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ABSTRACT

Delving Into Dissipative Quantum Dynamics:

From Approximate to Numerically Exact Approaches

Hsing-Ta Chen

In this thesis, I explore dissipative quantum dynamics of several prototypical model systems

via various approaches, ranging from approximate to numerically exact schemes. In par-

ticular, in the realm of the approximate I explore the accuracy of Padé�resummed master

equations and the fewest switches surface hopping (FSSH) algorithm for the spin�boson

model , and non-crossing approximations (NCA) for the Anderson�Holstein model. Next, I

develop new and exact Monte Carlo approaches and test them on the spin�boson model. I

propose well�de�ned criteria for assessing the accuracy of Padé-resummed quantum master

equations, which correctly demarcate the regions of parameter space where the Padé ap-

proximation is reliable. I continue the investigation of spin�boson dynamics by benchmark

comparisons of the semiclassical FSSH algorithm to exact dynamics over a wide range of pa-

rameters. Despite small deviations from golden-rule scaling in the Marcus regime, standard

surface hopping algorithm is found to be accurate over a large portion of parameter space.

The inclusion of decoherence corrections via the augmented FSSH algorithm improves the

accuracy of dynamical behavior compared to exact simulations, but the e�ects are generally

not dramatic for the cases I consider. Next, I introduce new methods for numerically exact

real-time simulation based on real-time diagrammatic QMC and the inchworm algorithm.

These methods optimally recycle Monte Carlo information from earlier times to greatly sup-



press the dynamical sign problem. In the context of the spin�boson model, I formulate the

inchworm expansion in two distinct ways: the �rst with respect to an expansion in the sys-

tem�bath coupling and the second as an expansion in the diabatic coupling. In addition, a

cumulant version of the inchworm Monte Carlo method is motivated by the latter expansion,

which allows for further suppression of the growth of the sign error. I provide a comprehen-

sive comparison of the performance of the inchworm Monte Carlo algorithms to other exact

methodologies as well as a discussion of the relative advantages and disadvantages of each.

Finally, I investigate the dynamical interplay between the electron�electron interaction and

the electron�phonon coupling within the Anderson�Holstein model via two complementary

NCAs: the �rst is constructed around the weak-coupling limit and the second around the

polaron limit. The in�uence of phonons on spectral and transport properties is explored

in equilibrium, for non-equilibrium steady state and for transient dynamics after a quench.

I �nd the two NCAs disagree in nontrivial ways, indicating that more reliable approaches

to the problem are needed. The complementary frameworks used here pave the way for

numerically exact methods based on inchworm QMC algorithms capable of treating open

systems simultaneously coupled to multiple fermionic and bosonic baths.
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5.6 (left panels) The time evolution of the spectral function A(ω; t) within the bare
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Chapter 1

Introduction

1.1 Motivation

One of the central challenges in chemical physics research is to simulate the dynamics of open

quantum systems. At �rst glance, this task seems to be solvable using modern computer

simulation as long as one can write down di�erential equations that govern the time evolution

of the quantum system. However, when trying to implement this in the condensed phase, one

soon �nds that the common truth of �conservation of di�culty�: No matter what approach

one takes, the task is nearly always complicated by numerical scaling or stability issues.

Despite decades of research and a wide spectrum of methodologies that have been developed,

a universal approach to the simulation of quantum dynamics is still di�cult to impossible

even for model systems. Therefore, understanding the accuracy of existing approaches and

developing novel methods are both of great importance.

The challenge of exact real-time quantum dynamics remain substantial for several rea-
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sons. First, the size of Hilbert and Fock space scales exponentially with the size of the

quantum system, rendering simple numerically exact methods feasible only for small sys-

tems. For example, a system of 10 interacting spins formally requires the description of 210

many-body states making the direct simulation of such a system unfeasible. In addition, re-

duced quantities play an important role in dissipative quantum dynamics, and here one needs

to keep track of the history of the system and take time non-local dynamics into account.

This non-locality in time may manifest itself as strong memory e�ects which signi�cantly

complicate the simulation of quantum dynamics. Lastly, for systems in the condensed phase,

multiple distinct types of interactions are presented. The dynamical interplay among these

interactions, for example the hybridization of an tagged electron with conduction band elec-

trons and the electron�phonon coupling, may produce myriad subtle physical e�ects. The

existing approaches are often tailored to the needs of a particular system and mechanism at

the expense of general accuracy and feasibility.

In this thesis I concentrate on the dynamics of prototypical dissipative quantum systems,

describing an electronic subsystem interacting with a simple environment[1�3]. Speci�cally,

I investigate the spin�boson model (a two-level system interacting with an oscillator bath)

and the Anderson�Holstein model (a small electronic system interacting with electron and

phonon baths). These models are known to provide reasonable descriptions of the essential

physics of dissipative quantum systems and the successful simulation of their behavior should

be considered a stringent test which any new approach to quantum dynamics must pass.

As mentioned above, the spin�boson model consists of a two-level system coupled lin-

early to a bosonic bath with a broad band spectrum. It has been used as the basic proxy for

dissipative dynamics in many contexts, such as electron and energy transfer in condensed
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phases and biological systems[4�11], singlet �ssion dynamics[12�16], and entanglement and

decoherence of qubits in condensed media[17�19]. The Anderson�Holstein model[20�22]

di�ers from the spin�boson model in the fact that the electronic system, which takes the

form of a correlated impurity site, is coupled to a non-interacting electron reservoir, as

well as to phonons. It is a minimal model that embodies the dynamical interplay between

electron�electron interactions and electron�phonon coupling, and has implications for the

study of superconductivity[23�28], photon-induced metal�insulator transitions in correlated

materials[25, 29�32], and the Kondo e�ect in non-equilibrium nanoscale devices[33�40]. Fur-

thermore, it can be used a basic model for correlated materials with active phonon degrees of

freedom. In particular, a strongly-correlated material with active phonon degrees of freedom

is precisely mapped onto to the Anderson�Holstein model within the framework of DMFT

(dynamical mean-�eld theory)[41].

1.2 Theoretical approaches

1.2.1 Spin�boson model

A variety of approaches for solving the dynamics of the spin�boson model have emerged

over the past several decades. They can be categorized into three sets: perturbation the-

ories, semiclassical approaches, and numerically exact schemes. In general, perturbation

theories are limited to speci�c regions of parameter space; semiclassical approximations can

be e�cient and scalable but often involve uncontrolled approximations; numerically exact

approaches often scale unfavorably in their computational cost with the simulation time and

with the dimensionality of the system. In the following I brie�y discuss the relative bene�ts
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and drawbacks of the classes of approaches.

Perturbation theories

Perturbative theories are generally carried out with respect to particular coupling parame-

ters of the model to yield solvable equations of motion. The most widely-used perturbation

parameters of the spin�boson model are the system�bath coupling and the electronic (di-

abatic) coupling. Perturbation expansions carried out to second order in the system�bath

coupling yields the so-called Red�eld equations[42, 43]. A series of treatments and gener-

alizations[44�47] have been developed based on the Red�eld expansion. Expansion in the

diabatic coupling yields another family of methods, which includes the noninteracting blip

approximation (NIBA) [48, 49] and Padé-resummed master equation approach[50�55]. All

such treatments are only reliable within a restricted region of parameter space where the

perturbation parameter is su�ciently small, and may lead to unphysical results if the under-

lying perturbation series does not converge. While extensions of perturbation theories have

been proposed[46, 56�58], it is usually unclear how reliable they are in the full parameter

space.

Semiclassical approaches

The semiclassical approaches I will discuss in this thesis rely on the idea that the sys-

tem must be described quantum mechanically while the bath degrees of freedom can be

treated as a swarm of classical trajectories. Many such methods have been developed, for

example the linearized semiclassical initial value representation (LSC-IVR) scheme[59�61],

the time-dependent self-consistent �eld (TDSCF) method[62, 63], and the fewest-switches
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surface hopping (FSSH) approach[64�66]. These methods are in principle inexpensive, non-

perturbative, and can be used to treat realistic anharmonic baths and large systems. How-

ever, the e�ectively classical description of the bath degrees of freedom renders them in-

capable of capturing some quantum mechanical e�ects, such as nuclear tunneling at low

temperatures[67�69]. More importantly, the approximations underlying these methods are

uncontrolled, which make it di�cult to determine their reliability.

Among these methods, the FSSH approach has proven to be one of the most popular

techniques for the calculation of non-adiabatic dynamics in the condensed phase[70�72].

The FSSH provides a superior description of branching processes and microscopic detailed

balance. Its wide use can be attributed to the fact that it can conveniently be employed in

conjunction with electronic structure calculations in the adiabatic representation. However,

aside from the drawbacks associated with its underlying classical dynamics approximation,

a long-recognized shortcoming of standard FSSH is the fact that the algorithm does not

provide any electronic decoherence mechanism. Recent research e�orts have attempted to

formulate descriptions of decoherence within FSSH to account for decoherence[73�86].

Numerically exact schemes

Various numerically exact schemes have been proposed for the spin�boson model based on

di�erent quantum mechanical tools, including wavefunction, density matrix, and path inte-

gral representations. One of the most successful numerically exact schemes for spin�boson

dynamics is the multi�layer multi�con�gurational time�dependent Hartree (ML�MCTDH)

method[87�89], which is a wavefunction-based, fully quantum mechanical approach. ML-

MCTDH has been particularly accurate over a quite wide swath of parameter space for
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equilibrium spin�boson problems, but has di�culty converging for transport problems far

from equilibrium[90�92]. The hierarchical equation of motion (HEOM) method[45, 93, 94]

is based on the density matrix description. It introduces an in�nite hierarchy of auxiliary

density matrices and a Matsubara expansion for the bath density matrix. In its standard

implementation, the HEOM method relies on the truncation of the in�nite coupled di�eren-

tial equations, which make it di�cult to converge for the cases of low bath temperatures or

strong system�bath coupling.

The path integral description provides a di�erent means of computing exact dynamical

properties in the spin�boson model. Two such path integral methods are the quasi�adiabatic

propagator path integral (QUAPI) representation[95�98] and Quantum Monte Carlo (QMC)

approaches[99�102]. QUAPI is based on the time discretization of the quantum mechanical

propagator and a truncation of the temporal range of the in�uence functional in the path

integral representation. However, systematic errors can arise from both the truncation of

non-local retarded interactions and the Trotter decomposition that is used to disentangle

the system and bath propagators[103]. QMC techniques can provide an unbiased, e�cient

estimation of the propagator in the path integral description, but the evaluation of dynam-

ical properties requires a summation of complex propagators, which result in a dynamical

sign problem. The sign problem causes the computational cost to scale exponentially with

increasing time and restricts QMC methods to short times. Recent developments in QMC

techniques[101, 104�106] bring the hope for the exact QMC calculation of long-time dynam-

ics closer to reality.
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1.2.2 Anderson�Holstein model

Despite the importance and simplicity of the Anderson�Holstein model, there is little known

about its real-time dynamical properties beyond simple limits where perturbative arguments

can be made. Several limits (or simpli�ed forms) of the model, such as the zero and in�-

nite Coulomb interaction cases, have been extensively investigated and provide conceptually

essential insight regarding phonon e�ects[107�113]. However, there are only a handful of

approaches that are capable of calculating dynamical properties in the Anderson�Holstein

model for generic cases. These approaches largely originate from existing methods for the

Anderson impurity model and are tailored to the needs of particular limits.

Numerical renormalization group

The numerical renormalization group (NRG) has been developed based on the low energy

theory of the Anderson impurity model and can be extended to include electron�phonon in-

teraction. For the Anderson�Holstein model, the NRG results capture interesting features,

such as Kondo peak broadening and replication[107, 114�119]. Nevertheless, NRG is gener-

ally reliable only for the low energy properties of the system, and remains di�cult to apply

out of equilibrium.

Quantum Monte Carlo

QMC-based methods, such as the auxiliary-�eld QMC and real-time diagrammatic QMC,

are particularly successful in solving the dynamics of the Anderson model, and allow for the

exploration of transient dynamics and non-equilibrium transport properties over a wide range

of parameters. Their extension to the Anderson�Holstein model poses additional challenges
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and complications. The auxiliary-�eld QMC method relies on an analytical continuation to

obtain real-time dynamical properties from the density of states calculated under the in�u-

ence of the phonons in imaginary time[120]. However, the density of states description is only

valid for equilibrium and linear response properties and the analytical continuation is uncon-

trolled and can be problematic for certain parameters[121, 122]. The real-time diagrammatic

QMC method evaluates dynamical properties directly by stochastically sampling real-time

diagrams[123�128]. In conjunction with partial resummations of the exact diagrammatic

series[129] and reduced dynamics techniques[130, 131], it can be used to obtain results up

to previously unreachable timescales, at least for the Anderson model[132]. Although it is

generically plagued by the dynamical sign problem, recent algorithmic advances, such as the

bold-line techniques and the �inchworm� algorithm[106, 121, 122, 129], might allow for an

amelioration of the sign problem in real-time QMC simulations for the Anderson�Holstein

problem, although such calculations have yet to attempted for this model.

1.3 Outline of thesis

The organization of the dissertation is as follows: In Chapter 2, I start with perturbative

treatments of spin�boson dynamics. I propose well�de�ned criteria for assessing the ac-

curacy of quantum master equations whose memory functions are approximated by Padé

resummation of the �rst two moments in the electronic coupling. These criteria parti-

tion the parameter space into distinct levels of expected accuracy. Extensive comparison

of Padé�resummed master equations with numerically exact results in the context of the

spin�boson model demonstrate that the proposed criteria correctly demarcate the regions
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of parameter space where the Padé approximation is reliable. The applicability analysis I

present is not con�ned to the speci�cs of the Hamiltonian under consideration and should

provide guidelines for other classes of resummation techniques.

In Chapter 3, I continue the investigation of spin�boson dynamics via the semiclassical

surface hopping algorithm. I perform extensive benchmark comparisons of surface hopping

dynamics with numerically exact calculations for the spin-boson model over a wide range

of parameters. FSSH is found to be surprisingly accurate over a large swath of parameter

space. The inclusion of decoherence corrections via the augmented FSSH (A-FSSH) algo-

rithm improves the accuracy of dynamical behavior compared to exact simulations, but the

e�ects are generally not dramatic, at least for the case of an environment modeled with the

commonly used Debye spectral density.

In Chapter 4, I introduce a set of new methods for the spin�boson model based on real-

time diagrammatic QMC and inchworm algorithm. A detailed description of the inchworm

Monte Carlo formalism is provided for the exact study of real-time non-adiabatic dynam-

ics. This method optimally recycles Monte Carlo information from earlier times to greatly

suppress the dynamical sign problem. Using the example of the spin-boson model, I formu-

late the inchworm expansion in two distinct ways: the �rst with respect to an expansion

in the system-bath coupling and the second as an expansion in the diabatic coupling. The

latter approach motivates the development of a cumulant version of the inchworm Monte

Carlo method which has the bene�t of further suppression of the growth of the sign error.

I provide a comprehensive comparison of the performance of the inchworm Monte Carlo

algorithms to other exact methodologies as well as a discussion of the relative advantages

and disadvantages of each.
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In Chapter 5, I turn attention to the Anderson�Holstein model. I investigate the dynam-

ical interplay between electron�electron interactions and electron�phonon coupling via two

complementary non-crossing approximations (NCA). The �rst NCA is constructed around

the weak-coupling limit and the second around the polaron limit. The in�uence of phonons

on spectral and transport properties is explored in equilibrium, for non-equilibrium steady

state and for transient dynamics after a quench. Both the particle�hole symmetric and

the more generic particle�hole asymmetric cases are studied. In general, the two methods

disagree in nontrivial ways, indicating that more reliable approaches to the problem are

needed. Importantly, the frameworks used here can form the starting point for numeri-

cally exact methods based on bold-line QMC algorithms capable of treating open systems

simultaneously coupled to multiple fermionic and bosonic baths.

10



Chapter 2

Padé-Resummed Master Equation

Approach to Dissipative Quantum

Dynamics∗

2.1 Introduction

Schemes based on projection operator techniques[133] and generalized quantum master

equations (GQMEs) have been used both to design successful approximate approaches and

as a platform to develop numerically exact methods[2, 3, 42, 43, 93]. The projection operator

∗Based on work published in J. Chem. Phys. 144, 154106 (2016). Copyright 2016, American Institute
of Physics.
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technique partitions the Hilbert space into system and bath subspaces, leading to the deriva-

tion of GQME for the system subspace which accounts for the bath's dynamical in�uence

on the system via a memory kernel. Exact and approximate techniques for the evaluation of

the memory kernel have been developed that make use of perturbation theories[45, 46, 48,

49, 56], resummation techniques[50, 51, 54, 55, 134, 135], and self�consistent expansions[130,

131, 136, 137]. Recent progress a�orded by these methods has illustrated several advantages

of the GQME scheme. First, the memory kernel may decay on a shorter timescale than the

system dynamics under study, so that approximate memory kernels may yield more accu-

rate dynamics than would be obtained by direct simulation of the system dynamics using

the same level of approximation. Second, the GQME scheme is general enough to treat

realistic anharmonic baths[134, 137] and arbitrary system�bath coupling[137]. Finally, the

�exibility of di�erent projection operator formulations allows for facile extension to more

general situations, such as nonequilibrium initial preparation[52, 53], as well as more com-

plex correlation functions[138]. However, despite these notable results, it remains a di�cult

task to accurately calculate memory kernels in many regimes of general quantum dissipative

systems.

The Padé resummation approach approximates the memory kernel as an in�nite resum-

mation based on the kernel's second and fourth moments[50, 51, 139]. At the expense of

fourth�order perturbation theory in the electronic coupling, the Padé�resummed GQME is

capable of producing an accuracy that exceeds that of simple perturbation theory for the

spin�boson model[134], and resummation of higher order kernels provide quantitative cor-

rections[140]. Recently, however, it has been demonstrated that this approach can lead to
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unphysical, divergent dynamics in the strong electronic coupling regime[135], and the appli-

cability and accuracy of the Padé approximations throughout the entire parameter space is

still di�cult to evaluate. The aim of the present work is to provide feasible estimates of the

applicability based on analysis of the Padé approximation itself.

We propose well�de�ned criteria in terms of the kernel's second and fourth moments

that correspond to conditions leading to �physically reasonable� results within the Padé re-

summation scheme. To examine the proposed criteria, we perform systematic benchmark

comparisons of Padé�resummation with numerically exact results for a prototypical dissipa-

tive open quantum system, namely the spin�boson model with a Debye spectral density. The

proposed criteria divide the parameter space into subspaces associated with di�erent levels

of accuracy, and we con�rm that the systematic comparison of population dynamics with

exact results clearly demarcate when the approach should provide quantitatively reliable re-

sults. It should be noted that the proposed criteria are not limited to the spin�boson model,

but are generally applicable for estimating the accuracy of Padé�resummed memory kernels

for generic open quantum systems. In addition, the present work may provide guidelines

for the applicability of other types of resummation techniques, such as the Landau�Zener

resummation[135].

The outline of the chapter is as follows. We present in Sec. 2.2 a brief review of the

nonequilibrium Padé�resummed GQME approach to a generic open quantum system. In

Sec. 2.3, we analyze the Padé resummation and de�ne the criteria for the validity of the

approximation. We apply the proposed criteria to the spin�boson model in Sec. 2.4 and

13



CHAPTER 2. PADÉ-RESUMMED MASTER EQUATION APPROACH

show the correspondence of the di�erent regions of the applicability phase diagrams with

exactly computed population dynamics. In Sec. 2.5, we conclude.

2.2 The Padé resummed GQME approach

We consider an open quantum system whose Hamiltonian takes the form, Ĥ = Ĥs + Ĥb +

V̂ , where Ĥs and Ĥb correspond to the system and bath Hamiltonians, respectively, and

V̂ denotes the system�bath coupling. We denote the quantum states of the system by

the kets |j〉 and the bath density operator by ρ̂. It is convenient to adopt the Liouville

space notation[50, 51] for the total density operator, Ŵ ≡ |W 〉〉, and de�ne the product

〈〈A|B〉〉 ≡ TrsTrb{A†B} where Trs and Trb are partial traces over the states of the system and

bath, respectively. Time evolution of the density operator is governed by the Liouville�von

Neumann equation
d

dt
|W (t)〉〉 = −iL|W (t)〉〉, (2.1)

where the Liouville super�operator (the Liouvillian) is de�ned by L|W (t)〉〉 = [Ĥ, Ŵ (t)] and

we set ~ = 1 throughout this chapter. The reduced density matrix of the system can be

written as σjk(t) = Trb {|k〉 〈j|W (t)} = 〈〈jk|W (t)〉〉 where the Liouville state is given by

|jk〉〉 = |j〉 〈k|⊗ 1̂ and 1̂ is the unit operator for the bath. Then we can denote the population

dynamics as

Pj(t) = 〈〈j|W (t)〉〉, (2.2)

where the diagonal elements are expressed as |jj〉〉 → |j〉〉 for simplicity.
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We implement the standard projection operator technique[141] via the super�operator

P =
∑
j

|jρj〉〉〈〈j| (2.3)

where |jρj〉〉 = |j〉 〈j| ⊗ ρ̂j and the bath density operator ρ̂j is taken to be in equilibrium

in the electronic state |j〉. The projected version of Eq. (2.1) yields the GQME for the

population of the j-th state,

d

dt
Pj(t) = Ij(t)−

∑
k

∫ t

0

dτKjk(t− τ)Pk(τ), (2.4)

where the memory kernel matrix is

Kjk(t) = 〈〈j|PLe−iQLtQL|kρk〉〉, (2.5)

and the inhomogeneous terms are given by

Ij(t) = −i〈〈j|PLe−iQLtQ|W (0)〉〉, (2.6)

with Q = 1 − P . The inhomogeneous terms result from the fact that the initial condition

for the total density operator will generally satisfy Q|W (0)〉〉 6= 0. For cases Q|W (0)〉〉 = 0,

Ij(t) = 0. In the frequency domain, Eq. (2.4) can be transformed from an integro�di�erential

equation into the algebraic form

spj(s) = pj(t = 0) + Ij(s)−
∑
k

Kjk(s)pk(s) (2.7)

with the use of the one�side Laplace transformation, f(s) =
∫∞

0
e−stF (t)dt, where s is a

complex number. It should be noted that calculation of the memory kernel matrix and the

inhomogeneous terms is di�cult in part because dynamical evolution involves a projected

propagator e−iQLt.
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To approximate the projected propagator, one can carry out a perturbation treatment

with respect to a perturbation Ĥ ′ and an unperturbed Hamiltonian Ĥ0 = Ĥ − Ĥ ′. The

Liouvillian can be decomposed as L = L0 + L′ and Eq. (2.5) and (2.6) can be expanded

in terms of L′. As a result, the memory matrix and the inhomogeneous terms in frequency

domain can be expressed as a moment expansion

Kjk(s) =
∞∑
n=1

K
(2n)
jk (s) (2.8)

and

Ij(s) =
∞∑
n=1

I
(2n)
j (s) (2.9)

with

K
(2n)
jk (s) = 〈〈j| [L′G0(s)L′G0(s)Q]

n−1 L′G0(s)L′|kρk〉〉, (2.10)

and

I
(2n)
j (s) = 〈〈j|L′G0(s)[QL′G0(s)]2n−1Q|W (0)〉〉, (2.11)

where the unperturbed Green's function is G0(s) = (s+ iL0)−1. In practice, evaluating the

(2n)-th order moment requires a Laplace transformation for each time variable in a (2n−1)-

time correlation function. Clearly, the complexity of the terms in the moment expansion

grows quickly as the moment order increases.

The memory matrix and inhomogeneous terms may be approximated by a Padé resum-

mation using the second and fourth moments in the frequency domain,

Kjk(s) ≈
[K

(2)
jk (s)]2

K
(2)
jk (s)−K(4)

jk (s)
, (2.12)
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Ij(s) ≈
[I

(2)
j (s)]2

I
(2)
j (s)− I(4)

j (s)
. (2.13)

It should be noted that the Padé resummation is a rational expression that include in�nite

orders of the perturbation Ĥ ′, but the contributions of higher order than the fourth are

approximated; for example, K(6)
jk ≈

[
K

(4)
jk (s)

]2

/K
(2)
jk (s). The expressions of this section have

been discussed before[55], but a systematic analysis is lacking. We now focus precisely on

this issue.

2.3 Applicability Analysis and Criteria

The accuracy of the Padé resummation is unknown and depends on the analyticity of an

unknown function in the complex plane. Despite this fundamental di�culty, we may esti-

mate its validity via simple convergence properties and physical requirements of the memory

kernels. For simplicity below, the criteria are expressed in terms of a single memory ker-

nel element K(s), thereby suppressing the indices associated with memory functions and

inhomogeneous terms.

The Padé resummation can be viewed as a complex geometric series which is expected

to yield well�behaved results only within the disk of convergence of the Laurent series that

represents the expansion in the complex plane. A necessary condition for such convergence

is ‖K(4)(s)/K(2)(s)‖ < 1, for all complex number s, where K(n)(s) is the n-th order expres-

sion given in Eq. (2.10). Since the inverse Laplace transformation is performed along the

imaginary axis s = iω, we restrict this condition to

(a) ‖K(4)(iω)/K(2)(iω)‖ < 1 for real ω. (2.14)
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The above condition is quite strict and may be relaxed by consideration of the physical

requirements of a generic memory kernel. Consider the Laplace inversion via the contour

integration of the Bromwich integral K(t) = 1
2πi

∫
CK(s)estds, where C is the vertical con-

tour in the complex plane chosen to include all singularities of K(s) to the left of it[142,

143]. The asymptotic physical behavior of the memory kernel dictates that the poles of the

Padé�resummed approximation cannot have a non�negative real part, otherwise the mem-

ory function would not be guaranteed to decay to zero as t → ∞. We assume that the

distribution of poles changes continuously and smoothly as the parameters of the model

changes, allowing us to focus on the imaginary axis s = iω and monitor the behavior of

K(4)(iω)/K(2)(iω). In particular, the equality Re[K(4)(iω∗)/K(2)(iω∗)] = 1 is a necessary

(albeit not su�cient) condition for the occurrence of a pole on the imaginary axis at s = iω∗,

which obviate the asymptotic decay of the memory kernel in real�time. We thus propose a

second condition

(b) Re[K(4)(iω)/K(2)(iω)] < 1 for real ω, (2.15)

which, excepting random occurrences, maintains that all poles are con�ned to the left of the

imaginary axis in the complex plane and that the memory function is well behaved. Note

that the �rst criterion is stricter than the second since it corresponds to the interior of a

unit circle in the complex plane while the latter condition corresponds to the entire complex

plane to the left of the boundary at Re[z] = 1.

These criteria are indeed crude because they rely on the the limited information of

the �rst two terms of an in�nite expansion. We will employ these conditions below as

demarcation lines in parameter space to gauge the reliability of the Padé approximation. As
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will be demonstrated, the criteria provide robust if conservative guidelines for the domain

of applicability for Padé�resummed master equations.

2.4 Results for the Spin�Boson Model

2.4.1 The Spin�Boson Model

In this section, we examine the criteria suggested above via investigation of the population

dynamics in the spin�boson model. The spin�boson model is an idealization of an open

quantum system which contains most of the important generic features of more complicated

dissipative quantum systems while o�ering the advantage that numerically exact algorithms

exist for the calculation of its dynamics over a wide range of parameter space[93, 95, 96,

144]. To produce benchmark results for the spin�boson model in this work, we use the

numerically exact hierarchical equations of motion (HEOM) methodology in the Parallel

Hierarchy Integrator (PHI) [94].

