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ABSTRACT

Deterministic, Mutable, and Distributed Record-Replay for
Operating Systems and Database Systems

Nicolas Viennot

Application record and replay is the ability to record application execution and replay it at a later time.

Record-replay has many use cases including diagnosing and debugging applications by capturing and re-

producing hard to find bugs, providing transparent application fault tolerance by maintaining a live replica

of a running program, and offline instrumentation that would be too costly to run in a production environ-

ment. Different record-replay systems may offer different levels of replay faithfulness, the strongest level

being deterministic replay which guarantees an identical reenactment of the original execution. Such a

guarantee requires capturing all sources of nondeterminism during the recording phase. In the general case,

such record-replay systems can dramatically hinder application performance, rendering them unpractical in

certain application domains. Furthermore, various use cases are incompatible with strictly replaying the

original execution. For example, in a primary-secondary database scenario, the secondary database would

be unable to serve additional traffic while being replicated. No record-replay system fit all use cases.

This dissertation shows how to make deterministic record-replay fast and efficient, how broadening

replay semantics can enable powerful new use cases, and how choosing the right level of abstraction for

record-replay can support distributed and heterogeneous database replication with little effort.

We explore four record-replay systems with different semantics enabling different use cases. We first

present SCRIBE, an OS-level deterministic record-replay mechanism that support multi-process applications

on multi-core systems. One of the main challenge is to record the interaction of threads running on different

CPU cores in an efficient manner. SCRIBE introduces two new lightweight OS mechanisms, rendezvous

point and sync points, to efficiently record nondeterministic interactions such as related system calls, signals,

and shared memory accesses. SCRIBE allows the capture and replication of hard to find bugs to facilitate

debugging and serves as a solid foundation for our two following systems.

We then present RACEPRO, a process race detection system to improve software correctness. Process



races occur when multiple processes access shared operating system resources, such as files, without proper

synchronization. Detecting process races is difficult due to the elusive nature of these bugs, and the het-

erogeneity of frameworks involved in such bugs. RACEPRO is the first tool to detect such process races.

RACEPRO records application executions in deployed systems, allowing offline race detection by analyzing

the previously recorded log. RACEPRO then replays the application execution and forces the manifesta-

tion of detected races to check their effect on the application. Upon failure, RACEPRO reports potentially

harmful races to developers.

Third, we present DORA, a mutable record-replay system which allows a recorded execution of an appli-

cation to be replayed with a modified version of the application. Mutable record-replay provides a number

of benefits for reproducing, diagnosing, and fixing software bugs. Given a recording and a modified appli-

cation, finding a mutable replay is challenging, and undecidable in the general case. Despite the difficulty

of the problem, we show a very simple but effective algorithm to search for suitable replays.

Lastly, we present SYNAPSE, a heterogeneous database replication system designed for Web applica-

tions. Web applications are increasingly built using a service-oriented architecture that integrates services

powered by a variety of databases. Often, the same data, needed by multiple services, must be replicated

across different databases and kept in sync. Unfortunately, these databases use vendor specific data repli-

cation engines which are not compatible with each other. To solve this challenge, SYNAPSE operates at

the application level to access a unified data representation through object relational mappers. Additionally,

SYNAPSE leverages application semantics to replicate data with good consistency semantics using mecha-

nisms similar to SCRIBE.
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Chapter 1

Introduction

Application record and replay is the ability to record application execution and replay it at a later time, possi-

bly on a different host. Record-replay has many use cases including diagnosing and debugging applications

by capturing and reproducing hard to find bugs, providing fault tolerance and scaling capabilities to appli-

cations by replaying application state on a replica. The desired semantics of record-replay systems varies

depending on the use case. For example, when debugging a rarely occurring multi-threaded related bug,

a record-replay system that guarantees an identical reenactment of the original execution is useful. Such

systems are called deterministic record-replay systems as all sources of nondeterminism must be captured

during the recording phase. By recording an application on production systems, a developer can capture

a rare occurrence of an elusive bug, replay it in his development environment, exactly as it happened, re-

peatedly, to determine its root cause. While deterministic replay mechanisms are certainly useful, such

mechanisms can dramatically hinder application performance, rendering them unpractical in certain appli-

cation domains. Furthermore, deterministic replay alone can be insufficient for some use cases. A developer

may want to inject faults into a replayed execution to observe how the application behaves upon failures,

or enable full logging capabilities of the application by changing a configuration file. Here, a record-replay

system tolerant to application changes is useful. Other record-replay use cases include database replication.

For example, recording a primary database execution and replaying it live on an other replica provides fault

tolerance. Upon primary failure, the replica is promoted to primary, and traffic redirected. Deterministic

replay alone can provide fault tolerance, but cannot provide any scaling capabilities. If the replica was able

to serve read-only queries while being replayed, it could offload some traffic from the primary. Determin-

istic replay does not allow any new executions to occur, and is thus not suitable for such use case. This
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dissertation shows that controlling the emergence of new executions during replay enables powerful new

use cases. We show four record-replay systems. We start by presenting a deterministic record-replay system

that is fast and efficient, and gradually broaden replay semantics to open the range of use cases that can be

supported through our other systems.

First, we present SCRIBE, a multiprocessor deterministic record-replay system. To support a wide range

of application, SCRIBE is implemented at the operating system (OS) level, and is transparent to applications.

Implementing deterministic execution record-replay can be challenging for a variety of reasons. First, all

sources of nondeterminism must be captured and recorded. Sources of nondeterminism can be categorized

in 1) data related nondeterminism and 2) timing related nondeterminism. Data related nondeterminism is

the easiest to capture. It includes recording all external inputs such as incoming network packets, or user

keystrokes. Timing related nondeterminism is harder to capture, especially when the recorded application

runs on multiple CPUs simultaneously. Application threads or processes access data and resources in an

undefined order, resulting in many different possible schedules. It is sufficient to record all sources of non-

determinism, both data and timing sources, to replay an application execution deterministically. However,

doing so with good performance is crucial since recording is done in deployed systems.

To incur minimal record overhead, SCRIBE introduces two new lightweight OS mechanisms, rendezvous

and sync points, to efficiently record nondeterministic interactions such as related system calls, signals, and

shared memory accesses. For example, when two concurrent processes access the same file, the original

order in which each access took place must be preserved when replaying. Instead of recording the ker-

nel scheduling decisions, SCRIBE piggy backs on existing kernel synchronization primitives such as inode

mutexes or file descriptor locks, and records in which order these locks are taken by the kernel. We call

these rendezvous points, and they make a partial ordering of execution based on system call dependencies

sufficient for deterministic replay, avoiding the recording overhead of maintaining an exact execution or-

dering. During replay, application processes and threads are scheduled in a different order compared to the

original ordering. This leads to executions that are different from a kernel perspective, but equivalent from

an application perspective, as all interactions between the application’s processes and threads are faithfully

replicated.

Another difficult problem to achieve deterministic replay is to replay asynchronous interactions that can

occur at arbitrary times during the execution. For example, POSIX signal delivery may occur at any point

in the application instruction flow. Previous works have developed techniques of instrumenting applications
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with the use of hardware counters to precisely locate where a signal was delivered in the instruction flow.

SCRIBE takes a different approach by delaying these asynchronous events during the recording to a point

where it is much easier to replay deterministically. For example, when an application is being recorded,

instead of delivering a signal in the middle of the instruction flow, SCRIBE delivers the signal at the next

encountered sync point, such as a system call or a deterministic page fault. In other words, Sync points allow

SCRIBE to convert asynchronous interactions that can occur at arbitrary times into synchronous events that

are much easier to record and replay. In our evaluation, we show that the introduced delay is imperceptible

in an application as sync points occur very frequently.

With multi-threaded applications, replaying accesses to shared memory is difficult. The order in which

each thread accesses a shared memory location must be replayed deterministically. To solve this problem,

instead of doing any sort of binary instrumentation, SCRIBE leverages the MMU to monitor memory ac-

cesses through page faults. SCRIBE implements a concurrent read, exclusive write (CREW) protocol on

shared pages. To do so, instead of having all threads share a common page table, threads access memory

through a per-thread page table, which SCRIBE uses to record access order with rendezvous points and sync

points. At a given point in time, a page may be accessed by only a single thread, the owner. When another

thread tries to access that same page, a fault occurs, and an ownership relinquish request is issued to the

current owner, which is processed at its next sync point. This lightweight mechanism allows low overhead

of recording shared memory interactions.

Our results show for the first time that (1) sync points are an effective, lightweight mechanism for han-

dling nondeterminism due to signals and shared memory, (2) sync points occur often enough in real server

and desktop applications that the vast majority of asynchronous events are handled instantaneously, and

even when events are deferred, they are delayed for 25 to 220µs on average, (3) an operating system mech-

anism can record-replay real multi-threaded and multi-process applications, (4) transparent, low-overhead

record-replay can be done for workloads across a wide range of server and desktop applications, including

Apache, MySQL, Firefox, Acrobat, OpenOffice, parallel make, and MPlayer. On a 4-CPU multiprocessor,

SCRIBE’s recording overhead was under 2.5% for server applications, and less than 15% for desktop appli-

cations. These results show for the first time a new level of transparent record and replay performance on

commodity multiprocessor systems that was not previously possible.

Second, we present RACEPRO, a process race detection system to improve software correctness. Process

races occur when multiple processes access shared operating system resources, such as files, without proper
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synchronization. To better understand process races, we present the first study of real process races. We

study hundreds of real applications across six Linux distributions and show that process races are numerous

and a real threat to reliability and security. Detecting harmful races is difficult for three key challenges. The

first is scope: process races are extremely heterogeneous. They may involve many different programs. These

programs may be written in different programming languages, run within different processes or threads, and

access diverse resources. The second challenge is coverage: although process races are numerous, each

particular process race tends to be highly elusive. They are timing-dependent, and tend to surface only in

rare executions. Arguably worse than thread races, they may occur only under specific software, hardware,

and user configurations at specific sites. It is hopeless to rely on a few software vendors and beta testing sites

to create all possible configurations and executions for checking. The third challenge is algorithmic: what

race detection algorithm can be used for detecting process races? Existing algorithms assume well-defined

load and store instructions and thread synchronization primitives. However, the effects of system calls are

often under-specified and process synchronization primitives are very different from those used in shared

memory.

RACEPRO addresses these challenges with four ideas. First, it checks deployed systems in vivo. While

a deployed system is running, RACEPRO records the execution without doing any checking. RACEPRO then

systematically checks this recorded execution for races offline. By checking deployed systems, RACEPRO

mitigates the coverage challenge because all user machines together can create a much larger and useful set

of configurations and executions for checking. By decoupling recording and checking, RACEPRO reduces

its performance overhead on the deployed systems. Second, RACEPRO uses the application transparent

SCRIBE engine to record deployed applications, mitigating the scope challenge, as no application source

code or modifications of the checked applications are required. Third, to detect process races in a recorded

execution, RACEPRO models each system call by what we call load and store micro-operations to shared

kernel objects. RACEPRO leverages SCRIBE’s rendezvous points to facilitate the modeling of these two

operations with low overhead. Because these two operations are well understood by existing race detection

algorithms, RACEPRO can leverage these algorithms, mitigating the algorithmic challenge. Fourth, to reduce

false positives and negatives, RACEPRO uses replay and go-live to validate detected races. A detected race

based on the micro-operations may be either benign or harmful, depending on whether it leads to a failure,

such as a segmentation fault or a program abort. RACEPRO considers a change in the order of the system

calls involved in a race to be an execution branch. To check whether this branch leads to a failure, RACEPRO
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replays the recorded execution until the reordered system calls then resumes live execution. It then runs a

set of built-in or user-provided checkers on the live execution to detect failures, and emits a bug report only

when a real failure is detected.

This constitutes a departure from deterministic replay. First, RACEPRO replays a modified version of

the original execution that includes reordered system calls. Second, after the reordered system calls are

replayed, RACEPRO switches from a controlled execution to a live execution. This can be challenging as

the live execution may use OS resources referenced during the controlled execution (e.g. file descriptors),

making the replay mechanism more complex than SCRIBE’s. Despite difficulties, our experimental results

show that RACEPRO can detect real bugs due to process races in widespread Linux deployed systems,

including several previously unknown bugs in shells, databases, and makefiles. We found the practicality

of RACEPRO limited as we obtained best results only with user-provided race checkers as the built-in ones

were too rudimentary. An ideal build-in checker would attempt replaying the rest of the original execution

past the reordered system calls and measure how much the replayed execution diverged from the original.

Replying a modified execution in the general case requires a much more evolved replayer, leading us to

DORA.

Third, we present DORA, a record-replay system which allows a recorded execution of an application

to be replayed with a modified version of the application. We call this feature mutable replay. This feature,

not available in previous record-replay systems, enables powerful new functionality. In particular, DORA

can help reproduce, diagnose, and fix software bugs by replaying a version of a recorded application that

is recompiled with debugging information, reconfigured to produce verbose log output, modified to include

additional print statements, or patched to fix a bug. We introduce the concept of mutable replay. Adding a

printf() call to the replayed application is intuitively safe and the expected outcome clear, but changing

thousands of lines of code in the application may incur significant differences from the original execution.

Intuitively, a mutable replay system must find a execution that corresponds as much as possible to the

original execution. We model the differences of two executions with a user-defined cost function, and

provide a generic one that works well in most cases.

DORA consists of three components: (1) a recorder that records application execution to a log similar

to the SCRIBE engine, (2) a replayer that can replay a modified version of the application using the log, and

(3) an explorer that uses the replayer to find the execution of the modified program that best corresponds

to the log file. The recorder logs not only nondeterministic interactions but also deterministic information
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such as system call arguments, to allow the replayer to identify when a replay diverges from the original

execution early. The explorer evaluates several possible execution paths to find a successful mutable replay.

It performs a best-first search for an execution of the modified program that is as close to the original

execution as possible according to some cost function. It begins by replaying a recorded execution on a

modified program. When the replay diverges from the original execution, the explorer tries to determine

why. For example, suppose the modified program made an unexpected printf() call. This could be a

new call to produce debugging information, or it could simply occur earlier than expected because code was

deleted. The explorer chooses the most promising possibility and communicates its decision to the replayer.

This process repeats until a successful execution is found.

DORA is designed to handle an wide range of real-world programs, including multi-threaded applica-

tions. It can support a broad range of useful application changes, but cannot support arbitrary changes; major

changes to the process layout or shared memory layout are not supported. Despite this limitation, DORA is

useful in a wide range of real-world use cases for testing, debugging, and validating application changes.

In fact, we even found a previously unknown bug in Apache using DORA. DORA’s usefulness in practice

makes sense given that bug fixes tend to be relatively small and rarely change core application semantics.

Lastly, we present SYNAPSE, an heterogeneous database (DB) replication system specifically designed

for Web applications. These Web applications behave very differently compared to traditional single-host

applications as they are distributed and have their state contained in databases. Typically, Web applications

are comprised of many different services, each implementing a specific feature, using a specific database.

For example, the recommendation feature of an e-commerce store can be implemented in a separate service

powered by a graph DB, while the store frontend runs on a traditional SQL DB. These services share a

common subset of the data; for example, the recommendation feature would share the product and user data

with the store frontend. Application state modifications consist of database primitive changes, such as a

node insertion in a graph DB, or a row update in a SQL DB. Designing a system that allows this common

data subset to be synchronized across all the different DBs is challenging for four reasons. First, it should

be compatible with a vast number of DBs, whose layouts and engines may be completely different. Second,

it should be easy to use: orchestrating the data flows inside the internal eco-system of services should

be seamless for developers. Third, it should provide good consistency guarantees at scale, and fourth the

replication mechanism should be failure tolerant. Specifically, network partitions should not result in having

half of the DBs missing some data.
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Using DORA to record the source DB transparently and replying its execution on the destination DB

would not work due to large differences between the two DB systems as DORA would fail at matching a

stream of system calls. Instead of operating at the kernel level, SYNAPSE operates at the application level.

On a high level, SYNAPSE records application state modifications at the source application, and replay these

modifications at the destination application, making SYNAPSE a mutable replay engine for Web applications.

