image of

the relative basis, consistent with our interpretation of the relative basis. Our loss

severity measure relies on the 2014 contract definitions, which eliminated cross-default

provisions between senior and subordinated debt in the earlier contract terms. The

ratio would be less meaningful if calculated under the 2003 definitions.

If the relative basis reflects the conditional probability that losses are imposed on

subordinated debt holders but not on senior creditors, then a decline in the relative

basis is consistent with either an increase or a decrease in bailout expectations. This

is because a decreased probability of senior creditor bailout, but also an increased

probability of subordinated creditor bailout, would imply a reduced likelihood that

losses would be borne by subordinated creditors only.

The first of these two explanations (a decreased likelihood of government support)

is more plausible, and we provide the following evidence and arguments to support it.

First, the various risk factors we test cannot explain the decline in the relative basis,

suggesting that the highly synchronized downward trend is due to a common factor

spanning multiple European countries and banks; changes in banking regulation offer

the most plausible explanation. Under the European Union’s Bank Recovery and

Resolution Directive (BRRD), which was announced in 2014 and became effective

in 2016, public funds may not be used to support a distressed bank until at least

eight percent of a bank’s equity and liabilities have been written down [European

Parliament, 2014], so market perception reflects a change in policy. This also means
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that typically a bailout of all bank debt is not legally permitted. Second, we find that

senior bondholders have become more likely to suffer losses even in contained bail-ins.

If the likelihood of bailout of all bank debt had increased, we would have expected

increased support for senior bondholders in contained bail-ins, too. Third, consistent

with this policy change (and our interpretation), rating agencies have eliminated

ratings uplift for government support of junior instruments. Finally, we also present

evidence using default probabilities, as estimated by Moody’s CreditEdge model,

which considers bailout a default event, in support of our interpretation.

Earlier studies have used CDS data to try to infer market perceptions of antici-

pated government support for financial institutions, but they relied on spreads from

before 2014 or overlooked the implications of the changes introduced in 2014. These

studies include comparisons of CDS spreads for larger and smaller banks [Volz and

Wedow, 2009; Barth and Schnabel, 2013; Zaghini, 2014], and comparisons of Global

Systemically Important Banks (G-SIBs) and Domestic Systemically Important Banks

(D-SIBs) with banks that are neither [Araten and Turner, 2012; Cetina and Loudis,

2016]. In this literature, narrower CDS spreads are interpreted as evidence of per-

ceived government support, after controlling for other factors. But some bail-in events

were not covered under 2003 contract definitions, so narrower CDS spreads could also

be explained as an increased risk of loss to bondholders that were not compensated by

CDS protection. In other words, based on the earlier contracts alone, narrower CDS

spreads could be consistent with either a decrease in expected government support or

an increase in the likelihood of a bail-in that was not covered by the earlier contracts.

A different strand of the literature has looked at the response of the CDS market

in event studies. Schäfer et al. [2016] find that senior CDS spreads (under 2003 defi-

nitions) increased around European bail-in events, which they interpret as the CDS

market adapting to a new regime in which bail-in becomes more common. Avdjiev et

al. [2015] analyze the response of the CDS market to the issuance of different types

of contingent convertible (CoCo) bonds using CDS data under 2003 definitions.
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Other studies have directly used equity or bond data. Sarin and Summers [2016]

study progress on reducing the riskiness of banks mainly based on realized and implied

equity volatility. They find that the riskiness of large banks’ equity has not reduced

considerably following the recent financial crisis, which they attribute to a decline in

these banks’ franchise value, at least in part caused by new regulation. A study by

the U.S. Government Accountability Office [2014] finds that the difference in bond

funding costs for large banks in comparison to smaller banks was large during the

financial crisis and that it has narrowed considerably since 2011. Ahmed et al. [2015]

find that in other industries, too, large firms enjoy lower borrowing costs, and that

only during the financial crisis 2008–09 were borrowing costs for large banks unusually

low. Measures of systemic risk that use market data include CoVaR [Adrian and

Brunnermeier, 2016] and SRISK [Acharya et al., 2012].

Much of the literature that looks to market prices for evidence of implicit govern-

ment support relies on structural models of the type in Merton [1974] and its many

extensions. Structural models provide valuable insights, but they can be difficult to

apply empirically, given the many assumptions they entail, especially for financial

firms. If a structural model finds that large banks have unusually low funding costs,

this finding could be due to perceived government support or to weaknesses of the

model in explaining the capital structure of large banks. In contrast, our analysis

is virtually model-free because it extracts information directly from the difference

between two market prices.

Moreover, structural models quantify government support through option value —

a bank with a government backstop effectively holds a put option on its assets. As

economic conditions improve, the value of this option decreases simply because it

moves deeper out-of-the-money. This effect can create the impression of reduced

government support, even with no change in government policy. We will argue that

the information about losses to creditors that we extract from the relative basis is

conditional on bank distress. As such, it is not vulnerable to the confounding effect
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of a general improvement in the economic environment.

The contract changes we exploit are also relevant to the much studied bond–

CDS basis, which is the difference in yields observed in bonds and implied by CDS

spreads. That 2014 CDS trade higher than 2003 CDS means that a bond–CDS basis

for European banks can be partially explained by the reduced protection against bail-

in losses provided under the 2003 definitions. This adds to the list of factors found

to affect the bond–CDS basis in earlier work, which include counterparty credit risk,

relative liquidity, and bond issuance patterns [De Wit, 2006], procyclicality of margin

requirements [Fontana, 2011] and funding risk and collateral quality [Bai and Collin-

Dufresne, 2013].

The rest of this chapter is structured as follows. In Section 2.2, we discuss the

changes that CDS definitions have undergone in response to the malfunctioning of

CDS in the case of past government interventions. In Section 2.3, we discuss the rel-

ative basis and its two contrary interpretations. We provide evidence in Sections 2.4

and 2.5 that the decline in the relative basis reflects reduced expectations of govern-

ment support for European banks in distress due to changes in European banking

regulation. We conclude in Section 2.6.

2.2 Changes to the CDS Market in Response to

Government Intervention

In 2013 and 2014, the European banks SNS Bank, Bankia and Banco Esṕırito Santo

failed. Subordinated CDS under the ISDA 2003 definitions triggered in all of these

cases, but the payout to protection buyers was much smaller than the loss on the

subordinated bonds due to issues with the 2003 definitions and actions taken by

governments in dealing with the failures of these banks. ISDA presented new CDS

definitions in 2014 to better align the payouts of CDS with the losses on underlying

bonds in government interventions. The changes were also introduced to prepare for
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the bail-in requirements under the BRRD, which was announced in 2014. Notably,

the government actions at SNS Bank, Bankia and Banco Esṕırito Santo imposed

losses on subordinated debt but supported senior debt. New CDS under ISDA 2014

definitions started trading on September 22, 2014. Currently, both 2003 and 2014

versions of CDS contracts are traded on a number of European banks.

2.2.1 The Basis and the Relative Basis

We begin by defining two central concepts that relate the subordinated CDS under

2003 definitions and the new subordinated CDS under 2014 definitions.1 We will refer

to the spread difference between subordinated 2014 CDS and subordinated 2003 CDS

as the basis. For convenience, we will also use “basis” to refer to a position that is

long a subordinated 2014 CDS and short a subordinated 2003 CDS and thus pays the

difference between the two contracts. In other words, when we say that “the basis

pays x” in some event, we mean that x is the difference in payouts of the two CDS

in that event. We will furthermore refer to the ratio of basis and subordinated 2014

CDS as the relative basis.

Fig. 2.1 shows the evolution of subordinated 2003 and 2014 CDS spreads, their

basis, and their relative basis for twenty European banks; we discuss the data source

and data quality in detail in Appendix 2.A. Subordinated 2014 CDS trade higher

than their 2003 counterparts. While subordinated 2003 and 2014 CDS have tended

to go up over most of the sample, their basis has stayed roughly constant. As a

result, the relative basis has gone down strongly. In the fall of 2014, the relative basis

was slightly over 40 percent on average. Over the course of the first half of 2015,

it decreased, on average, to around 30 percent. It stayed roughly constant over the

1We only consider the “modified-modified” CDS document clause, which is by far the most

common and liquid one for European corporations. This document clause specifies that restructuring

constitutes a credit event, but that a bond can only be delivered if its maturity date is less than 60

months after the termination of the CDS contract or the reference bond that is restructured.
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second half of 2015. The relative basis fell strongly in the first quarter of 2016. The

average in the summer of 2016 is slightly under 25 percent.

To understand what the decline in the relative basis says about market expec-

tations of government support for European banks, we discuss in detail the changes

that ISDA made in 2014 to CDS definitions.

2.2.2 CDS and Motivation for the 2014 Contract Changes

A credit default swap is intended to cover the buyer of protection against losses if the

reference entity named in the contract undergoes certain credit events. Subordinated

and senior debt issued by the same bank are covered by separate CDS contracts.

The cost of CDS protection is measured through its spread. The spread is deter-

mined by the expected conditional loss — the payout that can be expected once the

CDS is triggered — and the intensity — the probability that the CDS triggers:

CDS spread = conditional loss · intensity = (1− recovery) · intensity. (2.1)

This spread should be understood as a risk-adjusted or a market-implied expected

loss.2

When a credit event occurs, the loss on the bond is determined through an auction.

The CDS then pays out the loss on the bond.3

Government intervention events at SNS Bank in 2013, Bankia in 2013, and Banco

Banco Esṕırito Santo/Novo Banco in 2014 led to large losses for subordinated bond-

holders through bail-in, but small recoveries in CDS auctions under the 2003 defi-

2Much research has focused on factors that explain CDS spreads. For example, Ericsson et al.

[2009] find that the main factors behind CDS spreads under 2003 definitions are firm leverage, equity

volatility, and the riskless interest rate.

3We refer the reader to Chernov et al. [2013] and Gupta and Sundaram [2013] for more details on

the auction process, and to Haworth [2011] for an accessible overview of the 2003 ISDA definitions

and their 2009 supplements. Eq. (2.1) is a simplification that ignores term structure effects. For a

more complete discussion, see Duffie and Singleton [1999].
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(a) 2014 CDS spreads increased slightly
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(b) 2003 CDS spreads increased strongly
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(c) The basis stayed roughly constant
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(d) The relative basis decreased strongly

Figure 2.1: Five-year subordinated 2014 CDS and 2003 CDS spreads over time, as

well as their absolute basis, all shown in gray, along with the geometric mean at each

step in time (black). Also shown is the relative basis for each bank (gray), along with

the arithmetic mean at each step in time (black).
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nitions; senior bondholders were mostly spared. These events served as an impetus

for the changes implemented in the 2014 definitions. The changes affect both the

recovery on the bond that is determined in the auction and the intensity. We discuss

these changes in detail in Sections 2.2.3 and 2.2.4. The changes are best understood

as affecting each of the two factors in (2.1).

2.2.3 ISDA 2014 Changes that Affect the Recovery

In some cases, as a result of government actions at ailing banks, the conditional loss

determined through CDS auctions was lower than the losses experienced by bond-

holders. We will call an event where a subordinated 2003 CDS does not pay out all

of the amount lost on the underlying bond, as a consequence of government actions,

even though a 2003 credit event is declared, a recovery interference.

Asset package delivery In the case of SNS bank in 2013, the Dutch government

expropriated all subordinated bonds, with no compensation for bondholders. A 2003

credit event was declared by the ISDA committee responsible for making the determi-

nation. However, because of the expropriation, no subordinated bonds were available

to be delivered into the auction. Senior bonds were used in the subordinated CDS

auction as the closest available proxy for the unavailable subordinated bonds, and a

recovery of 85.5 percent was determined. As a result, even though subordinated bonds

suffered a 100 percent loss, subordinated CDS paid out only 14.5 percent. In contrast,

under the new “asset package delivery” rules in the 2014 definitions, a near-worthless

claim against those subordinated bonds could have been delivered into the auction.

These rules makes it more likely that, following a bail-in through expropriation, the

correct recovery rate can be determined in the CDS auction.

In a related event in 2011, Northern Rock Asset Management, the government-

controlled “bad bank” formed after the failure of Northern Rock (see Shin [2009]),

offered to buy back its outstanding subordinated debt below par, and it was able to
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modify the terms of the debt to allow it to buy any debt not tendered voluntarily. The

buyback triggered a restructuring event. With no subordinated bonds outstanding,

the CDS auction was based on senior debt, resulting in a high recovery rate and a

low payout to CDS protection buyers.

Different treatment of subordinated and senior CDS in debt transfers A

common approach to resolution of a distressed bank is to break the bank into a “good”

and a “bad” bank. Because subordinated bonds typically become claims on the bad

bank, this is a way to implicitly bail in bondholders. As an example, consider the

case of Banco Esṕırito Santo, which failed in September 2014. Subsequently, all senior

bonds were moved to Novo Banco, the “good” bank, whereas all subordinated bonds

remained liabilities of Banco Esṕırito Santo, the “bad” bank. Because more than 75

percent of total debt had followed the “good” bank, 2003 ISDA rules mandated that

both senior and subordinated CDS now reference the “good” bank — a clause intended

to deal with corporate mergers. A 2003 credit event was declared for subordinated

CDS at the “good” bank, however, there were no subordinated bonds deliverable

in the “good” bank, and senior bonds had to be used instead. Because the “good”

bank was well capitalized, with 4.9 billion euros injected by the state, subordinated

CDS holders suffered significant losses. A similar issue arose when Bankia became

distressed in 2013. With the new 2014 rules, subordinated CDS follow subordinated

bonds, and senior CDS follow senior bonds in the case of a succession event.

2.2.4 ISDA 2014 Change that Affects the Intensity

The government intervention events discussed in the previous section all triggered

2003 CDS. However, when SNS bank’s debt was expropriated, it was not clear ahead

of time whether a 2003 credit event would be declared. Furthermore, a government

intervention that is expressly contemplated through bail-in language included with

bonds, or by law, as is mandated by the BRRD, may not trigger a 2003 CDS. For



CHAPTER 2. THE MARKET-IMPLIED PROBABILITY OF EUROPEAN
GOVERNMENT INTERVENTION IN DISTRESSED BANKS 15

this reason ISDA has added a new credit event, the government intervention event,

that triggers 2014 CDS. This event is declared if a government’s action results in

binding changes to the underlying bond, for example by reducing its principal, further

subordinating it, or expropriation. The addition of this event increases the intensity

in Eq. (2.1). We call it a 2014 credit event when either a 2003 credit event or a

government intervention event is declared for subordinated CDS.

2.3 Measuring Progress in European Banking Reg-

ulation through the Relative Basis and a Loss

Severity Measure

Banking regulators have made efforts in recent years to reduce expectations of gov-

ernment support. We will argue that the decline in the relative basis reflects a market

perception that European governments have become less likely to protect creditors

in an event of financial distress. To do so, we first discuss the relative basis in more

detail, we then relate it to a measure of the conditional likelihood of losses on senior

bonds, and we finally combine it with other data sources.

2.3.1 The Relative Basis Discriminates Between Intervention

and Ordinary Default

The difference in spreads between the subordinated 2014 and 2003 contracts may be

understood as protection against certain government interventions, because both the

change in intensity and the change in conditional loss are driven by certain bail-in

events, as explained in Sections 2.2.3 and 2.2.4. We will therefore call an event for

which a subordinated 2014 CDS pays more than a subordinated 2003 CDS, which

is the case in a recovery interference or an ISDA government intervention event, an

intervention. We make this definition for brevity. It provides a simple way to refer to
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the factors driving the changes in the CDS definitions. As discussed in Section 2.2,

post intervention events have been associated with losses on subordinated debt, but,

for the most part, not on senior debt.

We also need a simple way to refer to cases in which the two contracts trigger and

make the same payments to protection buyers. These are credit events for which the

2003 definitions provided adequate protection. We will call such an event an ordinary

default.

Fig. 2.2 shows what may happen if a bank were to enter distress, along with the

payouts of a subordinated 2003 CDS and the basis. From the perspective of subor-

dinated CDS, the first step is whether subordinated bondholders are bailed out or

not following bank distress. In a bailout that includes subordinated bondholders,

subordinated bonds do not lose any value, and neither subordinated 2003 CDS nor

the basis pay anything. If the government decides against a bailout of subordinated

bondholders, a 2014 credit event is determined. Then there are two potential out-

comes. The first of these potential outcomes is a 2003 credit event. When a 2003

credit event is declared, either (i) no recovery interference happens, in which case the

subordinated 2003 CDS pays LN , the loss given no recovery interference, and the ba-

sis pays zero, or (ii) a recovery interference happens, in which case the subordinated

2003 CDS pays zero, and the basis pays LA, the loss given a recovery interference.

For simplicity, we do not explicitly account for the possibility that a subordinated

2003 CDS may pay out something under a recovery interference, but instead consider

such an event implicitly as a probabilistic mixture of the events recovery interference

and no recovery interference, given that a 2003 credit event is declared. The second

potential outcome is a government intervention event that is not a 2003 credit event.

The subordinated 2003 CDS do not even trigger in such a bail-in as may occur under

the new BRRD rules. In that case, the subordinated 2003 CDS pays zero, and the

basis pays LG, the loss given a government intervention event that is not a 2003 credit

event.
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Bank

distress

Bailout/other: (0, 0)

2014

credit

event Government intervention, no 2003 credit event : (0, LG)

2003

credit

event
Recovery interference: (0, LR)

No recovery interference: (LN , 0)

Figure 2.2: Possible payouts of the subordinated (2003 CDS, basis) pair following a

bank distress. Intervention events are highlighted in italics. No recovery interference

occurs in an ordinary default event. (The respective event need not be the same

for senior CDS. For example, it could happen that losses are imposed on subordi-

nated bondholders, causing a 2014 credit event, but that senior bondholders receive

government support.)

Based on Eq. (2.1), we denote the spread needed to protect against an event • by

S(•) = E[loss | • ]P(•).

The spread needed to protect against •, given an event ?, is S(• | ?) = E[loss | •
∩ ? ]P(• | ?). Here S, P, and E are market-implied spread, probability and expectation,

respectively.

In the following we use CDS2014 to refer to the subordinated CDS spread under

2014 ISDA definitions, and CDS2003 to refer to the subordinated CDS spread under

2003 rules.

From the tree in Fig. 2.2, we see that the spread of a subordinated 2014 CDS is

CDS2014 = S(no recovery interference) + S(recovery interference)

+ S(government intervention, no 2003 credit event)

= S(ordinary default) + S(intervention).
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The value of the basis is, from its definition in Section 2.3.1,

CDS2014 − CDS2003 = S(intervention).

We obtain the conditional probability of an intervention given that a 2014 credit

event is declared, weighted with the potentially different sizes of conditional expected

losses, as the ratio of basis and CDS2014:

CDS2014 − CDS2003

CDS2014
= S(intervention | intervention or ordinary default) (2.2)

= S(intervention | distress, but no bailout of subordinated debt).

(2.3)

The quotient on the left side of (2.2) is the relative basis. It is the spread4 that would

be necessary to protect against an intervention, if it were certain that a distressed

bank would not receive a bailout, but uncertain whether there will be an intervention

or an ordinary default. It is a conditional measure that is insensitive to changes in

the probability of distress. That the relative basis is the ratio of two market-implied

spreads also removes most of the influence in the CDS market risk premium that is

inherent in basis and subordinated 2014 CDS.

4If one were to make the simplifying assumption of a fixed recovery rate whenever a CDS triggers,

then the effect of conditional losses would cancel in (2.2) (and (2.3)), and this conditional spread

could be interpreted as the conditional probability P(intervention | intervention or ordinary default).

This is a useful if rough interpretation to keep in mind. In practice, market assumptions for the

sizes of conditional losses are often blunt [Schuermann, 2004; Altman, 2006]. For example, Markit,

which aggregates recovery rate quotes from several sources, quotes a “recovery” of exactly 20 or 40

percent on most days for the banks in our panel, with only rare, small deviations from these values.

A report by J.P. Morgan [Elizalde et al., 2009] notes that it is common practice to fix the recovery

rate at 20 or 40 percent, and to derive a “calibrated” default probability from market data.
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2.3.2 As the Relative Basis Decreased the Likelihood of Losses

on Senior Bonds Increased

We discussed at the beginning of Section 2.2 that past intervention events have been

associated with losses to subordinated debt but support for senior debt. We therefore

want to understand how the decline in the relative basis relates to loss expectations

for senior debt in a 2014 credit event.

We consider the ratio of senior 2014 CDS, which we denote by CDS2014
senior, and

subordinated 2014 CDS as a measure of how likely it is that senior bonds would

suffer losses in a 2014 credit event. This ratio has an interpretation as a conditional

spread:
CDS2014

senior

CDS2014
= S(losses on senior debt | any 2014 credit event). (2.4)

This ratio is always between zero and one, under the assumption that senior debt has

strict priority over subordinated debt. A value close to one indicates that, conditional

on a loss to subordinated debt, senior debt would experience a similar loss, in percent.

A value close to zero indicates that losses in a 2014 credit event would be contained

to subordinated bonds.

Fig. 2.3 shows trend in S(losses on senior debt | any 2014 credit event) from (2.4)

averaged across the twenty European banks in our panel, along with the average

trend in the relative basis from (2.2). Data quality for senior CDS spread quotes

from Markit under the 2014 clause is very high; the details are in Appendix 2.A. We

see that it has become more likely that senior bonds would also suffer losses in a bank

failure without bailout. The increase in the loss severity measure also means that the

capacity of subordinated debt to absorb losses has decreased.

We find a strikingly close positive association between the size of losses and the

chance of ordinary default, if a bank were to enter distress without receiving a bailout

of subordinated debt. The empirical correlation between changes in the relative

basis (2.2) and changes in the loss severity measure (2.4) is −0.47. In Fig. 2.4 we show
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Figure 2.3: Average trend across all banks in

S(losses on senior debt | any 2014 credit event) from (2.4) and average trend in

the relative basis, S(intervention | any 2014 credit event). The results using medians

are nearly identical.

the same analysis for individual banks, where we see that this pattern also holds for

individual time series. The pattern holds cross-sectionally as well, with an empirical

correlation of −0.76 across the whole panel.

This close association between the relative basis and the loss severity measure

means that the relative basis is a measure of the likelihood that losses in a distress

would tend to be contained to subordinated bonds, if there is no bailout of subordi-

nated debt.

2.3.3 Reduced Market Expectations of Government Support

Due to Reforms in European Banking Regulation

To understand whether the significant decline in the relative basis, and the increased

conditional likelihood of losses on senior bonds, signify reduced market expectations

of government support for distressed banks due to changes in European banking
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Figure 2.4: Individual trends in S(losses on senior debt | any 2014 credit event)

from (2.4) (black, solid) and the relative basis (black, dotted), along with average

spread across banks (gray, solid) and average relative basis across banks (gray, dot-

ted); anomalies are Banco Comercial Português, Credit Suisse, UBS and recently

Monte dei Paschi.



CHAPTER 2. THE MARKET-IMPLIED PROBABILITY OF EUROPEAN
GOVERNMENT INTERVENTION IN DISTRESSED BANKS 22

regulation, we need to address three questions: (i) whether the decline in the relative

basis is fundamentally informative about changed loss expectations in bank distress,

(ii) whether the decline in the relative basis is due to changes in banking regulation,

and (iii) what the decline in the relative basis says about the likelihood of government

support for banks in distress.

Regarding (i), it could be that the decline in the relative basis is due to unobserved

features of subordinated 2003 CDS, or an increased liquidity premium in subordinated

2003 CDS. However, that the relative basis — which is calculated based on 2003 and

2014 CDS — and the loss severity measure from Section 2.3.2 — which is calculated

using CDS under 2014 definitions only — show such strong comovement dispels these

potential concerns.