We consider a two�level system with energy bias ε and constant electronic coupling ∆

Ĥs = εσ̂z + ∆σ̂x,

and σ̂z = |1〉 〈1| − |2〉 〈2| and σ̂x = |1〉 〈2|+ |2〉 〈1|. The two�level system is coupled to a

bath consisting of an in�nite set of harmonic oscillators

Ĥb =
∑
α

P̂ 2
α

2
+

1

2
ω2
αQ̂

2
α. (2.16)

Here, the frequency of the α-th bath mode is ωα, while P̂α, Q̂α refer to the mass�weighted

momenta and coordinates of the α-th mode. The system�bath coupling is taken to be of the
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form

V̂ = σ̂z
∑
α

cαQ̂α, (2.17)

where cα is the coupling strength between the two�level system and the α-th harmonic

oscillator. The spectral density compactly describes the in�uence of the bath on the dynamics

of the system, and takes the form

J(ω) =
π

2

∑
α

c2
α

ωα
δ(ω − ωα). (2.18)

In our study we choose the commonly used Debye spectral density[144]

J(ω) =
λ

2

ωωc
ω2 + ω2

c

, (2.19)

which is Ohmic at low frequency with a Lorentzian cuto� at high frequency. The Debye

spectral density is characterized by two parameters: the characteristic bath frequency ωc,

which represents the average timescale of the bath response, and the reorganization energy

λ =
∑

α c
2
α/2ω

2
α, which is a direct measure of the coupling strength between the system and

the bath. In electron�transfer theory, the Debye spectral density is commonly used for the

description of a solvent environment with Debye dielectric relaxation (i.e. exponential in

time).

Throughout this work, we employ an initial density operator for the bath of the form

ρ̂0 =
e−βĤb

Trb{e−βĤb}
, (2.20)

where β = 1/kBT is the inverse temperature of the bath. This initial condition corresponds

to thermal equilibrium in the reservoir in the absence of the system�bath coupling and is

the initial density operator of relevance for the description of an impulsive Franck�Condon

excitation.
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We implement a commonly used projection operator of the form[50, 51],

P = |1ρ1〉〉〈〈1|+ |2ρ2〉〉〈〈2|, (2.21)

where fully�dressed equilibrium bath density operators of the form

ρ̂j =
e−βĤj

Trb{e−βĤj}
(2.22)

are employed with Ĥj = ±(ε +
∑

α cαQ̂α) + Ĥb(+ for 1 and − for 2). Note that with the

use of the projector (2.21), factorized initial conditions with an uncorrelated bath (2.20) will

necessitate the evolution of inhomogeneous terms (2.13) in the GQME. The second�order

moments of the memory kernels (K(2)
jk ) result in an expression equivalent to the noninteract-

ing blip approximation (NIBA) [3]. We carry out the time integrations of the memory kernels

and the inhomogeneous terms by the techniques outlined in Ref. 134 and the same Gaus-

sian quadrature subroutine (DCUTRI) [145]. The population dynamics of the Padé�resummed

GQME is calculated via the accuracy�improved numerical method for Laplace inversion[143].

For this spin�boson model, the Padé�resummed GQME approach has lead to population

dynamics in near perfect agreement with numerically exact simulations[54, 55, 134]. On the

other hand, Van Voorhis and coworkers have shown the breakdown of the Padé�resummed

GQME approach in the strong electronic coupling region[135]. Our goal in the following is

to systematically delineate the regime of validity of the approach based on the criteria of

Sec 2.3.
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2.4.2 Parameter Space Diagrams

The model we study in this work can be parametrized by �ve independent energy scales. We

use the electronic coupling ∆ as the unit of energy so that four dimensionless parameters

characterize the parameter space. These are: the electronic bias ε/∆, the reorganization

energy λ/∆, the bath's characteristic frequency ωc/∆, and the thermal energy of the bath

kBT/∆.

To systematically scan parameter space, We consider variation in the scaled ωc�λ plane

for di�erent scaled temperature and bias cuts. It is expected that, for a given system�bath

coupling λ, smaller values of ωc/∆ render the Padé approximation less accurate due to the

fact that the perturbation series is ordered by ∆. Therefore, we de�ne critical characteristic

frequencies, ω(a)
c (λ) and ω(b)

c (λ), as the lower bound of scaled ωc to satisfy the criteria (a)

and (b) for all elements of the memory kernels respectively. The boundaries ω(a)
c (λ) and

ω
(b)
c (λ) are determined by the conditions that there exists a single imaginary number iω∗ for

which either

(a) ‖K(4)(iω∗)/K(2)(iω∗)‖ = 1,

or

(b) Re[K(4)(iω∗)/K(2)(iω∗)] = 1,

is satis�ed. The critical characteristic frequencies indicate the boundaries of the proposed

criteria that partition parameter space into three distinct regions of di�erent levels of accu-

racy.

Because K(t) and I(t) have similar structure that should decay to zero after a transient

time and the Padé approximation takes the same form for both K(s) and I(s), we expect the
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proposed criteria also apply to the inhomogeneous term. In fact, Refs. 54�134 have shown

that the initial preparation of the bath, captured by the inhomogeneous term, is crucial for

obtaining the correct dynamics. We only focus here on the memory kernel and expect the

inhomogeneous term have similar analytical behaviors.

For illustrative purposes, we show a phase diagram for an unbiased (ε = 0), high temper-

ature (kBT = 2∆) system in Fig. 2.1 and the corresponding population dynamics of selected

points in parameter space calculated by the HEOM, Padé and NIBA approaches in the lower

panels. For this example the three regions may be partitioned as:

1. ωc > ω
(a)
c (quantitatively accurate):

In this regime, the results of the Padé approach achieve almost perfect agreement

with the numerically exact results. This regime covers the weak electronic coupling

(non�adiabatic) limit (ωc/∆ � 1), where the ∆�perturbation based methods works

well. We also �nd that the Padé�resummed approach provides a signi�cant improve-

ment over NIBA in the large system�bath coupling regime, as can be seen in the upper

panels of Fig. 2.1 (b).

2. ω(b)
c < ωc < ω

(a)
c (semi�quantitatively accurate):

The population dynamics of the Padé approach in this region are not quite as ac-

curate as in the �quantitatively accurate� regime, but the Padé�resummed method

still captures most of the important features in a semi�quantitative manner, such as

the long�lived oscillations and dissipative relaxation. Since the electronic coupling is

considered to be intermediate, the NIBA results become worse while the Padé results

remain accurate.
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Figure 2.1: Parameter space diagram for the spin�boson model with zero bias (ε = 0) and

at high temperature (kBT = 2∆). The critical frequencies ω(a)
c and ω

(b)
c are indicated as

functions of λ. The green region (ωc > ω
(a)
c ) is the regime where dynamics are expected to

be quantitatively accurate, the yellow region (ω(b)
c < ωc < ω

(a)
c ) is the regime where dynamics

are expected to be semi�quantitatively accurate and the red region (ωc < ω
(b)
c ) is the regime

where the Padé�resummed approach is expected to be unreliable or even unstable. The

lower panels are the corresponding population dynamics along the vertical cuts (indicated

as solid squares connected by dashed lines) calculated by the HEOM approach (red solid

lines), Padé�resummed GQME (PADE, green dash lines), and NIBA (blue doted lines).

The upper right label in each population dynamics panel denotes the value of (λ, ωc)/∆.

The symbol × in the phase diagram refers to the parameters corresponding to Fig. 1(d) of

Ref. 135.
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3. ωc < ω
(b)
c (unreliable):

The discrepancies in the population dynamics between the Padé approach and the

HEOM generally become larger in this regime since the large electronic coupling

(∆/ωc � 1) renders the perturbation theory in ∆ questionable. In this regime, the

Padé approach may lead to a shift of the oscillation frequency of the population (see

panels labeled by (λ, ωc)/∆ = (0.2, 0.4), (0.2, 0.2), (1.8, 0.2)), as well as overly coher-

ent behavior (see the panel labeled by (λ, ωc)/∆ = (1.0, 0.2)). Extreme cases in the

strong electronic coupling (adiabatic) limit may cause the Padé resummation break-

down and result in unphysical population dynamics. Importantly, the parameters of

Fig. 1(d) of Ref. 135 lie in the �unreliable� region (labeled by × in the phase diagram).

In this case the Padé�resummed approach yields unphysical population dynamics for

the long time behavior.

Despite qualitatively similar behaviors, we notice that our results near the parameters

marked by × appear to be more accurate than those of Ref. 135. One possible reason

may be attributed to numerical errors of the FFT�based Laplace inversion method of Honig

and Hirdes[146]. Here, we employ a simple improved method proposed by Yonemoto et

al.[143]. In addition, we note that Ref. 135 assumes Ij(s) = 0 which may yield di�erent

population dynamics for short times.
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Figure 2.2: Parameter space diagram with increasing bias energies ε/∆ = 0.5, 1, 1.5 at

high temperatures (kBT = 2∆) for the spin�boson model. The critical frequencies ω(a)
c and

ω
(b)
c are indicated as functions of λ with color regions as in Fig. 2.1. The lower panels are

the corresponding population dynamics along the vertical cuts calculated by the HEOM

approach (red solid line) and the Padé�resummed GQME (PADE, green dash line). The

upper right label in each population dynamics plot denotes the value of (λ, ωc)/∆. The

symbol × in panel (a) refers to the parameters corresponding to Fig. 3(b) of Ref. 135, while

that in panel (b) corresponds to Fig. 4(b) of Ref. 135.
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2.4.3 Energetic Bias Dependence

The bias dependence of the parameter space phase diagram is shown in Fig. 2.2, as well

as the corresponding population dynamics. We �nd that, as the energetic bias grows, both

critical frequencies increase in the low λ region. Furthermore, in the region when ωc < ω
(b)
c ,

the Padé approach may lead to incorrect steady state population values (see the panels

labeled (λ, ωc)/∆ = (0.2, 0.6) for ε = ∆ and (λ, ωc)/∆ = (0.2, 0.2) for ε = 3∆) as well as an

unphysical �recoherence� behavior (namely the envelope of the population does not decay

monotonically) as illustrated in the panels (λ, ωc)/∆ = (1.0, 0.2) for all biases. This e�ect can

be attributed to near singularities in the approximate kernels when the Padé resummation

does not satisfy the criterion (b). The population dynamics in Fig. 3(b) and Fig. 4(b) of

Ref. 135 show qualitatively similar discrepancies from exact calculations as illustrated here.

The parameters for these two cases (labeled as (×) in Fig. 2.2) lie in the expected regions

of parameter space.

We �nd that ω(a)
c and ω(b)

c become insensitive to the energetic bias in the limit λ � ε.

Since the reorganization processes dominate the incoherent decay in this limit, the �uctua-

tions induced by the energetic bias becomes less important here. Hence, the boundaries of

accuracy of the Padé�resummed GQME approach do not change when system�bath coupling

becomes very large.

2.4.4 Temperature Dependence

In general, the Padé�resummed GQME approach becomes less accurate for lower tem-
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perature baths. Fig. 2.3 shows that, as the temperature decreases, the critical frequencies

increase signi�cantly throughout the entire range of reorganization energies. This may be

explained by the fact that the bath degrees of freedom progressively populate lower frequency

modes as temperature decreases, rendering ∆ relatively larger with respect to the participat-

ing low�frequency modes. However, the Padé approach can still properly capture the dynam-

ical e�ect of the bath and yield qualitatively reasonable results in the semi�quantitatively

accurate region.

In the regions of lower accuracy, the Padé approach tends to overestimate the coherent

oscillations. In addition, the coherent oscillations are generally shifted toward lower frequen-

cies. In addition, we observe spurious recoherence in the panel labeled (λ, ωc)/∆ = (1.0, 0.6)

for kBT = 0.2∆. Once again the most sever deviations from exact calculation are found in

the region ωc < ω
(b)
c (λ) as expected.

The value (λ, ωc)/∆ = (1.0, 0.3) of Fig. 3(c) of Ref. 135 is labeled (�) in panel (c) of

Fig. 2.3. However, note that the values of the energetic bias are di�erent in this comparison.

As discussed above, we expect both critical frequencies to increase in the low λ region as the

value of bias grows. Hence, we infer by this trend that the value of (λ, ωc)/∆ in the biased

case should lie in the region of parameter space where the Padé approach is expected to be

unreliable.

2.5 Conclusions

In this chapter we provide criteria to estimate the accuracy and applicability of the

nonequilibrium Padé�resummed GQME approach to dissipative quantum dynamics. For
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Figure 2.3: Parameter space diagrams with zero bias energy (ε = 0) as a function of de-

creasing temperature kBT/∆ = 1.0, 0.6, 0.2 from left to right. The critical frequencies ω(a)
c

and ω(b)
c are indicated as functions of λ with color regions as in Fig. 2.1. The lower panels

are the corresponding population dynamics along the vertical cuts calculated by the HEOM

approach (red solid line) and Padé�resummed GQME (PADE, green dash line). The upper

right label in each population dynamics panel denotes the value of (λ, ωc)/∆. The symbol

× in panel (c) refers to the parameters corresponding to Fig. 2(b) of Ref. 135. The symbol

� indicates the same (λ, ωc) of Fig. 3(c) of Ref. 135, but with ε = 0.
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the spin�boson model, the criteria yield critical frequencies ω(a)
c (λ) and ω(b)

c (λ) that parti-

tion the parameter space into three distinct regions of expected accuracy. One particularly

signi�cant outcome of our analysis is the fact that the di�cult intermediate coupling regime,

where all energy scales are comparable, falls frequently into a region of parameter space where

the Padé approach is expected to be accurate, and indeed we �nd that the Padé�resummed

GQME can still capture signi�cant features of population dynamics within this regime.

When ωc < ω
(b)
c (λ), the Padé�resummed GQME is demonstrated to often exhibit spurious

long�time behavior, overestimate oscillations with shifted frequencies, and display unphys-

ical recoherence. Overall, we �nd that the accuracy of the Padé resummation is relatively

insensitive to the system bias and reorganization energy, but becomes worse with decreasing

bath frequency and decreasing temperature.

The criteria should be generally applicable in the larger reorganization energy regime

than we present here. In fact, the NIBA approach is capable of producing quantitatively

accurate results in the �golden rule� regime where the reorganization energy is su�ciently

larger than the diabatic coupling (λ� ∆). In addition, Fig 1 (a) and (b) of Ref. 135 show

that Padé GQME approach does capture the dynamics well for large λ/∆. Therefore, we

expect the asymptotic behavior of the Padé GQME approach to be as good as or better

than the NIBA approach in this regime.

The criteria of accuracy we propose is crude for several reasons. First, it is only based on

the analytic properties of the �rst two moments of an in�nite expansion. Second, even with

regard to these moments, we merely search for the boundaries in the complex plane where

a single pole may obviate physical properties required of generic memory functions. In this

sense, the boundaries of accuracy are conservative and we expect to see cases where the Padé
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approach may still yield accurate results even if ω(b)
c (λ) < ωc < ω

(a)
c (λ) and even occasionally

when ωc < ω
(b)
c (λ) . Indeed, we do �nd cases where exact calculations demonstrate that the

approximate results may be more accurate than expected. However, overall we �nd that the

trends predicted by the criteria of Sec. 2.3 faithfully delineate the trends of accuracy of the

Padé�resummed generalized master equation approach.

The proposed criteria should be valid for Padé resummations used to approximate the

memory kernels produced by other types of projection operators, and our applicability anal-

ysis may provide guidelines for assessing the domain of validity of other resummation tech-

niques. In particular, one can construct applicability phase diagrams for other theories, such

as the Landau�Zener resummation, leading to an increased understanding of the domain of

validity of complimentary approaches. This line of investigation will be taken up in future

work.
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Chapter 3

Surface Hopping Algorithm for

Condensed Phase Non-adiabatic

Dynamics ∗

3.1 Introduction

Electronically non-adiabatic transitions lie at the heart of some of the most important dy-

namical processes in the physical sciences[147]. Phenomena ranging from gas phase atomic

and molecular collisions[148] to electron and energy transfer in the condensed phase[2] are

often intimately in�uenced by the coupling between distinct potential energy surfaces that is

induced by nuclear motion. Theoretically, the accurate treatment of non-adiabatic dynamics

∗Based on work published in J. Chem. Phys. 144, 094104 (2016). Copyright 2016, American Institute
of Physics.
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is challenging, in particular in condensed phase applications where the interplay between the

large number of nuclear degrees of freedom with multiple coupled electronic states greatly

increases the complexity of the problem. Exact results may be obtained for speci�c idealized

models such as spin�boson systems where potential energy surfaces are harmonic and lin-

early displaced[93, 95, 96, 144]. In more realistic condensed phase situations, exact solutions

are currently out of reach, despite much recent progress[67].

Among the myriad approximate methods for treating non-adiabatic dynamics, the surface

hopping approach[64�66, 149] stands out for several reasons. First, the method is equally

applicable to gas phase and condensed phase problems, and can be used to treat realistic

anharmonic nuclear motion on potential energy surfaces, albeit in a classical manner[70�72].

Surface hopping has the advantage that it is naturally formulated in the adiabatic picture, so

that it can conveniently be employed in conjunction with electronic structure calculations.

The method is also inexpensive, non-perturbative, and provides a superior description of

branching processes and detailed balance when compared to other approaches, such as the

Ehrenfest method[150]. Despite these appealing features, surface hopping naturally su�ers

from several de�ciencies[151�154]. Clearly the description of nuclear motion as classical

renders the approach incapable of capturing low temperature e�ects such as nuclear tun-

neling on a single potential surface[67�69]. More generally, while surface hopping does not

employ perturbation theory in any parameter, as with nearly all mixed quantum-classical

approaches to non-adiabatic dynamics, it cannot be systematically derived from an exact

starting point[155, 156].† This fact makes it di�cult to evaluate surface hopping's domain

†Clearly, Ref. 155 and 156 outline steps towards a complete derivation of the FSSH algorithm starting
from the exact equation of motion for the density matrix. In each case, however, there is at least one step
that needs to be assumed for which the domain of validity is di�cult to assess. It is in this strict sense that
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CHAPTER 3. SURFACE HOPPING ALGORITHM

of validity.

One long recognized shortcoming of surface hopping is the fact that, in its standard

implementation, the algorithm does not provide decoherence for electronic amplitudes. This

knowledge has led to the development of important modi�cations of surface hopping aimed

at more accurately describing decoherence[73�86]. In an important recent series of studies,

Landry and Subotnik showed that a striking consequence of the neglect of decoherence in

surface hopping is the failure to properly capture the golden-rule scaling of the non-adiabatic

transfer rate in the Marcus regime[157, 158]. It should be noted, however, that there has

been some debate as to just how pervasive this problem is[159�163]. One of the goals of this

chapter is to provide an in depth examination of this issue.

More broadly we aim to compare surface hopping, with and without corrections for de-

coherence, to exact calculations in a model condensed phase system, namely the spin�boson

model[48, 164]. Although the spin�boson model is an idealized proxy for a real condensed

phase system exhibiting non-adiabatic transitions, it o�ers the advantage that algorithms

now exist that enable the calculation of exact dynamics over a wide swath of the relevant

parameter space[93, 95, 96, 144]. While in the past surface hopping was compared to exact

benchmark calculations of low dimensional scattering problems[65, 66, 83], we now can pro-

vide guidelines for understanding the successes and failures of the surface hopping approach

in a broader condensed phase setting. It should be noted, however, that we will restrict our

comparison to the "overdamped" case of the coupling to a Debye spectral density, since it

is here that facile exact simulations may be performed. While the Debye case represents

perhaps the most commonly employed model of a condensed environment in the spin�boson

we refer to the lack of a systematic derivation of FSSH.

34



3.2. FEWEST SWITCH SURFACE HOPPING (FSSH) AND DECOHERENCE

context, our choice implies that some aspects related to the interplay between surface hop-

ping trajectories and decoherence which are expected to be most dramatic and subtle in the

underdamped limit, may not arise[79, 163, 165]. Regardless, this chapter should at least

provide a starting point for assessing how surface hopping performs in generic condensed

phase settings.

Our chapter is organized as follows: We begin in Sec. 3.2 with a review of the standard

surface hopping algorithm for the spin�boson model and various formulations of decoherence

corrections. In Sec. 3.3, we present our results for the scaling of the non-adiabatic transfer

rate with respect to the electronic coupling in the golden-rule regime. In Sec. 3.4, we explore

the full parameter space of spin�boson model. We summarize our results and conclude in

Sec. 3.5.

3.2 Fewest Switch Surface Hopping (FSSH) and

Decoherence

3.2.1 Spin-Boson Model

We consider the spin�boson model, H = Hs +Hb +Hsb, which describes a two-level system

with energy bias ε and constant diabatic coupling ∆

Hs = εσz + ∆σx, (3.1)

interacting with an in�nite set of harmonic oscillators (bath)

Hb =
∑
j

1

2

(
p2
j + ω2

j q
2
j

)
, (3.2)
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CHAPTER 3. SURFACE HOPPING ALGORITHM

where ωj is the frequency of the j-th bath mode[3]. The isolated electronic system and the

bath are coupled bilinearly

Hsb = σz
∑
j

gjqj, (3.3)

where gj is the coupling strength between the two-level system and the j-th harmonic os-

cillator. We adopt the Pauli matrix notation σx = |1〉 〈2| + |2〉 〈1| and σz = |1〉 〈1| − |2〉 〈2|

where |i〉 indicate the diabatic states of the system. Throughout the present chapter, we use

mass scaled coordinates and momenta for the bath modes, qj =
√
MjQj and pj = Pj/

√
Mj,

where Mj are the e�ective mass of nucleus for the j-th harmonic oscillator and set ~ = 1.

We denote bold letters q, p by the vector of nuclear degrees of freedom.

The in�uence of the bath on the dynamics of the system can be captured in the compact

form of a spectral density,

J (ω) =
π

2

∑
j

g2
j

ωj
δ (ω − ωj) . (3.4)

In the present chapter, we consider the Debye model of the spectral density[144],

J (ω) =
λ

2

ωωc
ω2 + ω2

c

, (3.5)

which is appropriate for the description of a solvent environment with Debye dielectric

relaxation. The Debye spectral density function is characterized by two parameters, the

reorganization energy λ, and the characteristic bath frequency ωc. In electron-transfer theory,

the reorganization energy represents a direct measure of the coupling strength between the

system and the bath. The characteristic frequency is related to the relaxation time scale

of the bath, τ = 1/ωc. The Debye spectral density spans broader frequency than the

standard Ohmic (J(ω) ∝ ωe−ω/ωc) and Brownian forms (J(ω) ∝ ω/((ω2 − ω2
c )

2 + γ2ω2)).

Following the procedure outlined in Refs. 166 and 87, it is convenient to discretize the
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3.2. FEWEST SWITCH SURFACE HOPPING (FSSH) AND DECOHERENCE

Debye spectral density function via ωj = tan ((j − 0.5) tan−1 (ωmax/ωc) /N) where ωmax is

the largest frequency and N is the number of oscillators employed in the discretization.

The population dynamics of the spin�boson model can be calculated by the numerically

exact hierarchical equations of motion (HEOM) methodology[93], implemented in the Par-

allel Hierarchy Integrator (PHI) [94]. The HEOM method is easier to use when the spectral

density take the Debye form so that the bath correlation function can be written as a sum of

exponentially decaying functions in time[136, 167]. We use the HEOM method to produce

all of our benchmark results for the spin�boson model.

We focus on the reduced population dynamics of the system

Pi (t) = Trb
{
ρ (0) eiHt |i〉 〈i| e−iHt

}
(3.6)

where we assume a factorized initial condition ρ (0) = ρb |1〉 〈1| and

ρb =
e−βHb

Trb {e−βHb}
, (3.7)

with the inverse temperature of the bath, β = 1/kT . The initial condition of the system

corresponds to an impulsive Franck-Condon transition with the bath in a state independent

of the system with oscillators centered at qj = 0.

3.2.2 FSSH and Its Variants

The fewest-switches surface hopping (FSSH) algorithm is a mixed quantum-classical method

that treats the bath degrees of freedom classically and the electronic system quantum me-

chanically[64�66]. A swarm of classical nuclear trajectories evolve on the adiabatic potential

energy surfaces associated with the electronic states with each individual trajectory evolving
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CHAPTER 3. SURFACE HOPPING ALGORITHM

on a single active surface. Along each trajectory, the electronic wave function propagates

according to the Schrodinger equation with the classical nuclear variables evolving as pa-

rameters. The essence of FSSH is to simulate the population of the electronic states via

the density of trajectories on each surface. For this purpose, a surface-hopping scheme is

introduced to allow trajectories to hop among the adiabatic energy surfaces and match the

electronic populations. The hopping probability of the classical bath trajectories depends

on the electronic wave functions with speci�c conditions for the acceptance of non-adiabatic

transitions. Instead of listing these conditions, we describe them within the context of the

spin�boson model.

To implement the FSSH algorithm for the spin�boson model, we transform the model

to its adiabatic representation by diagonalizing the Hamiltonian H|Φi (q)〉 = (p
2

2
+

Vi (q))|Φi (q)〉 where

Vi (q) =
1

2

∑
j

ω2
j q

2
j + (−1)i

√
(g · q + ε)2 + ∆2 (3.8)

are the adiabatic potential energy surfaces and g · q =
∑

j gjqj. One may transform the

diabatic states to the adiabatic representation via the unitary transformation |Φi (q)〉 =∑
j Uij (q) |j〉 where

U (q) =

 sin θ (q) − cos θ (q)

cos θ (q) sin θ (q)

 . (3.9)

The adiabatic-diabatic mixing angle is de�ned as θ (q) = 1
2

tan−1 (∆/(g · q + ε)) which de-

pends on the bath coordinates. Within the adiabatic representation, the electronic wavefunc-

tion can be written as |Ψ (t)〉 = c1 (t) |Φ1 (q)〉 + c2 (t) |Φ2 (q)〉 and the adiabatic amplitudes
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satisfy an implicit time-dependent Schrodinger equation

d

dt
ci (t) = −iVi (q) ci (t)−

∑
k

p · dik (q) ck (t) , (3.10)

where djik ≡ 〈Φi (q)| d
dqj
|Φk (q)〉 is the derivative coupling matrix. For the spin�boson model,

the derivative coupling matrix elements are dj11 = dj22 = 0 and

dj12 = −dj21 =
gj
2

∆

(g · q + ε) 2 + ∆2
. (3.11)

We de�ne the pure state electronic density matrix σ̂ by σik = cic
∗
k and the equivalent equation

for the density matrix can be written as

d

dt
σ̂ (t) = −i

[
V̂ (q) , σ̂ (t)

]
−
[
p·d̂ (q) , σ̂ (t)

]
, (3.12)

where the potential energy matrix is Vik (q) = δikVi (q).

The bath in the FSSH algorithm is described via a swarm of trajectories evolving clas-

sically on adiabatic potential surfaces. Each individual trajectory propagates on the active

adiabatic potential surface, Va (q), via q̇ = p and ṗ = −∂Va/∂q, and the bath con�gura-

tion is followed by monitoring the time-dependence of
(
q(n),p(n), a(n)

)
for n = 1, · · · , Ntraj.

Each trajectory is allowed to switch active surfaces in order to force the relative number of

trajectories on each surface to mimic the adiabatic probability calculated by the adiabatic

amplitudes. To accomplish this, a minimal switching probability for a hop from surface a

(active) to surface b (other) during each time step dt may be employed as[65]

γhopab = dt
2

|ca|2
[Im (Vba (q) cac

∗
b) + Re(p · dabcac∗b)] . (3.13)

For the spin�boson model, the hopping probability is determined entirely by the derivative

coupling and the adiabatic coherence cac∗b . In addition to the hopping probability, trajecto-

ries must have enough energy to hop to a new surface and obey energy conservation. If the
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CHAPTER 3. SURFACE HOPPING ALGORITHM

trajectory switches to a new active surface, the momentum is rescaled in the direction of the

derivative coupling by p′ = p+ κdab satisfying |p+ κdab|2 + 2Vb (q) = |p|2 + 2Va (q).

At time t = 0, we require that the initial con�guration of the bath mimics the initial elec-

tronic density in the adiabatic representation. The initial con�guration for the bath modes

are sampled from the thermal Wigner distribution, ρb ∝ exp{−
∑

j
2
ωj

tanh(
βωj

2
)(1

2
p2

0j +

1
2
ω2
j q

2
0j)}, with the trace over the bath approximated as Trb {ρb · · · } ≈ 1

Ntraj

∑w
(q0,p0) · · · ≡

〈· · · 〉. In addition, we initialize the active con�guration a(n) accordingly by distributing the

initial phase terms on surface 1 with the probability |c1 (0) |2 and on surface 2 via probability

|c2 (0) |2.