Typically, Web applications are structured following the model-view-controller (MVC) pattern. Data is ac-

cessed following an object-oriented abstraction with Models, such as a User class with attributes such as

email and name. Models are implemented on top of Object/Relational Mappers (ORMs). The ORM does

the heavy lifting of interacting with the DB so developers do not have to write DB queries. Over the years,

many ORMs have been developed, each one targeting a different DB. Thankfully, all these ORMs expose a

similar API to developers to interact with the DB. For example, invoking User.create() would create

a new user, regardless of the combination ORM/DB. SYNAPSE interposes on these ORMs to monitor ac-

cesses to data objects. This allow SYNAPSE to replicate data from one DB to another, effectively replicating

application state, without developer intervention and with little DB-specific code. Further, SYNAPSE pro-

vides an easy-to-use API to describe data flows. Developers simply annotate their models with SYNAPSE’s

publish and subscribe keywords to connect data models together. Despite this simple API, developers

can describe complex eco-systems of services. SYNAPSE provides causal consistency delivery semantics by

transparently intercepting and ordering all read and write queries to the DB in a similar fashion to SCRIBE’s

rendezvous points. Finally SYNAPSE provides a fault-tolerant replication mechanism by implementing two-

phase commits all the way from the source DB to the destination DB.

We have implemented SYNAPSE for Ruby-on-Rails. We present some experimental data showing that

SYNAPSE scales well up to 60,000 updates/second for various workloads. We and others have built or

modified 14 Web applications to share data with one another via SYNAPSE. Those built by others have

been deployed in production by a startup, Crowdtap. The applications we built extend popular open-source

applications to integrate them into data-driven ecosystems.

The development of SCRIBE, RACEPRO, DORA and SYNAPSE led to the following novel contributions:

1. We introduce SCRIBE, the first operating system mechanism to provide transparent, deterministic

execution record and replay of multi-threaded and multi-process applications on commodity multi-

processors and operating systems.

2. We introduce rendezvous points to record partial ordering of execution with low overhead. Ren-
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dezvous points piggy back on existing kernel synchronization primitives such as inode mutexes or file

descriptor locks, and records in which order these locks are taken by the kernel.

3. We introduce sync points to convert difficult to record asynchronous events into easy to record syn-

chronous events. Asynchronous events that occur at arbitrary times are delayed to the next encoun-

tered sync point such as a system call. We show that this solution is effective, and does not require

hardware counters.

4. We implement a prototype of SCRIBE. Our evaluation shows for the first time that an operating

system mechanism can correctly and transparently record and replay multi-process and multi-threaded

applications on multiprocessors with low overhead.

5. We provide strong empirical evidence that real server and desktop applications perform frequent op-

erating system activities which can serve as sync points. The introduced delay from using sync points

is imperceptible in applications as sync points occur very frequently.

6. We present the first study of real process races. We study hundreds of real applications across six

Linux distributions and show that process races are numerous and a real threat to reliability and

security.

7. We present RACEPRO, the first system for automatically detecting process races beyond TOCTOU and

signal races. It checks deployed systems in vivo by recording live executions which are then used

offline for race detection.

8. We show that previously known thread race detection algorithms can be reused to detect process races.

Using our record-replay system, operating system resources can be mapped to memory accesses by

modeling system calls as micro-operations, on which such algorithms can perform race detection. We

show how to detect three different types of process races, load-store races, wait-wakeups races, and

wakeup-waits races.

9. We implement a RACEPRO prototype and demonstrate the effectiveness of our approach by perform-

ing process race detection in real applications. We show that our system can detect 10 real bugs due to

process races in widespread Linux distributions, including several previously unknown bugs in shells,

databases, and makefiles.
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10. We introduce the concept of mutable replay. That is, we define what can be considered a desirable

outcome when replaying an application recording on a modified version of the application.

11. We introduce DORA, the first transparent mutable record-replay system.

12. We introduces an explorer that directs the replay mechanism to identify a mutable replay of the mod-

ified application that minimizes differences with the original unmodified application execution. We

show that a simple explorer using a best first search algorithm can be effective to perform mutable

replay.

13. We provide a few useful properties of DORA. An example of such useful property is the following:

if all explored mutations are safe, that is, any addition that does not change any state which is read

by the original execution, DORA deterministically replays all events in the original execution with the

modified program.

14. We implement a DORA prototype and show that mutable replay is feasible across a wide range of real-

world applications and application changes which can reach thousands of lines of code, even without

support for major changes to core application semantics.

15. We show that mutable replay is useful for enabling common debugging techniques not possible with

previous record-replay systems. We also show that mutable replay enables validation of security

patches against both exploits and production workloads. This is all accomplished without requiring

source code modifications and with low recording overhead, enabling usage on production systems.

16. We present SYNAPSE, an easy-to-use, strong-semantic, heterogeneous database replication system

specifically designed for large-scale Web applications in a service-oriented architecture. These appli-

cations run on top of their own databases, whose layouts, and engines can be completely different,

and incorporate read-only views of each others’ shared data.

17. We introduce a replication mechanism to synchronizes these heterogeneous views in a scalable and

consistent manner. SYNAPSE leverages the high-level data models in popular MVC-based Web appli-

cations to replicate data across heterogeneous databases. It also leverages application controllers to

support application-specific consistency semantics without sacrificing scalability.
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18. We implement SYNAPSE for Ruby-on-Rails, show that it provides good performance and scalability,

release it on GitHub, and deploy it in production to run the web services for a company.

This dissertation is organized as follows. Chapter §2 presents SCRIBE, our deterministic record-replay

system which serves as a foundation for our two next systems. Chapter §3 presents RACEPRO that extends

SCRIBE to perform process race detection. Chapter §4 presents DORA that further extends SCRIBE to

perform mutable replay. Chapter §5 presents SYNAPSE, our database replication system. Finally, we present

some conclusions and directions for future work in Chapter §6.



CHAPTER 2. SCRIBE: TRANSPARENT DETERMINISTIC RECORD-REPLAY 11

Chapter 2

SCRIBE: Transparent Deterministic

Record-Replay

2.1 Introduction

Deterministic application record and replay is the ability to record application execution and deterministi-

cally replay it at a later time. Record-replay has many potential uses, including diagnosing and debugging

applications by capturing and reproducing hard to find bugs, dynamic application analysis by performing

costly instrumentation on replicas that replay application behavior recorded on production systems, intru-

sion analysis by capturing intrusions involving nondeterministic effects, and fault-tolerance by providing

replicas that replay execution and at the occurrence of a fault, go live in place of the previously running

application instance.

Many approaches have tried to provide record-replay functionality, but have suffered from fundamental

limitations that make them unusable in many cases. First, most approaches only support replaying the

recorded application execution, and do not allow the replayed instance to go live and continue normal

execution. This only works for simple debugging uses. It does not work for most scenarios, including any

form of debugging that requires the replayed instance to go live, such as debugging past the end of a recorded

execution, fault-tolerance which requires the replayed instance to be able to go live when the primary fails.

Second, previous approaches either require application changes or rely on specialized hardware that

is not always available. Approaches requiring application changes impose a recurring development cost

on each application to provide record-replay, and do not work for unmodified applications. Approaches
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requiring specialized hardware rely on either hardware architectures that exist in simulation only, or assume

the availability of certain performance counters to track the precise timing of asynchronous events. Such

performance counters may not be available on all hardware platform (e.g. ARM).

Third, previous application transparent approaches either do not support multiprocessor systems at all,

or require using a virtual machine monitor (VMM) and suffer significant performance overhead on mul-

tiprocessor systems. This overhead is imposed on the recording of execution and can result in more than

an order of magnitude reduction in application performance [42]. Such overhead is unacceptable even for

debugging or analysis. Because the recording must often be done on a production system to capture and

identify real bugs for debugging or real application behavior for analysis, minimizing recording overhead is

crucial to avoid any adverse impact on production application execution.

To address these problems, we introduce SCRIBE, the first system to provide transparent, low-overhead

application record-replay and the ability to go live from replayed execution. SCRIBE uniquely combines

transparency and low-overhead for application execution recording based on two principles. First, SCRIBE

primarily operates at the well-defined interface between applications and the operating system to record

and replay the execution of multiple processes and threads in a consistent and coordinated manner. Using

a standard interface that applications already use avoids the need to modify applications to enable record-

replay, providing transparency. Using a higher-level interface avoids the need to track and record low-level

hardware and operating system nondeterministic effects that have no impact on enabling deterministic appli-

cation replay, reducing overhead. Unlike VMM approaches, it also enables finer granularity per application

record-replay as opposed to limiting record-replay to an entire operating system instance. Second, SCRIBE

observes that real applications do frequent system activities such as I/O. These activities can be recorded ef-

ficiently with relative ease because their timing is synchronous with the execution of the process performing

the activities. Using these activities, SCRIBE converts nondeterministic asynchronous interactions that are

difficult to record and replay efficiently without additional hardware support into synchronous interactions

that can be recorded in software with low overhead. In other words, the timing of an application execution

may be perturbed in a manner that makes it easier to record efficiently without sacrificing correctness or

performance.

Using these principles, SCRIBE introduces two novel mechanisms to address the key challenge of han-

dling nondeterministic execution. First, SCRIBE introduces rendezvous points to record all nondeterministic

interactions between applications and the operating system that involve system calls. To be able to go live
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at any point during replay, the effect of system calls inside the kernel must be replayed; replaying just the

outcome of system calls in user space is not sufficient. SCRIBE does not aim to replay the exact scheduling

order as in the original execution, but instead uses rendezvous points to make a partial ordering of execution

based on system call dependencies sufficient for deterministic replay. Since an exact execution ordering is

not needed, SCRIBE does not incur the associated recording overhead and does not need hardware counters

used to maintain such an ordering. SCRIBE also logs input data delivered through system calls to account

for nondeterminism due to external input.

Second, SCRIBE introduces sync points that correspond to synchronous system events such as system

calls and certain page faults to deterministically record the timing of nondeterministic events like signals

and shared memory interleavings. For a target process or thread, an asynchronous event such as a signal

or shared memory access by other processes or threads may occur at any time during the target process’s

execution. This is hard to replay since the event must be replayed at the exact same instruction in the

target process as during recording. SCRIBE defers asynchronous events until sync points occur to make

their timing deterministic so that they are easier to efficiently record and replay. Sync points do not require

hardware counters or application modifications that are necessary with previous approaches, and do not

adversely impact application performance because they occur frequently enough in real server and desktop

applications due to operating system activities.

SCRIBE fully supports record and replay of real multi-process and multi-threaded applications, and

enables an application to switch from being replayed to running live at any point in time. SCRIBE accom-

plishes all of this in an application transparent manner, does not require changing, relinking, or recompiling

applications, libraries, or operating system kernels, does not require any specialized hardware support, does

not require a VMM or incur its associated costs, and works on commodity multi-core and multiprocessor

hardware and operating systems.

We have implemented a SCRIBE Linux prototype and evaluated its performance on multi-core and multi-

processor systems on a wide range of real applications. Our results show for the first time that (1) sync points

are an effective, lightweight mechanism for handling nondeterminism due to signals and shared memory,

(2) sync points occur often enough in real server and desktop applications that the vast majority of asyn-

chronous events are handled instantaneously, and even when events are deferred, they are delayed for 25

to 220µs on average, (3) an operating system mechanism can record-replay real multi-threaded and multi-

process applications, (4) transparent, low-overhead record-replay can be done for workloads across a wide
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range of server and desktop applications, including Apache, MySQL, Firefox, Acrobat, OpenOffice, parallel

make, and MPlayer. On a 4-CPU multiprocessor, SCRIBE’s recording overhead was under 2.5% for server

applications, and less than 15% for desktop applications. These results show for the first time a new level of

transparent record and replay performance on commodity multiprocessor systems that was not previously

possible.

This chapter is organized as follows. §2.2 presents an overview of SCRIBE’s architecture. §2.3 describes

how system calls are recorded and replayed §2.4 describes how shared memory interleavings are recorded

replayed. §2.5 covers the rendezvous event used for ordering access to shared resources. §2.6 describes

signal delivery and the recording of asynchronous events. §2.7 presents experimental results. §2.8 discusses

related work. Finally, §2.9 presents a summary and concluding remarks of this chapter.

2.2 Architecture Overview

SCRIBE can record and replay the execution of a group of processes and threads from any point in time. We

refer to a group of processes and threads being recorded or replayed as a session. SCRIBE checkpoints the

session at a desired starting time and records the execution going forward. It can then restart and replay the

session from the checkpoint. Checkpoints can be taken at any time, replay can be done at any later time as

well as on another machine, and replayed execution can go live at any time and continue normal execution.

SCRIBE’s checkpoint-restart mechanism provides a consistent checkpoint of process and filesystem state

based on Zap [59; 60; 81]. We only consider execution replay on a machine with the same CPU type and

features, such as x86 MMX/SSE instructions, as where the execution was recorded. For example, a process

that uses MMX instructions when it is recorded cannot be replayed on a machine without MMX instructions.

We will use Linux semantics to describe how record-replay is accomplished in further detail.

SCRIBE can start recording execution from a checkpoint of a session, or it may begin with an empty ses-

sion by launching a new process. To begin recording, a dedicated monitor process attaches itself to the target

process(es), setting a special recording flag for each process to indicate that it is being recorded. This flag

is inherited via the fork and clone system calls, so that new threads and children of a recorded process

will automatically become part of the recorded session. Recording takes place in the context of the recorded

process. SCRIBE uses stubs to interpose on key operating system kernel entry points to perform some pro-

cessing before and after the entry points as needed. For instance, when a recorded process executes a system
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Event Description Payload

hw inst hardware instruction trap op-code and data, e.g. RDTSC and counter value

syscall ret system call return system call return value

copy data data transfer to/from user space size and contents of data transfer

page public make page public (not owned) page address

page share read make page shared read-only page address, page sequence number

page own write make page owned read/write page address, page sequence number

rendezvous resource synchronization resource sequence number

signal receive process received signal signal number and info, whether or not in system call

async reset force a sync point process user space signature at forced sync point

Table 2.1: SCRIBE Record-Replay Events.

call, SCRIBE produces events that describe the system call and its outcome by recording information about

the system call before and after the system call executes. SCRIBE records by intercepting all interactions of

processes with their environment, capturing all nondeterminism in events that are stored in log queues inside

the kernel. SCRIBE allocates a private kernel log queue for each process. Processes generate events during

recording, and append them to the log queue. As processes fill their log queues with events, the monitor

pulls them from the queues and saves them to permanent storage. Recording of a process ends when the

process exits, or when SCRIBE explicitly tells the monitor to stop the recording.

SCRIBE can start replaying a session from the beginning of its execution or from a restarted session. To

replay, the monitor launches a new process, or restarts the desired session from the respective checkpoint

and marks all processes with a special replaying flag. A log queue is allocated for each process. Thereafter,

the monitor reads the recorded events from storage and places the data in the respective log queues.

The recorded events are consumed from the log queues to steer the processes to follow the same ex-

ecution paths they had during recording. Replay takes place in the context of the process being replayed.

SCRIBE uses the same stubs for replay as it did for recording to take control over process execution by

interposing on key operating system kernel entry points. For example, when a system call is invoked at

replay, SCRIBE consumes an event from the log queue to determine how to correctly replay the effect of the

system call. Replay of a process ends when the process terminates, or when all the recorded events have

been consumed.

SCRIBE can also let the session go live, transitioning it from controlled replay to live execution, by
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detaching the monitor from the processes and flushing all remaining events. To do this, SCRIBE must do

two things to ensure that the replayed session is always in a state that allows it to transition to live execution.

First, SCRIBE needs to not only replay the application state in user space, but also the corresponding state

that is internally maintained by the operating system on the application’s behalf. Second, SCRIBE must

ensure that the replayed processes perceive the underlying system to be the same as at the time of recording.