Regarding (ii), it could furthermore be that the decline in the relative basis is due

to changes in banks’ capital structures, or changes in risk factors. However, we find

in Section 2.4 that the synchronized decline in the relative basis across banks cannot

be explained by capital structure changes or natural candidates for risk factors. This

leaves changes in banking regulation, such as the BRRD, as the likely cause.

Regarding (iii), the decline in the relative basis is consistent with two contrary

interpretations (compare Fig. 2.2). It could be that banks entering distress increas-

ingly are expected to undergo ordinary default, instead of intervention or bailout,

meaning that expectations of government support especially for senior creditors have

decreased — this would be a success for banking regulators. However, the opposite

is also possible: it could be that bailouts that include subordinated debt have re-

cently replaced interventions (which offer support only for senior bondholders), and

that governments would cover all but the largest losses — this would mean that the

expected vulnerability of the European financial system has increased or retrogressed

to worse practices in the treatment of systemically important institutions. Thus,

the key question is whether bailouts that include subordinated debt have replaced

interventions. We provide evidence in Section 2.5 that the conditional likelihood of

bailouts that include subordinated debt has not increased since 2014.
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2.4 The Downward Trend in the Relative Basis Is

Likely Due to Changes in Banking Regulation

In this section we investigate whether changes in banks’ capital structures or natural

candidates for risk factors can explain the downward trend in the relative basis;

compare the discussion in Section 2.3.3. That neither can explain the strong and

highly synchronized downward trend in the relative basis suggests changes in banking

regulation, such as the introduction of the BRRD, as the likely cause.

2.4.1 Levels of Senior Debt, Subordinated Debt and Equity

Have Changed Little

We have seen that the relative basis is closely associated with the loss severity mea-

sure. An explanation for changes in the loss severity measure could be that banks

have markedly changed their levels of subordinated or senior debt, or their levels of

the most junior financing (junior subordinated debt and equity). However, Fig. 2.5

shows that, on average and as a share of risk-weighted assets, neither has changed

much. The median ratio of subordinated debt to total risk-weighted assets was 2.8

percent in the fall of 2014, and increased by a median of 0.7 percent since then. At

the same time, the ratio of senior debt to total risk-weighted assets had a median

change of zero. Its median level was 20 percent in the fall of 2014. The median ratio

of equity and junior subordinated debt to risk-weighted assets was 16.4 percent in the

fall of 2014, and it increased by a median of 1.1 percent since. That all of these ratios

have not changed much suggests that they are not responsible for the considerable

changes in the loss severity measure and the relative basis across banks over the same

time horizon.
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Figure 2.5: Senior debt, subordinated debt and sub-subordinated financing as a per-

centage of risk-weighted assets; average across all banks over time.

2.4.2 Natural Candidates for Risk Factors Cannot Explain

The Downward Trend

In this part we relate the relative basis to a number of risk factors to see if the

downward trend can be explained by natural candidates for risk factors. We find that

some of these risk factors are significantly associated with the relative basis, but that

they cannot explain the strong and synchronized downward trend.

Econometric Model We specify the following hierarchical model, for banks i =

1, . . . , n at times t = 1, . . . , T :

CDS2014
it − CDS2003

it

CDS2014
it

= α + δi + βT (risk factors)it + τit + εit. (2.5)

We discuss the potential risk factors further below. The δi denote random intercepts

that allow us to capture systematic level deviations in a bank’s relative basis from

what would be predicted based on the risk factors alone. We do not use fixed effects

because they would be able to exactly account for all cross-sectional variation, and
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therefore not allow us to identify the effect of risk factors that are constant over

time (perfect multicollinearity). We place a mean-zero Gaussian process prior on

(τi1, . . . , τiT ), for each bank i, to account for potential systematic time trends in each

bank’s relative basis that cannot be explained by changes in the risk factors.5

Our panel contains only twenty banks and about two years of data. This means

that the amount of information available to identify cross-sectional effects is lim-

ited, whereas the effect of variables that are observed continuously over time can be

identified much more accurately.

We choose all prior and hyperprior distributions on the parameters in this hi-

erarchical model as weakly informative [Gelman et al., 2014, Sections 2.9 and 5.7],

meaning that they are wide enough to not affect inferences, but informative enough

to improve numerical stability. We discuss the details of prior and hyperprior choice

and the Monte Carlo sampling in Appendix 2.C.1.

Potential Risk Factors We consider a number of natural candidates for risk fac-

tors, and examine how they may relate to the relative basis. In addition to these risk

factors, changes in banking regulation, such as the BRRD, could also have an effect

over time.

• General risk affinity in the market, which we will measure by the cyclically

adjusted price–earnings ratio CAPE [Campbell and Shiller, 1988] of the MSCI

Europe Index, which is defined as the price of the index divided by the ten-year

average of inflation-adjusted index earnings. The idea behind CAPE is that

stock prices movements are too large to be explained by changed expecations

5The estimates for the coefficients on the time-varying risk factors are robust to specifying the

δi in the model in (2.5) as fixed effects (which makes all other time-constant effects drop out due to

perfect multicollinearity). The estimates are also robust to adding another Gaussian process as the

main trend across all banks (which makes the τit model the deviation of each bank’s relative basis

from the main trend).
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about future dividends, and must therefore mostly be due to changes in the

general risk premium; see Shiller [1981]. In favorable market circumstances

the economy is more resilient and may therefore better withstand the ordinary

default of a financial institution. These data are from MSCI.

• The sovereign five-year CDS spread, which is a measure of the respective gov-

ernment’s financial strength and political stability. The average spreads over

the time horizon we study are as follows. France: 27 bps, Germany: 11 bps,

Italy: 107 bps, Netherlands: 14 bps, Portugal: 182 bps, Spain: 80 bps, Switzer-

land: 21 bps, United Kingdom: 24 bps. See the evolution of the sovereign CDS

spreads in Fig. 2.6.

• Whether the bank would have a significant capital shortage in case of a large

drop in the market. For this purpose, Acharya et al. [2012] define SRISK

as the expected capital shortfall conditional on a systemic event: SRISKi =

E[kA − E | large drop in market], where A is assets, E is equity and k is the

regulatory percentage of assets to be held in equity. We will use as a risk factor

the relative SRISK, as suggested in Acharya et al. [2012]:

SRISKi∑20
j=1 max(SRISKj, 0)

.

It is the share in capital shortage that bank i would face relative to all other

banks if a systemic event were to happen. We obtain SRISK data from V-

Lab [2016]. Its estimates are based on an asymmetric volatility and correlation

framework, with k = 0.08 and the assumption that worldwide stock markets

fall 40 percent over a six months period.

• Idiosyncratic stress of the bank. We measure this by the difference between the

2014 CDS spread of bank i and the average 2014 CDS spread across all twenty

banks, on a log scale:

idiosyncratic stressit = ln(CDS2014
it )− 1

20

20∑
j=1

ln(CDS2014
jt ).
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A bank with idiosyncratic stress of larger than zero is likely to fail when other

banks are not in distress, whereas a bank with idiosyncratic stress lower than

zero is more likely to enter distress in a market-wide crisis. It is meaningful to

include idiosyncratic stress as a predictor of the relative basis because the infor-

mation provided by the idiosyncratic stress — how high a bank’s CDS spread is

relative to other banks — is considerably different from the information in the

relative basis — which measures the conditional likelihood of an intervention,

and where scaling of the spreads cancels out because spreads appear in both

numerator and denominator. We list the average idiosyncratic stress for each

bank in Table 2.3 in Appendix 2.D.

• The bank’s raw systemic importance score in 2014, divided by 1000. This score

is based on the Basel Committee on Banking Supervision’s GSIB scorecard

of systemic importance indicators of size, interconnectedness, substitutability,

complexity, and cross-jurisdictional activity. This allows us to learn to what

degree the Basel systemic importance score is an indicator of intervention. We

list the scores in Table 2.3 in Appendix 2.D.

• The bank’s raw systemic importance score, divided by the respective country’s

gross domestic product (2014, in trillion euro), as a measure of bank riskiness

relative to country size.

• Whether the bank is partially or wholly state-owned. Commerzbank, Lloyds

Bank and Royal Bank of Scotland were partially state owned for our whole

sample. Governments may be more or less likely to support bondholders of

banks in which they hold equity.

The parameter estimates for the model in (2.5) are given in Table 2.1, and the

hyperparameter estimates in Table 2.4 in Appendix 2.E. We find that only three coef-

ficients are statistically significantly different from zero. The posterior mean estimate

on idiosyncratic stress of 0.16 means that doubling a particular bank’s subordinated
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(a) Sovereign CDS spreads (gray) over time,

along with geometric mean (black); Portugal has

the highest sovereign CDS spread, followed by

Italy and Spain.
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(b) MSCI Europe Index, normalized to start at

one in September 2014.

Figure 2.6: Sovereign CDS spreads and MSCI Europe Index over time

2014 CDS spread is associated with an increase in the relative basis of ten percent,

all else equal. This could be because a bank that is in a considerably worse state than

its competitors may experience a capital shortage from relatively minor, idiosyncratic

losses. Losses that are not too large can be absorbed by bailing in subordinated debt.

The posterior mean estimate for CAPE is slightly negative. A possible explanation

is that letting a bank undergo ordinary default becomes more of an option when

financial markets are in good shape.

Lastly, we find that a 100 bps increase in a country’s sovereign CDS spread is

associated with a reduction in the relative basis of 170 bps. This suggests that a

government in a weaker financial and/or political position is less likely to intervene in

its banks. This adds another dimension to the research of Acharya et al. [2014], who

find a feedback loop between sovereign and bank credit risk, because the bailout of

banks increases government credit risk, and increased sovereign credit risk weakens

the financial sector due to the reduced value of government guarantees and bond
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Table 2.1: Parameter estimates for the model in Eq. (2.5)

Parameter Posterior mean Posterior SD 95 % CI posterior mean
posterior SD

βGSIB score 0.26 0.17 [−0.07, 0.58] 1.5

βGSIB score /GDP 0.14 0.17 [−0.18, 0.47] 0.85

βPartially state owned 0.04 0.05 [−0.07, 0.14] 0.7

βIdiosyncratic 0.16 0.01 [0.14, 0.18] 14.7

βCAPE −0.005 0.001 [−0.008,−0.003] −2.5

βSovereign spread −1.67 0.67 [−2.99,−0.35] −2.5

βRelative SRISK 0.21 0.16 [−0.11, 0.53] 1.3

holdings.

The positive estimates on GSIB and GSIB/GDP could indicate that more system-

ically important banks have a higher likelihood of interventions; however, because the

panel contains only twenty banks, these cross-sectional estimates are very noisy. The

marginal association of SRISK with the relative basis is negligible.

In Fig. 2.7 we show the overall time trend in the relative basis, as captured by

20−1
∑20

i=1 τ̂it, which is the mean across banks at every point in time of the Gaussian

processes in the econometric model in Eq. (2.5). We compare that time trend with the

average relative basis at each point in time. We see that the patterns match almost

perfectly, which means that the risk factors cannot explain the downward trend. This

figure supports the view that changes in banking regulation, such as the BRRD, may

be the driving forces behind the decline.

We show the same analysis at the level of individual banks in Appendix 2.F. For

some banks, the likelihood of intervention differs considerably from what would be

expected based on the risk factors and the general downward trend alone.

This model also allows us to study country-specific trends in the relative basis.

In Fig. 2.8 we show the average trend in δ̂i + τ̂it for the five banks from the United
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Figure 2.7: Average time trend in the relative basis with risk factor effects subtracted

out, 1
20

∑20
i=1 τ̂it, shifted to start from the observed average relative basis on September

22, 2014; posterior mean estimate (gray). Also shown is the observed average relative

basis across all banks (black). This shows that natural candidates for risk factors do

not explain the downward trend.
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Figure 2.8: Time trend in the idiosyncratic deviation from the overall downward

trend, |{i ∈ country}|−1∑i∈country(δ̂i + τ̂it) − 1
20

∑20
i=1 τ̂it, for each of the countries

with three or more banks in the data set, namely the United Kingdom with five

banks, Italy with four banks, and France with three banks; posterior mean estimate

along with 68 percent credible intervals.

Kingdom, the four banks from Italy, and the three banks from France, each with the

European average subtracted out. Recently, the relative basis has declined for banks

in the United Kingdom, whereas it has increased in Italy and France. This effect

appears to be driven by declines in the relative basis at Lloyds Bank and Standard

Chartered, and, to a lesser extent, at HSBC and Royal Bank of Scotland. All the

banks in our panel saw their CDS spreads rise in the first quarter of 2016; see Fig. 2.1.

For reasons we return to later, the decline in the relative basis at these four banks from

the United Kingdom may signal a greater perceived likelihood that they would be

allowed to undergo ordinary default if their condition worsened. Standard Chartered

conducts most of its business outside the United Kingdom and may therefore be

viewed as least likely to receive government support. We discuss the effects of the

“Brexit” vote in detail in Appendix 2.G.
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2.5 Evidence that Bailouts of Subordinated Debt

in Distressed Banks Have Not Become More

Likely

In this section we provide four pieces of evidence that bailouts that include subordi-

nated debt have not become more likely in distressed banks; compare the discussion

in Section 2.3.3.

2.5.1 The BRRD Legally Requires Some Bail-in Before Bailout

The BRRD, which became effective in 2016, mandates that eight percent of a bank’s

liabilities need to be bailed in before a government may inject funds. In typical cases,

this means that subordinated debt can no longer be bailed out legally. While BRRD

rules do not directly apply to Switzerland, Norway and Liechtenstein, market expec-

tations are that their national resolution frameworks will treat failing banks similarly

[Moody’s, 2015b]. Politicians and regulators may feel compelled to circumvent bailout

bans in times of stress. However, for example the discussion around troubled Italian

banks in the summer of 2016 shows that this is not trivial in the case of the BRRD

[The Economist, 2016].

2.5.2 Losses on Senior Debt Have Become More Likely Even

in Interventions

Senior bondholders tend to receive some government support in interventions; see the

discussion in Section 2.3.2. If government support for distressed banks’ bondholders

had increased so much that even the bailout of subordinated debt had become more

likely, then one would expect that governments would increasingly support senior

bondholders in interventions, too. However, we find below that the likelihood that

senior bonds would suffer in an intervention has increased. This suggests that rather
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governments find themselves to be more able to impose losses on senior bondholders

recently instead of bailing them out.

To show this, we aim to identify the spread for losses on senior bonds, given an

intervention in subordinated bonds,

S(losses on senior debt | sub intervention) =.. v, (2.6)

and the spread for losses on senior bonds, given an ordinary default on subordinated

bonds,

S(losses on senior debt | sub ordinary default) =.. d. (2.7)

We cannot directly calculate these spreads the way we did for subordinated debt

in Section 2.3.1.6 Nevertheless, by making only two relatively mild assumptions, we

will be able to infer them. We begin by expressing the senior–sub ratio from (2.4) as

the sum of loss severity in an intervention and loss severity in an ordinary default,

weighted with the respective conditional probability:

CDS2014
senior

CDS2014
= S(losses on senior debt | sub intervention) (2.8)

× P(sub intervention | any sub 2014 credit event)

+ S(losses on senior debt | sub ordinary default)

× P(sub ordinary default | any sub 2014 credit event).

We also express

P(sub intervention | any sub 2014 credit event) (2.9)

=
relative basis

w
=

1

w

CDS2014 − CDS2003

CDS2014
,

6This is because ISDA made a change to senior CDS definitions in 2014 that is not related to

intervention: it removed the sub–senior cross trigger. While a senior 2003 CDS triggers whenever a

subordinated 2003 CDS triggers, a senior 2014 CDS will trigger only in case of an event that directly

affects senior debt. This decreases the value of a senior 2014 CDS, and has no effect on subordinated

CDS.
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and we know that

P(sub ordinary default | any sub 2014 credit event) (2.10)

= 1− P(sub intervention | any sub 2014 credit event).

To understand the role of w, consider the simplified representation of the relative

basis

CDS2014 − CDS2003

CDS2014

=
Lsub intervention P(sub intervention)

Lsub intervention P(sub intervention) + Lordinary default P(ordinary default)

= w P(sub intervention | any sub 2014 credit event).

From

w−1 = P(sub intervention | any sub 2014 credit event) (2.11)

+
Lsub ordinary default

Lsub intervention

P(sub ordinary default | any sub 2014 credit event)

we see that w is increasing in the ratio of loss given an intervention and loss given an

ordinary default, and that w equals one if the conditional losses are equal.

Plugging (2.9) and (2.10) into Eq. (2.8) yields, for each bank i and point in time t,

CDS2014
senior it

CDS2014
it

=
vit
wit

CDS2014
it − CDS2003

it

CDS2014
it

− dit
wit

CDS2014
it − CDS2003

it

CDS2014
it

+ dit. (2.12)

This is an underdetermined system of equations. We make two assumptions to ensure

identifiability.

Assumption 1. Values for v that are close in time are similar to each other. Likewise,

values for d that are close in time are similar.

We make this assumption precise further below.

Assumption 2. wit changes linearly with time, separately for each bank.
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This assumption is needed because, locally in time, the separate effects of vit and

wit are only weakly identifiable. This assumption is far weaker than assuming, for

example, that all conditional losses are equal. Under Assumption 2, the conditional

losses of intervention and ordinary default may be different, and they may even differ

across banks and, linearly, over time.

We obtain estimates for the vit = S(losses on senior debt | sub intervention)it from

Eq. (2.6) as well as the dit = S(losses on senior debt | sub ordinary default)it from (2.7)

by expressing (2.12) as a regression model, with an error term εit. We incorporate

Assumptions 1 and 2 in this regression model by placing so-called random walk priors

on vit/wit and dit, and allowing wit to change linearly over time for each bank. We

discuss the details of the prior and hyperprior specification and of the Markov chain

Monte Carlo sampling in Appendix 2.C.2.

Fig. 2.9 shows the averages for S(losses on senior debt | sub bail-in) and also the

averages for S(losses on senior debt | sub ordinary default) over time. We see that the

market implies that an ordinary default typically involves larger losses on senior debt

than an intervention, with average spreads of 0.60 and 0.39, respectively. We show

the results separately for each bank in Fig. 2.12 in Appendix 2.H. The average spread

for losses on senior debt given sub ordinary default is approximately constant over

time at a high level. This suggests that the market has not become more nervous

about disruptions in an ordinary default scenario. The average spread for losses on

senior debt given sub intervention is lower, but surprisingly large, and it has increased

considerably. This means that the market expects that governments have become

less likely to support senior creditors in an intervention, and that the current levels

of subordinated debt do not suffice to cover the expected losses in an intervention.
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Figure 2.9: Average of S(losses on senior debt | sub ordinary default) as well as

S(losses on senior debt | sub intervention) over time; posterior mean estimate along

with 68 percent credible intervals. These spreads function as weights in (2.8). The fig-

ure shows that S(losses on senior debt | sub intervention) increased slightly over time,

and the other spread stayed roughly constant.
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2.5.3 Relationship between Relative Basis and Likelihood of

Bailout

If bailouts that include subordinated debt had been replacing interventions system-

atically, then we should observe a strong negative correlation between the relative

basis and the conditional likelihood of bailout of subordinated debt. This is because

a shift of probability mass from interventions to bailouts that include subordinated

debt reduces the relative basis. However, we find in the following that the correlation

is weak.

The conditional likelihood of a bailout that includes subordinated debt is

S(bailout incl sub debt | distress) (2.13)

= 1− S(ordinary default ∪ intervention)

S(ordinary default ∪ intervention ∪ bailout incl sub debt)
.

We cannot measure (2.13) directly because the spread that includes full bailout,

S(ordinary default ∪ intervention ∪ bailout incl sub debt), is not observable in the

market. However, we can use Moody’s KMV model to estimate a bank-specific spread

that includes bailouts of subordinated debt. This is possible because the KMV model

includes bailout as a default event, and because it uses the counterfactual that losses

in a bailout of subordinated debt are not zero but the average for interventions or

ordinary defaults.

A complication is that the KMV model estimates a spread calculated under the

real-world measure, Sphysical(ordinary default∪ intervention∪bailout incl sub debt) =

Lphysical
distress · Pphysical(distress). In contrast, a spread S is market implied, which means

that it can be expected to include a risk premium. We address this issue further

below.

We obtain annualized five-year estimates of Pphysical(distress) for all banks and

points in time from Moody’s KMV CreditEdge model, which is based on the general

approach of Merton [1974]. Although the approach of Merton [1974] generates a risk

neutral probability of distress, KMV CreditEdge is calibrated to match historical
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distress probabilities and is therefore under the physical measure. The real-world

default probability estimates range from significantly less than 0.01 for banks such as

UBS, Lloyds Bank and HSBC up to above 0.08 for Banca Monte dei Paschi di Siena.

We also obtain estimates of the annualized five-year real-world expected loss given

default for subordinated debt, Lphysical
distress , from Moody’s KMV LossCalc model. Loss-

Calc is a regression model that uses historical data on recoveries together with pre-

dictors such as industry, credit cycle stage, debt type, and the probability of distress.

In LossCalc a bailout event is assigned losses that would be expected under a distress

that is not a bailout [Moody’s Analytics, 2016]. The estimates for the loss given

distress on subordinated bonds, Lphysical
distress , show relatively little variation across banks

and time around their mean of 80 percent. This relatively high number means that

distress would typically wipe out most of a bank’s subordinated debt.

We now investigate the correlation between the conditional likelihood of bailout

that includes subordinated debt and the relative basis. As discussed at the beginning

of this analysis, if bailouts that include subordinated debt had systematically replaced

interventions, then this correlation should be strongly negative. We cannot directly

plug the estimates from the KMV model for Sphysical(ordinary default∪ intervention∪
bailout incl sub debt) into (2.13), because then we would be subtracting market-

implied from real-world spreads. Instead, we define

b =
Sphysical(ordinary default ∪ intervention ∪ bailout incl sub debt)

S(ordinary default ∪ intervention)
(2.14)

=
Lphysical
distress · Pphysical(distress)

CDS2014
.

This quantity takes a large value when the probability of bailout that includes sub

debt is high and/or the risk premium is low, and it takes a small value when the

probability of such a bailout is low and/or the risk premium is high (recall that the

KMV physical probabilities treat bailouts as defaults). Empirically, we find that b is

typically much smaller than one, with average values for the banks ranging from 0.29

for UBS and 0.32 for Banco Comercial Português to 0.98 for Société Générale and
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1.02 for Commerzbank, with a mean across all banks of 0.68.

We address the complication that b also depends on the risk premium by taking, for

each bank, the average value of b over time, which marginalizes out this dependency.

Likewise, we calculate the average relative basis over time, separately for each bank.

We find that the empirical correlation between the bank-averages for b and the

bank-averages for the relative basis is 0.02. Given the small sample size of only twenty

banks, the uncertainty about the true correlation is relatively high, as captured by

a 95 percent confidence interval that ranges from −0.43 to 0.46. Hence, we also

perform correlation analyses with the panel data in Appendix 2.I. Both within and

across time series we find only a very small negative correlation on average. This

suggests that bailouts that include subordinated debt have not systematically replaced

interventions.

2.5.4 Rating Agencies Removed or Lowered Uplift for Gov-

ernment Support in Bank Bond Ratings

Rating agencies have eliminated their ratings uplift on all junior instruments in expec-

tation of reduced government support for such instruments following recent changes in

banking regulation; see, for example, Moody’s [2015a] and Standard & Poor’s [2015].

This development is consistent with our interpretation of the decline in the relative

basis as reflecting reduced expectations of government support.

2.6 Conclusion

The European Union has formalized the role of bond bail-in in resolving distressed

banks through the BRRD. Contemporaneously, ISDA has introduced new definitions

for the CDS market in 2014 to cope with the complications surrounding bond bail-in.

Using data of CDS trading under old and new ISDA definitions, we find reduced

market expectations of support for senior bondholders in bank failures where at most
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senior bondholders, but not subordinated bondholders, receive a bailout.