Given that the electronic amplitudes are propagated in the adiabatic representation and

the bath trajectories move along adiabatic energy surfaces according to the FSSH algorithm,

it is non-trivial to extract diabatic electronic populations. We adopt the interpretation of

mixed quantum-classical density matrix[168] for the diabatic population on state i, which is

given by

Pi =

〈∑
j

|Uij (q)|2 δja +
∑
j<k

2Re [Uij (q)σjkU
∗
ik (q)]

〉
. (3.14)

Note that the expression for Pi includes information from the active surface (a) as well as the

adiabatic amplitude (σjk). For the spin�boson model, we can express the reduced population

dynamics of state 1 as

P1 =
〈
sin2 θ (q) δ1a + cos2 θ (q) δ2a

〉
+ 〈2 sin θ (q) cos θ (q)Re [c1c

∗
2]〉 , (3.15)

which is composed of a portion associated with the active surface and a portion contributed

by the adiabatic coherence.
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3.2.3 Decoherence

Within the standard FSSH algorithm, a di�culty arises when a trajectory passes through

the coupling region and the electronic wavefunction may bifurcate on di�erent surfaces[65,

74, 169, 170]. Before the bifurcation event, each FSSH trajectory carries a particular elec-

tronic amplitude. After the trajectory passes through the coupling region, the wavefunction

retains its phase and the density matrix remains pure, even if the trajectories are separated

on di�erent surfaces. This failure to incorporate decoherence may lead to an inaccurate

description of electronic dynamics.

The augmented FSSH (A-FSSH) [171] has been proposed to resolve this problem by

collapsing the electronic state on the inactive surfaces and projecting onto the active surface

according to a decoherence rate calculated on the �y. The full procedure of the A-FSSH

algorithm is outlined in Ref. 171. Here, for completeness, we brie�y review the A-FSSH

scheme.

The decoherence rate depends on the matrix of augmented moments of the bath co-

ordinate and momentum (δq̂, δp̂) which provide information regarding the separation of a

proxy wave packet in phase space. The augmented moments evolve along a trajectory which

follows the equations of motion

d

dt
δq̂j = T̂ qj − T

q
j,aaÎ , (3.16)

d

dt
δp̂j = T̂ pj − T

p
j,aaÎ , (3.17)

where T̂ q and T̂ p are obtained by expanding the full quantum Liouville equation to �rst
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order in ~ (linearized approximation)

T̂ qj ≡ −i
[
V̂ , δq̂j

]
+ δp̂j −

∑
k

pk

[
d̂k, δq̂j

]
, (3.18)

T̂ pj ≡ −i
[
V̂ , δp̂j

]
+

1

2

{
δF̂j, σ̂

}
−
∑
k

p̂k

[
d̂k, δp̂j

]
, (3.19)

and the matrix of forces is given by F̂j ≡ −∂V̂ /∂qj|q and δF̂j = F̂j − Fj,aaÎ. Via the

augmented moments, one can derive the o�-diagonal correction to the equation of motion

for the reduced electronic density matrix,

d

dt
σ̂ = −i[V̂ , σ̂]−

[
p·d̂, σ̂

]
+ i
[
F̂ , δq̂

]
, (3.20)

which incorporates the decoherence mechanism in the last term. The estimated decoherence

rate for the separation of wavepackets on the active surface a and the inactive surface b is

of the form

γdba = dt

{
(F bb − F aa) · δqbb

2
− 2 |F ab · δqbb|

}
, (3.21)

which is obtained by assuming frozen Gaussian wave packets for the bath wavefunction

outside of the derivative coupling region (d̂ = 0) and reducing the decoherence rate for

non-zero derivative couplings. The A-FSSH algorithm also permits resetting the augmented

moments to avoid the failure of the linearized approximation. The proposed reset rate is

given by bifurcate

γrba = −dt(F bb − F aa) · δqbb
2

. (3.22)

Note that γrba is the negative collapsing rate since the moments become invalid when

wavepackets aggregate.

A more traditional approach to decoherence corrections within surface hopping consists

of damping the coherence of the density matrix via a pure-dephasing-like rate[79, 80, 86].
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Within this simpler density-matrix approach, we treat the evolution of the adiabatic co-

herence outside the derivative coupling region (d̂ = 0) as pure dephasing in a stochastic

formulation[172]. Inside the zero derivative coupling region, the population transfer is ex-

cluded and the adiabatic coherences satisfy d
dt
σjk = −i(Vj − Vk)σjk and the formal solution

is σjk (t+ τ) = σjk (t) 〈exp{−i
∫ t+τ
t

dt′[Vj (t′) − Vk (t′)]}〉w. The pure-dephasing time within

this stochastic formulation is obtained via the energy di�erence correlation function[172]

1

T ∗2
=

1

2

∫ ∞
0

〈[Vj (t′)− Vk (t′)] [Vj (0)− Vk (0)]〉 dt′. (3.23)

To simulate the decay of the adiabatic coherence within the FSSH algorithm, we introduce

a decoherence terms that leads to an exponential decay of the adiabatic coherences. In

particular, decoherence is modeled as a Poisson process with the probability that a coherence

decay occurs in the time interval [t, t+ dt] gives by Prob{N [σjk (t)]−N [σjk (t+ dt)] = 1} =

e−dt/T
∗
2 dt/T ∗2 ≈ dt/T ∗2 where N [σjk (t)] is the number of trajectories whose density matrix

retains coherence. However, for the spin�boson model, estimation of T ∗2 along each trajectory

via Eq. (3.23) is not well de�ned. To circumvent this problem, we assume the decoherence

time scale takes a similar form for each trajectory

1

τjk (t)
=

1

2

∫ t

0

(Vj (t′)− Vk (t′)) (Vj (0)− Vk (0)) dt′ (3.24)

which gives an estimate of the pure-dephasing time outside of the derivative coupling region.

The decoherence rate for the o�-diagonal term σjk is then given by

γdjk (t) =
dt

τjk (t)
. (3.25)

A decoherence factor for the o�-diagonal density matrix elements may be de�ned as σjk =
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Figure 3.1: Diabatic population transfer rates (k) as a function of diabatic coupling ∆

for FSSH (blue), A-FSSH (red), and HEOM (black) in the unbiased ε/λ = 0 and biased

ε/λ = 0.4 cases. The bath temperature is assumed to be in the classical limit, T = 300 K.

The reorganization energy is Er = 520 cm−1, while the bath frequency scale ωc is tuned

so that ∆/ωc � 1. The dashed lines are reference markers of sub-quadratic and quadratic

dependence, respectively. The diabatic population transfer rates is extracted from the pop-

ulation dynamics by exponential �tting.

ηjkcjc
∗
k, so that the hopping rate, namely the analogy of Eq. (3.13), becomes

γhopab = dt
2

|ca|2
Re(p · dabσab). (3.26)

For every time step, we calculate the decoherence timescale τjk (t) by accumulating energy

di�erence correlations along the trajectory. If a decoherence event occurs, the associated

factor ηjk is set to zero. Then we symmetrize the density matrix and continue the trajectory

propagation.
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Figure 3.2: Population dynamics of the for FSSH, A-FSSH, and HEOM in the (a) unbiased

ε/λ = 0 and (b) biased ε/λ = 0.4 cases. The lower panels show the surface and coher-

ence terms separately, as de�ned in Eq. (3.33). The bath temperature is T = 300 K, the

reorganization energy is λ = 520 cm−1, and ωc = 85 cm−1.

3.3 The Golden-Rule Regime

A surprising feature of the standard FSSH algorithm that has recently been discovered

is its failure to capture the quadratic dependence of the (diabatic) transfer rate in the

weak coupling regime. The generality of this behavior remains somewhat controversial.

Furthermore, the fundamental origin of this apparent failure is unclear. Landry and Subotnik

noted an interesting aspect of the simple one-dimensional Landau-Zener (LZ) problem[157].

In the standard treatment of the LZ problem with initial electronic population on one surface

only, a single voyage through the crossing region produces population di�erences in harmony

with the expected quadratic coupling dependence of the rate. However, if the system is

prepared initially with arbitrary population on both diabatic surfaces, then a passage through
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the crossing point induces a population change that is proportional to both the electronic

coupling itself as well as its square. It may then be argued that since traversal of the

crossing region mixes the populations, multiple crossings will produce a rate with a sub-

quadratic coupling dependence. With the addition of decoherence, however, populations are

localized after each crossing, such that the rate always retains its proper quadratic golden-

rule form. Below we show that while this argument cannot explain the deviations from

Marcus golden-rule behavior exhibited by FSSH, the notion that decoherence can alter the

coupling dependence of the rate in a favorable way is indeed correct.

Let us brie�y revisit the simple one dimensional LZ example. As in Ref. 157, let us take

an electronic propagator of the form

U =

 √
ξ

√
1− ξ

−
√

1− ξ
√
ξ

 , (3.27)

where

ξ = exp

[
−2π

~
∆2

|v · (F1 − F2)|

]
≡ exp

[
−η∆2

]
(3.28)

is the LZ parameter which depends on the crossing velocity v and the di�erence in the

(diabatic) forces, F1 − F2, at the crossing point, and the electronic coupling, ∆. Clearly a

pure initial wave packet with amplitude placed entirely on surface a, namely

P (0) =

 1

0

 , (3.29)

produces a population di�erence on surface 2 after one crossing that is proportional to ∆2
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for small ∆. On the other hand, if the initial packet has the form

P (0) =

 α

β

 , (3.30)

where α and β are arbitrary constants satisfying α2 + β2 = 1, then after one passage the

population di�erence on the surface b is given by (ξ − 1)β2 + (1− ξ)α2 − 2
√
ξ(1− ξ)αβ ≈

(α2 − β2) η∆2 − √η∆αβ. The linear term in the electronic coupling heralds an apparent

subquadratic dependence of the rate on ∆. Importantly, however, it should be noted that

the mixing of populations that occurs during passage through the crossing region depends

on ∆. In particular, starting from the "pure" initial state

P (0) =

 1

0

 , (3.31)

passage through the crossing region produces populations on each diabatic state that are

non-zero, but do depend on ∆ and are thus not arbitrary constants. Via consideration of

P (n) = Un

 1

0

 , (3.32)

it is straightforward to demonstrate that even in the absence of decoherence, multiple cross-

ings do not generate spurious terms in the b-state population that are linear in ∆ within

this simple model.

To explore the issue of the behavior predicted by surface hopping in the Marcus regime, we

turn to direct simulation. In Fig. 3.1, compare the exact diabatic population transfer rates,

numerically extracted from HEOM simulations in the high temperature, weak electronic

coupling regime to both the results predicted by FSSH as well as the decoherence based
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A-FSSH algorithm. In both cases, we use Eq. (3.15) to extract diabatic quantities. The

exact HEOM simulations are not con�ned to the strict high temperature limit. Thus we

expect rates that scale as ∆2, but do not necessarily conform quantitatively to standard

Marcus theory. The results are shown for both an unbiased and strongly biased cases of the

spin�boson problem. Several important features should be noted. First, in the symmetric

situation, the FSSH approach yields the correct scaling of the rate with ∆ and produces

results that are essentially indistinguishable from those of A-FSSH. This is true even as

the electronic coupling is varied over a wider range, and for all values of the reorganization

energy. On the other hand, when there is a sizable energetic bias, the rate indeed violates

Marcus scaling and behaves in a manner qualitatively similar to that described in Ref. 171.‡

Importantly, however, the magnitude of the deviations we �nd are signi�cantly smaller than

that expected from the calculations of Ref. 171. Remarkably, the inclusion of decoherence

corrects this failing, producing results in quantitative correspondence with exact numerics.

Thus, violations of the expected golden-rule behavior as well[ as the impact of decoherence

in the weak-coupling regime appear to depend sensitively on the electronic bias.

To gain a deeper understanding of this surprising result, we decompose the non-adiabatic

population into terms that have an explicit dependence on the dynamics on a given surface

the coherence between surfaces, respectively. It may be shown that Eq. (3.15) can be recast

‡The recently published paper, Jain and Subotnik, J. Phys. Chem. Lett. 6 , 4809 (2015), makes a
nearly identical observation. We thank Joseph Subotnik for making us aware of this during the writing of
this manuscript.
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as

P1 = Psur + Pcoh

=

〈
1

2
+

1

2

g · q + ε0√
(g · q + ε)2 + ∆2

(δ2λ − δ1λ)

〉

+

〈
∆√

(g · q + ε)2 + ∆2
Re[c1c

∗
2]

〉
, (3.33)

where we have labeled the two relevant terms in Eq. (3.33) as the "surface" term, Psur, and

the "coherence" term, Pcoh. Note that we are using the diabatic interpretation of Ref. 168,

so in essence it is the "surface" term that is expected to be most sensitive to decoherence

corrections applied in the adiabatic basis, not the "coherence" term. Furthermore, note that

it is the surface term that has the stronger explicit dependence on the energetic bias, in

harmony with the notion that the distinction between FSSH and its decoherence corrected

variants will depend on bias as re�ected in the way decoherence alters the behavior of the

�rst term of Eq. (3.15). In Fig. 3.2 we show the temporal decay of population in both the

unbiased and biased cases, within both FSSH and A-FSSH. We also show separately the

surface and coherence terms. For the unbiased case, FSSH and A-FSSH yield essentially

identical results, while in the biased case A-FSSH is in near quantitative agreement with the

exact result while the standard FSSH result decays too rapidly. The di�erence between the

two results is noticeable only in the surface term, which dominates over the coherence term.

Thus, we �nd that distinction between the unbiased and biased cases re�ects the manner in

which the bias couples to coherence-sensitive terms as exposed in Eq. (3.33).
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Figure 3.3: High temperature dynamics with intermediate electronic coupling strength. We

employ a reference unit of energy of 104 cm−1. Parameters are kT = 2 (T = 300 K),

∆ = ωc = 0.2 , (a)ε/∆ = 0, (b)ε/∆ = 1, and (c)ε/∆ = 2. Reorganization energies

(Er = λ/∆) are scanned from small to large and are listed on each panel. �Dephase� refers

to the use of Eqs. (3.24)-(3.26).
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Figure 3.4: High temperature dynamics in the adiabatic regime. We employ a reference unit

of energy of 104 cm−1. Parameters are kT = 2 (T = 300 K), ∆ = 1, ωc = 0.2, (a)ε/∆ = 1

and (b)ε/∆ = 2. Reorganization energies (Er = λ/∆) are scanned from small to large and

are listed on each panel. �Dephase� refers to the use of Eqs. (3.24)-(3.26).

3.4 Full Parameter Space

In this section, we explore more broadly the comparison of surface hopping to benchmark

calculations of dynamics in the spin�boson model. Fig. 3.2 illustrates that in the golden-rule

regime, standard FSSH produces results in qualitative agreement with the exact behavior

produced by HEOM calculations. The inclusion of decoherence can lead to improved and

even quantitatively accurate results, however the improvement over FSSH will depends sen-

sitively on the parameters of the underlying Hamiltonian, such as the energetic bias. Similar

behavior is seen away from the weak coupling limit.
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Figure 3.5: High temperature dynamics in the adiabatic regime. We employ a reference unit

of energy of 104 cm−1. Parameters are kT = 2 (T = 300 K), ∆ = 1, ωc = 0.2, and ε = 0.

Reorganization energies (Er = λ/∆) are scanned from small to large and are listed on each

panel. �Dephase� refers to the use of Eqs. (3.24)-(3.26).

3.4.1 High Temperature Regime

For intermediate electronic coupling and high temperature (kT/ωc � 1), a regime often

di�cult to treat via approximate perturbative approaches, we �nd that FSSH is quite ac-

curate, with an accuracy that is not altered by inclusion of decoherence within the A-FSSH

approach. On the other hand, direct decoherence damping with a pure-dephasing-type rate

generally leads to less accurate results than FSSH in this regime, especially when the reor-

ganization energy is large. These observations are illustrated in Fig. 3.3. In the adiabatic

regime, where the electronic coupling is large, we again �nd that FSSH is in good agreement

with the exact behavior of the simulated non-equilibrium populations at high temperatures,
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especially for large reorganization energies. Some select examples of this comparison are

illustrated in Fig. 3.4. In situations where the reorganization energy is small and the system

has no energetic bias, the upper left panel of Fig. 3.4(a) and the upper right panel of Fig. 3.5

illustrate how A-FSSH provides a damping of population oscillations that brings the ap-

proximate results into quantitative correspondence with exact simulations. With respect to

more phenomenological treatments of decoherence, two new features stand out. First, direct

decoherence damping with a pure-dephasing rate generally leads to more accurate results in

the strong-coupling regime than it does in situations where the electronic coupling is inter-

mediate or small as compared to other energy scales in the problem. In particular, unlike

in the case of intermediate coupling, the more phenomenological treatment of decoherence

appears not to lead to gross overestimates of the rate of population decay in energetically

biased cases for large electronic couplings. Furthermore, we �nd, for the �rst time, exam-

ples where a simple "pure dephasing" correction leads to clearly improved accuracy over

both FSSH and A-FSSH. We emphasize however that in general we �nd A-FSSH to be, on

average, the most accurate approach across the full parameter space.

3.4.2 Low Temperature Regime

Lastly, we turn to situations where the temperature is comparable to, or lower than, the

characteristic bath frequency. In such situations we expect any surface hopping approach to

be unreliable due to the fact that the dynamics of the nuclei are treated classically. Thus

processes such as nuclear quantum tunneling cannot be described. While we �nd this to

be generally the case, there are situations where the surface hopping approaches �nd some

success even in this "quantum bath" regime. In particular, when the electronic coupling
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Figure 3.6: Low temperature dynamics in the intermediate regime. We employ a reference

unit of energy of 104 cm−1. Parameters are kT = 0.2 (T = 30 K), ∆ = 2, ωc = 2, kT = 0.2,

(a) ε/∆ = 0, and (b) ε/∆ = 1/2. Reorganization energies (Er = λ/∆) are scanned from

small to large and are listed on each panel.
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Figure 3.7: Intermediate and low temperature dynamics in the adiabatic regime. We employ

a reference unit of energy of 104 cm−1. ε = 0 and reorganization energy is large λ/∆ = 5.

Parameters are (left) ∆ = 10, ωc = 1, kT = 1 and (right) ∆ = 20, ωc = 2, kT = 0.2.

�Dephase� refers to the use of Eqs. (3.24)-(3.26).
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is strong and the time scale is relatively short, both FSSH and A-FSSH can accurately

model the Rabi-like oscillations for several periods of motion as illustrated in the upper left

panel of Fig. 3.6 (a) and (b). For intermediate temperatures A-FSSH can accurately correct

the decay rate of the amplitude of oscillations, however its accuracy diminishes at lower

temperatures as shown in Fig. 3.7. In general, however, surface hopping fails to quantitatively

capture population relaxation in these regimes, with some "worst-case" examples illustrated

in Fig. 3.6.

3.5 Conclusions

In this chapter we have provided, to the best of our knowledge, the �rst detailed comparison

of surface hopping with exact quantum dynamics for an idealized but non-trivial model of

condensed phase non-adiabatic dynamics. In particular, we have focused on the role played

by decoherence across the entire parameter space in general, and in the incoherent golden-

rule regime in particular. Our results provide both an understanding of how decoherence

in�uences behavior in the weak electronic coupling regime as well as general guidelines for

the reliability of surface hopping with or without decoherence corrections across all regimes.

With respect to recovery of Marcus golden-rule scaling behavior, we present several novel

�ndings. First, we �nd that deviations from golden-rule scaling, at least within the con�nes

of the spin�boson model with a standard Debye spectral density, do not occur for symmetric

systems and only become apparent in systems with a large energetic bias. In biased cases

the inclusion of decoherence appears to correct the errant behavior of the standard FSSH

approach. On the other hand, we show that the origins of the inability of FSSH to yield
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golden-rule behavior are subtle and the departure from the quadratic scaling are smaller

than expected from past work. Lastly, we note that while it is clear that the decoherence

based A-FSSH algorithm alters the electronic dependence of the transfer rate in the weak

coupling limit so that the standard golden-rule is recovered, we have no analytical argument

that demonstrates that this should occur, or that it will continue to be true over a wider

range of ∆ than we have investigated.

A systematic survey of parameter space provides important guidelines concerning the

accuracy of surface hopping and its decoherence-corrected variants. One major conclusion

that can be immediately reached is that, in general, the standard FSSH is surprisingly

accurate in large portions of parameter space. Furthermore, while the decoherence-based

A-FSSH approach often leads to some improvement in the description of the temporal decay

of non-equilibrium population, on average the corrections are not dramatic. The largest

improvements fostered by the inclusion of decoherence provided within the A-FSSH approach

are found in the previously discussed golden-rule regime (c.f. Fig. 3.2) as well as in cases

where decoherence damps otherwise oscillatory population decay. Thus, at least with respect

condensed phase environments with widely dispersed spectral properties, the standard FSSH

approach should generally provide a reasonable description of dynamics.

All of the surface hopping approaches we have employed in this chapter have di�culty

in accurately describing low temperature situations, with the exception of symmetric cases

where the electronic coupling is so weak that essentially pure Rabi oscillations are observed on

short to intermediate time scales. However this breakdown of surface hopping is unsurprising

as the approach is incapable of capturing nuclear tunneling e�ects. Quantitative breakdowns

also appear at high and intermediate temperatures not only in the golden-rule limit, but also
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for intermediate to strong electronic coupling when the coupling to the bath (as given in

the reorganization energy) is also sizable. However, even in these regimes failures appear as

isolated examples more than generic trends.

We have also investigated decoherence corrections that are perhaps less well justi�ed than

that provided by A-FSSH but are simpler conceptually. In particular, we have explored an

approach similar to the earliest decoherence corrections which employs a simple damping

term given by the pure dephasing rate along a trajectory. In general we �nd that such an

approach decoheres relaxation dynamics too strongly, often worsening agreement between

the standard FSSH algorithm and the exact results. Somewhat surprisingly however, the

degree of decoherence provided by this approach may be seen to quantitatively correct the

failures of both FSSH and A-FSSH in the "isolated" cases where both fail, namely the regimes

of sizable electronic and system-bath couplings mentioned above. This coincidence should

be investigated further, as it may foster a deeper understanding of the physics associated

with these isolated examples, something that we currently have been unable to provide.
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Chapter 4

Inchworm Quantum Monte Carlo

Method for Exact Non-adiabatic

Dynamics

4.1 Introduction

The description of real-time dynamics in many-body quantum systems continues to provide

major challenges for current research. An accurate theoretical understanding of nonequilib-

rium processes ranging from charge and energy transport in quantum dots and molecular

junctions[34] to laser-induced electronic phase transformations[31] is crucial for the inter-

pretation of experimental results and the eventual design of new materials and technologies.

Quantum Monte Carlo (QMC) techniques form the basis for the exact description of the ther-

modynamics of systems dominated by quantum �uctuations[173]. In this setting, a variety
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of QMC methods may be used to exactly calculate the properties of lattice and continuum

systems, including systems where boson particle statistics induce non-trivial collective phe-

nomena such as the transition to a super�uid state[174]. The inclusion of fermionic statistics

within QMC is more di�cult, re�ecting the NP-hardness of the generic electronic structure

problem[174�176]. This di�culty reveals itself in the "fermionic sign problem," where Monte

Carlo summands alternate sign, leading to a poor signal-to-noise ratio that can inhibit the

accurate calculation of the thermodynamic properties of fermionic assemblies. Despite this

di�culty, the umbrella of QMC techniques has essentially solved the problem of the thermo-

dynamics of non-fermionic systems[177], while great progress continues to be made towards

the development of accurate QMC approaches for fermions[101, 103, 178�180].

The simulation of real-time quantum dynamics presents another layer of di�culty that

is absent when thermodynamics alone is considered. In general, when considering the exact

simulation of quantum dynamics, the computational cost scales exponentially with increasing

time. This poor scaling manifests in distinct ways in di�erent methodologies[124, 127, 129,

181�185]. Within attempts to extend QMC to the real-time axis, exponentially poor scaling

arises from the oscillating phase factors generated by the time evolution operator e−iHt. The

summation of random phase information leads to a shrinking signal to noise ratio known as

the "dynamical sign problem". This a�icts all dynamical QMC simulations, regardless of

the nature of the underlying particle statistics.

Modern diagrammatic variants of QMC (dQMC) have proven extremely powerful in the

study of thermodynamic properties of impurity models, which consist of a small interacting

subsystem coupled to noninteracting fermionic or bosonic baths[127]. The extension of these

approaches to real-time dynamics has also met with some success[124, 182�184, 186, 187]. In
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particular, in conjunction with partial resummations of the exact diagrammatic series[127,

129] and reduced dynamics techniques[130, 131], real-time dQMC has proven capable of the

exact simulation of nonequilibrium properties in the paradigmatic Anderson model for non-

trivial time scales in select parameter regimes[132]. Despite the aforementioned successes,

previous real-time dQMC methods have all been plagued by the dynamical sign problem

to di�ering degrees[124, 182�184, 186, 187]. Very recently, a new dQMC method, dubbed

the "inchworm algorithm," has been introduced that largely overcomes the dynamical sign

problem[106]. The inchworm algorithm optimally recycles diagrammatic information so that

the computational cost scales approximately quadratically, as opposed to exponentially, with

time. For the case of the Anderson model, the inchworm algorithm has enabled exact real-

time simulation even deep within strongly correlated regions of the parameter space, such

as the Kondo and mixed valence regimes.

While progress for the Anderson model has been impressive, it should be noted that

the number and range of exact benchmarks for this model are far fewer and less impressive

than those available for a simpler impurity model: the spin�boson model. The spin�boson

model consists of a two-level system coupled linearly to a bosonic bath, and constitutes

the basic proxy for dissipative condensed phase charge and energy transfer problems[2, 3,

48]. Two decades of numerical e�ort aimed at the spin�boson problem have produced a

suite of methodologies capable of long-time simulation of nonequilibrium observables over

essentially the entire parameter space of the model[87, 88, 93�96, 99�102, 144]. In this

sense, the spin�boson model embodies a stringent test which should be passed by any new

numerically exact approach to real-time quantum dynamics.

While the spin�boson model employs seemingly unrealistic features such as linear cou-
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pling to a harmonic reservoir, even anharmonic systems may be mapped to this form of

environmental interaction within linear response theory[188�192]. This generality explains

the wide usage of the spin�boson paradigm in the modeling of systems ranging from charge

and energy transfer in condensed phases and biological systems[4�11] to the relaxation of

dilute impurities in the solid state[193�195] and in Josephson junction arrays[196]. In the

rotating wave approximation, the spin�boson model is reduced to the Jaynes�Cummings

model, which is of great importance in quantum optics.[197�199]

In the following work, we use the spin�boson model as a platform to provide the essential

details of the inchworm approach and to improve and expand upon the methodology. In

particular we describe two diagrammatic expansions (and their resummations within the

inchworm framework) rooted in distinct exactly solvable reference systems. We further

introduce a new cumulant-based approach[200�203] that reduces the computational cost

from quadratic to linear in time. In essence, the use of cumulants allows for the construction

of an inchworm expansion for the memory function directly from the moment expansion and

without the need for any a priori information about the memory kernel itself. We argue that

taken together, the distinct inchworm algorithms presented here should essentially cover the

relevant parameter space of the spin�boson model.

In this work we compare the results of the inchworm algorithm to those produced by

the other methodologies mentioned above in essentially all regimes of interest. Our results

allow us to compare and contrast the strengths and weakness of the relative approaches. We

demonstrate that the inchworm algorithm is competitive with the most advanced real-time

approaches and is capable of producing converged long-time results even in some regimes

di�cult for several prominent approaches. The success of the inchworm algorithm as outlined
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in this work paves the way for a host of novel applications, a few of which we enumerate at

the conclusion of this chapter.

The organization of the chapter is as follows. In Sec. 4.2, we review the real-time dQMC

scheme and the inchworm algorithm in a general formalism. In Sec. 4.3, we formulate the

system�bath coupling expansion and its corresponding inchworm expansion. In Sec. 4.4,

the diabatic coupling expansion is described. In Sec. 4.5, we introduce cumulant inchworm

expansions based on the diabatic coupling expansion. In Sec. 4.6, we provide an analysis

of convergence for the system�bath coupling inchworm (SBCI) and the diabatic coupling

cumulant inchworm (DCCI) approaches. In Sec. 4.7, the detailed comparison of our new

approach to established benchmarks, as well as a discussion of the relative bene�ts and

drawbacks of our approach, are presented. A conclusion is presented in Sec. 4.8.

4.2 dQMC Scheme and the Inchworm Algorithm

In this section, we brie�y review the real-time dQMC approach[127], the dynamical sign

problem and the inchworm algorithm[106] in a general framework.