System identifiers such as process IDs and network port numbers must be perceived by processes to remain

the same for them to run correctly after they transition to live execution. To guarantee this even if the

underlying system has changed, SCRIBE uses operating system virtualization [81] to encapsulate processes

in a virtual execution environment that provides the same private, virtualized view of the system when the

session is replayed or goes live as when it was recorded. Processes only see virtual identifiers that always

stay the same. Virtual identifiers are transparently remapped by the environment to real operating system

resource identifiers, and the mappings are updated so that the session can go live at any time.

The events that SCRIBE records and replays each contains two fields: the event type, and a payload

whose size and contents depend on the event in question. Events are not timestamped because SCRIBE does

not replay based on explicit event timing information, and does not aim to repeat the exact scheduling order

as in the original execution; rather, it ensures that events are ordered correctly by tracking dependencies

among events. Two events are related if they access the same resource and at least one of them modifies

it, for instance a write and read on a pipe. SCRIBE tracks dependencies to preserve the partial order of

related events during replay.

Table 2.1 lists all event types recorded and replayed by SCRIBE. These events correctly account for

all sources of nondeterministic execution that are needed to support deterministic replay: nondeterministic

machine instructions, system calls, signals, and shared memory interleavings. External input is also a source

of nondeterminism, but this occurs through system calls.

The hw inst event is used for nondeterministic machine instructions which interact directly with the

hardware and bypass the operating system. There are three such instructions on x86 CPUs. They all involve

reading CPU counters and can be recorded by simply trapping when they occur. While trapping is expensive,

these instructions typically occur infrequently; standard binary instrumentation techniques can be used to

optimize performance. When a nondeterministic machine instruction occurs, SCRIBE records a hw inst

event whose payload is the instruction type and its result. For example, when the RDTSC instruction occurs,

SCRIBE records a hw inst event whose payload is the RDTSC instruction opcode and the 64-bit value of the
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timestamp counter. During replay, SCRIBE returns the recorded result instead of executing the instruction.

2.3 System Calls

System calls are the predominant form for processes to interact with the environment and with other pro-

cesses. System call interposition is used to record and replay the execution of system calls. Unlike other

approaches [50; 96; 102], SCRIBE does not simply feed processes with logged data to simulate the effect

of system calls. This is not sufficient to enable replayed execution to go live. Instead, SCRIBE re-executes

system calls during replay to ensure that the corresponding in-kernel state of a replayed session is updated

properly so that it can transition to live execution at any time. We first describe the basics of how SCRIBE

handles system calls, then describe in §2.5 how SCRIBE handles nondeterminism due to system calls that

access shared resources.

2.3.1 Record

During recording, SCRIBE always allows each system call to execute and records its return value using the

syscall ret event so that the same values can be returned on replay. The system call number is not recorded

since it will be available on replay when the process executes the same system call. For system calls that

create and terminate processes and threads, namely fork, clone, and exit, SCRIBE also sets up the log

queues, arranges to control the execution of new processes and threads when they are created, and performs

proper cleanup as processes and threads exit. For system calls that transfer nondeterministic or external

data from kernel to user space, SCRIBE records the data to the log queue of the calling process using the

copy data event so that the same data can be output by the system call on replay. For example, Figure 2.1

shows the recording of gettimeofday, which outputs to a data structure a time value which must be

recorded. Similarly, all external input data, including network inputs and data from special devices such as

/dev/urandom, are delivered via system calls, mainly the read system call, and must be recorded.

Data from user space used as input for system calls never needs to be recorded; it is always deterministic

on replay since it resides in the address space of a replayed process. The only exception is if a buffer

corresponds to mapped I/O memory, whose contents are logged as well using the copy data event. Similarly,

SCRIBE does not record input from file descriptors that refer to a local filesystem or to objects such as pipes,

because their state and contents during replay are controlled by the replay and therefore deterministic. In
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Record (action) → Event log → Replay (action)

ret = gettimeofday(K, NULL) (do nothing)

(system call returned) syscall ret(ret)

copy out: K→u (size) copy data(size, K) copy out: K→u (size)

return(ret) return(ret)

Figure 2.1: Record-Replay of gettimeofday. To record, SCRIBE invokes the system call with an

in-kernel buffer (K), logs the return value and input data, copies the data to the user buffer (u) and returns.

To replay it copies the logged data to the user space buffer and returns the logged return value.

contrast, approaches that use system call simulation must explicitly log such data, significantly inflating the

resulting log size.

2.3.2 Replay

During replay, SCRIBE replays the system calls of each process independently, unless system calls access

shared resources as discussed in §2.5. When a replayed process invokes a system call, SCRIBE intercepts it

and uses the return value from the corresponding syscall ret event in the log queue of the calling process as

the return value of the system call. It does not return the value from executing the actual system call, which

may differ and result in the replay diverging from the recorded execution.

For system calls that transfer nondeterministic data from kernel to user space, the data logged in the

corresponding copy data event is also returned on replay. For example, Figure 2.1 shows the replay of the

gettimeofday system call from an event log.

Beyond dealing with the return value and nondeterministic data, we can classify system calls into two

categories: idempotent and non-idempotent. Idempotent system calls do not modify the internal kernel state,

and therefore the underlying call does not even need to be executed. These system calls typically query

resource identifiers, such as getpid, getppid, getuid and getgid, or transfer data about resources,

such as uname, getrusage, time, getitimer, gettimeofday, and sysinfo. Non-idempotent

system calls modify system state and therefore replay typically requires executing the underlying system

call.

The processing of non-idempotent system calls varies for different system calls. Most of these system
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calls are replayed directly by executing them. Examples include setsid, brk, reading from and writing

to a pipe, etc. By executing these system calls, SCRIBE guarantees that the state of all the resources that

belong to the session is correct at all times, and the session may safely stop replaying, go live, and proceed

to execute normally. If a system call execution that was successful in the original application execution fails

during replay, SCRIBE aborts the replay.

For system calls that create and terminate processes and threads, namely fork, clone and exit,

SCRIBE sets up the log queues, arranges to control the execution of new processes and threads when they

are created, and performs proper cleanup as processes and threads exit. When creating processes and threads

during replay, SCRIBE relies on the underlying virtual namespace to provide a method to select predeter-

mined virtual process identifiers so that processes can reclaim the same set of virtual resource identifiers they

had used during recording. The same is true for other system calls that allocate resources with identifiers

assigned by the kernel, such as IPC identifiers.

For system calls that carry out external I/O, the internal state of file descriptors, such as file position, is

updated even though data may not be explicitly sent or received through the file descriptors. For example,

for external input, SCRIBE replays the data to the application from the log rather than fully execute the

system call.

For system calls that accept wildstar (catch-all) arguments, such as mmap and wait, SCRIBE already

knows the outcome of the system call, e.g., which address or process was selected. For deterministic replay,

it simply substitutes that outcome for the wildstar argument.

2.3.3 Go Live

In most cases, executing recorded system calls during replay is sufficient to automatically replay the kernel

state correctly, due to the deterministic behavior of the application and the operating system. For example,

when an application creates and then writes to a pipe, the kernel internally allocates a pipe object, popu-

lates the process’s file table with suitable file descriptors, and then places data in the pipe’s internal buffer.

During replay, the application will issue the same system calls, in the same partial order, and the kernel will

deterministically behave in the same way and reconstruct the same internal state.

However, internal kernel state that is related to external entities is unique in that it interacts with, and

is affected by, state that is not controlled by the session. How such state is handled is predicated on what

is assumed about the external environment when a session goes live. We identify two scenarios: stand-
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alone execution assumes that the original external links are non-existent, e.g. in debugging use case, and

switch-over execution assumes that they remain as is, e.g. for replica execution.

In stand-alone replay, internal kernel state linked to outside the session would become meaningless once

the session goes live. Thus, SCRIBE needs to cast meaningful state that gracefully reflects the new status of

the resources it represents. It does so by partially executing select system calls that create or manipulate this

state.

To illustrate this concept, consider network connections created via connect and accept system

calls. Since connect attempts to create a connection to the external world, SCRIBE skips its invocation

during stand-alone replay. A successful accept will receive an incoming connection into a new socket.

To replay this, SCRIBE creates a new, disconnected, socket instead. The end result in both cases, is that the

socket remains closed; should the application thereafter go live, it will perceive a network disconnect upon

the next attempt to read or write the socket.

Switch-over replay, on the other hand, introduces two additional complexities. First, it requires that the

transition to live execution occur transparently, in a way that external entities, such as remote connections,

would not notice. Second, replaying of kernel state is no longer deterministic, since it is affected by the

interaction with external entities, e.g. the random choice of sequence numbers for TCP connections, and

interleaved order of incoming messages.

SCRIBE’s approach is to maintain a compatible, but not necessarily identical, internal kernel state during

replay. This avoids numerous intricacies involved in identifying, recording and replaying nondeterministic

events of, for instance, the network stack. A key observation is that the replay does not interact with the

real world until it goes live. It is permissible to have differences in the internal state, provided that when the

transition to live execution takes place, the state is consistent with what was previously published to, and

hence expected by, the external world.

Consider, for instance, internal kernel state that corresponds to network communication. For protocols

that lack reliability guarantees, such as UDP, SCRIBE need only maintain the corresponding network end-

point, and may safely ignore buffered or in-transit data. For connection-oriented protocols, like TCP, it

records important events that permanently affect the internal state. This includes selection of port number,

updates of sequence numbers and timestamps, setup of timer expirations, and acknowledged received data.

Unacknowledged received data is not tracked since it will be retransmitted. Data in the send buffers is not

logged either because it will be deterministically reproduced by replaying the application.
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2.4 Shared Memory

Replaying shared memory interleaving is critical for deterministic replay, especially on multiprocessor ma-

chines. Memory sharing happens either explicitly when multiple processes share a common shared mapping,

or implicitly when the entire address space is shared, e.g. with threads. The main tool to monitor and control

memory access in software is the page protection mechanism. Replaying the order of memory accesses effi-

ciently in software is fundamentally difficult since one process may access shared memory asynchronously

with, and at any arbitrary location within, another process’s execution.

SCRIBE addresses this problem by introducing page ownership management. Because of spatial and

temporal locality, a process typically accesses multiple locations on a page during a given time interval. If

we can guarantee that no other processes modify that page during the same time interval, then the page can

be treated like private memory for that process during that interval. There would be no need to track memory

accesses since there are no nondeterministic shared memory interleavings. This scheme requires a protocol

to manage page ownership transitions, and a method to ensure that such transitions occur at precisely the

same location in the execution during both record and replay. The latter problem is the key challenge, and

is discussed in §2.6.

SCRIBE employs a concurrent read, exclusive write (CREW) protocol [34; 64] for shared memory ac-

cess, but with additional optimizations. A state field of a page indicates whether it is un-owned (pub-

lic), owned exclusively for read and write (owned write) or shared for read by one or more processes

(shared read). A process that owns a page exclusively has its PTE set as read and write. A process that

shares a page has the PTE set to read-only. Otherwise the respective PTE will remain invalid to prevent

access. A page that is shared for reading continuously tracks its list of readers, and an exclusively owned

page tracks its writer (owner).

Transitions between the page states are as follows. A public page becomes shared read or owned write

on the first read or write access, respectively. An owned write page becomes shared read when another

process attempts to read from it; the owner process will give up exclusive access and downgrade its PTE to

be read-only. An owned write page can also change owner, in which case the old owner will give it up and

invalidate its own PTE, while the new owner will adjust its PTE accordingly. A shared read page becomes

owned write when the page is accessed for writing. Finally, a page becomes public when all processes that

have a right to access terminate.

Transitions between page states occur as a result of page faults, which indicate that the faulting process
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Record (action) → Event log → Replay (action) User-space

copy in: u→K (size) copy in: u→K (size) (A) write(fd, u, size)

rendezvous(A, fd.inode) (A) rendezvous(SEQ) rendezvous(A, fd.inode)

ret = write(fd, K, size) ret = write(fd, K, size)

(system call returned) (A) syscall ret(ret) (system call returned)

return(ret) return(ret)

· · · · · · · · · · · ·

rendezvous(B, fd.inode) (B) rendezvous(SEQ+1) rendezvous(B, fd.inode) (B) read(fd, u, size)

ret = read(fd, K, size) ret = read(fd, K, size)

return ret (B) syscall ret(ret) return ret

copy out: K→u (size) copy out: K→u (size)

return(ret) return(ret)

Figure 2.2: Rendezvous Points. Process A must pass a rendezvous point before it can invoke the system

call in both record and replay. Process B must do so too, but with a larger sequence number, thus preserving

their relative order. The data itself is deterministic and not logged.

is requesting access to a given page. SCRIBE employs two optimizations to reduce the occurrence of these

faults. First, SCRIBE optimizes for the common memory access pattern of reading then writing the same,

or nearby, memory addresses. For this pattern, the standard CREW protocol incurs two page faults: a read

fault makes the page shared read and a write fault makes it owned write. To avoid this cost, SCRIBE marks

pages when they experience a double fault by the same process. A marked page will transition directly to

owned write on subsequent page faults, whether they are reads or writes. Finally, SCRIBE clears the flag if

the number of page faults exceeds a defined threshold, to adjust its behavior for possibly changing memory

access patterns.

Second, SCRIBE optimizes to reduce frequent transfers of page ownership. This can occur among mul-

tiple threads due to true or false data sharing. Such page ping-ponging can cause thrashing, especially when

multiple pages are involved. For instance, a thread that uses two pages repeatedly in a tight loop may lose

ownership of one page while faulting on the other. To mitigate this, SCRIBE defines a minimal ownership

retention interval that begins with an ownership change. Ownership transitions are disallowed until the

interval expires. The length of the interval is comparable to a standard scheduler time quantum so that a

running process is likely to complete its scheduled time quantum of work.
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SCRIBE’s page ownership management mechanism requires updating PTEs. To support threads without

high overhead due to TLB invalidations, we use private page tables to track thread shared memory accesses.

All threads associated with a process share a common page table for reference, but each thread uses its own

private page table. The reference page table maintains the current state of all pages. When a thread causes

a page fault, SCRIBE consults the corresponding entry in the reference page table and copies the PTE to

the thread’s private table. This is inexpensive because it only flushes a single TLB entry on the local CPU,

instead of a costly inter-processor interrupt followed by a global TLB flush. The reference page table is

explicitly updated when the process’s address space layout is modified, e.g. through mmap, munmap and

mprotect. For a single thread, the private page table directly mirrors the reference page table.

2.5 Rendezvous Points

System calls that access shared resources may cause nondeterminism arising from the order of the execution

of related system calls that access the same resource and at least one of them modifies it. For instance, a

write and a read on the same pipe are related. The order in which related system calls occur needs to

be recorded so they can be deterministically replayed. It is crucial to do this in a way that does not degrade

performance and scalability on multiprocessor systems.

By operating at the system call level, SCRIBE introduces a novel mechanism to address this problem by

capturing concurrency at the same granularity as the operating system. The only requirement is to record

and replay the order of any two related system calls. Related system calls occur from accessing shared

resources. We observe that the operating system kernel must already provide locations where access to

shared kernel objects is serialized for correctness. SCRIBE can thus mimic these serialized access points to

record and replay the order of any two related system calls.

SCRIBE introduces rendezvous points, locations at which system call ordering is tracked during record-

ing and enforced during replay. Because related system calls occur from accessing shared resources, SCRIBE

synchronizes access to each such resource by converting all locations in which shared resources are accessed

into rendezvous points. Since these locations are already used by the kernel to serialize access to an instance

of a shared resource, rendezvous points do not reduce the scalability or concurrency of the kernel. Our ap-

proach avoids the overhead of maintaining an exact execution ordering of system calls and makes a partial

ordering of execution based on system call dependencies sufficient for replay.
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Rendezvous points are recorded by associating each resource instance with a wait queue and a unique

sequence number counter. At any time, exactly one process may be executing inside a given rendezvous

point, while others must block until the resource is released. During recording, a process that attempts to

access a shared resource will first pass through the corresponding rendezvous point. By doing so, it will

increment the sequence number and generate a matching rendezvous event. The sequence number in the

rendezvous event indicates the exact access order for the resource, which can be used to enforce the order

during replay. Figure 2.2 shows the recording of the write and read system calls using rendezvous

points and the resulting log. Ideally, for each rendezvous point, we could reuse the respective kernel locking

primitive already in place for the associated resource, but this involves kernel changes. To avoid changing

the underlying kernel, SCRIBE resorts to its own, separate mutex to interpose transparently at well-defined

kernel entry points. §2.7 shows that our approach incurs low overhead on real applications.