We have provided evidence that bailouts that include subordinated debt have

not become more likely conditionally over the same time horizon; this suggests that

expectations of government support for banks in distress have decreased. We have

furthermore provided evidence that natural candidates for risk factors cannot explain

the highly synchronized downward trend in the relative basis; this leaves changes in

banking regulation as the likely cause.

We conclude from these findings that changes in European banking regulation,

such as the BRRD, have reduced expectations of government support for ailing banks.

This development represents important progress in the credibility of financial reforms

aimed at reducing perceived government guarantees for large banks.
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Appendix to Chapter 2

2.A Description of the CDS Quote Data

We consider subordinated five-year 2003 and 2014 CDS spreads, starting on Sept. 22,

2014, the date of the introduction of the 2014 CDS, to April 18, 2016. These data are

from Markit, and we already used them in Fig. 2.1. For many of the smaller European

banks, subordinated CDS are traded too rarely to give good weekly, or even daily,

spread quotes. We select only banks for which subordinated data quality is judged

“B” or higher — indicating at least moderate data quality — according to Markit’s

data quality rating on at least 95 percent of quote days (which include some public

holidays). Markit judges data quality by the number of sources that provide spread

quotes, as well as competitiveness, liquidity and transparency of the market. We are

left with twenty banks that satisfy this data quality requirement; their names are

given in Fig. 2.10. Only on a very few days their data quality falls below “B.” Data

quality is highly similar for subordinated 2003 and 2014 CDS, across all banks —

even those banks that are not included in our final data set because of insufficient

data quality. This suggests that our sampling according to the data quality rating is

outcome-independent.

For senior CDS, 85 percent of quoted spreads have a Markit data quality rating

of “AA” or “A,” and only 0.3 percent are rated less than “B.”

We confirm that for these banks quoted spreads from Markit closely match spreads

at which actual trades happen in Appendix 2.B, using anonymized data of actual CDS

trades confirmed through The Depository Trust & Clearing Corporation (DTCC).

Lastly, we subsample the panel data to a weekly frequency to reduce the effect of

potential short term autocorrelation in Markit’s spread quotes.
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We note that the CDS market is somewhat technically driven, because CDS can

be used to both hedge against default, and to hedge against the spread of other CDS,

bonds or counterparty exposures. Hedging spread changes with subordinated 2003

CDS may be perceived as slightly cheaper than hedging with 2014 CDS. At the same

time, switching from old 2003 CDS to new 2014 CDS may cause wide bid–ask spreads

during the time of transition. We find in Section 2.3.2 that neither of these technical

factors has a large impact on the quotes we study.

2.B Establishing Quote Validity

Our analysis uses quoted rather than transacted spreads. While these quotes are not

tradable, they are a composite of tradable quotes submitted by market makers in

European financial reference entities. As market makers have been known to shade

surveys to favor their own interests, for example in the recent LIBOR scandal, we

seek to verify that the quotes are accurate indicators of the spreads at which trades

will occur.

We obtained anonymized data of CDS trades recorded by The Depository Trust

& Clearing Corporation (DTCC). These are all trades where at least one of the coun-

terparties is based in the United States. We consider transactions that occur between

September 1, 2014 and February 12, 2016. We focus in our sample on confirmed

initial trades which reference subordinated debt and are roughly five years at incep-

tion. In other words, we exclude canceled transactions, as the information content

of those may be misleading. We also ignore other DTCC transaction classifications

such as Assignment, Amendment, Backload, Exit, Increase, and Terminate because

these transactions largely embed information that follow trade inception. As we aim

to compare information content from transaction execution to market quotes, only

initial trades are relevant.

We do not expect quoted spreads and transacted spreads to align perfectly for sev-
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eral reasons. First among these are differences in upfront payment conventions. Typ-

ically, the upfront of a CDS contract reflects the difference between market spreads

and a fixed coupon spread the contract pays. To the extent the upfront is higher, the

fair value spread will be lower. Sometimes, market participants transact an upfront

different than the one that reflects this difference in spreads. We delete trades where

we can observe intentional deviations from the market price, specifically those trades

whose fair value spreads are exactly 100, 300 and 500 basis points. Additional sources

of discrepancy between market quoted spread and transacted spread are differences

in contract maturities, choice of nonstandard coupon payment and swap termination

dates, nonstandard transaction sizes, and adjustments for counterparty risk since the

market is over the counter and not anonymous. To address these issues, we standard-

ize market-quoted maturities to correspond to those of each contract and assume that

each CDS terminates on the International Money Market (IMM) date closest before,

or upon, the transacted termination date. We ensure that each transaction’s base

currency, seniority, and documentation clause take the same value for each quote.

We obtain, for each bank i and point in time t the transacted spread, sji,t, and the

quoted spread, qji,t, where we use j to denote that there may be multiple trades for a

bank on a given day. We model the transacted spread–quoted spread relationship as

linear, with error term εji,t:

sji,t = α0 + β0q
j
i,t + εji,t. (2.15)

We run this regression independently four times: for subordinated 2003 CDS, for

subordinated 2014 CDS, for senior 2003 CDS, and senior 2014 CDS. We show the

estimation results in Table 2.2. We find a strong relationship between same day

quotes and transacted prices. The coefficient of determination is high or very high in

all of the regressions. The estimated slopes on the quoted spreads are close to one.

That the sample size is relatively low for subordinated 2003 CDS reflects that they

are less frequently traded. At the same time, Markit obtains quotes from all dealers,

whereas DTCC coverage is limited to trades in which at least one counterparty is
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Table 2.2: Assessing the relationship between traded spreads and quoted spreads

Regression 1 Regression 2 Regression 3 Regression 4

Traded sub 2003 spread Traded sub 2014 spread Traded senior 2003 spread Traded senior 2014 spread

Slope on quoted spread 1.05 1.05 1.02 1.05

(0.08) (0.00) (0.01) (0.00)

Intercept 0.10 0.25 0.01 0.21

(0.37) (0.01) (0.07) (0.00)

Sample size 81 3139 287 5905

Coefficient of determination 0.67 0.99 0.94 0.99

(standard errors in parentheses)

based in the United States. Another reason that Markit assesses data quality for

subordinated 2003 CDS for the twenty banks we study as high could be that many

dealers are willing to quote 2003 subordinated CDS spreads (high liquidity), but only

few, potentially nonstandard, trades are executed.

2.C Prior and Hyperprior Distributions and Sam-

pling Diagnostics

We now discuss the choice of prior and hyperprior distributions as well as the details

of the Markov chain Monte Carlo sampling for the regression models in Sections 2.4.2

and 2.5.2.

2.C.1 Model in Eq. (2.5) in Section 2.4.2

As the prior distributions we choose:

α ∼ normal(0, 1),

δi
i.i.d.∼ normal(0, σ2

δ ),

β ∼ normal(0, diag(52)),

(τi1, . . . , τiT )
i.i.d.∼ GP(0, k),

εit
i.i.d.∼ normal(0, σ2).
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Here GP(0, k) denotes a Gaussian process prior that has zero mean and covariance

function

k(a, b) = η2 exp(−(a− b)2/ρ2).

For a reference on Gaussian processes priors, see Rasmussen and Williams [2006].

The parameter η controls the variation of the Gaussian process, which cannot be

large because of the boundedness of the relative basis. The parameter ρ controls the

average length scale of the process, here in weeks due to the subsampling. We set the

prior standard deviation for the elements of β to five because a change in sovereign

spread of one percent likely does not result in a change in the relative basis of much

more than five percent. Since government spread is measured on the smallest scale

by far, it likely also has the largest regression coefficient.

We choose the following hyperprior distributions:

σ ∼ half-Cauchy(0, 0.1),

σδ ∼ half-Cauchy(0, 0.1),

η2 ∼ half-Cauchy(0, 0.1),

ρ2 ∼ half-Cauchy(0, 100).

Here we set a prior mean absolute deviation for the noise level σ and the random effects

standard deviation σδ of 0.1, considering that the relative basis itself is approximately

lower-bounded at 0 and that it cannot exceed 1. Half-Cauchy prior distributions are

generally recommended as priors on standard deviations or variances in hierarchical

models, for example in Gelman [2006].

We draw Markov-Chain Monte Carlo samples from the posterior distribution using

the No-U-Turn sampler [Hoffman and Gelman, 2014], a variant of Hamiltonian Monte

Carlo, implemented in the software Stan [Stan Development Team, 2015]. For each of

15 separate chains, we draw 2,500 samples following a burn-in phase of 2,500 samples,

for a total of 37,500 Monte Carlo samples. We check that after warm-up the chains

have converged to their stationary distribution using the statistic R̂ [Brooks and
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Gelman, 1998]; it takes a value of less than 1.1 for all parameters, which indicates

good mixing of the Markov chains. For each parameter, the effective sample size

drawn is greater than 100, and typically much larger than that. For all parameters the

posterior distribution is significantly more concentrated than the prior distribution,

in an area of the parameter space that is likely under the prior, which implies that

the prior distributions did not influence the inferences in any meaningful way.

2.C.2 Model in Section 2.5.2

We place the priors

εit
i.i.d.∼ normal(0, σ2),

vit
wit
| vi(t−1)
wi(t−1)

i.i.d.∼ normal(
vi(t−1)
wi(t−1)

, σ2
v/w), with

vit
wit
≥ 0, for all i, and t = 2, . . . , T,

(2.16)

dit | di(t−1) i.i.d.∼ normal(di(t−1), σ
2
d), with dit ≥ 0, for all i, and t = 2, . . . , T

(2.17)

wit =
T − t
T − 1

wi1 +
t− 1

T − 1
wiT , with wit ≥ 0, for all t = 2, . . . , T − 1.

Here (2.16) and (2.17) are so-called random walk priors, which limit the size of jumps

between adjacent values. As hyperprior distributions for σ, σv/w, σd and σw we place

independent half-Cauchy(0,1) distributions.

We draw 2,500 Markov-chain Monte Carlo samples each using five chains, following

a burn-in phase of equal length, for a total sample size of 12,500. The effective sample

size for each of the parameters is at least in the hundreds. The statistic R̂ takes a

value close to 1, which indicates very good mixing of the Markov chains. The effect

of the positivity constraints is limited.
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2.D Raw global systemically important bank (GSIB)

Score and Partial State Ownership

Table 2.3 shows each bank’s raw GSIB score and whether it is partially state owned,

as discussed in Section 2.4.2. The raw GSIB scores are our own calculations based on

the banks’ disclosure reports for globally financially important institutions in 2014.

Banco Comercial Português and Banco Popolare do not make these reports publicly

available. We impute their raw GSIB score using a linear regression with total risk-

weighted assets as the predictor.

2.E Hyperparameter Estimates for the Model in

Equation (2.5) in Section 2.4.2

The hyperparameter estimation results are in Table 2.4. All credible intervals contain

the mode of the distribution. The lower bounds of the credible intervals for the

random intercepts standard deviation and for the Gaussian process variation are

considerably above zero, which suggests that level differences persist in the relative

basis across banks, but that levels also change over time. The Gaussian process

lengthscale of roughly six weeks indicates that the relative basis does typically not

undergo rapid level changes.

2.F The Observed and Predicted Relative Basis

for Individual Banks

Fig. 2.10 shows how much a given bank’s spread for an intervention deviates from what

would be expected based on the risk factors and the overall downward trend alone. We

include the overall downward trend because it may be explained by changes in banking
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Table 2.4: Hyperparameter estimates for the model in Eq. (2.5)

Parameter Posterior mean Posterior SD 95 % CI

σδ (random intercepts SD) 0.08 0.02 [0.05, 0.11]

η (GP variation) 0.07 0.003 [0.06, 0.07]

ρ (GP lengthscale) 6.2 0.2 [5.8, 6.7]

σ (noise SD) 0.013 0.0003 [0.013, 0.014]

regulation. We find that the two Swiss banks show the most striking deviations from

what the model would predict based on the risk factors alone. UBS has a surprisingly

high relative basis throughout the whole period — and therefore is unexpectedly likely

to experience a intervention if it were to enter distress without being bailed out. For

Credit Suisse, the relative basis starts out similarly high but market expectations

have changed drastically, such that its relative basis is now near zero — suggesting

that, if Credit Suisse were to enter distress without receiving a bailout, it would most

likely undergo ordinary default. Also for Banco Comercial Português, the relative

basis is unexpectedly low, suggesting a high likelihood of ordinary default, if it were

to enter distress and not receive a bailout.

These persistent idiosyncratic deviations occur even though our model in (2.5)

accounts for traditional measures of systemic importance, such as SRISK and GSIB

score. This suggests that whether a government decides to take action on a distressed

bank depends on strongly idiosyncratic factors or unobserved political factors, which

are not captured by traditional measures of systemic importance.

2.G Case Study: “Brexit” Vote

The United Kingdom voted on June 23, 2016 to leave the European Union. The vote

came as a surprise, with most polls before voting day suggesting a narrow win for
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Figure 2.10: Time trend in the model predictions, α̂+β̂T (risk factors)it+
1
20

∑20
j=1 τ̂jt,

(gray, posterior mean estimate, along with 68 percent credible intervals) and the ob-

served relative basis (solid), for each bank. We include the overall downward trend

because it may be explained with changes in banking regulation. We exclude the indi-

vidual random effects and Gaussian process estimates, since these capture systematic

but unexplained variation.
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“remain.” This provides a rare opportunity for us to observe the market reaction to

expected changes in governmental policy.

2014 spreads increased strongly for all banks, with an average of 16 percent (log

difference between average of two weeks before and average of two weeks following

the Brexit vote). This is in line with the strong decline in European stock markets,

and the fall of the British Pound after the Brexit vote. We assess how unusual an

increase in spreads of this size is by comparing it with all other changes over a time

horizon of same length between September 2014 and August 2016. We find that

spreads increased more strongly than around the Brexit vote only in six percent of

other time windows of the same width.

The relative basis increased only slightly around the Brexit vote, with an average of

three percent (again using log differences over the same time window as above). This

means that the market does not expect for Brexit to, on average, have a significant

change on governmental policy regarding distressed banks. However, we find that

banks that generate a large share of their income (2015 numbers) inside the United

Kingdom have a higher increase in their relative basis; see Table 2.5 for a comparison

of geographical income source and change in relative basis. For example, the log

difference in the relative basis for Lloyds Bank, which generates nearly all of its

income inside the United Kingdom, is a very large 23 percent. This suggests that

government support has increased in the United Kingdom for banks that are truly

dependent on the home market.

Fig. 2.11 shows a strong correlation of 0.61 between changes in 2014 spreads and

changes in the relative basis around Brexit. This high correlation may suggest that

banks that are affected by Brexit are expected to have increased government support.

The correlation is stronger than the correlation observed in 88 percent of comparable

time windows in our data set.
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Table 2.5: United Kingdom income as share of total income for banks in the United

Kingdom, and relative change in the relative basis around the Brexit vote

Bank UK income share relative change in relative basis

Standard Chartered < 5 % −5 %

HSBC 26 % 11 %

Barclays 48 % 8 %

Royal Bank of Scotland 88 % 11 %

Lloyds Bank 95 % 23 %
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Figure 2.11: Relative change in 2014 spread and relative change in relative basis

around the “Brexit” vote. Banks from the United Kingdom are in boldface. Each

gray line is the respective average of the changes of all banks.



CHAPTER 2. THE MARKET-IMPLIED PROBABILITY OF EUROPEAN
GOVERNMENT INTERVENTION IN DISTRESSED BANKS 53

2.H Additional Figures

Fig. 2.12 shows for each bank over time S(losses on senior debt | sub ordinary default)

and also S(losses on senior debt | sub intervention), otherwise discussed in Section 2.5.2.

For most banks the spreads have stayed approximately constant. Exceptions are

Credit Suisse and Banco Comercial Português, for which the market implies in the

summer of 2016 that both an intervention and an ordinary default would hit senior

bonds unusually strongly, and Banca Monte dei Paschi di Siena, for which the market

implies that an intervention would likely not hit senior bonds, if these banks were to

enter distress without receiving a bailout.

2.I Time Series Relationship between Relative Ba-

sis and Conditional Likelihood of Subordinated

Debt Bailout

In Section 2.5.3 we find cross-sectional evidence that bailouts that include subordi-

nated debt do not crowd out interventions. In the following we analyze the association

over time between how likely a bank is to be bailed in and how likely it is to receive

a bailout. We will conduct this analysis on a relative scale, to remove the shared

influence of a potentially time-varying risk premium.

The empirical correlation of the average trend in the empirical bit from Eq. (2.14)

with CAPE, discussed in Section 2.4.2, is 0.61; this suggests that the trend is to

a large extent explained by changes in the risk premium, and not changes in the

probability of bailouts that include subordinated debt.

We normalize bit with respect to the average trend:

bnormalized
it =

bit

20−1
∑20

i=1 bit
.

This quantity is independent of any shared risk premium across banks, but also
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Figure 2.12: Individual trends in S(losses on senior debt | sub ordinary default) (top

solid line, posterior mean estimate along with 68 percent credible intervals) as well as

S(losses on senior debt | sub intervention) (bottom solid line, posterior mean estimate

along with 68 percent credible intervals); also shown are the respective averages across

all banks (top and bottom dotted line).
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independent of any common trend in the bit that could be attributed to changes

in the bailout probability. This measure tells us how likely bailout that includes

subordinated debt is for a given bank i, relative to how likely bailout that includes

subordinated debt is on average for all other banks in our data set, at a given point

in time. By construction, its average at each point in time is one.

Similarly, we normalize the relative basis to remove any aggregate trend from it:

normalized relative basisit =
relative basisit

20−1
∑20

i=1 relative basisit
.

The normalized relative basis measures how likely intervention is for a given bank i,

relative to how likely intervention is on average for all other banks, at a given point

in time.

We find that the empirical correlation between the empirical bnormalized
it and the

normalized relative basis is 0.02. This means that firms with a larger than average

conditional chance of intervention have no tendency to also have a larger than average

conditional chance of bailout that includes subordinated debt. We also analyze,

separately for each bank, the empirical correlation between changes over time in the

empirical bnormalized
it and changes over time in the normalized relative basis. We find

these correlations between changes to range from −0.42 to 0.035, with a mean of

−0.25, which is consistent with at most a slight tendency for bailouts that include

subordinated debt to crowd out interventions.
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Chapter 3

Estimating a Covariance Matrix

for Market Risk Management and

the Case of Credit Default Swaps

This chapter is based on a manuscript of the same title, authored by Richard Neuberg

and Paul Glasserman. It is available at SSRN 2782107.

3.1 Introduction

Covariance matrices of asset returns are at the core of risk management and modern

portfolio theory. However, their estimation is difficult, because, even if covariances

are assumed constant over time, these matrices have p(p+1)/2 free parameters, where

p is the number of financial assets, which may be larger than the available sample

size. Sample covariance matrices often perform poorly out-of-sample, since they may

not even be of full rank. Traditionally, the problem with sample covariance matrices

is overcome by using single- or multi-factor factor models, which link observed asset

returns to a few observed or latent factors. For a review, see Bai and Shi [2011].

Factor models are easily interpretable. However, they, too, might not be optimal
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for estimating a covariance matrix for a specific market risk management purpose:

we show that latent factor models systematically misestimate the variance of certain

portfolios.

For market risk management, which is our focus in this article, a covariance matrix

should be estimated in a way that minimizes the danger of a gross misestimation of

the true variance of any given portfolio. We show both analytically and with a

novel graphical tool that the latent factor model via principal components analysis

yields systematically biased estimates of the variance of certain portfolios. We employ

a portfolio perspective to identify loss functions which are suitable for market risk

management. Often, underestimating variance is more dangerous than overestimating

it, one reason being that traders might be motivated to hold portfolios whose true

risk is underestimated. We also introduce several new loss functions that evaluate

a covariance matrix estimate for specific market risk management tasks. We make

extensive use of the eigendecomposition of the true and the estimated covariance

matrix. We furthermore identify alternative estimation approaches less susceptible

to systematic misestimation of certain portfolio variances.

We apply this theory and these tools to the estimation of the covariance matrix

of credit default swaps (CDS), which is used to set margin requirements for central

clearing, as mandated by recent regulatory requirements. A clearinghouse needs to be

able to set margin levels conservatively for essentially all portfolios. Several CDS data

sets are analyzed. Graphical lasso [Friedman et al., 2008] and a hierarchical clustering

estimator [Tumminello et al., 2007] yield economically meaningful representations of

the market structure as well as effective estimates. We investigate the dependence

of CDS on a market factor, VIX, S&P 500, and the five-year Treasury rate. We also

examine the relationship between CDS correlations and implied CDS correlations

extracted from equity prices through distance-to-default measures.

The rest of this chapter is organized as follows. In Section 3.2, we review the

financial covariance matrix estimation problem. In Section 3.3, we analyze covariance
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matrix estimation from a portfolio perspective. In Section 3.4, we apply these methods

to a data set of North American investment-grade CDS. We conclude in Section 3.5.

3.2 Dynamic Covariance Matrix Estimation Frame-

work

The standard approach to modeling dynamic covariances is to separately specify vari-

ance models and a correlation matrix model. In the following we discuss the constant

correlation approach of Bollerslev [1990], as well as exponential smoothing and the

dynamic correlation approach of Engle and Sheppard [2001] and Engle [2002]. We

note that at the heart of both approaches lies the empirical correlation matrix. How-

ever, that matrix may not even be of full rank, or be close to rank deficient. This is

problematic from a portfolio perspective, because we might dramatically underesti-

mate the true variances of certain portfolios. One way to overcome the issues with

rank-deficient correlation matrices is to specify an observable factor model. However,

it is often difficult to identify all relevant factors. Latent factor models are popular

in such a situation, especially the principal components estimator.

3.2.1 Variance–Correlation Separation in Dynamic Covari-

ance Models

Because positions can typically be scaled, the essence of a financial covariance ma-

trix is the correlation part. We will use the variance–correlation separation strategy

originally proposed by Bollerslev [1990]. Let Sit denote the random logarithmic dif-

ference (log-return) of of asset i at time t. The expected value and variance of Sit are

functions of time and need to be estimated; we refer the reader to Tsay [2005, Chap-

ters 2–3] for a reference on autoregressive and conditionally heteroskedastic models.
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The standardized returns then are

Xit ··=
Sit − E[Sit]√

V[Sit]
, for all i and t. (3.1)

These returns are mean-zero and their true cross-sectional covariance matrix, Rt, has

diagonal elements equal to one, which means that it also is their correlation matrix.

The matrix Rt may be constant or time-varying. Bollerslev [1990] finds the as-

sumption of time-varying covariances in the Sit, but constant correlations, Rt = R,

reasonable over a limited time window. We will use this framework in the following

and focus on cross-sectional issues in covariance matrix estimation. However, our

observations will directly translate to time-varying correlation models.

Two common approaches to relaxing the assumption of constant correlations are

exponential smoothing and the dynamic correlation model of Engle and Sheppard

[2001]; Engle [2002]. Exponential smoothing updates the empirical correlation matrix

by giving past data exponentially less weight. This corresponds to an IGARCH(1,1)

model [Tsay, 2005, pp. 141–142] in each entry of the correlation matrix. More elab-

orate weighting schemes can be used [Taylor, 2004]. Exponential smoothing is used,

for example, by Zumbach [2007]and V-Lab [2016]. In the dynamic correlation model

of Engle and Sheppard [2001]; Engle [2002], correlation matrix estimates R̂t are dy-

namically updated via the rule

R̂t = Remp+α((X1(t−1), . . . , Xp(t−1))
T(X1(t−1), . . . , Xp(t−1))−Remp)+β(R̂t−1−Remp).