We consider a generic Hamiltonian of an open quantum system in the form

H = Hs +Hb +Hsb, (4.1)

where Hs and Hb are the Hamiltonian of the system and the bath, respectively, and Hsb

describes the system�bath coupling. For a given observable O, we are interested in its

time-dependent expectation value

〈O (t)〉 = Tr
{
ρ0e

iHtOe−iHt
}
. (4.2)
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Here, 〈·〉 = Tr {ρ0·} is the trace performed over all degrees of freedom and ρ0 is the initial

density matrix of the full system. It should be noted that equilibrium time correlation

functions may also be calculated within the framework outlined below[121, 132], however for

simplicity we focus on one-time non-equilibrium quantities of the form (4.2).

4.2.1 Dyson Series

To evaluate the dynamics of the observable 〈O (t)〉, a key needed element is the propagator

e−iHt, which is di�cult to calculate in a computationally useful form. In general, we can

expand the propagator in a perturbative fashion by writing the Hamiltonian as

H = H0 +H ′, (4.3)

thus partitioning H into a (solvable) H0 and an interaction Hamiltonian H ′. In this inter-

action picture, the dynamics of an operator O is given by

eiHtOe−iHt = U † (t) Õ (t)U (t) , (4.4)

where the propagator is U (t) given by U (t) = eiH0te−iHt. We denote the time-dependent

operator in the interaction picture by Õ (t) = eiH0tOe−iH0t. One can expand the propagator

using the time-ordered Dyson series (~ = 1)

U (t) =
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

× H̃ ′ (t1) H̃ ′ (t2) · · · H̃ ′ (tn)

(4.5)

which contains a series of interaction operators H̃ ′ (ti) = eiH0tH ′e−iH0t with the chronological

time ordering t > t1 > t2 > · · · > tn > 0. If this expansion is applied to the two interaction
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picture propagators in Eq. 4.4, the folded Keldysh contour naturally emerges from the se-

quence of interaction operators generated by the product. The interaction operators arising

from U (t) have time arguments denoted as
{
t+i
}
, and are thought of as existing on the

forward or + branch of the contour, while those emanating from U † (t) have time arguments

denoted as
{
t−i
}
, and exist on the backward or − branch. This is illustrated in Fig. 4.1a.

The contour is folded at t = tmax, where the observable operator is applied. Each set of time

arguments,
{
t+i
}
and

{
t−i
}
, is time ordered: tmax > t±1 > t±2 > · · · > 0±, where 0± denote

the initial time on the ± branch, respectively. Therefore, we can write Eq. 4.4 as

O (t) =
∞∑
n=0

∫ tmax

0

dt+1

∫ t+1

0

dt+2 ...

∫ t+n−1

0

dt+n×

∞∑
n′=0

∫ tmax

0

dt−1

∫ t−1

0

dt−2 ...

∫ t−
n′−1

0

dt−n′×

(−i)n in′H̃ ′
(
t−n′
)
· · · H̃ ′

(
t−1
)
×

Õ (tmax) H̃ ′
(
t+1
)
· · · H̃ ′

(
t+n
)
.

(4.6)

For brevity, it will be convenient to write the two types of time arguments on the two

branches of the contour in terms of a single time argument label si:

si =


s+
i = t+n−i+1 i ≤ n,

s−i = t−i−n n < i ≤ m.

(4.7)

Here, m = n+n′ and {si} is ordered according to the Keldysh contour causality, s1 < · · · <

sm as shown in Fig. 4.1. We de�ne si < sj if si occurs before sj on the Keldysh contour.
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Therefore, we can write Eq. 4.4 as an expansion in terms of si,

O (t) =
∞∑
m=0

m∑
n=0

∫
dsm · · ·

∫
ds1 (−1)n im×

H̃ ′ (sm) · · · H̃ ′ (sn+1) Õ (tmax) H̃ ′ (sn) · · · H̃ ′ (s1) ,

(4.8)

where the integration
∫

dsm · · ·
∫

ds1 is taken to represent∫
dsm · · ·

∫
ds1 =

∫ tmax

0

dt+1

∫ t+1

0

dt+2 ...

∫ t+n−1

0

dt+n∫ tmax

0

dt−1

∫ t−1

0

dt−2 ...

∫ t−
n′−1

0

dt−n′ .

(4.9)

Each term in the expansion can be represented by diagrams, in which a vertex or open circle

in Fig. 1(a) represents the interactions occurring at the times {si} and a cross symbol indi-

cates the tip or the folding time tmax of the Keldysh contour where the observable operator

acts. For instance, Fig. 4.1b shows the diagrams of the unperturbed term (m = 0) and some

example diagrams of second order (m = 2, two vertices) and of fourth order (m = 4, four

vertices).

4.2.2 Real-time path integral formulation

The dynamical quantities of interest can be expressed in the form of a path integral, or more

generally the integral over the contour con�guration space

〈O (t)〉 =

∫
dsO (s) , (4.10)
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(a)

(b)

= +
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Figure 4.1: (a) A con�guration s drawn on the Keldysh contour, with physical times ti on

the forward or + branch and t′i on the backward or − branch. Below, the con�guration

is shown on the unfolded contour with contour times si. The × indicates the tip or fold

of the contour and the ticks indicate interaction operators H ′. (b) General framework of

bare dQMC. The thin line represents an unperturbed propagator e−iH0s, while the thick line

represents the exact sum over all possible con�gurations contributing to some observable

〈O (t)〉. (1) is the zeroth (m = 0) order contribution,
〈
eiH0tOe−iH0t

〉
. (2)�(4) are examples

of second (m = 2) order contributions with (2)n = 1, (3)n = 2, and (4)n = 0. (5) and (6)

are examples of fourth (m = 4) order con�gurations.

66



4.2. DQMC SCHEME AND THE INCHWORM ALGORITHM

where we denote s = {si} as the contour con�guration. Note that this expression is implicitly

time-ordered and the integration
∫

ds is taken to mean∫
ds =

∞∑
m=0

m∑
n=0

∫
dsm · · ·

∫
ds1. (4.11)

The contribution of a given con�guration s is given by

O (s) = (−1)n im
〈
H̃ ′ (sm) · · · H̃ ′ (sn+1)×

Õ (tmax) H̃ ′ (sn) · · · H̃ ′ (s1)
〉
.

(4.12)

This object is a seemingly complicated multi-time quantity, but in many cases is that it can

be e�ciently evaluated since it is de�ned by an interaction picture under the propagation

associated with a solvable H0.

The dQMC method provides an unbiased estimator for the in�nite-dimensional integral

over all con�guration parameters,
∫

dsO (s), by summing over a set of sample con�gurations

si drawn from some normalized probability distribution de�ned by

Prob (s) =
w (s)∫
dsw (s)

≡ w (s)

Zw

. (4.13)

The Metropolis�Hastings algorithm[204, 205] is method for generating a sample set of this

type when only w (s) is known. To see how this works, consider that for any prescribed

weight function w (s), we have∫
dsO (s) = Zw

∫
ds
O (s)

w (s)
Prob (s) . (4.14)

Given that the {si} for i ∈ {1, ...,M} are drawn from Prob (s), in the limit of large M one

obtains ∫
dsO (s) ' Zw

M

M∑
i=1

O (si)

w (si)
≡ Zw

〈
O
w

〉
w

. (4.15)

67



CHAPTER 4. INCHWORM QUANTUM MONTE CARLO METHOD

Importantly, we note that Zw is completely independent of the observable calculated.

Therefore, to remove the dependence on Zw, we introduce a �normalizing� observable

N =
∫

dsN (s) which can be evaluated analytically. Evaluating N via the same Monte

Carlo procedure, one obtains

N =

∫
dsN (s) ' Zw

〈
N
w

〉
w

. (4.16)

With this normalization, Zw cancels out of all �nal expressions:∫
dsO (s) = N

∫
dsO (s)∫
dsN (s)

' N
Zw

〈O
w

〉
w

Zw

〈N
w

〉
w

= N

〈O
w

〉
w〈N

w

〉
w

. (4.17)

Since we have complete freedom in the choice of N , one is therefore free to choose a quantity

which is easy to evaluate in both the Monte Carlo and the analytical calculation. The choice

used here is N (s) = 1, such that N is simply the hypervolume of the multidimensional

space of interaction times. Since this hypervolume normalization is positive de�nite, it

cannot have a sign problem, and all potential sign problems must appear in the nominator.

For w (s), we typically choose the absolute value |O (s)| of the contribution to the observable

itself or a closely related property, such that the summation is optimized for summing large

contributions to a particular observable. It is currently unknown whether this choice is

optimal.

4.2.3 Dynamical sign problem and inchworm algorithms

Unfortunately, summing individual contributions to an observable in this manner, the so-

called bare dQMC algorithm, generally involves a dynamical sign problem. In real-time

dQMC, the dynamical sign problem is caused by the oscillatory nature of real-time propaga-

tors which results an exponentially growing computational cost as time increases[124, 182,
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186, 206]. To circumvent the dynamical sign problem, we employ inchworm expansions[106].

This allows us to e�ciently reuse quantities propagated within short time intervals in the cal-

culation of quantities propagated between longer times. Two concrete examples of practical

inchworm algorithms for the spin�boson model will be developed below.

We brie�y introduce the general concept behind inchworm expansions. Let si < s↑ <

sf be three times: an �initial,� �inchworm� and ��nal� time, respectively. Assume some

set of properties have been exactly evaluated for all cases where all interaction vertices

are restricted to the time interval [si, s↑]. Given knowledge of these auxiliary restricted

quantities, it is often possible to construct an e�cient expansion for the same set of quantities

with the vertices restricted to the longer interval [si, sf ]. This describes an inchworm step,

or the process of inching. A series of inchworm steps allows one to start with a set of easily

evaluated restricted quantities de�ned over very short intervals, eventually obtaining the set

of unrestricted physical quantities for which interaction vertices span the full length of the

Keldysh contour.

The inchworm algorithm has the distinct advantage that much fewer diagrams must

be sampled to obtain a converged answer, since each inchworm diagram contains an in�nite

number of bare diagrams, such that often relatively few low-order inchworm diagrams contain

all important contributions from the relevant bare diagrams at all orders. This advantage

comes at two important costs. First, as when working with nonequilibrium Green's func-

tions, one is forced to calculate a complete set of two-time properties even if only single-time

properties are of interest. Speci�cally, all propagators between any two points in [si, s↑] are

required to obtain a propagator between si and sf . Second, Monte Carlo evaluations at long

times are no longer independent of short-time evaluations, and errors are carried forward
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in time during the stepping procedure. This has profound computational implications in

that the algorithm is not �embarrassingly parallel� like standard Monte Carlo techniques,

since information concerning short-time propagators must be distributed between the various

computer nodes performing the calculation. Furthermore, careful error analysis is required

in order to take error propagation into account. Essentially, a series of completely indepen-

dent calculations must be carried out to evaluate the statistical errors, and one must then

verify that systematic errors due to the error propagation (in addition to the statistical ones

common to all Monte Carlo techniques) are assessed and converged to within the desired

accuracy.

Within the formulation of inchworm algorithm, each single inchworm step is numerically

exact if Monte Carlo samples are su�cient for the convergence. The sequence/grid of inch-

worm steps with �nite size is formally exact if all propagators of shorter times are smooth

enough and well-representative in the discrete sequence/grid. In practice, we have to trun-

cate the maximum order of sampled con�guration for each inchworm step and interpolate

the discrete propagator data.

4.2.4 Spin�boson model

We now specialize the discussion to the case of the spin�boson model. This allows us to give

explicit expressions for the terms that emerge in expansions that employ di�erent choices

of H0. The form of the Hamiltonian is given by Eq. (4.1). The system Hamiltonian Hs is

taken to be a two-level system in the diabatic basis |α〉 ∈ {|1〉 , |2〉},

Hs = εσ̂z + ∆σ̂x. (4.18)

70



4.2. DQMC SCHEME AND THE INCHWORM ALGORITHM

In this notation, σ̂z = |1〉 〈1| − |2〉 〈2| and σ̂x = |1〉 〈2| + |2〉 〈1|. The energetic bias ε is the

energy di�erence between the two diabatic states, and the diabatic coupling ∆ characterizes

spin �ip processes within the electronic system. The boson bath consists of a set of harmonic

oscillators with frequencies ω` described by the bath Hamiltonian

Hb =
∑
`

1

2

(
p2
` + ω2

`x
2
`

)
=
∑
`

ω`

(
b†`b` +

1

2

)
. (4.19)

The system�bath coupling Hsb is assumed to be linear in the bath coordinates

Hsb = σ̂z
∑
`

c`x`. (4.20)

The coupling constants c` describe the strength of the interaction between the harmonic

modes and the spin. The system�bath coupling is typically parametrized in compact form

by the spectral density

J (ω) =
π

2

∑
`

c2
`

ω`
δ (ω − ω`) . (4.21)

We specify the system�bath coupling strength by a spectral density that is linear for small

ω and has a Lorentzian cuto� for large ω:

JD (ω) =
λ

2

ωcω

ω2
c + ω2

, (4.22)

namely the so-called the Debye spectral density. For this spectral density, we de�ne the

reorganization energy as λ = 4
π

∫ J(ω)
ω
dω = 2

∑
` c

2
`/ω

2
` , which provides a measure of the

system�bath coupling strength. The cuto� frequency of the Lorentzian function, ωc, char-

acterize the frequency of the bath. Therefore, a spin�boson model can be characterized by

�ve parameters (with ~ = 1): the diabatic coupling ∆, the bias energy ε of the electronic

system, the cut-o� frequency ωc, the temperature kBT = 1/β of the boson bath, and the

reorganization energy λ characterizing system�bath coupling.
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Throughout this work, we will concentrate on the local dynamics of the spin σ̂z in the

diabatic basis

〈σz (t)〉 = Tr
{
ρ0e

iHtσ̂ze
−iHt} . (4.23)

Here we only address factorized initial conditions corresponding to thermal equilibrium of the

bath in the absence of the system�bath coupling, such that the initial density matrix is given

by the factorized form ρ0 = ρs ⊗ ρb, with the bath initially in equilibrium ρb = e−βHb
Trb{e−βHb} .

We specify the initial condition of the spin as ρs = |1〉 〈1|. Treatment of more general initial

conditions is simple but will not be discussed further here.

There are several useful ways of partitioningH intoH0 andH ′ such that the perturbation

series of Eq. 4.3 can be carried out, each yielding a di�erent type of expansion. We will discuss

two such choices. One treatment takes H ′ = Hsb, expanding with respect to the system�bath

coupling. Another takes H ′ = ∆σ̂x, expanding in the diabatic coupling ∆. In the following

sections, we discuss these expansions and their inchworm Monte Carlo implementations.

4.3 System�Bath Coupling Inchworm (SBCI)

Expansion

4.3.1 Bare dQMC

We start with the example of the bare dQMC expansion in terms of the system�bath cou-

pling H ′ = Hsb. This expansion is the analogous to the hybridization expansion in the

Anderson model, for which the �rst inchworm expansion was formulated. The unperturbed

Hamiltonian is taken to be H0 = Hs +Hb and the initial density matrix is ρ0 = |1〉 〈1| ⊗ ρb.

72



4.3. SYSTEM�BATH COUPLING INCHWORM (SBCI) EXPANSION

To write a dQMC expression for the expectation value of the observable O = σ̂z, we must

determine the contribution O (s) of any given con�guration s to this expectation value in

the form of Eq. 4.12:

O (s) = (−1)n im
〈
H̃sb (sm) · · · H̃sb (sn+1)×

σ̃z (t) H̃sb (sn) · · · H̃sb (s1)
〉
.

(4.24)

In the interaction picture H̃sb (s) = eiH0sHsbe
−iH0s can be factorized as

H̃sb (s) = σ̃z (s)×
∑
`

c`x̃` (s) , (4.25)

and we de�ne the operator of the bath part as

B̃ (s) =
∑
k

c`x̃` (s) . (4.26)

It turns out that for a linear coupling of the form of Eq. (4.20), one can write Eq. (4.24) as

a product of a system in�uence functional U (s) and a bath in�uence functional L (s):

O (s) = (−1)n imU (s)L (s) . (4.27)

The system in�uence functional U (s) for the given initial condition |1〉 〈1| is de�ned as

U (s) = 〈1| σ̃z (sm) · · · σ̃z (sn+1)×

σ̃z (tmax) σ̃z (sn) · · · σ̃z (s1) |1〉 .
(4.28)

For the spin-1
2
case, all operators can be written in the form of matrices of rank 2 in the

basis of the Hilbert space of the isolated spin. Eq. (4.28) can then be e�ciently evaluated as

a matrix product of unperturbed system propagators of the form e−iHs(si−si−1), sandwiched

between σ̂z operators with si−sj denoting the di�erence of physical times given by Eq. (4.7).
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The bath in�uence functional is given by an m-time interaction picture correlation func-

tion of the bath operator B̃ (s) in the form of

L (s) =
〈
B̃ (sm) · · · B̃ (s1)

〉
b
, (4.29)

where we denote 〈·〉b = Trb {ρb·} and ρb is the initial bath density matrix. Using Wick's

theorem, which is valid for the bath operators within the interaction picture, one can express

L (s) as a sum of products of two-time correlation functions by use of the identity

〈
B̃ (sm) · · · B̃ (s1)

〉
b

=
∑
q∈Qm

∏
(j,k)∈q

〈
B̃ (sk) B̃ (sj)

〉
b
. (4.30)

The bath in�uence functional is zero for odd m. Qm denotes the set of possible distinct pair-

ings of the integers 1, 2, ..., m: each element q ∈ Qm is a set of ordered tuples corresponding

to a single pairing. For example, for m = 2 there is only one pairing, q = {(2, 1)}, and

Q2 = {{(1, 2)}} .

For m = 4 there are three possible pairings:

Q4 = {{(1, 2) , (3, 4)} , {(1, 3) , (2, 4)} , {(1, 4) , (2, 3)}} ,

and so on. With these de�nitions, the bath in�uence functional takes the form

L (s) =
∑
q∈Qm

Lq (s) , (4.31)

where the functional of a given pairing q;

Lq (s) =
∏

(j,k)∈q

〈
B̃ (sk) B̃ (sj)

〉
b
, (4.32)
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corresponding to a particular diagram with the coupling lines connecting sj and sk on the

Keldysh contour (see Fig. 4.3a). Diagram (a.1) is the zeroth order contribution. Diagram

(a.2) is the diagram associated with a given 2nd order con�guration (s1, s2). Diagrams

(a.3)�(a.5) are three diagrams (corresponding to three possible pairings of Q4) associated

with a 4th order con�guration (s1, s2, s3, s4).

The two-time correlation function of the harmonic bath in the interaction picture can be

evaluated semi-analytically prior to the start of the dQMC calculation as〈
B̃ (sk) B̃ (sj)

〉
b

=
2

π

∫
dωJ (ω)×[

coth

(
βω

2

)
cosω (sk − sj)− i sinω (sk − sj)

]
.

(4.33)

In practice, an m-time path con�guration includes (m− 1)!! diagrams, and computing each

diagram requires m/2 evaluations of the bath correlation function. Thus, calculating an

m�time correlation function requires a total of (m− 1)!! (m/2) function evaluation, which

approaches m√
2

(m/e)m/2 in the large m limit. This rapidly becomes a bottleneck for high

perturbation order. However, rather than explicitly summing over all diagrams in a con�g-

uration, it is possible to sum over the pairings as de�ned in Eq. (4.31) within the Monte

Carlo procedure, thus e�ectively removing this scaling issue at the cost of an overall increase

in the sign problem.

4.3.2 Restricted propagators and observable

To facilitate our discussion of the inchworm algorithm, we now de�ne restricted propagators

on contour subintervals. Propagators are de�ned with respect to particular physical observ-

ables. The bare restricted propagator G(0)
αβ (sf , si) is de�ned as follows. When the subinterval
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[si, sf ] is on a single branch of the contour, such that s+
i , s

+
f < tmax or s−i , s

−
f > tmax , then

G
(0)
αβ

(
s±f , s

±
i

)
= 〈α| e−iHs(s

±
f −s

±
i ) |β〉 . (4.34)

When the endpoints of the interval are on two di�erent branches, it is de�ned di�erently in

order to account for the observable at the contour's folding point:

G
(0)
αβ

(
s−f , s

+
i

)
= 〈α| e−iHs(s

−
f −tmax)σze

−iHs(tmax−s+i ) |β〉 . (4.35)

These restricted propagators are designated by thin solid lines in the diagrammatic repre-

sentation (see Fig. 4.2). The full restricted propagator from si to sf can be de�ned in terms

of an integral over con�gurations

Gαβ (sf , si) =

∫
s∈[si,sf ]

dsGαβ (s) . (4.36)

The notation s ∈ [si, sf ] indicates that the vertex times appearing in the con�guration s are

restricted to the interval [si, sf ]. The in�uence functional then takes the same general form

as Eq. (4.27)

Gαβ (s) = (−1)n imU ′αβ (s)L (s) , (4.37)

namely it is composed of system and bath parts, U ′αβ (s) and L (s). The bath in�uence

functional is identical to the one given by Eqs. (4.31) and (4.32), and the system in�uence

functional will be discussed immediately below.

The system in�uence functional, like the bare propagator, takes on di�erent forms for

intervals on a single branch as compared to across branches. For a single branch interval, it

is

U ′αβ
(
s ∈

[
s±i , s

±
f

])
=

〈α| e−iHss
±
f σ̃z

(
s±n
)
· · · σ̃z

(
s±1
)
eiHss

±
i |β〉 ,

(4.38)

76



4.3. SYSTEM�BATH COUPLING INCHWORM (SBCI) EXPANSION

Figure 4.2: Diagrammatic representation of the bare restricted propagator G(0) (thin solid
line) and the full restricted propagator G (thick solid line) of the subinterval [si, sf ] on an
unfolded Keldysh contour.

while for a cross-branch interval it becomes

U ′αβ
(
s ∈

[
s+
i , s

−
f

])
=

〈α| e−iHss
−
f σ̃z

(
s−m
)
· · · σ̃z

(
s−n+1

)
×

σ̃z (t) σ̃z
(
s+
n

)
· · · σ̃z

(
s+

1

)
eiHss

+
i |β〉 .

(4.39)

Note that if s+
i = s+

f or s−i = s−f , with both times on the same branch, the restricted

propagator is trivially equal to G(0) (sf , sf ) = G (sf , sf ) = 1. However, if s+
i = s−f , with the

times appearing on opposite branches, Gαβ

(
s−f , s

+
i

)
becomes the expectation value of the

observable given that the the system density matrix was initially in the state |β〉 〈α|:

Gαβ

(
s−f , s

+
f

)
= 〈〈α|σz (t− sf ) |β〉〉b . (4.40)

In terms of diagrams, the full restricted propagator is represented by a thick segment (see

Fig. 4.2).

4.3.3 Inchworm algorithm

Suppose that the full set of restricted propagators Gαβ (sk, sj) for all si < sj, sk < s↑ is

known, and one wants to evaluate a restricted propagator over a longer interval [si, sf ], with

77



CHAPTER 4. INCHWORM QUANTUM MONTE CARLO METHOD

sf > s↑. It is possible to de�ne an extended propagator for the interval [si, sf ] by appending

the bare propagator to the full propagator:

G (sk, sj) =


G(0) (sk, sj) sj, sk > s↑,

G (sk, sj) sj, sk < s↑,

G(0) (sk, s↑)G (s↑, sj) sj < s↑ < sk.

(4.41)

Since the contributions of all con�gurations s ∈ [si, s↑] are included in the extended propa-

gator, it is only necessary to sum over con�gurations in which every inclusion has at least

one vertex contained in the interval [s↑, sf ] . The propagator over the entire interval [si, sf ]

can then be constructed as a path integral over con�gurations

G (sf , si) =

∫
s∈[si,sf ]

dsGαβ (s) . (4.42)

The in�uence functional Gαβ is de�ned in terms of extended propagators and a bath in�uence

functional. It takes the form

G (s) = G (sf , sm) · · ·G (s2, s1)G (s1, si)×
∑
q∈Q′m

Lq (s) . (4.43)

The bath in�uence functional
∑

q∈Q′m Lq (s) is similar to that of Eq. (4.30), but summation

is only carried out over Q′m ⊆ Qm, a subset of the pairings including only inchworm proper

pairings.

To de�ne inchworm propriety, we �rst de�ne two pairs to be connected if their interaction

lines, which are drawn between the members of each pair, cross each other. As connected-

ness is clearly an equivalence relation, any pairing can be partitioned into disjoint sets of

connected pairs. A pairing or diagram is inchworm proper if there does not exist any such
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set with all of its vertices contained in [si, s↑]. Put di�erently, to check whether a particular

diagram is inchworm proper one should cluster together sets of interaction lines which cross

each other. If and only if every cluster includes at least one line with an endpoint in [s↑, sf ] is

the diagram inchworm proper. This is illustrated in Fig. 4.3, where two examples of improper

diagrams are crossed out. In Fig. 4.3b, diagram (b.1) is the zeroth order inchworm diagram.

Diagram (b.2), (b.4) and (b.5) are all inchworm proper 2nd order diagrams. Diagrams (b.3)

is an inchworm improper diagram that is included in diagram (b.1). Diagrams (b.6)�(b.8)

are associated with the same 4thorder con�guration. Diagrams (b.6) and (b.7) are included

in diagrams (b.4) and (b.5), respectively and only diagram (b.8) is inchworm proper.

It is straightforward to prove that any diagram in the bare expansion is accounted for

once and only once within the inchworm scheme; therefore, it is formally exact. However,

every inchworm diagram contains an in�nite number of bare diagrams, making the expansion

substantially more e�cient than the bare one.

This method will be referred to as the System�Bath Coupling Inchworm (SBCI) approach

in the following.

4.4 Diabatic Coupling Expansion

4.4.1 Polaron transformation

We now consider an expansion in terms of the diabatic coupling H ′ = ∆σx, i.e. the spin-

�ip interaction. The unperturbed Hamiltonian is in this case H0 = Hb + σz (ε+
∑

k ckxk).

Since H0 commutes with σz, its eigenstates maintain the spin quantum number σ = ±1,

which partitions them into two subspaces. Within each subspace the Hamiltonian is easily
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Figure 4.3: (a) The bare dQMC expression for the system�bath coupling expansion. The

arched curves connecting pairs of vertices within each con�guration describe the coupling

interaction. (b) The inchworm algorithm in the system�bath coupling expansion. All the

full restricted propagators are assumed to be known for any subinterval to the left of the s↑

time.
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diagonalized by a polaron transformation. The e�ective Hamiltonian for the σ = +1 and

σ = −1 subspaces, respectively, is

Hσ = Hb + σ

(
ε+

∑
`

c`x`

)
. (4.44)

We apply the transformation

BσHσB†σ = Hb + σε−
∑
`

c2
`

ω2
`

, (4.45)

where

Bσ =eθσ , (4.46)

θσ =σ
∑
`

c`

ω
3/2
`

(
b†` − b`

)
. (4.47)

Since θ+ = −θ−, it is convenient to write B†σ = Bσ̄. We also de�ne εσ = σε −
∑

`

c2`
ω2
`
. With

these de�nitions, the unperturbed propagator can be written in the form

e−iH0t =
∑
σ=±

e−iεσtBσ̄e−iHbtBσ |σ〉 〈σ| . (4.48)

In this form the interaction picture time evolution will turn out to be very easy to evaluate,

as discussed below.

The natural initial condition for the expansion in the diabatic coupling is ρb =

exp [−βH±], and using one of these two choices simpli�es the expressions substantially.

However, in order to allow for rigorous comparison with the system�bath coupling expan-

sion, we choose to start from a state described by ρb = exp [−βHb]. Unfortunately, this

introduces additional complications in the expressions given below, and we will comment on

this as we proceed. The choice of initial condition does not otherwise impact the formalism.
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4.4.2 Bare dQMC

To obtain a dQMC algorithm for the expectation value of O = σ̂z, we must write the

contribution O (s) of a con�guration s in the form of Eq. 4.12. In the interaction picture,

σ̃x (s) = eiH0sσxe
−iH0s, we can write

O (s) = (−1)n im∆m
〈
σ̃x (sm) · · · σ̃x (sn+1)×

σ̃z (t) σ̃x (sn) · · · σ̃x (s1)
〉
.