During replay, SCRIBE replays the system calls of each process independently from other processes until

reaching a rendezvous point. SCRIBE repeats the order in which processes executed through rendezvous

points when originally recorded by only permitting the process with matching (smallest) sequence number

to enter at any single time. Processes with higher sequence numbers will block and wait for their turn.

SCRIBE exploits these rendezvous points to preserve the partial ordering of related system calls during

replay. Figure 2.2 illustrates the use of rendezvous points when replaying the write and read system

calls.

Table 2.2 lists all categories of related systems calls, and the respective resources used for rendezvous

points. SCRIBE defines a special pseudo rendezvous point that is used for system calls that access properties

global to the execution environment, such as syslog, sethostname, and settimeofday. It is also

used for system calls that modify system-wide state such as mount points, pseudo terminals, etc. This

preserves their order to ensure that the settings are accurate should the system go live at any point.

For system calls that operate on open file objects, including files, devices, network sockets, and pipes,

SCRIBE uses inodes as rendezvous points. Inodes are referenced by a variety of file-related system calls such

as read, write, close, and fcntl. Since most file-related operations are re-executed during replay,

this ensures that they occur in the proper order for a given inode.

Similarly, for system calls that operate on System V IPC objects, including message queues, semaphores,

and shared memory, SCRIBE uses the respective System V IPC resources as rendezvous points.

Shared memory pages that are file mapped can be accessed either via direct memory references, or
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System call category Rendezvous resource

actions on globals global (pseudo)

actions on open file objects inode of the file

actions on IPC objects IPC objects

read/write shared mapped files memory page

actions on pathnames filesystem mount point

create file descriptors file descriptors table

modify memory layout memory descriptor

actions on process properties process descriptor

Table 2.2: List of Rendezvous Points Categories.

through the virtual filesystem (VFS) using read and write. By definition, access via system calls will

bypass the page protection mechanism that enforces the CREW protocol. For example, through the VFS, a

process may change a page that it does not own. To prevent deadlocks and ensure consistency with CREW,

SCRIBE associates rendezvous points with these pages. This guarantees that the two methods to access

shared mapped pages are properly coordinated, and that their order is preserved between record and replay.

For system calls that operate on filesystem pathnames, including open, unlink, creat, fifo,

access, stat, chmod, chown, execve, and chroot, SCRIBE must be able to track their ordering

to replay them correctly because they may modify the state of the filesystem by creating, deleting and modi-

fying attributes of files. SCRIBE uses filesystem mount points as rendezvous points, but uses them at the VFS

layer, not the system call layer. Using them at the system call layer would serialize all filesystem accesses

during recording and cause high overhead. Instead, we observe that the order in which system calls that act

on pathnames view and modify the filesystem state depends on the order of pathname lookup progress at

the VFS layer. The VFS performs pathname traversals one component at a time, always holding the lock of

a parent directory while accessing or modifying its contents. To reproduce the order of system calls that act

on pathnames, it suffices to record the order of pathname traversal. SCRIBE achieves this by interposing on

the VFS pathname traversal to increment the sequence number for the rendezvous point associated with the

mount point. Since SCRIBE is only concerned with actions that affect the existence or access permissions

of files, it only needs to increment the sequence number for system calls that perform such operations. This
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imposes negligible overhead during recording.

In the presence of threads, SCRIBE must also use rendezvous points to track system calls that create file

descriptors, modify memory layout, and modify process properties or credentials, since those per process

resources are shared among threads. For system calls that create file descriptors, such as open, pipe, and

fifo, SCRIBE uses the calling process’s file descriptor table as a rendezvous point. SCRIBE cannot rely

on an underlying inode for synchronization, because it does not yet exist. For system calls that modify the

memory layout, such as brk, mmap, munmap, and mprotect, SCRIBE uses the calling process’s memory

descriptor as a rendezvous point. For system calls that modify process properties and credentials, including

setuid, setgid, setpgid, setsid, setrlimit, SCRIBE uses the process descriptor as the ren-

dezvous point. This is convenient because the properties belong to a process, and the affected operations are

performed in that process’s context.

SCRIBE also uses the process descriptor rendezvous point to ensure correct ordering among system

calls that modify the filesystem view of a process, such as chroot and chdir. System calls that are re-

executed on replay and implicitly rely on process properties and credentials must also use the rendezvous

point associated with the process descriptor. For example, open and access use a process’s user and

group identifiers to decide if it has sufficient permissions to operate on a file, kill uses capabilities to

permit a signal, and setpgid uses a process’s session identifier.

Executing a system call may result in recording multiple rendezvous events. The categories of ren-

dezvous points listed in Table 2.2 are not mutually exclusive. For example, running open on a file already

opened by another process, will result in a rendezvous event for the global resource, for the process descrip-

tor, and for the inode resource.

2.6 Sync Points

Asynchronous events cause nondeterminism arising from the timing of their occurrence. Replaying asyn-

chronous events is challenging because it requires that a recorded event occur at the exact same place in the

process’s instruction stream as during recording. It is difficult because it could have occurred at an arbitrary

location during the execution. The two predominant examples of asynchronous events are signal delivery

and page ownership transfers for shared memory, described in §2.4.

Consider signal delivery. Signals are delivered in two steps. First, the sender process sends a signal
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Record (action) → Event log → Replay (action) User-space

(a) (do nothing) (queue sig on B) (do nothing) (A) kill(B, sig)

return(0) (A) syscall ret(0) return(0)

· · · · · · · · · · · ·

kill(B, sig) (B) signal received(sig) kill(B, sig) (B) sync point

(b) (A) (stall) (queue ADDR on B) (A) (stall) (A) read page ADDR

· · · · · · · · · · · ·

(B) (adjust PTE) (B) page share read(ADDR) (B) (adjust PTE) (B) sync point

(A) (adjust PTE) (A) page share read(ADDR) (A) (adjust PTE) (A) woken up

(A) read page ADDR (A) read page ADDR

Figure 2.3: Asynchronous Events Record-Replay. (a) The sender of a signal always skips the call and

notifies the receiver instead; The receiver handles and logs the signal when it reaches a sync point. (b)

Assume process B owns a page for writing. Process A faults reading from the page, notifies the owner,

and blocks; When B reaches a sync point, it downgrades the page state (and PTE) to read-only, and logs a

memory event; Finally, A updates its own PTE and resumes execution.

to the target process, which is marked as having a signal pending. Second, the target process detects the

pending signals when it resumes from kernel space, and handles them. If the target process is executing

in user space, an inter-processor interrupt will force it into kernel space, where it will detect the pending

signals. Replaying this behavior requires interrupting the target process at the exact same instruction as

during its original execution. This is difficult because the interrupt could have occurred at any time during

execution.

Consider page ownership transfers for managing shared memory. As described in §2.4, a process re-

questing access to a shared memory page will page fault if it does not have the necessary ownership to read

or write the page. This fault occurs asynchronously with the execution of the process that owns the page.

Replaying this behavior requires interrupting the owner process at the exact same instruction at which own-

ership is transferred to the requesting process as during its original execution. This is difficult because the

fault could have occurred at any time during its execution.

Attempting to address this problem while providing application transparent record-replay, previous ap-

proaches [22; 23; 41; 42] have relied on hardware providing a cycle accurate instruction counter [100]. The
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respective counter value at which the asynchronous event occurs is logged so that during replay, the event

can be replayed at the exact same counter value. The fundamental problem with this approach is that such

counters are not available on many CPUs, and even when available, often do not have required degree of

accuracy because they were not designed for this purpose. They work for performance measurements where

occasional missed counts in various corner cases are not problematic, but do not work for record-replay

where precise instruction counts are required.

SCRIBE takes a fundamentally different approach to address this problem by introducing a novel and

efficient mechanism that makes asynchronous events much easier to record and replay by deferring their

delivery until the nearest synchronous system event. This is done by introducing sync points to represent

synchronous system events which are used for this purpose. Sync points are locations in a recorded process’s

execution which (1) cause the process to enter kernel space by executing the following instruction, and

(2) are guaranteed to do so deterministically during replay (assuming a faithful execution prior to reaching

there). Since SCRIBE interposes on these kernel entry points, it can easily record the occurrence and location

of sync points. Calling a system call and triggering a trap due to division by zero are two examples of sync

points. Certain page faults, namely due to invalid memory access, or due to memory sharing also qualify.

However, page faults due to copy-on-write or memory paging do not satisfy the second requirement.

2.6.1 Signal Delivery

During recording, SCRIBE defers the delivery of an asynchronous signal until the target process is at a sync

point. This allows SCRIBE to easily determine the exact instruction at which the signal is delivered. If the

target process is in user space, SCRIBE queues the signal until the process reaches a sync point, such as a

system call, and therefore synchronously enters the kernel. This effectively transforms the asynchronous

nature of signals into synchronous behavior. Specifically, when a process enters kernel space, it first checks

if it has any pending deferred signals. If so, SCRIBE will deliver them to the process and log a corresponding

signal receive event for each delivered signal, then force it to return to user space to handle them. In the

case of a sync point due to a system call, it will also rewind the instruction pointer so that the process will

re-issue the system call. If the target process is in kernel space, it is already at a sync point and the signal is

delivered immediately.

Note that some signals are synchronous in that they are the direct result of an action of the process, like

SIGSEGV, SIGFPE, SIGBUS. These occur while the process is in user space, and cannot be deferred for a
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later time. They already force the process into kernel space and can therefore be delivered and handled on

the spot. These signals do not need to be logged because they are deterministic, and will implicitly occur as

part of the replay once the condition occurs that had triggered them in the original recording.

During replay, the sender process skips the system call that sends the signal and continues execution.

Instead, signal delivery is deterministically replayed at the occurrence of sync points in the execution of the

receiving process. When a process enters kernel space as it reaches a sync point, SCRIBE examines the next

event in its log queue; if it finds a signal receive event, it will deliver the designated signal to the process.

The process will handle the signal as soon as it resumes to user space. Figure 2.3a illustrates record-replay

of signals.

One set of signals, SIGSTOP and SIGCONT, are treated differently. Unlike other signals, which are

replayed by arranging for the process to receive the desired signal, SCRIBE does not resend SIGSTOP as it

would interfere with the replay. Because replay is performed in the context of the process, a stopped process

will never check its queue for the corresponding SIGCONT signal. Instead SCRIBE maintains the process

in a “stalled” state in kernel space, and examines the following events in the queue. The next event may

be either another signal receive event or a page ownership transition event, as discussed in §2.4. SCRIBE

processes the remaining events in the queue until it encounters a SIGCONT, and then allows the process to

resume execution. When a session that contains a stalled process prepares to go live, SCRIBE arranges to

send the previously skipped SIGSTOP to the process, forcing the process into the proper kernel state.

2.6.2 Page Ownership Transfer

Page state transitions are allowed to only take place when SCRIBE can conveniently track, and later replay

them. We draw the following analogy to signal delivery: the process that page faults and the page owner(s)

are analogous to the sender and the receiver of a signal, respectively. SCRIBE converts asynchronous mem-

ory events into synchronous ones by deferring them until the owner process reaches a sync point.

When a process tries to access an owned page it notifies the owner and, unlike with signals, blocks

until access is granted. Conversely, owner processes check for pending requests at every sync point and, if

necessary, give up ownership. Figure 2.3b illustrates record-replay of memory interleaving. Note that page

faults due to the memory interleaving under the CREW protocol contribute significantly to the pool of sync

points, adding to system calls.

Although transfer of page ownership is always performed by the owner process(es), there is one excep-



CHAPTER 2. SCRIBE: TRANSPARENT DETERMINISTIC RECORD-REPLAY 30

tion to this rule due to interaction of blocking system calls and shared memory. When an owner of a page

blocks inside a system call, it cannot transfer its page ownership to another process. This can cause long

delays in ownership transfer, and even lead to a deadlock if, for example, the owner blocks on a read from a

pipe, and the other process stalls on a memory access while attempting to write into the same pipe.

To address this problem, SCRIBE guarantees that user space shared memory is not accessed by an owner

process when it is executing a system call. If another process needs to access a shared memory page owned

by the calling process, SCRIBE can simply transfer ownership to the requesting process knowing that the

original owner process will not access shared memory because it is executing a system call. There are

no shared memory interleavings to track between the original owner process and the requesting process.

SCRIBE can just identify the location in the original owner’s instruction stream at which this ownership

transfer occurs as being the occurrence of the system call, which it already logs.

More specifically, since various system calls transfer data between the kernel and user space which

could involve a shared page owned by the calling process, SCRIBE uses an in-kernel staging area where it

temporarily stores both input and output data. As a result, only the staging area, not user space memory, is

accessed by the calling process during system calls. SCRIBE flags an owner that enters a system call as a

weak-owner until the system call completes. This flag indicates that other processes may promptly revoke

ownership of pages that it holds whose retention interval expired. If during the system call the owner also

becomes blocked, SCRIBE flags it as a sleep-owner until it resumes execution. This flag indicates that other

processes may promptly revoke ownership of any pages that it holds. PTEs of the requesting processes and

the owner are updated promptly to reflect these actions.

2.6.3 Signature Record and Replay

Deferring signals and page ownership transfers may incur a performance penalty by increasing the latency

of signal delivery and page faults on shared memory, respectively. SCRIBE’s approach to recording and

replaying asynchronous events is predicated on the assumption that sync points occur frequently enough in

real applications, since they often enter kernel mode by executing system calls or causing page faults. Based

on this assumption, we expect any performance overhead to be low in practice. §2.7 presents experimental

results that validate our assumption.

In addition, for tracking shared memory, it assumes that real applications do not typically use user space-

only spinlocks or related mechanisms. For example, consider a thread that reads from a memory location
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in a busy loop until it finds a positive value, and another thread that intends to write a positive value to that

location. Assume that the former thread becomes the owner of the page. The threads are now deadlocked,

since the second thread waits for the first thread to give up the ownership for the page, and the first thread

waits for the second one to change the value in the memory. This assumption may be incorrect for certain

applications.

Although the likelihood of either scenario is not common in real applications, SCRIBE also provides a

novel but more heavyweight mechanism to record and replay asynchronous events that were deferred for

too long due to an unlikely absence of sync points. During recording, if a signal, or a page ownership

transfer, has been deferred for a period that exceeds a predefined threshold, SCRIBE switches to a different

mechanism. SCRIBE sends the target process a reserved signal that forces it into kernel mode. By using a

reserved signal, we ensure that process execution does not depend on it in any way. It then creates a signature

of the process: a checkpoint of the current user space context of just that process, namely its registers and

writable memory pages.

A key observation here is that between sync points, the process is guaranteed to not have any interactions

with the operating system, or any nondeterministic interactions with other processes, since its last sync point

and until it is finally forced into kernel mode. Therefore, SCRIBE is also guaranteed not to have missed

recording any nondeterministic interactions by forcing the process into kernel mode. Thus, forcing the

process into kernel mode can be thought of as resetting the recording, and is logged as a async reset event.

By forcing the process into kernel mode, we effectively create a new sync point. The original pending

signal or page ownership transfer can then be handled and its location with respect to the new sync point is

precisely known.

As an optimization, SCRIBE can leverage special hardware features when available instead of performing

heavyweight process signatures. On some Intel platforms, certain hardware performance counters can be

used to count instructions deterministically [119], meaning that the counter values remain identical across

replays. For example, on the Westmere, SandyBridge, and IvyBridge architectures, the retired conditional

branch counter is not affected by hardware interrupts or nondeterministic page faults that could make an

instruction be counted twice. By using similar techniques used in Mozilla rr [1], SCRIBE can accurately

count the number of instructions executed after a sync point. This way, SCRIBE can precisely record when

an asynchronous event is delivered in userspace.