This rule yields a process of localized empirical correlation matrices that reverts to

the unconditional empirical correlation matrix, Remp. Here and in the following we

denote an estimated quantity using the hat sign. The correlation matrices estimated

through any of these time-varying correlation approaches discussed above may not

even be of full rank, or be close to rank-deficient, since they are based on (localized)

empirical correlation matrices. Then there exist portfolios whose variance is erro-

neously estimated to be zero, or close to zero. This is highly problematic from a risk

management perspective.
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3.2.2 Factor Models

Traditionally, the problems with empirical correlations and covariances are overcome

by imposing a factor structure. For a review of constant covariance factor models see

Bai and Shi [2011]. Alexander [2002] proposes a dynamic correlation factor model,

based on principal components analysis.

A factor model imposes a simple structure for a covariance matrix, Σ in terms of

explained and idiosyncratic variance components. (An example for Σ is the covariance

(correlation) matrix Rt of the standardized assets in Eq. (3.1).) The covariance matrix

in an exact factor model is

Σ = BCov(F) BT + Ψ, (3.2)

where B is a matrix of regression coefficients, with [B]ij expressing the linear de-

pendence of asset i on the j-th element in the factor vector F. The matrix Ψ is

diagonal. However, it may be difficult to identify all relevant factors. In the context

of CDS, potential factors include the risk-free interest rate, stock index returns, im-

plied volatility indices, industry indices as well as geography [Alexander and Kaeck,

2008; Ericsson et al., 2009].

Factors can also be extracted as linear combinations of returns across assets. A

popular approach is principal components analysis, which uses the spectral decom-

position of the empirical covariance matrix, Σemp. The covariance matrix estimate

using k < p of the latent factors in the standardized returns is Tk(Σemp), where

Tk(•) =
k∑
j=1

λ•,jv•,jv
T
•,j + diag

(
p∑

j=k+1

λ•,jv•,jv
T
•,j

)
. (3.3)

Here (λ•,1, . . . , λ•,p) and (v•,1, . . . ,v•,p) denote the eigenvalues and eigenvectors of

•, respectively, with eigenvalues sorted in decreasing order and ‖v•,j‖ = 1. We see

that those latent factors with very small observed variance are dropped, because they

cannot be distinguished from noise. The last term in (3.3) ensures that the diagonal

of Tk(Σ) matches that of Σ and thus preserves the variance of each asset. Without
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that term, the trimmed covariance matrix would have rank k, and it would assign

zero risk to a space of portfolios of dimension p − k. The trimming in (3.3) changes

eigenvectors and eigenvalues, which means that, for example, the first eigenvector of

Tk(Σemp) is not vemp,1.

3.3 Assessing Estimator Error for Market Risk Man-

agement

We now propose a portfolio perspective on covariance matrix estimation. We show

that the latent factor model is systematically biased when estimating the risk of cer-

tain portfolios. This renders doubtful its usefulness for market risk management,

where bias may encourage traders to hold, or avoid, certain portfolios. We illustrate

its shortcomings both analytically and with a graphical tool, which evaluates the co-

variance matrix estimate in terms of how well it estimates the variances of a wide

range of portfolios. We evaluate well-known matrix loss functions from a portfolios

perspective to better understand which portfolios they focus on, and how they mea-

sure loss between estimated and true portfolio variances. We find that the normal

likelihood appears to be a loss function more suited than Frobenius loss for market

risk management, without making any assumption of normality. The performance

of an estimator in more specific tasks is of interest, too. We introduce several novel

specialized loss functions. Lastly, we identify alternative estimation approaches less

susceptible to systematic misestimation of certain portfolio variances. We emphasize

that all results have particular relevance for estimating the covariance (correlation)

matrix Rt of the standardized assets in Eq. (3.1); this matrix treats all assets equally

in the sense that they all contribute the same amount of risk.
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3.3.1 The Latent Factor Model Introduces Bias

A fact that has not been noted before is that estimation through principal components

analysis (see Eq. (3.3)) systematically misestimates the variance of certain portfolios,

even if the true number of factors is used. We show this in Proposition 1, using the

fact that the variance of a portfolio with portfolio vector w is σ2(w) ··= wTΣw.

Proposition 1. Consider Tk as defined in (3.3). Then

vT
l Tk(Σ)vl ≥ vT

l Σvl, l ≤ k, (3.4)

vT
l Tk(Σ)vl ≤ vT

l Σvl, l = k + 1. (3.5)

Inequality (3.4) is strict if the first k latent factors do not account for all of the vari-

ance of any asset. Inequality (3.5) is strict if in that row of
∑p

j=k+1 λjvjv
T
j which

contains the largest diagonal entry (residual variance), at least one off-diagonal entry

(residual covariance) is non-zero. If Σ̂→ Σ as n→∞, and the eigenvalues of Σ are

distinct, then Tk(Σ̂)→ Tk(Σ). As a result, applying the trimming to any consistent

estimator eventually has the same variance over- and underestimation effect. A suf-

ficient condition for Tk(Σ) 6= Σ is that either Inequality (3.4) or Inequality (3.5) is

strict.

Proof. According to Tk(Σ) the variance of a portfolio w is

wTTk(Σ)w =
k∑
j=1

λj(w
Tvj)

2 + wTdiag

(
p∑

j=k+1

λjvjv
T
j

)
w,

using the fact that
∑k

j=1 λj(w
Tvj)

2 = wT
(∑k

j=1 λjvjv
T
j

)
w. For w = vl this gives

vT
l Tk(Σ)vl = λl + vT

l diag

(
p∑

j=k+1

λjvjv
T
j

)
vl ≥ λl = vT

l Σvl, l ≤ k,

vT
l Tk(Σ)vl = vT

l diag

(
p∑

j=k+1

λjvjv
T
j

)
vl ≤ λl = vT

l Σvl, l = k + 1.

Inequality (3.4) is strict if the first k latent factors do not account for all of the variance

of any asset, because then the residual variance of all assets is strictly positive, and
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diag(
∑p

j=k+1 λjvjv
T
j ) is positive definite. Inequality (3.5) is strict if in that row with

the largest residual variance at least one residual covariance is non-zero. To show this

consider the asset with largest residual variance as well as the asset with non-zero

residual covariance. Denote the largest residual variance by a, the non-zero residual

covariance between the two assets by b, and the residual variance of the other asset by

c. The characteristic polynomial of the submatrix [ a bb c ] is p(λ) = ac−aλ−b2−cλ+λ2.

Because p(a) = −b2 < 0, and p(λ) → ∞ as λ → ∞, there must be an eigenvalue

of the submatrix that is strictly larger than a. Lastly, the largest eigenvalue of the

submatrix must be smaller than the largest eigenvalue of
∑p

j=k+1 λjvjv
T
j .

These results hold even if a k factor model underlies the data generating process.

In a latent factor model the residual variances are often of similar size, which means

that vT
l diag

(∑p
j=k+1 λjvjv

T
j

)
vl takes roughly the same value for all l. Then the

relative overestimation of the variance of portfolio vl,

λl

λl + vT
l diag

(∑p
j=k+1 λjvjv

T
j

)
vl
,

is particularly strong for l = 2, . . . , k, because the eigenvalues λ2, . . . , λk are typically

much smaller than λ1, which captures the dominant co-movement of the assets. These

issues directly generalize to the dynamic factor model of Alexander [2002].

3.3.2 A Graphical Tool to Assess Estimator Bias

We develop the following graphical tool to evaluate a covariance matrix estimate

against the true covariance matrix on a wide range of portfolios. By the spectral

theorem we have that Σ =
∑p

j=1 λjvjv
T
j and Σ̂ =

∑p
j=1 λ̂jv̂jv̂

T
j . We can interpret

the eigenvectors of Σ as a set of orthogonal portfolio vectors, while the respective

eigenvalues give the variances of these portfolios. The eigenvectors cover a wide

range of portfolios, since the first eigenvector, v1, is the maximal variance portfolio,

and the last eigenvector, vp, is the minimum variance portfolio. The eigenvectors
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(v̂1, . . . , v̂p) of Σ̂ form another set of orthogonal portfolio vectors, with the eigenvalues

corresponding to estimated portfolio variances. We will refer to portfolios formed from

eigenvectors as ‘eigenportfolios’ in the following. The approach is now to, for each of

the eigenportfolios, take the ratio of true and estimated standard deviation, and to

show the results in a graph.

As a numerical example, consider assets (X1, . . . , X50), which follow the three

factor model Xj = F1 + βjF2 + γjF3 + εj for j = 1, . . . , 50, with βj and γj dis-

tributed uniformly on (0, 1) for all j. Here F1, F2, F3, (β1, . . . , β50), (γ1, . . . , γ50) and

(ε1, . . . , ε50) are jointly independent. Set V[F1] = 0.43, V[F2] = 0.04, V[F3] = 0.03

and V[εj] = 0.5 for all j. We illustrate the deficiencies of the principal components es-

timator using the graphical tool presented above. We form the portfolios (v1, . . . ,v50)

based on Σ, and also the portfolios (v̂1, . . . , v̂50) based on Σ̂. Fig. 3.1 shows the ratios

of true and estimated standard deviations for estimates with smaller/correct/larger

number of latent factors than the true number of factors. We see that the riskiness

of the eigenportfolios v2, . . . ,vk is vastly overestimated. The riskiness of the last

eigenportfolios of Σ̂ is severely underestimated especially when choosing more latent

factors than the true number of factors. It appears to be less bad to underestimate

than to overestimate the true number of factors.

We assess the finite sample performance of the principal components estimator

using k = 3 in samples of size 200, in 200 simulations. In each simulation, we find the

eigenportfolios of the covariance matrix estimate, and compare the estimated portfolio

variances with the true portfolio variances. See the results in Fig. 3.2. Portfolio risk is

strongly misestimated for eigenportfolios two, three, as well as the last eigenportfolios

of Σ̂. The misestimation is even more pronounced in the finite sample case than in

the infinite sample case.

These results suggest that covariance matrix estimates based on the principal com-

ponents estimator are not well suited for market risk management, because traders

might pile into portfolios whose variance is underestimated. It is difficult to summa-
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(a) two estimated factors
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(b) three estimated factors
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Figure 3.1: Ratios of true and estimated standard deviations for the eigenportfolios

(v1, . . . ,v50) determined from Σ and for the eigenportfolios (v̂1, . . . , v̂50) determined

from Σ̂, when a three observed factor model holds exactly. We see that the principal

components estimator systematically misestimates the true risk of certain portfolios,

even if the true number of factors is used.
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Figure 3.2: Ratios of true and estimated variances of portfolios formed from the

eigenvectors of Σ̂ in 200 replications, each with sample size 200, using the correct

number of factors. Also shown are the average ratios. The misestimation of the risk

of certain portfolios is even more pronounced than in the infinite sample size case

considered in Fig. 3.1, even though the true number of factors is used.

rize the effectiveness of a covariance matrix estimate across multiple portfolios. We

propose the format of Fig. 3.1 as a simple but effective visualization tool to compare

alternative estimators.

3.3.3 Some Matrix Loss Functions Are More Suitable than

Others

Covariance matrix loss functions are used to construct estimators (where the in-

sample loss is typically augmented with some type of regularization) and also to judge

the out-of-sample performance of a covariance matrix estimate. In the following we

assess the suitability of several well-known covariance matrix loss functions for market

risk management.

In Table 3.1 a non-exhaustive list of such matrix loss functions is given. These

loss functions have been developed for a wide range of purposes, and it is difficult

to tell their properties for market risk management. Rather than blindly adopting

them, we investigate their implications for portfolio risk management. To understand

how these loss functions aggregate estimation loss across different portfolios, we use
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Table 3.1: A selection of covariance matrix loss functions

Definition Name

tr((Σ− Σ̂)2) =
∑p

i=1

∑p
j=1 |rij − r̂ij|2 Frobenius loss

tr((Σ−1 − Σ̂−1)2) Frobenius loss in precision matrices

tr(Σ̂Σ−1)− ln det(Σ̂Σ−1)− p Stein’s loss

tr(ΣΣ̂−1)− ln det(ΣΣ̂−1)− p Negative normal log-likelihood (max’d mean)

tr((Σ̂Σ−1 − I)2) Scale-invariant quadratic loss

tr(Σ̂Σ−1) + tr(Σ̂−1Σ)− 2p Symmetrized scale-invariant loss

the eigendecompositions of the true and estimated covariance matrices. We find that

Frobenius loss, being a standard choice in applications, is problematic from a portfolio

perspective. The predictive negative normal log-likelihood appears to be a more

useful loss function for market risk management, without making any assumption of

normality of returns. We assess the other matrix loss functions from Table 3.1 in

Appendix 3.A.

Frobenius loss A loss function often used in finance [Higham, 2002; Ledoit et

al., 2003; Ledoit and Wolf, 2004; Halbleib and Voev, 2011] is the squared Frobenius

loss, ‖Σ − Σ̂‖2Frobenius = tr((Σ − Σ̂)2). Ledoit and Wolf [2004] select Frobenius loss

because it does not involve Σ−1. Halbleib and Voev [2011] argue in favor of using

the Frobenius loss because it directly penalizes errors in every single element of the

estimated covariance matrix, whereas other matrix norms might allow one element

of the matrix to be far off if this is compensated by other values being close to the

truth. To understand the portfolio implications of using Frobenius loss to evaluate a

covariance matrix estimate, we give the representation of Frobenius loss in terms of

its spectral components in Proposition 2.
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Proposition 2. The Frobenius loss has the following representation:

‖Σ− Σ̂‖2Frobenius =

p∑
i=1

p∑
j=1

(vT
i v̂j)

2
(
λi − λ̂j

)2
. (3.6)

The proof of Proposition 2 is given in Appendix 3.B. The squared inner product

(vT
i v̂j)

2 equals the squared cosine of the angle between vi and v̂j and serves as a

measure of similarity between these portfolio vectors. The term (λi − λ̂j)2 evaluates

the discrepancy between the respective eigenportfolio variances.

We can also express the right side of Eq. (3.6) as
∑p

i=1(λ
2
i −2λiv

T
i Σ̂vi+vT

i Σ̂Σ̂vi).

If Σ and Σ̂ have the same eigenvectors, this equals

p∑
i=1

(
λ2i − 2λiv

T
i Σ̂vi + vT

i Σ̂viv
T
i Σ̂vi

)
=

p∑
i=1

(
λi − vT

i Σ̂vi

)2
,

which is the sum of the squared errors between the true variances λi = vT
i Σvi and the

estimated variances vT
i Σ̂vi of the respective portfolios vi. As a result, Frobenius loss

can be decomposed into loss due to eigenvalue discrepancy and loss due to eigenvector

discrepancy,

‖Σ− Σ̂‖2Frobenius =

p∑
i=1

(
λi − vT

i Σ̂vi

)2
+

p∑
i=1

vT
i Σ̂(I− viv

T
i )Σ̂vi, (3.7)

where I is the p× p identity matrix.

From these representations, Frobenius loss does not appear to be a good choice

for market risk management. This is because Σ typically has a high condition num-

ber, λ1/λp, due to the strong influence of the market factor. We see in (2) and (3.7)

differences between small estimated and small true eigenvalues have only little effect

on total loss, because the eigenvalues enter through their differences λi − λ̂j only.

Furthermore, risk managers typically focus on standard deviations rather than vari-

ances. In a setting where small risks matter, which is the case when portfolios can be

leveraged up to higher levels of risk, this is not an appealing property of a loss func-

tion. This suggests that loss functions involving the scale invariant ratio λi/λ̂j (or,

equivalently, in λ
1/2
i /λ̂

1/2
j ) are more suitable in the market risk management setting.
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Figure 3.3: The scale-invariant loss LIS

Negative normal log-likelihood A better choice of loss function for market risk

management appears to be the negative normal log-likelihood (partially maximized

with respect to the mean vector), tr(ΣΣ̂−1)− ln det(ΣΣ̂−1)− p. It is also Stein’s loss

applied to the precision matrices Σ̂−1 and Σ−1, which interchanges the roles of Σ̂ and

Σ as compared with the typical definition of Stein’s loss [Stein, 1975]. It can further

be understood as the normal Kullback–Leibler loss of Σ from Σ̂, but it can be used

with non-normal data as well. We show the portfolio decomposition in Proposition 3.

Proposition 3.

tr
(
ΣΣ̂−1

)
− ln det

(
ΣΣ̂−1

)
− p =

p∑
i=1

p∑
j=1

(vT
i v̂j)

2

(
λi

λ̂j
− ln

λi

λ̂j
− 1

)
(3.8)

The proof is given in Appendix 3.B. We see that this loss shares the similar-

ity measure (vT
i v̂j)

2 with Frobenius loss, but as the discrepancy measure it uses the

Itakura–Saito loss LIS(λi/λ̂j) ··= λi/λ̂j − ln(λi/λ̂j) − 1. This scalar loss function is

asymmetric and penalizes underestimation of portfolio risk more than overestima-

tion, as can be seen in Fig. 3.3. This behavior is desired from a risk management

perspective, since underestimating risk is worse than overestimating it.

The right side of Eq. (3.8) can also be expressed as
∑p

i=1(λi/v
T
i Σ̂vi − lnλi +

vT
i ln(Σ̂)vi − 1). If the eigenvectors of Σ and Σ̂ coincide, the negative normal log-
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likelihood equals

p∑
i=1

(
λi

vT
i Σ̂vi

− lnλi + ln vT
i Σ̂vi − 1

)
=

p∑
i=1

(
λi

vT
i Σ̂vi

− ln
λi

vT
i Σ̂vi

− 1

)
.

This is the sum over all i of the Itakura–Saito loss between the true variance λi =

vT
i Σvi of the eigenportfolio vi formed from Σ, and the estimated variance vT

i Σ̂vi of

the very same portfolio vi.

For evaluation of an estimator Σ̂, it suffices to only consider those terms of

Eq. (3.8) which involve Σ̂:

Lnormal

(
Σ, Σ̂

)
··= tr

(
ΣΣ̂−1

)
+ ln det

(
Σ̂
)
.

This is because tr(ΣΣ̂−1)−ln det(ΣΣ̂−1)−p = tr(ΣΣ̂−1)+ln det(Σ̂−1)−ln det(Σ)−p,
the last two terms of which are independent of Σ̂. This makes the normal predictive

log-likelihood applicable for tuning and evaluation even if a rank-deficient empirical

covariance matrix is used in place of Σ; then det(Σ) = 0, while, of course, det(Σ̂) > 0.

Some interpretability is lost because Lnormal(Σ,Σ) 6= 0.

3.3.4 Evaluating a Covariance Matrix Estimate for a Specific

Market Risk Management Purposes

We now introduce some loss functions for evaluating the performance of a covariance

matrix estimate in specific market risk management tasks. All of the methods are

also directly applicable to dynamic covariance models, where at each point in time the

covariance matrix estimate can be evaluated in terms of its predictive performance

for the observed standard deviations of the eigenportfolios.

Average estimation loss We can encode which portfolios w we are more, or

less, interested in through a distribution function F = F (w). The loss L (σ2/σ̂2) =

L (wTΣw/wTΣ̂w) yields a distribution over potential losses through the distribution
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F over w. The average estimation loss across a range of portfolios is∫
Rp

L (σ2/σ̂2) dF (w) =

∫
Rp

L (wTΣw/wTΣ̂w) dF (w),

where the distribution function F (w) gives higher weight to portfolios for which it is

more important to have little estimation loss. For a set of equally relevant portfolios

{w1, . . . ,wm} this simplifies to

1

m

m∑
i=1

L (wT
i Σwi/w

T
i Σ̂wi). (3.9)

Without better prior information, one might want to assume that all portfolio vector

directions are equally likely. Then the worst-case loss is given by the loss function

in (3.13). The average loss across portfolios is proportional to∫
w:wTw=1

L (wTΣw/wTΣ̂w) dw. (3.10)

This integral can be evaluated using Monte Carlo simulation. Instead of sampling

from a uniform distribution on the sphere, we can also sample w from a multivariate

standard normal distribution, because doing so provides a uniform distribution over

portfolio vector directions since ‖w‖ cancels out in (3.10). Care has to be taken

because this integral takes value infinity if the covariance matrix estimate is rank

deficient, meaning that at least one portfolio exists which has estimated variance zero.

This will usually only be the case when evaluating an empirical covariance matrix,

because any reasonable covariance matrix estimate should be of full rank. Because the

number of portfolios with estimated variance zero forms a lower-dimensional subspace,

even in a large number of simulations such a zero-variance portfolio would likely not

be found, and the Monte Carlo approximation would yield a finite value. To determine

if the integral is truly finite, evaluate Lmax, defined in (3.13), which is the worst-case

variance underestimation of any portfolio. If, and only if, it takes value infinity, then

also the integral takes value infinity. When evaluating covariance matrix estimates

which are almost rank-deficient, Monte Carlo approximation will not be accurate. We
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suggest using the same random portfolio vectors to approximate this integral when

comparing several estimators. This limits the influence of Monte Carlo sampling

error.

For the case of Itakura-Saito loss, which also appears in predictive normal log-

likelihood in (3), and which penalizes underestimation of risk more strongly than its

overestimation, the average loss in (3.10) is

LIS uniform(Σ, Σ̂) ··=
∫

w:wTw=1

(
wTΣw

wTΣ̂w
− ln

(
wTΣw

wTΣ̂w

)
− 1

)
dw. (3.11)

Quantiles and expected shortfall of the estimation loss distribution Since

traders might be motivated to hold portfolios whose true variance is underestimated,

a regulator, or risk manager, may want to focus on a risk measure derived from the

distribution of L ··= L (WTΣW/WTΣ̂W). Here W a uniformly distributed random

portfolio vector. Examples are the α-quantile of the distribution FL of L,

F−1L (α),

or the expected value of the α-truncated estimation loss distribution (expected short-

fall),

LES(α) ··= E[L|L > F−1L (α)].

These quantities, too, can be evaluated with Monte Carlo simulation. Again, care has

to be taken with rank-deficient or almost rank-deficient covariance matrix estimates,

because LES(α) =∞ iff Lmax =∞.

Maximal underestimation of variance across all possible portfolios With a

priori unknown portfolio vector w, the worst-possible underestimation of variance is

max
w

{
σ2(w)/σ̂2(w)

}
= max

w

{
wTΣw

wTΣ̂w

}
. (3.12)

It follows from Proposition 4 that the solution to (3.12) is given by

Lmax(Σ, Σ̂) ··= λmax

(
Σ̂−1Σ

)
, (3.13)
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where λmax(•) denotes the largest eigenvalue of •. The most extreme variance over-

estimation is given by λmin(Σ̂−1Σ), with λmin(•) denoting the smallest eigenvalue

of •.

Proposition 4. The solution to maxw

{
wTΣw

/
wTΣ̂w

}
is given by λmax(Σ̂

−1Σ).

Proof. With w = zTΣ̂−1/2 maximizing the generalized Rayleigh quotient in Eq. (3.12)

is equivalent to maxz

{
zTΣ̂−1/2ΣΣ̂−1/2z/zTz

}
= maxz:zTz=l

{
zTΣ̂−1/2ΣΣ̂−1/2z

}
, for

any l > 0. From the Lagrangian zTΣ̂−1/2ΣΣ̂−1/2z − λ(zTz − l) it follows that the

first-order optimality condition is Σ̂−1/2ΣΣ̂−1/2 · z = λ · z, an eigenvalue problem of

the matrix Σ̂−1/2ΣΣ̂−1/2, whose eigenvalues equal those of Σ̂−1Σ.

3.3.5 Finding an Estimator Less Susceptible to Misestima-

tion of Portfolio Variance

The commonly used estimator of Ledoit et al. [2003] has shown that other approaches

to covariance matrix estimation exist which may perform at least as well as factor

models. Our task in this section is to identify estimators which may be particularly

suited for market risk management.