(4.49)

We designate the state between [sk,sk+1] as σk+1 for k ∈ {0, . . . ,m− 1}, with s0 ≡ 0+ and

sm+1 ≡ 0−. The observable σz at the tip of the contour does not change the state, while

every application of σx �ips the state from σ to σ̄. Since the initial condition of the spin

is speci�ed ρs = |1〉 〈1| = |+〉 〈+|, we have σ1 = σm+1 = +. The contribution O (s) of a

con�guration s to the expectation value of O = σ̂z can then be expressed as a product of a

system in�uence functional Φ (s) and a bath in�uence functional J (s):

O (s) = (−1)n im∆mΦ (s)J (s) . (4.50)

The system functional Φ (s) handles the in�uence of propagation within the system,

Φ (s) = 〈+1|σn′x σzσnx |+1〉

× exp

[
−i

m+1∑
k=1

εσk (sk − sk−1)

]
,

(4.51)

whiles the bath functional J (s) is a multi-time correlation function of bath operators

J (s) =
〈
B̃− (sm+1)

m∏
k=1

B̃2
σ̄k

(sk) B̃+ (s0)
〉
b
. (4.52)

Here 〈·〉b = Trb {ρb·} and ρb is the initial bath density matrix. The �rst and last factors are

induced by the initial condition. By a generalized Wick's theorem for polaron shift operator
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(see Appendix 4.A), we can write J (s) as a product of two�time correlation functions,

J (s) =

∏
(j,k)∈Codd

m+2
C (sk, sj)

rkrj∏
(j,k)∈Ceven

m+2
C (sk, sj)

rkrj . (4.53)

where ri = 1 if i = 1,m + 1, otherwise ri = 2. The fact that the powers in the numerator

and denominator may di�er arises from the initial condition. Here we have de�ned

Ceven
m+2 = {(j, k) ∈ Cm+2| |k − j| even} , (4.54)

and

Codd
m+2 = {(j, k) ∈ Cm+2| |k − j| odd} . (4.55)

which are subsets of all possible pairings of m+ 2 elements. The pairings of m elements, Cm,

denotes the set of all ordered tuples composed of di�erent integers between 0 and m − 1.

For example,

Codd
2 = {(0, 1)} , Ceven

2 = {} ,

where {} denotes the empty set and

Codd
4 = {(0, 1) , (1, 2) , (2, 3) , (0, 3)} ,

Ceven
4 = {(0, 2) , (1, 3)} .

The correlation function C (sk, sj) is one of the expressions complicated by the initial con-

dition, and is given by

C (sk, sj) =
〈
B̃− (sk) B̃+ (sj)

〉
b

(4.56)

In general, we can write the two-time correlation function of the polaron shift operator as

(see Appendix. (4.A))

C (sk, sj) = e−Q2(s)−iQ1(s), (4.57)
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+
–

Figure 4.4: A con�guration including s0 = si and sm+1 = sf for the diabatic coupling
expansion. The state of the system �ips at every si.

with

Q1 (s) =
2

π

∫
dω

J (ω)

ω2
sinωs, (4.58)

and

Q2 (s) =
2

π

∫
dω

J (ω)

ω2
coth

(
βω

2

)
(1− cosωs) . (4.59)

In the diagrammatic representation shown in Fig. 4.4, the two-time correlation function is

represented by dashed lines. There exists an extra set of lines due to the initial condition,

which connect every vertex to the edges of the diagram. To avoid overcrowding the diagram

with information, these are not shown. A dashed line above the contour describes a con-

tribution to the numerator, while one under the contour describes one associated with the

denominator. Each vertex is connected by such interaction lines to every other vertex in the

con�guration, and since only one way to do this exists, each con�guration generates exactly

one diagram. The bare Monte Carlo implementation based on this expansion is illustrated

in Fig. 4.5a.

4.4.3 Inchworm algorithm

The process of formulating an inchworm expansion is analogous to that of Sec. 4.3.3, but

with the diagrammatic structure of the diabatic coupling expansion. Inchworm proper and
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improper diagrams are illustrated in Fig. 4.5b. The main di�erence is that whereas diagrams

in the system�bath coupling expansion include interaction lines only between vertices paired

within a particular pairing, the diabatic coupling expansion includes an interaction line

between every two vertices. Therefore, there is only one �cluster� of vertices in every diagram,

and that diagram is required to have at least one vertex in [t↑, tf ]. The only diagram not

containing such a cluster is the order zero diagram (shown as (1) in Fig. 4.5b). This is also

the only diagram containing an in�nite number of bare diagrams: each diagram containing

a cluster is completely identical to the one and only bare diagram that it represents.

The main advantages of the inchworm algorithm are therefore lost in the direct diabatic

coupling scheme described here, and indeed we have veri�ed that upon implementation of

such an algorithm an exponential dynamical sign problem appears (not shown). However,

in the remainder of this chapter, it will be shown that this problem can be circumvented

by transforming the expansion to a cumulant form. From this perspective, a very useful

inchworm algorithm then emerges.

4.5 Diabatic Coupling Cumulant Inchworm (DCCI)

Expansion

As noted in Sec. 4.4, the diabatic coupling expansion in its direct Keldysh formulation has

a peculiar diagrammatic structure in which each interaction vertex is directly connected to

every other vertex. As such, this expansion does not signi�cantly bene�t from the inchworm

algorithm, which relies on the ability to cut diagrams into weakly-connected subgraphs.

We now show that by reformulating the diabatic coupling expansion in cumulant form,
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(a)

= +

++

(1)

(3)

(2)

(b)

= +

+

+

++

+

(1)

(3)

(5)

(2)

(4)

(6)

Figure 4.5: (a) Diagrams appearing in bare dQMC. The dashed curve (12) indicates an

interaction line in either the numerator (above the contour) or the denominator (below

it). Only one diagram corresponds to each con�guration. (b) The naive inchworm scheme.

Diagrams with no vertices after s↑ (such as (b.3) and (b.5)) are contained in the zeroth order

term (b.1) and need not be summed. Other diagrams, such as (b.4) and (b.6), are analogous

to those of the bare dQMC.
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one obtains a formalism which is much more amenable to inchworm dQMC. The cumulant

formalism has the additional advantage of being written in physical (rather than contour)

time, such that in the absence of a sign problem the computation scales linearly with time,

as will be demonstrated in the following discussion.

Since cumulants are most conveniently de�ned in terms of moments, the moment form

of the expansion will �rst be presented. Cumulants and the cumulant inchworm algorithm

will then be presented.

4.5.1 Moments

Consider the evaluation of the dynamics of an observable O in terms of its moments,

µm (τ1, ..., τm). Given that we have Eq. (4.10), such that 〈O (t)〉 =
∫

dsO (s), the observable

can be written in terms of a moment expansion∫
dsO (s) =

∞∑
m=0

∫
dτµm (τ1, τ2, · · · , τm) . (4.60)

While the integration
∫

ds is performed over contour time, the integration
∫

dτ is performed

over physical times τ1 > τ2 > · · · > τm, such that

∫
dτ =

∫ t

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τm−1

0

dτm. (4.61)

An mth-order moment µm (τ1, τ2, · · · , τm) is de�ned as

µm (τ1, ..., τm) =
∑

αi∈{+,−}
O (Tc [τα1

1 , ..., ταmm ]) , (4.62)

where Tc indicates contour time ordering and the αi = ± are the Keldysh branch indices.

The moments are de�ned as functions of a set of real times, and the Keldysh branch indices
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are summed over. This is equivalent to simultaneously collecting the contributions from

entire classes of path con�gurations associated with the real times, τ1, ..., τm, as illustrated

diagrammatically in Fig. 4.6a. Notably, it is exponentially expensive as a function of the

order m to evaluate moments in terms of diagrams, as an mth order moment is the sum of

2m diagrams.

For the population operator O = σz in the diabatic coupling expansion, the 0th order

moment is µ0 = 1 and odd moments vanish, µ2n+1 = 0. The expectation value of σz can

therefore be written in terms of the even moments

〈σz (t)〉 = 1 +

∫ t

0

dτ1

∫ τ1

0

dτ2µ2 (τ1, τ2)

+

∫ t

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4

× µ4 (τ1, τ2, τ3, τ4)

+ . . . .

(4.63)

With the initial density matrix |1〉 〈1| e−βHb speci�ed earlier, the second population moment

simpli�es to

µ2 (τ1, τ2) = −4∆2Re
{
e2iε(τ1−τ2)J

(
0+, τ+

2 , τ
+
1 , 0

−)} , (4.64)

and the fourth moment to

µ4 (τ1, τ2, τ3, τ4) = 4∆2 × Re

{
e2iε(τ1−τ2+τ3−τ4)J

(
0+, τ+

4 , τ
+
3 , τ

+
2 , τ

+
1 , 0

−)+

e2iε(τ1−τ2−τ3+τ4)J
(
0+, τ+

4 , τ
+
3 , τ

−
1 , τ

−
2 , 0

−)+

e−2iε(τ1−τ2−τ3+τ4)J
(
0+, τ+

4 , τ
+
2 , τ

−
1 , τ

−
3 , 0

−)+

e−2iε(τ1−τ2+τ3−τ4)J
(
0+, τ+

3 , τ
+
2 , τ

+
1 , τ

−
4 , 0

−)}.

(4.65)
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The diagrammatic description of moments is shown in Fig. 4.6.

Evaluating the moments within dQMC is therefore an alternative scheme for calculating

dynamics. While linear in time (rather than quadratic, like the Keldysh formalism which

involves two times), this expansion involves an additional exponential cost in the diagram

order, due to the summation over the Keldysh indices. However, bare moment expansions

typically converge very slowly if at all, and hold no real advantage over a direct calculation

(though they may be of help with sign problems in certain cases[207]). It is therefore often

advantageous to resum moments into cumulants. It turns out that a relationship exists

between cumulant resummation and the inchworm algorithm, and this will be shown below.

4.5.2 Cumulants

Moment expansions can be immediately resummed into cumulant expansions in several ways.

For the present purpose, it is advantageous to choose the chronological ordering prescription

(COP) cumulant expansion[203], which yields the time-nonlocal equation of motion

d 〈σz (t)〉
dt

=
∞∑
m=2

∫ t

0

dτ1

∫ τ1

0

dτ2...

∫ τm−2

0

dτm−1

× γm (t, τ1, ..., τm−1) 〈σz (τm−1)〉 .

(4.66)

An advantage from the inchworm perspective is immediately apparent: the expression de-

pends on the population at shorter times, such that previously calculated properties can

perhaps be reused. The m-th order COP cumulant γm (t, τ1, ..., τm−1) can be obtained by

plugging Eq. (4.63) into both sides of Eq. (4.66) and equating terms of equal order. For
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= +

++

= +

++

+

=

Figure 4.6: The real-time coordinate is represented by the thin double lines. The bare

double line segment [0, tmax] corresponds to the bare propagator in the diabatic expansion

on the Keldysh contour folded at tmax. A mth order moment of a real time con�guration

(τ1, τ2 · · · , τm) is illustrated as a dashed-edged box from τ1 to τm with solid vertical ticks at

each con�guration time. There are 4 distinct diagrams on the Keldysh contour associated

with the 2nd moment µ2 (τ1, τ2): s =
(
τ−1 , τ

−
2

)
,
(
τ+

2 , τ
+
1

)
,
(
τ+

1 , τ
−
2

)
,
(
τ+

2 , τ
−
1

)
. These diagrams

are plotted by connecting the vertices with the diabatic interaction lines as in Fig. (4.5).

The 4th moment contains 24 diagrams on the contour. Here, we demonstrate only 4 example

diagrams.
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example,

γ2 (τ1, τ2) = µ2 (τ1, τ2) , (4.67)

γ4 (τ1, τ2, τ3, τ4) = µ4 (τ1, τ2, τ3, τ4)− µ2 (τ1, τ2)µ2 (τ3, τ4) , (4.68)

and γ2n−1 = 0. A general m-th order cumulant, γm, can be obtained recursively:

γm (τ1, ..., τm) =
∑
p∈Pm

− (−1)|p|×

∏
(i1,i2,··· ,i2n)∈p

µ2n (τi1 , τi2 · · · , τi2n) .

(4.69)

The set Pm describes all possible ways of partitioning a sequence of integers 1, 2, . . . ,m into

subsequences of adjacent numbers, each having an even number elements. Each partition

p ∈ Pm can be represented by a set of ordered tuples (i1, i2, . . . , i2n) corresponding to one

subsequence, and |p| is the number of subsequences within the partition. For instance,

P2 = {{(1, 2)}} ,

P4 = {{(1, 2, 3, 4)} , {(1, 2) , (3, 4)}} ,

P6 = {{(1, 2, 3, 4, 5, 6)} , {(1, 2) , (3, 4, 5, 6)} ,

{(1, 2, 3, 4) , (5, 6)} , {(1, 2) , (3, 4) , (5, 6)}} .

The diagrammatic description of COP cumulants in terms of moments is shown in Fig. 4.7.

A cumulant of any given order can be expressed in terms of moments up to and and including

the same order.

4.5.3 Naive inchworm algorithm

The dynamics of 〈σz (t)〉 within the COP cumulant expansion can be evaluated by dQMC.

To simplify the notation, it is convenient to rede�ne the times t, τ1, ..., τm−1 as τ1, τ2..., τm,
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=

=

Figure 4.7: The COP cumulants of a real-time con�guration (τ1, τ2 · · · , τm) are illustrated as

a solid-edged box with vertical ticks at each con�guration time. Here, we show the diagram-

matic representation of Eq. (4.67) and (4.68), which illustrate the 2nd and 4th cumulants in

terms of the moments.

respectively; these obey the physical time ordering τ1 > · · · > τm. As before, the times will

be indicated by the vector quantity τ when possible. By carrying out the integration
∫ t

0
dτ1

on both sides of Eq. (4.66), an expression for 〈σz (t)〉 in terms of itself is obtained:

〈σz (t)〉 = 1 +

∫ t

0

dτK (τ ) , (4.70)

K (τ ) = γm (τ1, ..., τm) 〈σz (τm)〉 . (4.71)

Since γ2n−1 = 0, the path integration
∫ t

0
dτ can be explicitly written as∫ t

0

dτ =
∑

m∈even,≥2

∫ t

0

dτ1

∫ τ1

0

dτ2...

∫ τm−1

0

dτm. (4.72)

Since the functional K (τ ) depends on 〈σz (tm)〉, the observable is evaluated at the small-

est time in the con�guration τ . Since this is the quantity being evaluated, it is not known to

begin with and there is no bare expansion of the COP type. However, it is straightforward

to implement a simple inchworm algorithm: assume 〈σz (τ)〉 is known for all τ ∈ [0, τ↑]. The

expectation value at t > τ↑ can then be expressed as:

〈σz (t)〉 = 〈σz (τ↑)〉+

∫ t

τ↑

dτK (τ ) . (4.73)
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Here
∫ t
τ↑

dτ represents the path integral

∫ t

τ↑

dτ =
∞∑
m=2

∫ t

τ↑

dτ1

∫ τ1

0

dτ2...

∫ τm−1

0

dτm, (4.74)

which describes integration over the con�guration subspace for which at least one τ1 is within

the interval [τ↑, t]. This de�nes a formally exact inchworm step, which appears to leverage

knowledge of 〈σz (τ)〉 for times up to τ↑ in order to obtain the same observable for the �nal

time t. Examples of diagrams appearing in this expansion are shown in Fig. 4.8. Diagrams

in which the rightmost time index is to the left of τ↑ (crossed out in the �gure) are included

in the 0th order contribution (diagram (1) in Fig. 4.8) and need not be summed.

Unfortunately, the inchworm step we have just described cannot be implemented as it

stands, and has been introduced chie�y for didactic purposes. This is because it includes

contributions where 〈σz (τ)〉 is needed at time argument τ > τ↑. Two examples are overlaid

with a question mark in Fig. 4.8. Such contributions are unknown and must be dropped

from the expansion, leading to an error the magnitude of which can be shown to be linear

in ∆t = t− τ↑. In practice, this makes convergence of the algorithm to the exact result (by

progressively reducing the size of the inching time step ∆t) very hard to achieve. However,

as the next subsection shows, this issue can be completely overcome by taking a closer look

at the structure of the diagrams.

4.5.4 Cumulant inchworm algorithm

It is now necessary to solve the problem raised in the previous subsection, namely the fact

that one is unable to evaluate diagrams from con�gurations having τm > τ↑ for some m.

To do so, it is possible to �rst unwind the resumming done implicitly by the cumulant
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Figure 4.8: Diagrammatic representation of the naive prescription of the inchworm algo-

rithm, Eq. (4.73). The solid-edged boxes with vertical ticks are the COP cumulants as

shown in Fig. (4.6). The τ↑ is indicated as the ↑ on the physical time coordinate. Each

con�guration corresponds to one single diagram. Diagrams (3) and (4) have all cumulant

boxes lying in the known region (to the left of ↑) and are considered been included in dia-

gram (1) for this inchworm step. The cumulant boxes in diagrams (2) and (6) straddle the

τ↑ time and their contribution can be calculated by Eq. (4.71). Diagrams (5) and (7) have

all cumulant boxes located to the right of the ↑, are unknown for this inchworm step in the

naive version.

expansion, then reintroduce it wherever possible. To see how this works, one inserts the

functional Eqs. (4.70) and (4.71). This gives

〈σz (t)〉 =1 +

∫ t

0

dτγm (τ )

+

∫ t

0

dτγm (τ )

∫ τm

0

dτ ′K (τ ′)

(4.75)

and we sample an additional con�guration τ ′ for the integration
∫ τm

0
dτ ′. This can be

iterated any number of times, generating an expansion in terms of multiple cumulants, with
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the population pushed to increasingly high-order terms. Examples of terms appearing in

this unwound cumulant expansion are shown in Fig. 4.9a. Each con�guration may yield

more than one diagram: 2-time con�gurations gives one 2nd order diagram (a.2); 4-time

con�gurations yield diagrams (a.3) and (a.4) corresponding to 2 partitions in P4; 6-time

con�gurations contain diagrams (a.5)�(a.8) corresponding to 4 partitions in P6. The term

�wound / wind� is used to distinguish this procedure from �dressing / dress� used in the

context of Dyson equations, and in particular to distinguish �unwound� from �bare.�

The unwound expansion can be written as

〈σz (t)〉 = 1 +

∫
dτΓ (τ ) , (4.76)

where the functional Γ depends only on the COP cumulants. At a general (even) order m,

Γ contains terms of various partitions Pm, as introduced in Sec. 4.5.2:

Γ (τ1, ..., τm) =
∑
p∈Pm

∏
(i1,i2,··· ,i2n)∈p

γ2n (τi1 , τi2 · · · , τi2n) . (4.77)

For instance, the lowest order functional (m = 2) is simply

Γ (τ1, τ2) = γ2 (τ1, τ2) , (4.78)

while that with m = 4 contains two terms originating from the iteration procedure:

Γ (τ1, τ2, τ3, τ4) = γ4 (τ1, τ2, τ3, τ4) + γ2 (τ1, τ2) γ2 (τ3, τ4) . (4.79)

Unlike the original bare expansion in diabatic coupling, each con�guration now generates

multiple diagrams (corresponding to partitions). For instance, as we show in Fig. 4.9a, a

4th order con�guration generates 2 diagrams, (a.3) and (a.4), and a 6th order con�guration
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generates 4 diagrams, (a.5)�(a.8). We note brie�y that it is easy to show that the unwound

expansion corresponds exactly to the moment expansion, in the sense that Γi = µi. However,

the advantages of the unwound representation will immediately become apparent.

The unwinding completely removes the dependence on the population 〈σz (τ)〉, but does

so at the cost that the resummation properties of COP expansion are lost. We now partially

rewind the series wherever this does not interfere with the assumption of the inchworm step,

in particular the fact that we only have access to populations for τ < τ↑. The inchworm step

is performed by stochastically sampling con�gurations τ = (τ1, ..., τm) ∈ [0, t], as before

〈σz (t)〉 = 〈σz (τ↑)〉+

∫ t

τ↑

dτK′ (τ ) . (4.80)

For each con�guration, one sums only diagrams stemming from a proper subset of the

partitions, P ′m ⊆ Pm, obtained by excluding partitions with subsequences (parts) having all

times in [0, τ↑]. With this, we de�ne

Γ′ (τ ) =
∑
p∈P ′m

∏
(i1,i2,··· ,i2n)∈p

γ2n (τi1 , τi2 · · · , τi2n) , (4.81)

such that the functional to be summed is

K′ (τ ) =


Γ′ (τ ) 〈σz (τm)〉 if τm < τ↑,

Γ′ (τ ) 〈σz (τ↑)〉 if τm > τ↑.

(4.82)

The diagrammatic representation of this cumulant inchworm expansion is illustrated in

Fig. 4.9b, where three examples of improper partitions (diagrams) are crossed out. Dia-

gram (b.3) is included in diagram (b.1); diagram (b.4) is included in diagram (b.2); diagram

(b.7) is included in diagram (b.5). Note that the contribution of diagram (b.8) takes into

account the missing diagrams by the naive inchworm algorithm.
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Figure 4.9: (a) The unwound dQMC expression for the full cumulant expansion. The thick

solid lines are the exact dynamics of expectation value and the thin double lines are the

unperturbed value 1 within the diabatic expansion. The solid-edged boxes with vertical

ticks are the COP cumulants as shown in Fig. (4.6). (b) The cumulant inchworm algorithm.

Any diagram that has a stand alone part (a cumulant box) to the left of the ↑ has been

included in the other diagrams and needs to be neglected in the inchworm step.
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To justify that the cumulant inchworm expansion is formally equivalent to the unwound

expansion, it must be shown that the two sets of diagrams generated by respective expansions

are identical. To do so, we have to prove that (a) these two sets of diagrams contain each

other, in the sense that every unwound diagram in one set is represented in the other; and

(b), each diagram in one set is mapped to only a single diagram in the other set (such

that the measure is conserved under summation). We will proceed by example, rather than

presenting a formal proof.

To argue point (a), we need to show a containment relationship in both directions. First,

any cumulant inchworm diagram generates only diagrams contained in the set of unwound

diagrams. This is trivial since the thick solid segment in each cumulant inchworm diagram

can be considered an in�nite sum of unwound diagrams within that segment. In the reverse

direction, any unwound diagram can be found in the set of cumulant inchworm diagrams:

given an unwound diagram, one can construct a cumulant inchworm diagram containing it

by Eqs. (4.81) and (4.82). As an example, we consider the lowest order in Fig. 4.9b with

a 2nd order con�guration τ = (τ1, τ2). The con�guration generates one unwound diagram

of the (a.2) type. For the same con�guration's cumulant inchworm diagram, three cases

are possible: τ1 > τ↑ > τ2, τ↑ > τ1 > τ2, and τ1 > τ2 > τ↑, which correspond to diagrams

(b.2), (b.3), and (b.5), respectively. It is clear that diagram (b.3) is improper and has been

included in diagram (b.1). Thus, an unwound diagram of the (a.2) type is contained in (b.2),

(b.3), or (b.1) depending on its relationship with τ↑.

Point (b) requires unique correspondence in both directions. One direction is triv-

ial�each cumulant inchworm diagram can be written as an in�nite sum of unique un-

wound diagrams. In the other direction, we need to show that if there exist two cumulant
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inchworm diagrams which contain the same unwound diagram, one of these two cumulant

inchworm diagrams must be eliminated. The propriety of cumulant inchworm diagrams en-

sures this uniqueness: consider a 4th-order unwound diagram of type (a.4) with con�guration

τ = (τ1, τ2, τ3, τ4). If τ1 > τ↑ > τ2, the unwound diagram could in principle be contained in

two (not necessarily proper) cumulant inchworm diagrams, (b.2) and (b.4). Diagram (b.4)

is then eliminated by the requirement of propriety. Similarly, if τ2 > τ↑ > τ3, the unwound

diagram could be contained in two cumulant inchworm diagrams, (b.5) and (b.7), but (b.7) is

improper and therefore can be eliminated. For other cases, the uniqueness is trivial: there is

only one (necessarily proper) cumulant inchworm diagram containing the unwound diagram.

For example, if τ3 > τ↑ > τ4, only diagram (b.8) can contain it.

With points (a) and (b) justi�ed, it is clear that an exact correspondence exists between

the cumulant inchworm expansion and the unwound expansion. Every diagram in the cu-

mulant inchworm expansion corresponds to an in�nite number of unwound diagrams, and

while the expansion does not perform resummation over the entire length of the contour like

the system�bath coupling expansion, it also has the distinct advantage of scaling linearly

in time. It therefore constitutes a highly e�cient method which is complementary to the

system�bath coupling inchworm approach.

This method will be referred to as the Diabatic Coupling Cumulant Inchworm (DCCI)

approach in the following.
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4.6 Convergence Estimation

To have an estimate of how rapidly the inchworm approaches are expected to converge in

di�erent regions of parameter space, we focus on the lowest-order nontrivial contribution in

each type of expansion and determine its magnitude as a function of model parameters. We

consider the 2nd-order term of the SBCI and DCCI expansions, which in both cases can be

written in the form

G2 (t) =

∫ t

0

dt1

∫ t2

0

dt2C (t1, t2) . (4.83)

Here, C (t1, t2) is the bath correlation function associated with each expansion. Loosely

speaking, one might expect an expansion to converge rapidly as long as the corresponding

G2 (t) is not signi�cantly greater than unity. Given the functional form of the Debye spectral

density, we can easily estimate G2 (t) in a semi-analytical fashion.

For the SBCI expansion, we can evaluate G2 (t) in the high and low temperature limits

and then derive the convergence conditions from the appropriate dimensionless parame-

ters that emerge. This scheme is analogous to one which has been used to determine the

limitations of Red�eld theory[47]. The bath correlation function in the SBCI expansion

is given by C (t1, t2) =
〈
B̃ (t1) B̃ (t2)

〉
b
where B̃ (t) =

∑
` c`x̃` (t), and with the de�nition

〈·〉b ≡ Trb {ρb·}. The integral takes the form G2 (t) = ξg (t), where ξ is a dimensionless

parameter and g (t) is a time-dependent dimensionless function. We expect the expansion

to converge rapidly as long as ξ . 1. In the high temperature limit βωc � 1, and we can

approximate coth
(
βω
2

)
≈ 2

βω
and obtain the dimensionless form for ξ:

ξ =
λ

βω2
c

− i λ
2ωc

. (4.84)
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Thus, in this regime, an estimate for the condition for convergence of the SBCI approach is

λ

βω2
c

> 1. (4.85)

In the low temperature limit βωc � 1, we can use coth
(
βω
2

)
≈ 1, but cannot carry out the

integral analytically. In the same spirit, we factor out the dimensionless scale of the integral,

Re [G2 (t)] = λ
πωc

∫
dx 1

x2+1
1
x

(1− cosωcxt), which yields a convergence condition for the low

temperature limit
λ

πωc
> 1. (4.86)

It is noteworthy that since G2 (t) is proportional to λ coth (βω/2), the SBCI expansion

becomes more di�cult to converge as λ increases or β decreases.

The explicit form of the bath correlation function in the DCCI expansion is given by

C (t1, t2) = e−4Q2(t1−t2)−i4Q1(t1−t2), where

Q1 (t) =
2

π

∫
dω

JD (ω)

ω2
sinωt, (4.87)

Q2 (t) =
2

π

∫
dω

JD (ω)

ω2
coth

(
βω

2

)
(1− cosωt) . (4.88)

Due to the complicated form of these correlation functions, one cannot obtain an analytical

expression to extract a dimensionless scale parameter. Therefore, we evaluate the integral

numerically at a large enough time for given model parameters. We also note that Q1 and

Q2 are linearly dependent on λ, which yields a 1/λ2 dependence for G2 (t). Therefore, the

DCCI expansion becomes easier to converge as λ increases.

A two-dimensional �phase diagram� can be drawn as cuts of the full parameter space

with varying λ and ωc, shown in Fig. 4.10. Here we limit the discussion to the subspace with

zero energy bias ε = 0. The horizontal axis is the scaled reorganization energy (λ/∆) in
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(a) β∆ = 0.5
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Figure 4.10: Spin�boson model parameter space with zero bias ε = 0. The x-axis is λ/∆ in

log scale and the y-axis is ωc/∆ in linear scale. The bath temperatures are (a) β∆ = 0.5,

(b)β∆ = 5, and (c) β∆ = 50. In each �phase diagram�, the estimated region of rapid

convergence for the SBCI approach is to the left of the dashed line (red) and is to the right

of the dotted line (blue) for the DCCI approach. Points indicate the parameters for plots

presented in this work.

log scale and the vertical axis is the scaled cuto� frequency (ωc/∆). Within this coordinate

system, we can demarcate the estimated region of facile convergence for the SBCI and DCCI

expansions by the conditions given above. The red regions indicate the subspace satisfying

Eq. (4.85) and (4.86), in which the SBCI approach is expected to converge rapidly. The blue

regions are obtained by semi-analytical estimation of the analogous condition for the DCCI

approach.