During replay, the key issue is knowing when the process should consume the async reset event. Other
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Name Description

apache-p Apache 2.0.54, 8 processes, prefork

apache-t Apache 2.0.54, 50 threads, worker

mysql MySQL 5.0.60 database server

ssh-s OpenSSH 5.1p1 (server)

ssh-c OpenSSH 5.1p1 (client)

make parallel compilation of Linux kernel

untar untar of Linux 2.6.11.12 source tree

urandom reading from /dev/urandom

editor vim 7.1 text editor

firefox Firefox 3.0.6 web browser in VNC

acroread Adobe Acrobat Reader 8.1.3 in VNC

mplayer Mplayer 1.0rc2 movie player in VNC

openoffice OpenOffice 3.0.1 office suite in VNC

Table 2.3: Application Scenarios.

approaches suggested the use of hardware performance counters despite their shortcomings [17; 103]. Since

SCRIBE is designed for commodity operating systems without base kernel changes, it does not have access

to scheduling decisions and data that are essential for using performance counting; without it, it is impossible

to accurately correlate performance counter data to individual processes that execute in user space.

SCRIBE takes a different approach. Starting at the last event in the log prior to the async reset event,

it will set a breakpoint at the instruction specified by the saved value of the program counter. The process

will generate an exception each time that it reaches the instruction pointed to by the saved program counter,

prompting SCRIBE to compare its current user space context, namely, registers and contents of writable

memory pages with that of the async reset event. The async reset event occurs when the data at the replayed

process matches that of the event. Once that happens, SCRIBE can remove the breakpoint and continue

normal replay. Although this signature-based record and replay can be expensive, the overhead can be

minimized by only recording differences in signatures. More importantly, forcing a sync point is rarely

needed in practice for handling asynchronous events.
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Name Benchmark Time

apache-p httperf 0.8 (rate=1500, num-calls=20) 189 s

apache-t httperf 0.8 (rate=1500, num-calls=20) 187 s

mysql sql-bench 184 s

ssh-s 50 SSH sessions (10 concurrent), each emulates user typing 5K text file 53 s

ssh-c 50 SSH sessions (10 concurrent), each emulates user typing 5K text file 53 s

make make -j10 of the Linux kernel 101 s

untar gunzip linux-2.6.11.12.tar.gz | tar xf - 2.8 s

urandom dd=/dev/random bs=1k count=10000 | lzma > /dev/null 2.6 s

editor vim -S vi.script to append ’hello world’ 1000000 times 12.4 s

firefox SunSpider 0.9 JavaScript benchmark 120 s

acroread open 190 KB PDF, close and exit 2.8 s

mplayer play 10 MB 1280x720 HDTV video at 24 frames/s 30.8 s

openoffice Jungletest r27 (2009-03-08) open document, export, close, and exit 4.9 s

Table 2.4: Application Workloads.

2.7 Performance Evaluation

We have implemented a SCRIBE prototype as a Linux kernel module and associated user-level tools. To

demonstrate the effectiveness of our approach, we evaluated the ability and performance of our unoptimized

prototype to record-replay real applications on commodity multiprocessors and operating systems.

We ran our experiments on an IBM HS20 eServer BladeCenter, each blade with dual 3.06 GHz Intel

Xeon CPUs with hyperthreading, 2.5 GB RAM, a 40 GB local disk, interconnected with a Gigabit Ethernet

switch. Each blade was running the Debian 3.1 distribution and the Linux 2.6.11.12 kernel and appears as a

4-CPU multiprocessor to the operating system. For application workloads that required clients and a server,

we ran the clients on one blade and the server on another.

We recorded and replayed a wide range of real applications, listed in Table 2.3. The list includes

(1) server applications such as Apache in both multi-process (apache-p) and multi-threaded (apache-t)

configurations, MySQL (mysql), and an OpenSSH server (ssh-s), (2) utility programs such as SSH

clients (ssh-c), make (make), untar (untar), compression programs such as gzip and lzma, and a vi

editor (editor), and (3) graphical desktop applications such as Firefox (firefox), Acrobat Reader

(acroread), MPlayer (mplayer), and OpenOffice (openoffice). To run the graphical applications
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on the blade which lacks a monitor, we used VNC (TightVNC Server 1.3.9) to provide a virtual desktop.

We measured the performance of SCRIBE using the benchmark workloads listed in Table 2.4. Applica-

tions were all run with their default configurations. Workloads were selected to stress the system to provide

a conservative measure of performance. For example, firefox runs the widely used SunSpider bench-

mark designed to measure real-world Web browser JavaScript performance. We also included benchmarks

that emulate multiple interactive users such as ssh-s and ssh-c, which open multiple concurrent SSH

sessions, each having an emulated user input text into a vi editor at world-record typing speed [110] to

create a 5 KB file, then exiting. We focus on quantifying the performance overhead and storage require-

ments of running applications with SCRIBE in terms of the cost of continuously recording the execution,

and speedup of replayed execution versus recorded execution. Previous work shows that the overhead of the

virtual execution environment is small [61; 81].

Figure 2.4 shows the performance overhead of recording the application workloads. Performance is

measured as completion time in all cases except for apache-p and apache-t which report performance

in completed requests per second. No frames were dropped during logging of mplayer playback. Results

are shown normalized to native execution without recording. Recording overhead was under 2.5% for server

applications and under 7% for all desktop applications except for openoffice, which was 15%. For all

desktop applications, there was no user noticeable degradation in interactive performance.

Figure 2.4 also shows the performance of replaying the applications workloads. Performance is mea-

sured as completion time, normalized to execution with recording. Replaying speedup relative to recording

was at least 1 in all cases, and reached as much as a factor of 70 for ssh-c. The results demonstrate that

SCRIBE can replay applications at least as fast as it records, as expected. This is useful for fault-tolerant

systems to guarantee that replay on the backup does not slow down execution on the primary.

Two factors contribute to replay speedup: omitted in-kernel work due to system calls partially or entirely

skipped (e.g. network output), and compressed time due to time waiting skipped at replay (e.g. timer

expiration). Application that do neither perform the same work whether recording or replaying, and sustain

speedups close to 1. This includes computation-intensive workloads such as make, urandom, untar, and

editor. The speedup increases as the workload exhibits more idle time in sleeping or blocking (mostly

waiting for input events). For instance, mplayer spends about 23% of the time sleeping during recording,

and its replay speedup is roughly 1.3. Replay speedup is noticeably larger for workloads that spend much of

their time sleeping: 3.9 for acrobat, 7.1 for apache-p, and 5.8 for apache-t. Interactive workloads
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Figure 2.4: Recording Runtime Overhead.

obtained the largest speedups: 19 for ssh-s and 70 for ssh-c.

Figure 2.5 shows the storage growth rate of recording. Storage requirements are decomposed into

memory-related events (memory), nondeterministic input data returned by system calls (input data),

and other data which is primarily system call return values and rendezvous points (syscalls). The storage

growth rates ranged from 100 KB/ s for ssh-c to almost 1.9 MB/ s for mysql. These storage requirements

are quite modest. When compressed using lzma, storage growth rates dropped to between 1 to 90 KB/ s for

all scenarios except urandom, whose storage growth rate remained a bit over 1.1 MB/ s. Most of the log of

urandom is due to input of random data, which does not compress well.

Figure 2.6 shows the average number of processes and threads running for each application scenario.

The sum of the two is the average number of total Linux tasks running. All workloads except editor

consisted of multiple processes or threads, demonstrating SCRIBE’s ability to record and replay real multi-

process and multi-threaded application workloads. Five of the scenarios used threads: apache-t, mysql,

ssh-c, firefox, and openoffice. For all of these scenarios except ssh-c, this correlates with the

majority of the log storage consisting of memory events, as shown in Figure 2.5. The threads in ssh-c

are used in the benchmark to manage concurrent sessions. They involve very little contention over shared

memory, and therefore do not contribute much to the log size. Conversely, apache-p shows mild shared

memory activity despite being a multi-process application rather than multi-threaded.

Figure 2.7 shows the time interval between consecutive per process sync points for each application
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Figure 2.5: Recording Storage Growth.

scenario. The average time interval is measured per process then averaged over all processes. It is at most

30µs for all scenarios except make, urandom and editor, for which it is less than 500µs. These three

are CPU intensive workloads that produce sync points only due to system calls. The maximum time interval

between sync points for almost all application workloads was less than 100 ms, which is also not large

and similar to the scheduling time quantum in Linux. The maximum time interval for three application

workloads, make, firefox, and openoffice, was higher, but only occurred once, during the startup of

each application. If we exclude these outliers and compute the 99th percentile of the time interval between

sync points, the time interval is less than 10 ms.

Figure 2.7 also shows the average length of sync points per process for each application scenario. It is

at least 300µs for all scenarios except untar and mplayer, in which it is over 50µs. More importantly,

in all workloads the average time spent at a sync point is significantly larger—over an order of magnitude

in most cases—than the time spent between sync point, or outside sync points. Processes persist longer at

sync points whenever, for example, they block on I/O in a system call or wait for page ownership transfer.

During the time intervals within sync points, asynchronous events for a process are delivered instantly and

need not be deferred. In other words, on average, most of the time asynchronous events can be delivered

promptly; and if not, then they are delayed for a short period. This establishes the empirical grounds for

SCRIBE’s reliance on sync points to successfully convert asynchronous events to synchronous ones in a

timely manner.
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Figure 2.6: Number of Processes and Threads.

Figure 2.8 shows the total number of signals and shared memory page faults due to SCRIBE’s page

ownership management mechanism for each application scenario. Page faults not due to SCRIBE are not

included. The totals are decomposed into those that are handled instantly versus those that need to be de-

ferred until a sync point is reached. The measurements show that SCRIBE provides low-overhead execution

recording even in the presence of a large number of asynchronous events. Nearly all asynchronous events of

either type are handled instantly as they arrive, because the process that is the target of these events is already

executing in the kernel at a sync point. Sync points not only happen frequently enough, but also endure long

enough, that the vast majority of asynchronous events can be handled immediately without being deferred.

Observe in Figure 2.8 that asynchronous events due to shared memory page faults predominate over

signals in scenarios that involve multiple threads or shared memory. In these scenarios, page faults due to

SCRIBE’s page ownership management occur in larger numbers, and, since they themselves are sync points,

they contribute to the pool of available sync points. The fraction of sync points due to shared memory page

faults of the total number of sync points ranges from 10% in apache-p, to 30% in mysql, apache-t,

firefox, and openoffice, and up to 50% in mplayer. In other words, applications that need sync

points for shared memory accesses are also likely to have sync points more frequently.

Figure 2.9 shows the amount of delay incurred for signals and shared memory accesses. Signals were

delayed at most 100µs on average, except ssh-c, which reached 220µs. The average delay for only those

few deferred signals that could not be handled instantly was at most 1 ms. CPU intensive workloads without
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Figure 2.7: Sync Points Interval and Length.

shared memory produce sync points only due to system calls, and sustain longer delays for deferred signals.

For example, in make, 135 SIGCHLD signals were deferred as the parent process waited to be scheduled

while compilations occupied the CPUs. Only when it was scheduled, it reached a sync point and handled

the signal. However, even without SCRIBE, when the signal is delivered instantly, the parent process would

only handle the signal after a comparable delay since it would still wait to be scheduled. In multi-threaded

workloads, the delays for signals are longer, despite the addition of sync points due to shared memory

accesses. This is because our prototype only considered sync points due to system calls for deferred signals.

The delays would probably be more comparable to those for shared memory access if sync points due to

shared memory were also used.

Unlike with signals, when a shared memory event occurs, the process that faulted blocks until access

is granted. Thus, whether memory events are delayed and for how long is pivotal for the performance of

the system. Fortunately, shared memory accesses introduce numerous additional sync points due to page

ownership transfers. The average delay for shared memory accesses was less than 25µs. If we consider only

deferred shared memory accesses that could not be handled instantly, the average delay increases modestly

to at most 60µs. These delays are comparable to the native service time of a page fault. SCRIBE’s sync

points convert page ownership transfers from asynchronous events to synchronous events with negligible

impact on page fault performance, since most asynchronous events are handled instantaneously.

Finally, through all the executions of the application scenarios, we have never observed a situation
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Figure 2.8: Count of Signals and Memory.

in which a process failed to reach a sync point in a reasonable time, or at all. Although SCRIBE has a

mechanism in place to deal with delays that become too large, we did not witness a need for this functionality

in practice. Our experiences and results demonstrate that sync points occur frequently and are useful for

enabling deterministic replay.

2.8 Related Work

Replaying program execution has been of interest for over 40 years [14]. Hardware mechanisms [10; 39;

54; 71; 72; 75; 76; 124] face a high implementation barrier and do not support record-replay on commodity

hardware. Virtual machine mechanisms [23; 41; 42; 117] require replaying operating system execution just

to replay application execution. Almost none of them support replaying multiprocessor virtual machines,

and the ones that do incur an order of magnitude worse overhead for common applications like compilation

due to kernel-level sharing, such as writing files to the same directory [42]. Most of application and library

mechanisms [50; 52; 79; 96] cannot provide transparent record-replay for unmodified applications. Only

one practical userspace solution exists, Mozilla rr [1]. While it provides a comprehensive set of features,

it does not support multiprocessor record-replay. Programming language mechanisms [29; 64; 95] do not

support widely-used applications written in languages that do not provide record-replay primitives. Unlike

these approaches, SCRIBE is an operating system mechanism. It works at a higher-level abstraction than

hardware or virtual machine approaches to reduce recording overhead. It works at a lower-level abstraction
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Figure 2.9: Delay of Signals and Memory.

than application, library, and programming language approaches to provide transparent record-replay for

unmodified applications.

Other operating system mechanisms have also been proposed [17; 22; 102; 109] that interpose between

applications and the operating system. None of them provides record-replay for multi-threaded and multi-

process applications. In fact, only TFT [22] shows any record-replay results for real applications, namely

gzip, a single process application, but overhead was quite high. Unlike SCRIBE, TFT is only designed to

replay a single process. Debugging using deterministic replay (DUDR) [109] presents only a paper design

with no implementation or evaluation, while Flashback [102] and RR [17] are largely incomplete with

no results beyond those for a single, simple test program. In contrast, SCRIBE demonstrates for the first

time that record-replay of real multi-threaded and multi-process applications is possible using an operating

system approach.

A key issue for operating system mechanisms is replaying the in-kernel side effects of system calls.

This must be done for at least some system calls in all replay systems. Previous approaches do not solve

the important problem of nondeterminism arising from the order of execution of related system calls. TFT

only replays a single process, so this issue does not arise. DUDR and Flashback hypothesize counting in-

structions to know when context switches occur to track exact scheduling order to know the order of system

call execution among processes. However, they provide no mechanism for obtaining and using the required

cycle accurate counters, and the approach itself does not work for multiprocessors. RR suggests instrument-
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ing the system call interface, but provides no actual mechanism to do it. In contrast, SCRIBE provides a

new mechanism using rendezvous points that solves this problem without tracking exact scheduling order.

SCRIBE’s mechanism does not require hardware support and works for multiprocessor systems.

Record-replay systems must record the exact location in an instruction stream at which an asynchronous

event occurs. This can be done by adding hardware support, modifying applications, or writing applications

with new language primitives to record exactly when the application receives the event. To do this on

commodity hardware without application changes, all previous approaches that deal with this issue [23;

41; 42; 100] rely on the existence of a cycle accurate instruction counter. To deal with interrupt lag [103],

replay is done by interrupting execution some time before the asynchronous event should occur, setting

a breakpoint on the instruction at which it should occur, then stopping at every breakpoint to see if the

instruction counter matches the recorded value. When they match, the asynchronous event is delivered. In

contrast, SCRIBE introduces a fundamentally different mechanism based on sync points that does not rely

on hardware performance counters.

TFT [22] proposed recording in periodic epochs for fault tolerance, and then deferring the delivery of

signals sent in each epoch until the respective epoch ends. Epochs are created by instrumenting applications

to use counters to periodically return control to TFT. This also makes it easier to determine when signals are

delivered since they are delivered at well-defined epoch boundaries. The idea is similar to SCRIBE’s notion

of deferring signal delivery until sync points. But, unlike TFT, SCRIBE does not require instrumenting ap-

plications and does not define sync points based on any measure of time or instruction counts. Instead, sync

points are based on system calls, page faults, and traps that occur as part of normal application execution.