A covariance matrix estimator combines an in-sample loss function with a reg-

ularizer. In Section 3.3.3 we discussed that the normal likelihood appears to be a

particularly suitable loss function for market risk management. The normal likeli-

hood also has the advantage of being convex in the inverse covariance matrix esti-

mate. The regularizer, should be motivated by economic prior knowledge. In the

following, we take a closer look at an estimator not typically used in finance, the

graphical lasso [Friedman et al., 2008]. We discuss a number of other estimators in

Appendix 3.C; we find that only some of these estimators target a loss function that

is well suited for market risk management and that only some regularizers impose a

suitable economic structure.
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Graphical lasso A graphical model is a way of visualizing the dependence of a

set of random variables. The nodes of the graph represent random variables, and

two nodes lack an edge if they if they do not influence each other directly. Two

random variables Xi and Xj have a partial covariance of zero, meaning that they are

uncorrelated conditional on all other random variables, if the respective entry [Σ−1]ij

in the precision matrix Σ−1 is zero. Friedman et al. [2008] propose to estimate a sparse

graph structure by minimizing Lnormal, augmented with a lasso term which penalizes

large elements in the estimate Σ∗−1, and effectively sets some of its elements to zero:

min
Σ∗

{
ln det(Σ∗) + tr(ΣempΣ

∗−1) + λ‖Σ∗−1‖1
}
. (3.14)

The graphical lasso targets a loss suitable for market risk management. While Σ is

typically not sparse in that setting, most asset pairs should exhibit only little direct

dependency, and therefore the elements of Σ−1 be small. By penalizing a norm of the

estimated precision matrix it ensures an approximate factor model, without the user

ever needing to specify what these factors are.7 Here λ serves as a tuning parameter.

3.4 The Correlation Structure of Credit Default

Swaps

In this section we estimate the correlation structure of credit default swaps. This also

allows us to illustrate the methodology developed in Section 3.3.

Corporate credit default swaps are tradable derivative contracts that provide pro-

tection against the default of a debt issuer. While CDS insure against default of a

7Chandrasekaran et al. [2012] observe that in the presence of an underlying factor structure the

precision matrix will not be exactly sparse, but should rather decompose into a low-rank and a

sparse matrix. They propose to estimate these matrices through a trace penalty on the former and a

lasso penalty on the latter. Applying it to CDS data in Section 3.4 and Appendix 3.E, we find that

that it slightly underperforms the graphical lasso. This could be due to the more difficult numerical

optimization problem. As a result, we do not discuss it further.
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third party, this insurance can only be paid if the protection seller itself is solvent.

Hence, in the aftermath of the financial crisis since 2007, CDS are increasingly traded

through central clearing houses instead of bilaterally, as mandated by the Dodd–Frank

act and the European Market Infrastructure Regulation (EMIR). A clearing house re-

quires each party to a CDS to post margin as collateral in case of default. The margin

payment reflects the dependency structure in the CDS portfolio each party has with

the clearing house. A portfolio of credit default swaps is subject to two types of risk:

price-change risk and default risk. Price-change risk is due to continuous changes

in CDS spreads, whereas default risk refers to the possibility of a large contractual

payout in the case the underlying entity of the CDS defaults. We focus on the risk

of price-changes, as measured through standard deviation, for which diversification

benefits can be large. Jump-to-default risk is typically margined separately and is

less dependent on correlation modeling.

In the following we analyze North American investment grade corporate (NAIG)

five-year CDS spreads. We empirically compare the estimators discussed in Sec-

tion 3.3.5 and Appendix 3.C. We find that under reasonable choices of loss func-

tions for market risk management essentially all correlation matrix estimators show

a strong improvement over the empirical correlation matrix. Some estimators avoid

systematically misestimating the variance of certain portfolios particularly well. We

learn that NAIG CDS are strongly driven by a market factor. The additional effect

of other natural candidates for observable factors is small. However, we find that

several other latent factors must be at play, causing several direct pairwise dependen-

cies between assets, and the formation of a hierarchical clustering structure. These

findings suggests that NAIG CDS follow an approximate factor model.

We relate observed correlations to implied correlations based on distance-to-default

processes in Appendix 3.D. There we find that the difference between actual and im-

plied CDS log-differences is driven by a common factor that may reflect a premium

for risk and possibly liquidity.
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3.4.1 Data

The CDS data set is provided by Markit. As an example, see the five-year CDS

spreads of Alcoa Inc. over time in Fig. 3.4. We consider the time interval April 1, 2008

to December 31, 2009. During this time period data quality is high, with more than

99.5% of observations ranked BB or higher according to Markit’s internal data quality

assessment, where BB is the fifth-highest grade on a seven grade scale. Data quality

is judged by the number of different clean contributions as well as competitiveness,

liquidity and transparency of the market. Only one of the 125 corporations in the

index, CIT Group Inc., is excluded from the analysis because it declared Chapter 11

bankruptcy on November 1, 2009.
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Figure 3.4: Five-year CDS spread of Alcoa Inc. over time

We consider standardized CDS log-differences, an approach outlined in Section 3.2.1.

We model each CDS’s conditional expectation as following an ARMA process with

order chosen according to the AICc information criterion [Hurvich and Tsai, 1989],

and we estimate the conditional variance using an exponentially weighted moving av-

erage in the squared ARMA model residuals with smoothing parameter 0.94, which

is widely used in industry [Zumbach, 2007; Engle, 2002]. More elaborate conditional

variance models such as the GARCH model [Engle and Bollerslev, 1986] could be

used instead; however, for example Boudoukh et al. [1997] find that exponentially

weighted smoothing tends to perform similarly well. The median empirical skewness
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of the Xi is 0.15, and the median empirical excess kurtosis is 1.06.

In market risk management, one never gets to observe the true cross-sectional

covariance (correlation) matrix R of the Xit. Instead, the risk manager observes an

in-sample, where R is estimated, and then judges the performance of that estimate

out-of-sample. Accordingly, we will evaluate estimators by their performance against

the realized out-of-sample R. We split the data into a training set of 214 trading

days and a test set of 213 days, using simple random sampling without replacement.

The median empirical correlation in the training set is 0.48, with a minimum of 0.11,

a first quartile of 0.42, third quartile of 0.54 and maximum of 0.86.

While R has diagonal elements of one, an empirical observation of R may not

be a correlation matrix due to sample variability or, more importantly, due to the

variance model yielding noisy variance estimates. To emphasize the focus on the

correlation part in the variance–correlation decomposition from Section 3.2.1, we will

standardize the Xit once more with their empirical standard deviation within each

subsample, such that the empirical versions of R are correlation matrices.

3.4.2 Tuning Using Cross Validation and Estimation Results

In this section, we tune the estimators with respect to their tuning parameters. In

Section 3.4.3, we will evaluate the estimators on a separate test set using the tuning

parameters found here.

We use five-fold cross validation on the training set to determine good tuning

parameters. Cross validation is a resampling method which has been found to be

among the most accurate approaches to estimating estimation risk (compare Hastie

et al. [2009, Chapter 7] and Friedman et al. [2008]), and specifically for tuning high-

dimensional covariance matrix estimators [Fang et al., 2016].

The cross validation of an estimator R∗ proceeds as follows: 1. Randomly divide

the data set into some number of folds of equal size; we use five folds. 2. For

j ∈ {1, . . . , 5}: combine all folds but the j-th fold into an estimation set, calculate
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the empirical correlation matrix Remp
−j from this set, and apply the estimator, which

yields R̂−j ··= arg minR∗ Lλ(Remp
−j ,R

∗). Choose the j-th fold as a validation set, with

empirical matrix correlation Remp
j , which is a potential observation of Rfut. 3. The

cross validation estimate of estimation risk is 5−1
∑5

j=1 L (Remp
j , R̂−j). Here Lλ is the

regularized in-sample loss and L is the loss of interest. Thus, we use regularization

for estimation, but evaluate performance based on L . We choose five folds because

typically the amount of representative data available is small, and the size of each

fold should be representative of an investment period.

For best out-of-sample performance, this tuning parameter λ is chosen in a data-

dependent fashion. The best tuning parameter (vector) λ according to five-fold cross

validation is

λ̂ ··= arg min
λ

5∑
j=1

L (Remp
j , R̂−j). (3.15)

Typically λ is of small dimension, making global optimization methods feasible if

needed.

We use the loss function Lnormal as L in (3.19) or (3.20), since we found it

to be well suited for market risk mangement in Section 3.3.3 because of its focus

on a wide range of portfolios and that it penalizes underestimation of risk more

than overestimation. In the following we discuss the estimation and tuning results

separately for each estimator, and what we learn about the CDS correlation structure.

For a comparison with North American high yield CDS, see Appendix 3.E.

Graphical lasso, Eq. (3.14) The tuning parameter λ of the graphical lasso takes

on value λ = 0.077. The minimal loss is Lnormal = 36.57. The partial correlations

according to the empirical correlation matrix range from -0.24 to 0.65, with a median

of 0. Applying the graphical lasso, no negative partial correlations are left, and

partial correlations range from 0 to 0.55, with a median of 0. While the partial

correlations between most pairs of CDS are very small — which means that their co-

movements can be explained through latent factors — a few CDS remain strongly
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correlated even after controlling for all other CDS, suggesting some direct pairwise

influence. The largest partial correlations according to the graphical lasso estimate

are MetLife–Hartford Financial (0.55), Safeway–Kroger (0.44), Norfolk Southern–

Burlington Northern Santa Fe (0.43), Deere–Caterpillar (0.41), Raytheon–Northrop

Grumman (0.39), Cigna–Aetna (0.38) and Capital One–American Express (0.30). All

of these partial dependencies appear meaningful from an economic perspective. See

the full graphical model in Fig. 3.5, showing only partial correlations greater than

0.15. These results are consistent with an approximate latent factor model. The

graphical lasso also performs well for high-yield CDS; see Appendix 3.E.

Observed factor model The first estimator we consider is the observed factor

model

Xit = β0,i + βNAIG
i pt + βVIX

i vt + βSP500
i st + βTreasury

i ιt + uit,

where uit
i.i.d.∼ N(0, σ2

i ). Here, at time t, pt is the log-difference of the CDx NAIG Series

12 index, vt is the log-return of the VIX index, st is the log-return of the S&P 500

index, and ιt is the log-return of the five-year US Treasury futures. The coefficients

of determination in these regressions range from 0.16 to 0.61, with a first quartile of

0.40, a median of 0.48, and a third quartile of 0.53. For VIX, S&P 500 and Treasury

rate the distribution of the p-value in these regressions is almost uniform on (0, 1), the

distribution of the p-value we would expect if these regressors in truth have no effect

on the individual CDS. We learn that the CDS NAIG12 index strongly influences

individual CDS movements, whereas VIX, S&P 500 and Treasury Rate add little to

nothing in terms of predictive accuracy. One remedy would be to search for other

observable factors which might better explain the standardized CDS log-differences.

However, identifying all relevant factors is difficult.

Principal components estimator The first principal component, which forms an

approximately equal-weighted market index, accounts for 45 percent of variance. The

optimal number of latent factors according to the cross validation is six, accounting
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Figure 3.5: Graphical model of NAIG CDS using graphical lasso estimator with
λ = 0.077; the corresponding ticker symbols are 1–AA, 2–AEP, 3–AXP, 4–AIG, 5–AVT, 6–ABX,

7–BDK, 8–BA-CapCorp, 9–T, 10–ATTINC-ML, 11–APC, 12–ACE, 13–AET, 14–ALL, 15–MO, 16–AMGN, 17–ARW,
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KFT, 79–KR, 80–LTR, 81–NRUC, 82–NWL, 83–NWSA, 84–JWN, 85–NSC, 86–NOC, 87–OMC, 88–MOT, 89–PGN,
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124–MCK
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for roughly 55 percent of variance, with a minimized value of Lnormal of 43.65. This

suggests that the CDS log-differences are driven by more factors than just the market

factor. At the same time, the discussion in Section 3.2 suggests that this estimator

has some serious deficiencies in assessing the variance of certain portfolios.

Approximate latent factor model, Eq. (3.21) The approximate latent factor

model shows significant improvement over the latent factor model according to all loss

functions in Table 3.2. Similarly to the approach of Ledoit and Wolf [2003], and in

contrast with the principal components estimator, here implicitly a larger number of

factors but the first few principal components is estimated. Through the assumption

of sparsity of the error matrix the estimation of small influences from many factors

is statistically reliable. The optimal number of latent factors in the tuning is found

as two, and the sparsity parameter λ = 0.14, with a minimal loss Lnormal = 39.58.

Shrinkage of the empirical correlation matrix toward a single-factor solu-

tion, Eq. (3.24) We find that λ = 0.356 gives the smallest loss, with Lnormal =

39.65. This suggests that the standardized CDS log-differences are mainly driven by

the market factor, but that, to a lesser extent, also other factors are at play. This

finding is consistent with the results from the principal components model. However,

the approach of Ledoit and Wolf [2003] does not try to identify these other factors,

and can be viewed as a way of shrinking the influence of these other factors.

Hierarchical clustering In Fig. 3.6 the hierarchical cluster structure from average-

linkage clustering is shown. This is another approach to determining factors beyond

the market factor, and hence consistent with the latent factor model and the shrink-

age approach considered earlier. The results are striking, because the structure of the

cluster solution coincides with economic intuition. For example, Burlington Northern

Santa Fe merges first with Norfolk Southern, these two then merge with Union Pacific

Group, and so on. The dendrogram represents the idea of a general market factor, in-
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dustry factors, and sub-industry factors. Bigger clusters are formed especially around

correlations 0.5 and 0.4. The hierarchical clustering estimator performs less well for

high-yield CDS, see Appendix 3.E.

3.4.3 Out-of-Sample Evaluation

We used a cross validation on the training set to tune the different correlation esti-

mators in Section 3.4.2. We now perform another five-fold cross validation, but this

time on the test set, holding fixed the tuning parameters. We do this to obtain both

point and distributional estimates of the out-of-sample performance of the different

correlation matrix estimators.

We determine point estimates of performance against Lnormal and the more spe-

cialized loss functions. We also apply the graphical tool, which was introduced in

Section 3.3.1, which makes use of the repeated error estimates we gain from per-

forming the five-fold cross validation on the test set. Lastly, we perform a frequency

analysis to uncover systematic bias across essentially all possibly portfolio vectors.

Point estimates of out-of-sample performance We compare the estimators in

terms of Lnormal, and also according to their performance under the more specialized

loss functions LUniform, LES(0.95), LES(0.995), Lmax as well as the loss in (3.9), where

we choose as the portfolios of interest single CDSs hedged with the index. As the

point estimate we use

5−1
5∑
j=1

L (Rtest
j , R̂−j), (3.16)

with Rtest
j the empirical R in the j-th fold of the test set, Rtest

−j the empirical R using

all folds but the j-th fold of the test set, and R̂−j = arg minR∗ Lλ̂(Rtest
−j ,R

∗).

The average loss of the models on the test set is shown in Table 3.2. The graphical

lasso performs best according to Lnormal. The shrinkage estimator, the graphical

lasso and hierarchical clustering are highly accurate for LUniform. That excellent

performance of the graphical lasso according to Lnormal is explained by its focus on
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Figure 3.6: Hierarchical cluster structure (dendrogram) of NAIG12 CDS
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avoiding extreme underestimation of risk, as measured by the losses LES(0.995) and

Lmax. The factor models do not perform better than the empirical correlation matrix

as judged by the average Itakura–Saito loss for the 124 market neutral portfolios.

Table 3.2: Average test set performance for NAIG CDS in terms of several losses

Normal Uniform ES(0.95) ES(0.995) Max Market neutral

Empirical correlations 376.60 0.0255 0.153 0.282 76.86 0.0270

Observed factor model 60.32 0.0235 0.140 0.258 10.42 0.0269

Graphical lasso 51.94 0.0231 0.136 0.246 8.56 0.0270

Principal components estimator 57.70 0.0242 0.144 0.264 10.09 0.0271

Approximate factor 54.98 0.0233 0.138 0.252 9.09 0.0274

Shrinkage 55.07 0.0229 0.136 0.248 9.17 0.0269

Hierarchical clustering 52.34 0.0228 0.136 0.247 9.13 0.0257

Applying the graphical tool We also assess the accuracy of the different estima-

tors in predicting the variance of the portfolios formed according to the eigenvectors

of the respective estimated R using the graphical tool from Section 3.3.1. Using the

cross validation on the test set, we obtain five ratios of realized and estimated stan-

dard deviations for each eigenportfolio. In Fig. 3.7 we see that the empirical R shows

strong systematic error. The eigenportfolios two to 40 are estimated as more risky

than they truly are, and the risk of eigenportfolios 50 to 124 is estimated too low. This

is because each subsequent eigenportfolio is found as the one with maximal empirical

variance which also is orthogonal to all eigenportfolios extracted earlier. While for

the first components the few orthogonality restrictions leave a large space of portfolio

vectors to maximize over, the search space becomes smaller and smaller, such that

the very last eigenportfolio even corresponds to the minimum empirical variance port-

folio. Because this optimization is performed based on the noisy empirical R, after

optimization the variance estimates are biased; high empirical variance portfolios in

truth tend to have smaller variance, and small empirical variance portfolios in truth

tend to have larger variance.



CHAPTER 3. ESTIMATING A COVARIANCE MATRIX FOR MARKET RISK
MANAGEMENT 85

The performance of the observed factor model in estimating the variance of the

estimated eigenportfolios is shown in Fig. 3.8. A visual comparison of Figs. 3.7

and 3.8 immediately reveals substantial improvement from imposing some structure

on the estimation. Fig. 3.8 shows little systematic misestimation; it appears that the

riskiness of the eigenportfolios three to 25 is slightly overestimated, and that of the

very last eigenportfolios is slightly overestimated.

The graphical lasso, shown in Fig. 3.9, exhibits by far the least tendency for

misestimation of risk. It slightly underestimates the riskiness of the eigenportfolios

seven to around 35. Remarkable is the dip around the last eigenportfolios, a pattern

not present in any other estimator.

We see in Fig. 3.10 that the principal components estimator with six latent factors

strongly overestimates the risk associated with the portfolios formed from its second

to sixth eigenvectors, and tends to underestimate the risk of many of the portfolios

formed according to eigenvectors whose eigenvalues are medium to small. This sug-

gests that the effect of the latent factors two to six are overestimated in the principal

components estimate, while some of the lower eigenvalues are estimated too small.

The approximate latent factor model via regularized maximum likelihood inherits

some of the deficiency of the principal components estimator: the tuned number of

latent factors is two, and while the market factor is estimated well, the riskiness

of the second eigenportfolio is overestimated, see Fig. 3.11. Otherwise, it has little

systematic error.

The results for the shrinkage estimator are shown in Fig. 3.12. It shows much vari-

ability in the variance ratios of the first few eigenportfolios. A pronounced pattern of

overestimation of risk is visible for the eigenportfolios ten to 30, and underestimation

of risk for the eigenportfolios 105 to 124.

The hierarchical clustering approach shows some systematic error for eigenport-

folios two to five in Fig. 3.13, but performs well across the other eigenportfolios.
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Figure 3.7: Ratios of realized and estimated standard deviations in five-fold cross

validation using the empirical correlations, along with a smoothing spline fit
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Figure 3.8: Ratios of realized and estimated standard deviations in five-fold cross

validation using a single factor model, along with a smoothing spline fit

3.5 Conclusions

For market risk management, a covariance matrix should be estimated in a way that

minimizes the risk of gross underestimation of the true variance of any portfolio.

Empirical covariance matrices typically perform poorly out-of-sample. We showed

that the commonly used latent factor model based on principal components analysis

systematically misestimates the risk of certain portfolios, too. We introduced a novel

graphical tool to assess covariance matrix estimator bias. We employed a portfolio

perspective to identify loss functions which are suitable for market risk management.

The predictive normal distribution log-likelihood appears to be more useful for market

risk management than, for example, Frobenius loss and Stein’s loss. We also intro-
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Figure 3.9: Ratios of realized and estimated standard deviations in five-fold cross

validation using the graphical lasso, along with a smoothing spline fit
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Figure 3.10: Ratios of realized and estimated standard deviations in five-fold cross

validation using the principal components estimator with six latent factors, along

with a smoothing spline fit

duced several novel loss functions for specialized market risk management purposes.

We find that the dynamic covariance model of Bollerslev [1990] can be improved

by replacing the empirical correlation matrix with a regularized estimate. Similarly,

the performance of the dynamic covariance model of Engle and Sheppard [2001] and

Engle [2002] in market risk management tasks could be strongly improved by, at each

step in time, replacing the localized empirical correlation matrix with a regularized

version of it. This can be done, for example, with the graphical lasso, which regularizes

the correlation matrix estimate in an economically meaningful way by reducing direct

pairwise dependencies between assets.
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Figure 3.11: Ratios of realized and estimated standard deviations in five-fold cross

validation using the approximate latent factor model, along with a smoothing spline

fit
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Figure 3.12: Ratios of realized and estimated standard deviations in five-fold cross

validation using the approach of Ledoit and Wolf [2003], along with a smoothing

spline fit

We analyzed a data set of North American corporate credit default swaps. Using

an observable factor model we found that individual CDS exhibit a strong dependency

on the equal-weighted market factor, but that natural candidates such as the VIX

index, the S&P 500 and the five-year Treasury rate have little to no effect. We empir-

ically assessed the performance and the deficiencies of a range of correlation matrix

estimators, and found that not only the sample correlation matrix, but especially also

the principal components estimator shows systematic error in estimating the variance

of certain portfolios. The principal components estimator strongly overestimates the
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Figure 3.13: Ratios of realized and estimated standard deviations in five-fold cross

validation using the hierarchical clustering model, along with a smoothing spline fit

riskiness of all latent factors but the first latent factor. The graphical lasso and hier-

archical factor model gave the best performance for NAIG CDS — the graphical lasso

having smallest overall error, and the hierarchical factor model showing lowest sys-

tematic error. They also yielded economically meaningful representations of market

structure through a graphical model and a hierarchy, respectively. These findings

suggest that there are systematic dependencies in the CDS data that cannot be fully

explained by a few factors. Lastly, we also investigated the relationship of actual CDS

spreads and implied CDS spreads based on distance-to-default. Actual CDS spreads

are strongly driven by a latent risk factor, in addition to distance to default. That

latent risk factor may be interpreted as an overall risk premium.
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Appendix to Chapter 3

3.A Further Decompositions of Matrix Loss Func-

tions

Frobenius loss in precision matrices A Frobenius loss can also be defined for

the inverses of true and estimated correlation matrices, as, for example, considered

in [Ledoit and Wolf, 2012], yielding ‖Σ−1 − Σ̂−1‖2Frobenius. It is a direct consequence

of Proposition 2 that

‖Σ−1 − Σ̂−1‖2Frobenius =

p∑
i=1

p∑
j=1

(vT
i v̂j)

2
(
λ−1i − λ̂−1j

)2
,

using that inversion of correlation matrices leaves eigenvectors intact and inverts

eigenvalues. Because of its focus on correctly estimating small eigenvalues, with little

consideration for large eigenvalues, this loss function appears useful when estimat-

ing correlation matrices for Markowitz-type portfolio optimization [Markowitz, 1952],

because there covariance and correlation matrices appear in their inverted form, but

less useful for risk management.

Stein’s loss Another commonly used loss function is Stein’s loss [James and Stein,

1961], tr(Σ̂Σ−1)− ln det(Σ̂Σ−1)− p. When applied to normal random variables, it is

the Kullback–Leibler divergence from the p-dimensional normal distributionNp(0,Σ),

which uses the true correlation matrix, to the normal distribution Np(0, Σ̂), which

uses to estimated correlation matrix; it is not limited to data from a normal distribu-

tion. In Proposition 5 we see that it is scale invariant, as the eigenvalues only enter

through their ratios.
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Proposition 5.

tr
(
Σ̂Σ−1

)
− ln det

(
Σ̂Σ−1

)
− p =

p∑
i=1

p∑
j=1

(vT
i v̂j)

2

(
λ̂i
λj
− ln

λ̂i
λj
− 1

)
. (3.17)

The proof follows directly from the proof of Proposition 3. The discrepancy

penalty between λ̂i and λj is an Itakura–Saito distance. However, we see that Stein’s

loss has the unappealing property that it penalizes under-estimation of risk more

strongly than over-estimation. This suggests exchanging the roles of Σ and Σ̂, as is

done in Proposition 3.