Fig. 4.10 exhibits these complementary regions and shows that their combined area covers

much of the relevant parameter space. We will brie�y point out some important features of

the phase diagram. First, for any cuto� frequency ωc, the SBCI converges better in the small
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λ direction while the DCCI is expected to work better as λ increases. Second, the region of

utility for the SBCI expansion shrinks in the adiabatic regime (small ωc), which is due to

the fact that the correlation functions in the SBCI expansion have a longer correlation time

when ωc is small. Lastly, as the temperature decreases, the regions of rapid convergence of

both the SBCI and DCCI approaches expand and cover almost the entire parameter space.

While Fig. 4.10 provides an illustration of applicable regions of our approach, the re-

gions are determined by rough estimation of lowest order contribution. In principle, our

inchworm expansions are numerically exact in the entire parameter space, as discussed in

previous sections. In the �uncovered� or white region, our approaches should continue yield

exact dynamical behavior at least on some time scales, albeit with potentially much greater

numerical e�ort.

4.7 Results

In the following, we present a detailed comparison of our new approaches to established

benchmarks, as well as a discussion of the relative bene�ts and drawbacks of our approach

in comparison to established methods.

4.7.1 Computational Methodology

Each inchworm step is limited to a �xed run time and the order of each individual inch-

worm diagram is restricted to a maximum order M . We use dt∆ = 0.1 for the size of the

inchworm step in the following calculation, unless otherwise speci�ed. One may then check

for convergence by systematically increasing M , decreasing dt and increasing the number of
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Monte Carlo samples[106]. The SBCI calculation requires the full information contained in

two-time restricted propagators, thus for the SBCI propagation to a time t = Ndt requires

N2 inchworm steps (in fact, by taking advantage of time-reversal symmetry and the contour

ordering of the time arguments, the number of steps needed turns out to be ∼ 1
4
N2). On the

other hand, the DCCI expansion is phrased solely in terms of single-time properties, such

that it requires only N inchworm steps to reach a simulation time t = Ndt. For both ap-

proaches, we perform multiple inchworm calculations in order to properly account for error

propagation[106].

We compare our calculations with several existing numerically exact methods, including

the quasi-adiabatic propagator path integral (QUAPI) approach[95�98], hierarchical equa-

tions of motion (HEOM) method[45, 93, 94], and the multi-con�guration time-dependent

Hartree (MCTDH) approach[87, 88, 144]. QUAPI is based on the discretization of in�u-

ence functional for reduced propagation on the Keldysh contour. The maximum number

of short-time propagators that the path integral spans is determined by a parameter kmax,

which governs the the memory length. The approach becomes di�cult to converge when

the memory length is long. The HEOM approach introduces a hierarchy of auxiliary density

matrices and employs a Mastsubara expansion for the bath density matrix. The hierarchy

truncation level L and number of Matsubara terms K are numerical parameters that are

tuned to converge the HEOM calculation. A standard, highly parallel implementation is

available[94], known to be accurate in the high temperature limit and for the Debye spectral

density. Generically, the HEOM approach has more di�culty for low temperatures and non-

Debye spectral densities. The MCTDH approach is based on the expansion of the interacting

many-body wave function as a tensor product of wavefunctions de�ned in a convenient set
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of orbitals. A highly e�cient protocol may then be used to control, in a time-dependent

manner, the number of orbitals needed for exact convergence. Exact MCTDH results for

the spin�boson model are reported in Ref. 144.

We will be using the benchmarks to investigate accuracy, and will make no attempt to

compare numerical e�ciency beyond general points having to to with the computational

scaling of the algorithms. To provide a general idea, we will say that using our current

implementation, most of the (linear scaling in time) DCCI results presented here can be

comfortably obtained on a laptop in minutes to hours, whereas the (quadratically scaling

in time) SBCI results typically require a small cluster. However, it should be noted that

the data below was obtained with a very �exible but not at all optimized code written in

the high-level Python programming language. From our experience with similar algorithms

for the Anderson impurity model[106], we estimate that 1-2 orders of magnitude in overall

runtime could be achieved by writing an e�cient code, or simply by switching to a compiled

language.

4.7.2 High Temperature Regime

We start our comparison of the inchworm approaches with other exact methods in the high

temperature regime (Fig. (4.10)(a)), speci�cally β∆ = 0.5 (kBT/∆ = 2), and consider the

vertical cuts at weak coupling λ/∆ = 0.1, strong coupling λ/∆ = 10, and intermediate

coupling λ/∆ = 1 in the following.
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Weak coupling

In the weak system�bath coupling regime, we consider cases with scaled reorganization

energy (λ/∆ = 0.1) where we expect the SBCI expansion to converge more easily than the

DCCI expansion. In Fig. 4.11, we �nd that the lowest order (M = 1) results for the SBCI

expansion always gives a quantitative account of the dynamics with the error remaining

nearly constant over the simulation time. The SBCI result also converges rapidly upon

increasing the maximum order M of each inchworm step. We note that a smaller cut-o�

frequency yields a greater statistical error (see the lower panels of Fig. 4.11(a) and (b)) with

the same computational cost. This is due to the long correlation time induced by a small ωc,

which makes it more di�cult to converge the SBCI expansion. On the other hand, the DCCI

calculation also yields surprisingly accurate results. However, for a small cut-o� frequency,

it becomes more di�cult to converge the DCCI approach, as can be seen in the right panel

of Fig.4.11(b). Note that for the DCCI approach, the M = 2 case actually yields results

that are less accurate than M = 1. This lack of convergence is due to the carrying of the

large short-time errors to longer times by the inchworm algorithm, and could in principle be

overcome by a larger investment of computer time or a faster code.

Thus, in the high temperature, weak coupling regime, both inchworm approaches appear

capable of reproducing the results obtained by the HEOM method, which easily converges to

the exact answer for the Debye spectral density at high temperatures. The DCCI approach

does show some convergence di�culties in this regime for the slow bath case. We could

not converge QUAPI in the slow bath regime, and quantitative discrepancies can be found

between QUAPI and HEOM here, as seen in Fig. 4.11.
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(a) λ/∆ = 0.1, ωc/∆ = 5
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(b) λ/∆ = 0.1, ωc/∆ = 0.25
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Figure 4.11: Nonequilibrium population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the weak coupling (λ/∆ = 0.1)

and high temperature (β∆ = 0.5) regime. The bias energy is ε = 0. The results calculated

by the SBCI (left panels, red and orange) and DCCI (right panels, blue and green) inchworm

expansions are plotted for (a) a non-adiabatic (fast) bath with ωc/∆ = 5, and (b) an

adiabatic (slow) bath with ωc/∆ = 0.25. Maximum order for an inchworm step is indicated

byM . The thickness of the Monte Carlo results results from our error estimates. The dashed

lines are the QUAPI results with (a)∆t = 0.1, kmax = 6 and (b)∆t = 0.1, kmax = 12. The

triangles indicate the HEOM result with K = 2 and L = 20.

Strong coupling

For strong system�bath coupling (λ/∆ = 10), we anticipate that the SBCI expansion will

be di�cult to converge and the DCCI expansion will show rapid convergence. The right

panels of Fig. 4.12(a) and (b) show that the DCCI results converge to accurate population

dynamics as we increase the maximum order M of each inchworm step, but that at least

M = 4 is required for convergence. As expected, the SBCI expansion is di�cult to converge
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in this parameter regime. The origins of this convergence issue can be gleaned from the

behavior of the error estimate. In particular, the error estimates found in the left panels

in Fig. 4.12 show the statistical error for one single SBCI calculation, which indicates the

error of the Monte Carlo estimation of the integral within each inchworm step. This is an

underestimate of the error margin, as it does not take into account the error propagation

from shorter times; other plots in this section show the full error analysis. We note that

even the single run error increases exponentially with time, so that it is clear that the origin

of the exponential growth in noise to signal ratio is actually the Monte Carlo and not error

propagation. Within an inchworm step of �nite size dt∆ = 0.1, the weight of high order

con�gurations to the integral becomes large when λ increases. To capture these high order

contributions, one may increaseM , however, as shown in Fig. 4.12, the slope of the statistical

error grows unfavorably in this case as we increaseM , rendering the SBCI expansion di�cult

to converge.

Intermediate coupling

Lastly, we focus on the intermediate system�bath coupling regime where the scaled reorga-

nization energy is λ/∆ = 1. Fig. 4.13 exhibits a general feature of the inchworm approaches:

convergence with respect to the maximum order becomes more di�cult to obtain as the

cut-o� frequency decreases. For a fast bath (ωc/∆ = 5), both the SBCI and DCCI ex-

pansions yield quite accurate results at lowest order. For ωc/∆ = 1, the parameter set

(λ/∆, ωc/∆) = (1, 1) is located outside of the �safe� regions for the SBCI and DCCI as

demarcated in Fig. 4.10(a). Here we observe clear, but small, discrepancies between the

SBCI/DCCI results for M = 1 and numerically exact dynamics. By systematically in-
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(b) λ/∆ = 10, ωc/∆ = 0.25
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Figure 4.12: Nonequilibrium population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the strong coupling (λ/∆ = 10)

and high temperature (β∆ = 0.5) regime. The bias energy is ε = 0. The results calculated

by the SBCI (left panels, red and orange) and DCCI (right panels, blue and green) inchworm

expansions are plotted for (a) a non-adiabatic (fast) bath with ωc/∆ = 5, and (b) an

adiabatic (slow) bath with ωc/∆ = 0.25. The error estimate of the SBCI calculation is

for one single run. Maximum order for a inchworm step is indicated by M . The thickness of

the Monte Carlo results results from our error estimates. The dashed lines are the QUAPI

results with (a)∆t = 0.1, kmax = 6 and (b)∆t = 0.3, kmax = 11. The triangles indicate the

HEOM result with K = 2 and L = 20.
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creasing M , the discrepancies can be corrected. When the cut-o� frequency is small, the

parameter set (λ/∆, ωc/∆) = (1, 0.25) is particularly di�cult for both SBCI and DCCI ex-

pansions, although convergence is still seen forM = 6. Lastly, note that here, as in Fig. 4.12,

some notable discrepancies exist between the HEOM and QUAPI results. The inchworm

expansions always converge to the HEOM results, which are expected to be more accurate

in the high temperature regime.

4.7.3 Low Temperature Regime

We now turn the attention to the phase diagram in the low temperature regime, speci�cally

β∆ = 5 (kBT/∆ = 0.2), and concentrate on vertical cuts at intermediate coupling λ/∆ = 1

and strong coupling λ/∆ = 10, using the more suitable of the two methods in each case.

These parameters correspond to Fig. 4.10(b).

Intermediate coupling

For intermediate coupling strength (λ/∆ = 1), the SBCI expansion is expected to converge

at low temperatures more easily than in the high temperature regime. In particular, Fig. 4.10

shows the region of rapid convergence for the SBCI expansion becomes larger at low tem-

peratures (b) than high temperatures (a). In Fig. 4.14, we �nd that the SBCI expansion

can provide accurate results even at M = 1 for the parameter sets (λ/∆, ωc/∆) = (1, 1) and

(1, 0.25), which would be more di�cult to converge in the high temperature regime discussed

in Sec. 4.7.2.
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(a) λ/∆ = 1, ωc/∆ = 5
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(b) λ/∆ = 1, ωc/∆ = 1
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(c) λ/∆ = 1, ωc/∆ = 0.25
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Figure 4.13: Nonequilibrium Population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the intermediate coupling (λ/∆ =

1) and high temperature (β∆ = 0.5) regime. The bias energy is ε = 0. The results calculated

by the SBCI (left panels, red and orange) and DCCI (right panels, blue and green) expansions

are plotted for (a) a non-adiabatic (fast) bath with ωc/∆ = 5, (b) an intermediate bath with

ωc/∆ = 1, and (c) an adiabatic (slow) bath with ωc/∆ = 0.25. Maximum order for a

inchworm step is indicated by M . The thickness of the Monte Carlo results results from our

error estimates. The dashed line are the QUAPI results with (a) ∆t = 0.1, kmax = 6, (b)

∆t = 0.2, kmax = 10, and (c) ∆t = 0.3, kmax = 11. The triangles indicate the HEOM result

with K = 2 and L = 20. 111
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Figure 4.14: Nonequilibrium Population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the intermediate coupling (λ/∆ =

1) and low temperature (β∆ = 5) regime. The bias energy is ε = 0. The results calculated

by the SBCI (red lines) expansions are plotted for (a) an intermediate bath with ωc/∆ = 1

and (b) an adiabatic bath with ωc/∆ = 0.25. The maximum order for the inchworm step

shown is M = 1. The thickness of the Monte Carlo results results from our error estimates.

The dashed lines are the QUAPI results with (a) ∆t = 0.1, kmax = 6 and (b) ∆t = 0.1,

kmax = 10. The triangles indicate the HEOM result with K = 2 and L = 20. The MCTDH

data is reported in Ref. 144.

Strong coupling

In the strong coupling regime (λ/∆ = 10), the DCCI approach is more rapidly conver-

gent and e�cient than the SBCI expansion (see Fig. 4.15). In particular, we show the

DCCI results for parameter sets in the the adiabatic and intermediate regime, namely

(λ/∆, ωc/∆) = (10, 1) and (10, 0.25). In these regimes, the lowest order DCCI results tend to

over-estimate the incoherent decay of the population. Including higher order contributions
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within each inchworm step is necessary, as it provides signi�cant corrections to population

dynamics leading to agreement with the HEOM and MCTDH results. At small ωc/∆, one

needs to go as far as M = 8, which is too di�cult to fully converge with our current proto-

type code without spending a great deal of computer time. In the adiabatic regime (small

ωc), QUAPI also tends to overestimate the decay for the long time behavior. To obtain

correct long-time dynamics, one would need to increase the truncation of the memory length

kmax, which greatly increases the need for memory and makes QUAPI di�cult to converge.

4.7.4 Very Low Temperature Limit

Finally, we explore the very low temperature limit β∆ = 50 (kBT/∆ = 0.02) corresponding

to the phase diagram Fig. 4.10(c). In this limit, the standard HEOM implementation[94]

can be computationally expensive to converge. Indeed, the lower the bath temperature,

the more Matsubara terms that are needed to capture the bath density matrix and the

more hierarchical levels are required to converge the long-time dynamics. We �nd that the

HEOM implementation available to us becomes unfeasible for very low temperatures, though

we not that recent advances may ameliorate this problem in at least some instances[208�

212]. Fig. 4.10 suggests that the SBCI and DCCI expansions hold an advantage over HEOM

(though not MCTDH) at low temperatures, in that the computational cost does not increase

with decreasing temperature. However, since at low enough temperatures strong correlation

e�ects may alter the picture, it is not trivial that the simple analysis used to generate this

�gure should hold.

In Fig. 4.10(c), the combined area of strong convergence for the SBCI and DCCI expan-

sions covers almost the entire parameter space in the very low temperature case. For the
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(b)λ/∆ = 10, ωc/∆ = 0.25
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Figure 4.15: Nonequilibrium Population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the strong coupling (λ/∆ = 10)

and low temperature (β∆ = 5) regime. The bias energy is ε = 0. The results calculated by

the DCCI (blue and green lines) expansions are plotted for (a) an intermediate bath with

ωc/∆ = 1 and (b) an adiabatic bath with ωc/∆ = 0.25. Maximum order for a inchworm

step is indicated by M . The thickness of the Monte Carlo results results from our error

estimates. The dashed line are the QUAPI results with (a) ∆t = 0.2, kmax = 11 and (b)

∆t = 0.4, kmax = 10. The triangles indicate the HEOM result with K = 3 and L = 20. The

MCTDH data is reported in Ref. 144.

fast bath case (ωc/∆ = 5), the parameter set falls out of the region of facile convergence for

the DCCI approach, however we �nd that the DCCI expansion can still provide accurate

population dynamics, and is in fact more e�cient than the SBCI expansion. On the other

hand, for the intermediate cut-o� frequency case (ωc/∆ = 1), the SBCI expansion results in

the population dynamics that agree perfectly with the MCTDH result, while we note that

the DCCI expansion is di�cult to converge with respect to the maximum order M . This
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(a) λ/∆ = 1, ωc/∆ = 5
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(b) λ/∆ = 1, ωc/∆ = 1
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Figure 4.16: Nonequilibrium population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the intermediate coupling (λ/∆ =

1) and very low temperature (β∆ = 50) regime. The bias energy is ε = 0. The results

calculated by the SBCI (left panels) and the DCCI (right panels) expansions are plotted for

(a) a non-adiabatic (fast) bath with ωc/∆ = 5 and (b) an intermediate bath with ωc/∆ = 1.

Maximum order for each inchworm step is indicated by M . The thickness of the Monte

Carlo results results from our error estimates. The dashed line are the QUAPI results with

∆t = 0.1 and kmax = 10. The MCTDH data is reported in Ref. 144.

clearly does not agree with our naive estimates for convergence of the DCCI expansion.

4.7.5 Biased Systems

We now turn to a discussion of the last dimension of the parameter space of the spin�boson

model, namely the bias energy of the spin subsystem. We expect the SBCI and DCCI

approaches have similar behavior with respect to convergence within parameter space for

non-zero bias energy. However, non-zero bias energy may introduce an additional phase in
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(a) λ/∆ = 1, ωc/∆ = 5, β∆ = 0.5
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(b) λ/∆ = 1, ωc/∆ = 5, β∆ = 50
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Figure 4.17: Nonequilibrium population di�erence 〈σz (t)〉 (top subplots) and corresponding

error estimates (bottom subplots) as a function of time in the intermediate coupling (λ/∆ =

1) and non-adiabatic (ωc/∆ = 5) regime. The bias energy is ε = ∆. The results calculated

by the SBCI (left panels) and the DCCI (right panels) expansions are plotted for (a) high

temperature with β∆ = 0.5 and (b) very low temperature with β∆ = 50. Maximum order for

each inchworm step is indicated byM . The thickness of the Monte Carlo results results from

our error estimates. The dashed line are the QUAPI results with ∆t = 0.1 and kmax = 10.

The MCTDH data is reported in Ref. 144.

the reduced propagators and cause a more di�cult dynamical sign problem.

For the SBCI expansion, the ε-dependence is only found within the system in�uence

functional, explicitly in the operators in the interaction picture, σ̃z (t) = eiHstσ̂ze
−iHst, where

Hs = εσ̂z + ∆σ̂x. The bath in�uence functional does not depend on the bias energy, so

that the inchworm propriety of an individual diagram remains unchanged. Therefore, it is

straightforward to account for the bias energy within the SBCI algorithm. On the other

hand, the DCCI algorithm only contains ε-dependence in the phase in�uence functional
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Φ (s). Note that the phase functional is a real number only if ε = 0, while ε 6= 0 renders

Φ (s) complex and thus potentially increases the dynamical sign problem of the dQMC

method, making the DCCI algorithm somewhat more di�cult to converge.

In Fig. 4.17, we show the SBCI and DCCI results for non-zero bias energy ε = ∆

cases at high temperature β∆ = 0.5 and the very low temperature case β∆ = 50. The

system�bath coupling is taken to be λ/∆ = 1 and a cut-o� frequency of ωc/∆ = 5 is used.

In general, the error estimate of the SBCI expansion grows more rapidly with time, so that

more computational e�ort to control the error propagation is needed. The DCCI expansion

shows a clear convergence with respect to the maximum order M . Compared to the same

parameter set λ/∆ = 1, ωc/∆ = 5, and β∆ = 50 for zero bias energy, we note that the non-

zero bias energy does increase the computational e�ort, especially for the DCCI approach.

4.8 Conclusions

In this chapter we develop two complementary dQMC inchworm approaches for the simu-

lation of exact real-time non-adiabatic dynamics. These approaches are based on generic

expansions in either the system�bath coupling or the diabatic coupling, respectively, and

thus should be of general utility. For concreteness, as well as to permit benchmarking of the

approach, we specialize to the case of the spin�boson model.

Our �rst approach is based on a system�bath coupling expansion, analogous to the

hybridization expansion in the Anderson model. Indeed the scheme is nearly identical to that

employed in original inchworm algorithm formulated for the Anderson impurity model.[106]

We formally show that proper inchworm diagrams account for any diagram in the bare
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Monte Carlo expansion once and only once. The major advantages of the SBCI approach

are twofold: there are far fewer proper inchworm diagrams than bare diagrams and an in�nite

number of bare diagrams are resummed in the inchworm expansion. However, this advantage

comes at a cost, namely one has to calculate two-time restricted propagators and perform a

more involved error analysis during inchworm propagation.

The second inchworm approach is based on the diabatic coupling expansion and its cu-

mulant form. Due to the fact that diagrams within the diabatic coupling expansion include

an interaction line between every two vertices, the main advantages of the inchworm algo-

rithm are lost if one follow the previous scheme. To circumvent this problem, we introduce

a cumulant form of the expansion and propose an alternative inchworm approach, the dia-

batic coupling cumulant inchworm (DCCI) expansion. The DCCI expansion has the notable

advantage that only single-time properties are needed, and the simulation scales linearly in

time. Since cumulant forms can also be used in other inchworm expansions (namely the

SBCI approach), this property should be of general utility. We also note that since the

DCCI and SBCI expansions converge di�erently in distinct parameter regimes, we expect

their combined use to cover much, if not all, of the relevant parameter space.

In Sec. 4.7 we have presented benchmark calculations of the inchworm Monte Carlo

approach for the real-time nonequilibrium dynamics in the spin�boson model. A rather

extensive swath of the full parameter space has been explore and a detailed discussion of

the convergence properties of both the SBCI and DCCI has been made. We have compared

these inchworm expansions to several prominent, numerically exact schemes such as QUAPI,

HEOM, and MCTDH.

In general, we �nd that at least one of the inchworm expansions appears to converge to

118



4.8. CONCLUSIONS

the exact result in essentially all tested regions of parameter space. This appears to include

regions of parameter space that are di�cult for the QUAPI and HEOM methods. On the

other hand, at this stage the QUAPI and HEOM algorithms are simpler to employ. In par-

ticular, more work needs to be done to fully understand the factors that govern error growth

and convergence of the various inchworm approaches so that a general �black-box� imple-

mentation may be developed which would render inchworm Monte Carlo as user-friendly as

these approaches.

In our view, the MCTDH approach is the most reliable and stable approach for the

description of dynamics in the standard spin�boson problem. The inchworm approaches

presented here provide results that appear compatible, but not quite as robust, as those pro-

duced by MCTDH. Inchworm Monte Carlo is essentially an e�cient means to stochastically

sample an exact perturbation expansion. This gives hope that the approach may provide a

general utility beyond the simplest incarnation of the spin�boson model, in cases where other

methods may not be viable. Indeed, inchworm works very well for the Anderson impurity

model, where QUAPI appears to su�er memory length issues[105] and MCTDH appears to

have trouble in strongly correlated regimes[213].

The biggest potential niche for the suite of inchworm Monte Carlo approaches outlined

here appears to be in nonequilibrium setting where transport occurs between two or more

reservoirs. In such situations, MCTDH is far more expensive, while diagrammatic Monte

Carlo actually becomes easier to converge[124, 129, 132]. A particularly interesting case is

nonequilibrium heat transport in the multi-bath spin�boson problem[90, 91, 214�216]. Here,

as far as we know, only one exact calculation has been performed[90, 91], but owing to the

numerical di�culty of the problem, a systematic study could not be performed. This is just
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one example of a class of physically important problems that may be probed in far greater

detail by the inchworm Monte Carlo methods of this work.
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Appendix

4.A Wick's theorem in the diabatic coupling expansion

The multi-time correlation function of polaron shift operators given in Eq. (4.52) can be

written as

J (s) =
〈
B̃− (sm+1) B̃2

+ (sm) · · · B̃2
− (s1) B̃+ (s0)

〉
b
. (4.A.1)

The explicit form of the polaron shift operator in the interaction picture is given by

B̃σ (s) =eθ̃σ(s), (4.A.2)

θ̃σ (s) =σ
∑
`

c`

ω
3/2
`

(
eiω`sb†` − e

−iω`sb`
)
. (4.A.3)

To simplify the notation, we drop the ` index for the time being and de�ne ξ (s) = c
ω3/2 e

iωs,

such that

θ̃σ (s) = σ
(
ξ (s) b† − ξ (s)∗ b

)
. (4.A.4)

The arguments of the polaron shift operators product can be combined using the identity

evb
†−v∗beub

†−u∗b = e(v+u)b†−(v∗+u∗)b × e(vu∗−v∗u)/2 (4.A.5)

for boson operators b and b† (as can easily be derived using the Baker�Campbell�Hausdor�

formula).

121



CHAPTER 4. INCHWORM QUANTUM MONTE CARLO METHOD

Next, the two-time correlator of polaron shift operators is

Br′σ′ (s′)Brσ (s) = exp
{

[σ′r′ξ (s′) + σrξ (s)] b† − c.c.
}
×

exp {iσ′σr′rIm [ξ (s′) ξ (s)∗]} .
(4.A.6)

We note that the boson operator part of the correlator takes the same form as the polaron

shift operator and an additional scalar factor (not a boson operator) emerges. Therefore, we

can recursively combine the argument using the above identity and �nd a general expression

for the multi-time correlator∏
j

Brjσj (sj) = exp

{∑
j

σjrjξ (sj) b
† − c.c.

}
×

exp

{
i
∑
j

∑
k<j

σjσkrjrkIm [ξ (sj) ξ (sk)
∗]

}
.

(4.A.7)

The scalar factor part can be rewritten in the form Im [ξ (s′) ξ (s)∗] = c2

ω3 sinω (s′ − s).

We now focus on the thermal average of the boson operator, exp
{∑

j σjrjξ (sj) b
† − c.c.

}
.

The thermal average of free boson operator of the above form can be obtained as

Trb

{
ρbe

κb†−κ∗b
}

= exp

{
−1

2
κκ∗ coth

(
βω

2

)}
, (4.A.8)

where ρb = e−βHb . We can take the thermal average of the two-time correlator to obtain

Trb

{
ρbBr

′
σ′ (s

′)Brσ (s)
}

=

exp

{
σ′σr′r

c2

ω3
[1− cosω (s′ − s)] coth

(
βω

2

)}
×

exp

{
iσ′σr′r

c2

ω3
sinω (s′ − s)

}
, (4.A.9)

where a time-independent phase is dropped, since it cancels out when a con�guration on

the Keldysh contour is considered. By choosing σ′ = −1 and σ = 1 and putting the ` index
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back, we can carry out
∑

` in terms of spectral density J (ω),

Trb

{
ρbBr

′
− (s′)Br+ (s)

}
=

exp {r′r [−Q2 (s′ − s)− iQ1 (s′ − s)]} ,
(4.A.10)

where Q1and Q2 are de�ned by Eqs. (4.58) and (4.59). The two-time correlation function,

Eq. (4.57), is then given by

C (s′, s)
r′r ≡ Trb

{
ρbBr

′
− (s′)Br+ (s)

}
(4.A.11)

Finally, we take the thermal average of the multi-time correlator

Trb

{
ρb
∏
j

Brjσj (sj)

}
= exp

{∑
j

∑
k<j

σjσkrjrk
c2

ω3
[1− cosω (sj − sk)] coth

(
βω

2

)}
×

exp

{
i
∑
j

∑
k<j

σjσkrjrk
c2

ω3
sinω (sj − sk)

}
.