Unlike TFT which only supports replaying a single process, SCRIBE uses sync points to enable replay of

multi-process and multi-threaded applications on multiprocessors.

Besides SCRIBE, only SMP-ReVirt [42] can transparently replay multiprocessor workloads that use

shared memory. SMP-ReVirt replays multiprocessor virtual machines where multiple CPUs may access

shared memory. It uses standard page protection to detect memory races, and the concurrent read, exclusive

write (CREW) protocol [34; 64]. To record exactly when page access permissions switch from one CPU to

another, SMP-ReVirt records counter values in the same manner as it does for handling other asynchronous

events. RR [17] proposes a mechanism similar to SMP-ReVirt, but notes problems with inaccuracy of hard-

ware counters on modern CPUs and has no record-replay results for any applications. In contrast, SCRIBE

avoids counter inaccuracies and introduces sync points based on the assumption that real applications per-
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form frequent system activities that involve the kernel. This assumption is the antithesis of SMP-ReVirt’s

virtual machine approach which must also record kernel execution. For example, SMP-ReVirt incurs an

order of magnitude worse overhead than SCRIBE for kernel compilation due to frequent system activities

that result in kernel-level sharing. While SMP-ReVirt can provide whole system replay, SCRIBE can provide

much more efficient application replay.

2.9 Summary

SCRIBE is the first operating system mechanism to provide transparent, deterministic execution record and

replay of multi-threaded and multi-process applications on commodity multiprocessors and operating sys-

tems. SCRIBE records and replays multiple processes by accounting for nondeterministic interactions among

processes and their execution environment. SCRIBE introduces rendezvous points to ensure correct partial

ordering of execution based on system call dependencies, and sync points to convert asynchronous inter-

actions that can occur at arbitrary times into synchronous events that are much easier to record and replay.

Using these two mechanisms, SCRIBE overcomes the need of enforcing the original application scheduling.

While a replayed execution is different from the original one from a kernel perspective, they appear identi-

cal from an application perspective. By relaxing the amount of determinism replicated at the kernel level,

SCRIBE recording overhead stays modest for various server and desktop applications without sacrificing

faithfulness at the application level. SCRIBE can transition an application to running live at any time, an

instrumental for certain record-replay applications such as fault-tolerance, or any form of debugging that

requires the replayed instance to go live. We built RACEPRO, a process race detection system based on the

SCRIBE engine, that leverage this go-live feature when performing race triage. We describe RACEPRO in

the next chapter and show how it generates new executions based on previously recorded executions.
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Chapter 3

RACEPRO: Detection of Process Races in

Deployed Systems

3.1 Introduction

After presenting SCRIBE, our transparent record-replay engine most suited for application debugging by

capturing and reproducing hard to find bugs, we explore ways to reveal dormant bugs in applications, and

catch them before they happen. Specifically, we explore the effect of bugs due to harmful process races in

software, and how to detect them using record-replay mechanisms.

While thread races have drawn much attention from the research community [35; 43; 97; 123; 128], little

has been done for process races, where multiple processes access an operating system (OS) resource such

as a file or device without proper synchronization. Process races are much broader than time-of-check-to-

time-of-use (TOCTOU) races or signal races [129]. A typical TOCTOU race is an atomicity violation where

the permission check and the use of a resource are not atomic, so that a malicious process may slip in. A

signal race is often triggered when an attacker delivers two signals consecutively to a process to interrupt

and reenter a non-reentrant signal handler. In contrast, a process race may be any form of race. Some real

examples include a shutdown script that unmounts a file system before another process writes its data, ps

| grep X showsN orN+1 lines depending on the timing of the two commands, and make -j failures.

To better understand process races, we present the first study of real process races. We study hundreds

of real applications across six Linux distributions and show that process races are numerous and a real threat

to reliability and security. For example, a simple search on Ubuntu’s software management site [63] returns
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hundreds of process races. Compared to thread races that typically corrupt volatile application memory,

process races are arguably more dangerous because they often corrupt persistent and system resources. Our

study also reveals that some of their characteristics hint towards potential detection methods.

We then present RACEPRO, the first system for automatically detecting process races beyond TOCTOU

and signal races. RACEPRO faces three key challenges. The first is scope: process races are extremely

heterogeneous. They may involve many different programs. These programs may be written in different

programming languages, run within different processes or threads, and access diverse resources. Existing

detectors for thread or TOCTOU races are unlikely to work well with this heterogeneity.

The second challenge is coverage: although process races are numerous, each particular process race

tends to be highly elusive. They are timing-dependent, and tend to surface only in rare executions. Arguably

worse than thread races, they may occur only under specific software, hardware, and user configurations at

specific sites. It is hopeless to rely on a few software vendors and beta testing sites to create all possible

configurations and executions for checking.

The third challenge is algorithmic: what race detection algorithm can be used for detecting process

races? Existing algorithms assume well-defined load and store instructions and thread synchronization

primitives. However, the effects of system calls are often under-specified and process synchronization prim-

itives are very different from those used in shared memory. For instance, what shared objects does execve

access? In addition to reading the inode of the executed binary, an obvious yet incomplete answer, execve

also conceptually writes to /proc, which is the root cause of the ps | grep X race (§3.5). Similarly, a

thread-join returns only when the thread being waited for exits, but waitmay return when any child process

exits or any signal arrives. Besides fork-wait, processes can also synchronize using pipes, signals, ptrace,

etc. Missing the (nuanced) semantics of these system calls can lead to false positives where races that do

not exist are mistakenly identified and, even worse, false negatives where harmful races are not detected.

RACEPRO addresses these challenges with four ideas. First, it checks deployed systems in vivo. While

a deployed system is running, RACEPRO records the execution without doing any checking. RACEPRO

then systematically checks this recorded execution for races offline, when the deployed system is idle or

by replicating the execution to a dedicated checking machine. By checking deployed systems, RACEPRO

mitigates the coverage challenge because all user machines together can create a much larger and more

diverse set of configurations and executions for checking. Alternatively, if a configuration or execution

never occurs, it is probably not worth checking. By decoupling recording and checking [30], RACEPRO
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reduces its performance overhead on the deployed systems.

Second, RACEPRO records a deployed system as a system-wide, deterministic execution of multiple

processes and threads. RACEPRO uses lightweight OS mechanisms developed in SCRIBE (§2) to transpar-

ently and efficiently record nondeterministic interactions such as related system calls, signals, and shared

memory accesses. No source code or modifications of the checked applications are required, mitigating the

scope challenge. Moreover, since processes access shared OS resources through system calls, this infor-

mation is recorded at the OS-level so that RACEPRO can use it to detect races regardless of higher level

program semantics.

Third, to detect process races in a recorded execution, RACEPRO models each system call by what

we call load and store micro-operations to shared kernel objects. Because these two operations are well-

understood by existing race detection algorithms, RACEPRO can leverage these algorithms, mitigating the

algorithmic challenge. To reduce manual annotation overhead, RACEPRO automatically infers the micro-

operations a system call does by tracking how it accesses shared kernel objects, such as inodes. Given these

micro-operations, RACEPRO detects load-store races when two concurrent system calls access a common

kernel object and at least one system call stores to the object. In addition, it detects wait-wakeup races such

as when two child processes terminate simultaneously so that either may wake up a waiting parent. To our

knowledge, no previous algorithm directly handles wait-wakeup races.

Fourth, to reduce false positives and negatives, RACEPRO uses replay and go-live to validate detected

races, a core feature of SCRIBE. A race detected based on the micro-operations may be either benign

or harmful, depending on whether it leads to a failure, such as a segmentation fault or a program abort.

RACEPRO considers a change in the order of the system calls involved in a race to be an execution branch.

To check whether this branch leads to a failure, RACEPRO replays the recorded execution until the reordered

system calls then resumes live execution. It then runs a set of built-in or user-provided checkers on the live

execution to detect failures, and emits a bug report only when a real failure is detected. By checking many

execution branches, RACEPRO reduces false negatives. By reporting only harmful races, it reduces false

positives.

RACEPRO heavily relies on record-replay techniques to perform its tasks. However, deterministic

record-replay is not sufficient to perform validation of detected races. RACEPRO goes beyond replaying

an execution verbatim, as it relies on the ability to modify the recorded execution and evaluate the effect of

the modification. Even though reordering system calls can be seen as a small modification, the effect can be
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Pages Bugs

Distribution Returned Sampled Total Process Thread

Ubuntu 3330 300 45 42 (1) 3

Fedora/RedHat 1070 100 52 30 (10) 22

Gentoo 2360 60 31 23 (10) 8

Debian 768 40 17 12 (4) 5

CentOS 1500 40 5 2 (0) 3

Total 9028 540 150 109 (25) 41

Table 3.1: Summary of Collected Pages and Bugs.

significant. As soon as the modifications are executed by the application, RACEPRO allow the application

to go-live. This alleviate the need of having a replayer tolerant to divergence from the original execution.

We have implemented RACEPRO in Linux as a set of kernel components for record, replay, and go-

live, and a user-space exploration engine for systematically checking execution branches. Our experimental

results show that RACEPRO can be used in production environments with only modest recording overhead,

less than 2.5% for server and 15% for desktop applications. Furthermore, we show that RACEPRO can

detect 10 real bugs due to process races in widespread Linux distributions.

This chapter is organized as follows. §3.2 presents a study of process races and several process race

examples. §3.3 presents an overview of the RACEPRO architecture. §3.4 describes the execution record-

ing mechanism. §3.5 describes the system call modeling using micro-operations and the race detection

algorithm. §3.6 describes how replay and go-live are used to determine harmful races. §3.7 presents exper-

imental results. §3.9 discusses related work. Finally, §3.10 presents a summary and concluding remarks of

this chapter.

3.2 Process Race Study

We conducted a study of real process races with two key questions in mind. First, are process races a real

problem? Second, what are their characteristics that may hint towards how to detect them? We collected

bugs from six widespread Linux distributions, namely Ubuntu, RedHat, Fedora, Gentoo, Debian, and Cen-

tOS. For each distribution, we launched a search query of “race” on the distribution’s software management
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website. We manually examined a random sample of the returned pages, identified all unique bugs in the

sampled pages, and classified these bugs based on whether they resulted in process or thread races. Raw

data of the studied bugs is available [90]. §3.2.1 presents our findings. §3.2.2 describes four process race

examples from the most serious to the least.

3.2.1 Findings

Table 3.1 summarizes the collected pages and bugs; Fedora and Redhat results are combined as they share

the same management website. For each distribution, we show the number of pages returned for our query

(Returned), the number of pages sampled and manually examined (Sampled), the number of process races

(Process) and the subset of which were TOCTOU races, the number of thread races (Thread), and the total

number of bugs in the sampled pages (Total).

Process races are numerous. Of the 150 sampled bugs, 109 resulted in process races, a dominating

majority; the other 41 bugs resulted in thread races. However, thread races are likely underrepresented

because the websites we searched are heavily used by Linux distribution maintainers, not developers of

individual applications. Of the 109 process races, 84 are not TOCTOU races and therefore cannot be detected

by existing TOCTOU detectors. Based on this sample, the 7,498 pages that our simple search returned may

extrapolate to over 1,500 process races. Note that our counting is very conservative: the sampled pages

contain an additional 58 likely process races, but the pages did not contain enough information for us to

understand the cause, so we did not include them in Table 3.1.

Process races are dangerous. Compared to thread races that typically corrupt volatile application memory,

process races are arguably more dangerous because they often corrupt persistent and system resources. In-

deed, the sampled process races caused security breaches, files and databases to become corrupted, programs

to read garbage, and processes to get stuck in infinite loops. The top right graph in Figure 3.1 summarizes

the effects of all process races from Table 3.1.

Process races are heterogeneous. The sampled process races spread across over 200 programs, ranging

from server applications such as MySQL, to desktop applications such as OpenOffice, to shell scripts in

Upstart [115], an event-driven replacement of System V init scripts. Figure 3.1 breaks down the process

races by packages, processes, and programming languages involved. Over half of the 109 process races,

including all examples described in §3.2.2, require interactions of at least two programs. These programs

are written in different programming languages such as C, Java, PHP, and shell scripts, run in multiple
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Figure 3.1: Process Races Breakdown. X axis shows the race effect, programming languages, the number

of software packages, or processes involved. Y axis shows the percentage of process races that involve the

specific effect, languages, packages, or processes. To avoid inflating the number of processes, we count a

run of a shell script as one process. (Each external command in a script causes a fork.)

processes, synchronize via fork and wait, pipes, sockets, and signals, and access resources such as files,

devices, process status, and mount points.

This heterogeneity makes it difficult to apply existing detection methods for thread races or TOCTOU

races to process races. For instance, static thread race detectors [43] work only with one program written

in one language, and dynamic thread race detectors [128] work only with one process. To handle this

heterogeneity, RACEPRO’s race detection should be system-wide.

Process races are highly elusive. Many of the process races, including Bug 1 and 3 described in §3.2.2,

occur only due to site-specific software, hardware, and user configurations. Moreover, many of the sampled

process races, including all of those described in §3.2.2, occur only due to rare runtime factors. For example,
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child = fork()

setjmp(loc)

p = wait(...) [blocks...]

... // child exits

p = wait(...) [...returns]

... // signaled

longjmp(loc)

p = wait(...) // error (no child)

Figure 3.2: dash-MySQL Race.

fd = open(H,RDONLY);

read(fd, buf, ...);

close(fd);

... // update buf

... // do work

fd = open(H,WRONLY|TRUNC);

write(fd, buf, ...);

close(fd);

Figure 3.3: bash Race.

Bug 1 only occurs when a database shutdown takes longer than usual, and Bug 2 only occurs when a signal

is delivered right after a child process exited. These bugs illustrate the advantage of checking deployed

systems, so that we can rely on real users to create the diverse configurations and executions to check.

Process race patterns. Classified by the causes, the 109 process races fall into two categories. Over two

thirds (79) are execution order violations [67], such as Bug 1, 3, and 4 in §3.2.2, where a set of events are

supposed to occur in a fixed order, but no synchronization operations enforce the order. Less than one third

(30) are atomicity violations, including all TOCTOU bugs; most of them are the simplest load-store races,

such as Bug 2 in §3.2.2. Few programs we studied use standard locks (e.g., flock) to synchronize file

system accesses among processes. These patterns suggest that a lockset-based race detection algorithm is

unlikely to work well for detecting process races. Moreover, it is crucial to use an algorithm that can detect

order violations.

3.2.2 Process Race Examples

Bug 1: Upstart-MySQL. mysqld does not cleanly terminate during system shutdown, and the file system

becomes corrupted. This failure is due to an execution order violation where S20sendsigs, the shutdown

script that terminates processes, does not wait long enough for MySQL to cleanly shutdown. The script then

fails to unmount the file system which is still in use, so it proceeds to reboot the system without cleanly

unmounting the file system. Its occurrence requires a combination of many factors, including the mixed use

of Systems V initialization scripts and Upstart, a misconfiguration so that S20sendsigs does not wait for

daemons started by Upstart, insufficient dependencies specified in MySQL’s Upstart configuration file, and
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a large MySQL database that takes a long time to shut down.

Bug 2: dash-MySQL. The shell wrapper mysql safe of the MySQL server daemon mysqld goes into

an infinite loop with 100% CPU usage after a MySQL update. This failure is due to an atomicity violation

in dash, a small shell Debian uses to run daemons [37]. It occurs when dash is interrupted by a signal

unexpectedly. Figure 3.2 shows the event sequence causing this race. To run a new background job, dash

forks a child process and adds it to the job list of dash. It then calls setjmp to save an execution context

and waits for the child to exit. After the child exits, wait returns, and dash is supposed to remove the child

from the job list. However, if a signal is delivered at this time, dash’s signal handler will call longjmp

to go back to the saved context, and the subsequent wait call will fail because the child’s exit status has

been collected by the previous wait call. The job list is still not empty, so dash gets stuck waiting for the

nonexistent child to exit. Although this bug is in dash, it is triggered in practice by a combination of dash,

the mysql safe wrapper, and mysqld.