Scale-invariant quadratic loss Another loss function is the scale-invariant quadratic

loss, for example considered in Pourahmadi [2013], tr((Σ̂Σ−1− I)2). The spectral de-

composition of this loss is given in Proposition 6.

Proposition 6.

tr
((

Σ̂Σ−1 − I
)2 )

(3.18)

=

p∑
i,j,k,l=1

(v̂T
i vj)(v

T
j v̂k)(v̂

T
kvl)(v

T
l v̂i)

λ̂i
λj

λ̂k
λl
−

p∑
m,n=1

(vT
mv̂n)2

(
2λ̂m
λn
− 1

)
.

Proof.

tr

((
Σ̂Σ−1 − I

)2)
= tr

(
Σ̂Σ−1Σ̂Σ−1 − 2Σ̂Σ−1 + I

)
= tr

(
Σ̂Σ−1Σ̂Σ−1

)
− 2tr

(
Σ̂Σ−1

)
+ tr(I)

=

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

(v̂T
i vj)(v

T
j v̂k)(v̂

T
kvl)(v

T
l v̂i)

λ̂i
λj

λ̂k
λl

+

p∑
m=1

p∑
n=1

(vT
mv̂n)2

(
−2

λ̂m
λn

+ 1

)

This loss is bounded when under-estimating portfolio variance, and it is asym-

metric in that it penalizes over-estimation of portfolio variance much more heavily

than under-estimation. Because of these properties, this loss function appears to be

of little use for risk management. When considering this loss function with roles of

Σ and Σ̂ interchanged, tr((ΣΣ̂−1 − I)2), its asymmetry appears quite strong.
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Symmetrized scale-invariant loss A symmetrized loss function [Pourahmadi,

2013] is tr(Σ̂Σ−1)+tr(Σ̂−1Σ)−2p. Its spectral decomposition is given in Proposition 7.

Proposition 7.

tr
(
Σ̂Σ−1

)
+ tr

(
Σ̂−1Σ

)
− 2p =

p∑
i=1

p∑
j=1

(vT
i v̂j)

2

(
λ̂j
λi

+
λi

λ̂j
− 2

)
.

Proof. The proof follows from Proposition 6.

The loss in Proposition 7 can be expressed as
∑p

i=1

(
vT
i Σ̂vi/λi + λiv

T
i Σ̂−1vi − 2

)
as well. If the eigenvectors of Σ and Σ̂ are equal, vT

i Σ̂−1vi = (vT
i Σ̂vi)

−1. While this

loss function is an improvement over the scale-invariant quadratic loss, it does not

penalize under-estimation of risk more than over-estimation.

3.B Proofs

Proof of Proposition 2

Proof.

‖Σ− Σ̂‖2Frobenius = sum of squared eigenvalues of (Σ− Σ̂)

= tr
(

(Σ− Σ̂)2
)

= tr (ΣΣ)− 2tr
(
ΣΣ̂

)
+ tr

(
Σ̂Σ̂

)
=

p∑
i=1

p∑
j=1

(vT
i vj)

2λiλj − 2

p∑
i=1

p∑
j=1

(vT
i v̂j)

2λiλ̂j +

p∑
i=1

p∑
j=1

(v̂T
i v̂j)

2λ̂iλ̂j

=

p∑
i=1

λ2i − 2

p∑
i=1

p∑
j=1

(vT
i v̂j)

2λiλ̂j +

p∑
j=1

λ̂2j

=

p∑
i=1

λ2i

p∑
j=1

(vT
i v̂j)

2 − 2

p∑
i=1

p∑
j=1

(vT
i v̂j)

2λiλ̂j +

p∑
j=1

λ̂2j

p∑
i=1

(vT
i v̂j)

2

=

p∑
i=1

p∑
j=1

(vT
i v̂j)

2
(
λi − λ̂j

)2
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Proof of Proposition 3

Proof.

tr
(
ΣΣ̂−1

)
− ln det

(
ΣΣ̂−1

)
− p = tr

(
ΣΣ̂−1

)
− tr

(
ln
(
ΣΣ̂−1

))
− I

=

p∑
i=1

p∑
j=1

(vT
i v̂j)

2

(
λi

λ̂j
− ln

λi

λ̂j
− 1

)
.

3.C Correlation Matrix Estimation as Regularized

Minimization of In-Sample Loss

We write a regularized loss as

Lλ(Σemp,Σ
∗) ··= L (Σemp,Σ

∗) + λTJ(Σ∗). (3.19)

Here, the loss function L penalizes deviations between Σemp and the estimate Σ∗, J

is a regularizing function, and λ is a tuning parameter (vector). The loss function L

should be chosen for the application of interest. It ensures that the correlation matrix

estimate fits the data well. Regularization is needed because solely minimizing L

in-sample would typically yield the empirical correlation matrix, a poor estimator for

market risk management purposes, because of overfitting due to the large number of

parameters. The regularizer J is a measure of complexity of the estimate and imposes

a simpler structure on the estimate, effectively reducing the number of free parameters

[Vapnik, 1998, Chapter 2]. The regularizer should be based on prior information and

understanding of the application. The parameter λ allows balancing between the

goals of fitting well in-sample and limiting model complexity.

Note that the form of (3.19) can also be viewed as minimizing

L (Σemp,Σ
∗), subject to constraints on Σ∗. (3.20)
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In this formulation the constraints ensure regularization of the correlation matrix

estimate. The form of (3.20) can be converted into the form of (3.19) as follows.

Inequality constraints on a function of Σ∗ can be incorporated by choosing a λ such

that the resulting estimate does not violate the constraint. Equality constraints can

be incorporated by having J(Σ∗) put infinite penalty on correlation matrices that do

not fulfill the constraint.

Principal components estimator This estimator targets Lnormal, subject to the

regularizing constraint that Σ̂ = Γ̂Γ̂T + Ψ̂, where Ψ̂ is diagonal and all diagonal

elements are equal [Tipping and Bishop, 1999]. While it targets a suitable loss func-

tion, the overly restrictive assumption of a low rank structure, and that all residual

variances are equal, may explain its serious deficiencies from a risk management per-

spective, discussed in Section 3.2.

Approximate latent factor model via regularized maximum likelihood Bai

and Liao [2012] relax the latent factor framework in Eq. (3.2) by allowing the case

where Ψ is not necessarily diagonal. If a k factor model is approximately true, then

the off-diagonal elements of Ψ should be small. They propose to set Σ̂ = Γ̂Γ̂T + Ŝ,

where Γ̂ is p× k, and

(Γ̂, Ŝ) = arg min
Γ,S

{
ln det(ΓΓT + S) + tr(Σemp(ΓΓT + S)−1) + λ

∑
i 6=j

|Sij|
}
, λ > 0.

(3.21)

We see that this estimator targets the loss function Lnormal, which is suitable for

market risk management. It adds two regularization terms J : it applies the constraint

Σ̂ = ΓΓT + S, and it adds the lasso-penalty
∑

i 6=j |Sij|. The tuning parameters are

the number of latent factors, k, and λ, the degree of sparsity in S. Relaxing the

assumption of an exact latent factor model may eliminate some of the deficiencies of

the principal components estimator.
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Observable factor model This model imposes a factor structure on the returns to

regularize the correlation matrix estimate. It is not necessarily assumed that the data

generating process truly follows a factor structure, but merely that a factor structure

can be used to meaningfully regularize the correlation matrix estimate. It is imposed

that the vector of random returns X = (Xi)1,...,p, follows the model

X = β0 + BF + U. (3.22)

Here F = (F1, . . . , Fk)
′ is a vector of observable random factors. Some potential

observable factors on CDS log-differences are given in Section 3.2. The Ui = Ui

capture the idiosyncratic variation in the Xi. Furthermore, (β0)i = β0i and [B]ij =

βij. In addition the constraint that U ∼ N(0,Ψ), with Ψ a diagonal matrix, is

imposed.

We now show that the observable factor model targets the loss Lnormal. As a

regularizer, J , it adds the constraint that Σ̂ = B̂Υ̂B̂T +Ψ̂, where B̂ is p×k, Υ̂ is the

empirical covariance matrix of F, and Ψ̂ is diagonal. The selection of factors serves

as a tuning parameter. The observed factor model targets a suitable loss function

for market risk management, but identifying all relevant factors might not always be

possible.

From Eq. (3.22) it follows that E|F = ft ∼ N(β0 + Bft,Ψ). To estimate the

parameters, including Υ, the joint likelihood of standardized returns and factors is

maximized:

max
β0,B,Ψ,Υ

{
T∏
t=1

fE|F=ft(εt)fF(ft)

}
= max

β0,B,Ψ

{
T∏
t=1

fE|F=ft(εt)

}
max

Υ

{
T∏
t=1

fF(ft)

}
.

(3.23)

Here the density function of • is denoted by f•. The first maximization problem in

Eq. (3.23) simply decomposes into p separate linear least-squares regressions, because

Ψ is a diagonal matrix. The second maximization in (3.23) yields the empirical

covariance matrix of F over t = 1, . . . , T . Ultimately, factors are only used to impose

structure, and true interest lies in the marginal (predictive) distribution of E: E ∼
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N(β0,BΥBT + Ψ). The marginal log-likelihood of T observations of E, partially

maximized w.r.t. β0, is

−tr
(
Σemp

(
B̂Υ̂B̂T + Ψ̂

)−1)
+ ln det

(
Σemp

(
B̂Υ̂B̂T + Ψ̂

)−1)
+ p.

Shrinkage of the empirical correlation matrix toward a single-factor solu-

tion As noted by Chamberlain and Rothschild [1983], the residual covariance matrix

Ψ in the factor model in Eq. (3.22) might in truth be only approximately diagonal.

Ledoit and Wolf [2003] propose to combine a single factor model and the empirical

correlation matrix:

Σ̂ ··= λΣ̂factor + (1− λ)Σemp. (3.24)

Ledoit and Wolf [2003] give an estimator for the tuning parameter λ under Frobenius

loss.

The estimator in (3.24) targets the loss function Lnormal [Gillen, 2014], which is

suitable for market risk management. It achieves regularization through an empirical

Bayes formulation, which imposes constraints on the estimate, yielding the form given

in (3.24). The details can be found in Gillen [2014]. While estimation is straight-

forward, neither single-factor model nor empirical correlation matrix are known to

perform very well, and there is no guarantee that a convex combination of these two

estimators performs satisfactory.

Hierarchical factor model Tumminello et al. [2007, 2010] propose to estimate a

correlation matrix using hierarchical average-linkage clustering [Hastie et al., 2009,

Chapter 14]: 1. Every asset forms a one-element cluster. Initialize the “cluster corre-

lation matrix” as the empirical correlation matrix. 2. Merge those two clusters with

highest cluster correlation into one cluster. Define the cluster correlation between the

new clusterN and another cluster O as r
(N,O)
cluster

··= |N |−1|O|−1
∑

n∈N
∑

o∈O remp(n, o). If

assets i and j are merged into one cluster at this time, define the estimated correlation

between asset i and asset j as r
(N,O)
cluster. 3. Repeat 2. until all assets form one cluster.
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Tumminello et al. [2007] show that this correlation matrix estimate corresponds to a

hierarchical factor model.

Another perspective on the hierarchical factor model approach to correlation ma-

trix estimation is in terms of the equality restrictions it imposes for regularization

on correlation estimates in the process of merging clusters. The restrictions are that

r̂ik = r̂jk if in the empirically derived hierarchy assets i and j are elements of one

cluster before merging with asset k, ∀ i, j, k.

We now show that minimizing Frobenius loss between Remp and R∗ yields the

correlation matrix estimator of Tumminello et al. [2007, 2010]. Denote the set of

equality restrictions by E , where all parameters which are restricted to equal one

value are contained in a single “long” restriction. An example equality restriction

from E could be r1,2 = r2,6 = · · · = r98,102. Denote the e-th of the equality restrictions

by E(e). An rij can only appear in one of these “long” equality restrictions. Then

min
R̂, subject to E

‖Remp − R̂‖Frobenius = min
R̂, subject to E

p∑
i=1

p∑
j=1

|rij − r̂ij|2

= min
R̂, subject to E

|E|∑
e=1

∑
rij appears

in E(e)

|rij − r̂ij|2

=

|E|∑
e=1

min
r̂ijwhich appear in E(e),

subject to E(e)

∑
rij appears

in E(e)

|rij − r̂ij|2.

Finally, separately minimizing squared error within every equality-restricted group

yields the mean empirical correlation in that group.

3.D Equity-Implied Credit Default Swap Correla-

tions

Markets for credit default swaps are less liquid than equity markets. This suggests

considering the returns of equities to estimate the correlation matrix of credit default
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swaps. To link CDS and equity prices, we use five-year distance-to-default processes

for the corporations in the NAIG12 index, as calculated by Standard & Poors based

on the general approach of Merton [1974]. The distance-to-default process DDit

measures how far company i at time t is from default, measured in standard deviations

of its asset value. We take 1−T (DDit) as the probability of default, where T denotes

the t distribution function with five degrees of freedom. We choose the t distribution

instead of the standard normal distribution because, with distance-to-default values

of up to seven, the use of the normal would suggest that default is almost impossible

for some companies, which appears unreasonable. Through its fatter tails, which are

compatible with the observed distribution of the standardized CDS log-differences, the

t distribution translates distance to default into more sensible default probabilities.

However, the correlation matrix of the log-difference of the probability of default

using T is virtually identical to that using a standard normal cumulative distribution

function, suggesting that the exact choice of distribution has little impact in this

application. We assume a constant hazard rate and a 40 percent recovery rate. From

1 − T (DDit) = 1 − exp(−5λit) we get that λit = − log(T (DDit))/5, and finally the

implied CDS spread as λit LGD = −0.6 log(T (DDit))/5.

We obtained distance-to-default data from Standard & Poors, for the time interval

January 12, 2009 to December 31, 2009, for those 81 corporations in the NAIG12 index

that are not financials or privately held, and which were not acquired or changed name

by May 19, 2015. After standardizing the implied CDS log-differences using estimated

conditional expectation and conditional standard deviation, we find the correlation

matrix of the implied CDS, to which the estimators discussed earlier can be applied.

We employ the graphical lasso estimator, and find that the performance on the test

set of the corresponding actual CDS data is significantly worse than when estimating

directly from actual CDS data.

The observation that induced CDS correlations are quite different from actual

CDS correlations suggests that there are additional factors influencing actual CDS
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log-differences which are not accounted for in distance-to-default calculations. A

principal components analysis of the difference between standardized actual CDS log-

differences and standardized implied CDS log-differences reveals a strong first prin-

cipal component. While the first eigenvalue of the standardized CDS log-differences

is around 32, accounting for 40 percent of variance, the first eigenvalue of the differ-

ences in standardized log-differences is roughly 22, accounting for roughly 28 percent

of the variance of the difference in standardized log-differences. Other eigenvalues

are an order of magnitude smaller. The first eigenvector of the differences is almost

equal-weighted on all CDS. Implied spreads are calculated under a physical probabil-

ity measure. Actual CDS spreads are the corresponding quantities calculated under

the risk-neutral probability measure. With a risk premium for default risk, actual

CDS spreads should be higher than implied spreads, and depend on the evolution

of the risk premium over time. The common factor observed in the differences may

therefore be interpreted as a measure of a time-varying risk premium, though other

factors — particularly counterparty risk and liquidity risk — may contribute as well.

Lastly, we investigate whether CDS log-differences of different maturities of the

same corporation are influenced by other factors in addition to the overall factors. As a

representative example, we compare the standardized four-year spread log-differences

of IBM with the more liquidly traded five-year ones. If all factors had the same effect

on four- and five-year CDS, then the correlation between the two CDS should be close

to one. However, we observe a daily correlation between log-differences of just 0.81.

This suggests that, even for the same underlying corporation, additional factors can

cause temporary pricing discrepancies. The time series move together closely in the

long run, and the weekly correlation is 0.95.
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3.E Case Study: NAHY Credit Default Swaps

As a second data set we consider the 100 North American high yield corporate CDS

(NAHY 12), from October 10, 2007 to March 31, 2008. Again, data quality is high as

judged by Markit’s internal system, with more than 99.5% of data ranked as BB or

higher.

The median correlation in the randomly selected training set is 0.40, with a min-

imum of -0.47, first quartile of 0.26, third quartile of 0.51 and maximum 0.92. The

median correlation is significantly lower than the median correlation in the investment

grade data set of 0.48. The first principal component accounts for 40 percent of total

variance, as compared with roughly 45 percent for NAIG CDS. These findings are

consistent with economic intuition, which suggests that high yield firms have more id-

iosyncratic risk and are less driven by the business cycle than investment grade CDS.

The increased variation in empirical correlation is also partially due to the shorter

time horizon considered.

The tuning parameters of the different estimators in the cross validation on the

training set are as follows. Principal components estimator: 2, shrinkage: 0.13, ap-

proximate factor model: (2,0.80), graphical lasso: 0.21. We see that the degree of

regularization is much stronger than for NAIG CDS; this is due to the slightly shorter

time horizon considered for NAHY CDS, and also due to their higher idiosyncratic

variation. The performances of the different estimators in the cross validation on

the test set according to Lnormal are as follows. Empirical correlations: ∞, observed

factor model: 50.52, principal components estimator: 50.05, shrinkage: 48.47, ap-

proximate factor model: 55.61, graphical lasso: 49.27, hierarchical clustering: 52.37.

The shrinkage estimator and the graphical lasso estimator perform best.

We show the graphical model, as determined by the graphical lasso with λ = 0.21,

in Fig. 3.14, only displaying partial correlations greater than 0.15. The strongest par-

tial correlations are New York Times–Gannett (0.45), Ford–General Motors (0.43),

Windstream–Citizens Communications (0.33) and Xcel Energy–Dynamic Energy (0.31).
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The hierarchical cluster structure is shown in Fig. 3.15. Estimated correlations

range from 0.92 to -0.04. This hierarchy is much deeper than that of NAIG CDS,

where the lowest estimated correlation is 0.25. While for NAIG CDS big clusters are

formed around correlations of 0.4 and 0.5, for NAHY CDS clusters are formed over a

much wider range of estimated correlations. This behavior might be due to the higher

idiosyncratic variation of NAHY CDS, and lesser influence of overall (hierarchical) risk

factors. This would also explain why the hierarchical clustering estimator performs

less well for NAHY CDS.
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Figure 3.14: Graphical model of NAHY CDS using graphical lasso estimator with
λ = 0.21, the numbers correspond to the ticker symbols as follows; 1–AMD, 2–ARAM,

3–CD.AvisBdgt, 4–BZH, 5–BOMB, 6–AES, 7–AKS.Corp, 8–AMR, 9–AMKR, 10–ARM, 11–CMS, 12–CHK, 13–CZN,

14–CCU, 15–BYD, 16–CVCCSC, 17–CLS, 18–COOPER, 19–DOL, 20–DYN.Holdings, 21–EK, 22–DISH.ESDBS, 23–

EP, 24–EFHC, 25–CYH, 26–STZ, 27–DNSFDS, 28–DDS, 29–DTV.Hldgs, 30–FFHCN, 31–FDC, 32–FLEX, 33–FST,

34–FSL, 35–GCI, 36–GM, 37–GPCLLC, 38–GT, 39–F, 40–F.Hertz, 41–INTEL, 42–IRMD, 43–KBH, 44–HCA, 45–

HET.HOC, 46–HOSHOT.HSTRES, 47–HOV.K, 48–IAR, 49 LEVI..Co, 50–LPX, 51–MGG, 52–MEE, 53–LEA, 54–

LEN, 55–LVLT, 56–LMLLC, 57–MIR.NALLC, 58–XEL.NRGInc, 59–NALCO, 60–NMG, 61–NYT, 62–NCX, 63–OI,

64–POL, 65–PDE, 66–QUS.CapFund, 67–RHD, 68–RDN, 69–RSH, 70–REALCO, 71–REI, 72–GM.ResCLLC, 73–

RAD, 74–RCL, 75–TSG, 76–SKS, 77–PKS, 78–SFD, 79–S, 80–HOT, 81–SGDS, 82–TRWAuto, 83–TIN, 84–THC, 85–

TSO, 86–LTD, 87–TOY, 88–SANM, 89–UIS, 90–UVN, 91–VC, 92–WINDS, 93–TSN, 94–SPF, 95–URI.NorthAmer,

96–AXL.Inc, 97–LLL.Corp, 98–MCCC.MedcomLLC
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Figure 3.15: Hierarchical cluster structure (dendrogram) of NAHY 12 CDS
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Chapter 4

Loan Pricing under Estimation

Risk

This chapter is based on a manuscript of the same title, authored by Richard Neuberg

and Lauren Hannah. It is available at SSRN 2752794.

4.1 Introduction

Mathematical models are an essential tool for pricing financial products and mak-

ing business decisions. Models specify a relationship between a set of inputs, say a

borrower’s income, credit score, and credit history, and an output, which could be

the borrower’s chance of default. Historical data are used to fit probability model

parameters, such as the coefficients for a logistic regression. It is standard practice

to create a point estimate of model parameters from historical data, and then plug

the estimated parameters back into a pricing model; this is called a “plug-in estima-

tor.” This common practice has three potential pitfalls, which need to be considered

jointly:

1. The estimated parameters are themselves random variables. If they are used to

determine the price of a financial product, a better informed counterparty might
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pick only those products which end up with too low a price. Then an additional

premium for estimation risk under strategic interaction is required to prevent

market collapse. This premium should depend on the degree of uncertainty

about the price of the particular financial product.

2. The counterparty may only be willing to pay a premium for irreducible esti-

mation risk — the risk of that model which has the highest predictive accuracy,

given the available data. To obtain the model with smallest overall estima-

tion risk, the right model complexity needs to be chosen. Model complexity

describes the ability of the model to capture subtle relationships between the

inputs and the output. Highly complex probability models, like Gaussian pro-

cesses [Rasmussen and Williams, 2006] and support vector machines [Cortes

and Vapnik, 1995], can capture nonlinear relationships, but care must be taken

to not fit noise rather than signal. Simpler probability models, like generalized

linear models and additive models, can describe a much more limited set of re-

lationships, but are less prone to overfitting. Minimizing overall estimation risk

requires balancing model bias — the degree to which the probability model is

unable to describe the true relationship — against model variability — the ten-

dency of the probability model to fit noise rather than signal. Small data sets,

which have been the historical norm, are best described by a simple probabil-

ity model, while flexible models may be more appropriate for larger data sets,

which have recently become available.

3. Conditional estimation risk is typically difficult to measure, because bias at

a given location in covariate space is difficult to assess. Inflexible methods

are often biased. However, when a flexible method is used, bias is small. Then

estimation risk approximately equals unsystematic risk, which can be estimated

using the bootstrap method [Efron, 1979] or model-based approaches.

We illustrate how these three pitfalls may be avoided, using a simplified example
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from credit scoring. Credit scoring is the process of assessing the creditworthiness

of credit applicants given their characteristics and credit history [Hand and Henley,

1997]. We focus on the “pricing regime” rationale, where the risk-adjusted interest

rate of a loan is a function of the applicant’s probability of default, p [Blöchlinger and

Leippold, 2006], and which entails binomial regression problem. This is in contrast

with the “cutoff regime,” where applicants are labeled as credit-worthy or not, and

which entails a classification problem. We consider the simplified case of a person

applying for a loan from the only bank. We assume that the applicant is better

informed about their true p than the bank, and that this is known to the bank. To

avoid market collapse, the applicant agrees to pay a premium for the risk resulting

from the bank having to estimate p. The applicant demands that the probability

model with smallest estimation risk be used to estimate p and to determine the

conditional estimation risk. The estimation risk premium is then determined through

a zero-sum game.