(4.A.12)

We can �nally carry out
∑

` in terms of spectral density J (ω), concluding that

Trb

{
ρb
∏
j

Brjσj (sj)

}
=
∏
j

∏
k<j

(C (sj, sk)
rjrk)

−σjσk . (4.A.13)

Since we have σj = 1 for j even and σj = −1 for j odd, the powers are

− σjσk =


1 |j − k| odd

−1 |j − k| even

. (4.A.14)
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Chapter 5

Two Flavors of the Non�Crossing

Approximation for the

Anderson�Holstein Model∗

5.1 Introduction

The interaction between electrons and phonons plays an essential role in condensed matter

physics: it is for example the fundamental factor responsible for the resistivity of conduc-

tion electrons in crystals at relatively high temperatures and the onset of superconductivity

at low temperatures[23]. In non-equilibrium molecular electronics experiments[33�35], elec-

tron�phonon interactions are ever present and have major implications[38, 39] which can

∗Based on work published in Phys. Rev. B 93, 174309 (2016). Copyright 2016, American Physical
Society.
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be exploited in the design of phononic devices[36, 37]. In addition, the interplay between

electron�electron interactions (responsible for Coulomb blockade and the Kondo e�ect) and

electron�phonon scattering leads to novel and subtle behaviors[40, 217]. For example, con-

ductance side peaks replicating the Kondo resonance[40, 218, 219] and negative di�erential

resistance at voltages corresponding to the vibrational energy of the molecule[112] have been

observed. In a broader sense, explicating the role played by electron�phonon interactions

in strongly correlated materials remains a fertile area of research, where recent interest has

focused, for example, on the role played by phonons in fulleride[24], cuprate[26] and pnictide

superconductors[27, 28] and the control of superconductivity and metal�insulator transitions

in correlated materials via strong laser �elds[25, 29�32].

A standard model that simultaneously describes both electronic interactions and elec-

tron�phonon coupling in nanoscale devices is the Anderson�Holstein model[20, 21, 114]. This

model consists of a single interacting site (sometimes called the dot or impurity) coupled to a

non-interacting electron reservoir (or reservoirs) and to a set of localized phonon modes. The

Anderson�Holstein model can be considered a minimal description of the essential aspects

of a correlated electron system interacting with phonon excitations, and has been used to

describe vibrational e�ects in molecular electronics[113�115, 220]. Furthermore, within the

framework of dynamical mean-�eld theory (DMFT) [41], the characterization of a strongly

correlated material with active phonon degrees of freedom may be e�ectively reduced to the

Anderson�Holstein model and its variants[126, 220, 221].

Despite the importance of the Anderson�Holstein model, there is surprisingly little known

about its real�time dynamical properties outside of simple limits where perturbation argu-
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ments can be made. The case of zero on-site electron�electron interactions can describe some

phenomena associated with the electron�phonon interaction,including non�equilibrium tran-

sient dynamics, inelastic transport, and phonon-induced side peaks[107�111]. This limit has

been widely considered in the literature; despite its simplicity, it is non-trivial to solve, es-

pecially out of equilibrium. A variety of techniques have been used to analyze this model,

including perturbation theory in the electron�phonon coupling[222], a semi-classical treat-

ment[223], and master�equation approaches[222, 224�228]. Semi-analytical approximations

within nonequilibrium Keldysh Green's functions (NEGF) [229�235], the equation-of-motion

(EOM) approach[236�239], an interpolative ansatz[240], and a recent dressed tunneling ap-

proximation[109] have been applied to the model in various limits. Numerically exact meth-

ods have also been applied, including real-time Quantum Monte Carlo (QMC) [110, 111,

124, 241], iterative path integral schemes[242�244] and the multi-layer multi-con�guration

time-dependent Hartree (ML-MCTDH) method[88, 245].

Treatment of the combined e�ect of electron�electron and electron�phonon interactions

is simplest when the on-site Coulomb repulsion is e�ectively in�nite (U → ∞). In this

limit, some methods used to treat the non-interacting case can be adopted and generalized,

including certain Monte Carlo approaches[113, 246], the equation-of-motion technique[247�

250], a decoupling scheme for NEGF[251], and the slave-boson technique[252, 253]. Studies

of the in�nite�U Anderson�Holstein model predict non-trivial e�ects, such as the appearance

of Kondo replicas above and below the chemical potential and negative di�erential resistance

associated with the destruction of the Kondo resonance[112, 113]. However it remains unclear

if these predictions are valid outside of linear response from equilibrium, and in general

neither the U = 0 nor U → ∞ limits describe the bulk of interesting cases of experimental
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relevance.

Only a handful of approaches are capable of calculating properties of a generic Ander-

son�Holstein model outside of the idealized limits discussed above. Approximate methods,

such as the master equation approach, can accurately describe transport phenomena at high

temperatures and large voltages[254]. The ML-MCTDH method is numerically exact, but

has di�culty converging for strong electron�phonon coupling or far from equilibrium[255,

256]. The numerical renormalization group (NRG) can also be extended to include elec-

tron�phonon interactions, but remains di�cult to apply out of equilibrium and is generally

reliable only for the low energy properties of the system[107, 114�119]. The auxiliary-�eld

QMC method has been used to calculate the density of states under the in�uence of the

phonons in imaginary time[120], but application to dynamics involves an uncontrolled ana-

lytical continuation which is problematic at certain parameters[121, 122], and the Matsubara

formulation is only valid for equilibrium and linear response properties. Real time QMC pro-

vides an alternative numerically exact approach which has the ability to describe transient

dynamics and non-equilibrium transport properties over a wide range of parameters[123�

128]. In combination with reduced dynamics techniques[130�132] it can sometimes be used

to obtain results over very long timescales[132]. However, real time QMC is generically

plagued by a dynamical sign problem which limits the accessible timescales. Although not

the direct focus of this manuscript, we note that the approaches described here can provide

a foundation to allow for an amelioration of the sign problem in QMC simulations[121, 122,

129].

The self-consistent resummation of particular classes of interaction terms may allow for

an extension of the domain of validity provided by bare perturbation theory. A prominent
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example is provided by the non-crossing approximation (NCA) [257, 258]. The NCA is a

semi-analytical method based on the resummation to all orders of a speci�c subset of di-

agrams (those that do not cross temporally on the Keldysh contour) associated with the

hybridization between the impurity and the non-interacting leads. It provides a computa-

tionally inexpensive approach for solving generic impurity models out of equilibrium[259].

NCA is exact in the atomic limit, and works best in the limit of in�nite U and �nite ε. The

approximation does not fully capture low energy properties and does not correctly reproduce

the noninteracting limit. But despite the quantitative inaccuracies, the NCA qualitatively

predicts the emergence and some properties of the Kondo resonance, and is generally ac-

curate for high-energy features. While the NCA as a "stand alone" approximation may

quantitatively fail, higher order approximations (e.g. one�crossing approximation) based on

the same principles have been used[260, 261], and recent numerically exact QMC approaches

have been formulated that sample corrections to the NCA in a numerically exact way[106,

121, 122, 127, 129].

The NCA has been extended to include the electron�phonon coupling, via the slave-boson

technique[252, 253], in nonequilibrium DMFT studies[126, 221], and within a pseudoparticle

picture[262]. A �rst goal of our work is to clearly formulate two complementary NCA-

like approximations in the full many-body basis of the impurity, in a form suitable for

studying the non-equilibrium behavior of the Anderson�Holstein model, and to compare

and contrast the predictions of these distinct self-consistent procedures. A second goal is to

clearly delineate the diagrammatic rules associated with each self-consistent resummation on

the Keldysh contour so that future exact QMC schemes which sample remaining diagrams

may be explicitly formulated. The outline of this chapter is as follows. In Sec. 5.2 we
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introduce the Anderson�Holstein model and provide the needed formalism. In Sec. 5.3, two

distinct types of NCA-like approximation are described. In Sec. 5.4, we present and compare

results for transient dynamics, steady state spectral function and di�erential conductance

for a generic Anderson�Holstein model in the Kondo regime. A summary and conclusion are

presented in Sec. 5.5.

5.2 Coupling Expansion for Anderson�Holstein Model

5.2.1 Model and de�nitions

We consider a single spin-degenerate impurity or quantum dot level with a linear coupling to

a phonon bath and to a pair of metallic leads which will be referred to as �left� (L) and �right�

(R). This model is described by the nonequilibrium Anderson�Holstein Hamiltonian[114,

115, 220]

H = Hd +Hb + Vb +
∑
`∈L,R

(H` + V`) . (5.1)

The electronic part of the dot Hamiltonian, Hd, is

Hd =
∑
σ=↑,↓

εσnσ + Un↑n↓, (5.2)

where εσ denotes the energy of singly-occupied states and U is the Coulomb interaction.

The operators d†σ creates an electron of spin σ on the dot and the occupation nσ = d†σdσ.

The local phonon bath Hamiltonian is

Hb =
∑
q

ωqb
†
qbq. (5.3)

129



CHAPTER 5. TWO FLAVORS OF THE NON�CROSSING APPROXIMATION

Here the b†q are phonon creation operators, and ωq is the frequency associated with a phonon

mode q. We will typically assume that the phonons are initially in equilibrium, such that

the occupation of the phonon modes is given by the Bose�Einstein distribution 〈b†qbq〉 =

1
eβdωq−1

, βd being the inverse temperature of the phonon bath. The electron�phonon coupling

Hamiltonian Vb is

Vb =
∑
q

λq(b
†
q + bq) (nd − δ) , (5.4)

where nd =
∑

σ nσ is the total electronic occupation of the dot and λq the coupling strength

between the dot and phonon mode q. The parameter δ is of no physical signi�cance, in the

sense that it may be absorbed into a rede�nition of the zero point of the oscillator coordinate.

However, it is convenient to set δ = 1, so that ε = 0 describes the particle�hole symmetric

dot, and we will primarily consider this case. We will also investigate the case δ = 0, which

provide a more convenient description of a molecular junction in which polaron formation

is linked to the presence of extra electrons on the dot. In either case, the electron�phonon

coupling is characterized by a spectral density

J(ω) ≡ π

2

∑
q

λ2
q

ωq
δ (ω − ωq) . (5.5)

The left and right lead Hamiltonians are

H` =
∑
k∈`

∑
σ

εkc
†
kσckσ, (5.6)

with ` ∈ {L,R} and the index k denoting a level within a lead. We assume the leads to

be non-interacting, such that they are fully described by the dispersion relation εk and the

creation operators c†kσ. The leads are taken to each be initially isolated and at an equilibrium

state with density matrix ρ`, and their thermodynamic properties characterized by an inverse
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temperature β` and a chemical potential µ`. The initial density of states is then described

by a Fermi�Dirac distribution, 〈c†kσckσ〉 = f`(εk) = 1
eβ`(εk−µ`)+1

.The hybridization V` between

the dot and lead electrons is described by the dot-lead coupling Hamiltonian

V` =
∑
k∈`

∑
σ

[
tkdσc

†
kσ + t∗kd

†
σckσ

]
, (5.7)

where tk enumerates the coupling strength between the dot and level k of lead `. We de�ne

a coupling density

Γ`(ω) = 2π
∑
k∈`
|tk|2δ (ω − εk) , (5.8)

which fully characterizes the tk within this model.

In steady state the dynamical response of a system is characterized by its spectral function

A(ω) =
i

2π
Tr {Gr(ω)−Ga(ω)} , (5.9)

which may be considered a probe of the density of electron and hole excitations as a function

of energy. To calculate the spectral function at frequency ω′, we use the auxiliary current

method[121, 122] by appending two auxiliary leads to the model, H → H +HA +VA, where

HA =
∑
k∈A

εka
†
kak, (5.10)

and

VA =
∑
k∈A

∑
σ

[
tkdσa

†
k + t∗kd

†
σak

]
. (5.11)

These auxiliary leads are coupled to the dot at the single frequency ω′ with a spectral density

Γω
′

A (ω) = ηδ(ω−ω′). One lead is kept fully occupied, such that fA1(ω) = 1; the other lead is

kept empty, such that fA0(ω) = 0. We can calculate the auxiliary spectral function A (ω; t)
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at any �nite time by the following relation:

A (ω; t) = lim
η→0
− 2h

eπη
[IωA1 (t)− IωA0 (t)] . (5.12)

Here, IωA0 (t) and IωA1 (t) are the currents �owing out of lead A0 and A1, respectively, at

time t. At long times, the auxiliary spectral function approaches the steady state spectral

function, Eq. 5.9. While at �nite times the auxiliary spectral function does not conform to

the standard de�nition of a spectral function in terms of a Fourier transform of a correlation

function, it retains the appealing physical interpretation as a measure of the single-particle

excitation density in energies, and could in principle be accessed experimentally by way of

three-lead experiments[121, 122, 263, 264].

We shall also be interested in the di�erential conductance,

G(V ) =
d

dV
(IL − IR). (5.13)

which is directly accessible in transport experiments. Here, V = µL− µR is the bias voltage

between the two leads. The current I`(t) out of lead ` is given by I`(t) = 〈I`(t)〉, where the

current operator for a given lead,

I` = Ṅ` = i
∑
k∈`

(
tkc
†
kσdσ − t

∗
kckσd

†
σ

)
, (5.14)

describes the rate at which carriers �ow out of that lead. The di�erential conductance is often

interpreted as an estimator for the equilibrium spectral function of the model. However, this

interpretation is only valid if the spectral function is independent of the bias voltage. In

practice, the two quantities may be qualitatively di�erent[121].
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5.2.2 Coupling expansion: general formalism

We now formulate a double expansion in the electron�phonon and dot�lead couplings. A brief

review will be provided here for completeness; we refer readers interested in a more detailed

technical outline of the formalism and algorithm elsewhere[122]. We begin by recasting the

Hamiltonian as H = H0 + V . H0 describes the isolated dot and bath subsystems, while

V = Vb +
∑

` V` describes the coupling Hamiltonian.

The expectation value of an operator O at time t can be written in the form 〈O(t)〉 =

〈eiHtOe−iHt〉 = 〈U †(t)OI(t)U(t)〉, where U(t) = eiH0te−iHt and OI(t) = eiH0tOe−iH0t. The

subscript I denotes an operator in the interaction picture. We also de�ne thermal averaging

by way of the notation 〈O〉 ≡ Tr {ρO}, with the averaging performed with respect to the

uncorrelated initial density matrix formed by the product of subsystem density matrices:

ρ = ρd ⊗
∏

` ρ` ⊗ ρb. Thus the dynamics that appear in the following are not in equilibrium

and illustrate the approach to equilibrium in the appropriate limits. Other than in some very

special cases, a �nite system coupled to an in�nite thermal bath which is allowed to evolve

in time is generally found to reproduce the steady state results at long times. Moreover,

this is often the only rigorous way to construct the correct nonequilibrium steady state

in open quantum systems. Initial correlations allow the system to be thermalized at time

zero. Within DMFT[126, 187, 220, 221, 261], one deals with an in�nite interacting system

which is not coupled to a bath, and the role of the initial correlations therefore becomes

more important. They are needed to model an initially thermalized system, which might be

thought of as a system that had been weakly coupled to a bath and allowed to relax before

the beginning of the calculation.

We now describe the details of a Dyson expansion for the reduced propagator on the
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Keldysh contour. We can expand U(t) in a Dyson series

U(t) =
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnVI (t1)VI (t2) · · ·VI (tn) , (5.15)

such that the propagator can be expressed as e−iHt = e−iH0tU(t). We adopt the many-body

atomic states of the isolated dot, {|α〉} = {|00〉 ≡ |0〉, | ↑〉 ≡ |1〉, | ↓〉 ≡ |2〉, | ↑↓〉 ≡ |3〉}, as a

basis, and de�ne the reduced propagator matrix elementGαβ(t) ≡
〈
α
∣∣TrB

{
ρe−iHt

}∣∣ β〉. The
trace is taken over the lead and phonon degrees of freedom: TrB ≡ Tr`Trb. The remaining

quantity is reduced to the dimensionality of the (many-body) dot subspace. We also de�ne

the unperturbed reduced propagator G(0)
αβ(t) ≡

〈
α
∣∣TrB

{
ρe−iH0t

}∣∣ β〉. G(0)
αβ is diagonal for

the model treated here, and takes the form G
(0)
αβ(t) = Φ(t)δαβe

−iEαt. The state energy Eα

is evaluated from the isolated dot Hamiltonian. The factor Φ(t) = TrB
{
ρe−i(H0−Hd)t

}
is

related to �uctuations in the noninteracting baths, and is independent of the dot state. It is

exactly canceled when considering any quantity de�ned on the two branch Keldysh contour,

and can therefore be safely ignored.

The full, or perturbed, reduced propagator Gαβ (t) is also diagonal. Contributions to it

from the coupling Hamiltonian are nonzero only when the creation and annihilation operators

occur in pairs, such that only even orders must be accounted for:

Gαα(t) =G(0)
αα(t)−

∫ t

0

dt1

∫ t1

0

dt2〈α|TrB
{
ρe−iH0tVI(t1)VI(t2)

}
|α〉+ · · · . (5.16)

This series can be represented as a summation of diagrams in which the coupling Hamiltonian

appears an even number of times. An example diagram is shown Fig. 5.1: in (a), the

representation of G(0)
αα (thin lines) and Gαα (bold lines) in terms of pairs of solid and dashed

lines is shown. In (b) a diagram is shown which contains Fermion hybridizations, denoted
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by wiggly lines which change the dot population, and phonon interactions, denoted by wavy

lines with loops which do not change the population (and may appear only within certain

dot states, as detailed below).

The reduced propagator satis�es a causal Dyson equation of the form

Gαα(t) =G(0)
αα(t) +

∫ t

0

dt1

∫ t1

0

dt2G
(0)
αα(t− t1)Σαα(t1, t2)Gαα(t2), (5.17)

where all non-trivial aspects of the problem are contained in the (proper) self energy

Σαα(t1, t2). Solving the Dyson equation self-consistently is in itself an inexpensive com-

putation if the self energy is known. Within the hybridization expansion for the phonon-free

version of the model, the simplest approximation to the self energy includes only a single

pair of coupling Hamiltonians:

Σ2BA
αα (t1 − t2) = −〈α|Trb

{
ρV e−iH0(t1−t2)V

}
|α〉 (5.18)

=
∑
β

G
(0)
ββ (t1 − t2)×∆β

αα(t1 − t2),

where the hybridization function is de�ned as

∆β
αα(t1 − t2) ≡ −〈α|Trb {ρVI(t1)|β〉〈β|VI(t2)} |α〉. (5.19)

This is known as the second-order Born approximation (2BA). The non-crossing approxima-

tion (NCA), also known as the self-consistent Born approximation (SCBA), takes the same

form, but inserts the full propagator G into the self energy:

ΣNCA
αα (t1 − t2) =

∑
β

Gββ(t1 − t2)×∆β
αα(t1 − t2). (5.20)

With this self energy, we can obtain an approximate propagator containing an in�nite, but

partial, subset of the diagrams contributing to the reduced propagator, namely all diagrams
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in which hybridization lines do not cross each other. In the following section, two ways of

generalizing this idea to the full Anderson�Holstein model will be described.

So far, in order to simplify the discussion, we have limited our attention to a reduced

propagator living on a single branch of the Keldysh contour. To calculate a physical ob-

servable, we must consider a two-branch Keldysh contour with the observable operator O

placed at the �nal time t, and take into account diagrams with lines crossing between the

two branches. To this end, we de�ne a vertex function of the observable O, with the two

time variables t and t′ placed on opposite branches of the contour. With t′ → t, this object

yields the physical expectation value of observable O (t). In particular, the current out of

the lead ` can be obtained from I`(t) = 〈I`(t)〉, where the current operator

I` = Ṅ` = i
∑
k∈`

(
tkc
†
kσdσ − t

∗
kckσd

†
σ

)
(5.21)

and the c and d operators are understood to be at the tip of the Keldysh contour.

Because I` is composed of the same operators appearing in the dot�bath hybridization

Hamiltonian, within the coupling expansion the current can be obtained by summing over

diagrams which have a special hybridization line placing the current operator at the �nal

time of the Keldysh contour. An example of such a diagram is given in Fig. 5.1 (c).

5.3 Two Types of NCA for Electron�phonon Coupling

In this section we lay out the construction of NCA-like approximations in two limits: First,

a bare NCA based on self-consistently resummed second order perturbation theory for the

electron�phonon and dot-lead and electron�phonon Hamiltonians. Second, a dressed NCA

in which the Hamiltonian is modi�ed by a Lang-Firsov transformation so that the coupling
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G00 

G33

G11

G22

(a) (b)

(c)

G00

G33

G11

G22

Figure 5.1: (a) The elements of the unperturbed propagator G(0)
αα (left column, thin lines)

and of the NCA propagator Gαα (right column, bold lines). The upper line represents spin

up occupation and the lower line spin down occupation. The dotted line signi�es that the

spin level is unoccupied, while a solid line marks it as occupied. (b) An example of a diagram

included in the reduced propagator G00. Electronic hybridization lines are shown as wiggly

lines, and phonon interaction lines as gluon lines. (c) An example of a diagram on the

Keldysh contour with inter-branch lines and a special hybridization line ending at the �nal

time, corresponding to a contribution to the current.

Hamiltonian becomes a phonon-dressed dot-lead coupling, and includes non-crossing dia-

grams composed of phonon-dressed hybridization lines[126, 187, 220]. Both approximations

can be extended to higher orders, or used as the preliminary step withing a numerically exact

bold-line QMC algorithm. We initially formulate these two types of NCA for the symmet-

ric Anderson�Holstein model in the following two subsections, then discuss the asymmetric

case.
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5.3.1 Weak coupling perturbation theory

The bare NCA approximation is speci�ed by the following equations

G−1 = G−1
0 −Σ` −Σb, (5.22)

with G, G0 and Σ matrices (diagonal, in the cases of interest here) in the Hilbert space of

the decoupled dot, and the lead (`) and phonon (b) self energiesΣ given by:

Σ`
αα(t1, t2) =

∑
β

Gββ(t1, t2)×∆β
αα(t1, t2) (5.23)

Σb
αα(t1, t2) = Gαα(t1, t2)× Λαα(t1, t2) (5.24)

with the lead hybridization function

∆β
αα(t1, t2) =

∑
σ

〈α|dσ|β〉〈β|d†σ|α〉
∑
k∈`
|tk|2Tr`

[
ρ`c
†
kσ(t1)ckσ(t2)

]
+
∑
σ

〈α|d†σ|β〉〈β|dσ|α〉
∑
k∈`
|tk|2Tr`

[
ρ`ckσ(t1)c†kσ(t2)

]
. (5.25)

We also de�ne the lesser and greater hybridization functions ∆<,>
` (τ1, τ2) =∑

k∈` |tk|2Tr`
[
ρc†kσ(τ1)ckσ(τ2)

]
for each lead ` and times τ1, τ2 on the Keldysh contour. ∆>

` is

used when τ1 precedes τ2, and ∆<
` is used otherwise. The dot�lead hybridization function for

each lead can be expressed in terms of the coupling densities Γ`(ω) and the initial occupation

of that lead:

∆>
` (t1, t2) = i

∫ ∞
−∞

dω

π
e−iω(t1−t2)Γ`(ω) [1− f`(ω − µ`)] , (5.26)

∆<
` (t1, t2) = −i

∫ ∞
−∞

dω

π
e−iω(t1−t2)Γ`(ω)f`(ω − µ`). (5.27)
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We similarly de�ne the phonon hybridization function

Λαα(t1, t2) = 〈α| (nd(t1)− δ) (nd(t2)− δ) |α〉×∑
q

λ2
qTrb

[
ρb
(
b†q(t1) + bq(t1)

) (
b†q(t2) + bq(t2)

)]
. (5.28)

This is analogous (but not identical) to the pseudoparticle NCA approximation of ref. 262.

Since the the electron�phonon coupling Vb does not modify the electronic state of the dot,

one can write

〈α| (nd(t1)− δ) (nd(t2)− δ) |α〉 =
(
n

(α)
d − δ

)2

. (5.29)

We also de�ne the bath correlation function,

Bq(t1, t2) = Trb
{
ρb
(
b†q(t1) + bq(t1)

) (
b†q(t2) + bq(t2)

)}
. (5.30)

It can be expressed in terms of the frequency ωq and the inverse temperature β of the local

phonon modes, Bq(t) = coth(βωq/2) cos (ωqt)−i sin (ωqt), if we consider a bath initially com-

posed of free harmonic phonon modes. Thus, it is possible to recast the phonon hybridization

function as Λαα(t1 − t2) =
(
n

(α)
d − δ

)2

× Λb(t1 − t2), where

Λb(t1 − t2) =
∑
q

λ2
qBq(t1 − t2). (5.31)

Just as the electronic hybridization function is described by Γ` (ω), the phonon bath is

usually characterized by its spectral density, J(ω) = π
2

∑
q

(
λ2
q/ωq

)
δ(ω − ωq). In particular,

Λb(t1 − t2) =
2

π

∫
dωJ(ω)ωBω(t1 − t2). (5.32)

Fig. 5.2 and Fig. 5.3 illustrate the diagrams included in the self energy of the bare NCA

approach (for the symmetric case δ = 1). The wiggly lines in Fig. 5.2 denote the dot�lead
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Figure 5.2: The electron hybridization diagrams included in the bare NCA self energy, where

the wiggly lines denote electronic dot�lead hybridization lines. The pairs of straight lines

represent the dot's electronic state, with the two lines standing for the two possible spins: a

solid line represents an occupied spin level, whereas dashed lines stand for empty spin levels.

hybridization ∆β
αα(t1− t2), while the phonon lines of Fig. 5.3 symbolize the phonon coupling

Λαα(t1 − t2). The computation of the Green's function from the Dyson equation using

this approximate self energy embodies a self-consistent perturbative expansion including

the lowest order skeleton diagrams in both the dot�lead hybridization and electron�phonon

coupling. We expect this bare NCA approach to be more applicable in the regime where

both λ and Γ are small. Additionally, the Green's function resulting from the bare NCA does

not contain certain multi�phonon excitations, related to crossing diagrams, which might be

expected to a�ect the dot electron if the phonon relaxation is slow. This implies that the

bare NCA is more accurate in the limit of the fast phonon bath.
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Figure 5.3: The phonon interaction diagrams for the bare NCA self energy in the symmetric

case δ = 1. The curly lines denote phonon interaction lines, and straight lines are as in

Fig. 5.2.

5.3.2 Strong coupling perturbation theory

In this section, we present a version of the non-crossing approximation more suitable to

strong coupling between the dot and the phonon bath to the propagator formulation. This

approach, which we will refer to as the dressed NCA, has previously been employed within

a standard Green's function formulation in Ref. 220, 126.

We begin by performing the unitary Lang�Firsov transformation H̃ = SHS−1 with

S = e
λ
ω0

(b†−b)nd , which eliminates the explicit electron�phonon coupling in the Hamiltonian.

We set the unperturbed Hamiltonian to be H0 = Hd + Hb + Vb. After the transformation,

this becomes

H̃0 = ε̃dñd + Ũ ñ↑ñ↓, (5.33)

Ṽ` =
∑
k∈`

∑
σ

[
tkd̃σc

†
kσ + t∗kd̃

†
σckσ

]
. (5.34)

In the above expressions, the bare dot energy ε and the Coulomb interaction strength U are
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replaced by the renormalized quantities

ε̃ = ε+ (2δ − 1)λ2/ω0, (5.35)

Ũ = U − 2λ2/ω0. (5.36)

Also, the dot electron creation and annihilation operators become

d̃σ = e−
λ
ωo

(b†−b)dσ, (5.37)

d̃†σ = e
λ
ωo

(b†−b)d†σ. (5.38)

All pairs of hybridization events are therefore connected by an in�nite set of phonon hy-

bridization lines generated by these exponential phonon displacement operators.

Within the dressed NCA approximation for the self energy, we consider only the dressed

phonon lines appearing along the noncrossing fermionic hybridization lines, as illustrated

in Fig. 5.4. With this assumption, the e�ect of the electron�phonon interaction is simply

to reweigh each fermionic hybridization line with a phonon-dependent factor, such that the

NCA self energy takes the form

Σ̃`
αα(t1 − t2) = w(t1 − t2) (5.39)

×
∑
β

∆β
αα(t1 − t2)G

(0)
ββ (t1 − t2).