Bug 3: Mutt-OpenOffice. OpenOffice displays garbage when a user tries to open a Microsoft (MS)

Word attachment in the Mutt mail client. This failure is due to an execution order violation when mutt

prematurely overwrites the contents of a file before OpenOffice uses this file. It involves a combination

of Mutt, OpenOffice, a user configuration entry in Mutt, and the openoffice shell script wrapper. The

user first configures Mutt to use the openoffice wrapper to open MS Word attachments. To show an

attachment, mutt saves the attachment to a temporary file, spawns the configured viewer in a new process,

and waits for the viewer process to exit. The openoffice wrapper spawns the actual OpenOffice binary

and exits at once. mutt mistakes this exit as the termination of the actual viewer, and overwrites the

temporary file holding the attachment with all zeros, presumably for privacy reasons.

Bug 4: bash. The bash shell history is corrupted. This failure is due to an atomicity violation when

multiple bash shells write concurrently to .bash history without synchronization. When bash ap-

pends to the history file, it correctly uses O APPEND. However, it also occasionally reads back the history

file and overwrites it, presumably to keep the history file under a user-specified size. Figure 3.3 shows this

problematic sequence of system calls. bash also runs this sequence when it exits. When multiple bash

processes exit at the same time, the history file may be corrupted.
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3.3 Architecture Overview

RACEPRO is designed to automatically detect process races using the workflow shown in Figure 3.4. It con-

sists of three steps, the first of which runs on the deployed system, while the latter two can run elsewhere on

a separate replay system to avoid any performance impact on the deployed system. First, a recorder records

the execution of a deployed system while the system is running and stores the recording in a log file. Second,

an explorer reads the log and detects load-store and wait-wakeup races in the recorded execution. Third, each

race is validated to determine if it is harmful. An execution branch of the recorded execution corresponding

to each race is computed by systematically changing the order of system calls involved in the race. For each

execution branch, a modified log is constructed that is used to replay execution with the changed order of sys-

tem calls. A replayer replays the respective modified log up to the occurrence of the race, then causes it to re-

sume live execution from that point onward. A set of built-in and user-provided checkers then check whether

the execution results in misbehavior or a failure such as a segmentation fault. By examining the effects of

a live execution, we distinguish harmful races from false or benign ones, thus reducing false positives [77;

97]. The live part of the re-execution is also recorded, so that users can deterministically replay detected

bugs for debugging.

Figure 3.5 shows the RACEPRO architecture used to support its workflow. Of the four main architectural

components, the recorder and the replayer run in kernel-space, and the explorer and checkers run in user-

space. We will describe how RACEPRO records executions (§3.4) and detects (§3.5) and validates (§3.6)

races using these components.

3.4 Recording Executions

RACEPRO’s record-replay functionality builds on SCRIBE. This approach provides four key benefits for de-

tecting process races. First, RACEPRO’s recorder can record the execution of multiple processes and threads

with low overhead on a deployed system so that the replayer can later deterministically replay that execu-

tion. This makes RACEPRO’s in vivo checking approach possible by minimizing the performance impact

of recording deployed systems. Second, RACEPRO’s record-replay is application-transparent; it does not

require changing, relinking, or recompiling applications or libraries. This enables RACEPRO to detect pro-

cess races that are extremely heterogeneous involving many different programs written in different program

languages. Third, RACEPRO’s recorder operates at the OS-level to log sufficiently fine-grained accesses
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to shared kernel objects so that RACEPRO’s explorer can detect races regardless of high-level program se-

mantics (§3.5). Finally, RACEPRO’s record-replay records executions such that it can later transition from

controlled replay of the recording to live execution at any point. This enables RACEPRO to distinguish

harmful races from benign ones by allowing checkers to monitor an application for failures (§3.6.2).

To record the execution of multiprocess and multithreaded applications, RACEPRO records all non-

deterministic interactions between applications and the OS and saves the recording as a log file. Signals

and shared memory are recorded with the help of sync points as described in §2.6. We highlight how key

interactions involving system calls are handled.

Unlike previous work [52; 102] that records and replays a total order of system calls, RACEPRO records

and replays a partial order of system calls for speed. RACEPRO enforces no ordering constraints among

system calls during record-replay unless they access the same kernel object and at least one of them modifies

it, such as a write and a read on the same file. In that case, RACEPRO records the order in the kernel

in which the object is accessed by the system calls and later replays the exact same order of accesses. This

is done by piggybacking on the synchronization code that the kernel already has for serializing accesses to

shared objects. These tracked accesses also help detect process races in a recorded execution (§3.5).

Table 3.2 lists the kernel objects tracked by RACEPRO. Most of the entries correspond one-to-one to

specific low-level kernel resources, including inodes, files, file-tables, memory maps, and process creden-

tials. The global entry corresponds to system-wide kernel objects, such as the hostname, file system mounts,

system time, and network interfaces. For each such system-wide resource there is a unique global kernel

object used to track accesses to that resource. The last two entries in the table, pid and ppid, provide a

synchronization point to track dependencies on process states. For example, the pid entry of a process is

used to track instances where the process is referenced by another process, e.g., through a system call that

references the process ID or through the /proc file system. The ppid entry is used to track when an orphan

process is re-parented, which is visible through the getppid system call. Both pid and ppid correspond to

identifiers that are visible to processes but cannot be modified explicitly by processes.

The recorder only tracks kernel objects whose state is visible to user-space processes, either directly or

indirectly. For example, inode state is accessible via the system call lstat, and file-table state is visible

through resolving of file descriptor in many system calls. RACEPRO does not track accesses to kernel objects

which are entirely invisible to user-space. This avoids tracking superfluous accesses that may pollute the

race detection results with unnecessary dependencies. For example, both the fork and exit system calls
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Object Description

inode file, directory, socket, pipe, tty, pty, device

file file handle of an open file

file-table process file table

mmap process memory map

cred process credentials and capabilities, e.g., user ID

global system-wide properties (e.g., hostname, mounts)

pid process ID (access to process and /proc)

ppid parent process ID (synchronize exit/getppid)

Table 3.2: Shared Kernel Objects Tracked.

access the kernel process table, but the order is unimportant to user-space. It only matters that the lifespan

of processes is observed correctly, which is already tracked and enforced via the pid resource. If RACEPRO

tracked accesses to the kernel process table, it would mistakenly conclude that every two fork system calls

are “racy” because they all modify a common resource (§3.5). One complication with this approach is that

if the kernel object in question controls assignment of identifiers (e.g., process ID in the fork example),

it may assign different identifiers during replay because the original order of accesses is not enforced. To

address this problem, RACEPRO virtualizes identifiers such as process IDs to ensure the same values are

allocated during replay as in the recording.

3.5 Detecting Process Races

RACEPRO flags a set of system calls as a race if (1) they are concurrent and therefore could have executed in

a different order than the order recorded, (2) they access a common resource such that reordering the accesses

may change the outcome of the execution. To determine whether a set of system calls are concurrent,

RACEPRO constructs a happens-before [62] graph for the recorded execution (§3.5.1). To determine whether

a set of system calls access common resources, RACEPRO obtains the shared kernel resources accessed by

system calls from the log file and models the system calls as load and store micro-operations (§3.5.2) on

those resources. RACEPRO then runs a set of happens-before based race detection algorithms to detect

load-store and wait-wakeup races (§3.5.3).
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3.5.1 The Happens-Before Graph

We define a partial ordering on the execution of system calls called inherent happens-before relations. We

say that system call S1 inherently happens-before system call S2 if (1) S1 accesses some resource before

S2 accesses that resource, (2) there is a dependency such that S2 would not occur or complete unless S1

completes, and (3) the dependency must be inferable from the system call semantics. For example, a fork

that creates a child process inherently happens-before any system call in the child process, and a write to

a pipe inherently happens-before a blocking read from the pipe. On the other hand, there is no inherent

happens-before relation between a read and subsequent write to the same file.

RACEPRO constructs the happens-before graph using only inherent happens-before relations, as they

represent the basic constraints on the ordering of system calls. Given a recorded execution, RACEPRO

constructs a happens-before graph for all recorded system call events by considering pairs of such events.

If two events S1 and S2 occur in the same process and S2 is the next system call event that occurs after S1,

RACEPRO adds a directed edge S1 → S2 in the happens-before graph. If two events S1 and S2 occur in two

different processes, RACEPRO adds a directed edge S1 → S2 in four cases:

• S1 is a fork call, and S2 is the corresponding fork return in the child process;

• S1 is the exit of a child process, and S2 is the corresponding wait in the parent;

• S1 is a kill call, and S2 is the corresponding signal delivery in the target process; or

• S1 is a stream (e.g., pipe or socket) write, and S2 is a read from the same stream and the data written

and the data read overlap.

We say that event S1 happens-before S2 with respect to a happens-before graph iff there is a directed

path from S1 to S2 in the happens-before graph. Two events are concurrent with respect to a happens-before

graph iff neither happens before the other.

RACEPRO also computes the vector-clocks [69] for all the system calls in the happens-before graph. By

definition, the vector-clock of S1 is earlier than the vector-clock of S2 iff S1 happens-before S2 with respect

to the graph, so comparing the vector-clocks of system calls is a fast and efficient way to test whether they

are concurrent.

Our definition of inherent happens-before does not capture all dependencies that may constrain execution

ordering. It may be missing happens-before edges that depend on the behavior of the application but cannot
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Figure 3.6: The Happens-Before Graph for ps | grep X. Pi=1,2,3 represent the processes involved.

[i, j, k] represent vector-clocks. The read of process P2 and the execve of P3 form a load-store

race (§3.5.3), and so do the second fork of P1 and the getdents (read directory entries) of P2. The

first wait of P1 and the exits of P2 and P3 form a wait-wakeups race (§3.5.3). For clarity, not all system

calls are shown.

be directly inferred from the semantics of the system calls involved. For example, the graph does not

capture dependencies between processes via shared memory. It also does not capture dependencies caused

by contents written to and read from files. For example, one can implement a fork-join primitive using read

and write operations on a file. In some cases, such inaccuracies may make RACEPRO more conservative in

flagging racy system calls and thereby identify impossible races. However, such cases will be filtered later

by RACEPRO’s validation step (§3.6) and will not be reported.

Figure 3.6 shows the happens-before graph for the example command ps | grep X. This command

creates two child processes that access grep’s entry in the /proc directory: the process that runs grep

modifies its command-line data when executed, and the process that runs ps reads that data. A race exists

because both processes access the common resource in an arbitrary order, and the end result can be either

N or N + 1 lines depending on that order.

Consider the execve system call in process P3 and the read system call in process P2. These two

system calls are concurrent because there is no directed path between them in the graph. They both access

a shared resource, namely, the inode of the file cmd line in the directory corresponding to P3 in /proc.
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Therefore, these system calls are racy: depending on the precise execution order, read may or may not

observe the new command line with the string “X”. Similarly, the second fork in process P1 and the

getdents in process P3 are also racy: getdents may or may not observe the newly created entry for

process P3 in the /proc directory.

In contrast, consider the pipe between P2 and P3. This pipe is a shared resource accessed by their

write and read system calls, respectively. However, these two system calls are not racy because they are

not concurrent. There exists a happens-before edge in the graph because a read from the pipe will block

until data is available after a write to it.

3.5.2 Modeling Effects of System Calls

Existing algorithms for detecting memory races among threads rely on identifying concurrent load and store

instructions to shared memory. To leverage such race detection algorithms, RACEPRO models the effects

of a system call on the kernel objects that it may access using two micro-operations: load and store. These

micro-operations are analogous to the traditional load and store instructions that are well-understood by the

existing algorithms, except our micro-operations refer to shared kernel objects, such as inodes and memory

maps, instead of an application’s real shared memory.

More formally, we associate an abstract memory range with each kernel object. The effect of a system

call on a kernel object depends on its semantics. If the system call only observes the object’s state, we use

a load(obj,range) operation. If it may also modify the object’s state, we use a store(obj,range) operation.

The argument obj indicates the affected kernel object, and the argument range indicates the ranges being

accessed within that object’s abstract memory. A single system call may access multiple kernel objects or

even the same kernel object multiple times within the course of its execution.

We use a memory range for a shared kernel object instead of a single memory location because system

calls often access different properties of an object or ranges of the object data. For instance, lstat reads

the meta-data of files, while write writes the contents of files. They access a common object, but because

they access distinct properties of that object, we do not consider them to race. Likewise, read and write

system calls to non-overlapping regions in the same file do not race.

Memory ranges are particularly useful to model pathnames. Pathname creation and deletion change

the parent directory structure and may race with reading its contents, but pathname creation, deletion, and

lookup may only race with each other if given the same pathname. For example, both creat(/tmp/a)
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and unlink(/tmp/b) may race with a getdents on /tmp, but are unrelated to each other or to an

lstat(/tmp/c). Modeling all pathname accesses using a single location on the parent directory’s inode

is too restrictive. Instead, we assign a unique memory location in the parent directory’s inode for each

possible pathname. We then model pathname creation and deletion system calls as stores to the designated

location, pathname lookup system calls as loads from that location, and read directory system calls as loads

from the entire pathname space under that directory.

Memory ranges are also useful to model wait system calls which may block on events and wakeup

system calls which may trigger events. Example wait and wakeup system calls include wait and exit,

respectively, and a blocking read from a pipe and a write to the pipe, respectively. To model the effect

of wait and wakeup system calls, we use a special location in the abstract memory of the resource involved.

Wait system calls are modeled as loads from that location, and wakeup system calls are modeled as stores

to that location. For instance, the exit system call does a store to the special location associated with the

parent process ID, and the getppid system call does a load from the same location.

Table 3.3 shows the template of micro-operations that RACEPRO uses to model nine common system

calls: open, write, read, getdents, execve, clone (fork a process), exit, wait, and getppid.

The open system call accesses several resources. It stores to the process file-table to allocate a new file

descriptor, loads from the inodes of the directories corresponding to the path components, stores to the

inode of the parent directory if the file is being created or loads from the file’s inode otherwise, and stores

to the entire data range of the inode if the file is being truncated.

The write, read, and getdents system calls access three resources: process file-table, file handle,

and inode. write loads from the process file-table to locate the file handle, stores to the file handle to

update the file position, stores to the meta-data of the file’s inode in the file system, and stores to the affected

data range of the file’s inode. The last two micro-operations both affect the file’s inode, but at different

offsets. read from a regular file and getdents are similar to write, except that they load from the

respective file’s or directory’s inode. read from a stream, such as a socket or a pipe, is also similar, except

that it consumes data and thus modifies the inode’s state, so it is modeled as a store to the corresponding

inode.

The execve system call accesses several resources. It loads from the inodes of the directories corre-

sponding to the path components. It also stores to the inodes of the status and cmdline files in the

/proc directory entry of the process, to reflect the newly executed program name and command line.
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Syscall Micro-Op Kernel Object

open

store file-table

load inodes of path components

store inode of directory, if O CREAT

load inode of file, if no O CREAT

store data of file (range), if O TRUNC

write

load process file-table

store file handle of file

store inode of file

store data of file (range)

read

load process file-table

store file handle of file

load inode of file, if regular file

store inode of file, if a stream

load data of file (range)

getdents

load process file-table

store file handle of directory

load inode of directory

load data of directory (range)

execve

load inodes of path components

store data of /proc/self/status

store data of /proc/self/cmdline

clone
load process memory map

store data of /proc directory

exit
store ’pid’ of self

store ’ppid’ of re-parented children

wait
store data of /proc directory

load ’pid’ of reaped child

getppid load ’ppid’ of self

Table 3.3: Micro-Operations of Common System Calls.
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The clone, exit, and wait system calls access two resources. clone loads from the process’s

memory map to create a copy for the newborn child, and stores to the /proc directory inode to reflect the

existence of a new entry in it. exit stores to the pid resource of the current process to set the zombie state,

and stores to the ppid resource of its children to reparent them to init. wait stores to the reaped child’s

pid resource to change its state from zombie to dead, and stores to the /proc directory inode to remove

the reaped child’s entry. RACEPRO detects races between exit and wait based on accesses to the exiting

child’s pid resource. Similarly, getppid loads from the current process’s ppid resource, and RACEPRO

detects races between exit and getppid based on accesses to the ppid resource.