The standard estimator for p is logistic regression [Myers and Forgy, 1963; Ohlson,

1980], which predicts the log-odds of default using a linear combination of the input

characteristics. It is a simple, inflexible model, which usually works well for smaller

data sets. Larger, richer datasets, however, offer the possibility of more accurate

estimation using more complex probability models [Vapnik, 1998]. The support vector

classifier has been applied highly successfully to cutoff-regime credit scoring in Baesens

et al. [2003], Härdle et al. [2005], Min and Lee [2005], and Huang et al. [2007], but

not for pricing-regime credit scoring. We discuss probability model selection in the

context of credit scoring and propose a kernelized logistic regression to better fit these

data sets. Stein [2005], Blöchlinger and Leippold [2006], and Khandani et al. [2010]

find that a small increase in accuracy of a credit scoring model results in a profit

increase in the millions of dollars.

While these examples are specific to credit scoring, the three potential pitfalls are

not. Similar methods for assessing probability model fit and accounting for condi-
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tional estimation risk under strategic interaction may be used in a variety of applica-

tions, including insurance pricing and credit valuation adjustments.

The rest of this chapter is organized as follows. In Section 4.2, we illustrate how

a premium for estimation risk may be determined using the example of a zero-sum

game in pricing regime credit scoring. In Section 4.3, we review how overall estimation

risk can be minimized, and propose using kernelized logistic regression for estimating

the probability of default. In Section 4.4, we present ways to measure conditional

estimation risk. In Section 4.5, we apply these methods to panel data from a German

credit bureau. In Section 4.6, we give conclusions.

4.2 Accounting for Estimation Risk in a Pricing

Model

In the following we illustrate how the use of point estimates for pricing creates estima-

tion risk, using a simplified one-period pricing regime credit scoring model. We then

show how a premium for estimation risk may be determined using a simple zero-sum

game.

We consider the case where a single bank determines the interest rate for a loan

offered to an applicant. Taking only a single bank is certainly only an approxima-

tion to the real loan market. At the same time, particularly in the growing online

loan industry, banks base their credit scoring models on almost the same information

set, meaning that their models should be highly similar if well tuned. The interest

rate offered should depend on a number of factors, such as the applicant’s default

probability, p, the risk free interest rate, rf , the loss given default, LGD, as well as

prepayment conditions. The default probability may depend on both exogenous fac-

tors, such as micro- and macroeconomic variables, in addition to endogenous factors,

such as loan size and interest rate. We assume that LGD is known. This is to simplify

our illustration of how estimation risk can be dealt with in a pricing model. We will
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point out throughout the paper how estimation of LGD can be incorporated. Fur-

thermore, multi-period or continuous time models may be substituted for the simple

one-period model.

Without any estimation risk, the total interest rate is the sum of risk free rate of

return, rf , and premium demanded for default risk, re(p). The bank will only lend if

the loan’s expected return is at least equal to the risk free rate of return on capital,

(1− p)(1 + rf + re(p)) + p(1− LGD) ≥ 1 + rf . (4.1)

This gives the minimal default risk compensation

re(p) =
p

1− p(rf + LGD). (4.2)

If a premium for other risks, π, is commonly accepted, the minimal compensation is

rπe (p) ··=
p

1− p(rf + LGD) +
π

1− p. (4.3)

4.2.1 Point Estimates Create Estimation Risk

Since an applicant’s true probability of default is not known to the bank, it is esti-

mated using a probability model trained on historical data. A simple approach to

determining an interest rate is to directly use the estimated probability of default, P̂ ,

in (4.2),

re(P̂ ) =
P̂

1− P̂
(rf + LGD). (4.4)

This is a plug-in estimator, because P̂ is a random variable that depends on historical

data. Now consider the case that the loan applicant is better informed about their

probability of default than the bank; say, to them p is known. Then the applicant

will only accept a loan offer if re(P̂ ) ≤ re(p), and reject the offer otherwise. Then the

bank will not be willing to lend, to avoid expected loss. The same reasoning holds if

LGD were unknown as well.
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4.2.2 Premium for Estimation Risk

To avoid market collapse, the applicant may agree to pay a premium for estimation

risk. However, they will demand that the bank use the most accurate probability

model — in a sense to be made precise in Section 4.3.1 — to keep the estimation risk

premium as small as possible. We discuss in Section 4.4.1 how the bank can measure

the conditional estimation risk.

We now show how a premium for estimation risk can be determined when appli-

cant and bank engage in a zero-sum game. Although this game is presented for a

simplified credit scoring example, similar ideas can be used to incorporate estima-

tion risk into financial models for over-the-counter derivatives pricing, credit default

swaps, etc. A zero-sum game is the only way for the applicant to ensure that they are

not overcharged by the bank for estimation risk, and for the bank to ensure that it

need not expect a loss. Furthermore, a zero-sum game may be used to approximate

more complex interactions. We assume that the applicant has perfect knowledge of

their default probability, p, because of private information. To compensate the bank

for its estimation risk, the applicant accepts an interest rate offer even if the interest

rate from the plug-in estimator in (4.4) is up to a factor κ larger than the interest

rate based on their true default probability, re(p). The factor κ can also allow for

a premium for other risks, π. A commonly accepted value for π needs to be deter-

mined from experience or through market research; for a reference, see Oliver et al.

[2006]. It is not necessarily optimal for the bank to offer the interest rate re(P̂ )κ.

By introducing a parameter δ, the bank can adjust the premium it charges, re(P̂ )κδ.

The multiplicative form in which the parameters κ and δ enter the model is chosen

for convenience, and may as well be additive instead without changing the interest

rate determined below. Also, κδ could be redefined as one parameter, chosen by the

bank.

The expected return on a loan, conditional on P̂ , as well as the applicant accepting
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the loan, is

(1− p)(1 + rf + re(P̂ )κδ) + p(1− LGD). (4.5)

The applicant only accepts the loan if the premium charged by the bank, re(P̂ )κδ, is

lower than the tolerated premium, re(p)κ. The expected loan return considering the

applicant’s decision to accept or reject the offer, but still conditional on P̂ , is

R ··=
(

(1− p)(1 + rf + re(P̂ )κδ) + p(1− LGD)
)
1re(P̂ )δ≤re(p)(P̂ ) (4.6)

+ (1 + rf )1re(P̂ )δ>re(p)
(P̂ ),

Here 1A(•) is the indicator function, which takes value 1 if • ∈ A, and 0 otherwise, and

the bank invests into a risk-free account if the loan is not accepted. The expected

value of R is E[R], where the expectation is taken with respect to the (unknown)

distribution of P̂ . (If, for example, LGD were unknown, too, then one would replace

LGD in re(P̂ ) with L̂GD, and take the expectation E[R] with respect to the joint

distribution of P̂ and L̂GD.)

It is in the interest of the bank to maximize E[R] by choosing δ. At the same

time, the applicant tries to minimize E[R] by choosing κ, while also allowing for a

risk premium of π:

min
κ:E[R]≥1+rf+π

max
δ

E[R]. (4.7)

Here E[R] is linear in κ and quasi-concave in δ. It follows by the minimax theorem

of Sion [1958] that a unique saddle-point solution exists with optimal values κ̂ for κ

and δ̂ for δ, which yield the optimal interest rate, re(P̂ )κ̂δ̂.

We will show how to solve this minimax game from both a Bayesian and a Fre-

quentist perspective. The true default probability p as well as the true distribution

of P̂ are unknown. Their estimation is discussed in Sections 4.3 and 4.4, respectively.

They result in an estimate for E[R], which is then used in (4.7) in place of E[R]. If a

bank uses a less-than-optimal probability model, the expected return will be reduced.
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4.3 Minimizing Total Estimation Risk

Point estimates for default probabilities are obtained from a probability model fit to

historical data. Other financial models rely on parameter estimates as well, such as

the expected loss size in an insurance contract. In most settings, there is no single

probability model known a priori to have minimal overall estimation risk, because

the performance of a model depends deeply upon the characteristics of the data set

to which it is fit. Once a set of probability models has been selected for consideration,

the models should be evaluated on a reserved subset of the data under an appropriate

metric. Then the model with smallest empirical estimation risk should be chosen.

We discuss the choice of loss function for estimation of the default probability

p in Section 4.3.1. Two probability models are considered, the standard logistic re-

gression model in Section 4.3.2, and a flexible kernelized logistic regression model

in Section 4.3.3. We draw connections with the support vector classifier [Baesens et

al., 2003]. We suggest using kernelized logistic regression in large data sets. Many

other parametric and nonparametric methods have been used, including discriminant

analysis [Durand, 1941; Altman, 1968], trees [Carter and Catlett, 1987], neural net-

works [Hawley et al., 1990], generalized additive models [Hand, 2001]. See Bellovary

et al. [2007] for a review.

4.3.1 Probability Model Fit

A probability model fits well if it has low estimation risk, which is defined as the

expected difference under some loss function between the estimated parameter and the

true parameter (where the expectation is taken over the joint distribution of predictor

and outcome). Because the true probability of default, p, cannot be observed, an

empirical target or loss function is used to measure estimation risk. Let y1, . . . , yntest be

0/1 outcomes from a set of testing data, which was not used to fit the predictive model,

and P̂1, . . . , P̂ntest the predicted probabilities of default for those observations. Strictly
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proper scoring rules are target functions for probability predictions which encourage

accurate predictions in the consistency sense, meaning the asymptotic minimizer of

the scoring rule is the true probability; for a reference see Gneiting and Raftery [2007].

An often-used strictly proper scoring rule is the logarithmic loss:

−
ntest∑
i=1

(
yi log(P̂i) + (1− yi) log(1− P̂i)

)
. (4.8)

Note that minimizing (4.8) is the same as maximizing likelihood of the testing data.

Logarithmic loss is particularly appropriate for estimating default probabilities due

to the heavy penalty for unlikely outcomes. Another popular strictly proper scoring

rule is squared error, also known as Brier score,

ntest∑
i=1

(yi − P̂i)2. (4.9)

It puts proportionally less emphasis on smaller probabilities. In contrast to the afore-

mentioned target functions, the absolute score
∑ntest

i=1 |yi − P̂i| is not a strictly proper

scoring rule due to inconsistency [Buja et al., 2005]. Likewise, measures based on

type-1 and type-2 errors such as the receiver operating characteristic are not strictly

proper scoring rules.

Default events can be rare in the credit scoring problem, particularly within certain

customer classes. This requires a probability model that can produce stable estimates

even for very small values of p. Models that minimize a logarithmic loss objective

function, like logistic regression, tend to perform better in these circumstances than

models with other objective functions, like squared error or hinge loss. These issues

should dictate the class of models under consideration.

4.3.2 Logistic Regression

Logistic regression is a standard statistical method for the estimation of default prob-

abilities. It assumes a linear relationship between a set of covariates and the log-odds

of default. Logistic regression produces a low variance estimate, however it adds
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some bias because it cannot capture all relationships in the data; this bias can be

problematic in the context of the credit scoring model, as discussed in Section 4.4.1.

Logistic regression is well suited for small data sets, where complex dependencies can-

not be estimated accurately. We represent the random loan defaults as Yi
ind.∼ Ber(pi),

where Ber denotes the Bernoulli distribution. Let yi denote the realization of Yi,

let xi = (1, xi1, . . . , xim)T be the ith of n vectors of predictors, including the in-

tercept, and β = (β0, β1, . . . , βm)T be the vector of regression parameters. Using

logit(•) = log(•/(1− •)), the assumed dependency is

pi(β) = logit−1(xT
i β). (4.10)

The log-likelihood function is

`(β) =
n∑
i=1

(yi log pi(β) + (1− yi) log(1− pi(β))) , (4.11)

which yields the maximum likelihood estimator β̂ := arg max `(β). Let β∗ be the

parameter vector that fits best under the true data generating process; then β̂
d→

N(β∗, I(β∗)−1), where
d→ indicates convergence in distribution and I(β∗) denotes

the Fisher information matrix at β∗. This implies that the log-odds estimator is also

asymptotically normal,

logit(P̂i) = xT
i β̂

approx.∼ N
(
µi, σ

2
i

)
, (4.12)

where µi ··= E[logit(P̂i)] and σ2
i
··= V[logit(P̂i)]. This fact is used in Section 4.4 to

derive the approximate distribution of the interest rate estimator, re(P̂i), which is

needed to solve (4.7).

Logistic regression provides a solid baseline method for estimating default proba-

bilities, but it may not be flexible enough to model dependencies supported by larger

data sets, as discussed in Section 4.1. For larger data sets, we propose using an

extension of logistic regression that can capture non-linear relationships: kernelized

logistic regression.
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4.3.3 Kernelized Logistic Regression

Model error negatively impacts loan returns. Common probability models, like logistic

regression, are not well-suited to accurately describe complex dependencies in large

data sets, as are common in credit scoring. Due to their lack of flexibility such

models have a lower predictive accuracy in real world settings, which is known as

underfitting. Probability model error can only be reduced by relaxing the assumptions

about the dependency structure — thereby reducing bias — and choosing that model

which allows for best possible prediction of p.

Kernelized logistic regression, a more flexible model, has been studied in many

settings [Jaakkola and Haussler, 1999; Roth, 2001; Zhu and Hastie, 2005]. It is an

asymptotically unbiased and consistent estimator for arbitrary dependencies between

the inputs and the binary output for common kernel choices, such as a radial-basis

kernel, under mild regularity conditions [Christmann and Steinwart, 2007]. Kernelized

logistic regression relaxes the log-odds linearity assumption of the logistic regression

model by assuming the extremely flexible functional form

pi(β0,α) = logit−1

(
β0 +

n∑
j=1

αjk(xj,xi)

)
, (4.13)

with α = (α1, . . . , αn)T. This amounts to fitting a standard logistic regression model

in a highly extended predictor space. The function k is a positive semi-definite kernel

(covariance) function. A common choice is the radial basis kernel

k(xi,xj) = exp(−γ‖xi − xj‖22), γ ∈ (0,∞). (4.14)

For a reference on the theory of kernel functions and the related reproducing kernel

Hilbert spaces, see Rasmussen and Williams [2006].

Estimating a large number of parameters can lead to overfitting the data. How-

ever, both over- and underfitting should be avoided for optimal predictive accuracy

[Vapnik, 1998]. This goal can be achieved by controlling the complexity of the regres-

sion function through regularization [Platt, 1999; Hastie et al., 2009, Chapter 5]. The
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log-likelihood function (4.11) is augmented with the penalization term αTKα, which

measures the variance of the regression function, yielding the penalized log-likelihood

function

`p(β0,α) =
n∑
i=1

(yi log(pi(β0,α)) + (1− yi) log(1− pi(β0,α)))− λ ·αTKα. (4.15)

Here K = [k(xi,xj)]i,j=1,...,n, and pi(β0,α) is defined in (4.13). The hyperparameter

λ ≥ 0 balances the goals of maximizing likelihood and minimizing the variance of the

regression function.

The target function (4.15) is globally concave and can be maximized over (β0,α)

for example with Newton’s method (iteratively weighted least squares). A more

efficient implementation, which has a computational complexity of about O(n2.2), is

given in Keerthi et al. [2005]. Kernelized logistic regression can also be derived as

the maximum a posteriori estimator in Gaussian process logistic regression [Williams

and Barber, 1998].

The performance of kernelized logistic regression used as a classifier [Zhu and

Hastie, 2005] is similar to the performance of the support vector classifier [Cortes and

Vapnik, 1995], which is one of the most powerful methods in cutoff regime credit scor-

ing [Baesens et al., 2003]. The support vector classifier is a non-probabilistic model:

it fits a hyperplane that balances a tradeoff between minimizing classification errors

(as measured through a hinge loss function) and maximizing the margin between the

hyperplane and the closest correctly classified point. Like kernelized logistic regres-

sion, kernels can be introduced to fit a nonlinear decision boundary. One can try to

interpret the support vector classifier probabilistically by mapping its decision func-

tion into the interval (0,1) [Platt, 1999]. An example where this approach is used in

credit scoring is Härdle et al. [2005]. However, the support vector classifier’s hinge

loss function is not a strictly proper scoring rule [Buja et al., 2005]. Its focus on the

boundary between the two classes, which means deciding whether the class probabil-

ity is greater or smaller than 0.5, leads to poor predictions for probabilities close to

0 or 1. We confirm this empirically in Section 4.5.6.
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4.4 Measuring Conditional Estimation Risk

To determine an estimation risk premium for a given financial product, we need

to accurately measure conditional estimation risk, which we define as the expected

difference under some loss function between the estimated parameter and the true

parameter at a specific input location. For example, to determine the premium for

estimation risk for a specific loan in (4.7), the true distribution of logit(P̂ ) needs to

be estimated. This is because a loan offer is only accepted if re(P̂ )δ ≤ re(p), which is

equivalent to

logit(P̂ )− logit(p) ≤ − log δ. (4.16)

4.4.1 Conditional Estimation Risk, Bias and Variability

Conditional estimation risk decomposes into systematic bias and unsystematic vari-

ability. It is generally difficult to estimate conditional bias, because the true param-

eters are unknown. Consider the difference between logit(P̂ ) and logit(p) on the left

side of (4.16). Here logit(P ) might not only vary unsystematically around logit(p)

due to sampling variation, but could also systematically over- or underestimate it.

Bias commonly occurs in logistic regression because of its logit-linearity assumption.

Accurate estimates of conditional estimation risk are feasible if the probability

model has little systematic bias. For example, then the left side of (4.16) can be

approximated by the unsystematic error logit(P̂ )−E[logit(P̂ )]. We learn that, if two

probability models have comparable total estimation risk, the probability model with

lower systematic bias is preferred for use with a pricing model, because for that model

conditional variability approximately equals conditional estimation risk.

4.4.2 Estimating Conditional Variability

In the following we present two approaches to estimating the conditional variability

of an estimator, with P̂ used in (4.7) as an example. The first approach is model-free
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and can therefore be used with whichever method is chosen to predict an applicant’s

probability of default. The main disadvantage of this method is its higher com-

putational cost through its use of resampling. The second model-based approach is

tailored to the specific estimator, in this case logistic regression and kernelized logistic

regression, and makes a connection to Bayesian ideas.

Model-Free Bootstrap Approach. Irrespective of the specific model used, the

variability of an estimator can be estimated using a resampling method known as the

bootstrap [Efron, 1979]. This approach is useful when analytic derivations might be

unavailable or computationally infeasible. The core idea of the bootstrap is that the

empirical distribution of applicants with their characteristics in the data set can be

used as an approximation to the true population distribution. This approximation

is highly accurate for the large data sets common in credit scoring and insurance.

Therefore drawing with replacement from the data set resembles drawing from the

population of applicants. This makes it possible to approximately evaluate the distri-

bution of statistics such as P̂ . The algorithm proceeds as follows: 1. In one bootstrap

iteration j, first draw a simple random sample (with replacement) from the data set;

then fit the default probability model using this bootstrap-sample, and calculate p̂j.

2. Repeat step 1 for a large number of iterations, J , each time noting p̂j. 3. The

approximate distribution F̂P̂ of P̂ is now given by the empirical distribution of the

p̂j in the large number of bootstrap iterations, F̂P̂ (t) ··= 1
J

∑J
j=1 1 p̂j≤t(t). As a result,

an estimate for the expected value of R from Eq. (4.6) is

1

J

J∑
j=1

[(
(1− p̂)(1 + rf + re(p̂

j)κδ) + p̂(1− LGD)
)
1re(p̂j)δ≤re(p̂)(p̂

j) (4.17)

+ (1 + rf )1re(p̂j)δ>re(p̂)(p̂
j)
]
.

Here p̂ denotes the prediction from the model trained on the original data set. This

estimate of E[R] can then be used in optimization problem (4.7).
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Model-Based Approach for (Kernelized) Logistic Regression. For the spe-

cial case of logistic regression, a computationally more efficient approach than the

bootstrap method is based on the observation from likelihood theory that the esti-

mator logit(P̂ ) in (4.12) is approximately normally distributed. Under the condition

that logit(P̂ ) is unbiased for logit(p), an approximation to the distribution of logit(P̂ )

is N(µ̂, σ̂2), where µ̂ = logit(p̂), and σ̂2 = xT(−Iobs)
−1x. Here Iobs denotes the ob-

served Fisher information matrix of (β̂0, . . . , β̂m), with x = (1, x1, . . . , xm)T. Note

that N(µ̂, σ̂2) is the approximate posterior distribution for logit(p) under a Bayesian

logistic regression model with noninformative prior distribution on all parameters.

For kernelized logistic regression, we obtain model-based conditional variance esti-

mates from the close relationship with Gaussian process logistic regression. The Gaus-

sian process logistic regression model specifies that, a priori, (logit(p1), . . . , logit(pn)) ∼
N(0,K+λI). The posterior distribution for logit(p), conditional on the training data,

is [Rasmussen and Williams, 2006, Chapter 2]

N(logit(p̂), 1− (k(x1,x), . . . , k(xn,x))(K + λ1)−1(k(x1,x), . . . , k(xn,x))T). (4.18)

The posterior mean prediction logit(p̂) equals the prediction in the kernelized logis-

tic regression model [Williams and Barber, 1998], and it is not available in closed

form. The posterior variance in (4.18) can also be interpreted as the estimated

variance of (k(x1,x), . . . , k(xn,x))α̂, based on the Fisher information matrix I =

λ−1KTK −K for the parameter vector α̂. We have that, for kernelized logistic re-

gression, logit(P̂ )
approx.∼ N(µ̂, σ̂2), where µ̂ = logit(p̂), and σ̂2 equals the variance

in (4.18).

Because in both logistic regression and kernelized logistic regression logit(P̂ ) is

approximately normal, it follows that P̂ /(1 − P̂ ) is approximately log-normal dis-

tributed with parameters µ̂ and σ2. Then in optimization problem (4.7) we can use
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that, approximately,

E[R] = 1 + rf − Φ (q) p(LGD + rf )

+ Φ (q∗)κδ(1− p)(rf + LGD) exp
(
µ+ σ2/2

)
,

using the formula for the expected value of a truncated log-normal random variable

in Johnson et al. [1995]. Here Φ denotes the standard normal distribution function,

q ··= (logit(p) − log δ − µ)/σ and q∗ ··= q − σ. This gives rise to the following two

optimality conditions:

∂E[R]

∂δ
= pσ−1δ−1ϕ (q) (LGD + rf )

+ (1− p)(rf + LGD)
(
Φ (q∗)− σ−1ϕ (q∗)

)
κ exp(µ+ σ2/2) = 0,

and

E[R] = 1 + rf + π ⇔ κ =
π + p(rf + LGD)Φ (q)

(1− p)Φ (q∗) (rf + LGD)δ exp(µ+ σ2/2)
.

Here ϕ denotes the standard normal density function. Using κ from the second

condition, the first condition has to be solved numerically to yield the optimal value

for δ.

Because p, µ = E[logit(P̂ )] and σ2 = V[logit(P̂ )] are unknown, we use the respec-

tive estimates from the logistic or kernelized logistic regression model.

4.5 Case Study: Credit Bureau Data

We use a panel data set from a German credit bureau to illustrate how to (i) empiri-

cally find a model with small estimation risk, as discussed in Section 4.3, (ii) measure

conditional estimation risk, as discussed in Section 4.4, and (iii) assign interest rates

using the simple pricing model developed in Section 4.2. The name of the credit

bureau cannot be stated for confidentiality reasons. For (i), we compare the predic-

tive accuracies of logistic regression, support vector classifier and kernelized logistic
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regression on the data set. This is the first application of kernelized logistic regression

in the field of credit scoring. For (ii), we evaluate logistic regression and kernelized

logistic regression in terms of their usefulness for measuring conditional estimation

risk, and also compare the performance of bootstrap sampling against model-based

results for estimating the distribution of P̂i. For (iii), the results of (i) and (ii) are

combined to determine the estimation risk premium.