The phonon weight w(t1 − t2) is given by

w(t) = exp

{
−
∑
q

(
λq
ωq

)2

× [(1− cosωqt) coth(βωq/2) + i sinωqt]

}
(5.40)

In terms of the bath spectral density J (ω), this can be written as

w(t) = exp {−Q2(t)− iQ1(t)} ,
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(b)

(a)

∈G(bare)

∉G(dressed)

Figure 5.4: (a) The diagrams representing the di�erent matrix elements of the dressed NCA

self energy. The wiggly double lines denote electron hybridization lines dressed by phonon

interactions. (b) An example of a bare NCA diagram of the lowest order is not included in

the dressed NCA diagrams.

where

Q1(t) =
2

π

∫
dω
J(ω)

ω
sinωt, (5.41)

Q2(t) =
2

π

∫
dω
J(ω)

ω
(1− cosωt) coth(βω/2). (5.42)

The dressed NCA self energy includes many phonon interactions not included in the bare

NCA. The self energy diagrams composed of the transformed dot operators d̃σ and d̃†σ can

be expanded in terms of the bare dot operators and e�ectively contain all the hybridization

diagram within the wiggly double lines. Also, the polaron shift of U and ε is expliciltly

included within the dressed NCA, but not the bare NCA. One might expect it to be a more
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appropriate approximation in the polaron limit. On the other hand, it also misses some

contributions that are included in the bare NCA (see Fig. 5.4 (b)) and over-emphasizes

others, and at weak coupling to the phonons it might be expected to be less accurate. The

two approximations are therefore somewhat complementary, if in a non-rigorous sense; it is

reasonable to assume that conclusions supported by both may be robust to the nature of the

approximations, while conclusions supported by only are suspect and should be investigated

further.

5.3.3 NCA for asymmetric model

We now brie�y discuss the structure of the non�crossing approximation for the case of an

asymmetric Anderson�Holstein model in which the counter term is not included (i.e. δ = 0

in Eq. (5.4)). The phonon can then only be created or destroyed in the single electron state

or the doubly occupied state, not in the empty state. Such a model might be considered

a more physically realistic description of a quantum junction, where one is interested in

vibrational states coupled to electrons.

In the bare NCA calculation, the phonon coupling lines only connect points with occupied

electron states. The interaction diagrams for the bare NCA self energy therefore no longer

have the symmetric structure of Fig. (5.4), but rather include a di�erent number of phonon

inclusions for each of the matrix elements. This is illustrated in Fig. (5.5).

For the dressed NCA, the same Lang-Firsov transformation is performed to eliminate

the explicit electron�phonon coupling. The dressed coupling Hamiltonian then remains the
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11

22

Figure 5.5: The phonon interaction diagrams for asymmetrical model.

same as in the symmetric case. However, the renormalized energy becomes

ε̃ = ε− λ2

ω0

, (5.43)

while the renormalized interaction remains the same as Eq. (5.36).

With this coupling, ε = 0 does not correspond to a particle�hole symmetric point. In the

absence of dot�lead coupling, the charge transfer bands are centered around ω+ = U
2

+ λ2

ω0

and ω− = −U
2

+ 3λ
2

ω0
.

5.4 Results

We now discuss the application of the two NCA approaches described above to the Ander-

son�Holstein impurity model, focusing on a case where the dot has degenerate spin levels

(ε↑ = ε↓ = εd) and obeys particle�hole symmetry (εd = −U
2
) in the absence of phonons.

The leads are assumed to be �at with a soft cuto�: Γ`(ω) = Γ`
(1+eν(ω−Ωc))(1+e−ν(ω+Ωc))

, where

Ωc = 10 and ν = 10. We consider only symmetrical couplings to the left and right leads,
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ΓL = ΓR = 0.5Γ, and apply the bias voltage V symmetrically such that the chemical poten-

tials are given by µL = −µR = 0.5V .

The methods we have described are suitable for the exploration of systems containing

multiple electron and phonon baths with complicated densities of states, but we focus on

a phonon bath with single mode, Hb = ω0b
†b. The electron�phonon coupling Hamiltonian

becomes Vb = λ(b† + b) (nd − δ) and the strength is characterized by by the parameter λ.

We assume that all baths are initially at the same inverse temperature β = 10/Γ.

To calculate the spectral function A(ω) by the double probe scheme, we attach a pair of

auxiliary leads to the system and measure the corresponding auxiliary currents. The spectral

density of the auxiliary leads is a Gaussian delta function Γa(ω, ω
′) = η

δa
√
π
e−[(ω−ω′)/δa]2 where

η = 10−4Γ and δa = 10−2Γ. The dot is assumed to be initially empty, and the coupling to

the thermally equilibrated leads and phonon bath is turned on at time t = 0. The auxiliary

spectral function exhibits some transient behavior, and approaches the physical steady state

spectral function at su�ciently long time, as discussed in Ref. 122.

5.4.1 Symmetric Model

We �rst consider the system which includes the counter term, δ = 1. For this case, the

electron�phonon coupling does not break particle�hole symmetry and the spectral function

remains symmetric.

Transient dynamics

The left panels of Fig. 5.6 and Fig. 5.7 show the transient evolution of the spectral function

A(ω; t). The corresponding right panels display single frequency cuts through this data,
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highlighting the time evolution of the central peak (ω = 0) and the charge transfer (CT)

peak (ω/U = 0.5). We observe an overshooting of the spectral function at short time due to

the instantaneous coupling between the dot and the leads. The bare NCA results (Fig. 5.6)

exhibit oscillatory behavior in the amplitude of the central peak. We observe that this

is composed of a slower oscillation with a period of 2π/ω0, which is associated with the

phonon frequency; and a rapid oscillation with a period of 2π/U , which comes from the

static energetics of the system. However, in the dressed NCA results (Fig. 5.7), oscillatory

behavior consistent with the phonon frequency is not apparent. The oscillatory behavior

predicted by the bare NCA is consistent with predictions made for the Anderson�Holstein

model in the spinless U = 0[241] and U = ∞ cases[252], where the local density of states

at ω = 0 approaches the steady state in an oscillating manner with the periodicity of the

phonon mode. Here, the time-evolution of the entire frequency dependent auxiliary spectral

function additionally reveals the transient e�ect of electron�phonon coupling on the charge

transfer peaks.

At long times, the bare NCA exhibits a strong suppression of the CT peaks when the

phonon frequency is small. However, this suppression of the CT peaks is not nearly as evident

in the dressed NCA results. Conversely, the dressed NCA shows a strong enhancement of

the central peak at low phonon frequencies, which is not present in the bare NCA results.

Equilibrium steady state spectral function

We next explore the equilibrium spectral function A (ω) of the system in the limit of long

times, where the system has reached its steady or equilibrium state. We consider two types

of cuts through the parameter space: the �rst is the dependence on the phonon frequency ω0

147



CHAPTER 5. TWO FLAVORS OF THE NON�CROSSING APPROXIMATION

−5 0 5
ω/Γ

0

5

10
Γ
t

0 2 4 6 8 10
Γt

0.00

0.08

A

2π/ω0

(a) ω0/Γ = 1.5

−5 0 5
ω/Γ

0

5

10

Γ
t

0 2 4 6 8 10
Γt

0.00

0.08

A

2π/ω0

(b) ω0/Γ = 3.5

−5 0 5
ω/Γ

0

5

10

Γ
t

0 2 4 6 8 10
Γt

0.00

0.08

A

2π/ω0

(c) ω0/Γ = 5.5

Figure 5.6: (left panels) The time evolution of the spectral function A(ω; t) within the bare

NCA is shown for di�erent phonon frequencies. (right panels) Time dependence of cuts at

ω = 0 (blue) and ω = U/2 (green). The time scale 2π/ω0 related to the phonon frequency

is also plotted for comparison. A symmetric dot with U = −2ε = 10Γ is considered at

equilibrium V = 0. The phonon coupling is set to λ = 1.5Γ and the counter term is

symmetric (δ = 1). The inverse temperature of all baths is β = 10/Γ.
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Figure 5.7: The same as Fig. 5.6 within the dressed NCA. A symmetric dot with U =

−2ε = 10Γ is considered at equilibrium V = 0. The phonon coupling is symmetric with

λ = 1.5Γ and the inverse temperature of all baths is β = 10/Γ.
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at constant dot-phonon coupling strength λ, and the second is the λ dependence at constant

ω0. Here, too, the bare and dressed NCA predict qualitatively di�erent behaviors.

In Fig. 5.8, A (ω) is shown for a range of phonon frequencies at intermediate elec-

tron�phonon coupling λ = 1.5. Within bare NCA, shown in panel (a), a set of features

at ω = ±nω0 with n ∈ {1, 2, 3} is visible at low frequencies. These features, corresponding

to Kondo replicas or sidebands[107�109, 111, 114, 119], appear as a sequence of positive

peaks at ω = ± (2n+ 1)ω0 and negative peaks at ω = ±2nω0, and are related to interfer-

ence e�ects. In the literature, the Anderson�Holstein impurity model is mostly assumed to

be spinless (U = 0), and one observes multiple positive side bands due to a resonance with

the phonon. For a generic Anderson�Holstein model, negative peaks have previously been

predicted in the T ∼ 0 regime by perturbation theory, but not are exhibited within numerical

renormalization group calculation[114, 119]. However, our calculation shows both positive

and negative side peaks exist at a �nite temperature for generic Anderson�Holstein model.

In the high-frequency regime, the Kondo replicas die out and the CT peaks appear. The

CT peaks are suppressed by coupling to a low frequency phonon mode, which implies that

phonon-induced tunneling dominates the single particle excitation spectrum in this regime.

Replica-like features can also be observed at ω = ±ω0 in the dressed NCA, which is

plotted in Fig. 5.8 (b). However, these side peaks are substantially weaker than those

observed in the bare NCA calculation. In the dressed NCA the CT peaks are shifted by the

reorganization energy, such that their central frequencies are located at ω± = ±
(
ε+ λ2

ω0

)
(as illustrated by the dashed line). A signi�cant enhancement in A (ω) occurs when the two

renormalized CT peaks cross each other. In the low frequency regime ω0 ≤ λ2

|ε| , the two CT

peaks merge and form a wide central peak which is clearly unrelated to the Kondo e�ect.
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The Kondo peak only develops in the high frequency regime, and in general it is strongly

suppressed for a wide range of parameters.

The ω0 dependence of the central peak A (ω = 0) exhibits consistent behavior for the two

�avors of NCA only at high frequencies (Fig. 5.8 (c)). At low frequencies, both approxima-

tions exhibit enhancement of the central peak, but the context and perhaps the mechanism

of the enhancement is di�erent between the two cases. In the bare NCA, the amplitude of

the Kondo peak is enhanced as ω0 decreases because the replicas of the Kondo peak merge

when the phonon quasi-states become nearly-degenerate as ω0 decreases. In the dressed

NCA, on the other hand, the enhancement is maximal where the two CT peaks merge at

ω∗0 = λ2/ε. The contrast with the bare case is even more notable when one considers that

in the bare NCA the CT peaks are almost entirely suppressed at low frequencies.

In Fig. 5.9 We repeat the previous analysis in a di�erent plane of the parameter space,

by taking a cut at a constant (low) phonon frequency ω0 and a range of λ values. In the bare

NCA (Fig 5.9 (a)), the CT peaks are suppressed as λ increases. One can observe a set of

ridge-like features developing along with a strong enhancement of the central Kondo peak.

In the large λ regime, the developed side peaks shifted linearly with λ with a spacing of

approximately ω0 between peaks in frequency. These features resemble Kondo replicas[107,

109, 111, 114, 119], but a closer inspection reveals behavior more complicated than simply

side peaks generated at the phonon frequency |ω| = nω0. A sharp Kondo peak is only

apparent before the crossing point of the ridges. It is signi�cantly enhanced at the crossing

point, and is either completely suppressed or split beyond this point.
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Figure 5.8: The ω0 dependence of the spectral function A(ω) is calculated by (a) bare NCA

and (b) dressed NCA for a symmetric dot at equilibrium V = 0 with U = −2ε = 10Γ.

The phonon coupling is λ = 1.5Γ and the counter term is symmetric (δ = 1). All baths at

the same inverse temperature β = 10/Γ. The dashed lines indicate the renormalized charge

transfer peak at ω± = ±
(
ε+ λ2

ω0

)
. The ω0-dependence of the central peak at ω = 0 is

plotted in (c).
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Figure 5.9: The λ dependence of the spectral function A(ω) as calculated within the (a)
bare NCA and (b) dressed NCA for a symmetric dot with U = −2ε = 10Γ at equilibrium
V = 0. The phonon coupling is ω0 = 1.0Γ and the counter term is symmetric (δ = 1). All
baths at the same inverse temperature β = 10/Γ. The dashed lines indicate the renormalized

charge transfer peak at ω± = ±
(
ε+ λ2

ω0

)
. The λ-dependence of the central peak at ω = 0 is

plotted in (c).
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No Kondo replicas are observed within the dressed NCA(Fig. 5.9 (b)). The CT peaks are

again renormalized, and appear centered at ω± ≈ ±
(
ε+ λ2

ω0

)
as illustrated by the dashed

lines. The crossing at λ∗ =
√
εω0 leads to a strong enhancement near ω = 0. The Kondo peak

is only observable for λ < λ∗, and is widened beyond the point where it can be distinguished

from the CT bands before the crossing point is reached. This widening e�ect is not observed

in the bare NCA. Past the crossing point, no central feature is visible, in agreement with

the bare NCA.

While the striking non-monotonic enhancement of the ω = 0 spectral function is predicted

by both approximations, it occurs at a di�erent value of λ in each case (see Fig. 5.9 (c)).

The peak in the dressed NCA occurs precisely at the value of λ for which the e�ective,

dressed Ũ change sign. In this regard, the result is reminiscent of the NRG prediction of

Hewson and Meyer[114], where the negative�Ũ Anderson�Holstein model �ows to the U = 0

behavior. Within the bare NCA, the peak value of A(ω = 0) occurs for a slightly larger

value of λ. Here, the self�consistency of the perturbation theory presumably captures, in an

approximate manner, the terms leading to negative�Ũ behavior as well. Lastly, it should be

mentioned that this non-monotonic behavior is consistent with the prediction of Ref. 115.

We return to this point later in the manuscript.

Nonequilibrium steady state spectral function

We now consider a nonequilibrium system driven by a bias voltage V = 2Γ. The ω0 de-

pendence of A (ω) is plotted in Fig. 5.10. The voltage splitting of Kondo peak[121, 265]

can be observed in both approximations. The central Kondo peak splits into two peaks at

ω = ±V/2 independently of the phonon frequency. Kondo replicas are not clearly distin-
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Figure 5.10: The ω0-dependence of the spectral function A(ω) for a symmetric dot with

U = −2ε = 10Γ under a nonequilibrium symmetrically applied bias voltage V = 2Γ within

the (a) bare NCA and (b) dressed NCA. The phonon coupling is λ = 1.5Γ and the

counter term is symmetric (δ = 1). All baths at the same inverse temperature β = 10/Γ.

guishable, since the splitting smears out the associated features. However, a set of linearly

dependent signatures remains visible.

5.4.2 Asymmetric Model

In the following subsection, we consider an Anderson�Holstein model without a counter

term, i.e. δ = 0 in Eq. (5.4). While the isolated dot Hamiltonian is still assumed to remain

particle-hole symmetric, the electron�phonon coupling breaks the particle�hole symmetry of

the system and results in an asymmetric spectral function. The two NCA formulations we

employ take this asymmetry into account in di�erent ways, as pointed out in sec. 5.3.3. In

addition to the spectral function, we study the e�ects of the symmetry breaking on transport
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properties. This is of particular interest, because under a symmetrically applied bias the

di�erential conductance is a symmetric function of frequency even without particle�hole

symmetry. Additionally, one may not be able to observe the replicas directly in a transport

experiment, due to the nonequilibrium shifting or suppression of the Kondo peak, which

would also a�ect the replicas. We show that an indirect experimental signal of the replica

e�ect may remain.

Transient dynamics

Within the bare NCA, the CT peaks and Kondo peak oscillate at the phonon frequency ω0,

but the oscillations are manifested in di�erent ways (Fig. 5.11, left panels). In particular,

the CT peaks oscillate in frequency, while the Kondo peak oscillates in amplitude. At short

times and in the adiabatic limit, the CT peak oscillations can be explained by oscillating

energy levels (ε̃σ = εσ+ 2λ
ω0

sin(ω0t+φ0)) with some unknown initial phase. This is illustrated

by the black dashed lines in the left panels of Fig. 5.11. All these features are washed out

in the dressed NCA.

Steady state spectral function

To explore the e�ects of phonons on the equilibrium spectral function, we once again plot

�rst the ω0 dependence at constant λ, and then the λ dependence at constant ω0. Within

the bare NCA, the Kondo replica features can clearly be seen in Fig. 5.13 (a), but harder

to distinguish in the cuts. They are mixed with a variety of other e�ect including the low-

frequency smearing of the Kondo resonance and the suppression of the positive CT peak.

The replica e�ect and the above-mentioned CT suppression are both stronger at positive
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Figure 5.11: (left panels) The time evolution of the spectral function A(ω; t) within the

bare NCA is shown for di�erent phonon frequencies. The frequency oscillations of the CT

peaks along with an illustration of the expected energy oscillations in the adiabatic limit

(dash lines) are also exhibited. (right panels) Time dependence of cuts at ω = 0 (blue) and

ω = U/2 (green). The time scale 2π/ω0 related to the phonon frequency is also plotted for

comparison. The dot is symmetric with U = −2ε = 10Γ at equilibrium V = 0. The phonon

coupling is λ = 1.5Γ and the counter term is asymmetric (δ = 0). The inverse temperature

of all baths is β = 10/Γ.
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Figure 5.12: The same as Fig. 5.11 within the dressed NCA. The dot is symmetric with

U = −2ε = 10Γ at equilibrium V = 0. The phonon coupling is asymmetric (δ = 0) with

λ = 1.5Γ and the inverse temperature is β = 10/Γ.
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Figure 5.13: The ω0-dependence of the spectral function A(ω) for a dot in equilibrium as

calculated within the (a) bare NCA and (b) dressed NCA. The electron�phonon coupling

is asymmetric (δ = 0) and the coupling strength is λ = 1.5Γ. The dot is symmetric with

U = −2ε = 10Γ. All baths at the same inverse temperature β = 10/Γ.

frequencies. At small phonon frequencies, the Kondo resonance merges with the negative

CT peak.

At the intermediate phonon frequency ω0 = |εσ − U | where the replicas are aligned with

the CT peaks, a non-monotonic enhancement of the central peak is evident, and is especially

strong at large λ. This can be seen more clearly in the cut shown in Fig. 5.15 (c). We believe

this is due to a phonon-assisted process which is similar to the Kondo spin-�ip process, and

which becomes possible for electrons with energies closed to the chemical potential[22, 115].

The e�ects described here are largely washed out in the dressed NCA.

We continue to investigate the λ dependence at constant ω0. Here, we plot the results for

both approximations at a relatively large ω0 (Fig. 5.14). The bare NCA (panel (a)) shows
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Figure 5.14: The λ-dependence of the spectral function A(ω) as calculated within the (a)

bare NCA and the (b) dressed NCA for an equilibrium symmetric dot with U = −2ε =

10Γ. The phonon frequency is ω0/Γ = 2.5. The dashed lines indicate the center of the CT

peaks as estimated by the energy renormalization at the anti-adiabatic limit ω+
CT/Γ = −ε+ λ2

ω0

and ω−CT/Γ = ε+ 3λ
2

ω0
. All baths at the same inverse temperature β = 10/Γ.

a suppression of the charge transfer bands and a widening of the Kondo peak. The dressed

NCA (panel (b)) shows an asymmetric shift of the CT peaks to approximately ω+ = U
2

+ λ2

ω0

and ω− = −U
2

+ 3λ
2

ω0
, as might be expected in the anti-adiabatic limit. Some deviation from

this occurs, especially for the positive CT band. More interestingly, as the CT peak merges

with the Kondo peak at λ =
√

Uω0

6
, a strong enhancement occurs. This enhancement is not

observed in the bare NCA.

160



5.4. RESULTS

(a) λ/Γ = 1

0.00

0.04

0.08

0.12

G
(V
/
Γ

)

ω0/Γ = 1.5 2.5 3.5 4.5 5.5

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
V/Γ

2

4

6

8

ω
0
/
Γ

0.00

0.12

(b) λ/Γ = 2

0.00

0.04

0.08

0.12

G
(V
/
Γ

)

ω0/Γ = 1.5 2.5 3.5 4.5 5.5

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
V/Γ

2

4

6

8

ω
0
/
Γ

0.00

0.12

(c)

1 2 3 4 5 6 7 8 9 10

ω0/Γ

0.00

0.02

0.04

0.06

0.08

0.10

A
(ω

=
0
)

λ = 1.0
λ = 2.0

Figure 5.15: The conductance G(V ) as calculated within the bare NCA for di�erent elec-

tron�phonon coupling (a)λ/Γ = 1 and (b)λ/Γ = 2 with a symmetrically applied bias

µL = µR = V . The dot is also symmetric with U = −2ε = 10Γ. Panel (c) shows the

ω0-dependence of the central peak at ω = 0. All baths at the same inverse temperature

β = 10/Γ.
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Steady state conductance

Despite the symmetry breaking of the spectral function, the di�erential conductance G(V ) ≡
dI
dV

(V ) under a symmetrically applied bias (µL = −µR = V/2) remains a symmetric func-

tion of frequency even without the counter term. The replica e�ect and the non-monotonic

enhancement, as visible in, e.g., Fig. 5.13, appears in the spectral function, which could in

principle be accessible in spectroscopic experiments. However, spectroscopic studies of single

molecules in junctions and mesoscopic quantum dots are di�cult to perform, and transport

experiments are far more common. It is interesting to consider whether these e�ects are

observable in the di�erential conductance as well as the spectral function; outside of linear

response these quantities may di�er qualitatively[121]. Fig. 5.15 shows the di�erential con-

ductance as it varies under the e�ect of the phonon frequency ω0 at two di�erent phonon

coupling strengths λ. The non-monotonic enhancement remains clearly visible, while the

side peaks are substantially weaker than their counterparts in the spectral function. The

bare NCA therefore predicts that the non-monotonicity could be observed in transport ex-

periments. Since it is related to the side bands merging with the charge transfer bands, an

experimental observation of it could also be considered an indirect con�rmation of the replica

e�ect. We note that the dressed NCA also predicts a non-monotonicity, but one which does

not appear related to the replica e�ect. It will take a more sophisticated theoretical treat-

ment to determine whether this e�ect is real or an artifact of the two NCA approaches, and

to understand more deeply the mechanism that lies behind it.

In Ref. 115, a non-monotonic e�ective Kondo temperature and zero-bias conductance has

been predicted in the Anderson�Holstein model via the consideration of two limiting cases.

In particular, for weak electron�phonon coupling 2λ2/ω0 � U , the low�energy excitations
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of the Anderson�Holstein model can be approximated by an isotropic Kondo Hamiltonian

with the coupling to phonons leading to an increase in the e�ective Kondo temperature.

On the other hand, for strong electron�phonon coupling 2λ2/ω0 � U , the low-energy ex-

citations can be approximated by an anisotropic Kondo Hamiltonian in which the e�ective

Kondo temperature decreases with increasing λ. This crossover behavior is observed in both

NCAs, though the implied maximum in the spectral function occurs at a di�erent λ (see also

Fig. 5.9c). Interestingly, when examining the spectral function at all energies simultaneously,

a set of higher energy features which appear to be shifted replicas of the maximum is also

revealed.

5.5 Conclusions

In this chapter we formulate and compare two distinct non-crossing approximations for the

study of the Anderson�Holstein model. The �rst approximation, which we call the bare NCA,

is a self-consistent resummation based on a self energy which contains the electron�phonon

coupling and hybridization with the leads to lowest order. Within the second approximation,

which we term the dressed NCA, a Lang�Firsov transformation is �rst applied, and the

resulting transformed set of interactions are then included in a self-consistent, lowest order

self energy. We focus on the predictions of both approximations with regard to transient

dynamics as well as the non-equilibrium steady state behavior of the spectral function. In

general, it should be expected that any �avor of NCA will be inaccurate for low�frequency

properties. For example, NCA predicts a broadened and suppressed Kondo resonance when

compared with exact numerics[122]. Due to the paucity of exact and global information
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related to the dynamical properties of the model, a detailed assessment of the success and

failure of the respective methods is not possible even for higher frequency features. On

the other hand, we believe it is plausible to favor the bare NCA when the electron�phonon

coupling is weak, the dressed NCA when it is strong, and both approaches when they produce

consistent results in the intermediate coupling regime. Since the two approximation are

based on disparate limits of the electron�phonon portion of the problem, we focus on the

intermediate coupling regime in an attempt to assess the validity of the two approximations.

We �nd that several features appear to be robust within both �avors of NCA. First, the

Kondo peak is enhanced in particular regimes, but is universally suppressed in the large

electron�phonon coupling regime. Second, low energy tunneling occurs and charge transfer

peaks are suppressed when phonon frequency is small compared to other relevant energy

scales. Lastly, the voltage splitting of the Kondo peak robustly occurs in the non-equilibrium

regime. We expect these features to be real and experimentally reproducible behaviors in

the Anderson�Holstein model.

Conversely, several striking dynamical properties appear only within one type of NCA

approximation. In particular, the oscillatory transient behavior exhibited in Fig. 5.11 and the

replication of the Kondo peak is only observed within the bare NCA, while polaronic shifts

of the charge transfer peaks occur only in the dressed NCA approximation. It is important

to note that these observations do not necessarily imply that such behaviors are artifacts. In

particular, since the bare NCA is expected to capture accurately the weak electron�phonon

situation, it is plausible that the features revealed in Fig. 5.9 and 5.11 are real properties

of the model in this regime. The dressed NCA may not predict this behavior due to the

fact that several low order diagrams associated with the interplay between hybridization
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and electron�phonon coupling are absent. On the other hand, polaronic e�ects may only

be captured within the dressed NCA, and thus strong coupling shifts of the charge transfer

peaks should be expected once the coupling to phonons is sizable.

Perhaps the most important aspect of the work presented here is that it lays the foun-

dation for exact real-time QMC approaches based on expansion around the NCA approxi-

mation. These �bold-line� approaches have been successful in the treatment of the simpler

Anderson model, and have enabled the simulation of relatively long real time information

before the dynamical sign problem becomes problematic. Convergence of these approaches

depends crucially on having a reasonably accurate partial summation of diagrams from the

outset. With respect to the work presented here, we expect that the bare and dressed NCA

approximations should provide a good starting point in the weak and strong electron�phonon

coupling regimes, respectively. In addition to validating or falsifying the predictions made by

the individual NCA approximations of this chapter, real-time QMC approaches that make

use of the bare and dressed NCA techniques should allow for the exact simulation of the

Anderson�Holstein model in regimes that are currently inaccessible.
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Appendix

5.A Comparison with DMFT-based Monte Carlo results

The top panel of Fig. 3 of Ref. 187 illustrates the behavior of the spectral function of an

Anderson�Holstein problem computed via analytical continuation of exact imaginary-time

quantum Monte Carlo as a function of increasing electron�phonon coupling, and is analogous

to our Fig. 5.9. While it is di�cult to make a direct comparison between these results and

the results presented in our work due to the fact that the previous results were obtained self-

consistently in the context of dynamical mean �eld theory, we have computed the spectral

function for the same model and parameters within the NCA approaches outlined in this

chapter. In this sense, the results of Fig. 16 represent a type of non-iterated NCA impurity

solution in the DMFT context. The electron�phonon coupling parameters used in Fig. 3

of Ref. 187 are su�ciently large to render the bare NCA unstable. On the other hand, the

dressed NCA is in qualitative agreement with the analytically continued results.

Quantitatively, the dressed NCA produces peaks in positions similar to those obtained

by Monte Carlo for large λ, but the ω = 0 and low frequency peaks are broadened and sup-

pressed when compared to those of the analytically continued exact data. This broadening
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and suppression appears to be a general feature of NCA[122]. While the behavior of the

gap closing feature can be observed in both the NCA and the analytically continued Monte

Carlo data, it is still unclear to what degree the di�erences in the spectral functions are due

to the e�ects of analytical continuation and the self-consistency of the DMFT calculation.
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Figure 5.16: Upper: Evolution of the spectral function across the metal�insulator transition

(gap closing) by increasing the phonon coupling. Lower: The spectral function A(ω) in

the strong coupling regime is calculated within the dressed NCA for a symmetric dot with

U = −2ε = 10Γ at equilibrium V = 0. The density of state is of the semi-circular form

Γ (ω) =
√

4t2 − ω2 with t = 1. The phonon coupling is ω0 = 3.0Γ and the counter term is

symmetric (δ = 1). The baths are maintained at a temperature βΓ = 50.
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