4.5.1 Data Set, Additional Predictors and Structural Shift

The panel data set from the credit bureau contains the so-called banking score

si,t ∈ {1, . . . , 1000} for applicant i at time t. It is an anonymized sample of n =

1, 679, 508 potential applicants, stratified by age at the end of 1999. The bank-

ing score of each individual is recorded at the end of each of the 44 quarters from

4/1999 – 3/2010. Of the n scoring histories, 942,524 are complete. Reasons for

a drop out are, for example, emigration and death; a default is not considered

a drop out. An example score history over all 44 quarters for one applicant is

(489, 511,−,−,−,−,−, 486, 486, 486, 401, 326, 231, . . . ,−), where a minus indicates

default. No score is assigned during default. This score is a transformation of the

probability of default, where a higher score relates to a lower default probability.

The credit bureau estimates the probabilities of default of credit applicants currently

not in default using a logistic regression model trained several years ago, based on

a large number of explanatory variables about the applicants’ credit history. This

methodology is very similar to the FICO scoring in the United States.

This data set is unique in that it only contains the credit score of applicants over

time. The credit score itself is the outcome of the German credit bureau’s probability

model. The reason for choosing a panel data set of credit scores is that it allows us to

show that the credit bureau’s probability model can be improved upon by considering

dynamic aspects on the scale of the credit score. In a real-world application, all

relevant predictors, such as macroeconomic environment, applicant characteristics,
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loan size and term as well together with dynamic aspects of the score, should be

considered in one probability model.

We derive several additional predictors (as in Neuberg [2011]), because individuals

that defaulted in the past likely exhibit differing dependencies on the explanatory

variables as compared with those individuals who have previously not defaulted. The

indicator variable di,t takes value one if at time t individual i has defaulted before,

and zero otherwise. The variable ci,t ∈ {0, 1, . . .} counts the number of quarters

that the customer has not defaulted. The changes in score of the last two quarters

∆i,t = si,t − si,t−1 and ∆i,t−1 = si,t−1 − si,t−2 are included to account for rating

migrations. Legal limits on how long information about a prior default may be stored

are not considered.

No new individuals enter the data set over time. As potential applicants of lower

reliability default, while those of higher reliability meet their payment obligations,

both the number at risk and the relative number of defaults in the data set decline

over time, see Figures 4.1a and 4.1b. Furthermore, the average number of defaults

varies with the general economic environment. In Fig. 4.1c the survival curve is shown

for individuals who revived from default — meaning that default proceedings ended

and a score was assigned again — in Q3 2000. After ten years more than fifty percent

have defaulted again, while those who have not defaulted again become less and less

likely to do so in the future. In Fig. 4.2a the proportion of individuals reviving from

default is shown. A strong yearly pattern is apparent, and with time those who are

in default become slightly less likely to revive from default again. The distribution of

scores in the groups of prior non-defaulters and prior defaulters in Q4 2009 are shown

in Figures 4.2b and 4.2c, respectively. While the group of prior defaulters tends to

have lower scores than the group of prior non-defaulters, many prior defaulters have

moderately high scores. To take into account the business cycle, as well as structural

shifts, all probability model parameters are re-estimated each quarter. This is known

as point-in-time prediction, which is recommended in Blöchlinger et al. [2012], in
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Figure 4.1: Overall survival rate and observed default rate of individuals over time,

as well as survival curve for individuals that revived from default in Q3 2000
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Figure 4.2: Proportion of defaulted individuals reviving each quarter, as well as

histograms of the credit bureau score separately for prior non-defaulters and defaulters

in Q4 2009

contrast with through-the-cycle prediction.

4.5.2 Probability Model Specification

Let the Yi,t+1
ind.∼ Ber(pi,t+1) represent the events default/non-default of an individual

i at time t+ 1. We consider two separate models (as in Neuberg [2011]),

logit(pi,t+1) =

ft
(
si,t,∆i,t,∆i,t−1

)
, for prior non-defaulters (di,t = 0),

fdt
(
si,t, ci,t

)
, for prior defaulters (di,t = 1),

(4.19)

where ft and fdt are unknown, possibly nonlinear functions. They describe the de-

pendencies of the probabilities of default on the predictors, for individuals who have
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not defaulted and for those that have defaulted before, respectively. For applicants

without prior default, ci,t always takes the same value, thus it is not considered for

those. Because score changes are not defined after reviving from default, since no

score is assigned during default, they are not used with fdt . Two independent prob-

ability models are used for each t to estimate the regression functions ft and fdt in

Eq. (4.19). Both kernelized logistic regression and support vector classifier are used to

estimate the two functions ft and fdt separately in a nonparametric fashion. For com-

parison with the nonlinear methods, two logistic regression models are used for each t

to estimate the parameters β0,t, β1,t, β2,t, β3,t, β
d
0,t, β

d
1,t, β

d
2,t in the linear dependencies

ft = β0,t + β1,tst + β2,t∆t + β3,t∆t−1, and fdt = βd0,t + βd1,tst + βd2,tct. (4.20)

4.5.3 Subsampling

Kernelized logistic regression and the support vector classifier are computationally

intensive methods. To illustrate the bootstrap method without great computational

effort, we use only a subsample of the total data available at a given quarter (an

approach also taken and discussed in Neuberg [2011]). The information content of

a sample can be measured in terms of the negative log-likelihood [conditional self-

information, Shannon, 1948] IY|X=x(y) = −∑n
i=1 logP (Y = yi|X = xi), whose ex-

pected value is the conditional entropy. Numerical maximization of the negative

log-likelihood over p = P (Y = 1) shows that the information content of a subsam-

ple is maximized when the proportion of defaulting and non-defaulting individuals is

about 0.5 each. Such outcome-dependent sampling is known as endogenous sampling

or undersampling. Hence, without losing much in terms of the sample’s information

content, the computational burden can be decreased significantly by excluding the

majority of the non-defaulting debtors. The total subsample size is set to 4,000 per

quarter, giving about 2,700 applicants without a prior default and about 1,300 appli-

cants with a prior default each quarter. The bootstrap method takes the respective

subsample as given, and repeatedly draws from it to obtain a distributional estimate.
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We translate the probability predictions p̂
Ber(0.5)
i,t+1 derived from the undersampled

data set, where the unconditional proportion of defaulters is set to 0.5, back to the

actual data generating process, where the unconditional proportion of defaults is

ȳt � 0.5, using the following formula [King and Zeng, 2001], which is derived from

conditional probability rules:

p̂i,t+1 =

(
1 +

(
(p̂

Ber(0.5)
i,t+1 )−1 − 1

) (1− ȳt)0.5
ȳt(1− 0.5)

)−1
.

While this is a nonlinear transformation in p̂
Ber(0.5)
i,t+1 , it is only a shift in its log-

odds, logit(p̂i,t+1) = logit(ȳt) + logit(p̂
Ber(0.5)
i,t+1 ). An alternative approach, especially

in small samples, is to compensate for endogenous subsampling by weighting of the

log-likelihood terms, see Maalouf and Trafalis [2011].

4.5.4 Target Function

A credit scoring method should predict the probabilities of future defaults and non-

defaults as accurately as possible. As discussed in Section 4.3.1, the most commonly

used target functions for the evaluation of probability predictions are the logarithmic

loss defined in (4.8) and the Brier score in (4.9). Hence we judge the probability

predictions in this application according to these criteria.

4.5.5 Kernel Choice and Hyperparameter Tuning

The hyperparameters of both kernelized logistic regression and the support vector

classifier are the regularization parameter λ as well as the choice of the kernel function.

We consider the equal-bandwidth radial-basis kernel, as defined in Equation (4.14),

because it has repeatedly been found to perform well in credit scoring [Min and

Lee, 2005]. This kernel has one scale parameter, γ. To measure all predictors on

approximately the same scale, they are standardized with their means and empirical

standard deviations in the endogenous subsample from quarter 36 (Q1 2008).
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The best hyperparameter values are those which minimize the overall estimation

risk of the probability model on the validation data:

(γ̂, λ̂) = arg max
(γ,λ)

l
(
γ, λ

∣∣∣ validation data, β̂= arg max
β

`p(β | training data, γ, λ)
)
.

Here l denotes the negative logarithmic loss, which is the binomial log-likelihood of

the validation data given the predictions from the probability model, and `p is the

in-sample target function. The endogenous subsample from quarter 36 (Q3 2008)

serves as training data, and the full sample from quarter 37 (Q4 2008) as validation

data. Because this problem is non-convex, for a grid of possible hyperparameters

(γ, λ) the predictive accuracy is calculated on the validation set. The best hyper-

parameter estimates for kernelized logistic regression are (γ̂, λ̂) = (0.007, 0.060) for

previous non-defaulters, and (γ̂, λ̂) = (0.022, 0.058) for previous defaulters. For sim-

plicity the hyperparameters are determined only once, and not every subsequent

quarter. Following the same procedure for the support vector classifier, its best hy-

perparameters are found as (γ̂, λ̂) = (0.0003, 0.01) for previous non-defaulters, and

(γ̂, λ̂) = (0.0023, 0.0546) for previous defaulters.

4.5.6 Assessing Probability Model Fit and Dynamic Depen-

dencies

Kernelized logistic regression, support vector classifier as well as logistic regression

are tested on the six quarters t = 38, . . . , 43 (Q1 2009 to Q2 2010) (a performance

comparison of logistic regression and kernelized logistic regression on these data can

also be found in Neuberg [2011]). The model parameters are estimated at quarter t,

and the default probability at quarter t+ 1 for the approximately 840,000 individuals

not currently in default is predicted and evaluated against actual defaults; here t = 1

at the end of the fourth quarter 1999. The performance over time according to the

logarithmic loss from Eq. (4.8), as well as the Brier score from Eq. (4.9), is shown in

Figs. 4.3a and 4.3b. Kernelized logistic regression consistently outperforms logistic



CHAPTER 4. LOAN PRICING UNDER ESTIMATION RISK 126

38 39 40 41 42 43

0
.0

09
5

0
.0

11
0

A
v
g
.

lo
g
.

sc
or

e

38 39 40 41 42 43

0.
00

1
4

0.
00

16

Quarter

A
v
g.

B
ri

er
sc

o
re

(a) Previous non-defaulters

38 39 40 41 42 43

0
.1

1
0
.1

3

A
v
g
.

lo
g
.

sc
o
re

38 39 40 41 42 43

0.
02

2
0
.0

26
0
.0

30

Quarter
A

v
g
.

B
ri

er
sc

or
e

(b) Previous defaulters

Figure 4.3: Performance of kernelized logistic regression ( ), logistic regression ( )

and support vector classifier ( ) on test data in terms of average logarithmic score

(negative average predictive log-likelihood) as well as average Brier score (average

predictive quadratic score) along with one standard error bars

regression for applicants with a prior default, and both probability models perform

on par for applicants without a prior default. The support vector classifier is not

competitive for either application. Because the Brier score punishes for the occurrence

of small-probability events less harshly than the logarithmic loss, the performance

of the support vector classifier is comparable with logistic regression when judged

according to this criterion, but it underperforms kernelized logistic regression.

Overall, on the six quarters of test data, logistic regression gives an average log-

arithmic score of 174.6 · 10−4, with a standard error of 1.18 · 10−4. The positive

parameter estimates for the score change and the lagged score change imply that

when the credit bureau assigns an applicant a new score from one quarter to the

other, on average the score should have been changed less. The application of the
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support vector classifier results in an average logarithmic loss of 178.9 · 10−4, with a

standard error of 1.18 · 10−4, which is worse than logistic regression. This empirical

result is in line with the discussion in Section 4.3.1, namely that the loss function used

in the support vector classifier is not a strictly proper scoring rule. This suggests that

in pricing regime credit scoring, where some probabilities of default are close to zero

or one even after endogenous subsampling, using a classifier is suboptimal for proba-

bility of default estimation. For kernelized logistic regression, the average logarithmic

loss is 173.4 · 10−4, with a standard error of 1.18 · 10−4. From Fig. 4.3a we learn

that the dependencies for applicants without a prior default are almost logit-linear,

whereas Fig. 4.3b implies that the dependencies for applicants with a prior default are

weakly nonlinear; exemplarily, f̂d41 is depicted in Fig. 4.4 for both logistic regression

and logistic regression. According to the kernelized logistic regression model, which

is more accurate for prior defaulters according to Fig. 4.3b, applicants who just come

out of default are more likely to default again when the credit bureau assigns them

a high score than if they were assigned a low score. Only after not having defaulted

for several quarters a high score implies a better credit-worthiness. It is not clear to

what extent this effect is due to legal storage time limits, or insufficient consideration

in the credit bureau’s probability model. This effect causes the warping pattern in

Fig. 4.5.

We also evaluate how relevant it is to consider dynamic aspects such as lagged

scores and having a separate probability model for previous defaulters, as well as

the effect of subsampling. For computational simplicity, a logistic regression model

is applied to the test quarters, and its predictive accuracy without the respective

predictor or modeling approach is compared with the full model given in Equation

(4.20). Not separating defaulters and non-defaulters and as predictor considering

only the score increases the average logarithmic loss by 2.96 · 10−4. Separating into

two probability models, still using as predictor only the score, increases the average

logarithmic loss much less, at 0.34 · 10−4; this shows that separating previous de-
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Figure 4.4: Predicted probabilities (contours) of default in the fourth quarter of 2009

for applicants who had a prior default; also shown is the distribution of the applicants

in the training set

faulters and non-defaulters is of utmost importance when legally viable. Using both

probability models but withholding the predictors score, number of quarters without

default, score change and lagged score change increases the average logarithmic loss

by 0.68 · 10−4, 0.3 · 10−4, 0.21 · 10−4 and 0.19 · 10−4, respectively. This means that,

even though of lesser effect, considering the score dynamics improves the predictive

accuracy of the credit scoring model. The negative effect of the subsampling on the

logarithmic loss is 0.3 · 10−4 for logistic regression using all data of a given quarter

with n ≈ 840, 000 instead of the endogenous subsample with size n = 4, 000. Fur-

ther increasing the sample size in kernelized logistic regression promises an improved

predictive accuracy as well, and this is computationally feasible for sample sizes at

least in the high multiple ten-thousands [Keerthi et al., 2005] on a desktop computer,

because bootstrapping can be avoided, as we find in the next section.
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Figure 4.5: Log-odds of logistic regression and kernelized logistic regression

4.5.7 Measuring Conditional Estimation Risk

We compare the bootstrapped and model-based standard error estimates for each

loan’s log-odds in Fig. 4.6, using the group of prior defaulters in the fourth quarter

of 2009. We choose the number of bootstrap iterations as 10,000. For logistic re-

gression, bootstrap estimates are similar to model-based estimates for model-based

standard error estimates below 0.25, which account for more than 92% of applicants,

and bootstrap estimates tend to be only slightly higher otherwise. For kernelized

logistic regression, bootstrap estimates are highly similar to model-based standard

error estimates below 0.4, accounting for more than 97% of applicants, and bootstrap

standard error estimates tend to be slightly lower as compared with model-based

larger than 0.4. Based on this comparison, we recommend using the model-based

approximation to estimate the distribution of the kernelized logistic regression esti-

mator. The bootstrap method is much more computationally intensive as it requires

the kernelized logistic regression model to be fit many times on resampled data sets.

Fig. 4.7 confirms that the standard error estimates of kernelized logistic regression

are much better measures of conditional estimation risk than the standard errors using

logistic regression. Recall from Section 4.5.6 that the predictive accuracy of kernelized

logistic regression is at least as high as that of the other probability models for this
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Figure 4.6: Comparison of model-based and bootstrap standard errors of the log-odds,

logit(P̂i), both for logistic regression and kernelized logistic regression

data set. At the same time, its conditional standard errors are significantly higher.

This implies that the bias of kernelized logistic regression is indeed much smaller than

that of logistic regression, as also discussed in Section 4.3.

4.5.8 Determining the Premium for Estimation Risk

In the following we illustrate the application of the pricing model based on the zero-

sum game in Section 4.2.2 to determine an estimation risk premium. We set the

risk-free interest rate rf = 0, LGDi = 1, and the commonly accepted premium for

risks other than estimation risk, πi, to 0.5%. We investigate how the estimated interest

rate depends on the estimated probability of default and the standard error of the

log-odds ratio, again using the group of prior defaulters in the fourth quarter of 2009.

This is shown in Fig. 4.9a. Higher standard error results in higher offered rates for a

fixed probability of default. This causes a “bend” in the interest rate contours. For

example, considering an estimated default probability of 0.06, if the standard error

of the log-odds is 0.2, an interest rate of slightly less than 8% is charged, whereas

if the standard error of the log-odds is 0.4, an interest rate of slightly more than



CHAPTER 4. LOAN PRICING UNDER ESTIMATION RISK 131

0.1 0.3 0.5 0.7
0
.1

0
.3

0
.5

0
.7

Standard error (log. reg.)

S
ta

n
d
a
rd

er
ro

r
(k

er
n
.

lo
g.

re
g)

Figure 4.7: Model-based standard errors of log-odds in logistic regression and kernel-

ized logistic regression

10% is charged. The choice of bootstrap versus model-based standard errors has

little effect on the resulting interest rates, as is shown in Fig. 4.8. Only for interest

rates greater than 20% do model-based rates tend to be very slightly higher than

bootstrap estimates because of slightly higher model-based standard errors, as shown

in Fig. 4.6b.

To determine the conditional estimation risk premia, we compare the interest rates

offered by the pricing model in (4.7) against those suggested by the standard plug-in

estimator from (4.3) in Fig. 4.9b, using kernelized logistic regression predictions. The

mean difference in interest rate estimates between the two models is ten basis points

(bps). The proportion of applicants with a prior default for whom the estimation risk

premium is larger than 50 bps (100 bps) is 0.44 (0.291), and the maximal difference

in interest rate estimates is 0.147. The separate loops in the Fig. result from the

predictor “number of quarters not in default” being discrete. The greatest increase in

interest occurs for applicants whose score is either very high or very low; the standard

error is highest for these applicants because they lie on the edge of the predictor space.

Even if interest rates end up being binned in practice, for example by rounding to the

nearest multiple of ten bps, the size of the estimation risk premium is large enough
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Figure 4.8: Interest rates from bootstrap and model-based approach with kernelized

logistic regression

to be economically relevant.

We show the joint distribution of δ̂i and κ̂i in Fig. 4.10a. The product of these

two parameters varies slightly to account for estimation risk under different estimated

probabilities of default. We compare plug-in interest rates and pricing model interest

rates in Fig. 4.10b.

A comparison of the effect of the choice of probability model on the interest

rate offered is shown in Fig. 4.11. We see substantial non-linearities for both pricing

models due to the ability of kernelized logistic regression to capture more complicated

interactions. This trend is even more substantial when the model that accounts

for estimation risk is used. For many applicants the interest rate assigned using

kernelized logistic regression is slightly lower than the interest rate assigned using

logistic regression; at the same time interest rates are significantly increased for a few

high-risk applicants. The mean absolute difference between estimation risk adjusted

interest rate estimates based on kernelized logistic regression as compared with those

from logistic regression — which has slightly higher average estimation risk, and whose

standard errors significantly underestimate conditional estimation risk — is 141 bps.

The proportion of applicants for whom the absolute difference in interest is larger than

50 bps (100 bps) is 0.66 (0.34), and the maximal difference in interest rate estimates
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Figure 4.9: Interest rate estimate as a function of estimated default probability and

standard error, as well as a comparison of plug-in interest rates and pricing model

based interest rates
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Figure 4.10: Bootstrap distribution of the estimators (δ̂, κ̂), and interest rate estimates

from plug-in and pricing model, for an applicant with credit score 662 who came out

of default one quarter ago
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Figure 4.11: Interest rate estimates from logistic regression and kernelized logistic

regression, both plug-in and pricing model based

4.5.9 Assessing Economic Impact

Lastly, we illustrate how the expected return of the bank may suffer if it uses a

suboptimal probability model, or if it does not charge a premium for estimation risk.

Necessarily, this market impact analysis is based on strong assumptions. We use

rf = 0, LGDi = 1, πi = 0.005, and the data set of prior defaulters. We assume that

an applicant uses the kernelized logistic regression model, which gives both accurate

point and distributional estimates for the true pi, to determine those values for κi

and δi which in (4.7) compensate the bank for estimation risk. The bank might use

an inferior pricing model, known to the applicant, and the applicant does not accept

cases where the expected return of a loan is greater than rf+πi. We use the bootstrap

method to determine the distribution of the P̂i in the bank’s respective probability

model.

Pricing model with kernelized logistic regression. The performance of ker-

nelized logistic regression within the pricing model in (4.7) is rf + πi, given in Table



CHAPTER 4. LOAN PRICING UNDER ESTIMATION RISK 135

4.1. This estimate is slightly optimistic, because kernelized logistic regression might

neither be the best-possible of all probability models, nor be completely unbiased.

Pricing model with logistic regression. In Section 4.5.6 we found that logistic

regression performs well in terms of its probability predictions for the data set consid-

ered here. However, Fig. 4.7 suggests that logistic regression is systematically biased,

and that therefore conditional estimates of estimation risk tend to be too small. The

bank applies logistic regression, which gives good point estimates but underestimates

conditional estimation risk, to determine its value for δi in (4.7). Let κbi , δ
b
i and κai

denote the parameters found in (4.7) under the bank and applicant probability model,

respectively. The random return on a single loan is(
(1− pi)

(
1 + re(P̂i)κ

b
i δ

b
i

)
+ pi(1− LGDi)

)
1re(P̂i)κb

i δ
b
i ≤re(pi)κa

i
(P̂i)

+ (1 + rf )1re(P̂i)κb
i δ

b
i >re(pi)κ

a
i
(P̂i).

The average expected return across applicants is given in Table 4.1. Due to insufficient

consideration of conditional estimation risk, the expected return reduces by about 40

bps, as compared with the accepted maximal return in the pricing model.

Plug-in estimator. Consider the case in which the bank determines the interest

rate by plugging the probability prediction of logistic regression into formula (4.3).

Because an applicant acts strategically, according to (4.7), the random return on a

single loan is(
(1− pi)

(
1 + rπie (P̂i)

)
+ pi(1− LGDi)

)
1rπie (P̂i)≤re(pi)κi(P̂i)+(1+rf )1rπie (P̂i)>re(pi)κi

(P̂i).

The average expected return across applicants in this example is shown in Table 4.1,

a decrease in returns of almost 50 basis points.
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Table 4.1: Expected returns across interest rate models for different default risk

premia πi, in basis points

πi

50 100 400

Pricing w/ kern. logistic regression 50 100 400

Pricing w/ logistic regression 8 54 365

Plug-in w/ logistic regression 0 53 355

4.6 Conclusion

We discussed in this chapter the role of estimation risk in financial product pricing.

If estimates are used in pricing models in place of the true parameters, returns can

be decreased because of strategic behavior of a better informed counterparty. A

premium for estimation risk can prevent market collapse. However, a premium can

only be expected if the best-possible probability model is employed. This means

fitting flexible probability models with the right complexity to the large data sets

commonly available in financial applications. Only a model with little bias allows

estimating conditional estimation risk.

For the example of pricing regime credit scoring we illustrated how a premium

for conditional estimation risk can be determined when applicant and bank engage

in a zero-sum game. We introduced kernelized logistic regression to credit scoring, a

flexible default probability estimator well suited for larger data sets which allows for

fast pricing using model-based conditional variance estimates. These methods were

applied to a panel data set from a German credit bureau, which demonstrated that

the premium for estimation risk may be as large as 100 basis points in some settings,

with effects on net returns of more than 30 basis points. In addition, we found that

the credit bureau’s scores exhibit dynamic dependencies.
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Even though the illustrations are specific to pricing regime credit scoring, we

believe that the consideration of estimation risk in financial product pricing, and the

required probability model selection approaches, should become standard practice in

the pricing of financial products under asymmetric information.
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