To account for system calls that operate on streams of data, such as reads and writes on pipes and sockets,

we maintain a virtual write-offset and read-offset for such resources. These offsets are advanced in response

to write and read operations, respectively. Consider a stream object with write-offset LW and read-offset

LR. A write(fd,buf,n) is modeled as a store to the memory range [LW ..LW + n] of the object, and

also advances LW by n. A read(fd,buf,n) is modeled as a load from the memory range [LR..LR+ ñ],

where ñ = min(LW − LR, n), and also advances LR by ñ.

To account for the effects of signal delivery and handling, we model signals in a way that reflects the

possibility of a signal to affect any system call, not just the one system call that was actually affected in the

recording. We associate a unique abstract memory location with each signal. A kill system call that sends

a signal is modeled as a store to this location. Each system call in the target process is considered to access

that location, and therefore modeled as a load from all the signals. This method ensures that any system call

that may be affected by a signal would access the shared object that represents that signal.

3.5.3 Race Detection Algorithms

Building on the happens-before graph and the modeling of system calls as micro-operations, RACEPRO

detects three types of process races: load-store races (§3.5.3), wait-wakeups races (§3.5.3), and wakeup-

waits races (§3.5.3). RACEPRO may also be extended to detect other types of races (§3.5.3).

Load-Store Races A load-store race occurs when two system calls concurrently access the same shared

object and at least one is a store operation. In this case, the two system calls could have executed in the

reverse order. RACEPRO flags two system calls as a load-store race if (1) they are concurrent; (2) they

access the same shared kernel object, and (3) at least one access is a store. In the ps | grep X example
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shown in Figure 3.6, the system calls read and execve are flagged as a race because they are concurrent,

they access the same resource, and at least one, execve, does a store. In contrast, the system call exit of

P3 also stores to the same resource, but is not flagged as a race because it is not concurrent with any of them

as read happens-before exit and execve happens-before exit.

RACEPRO detects load-store races using a straightforward happens-before-based race detection algo-

rithm. We chose a happens-before over lockset because processes rarely use standard locks (§3.2). RACE-

PRO iterates through all the shared kernel objects in the recording. For each shared object, it considers the

set of all accesses to that object by all system calls, and divides this set into per-process lists, such that the

list Li of process Pi contains all the accesses performed by that process. RACEPRO now looks at all pairs

of processes, Pi, Pj , i 6= j, and considers their accesses to the object. For each access Sn ∈ Li, it scans

through the accesses Sm ∈ Lj . If the vector-clocks of Sn and Sm are concurrent, the pair of system calls is

marked as a race. If Sn → Sm, then Sn → Sm+k, so the scan is aborted and the next access Sn+1 ∈ Li is

considered. If Sm → Sn, then Sm → Sn+k, so Sm+1 ∈ Lj is saved so that the next scan of accesses from

Lj will start from Sm+1, since we know that earlier events happened-before all remaining accesses in Li.

Because system calls may access more than one shared object during their execution, it is possible that

the same pair of system calls will be marked more than once. For example, two write system calls from

different processes to the same location in the same file will be marked twice, once when the meta-data of

the inode is considered, and once when the data of the file is considered. Because RACEPRO detects and

later validates (§3.6) races at the granularity of system calls, it only reports the respective pair of system

calls once.

RACEPRO may produce a myriad of races, which can take a long time to produce and later validate.

To address this concern, RACEPRO prioritizes which races to examine in two ways. First, RACEPRO may

defer or entirely skip races that are less likely to prove harmful, depending on the system calls and resource

involved. For example, when analyzing the execution of a parallel compilation, resources related to visual

output may be skipped: although many processes may be writing to the standard output, races, if they exist,

are likely to be benign. Second, RACEPRO ranks pairs of system calls according to their distance from each

other in the happens-before graph, and examines nearer system calls first.

Wait-Wakeups Races A wait-wakeups race occurs when a wait system call may be woken up by more

than a single matching wakeup system call. If the wakeup system calls executed in a different order, the
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wait system call could have picked a different wakeup than in the original execution. Wait-wakeups races

involve at least three system calls. For instance, a wait system call which does not indicate a specific

process identifier to wait for will complete if any of its children terminate. Likewise, a blocking read from

a stream will complete after any write to the stream.

In these cases, the wait system call essentially uses a wildcard argument for the wakeup condition so that

there can be multiple system calls that match the wakeup condition depending on their order of execution.

The wait-wakeups race requires a wildcard, otherwise there is only a single matching system call, and thus

a single execution order. For instance, a wait system call that requests a specific process identifier must be

matched by the exit of that process. In this case, the wait-wakeup relationship implies an inherent happens-

before edge in the happens-before graph, since the two system calls must always occur in that order.

RACEPRO flags three system calls as a wait-wakeups race if (1) one is a wait system call, (2) the other

two are wakeup system calls that match the wait condition, and (3) the wait system call did not happen-

before any of the wakeup system calls. In the ps | grep X example shown in Figure 3.6, the two exit

system calls of P2 and P3 and the first wait system call of P1 are flagged as a wait-wakeups race since

both exit calls are concurrent and can match the wait. In contrast, the write and read system calls to

and from the pipe are not flagged as a race, because there does not exist a second wakeup system call that

matches the read.

RACEPRO detects wait-wakeups races using an algorithm that builds on the load-store race detection

algorithm, with three main differences. First, the algorithm considers only those accesses that correspond

to wait and wakeup system calls by looking only at locations in the abstract memory reserved for wait and

wakeup actions. Second, it considers only pairs of accesses where one is a load and the other is a store,

corresponding to one wait and one wakeup system calls. The wait system call must not happen-before the

wakeup system call. Third, for each candidate pair of wait and wakeup system calls S1 and S2, RACEPRO

narrows its search to the remaining wakeup system calls that match the wait system call by looking for

system calls that store to the same abstract memory location. For each matching wakeup system call S3,

RACEPRO checks whether it would form a wait-wakeups race together with S1 and S2.

The relative order of the wakeup system calls may matter if their effect on the resource is cumulative. For

instance, Figure 3.7 depicts a cumulative wait-wakeups scenario in which the order of two write system

calls to the same stream determines what a matching read would observe. A read from a stream may

return less data than requested if the data in the buffer is insufficient. In Figure 3.7a, a blocking read occurs
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P1 P2

· · ·

S1: write(P, 10);

S2: write(P, 10); · · ·

S3: · · · read(P, 20);

· · ·

(a)

P1 P2

· · ·

S1: write(P, 10); · · ·

S2: read(P, 20);

S3: write(P, 10); · · ·

· · ·

(b)

Figure 3.7: Wait-Wakeups Races in Streams.

after two writes and consumes their cumulative data. However, in Figure 3.7b, the read occurs before

the second write and returns the data only from the first write. Note that S2 and S3 in Figure 3.7a do

not form a load-store race as S2 inherently happens-before S3. Thus, RACEPRO flags either case as a wait-

wakeups race. The relative order of the wakeup system calls does not matter if their effect on the resource

is not cumulative, such as with wait and exit system calls.

Wakeup-Waits Races A wakeup-waits race occurs when a wakeup system call may wake up more than

a single matching wait system call. Like wait-wakeups races, wakeup-waits races involve at least three

system calls. For example, a connect system call to a listening socket will wake up any processes which

may have a pending accept on that socket; the popular Apache Web server uses this method to balance

incoming requests. As another example, a signal sent to a process may interrupt the process during a system

call. Depending on the exact timing of events, the signal may be delivered at different times and interrupt

different system calls.

Some wakeup system calls only affect the first matching wait system call that gets executed; that sys-

tem call “consumes” the wakeup and the remaining wait system calls must wait for a subsequent wakeup.

Examples include connect and accept system calls, and read and write system calls on streams. In

contrast, when two processes monitor the same file using the select system call, a file state change will

notify both processes equally. Even in this case, a race exists as the behavior depends on which wait system

calls executes first.

RACEPRO flags three system calls as a wakeup-waits race if (1) one is a wakeup system call, (2) the other

two are wait system calls that match the wakeup, (3) the wait system calls did not happen-before the wakeup
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system call. To detect wakeup-waits races, RACEPRO builds on the wait-wakeups race detection algorithm

with one difference. For each candidate pair of wait and wakeup system calls S1 and S2, RACEPRO narrows

its search to the remaining wait system calls that match the wakeup system call by looking for system calls

that load from the same abstract memory location. For each matching wait system call S3, RACEPRO checks

whether it would form a wakeup-waits race together with S1 and S2.

Many-System-Calls Races RACEPRO’s algorithms handle races that involve two system calls for load-

store races, and three system calls for both wait-wakeups and wakeup-waits races. However, it is also

possible that a race involves more system calls. For example, consider a load-store race that comprises a

sequence of four system calls that only if executed in the reverse order, from last to first, will produce a bug.

RACEPRO’s algorithm will not detect this load-store race since it only considers one pair of system calls at a

time. To detect such races, the algorithms can be extended to consider more system calls at a time and more

complex patterns of races. An alternative approach is to apply RACEPRO’s analysis recursively on modified

executions (§3.6.2).

3.6 Validating Races

A detected process race may be either benign or harmful, depending on whether it leads to a failure. For

instance, consider the ps | grep X example again which may output either N or N +1 lines. When run

from the command line, this race is usually benign since most users will automatically recognize and ignore

the difference. However, for applications that rely on one specific output, this race can be harmful and lead

to a failure (§3.7).

To avoid false positives, RACEPRO validates whether detected races are harmful and reports only harm-

ful races as bugs. For each race, it creates an execution branch in which the racy system calls, which we refer

to as anchor system calls, would occur in a different order from the original recorded execution (§3.6.1). It

replays the modified execution until the race occurs, then makes the execution go-live (§3.6.2). It checks the

live execution for failures (§3.6.3), and, if found, reports the race as a bug.

3.6.1 Creating Execution Branches

RACEPRO does not replay the original recorded execution, but instead replays an execution branch built

from the original execution in a controlled way. The execution branch is a truncated and modified version
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of the original log file. Replaying such modified log file is a departure from deterministic record-replay

presented in the previous chapter with SCRIBE as we no longer aim to reproduce a past execution verbatim.

Given a detected race which, based on its type, involves two or three anchor system calls, RACEPRO creates

an execution branch in two steps. First, it copies the sequence of log events from the original execution

recording up to the anchor system calls. Then, it adds the anchor system calls with suitable ordering con-

straints so that they will be replayed in an order that makes the race resolve differently than in the original

recorded execution. The rest of the log events from the original execution are not included in the modified

version.

A key requirement in the first step above is that the definition of up to must form a consistent cut [69]

across all the processes to avoid deadlocks in replay. A consistent cut is a set of system calls, one from each

process, that includes the anchor system calls, such that all system calls and other log events that occurred

before this set are on one side of the cut. For instance, if S1 in process P1 happens-before S2 in process P2

and we include S2 in the consistent cut, then we must also include S1 in the cut.

To compute a consistent cut for a set of anchor system calls, RACEPRO simply merges the vector-clocks

of the anchor system calls into a unified vector-clock by taking the latest clock value for each process. In the

resulting vector-clock, the clock value for each process indicates the last observed happens-before path from

that process to any of the anchor system calls. By definition, the source of this happens-before edge is also

the last system call of that process that must be included in the cut. For instance, the unified vector-clock

for the read and execve race in Figure 3.6 is [3, 3, 2], and the consistent cut includes the second fork of

P1, read of P2, and execve of P3.

Given a consistent cut, RACEPRO copies the log events of each process, except the anchor system calls,

until the clock value for that process is reached. It then adds the anchors in a particular order. For load-store

races, there are two anchor system calls. To generate the execution branch, RACEPRO simply flips the order

of the anchors compared to the original execution; it first adds the system call that occurred second in the

original execution, followed by the one that occurred first. It also adds an ordering constraint to ensure that

they will be replayed in that order.

For wait-wakeups races, there are three anchor system calls: two wakeup system calls and a wait system

call. To generate the execution branch, RACEPRO first adds both wakeup system calls, then adds a modified

version of the wait system call in which its wildcard argument is replaced with a specific argument that

will match the wakeup system call that was not picked in the original execution. For example, consider a
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P1 P2 P3

· · ·

S1: syscall(R);

S2: syscall(R); · · ·

S3: · · · · · · syscall(R);

S4: syscall(R); · · ·

S5: syscall(R);

· · ·

Figure 3.8: Replay Divergence Due to Reordering.

race with two child processes in exit, either of which may wake up a parent process in wait. RACEPRO

first adds both exit system calls, then the wait system call modified such that its wildcard argument is

replaced by a specific argument that will cause this wait to pick the exit of the child that was not picked

in the original execution. It also adds a constraint to ensure that the parent will execute after that child’s

exit. The other child is not constrained.

For wakeup-waits races, there are also three anchor system calls: one wakeup system call and two wait

system calls. To generate the execution branch, RACEPRO simply flips the order of the two wait system

calls compared to the original execution. Races that involve signals, which may be delivered earlier or later

than in the original execution, are handled differently. To generate an execution branch for a signal to be

delivered earlier, RACEPRO simply inserts the signal delivery event at an earlier location which is thereby

considered one of the anchors of the consistent cut. In contrast, delivering a signal arbitrarily later is likely to

cause replay divergence (§3.6.2). Instead, RACEPRO only considers delivering a signal later if it interrupted

a system call in the recorded execution, in which case the signal is instead delivered promptly after the

corresponding system call completes when replayed.

Reordering of the anchor system calls may also imply reordering of additional system calls that also

access the same resources. Consider the execution scenario depicted in Figure 3.8, which involves three

processes and five system calls that access the same resource. The system calls S1 and S5 form a load-store

race. To generate the modified execution for this race, RACEPRO will make the following changes: (1) it will

include S1 but not S2, because system calls following the anchors remain outside the cut and are truncated;

(2) it will reorder S5, and therefore S4 too, with respect to S1; and (3) depending on the consistent cut, it
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will either exclude S3 or reorder S3 with respect to S1. RACEPRO adjusts the modified recording so that it

will enforce the new partial order of system calls instead of the partial order of system calls in the original

execution.

3.6.2 Replaying Execution Branches and Going Live

RACEPRO’s replayer provides deterministic replay of the originally recorded execution and also ensures

that successful replay of a modified execution is also deterministic. Given a modified execution, RACEPRO

replays each recorded event while preserving the partial order indicated by the recording. The last events

replayed are the anchor system calls. To force races to resolve as desired, RACEPRO replays the anchor

system calls serially, one by one, while holding the remaining processes inactive. From that point onward,

it allows the processes to go live to resume normal execution.

Go Live. The ability to go live by resuming live execution from a replay is fundamental for allowing RACE-

PRO to validate whether races manifest into real bugs or not, and thereby avoid reporting false-positives. To

go live, RACEPRO faces two challenges. First, RACEPRO must ensure that replayed processes perceive

the underlying system to be the same as at the time of recording. For example, system identifiers such

as process IDs must remain the same for processes to run correctly after they transition to live execution.

RACEPRO leverages OS virtualization to encapsulate processes in a virtual execution environment that pro-

vides the same private, virtualized view of the system when the session is replayed or goes live as when it

was recorded. Processes only see virtual identifiers that always stay the same so that the session can go live

at any time. Second, RACEPRO needs to not only replay the application state in user-space, but also the

corresponding state that is internally maintained by the operating system for the processes. For example,

actions such as creating a pipe and writing to it must be done as is so that the pipe exists and has suitable

state should the process transition to live execution.

RACEPRO works best when a go-live execution requests no inputs from users or external processes; such

executions include parallel make, parallel boot, and executions of non-interactive programs. If a go-live

execution requests external inputs, RACEPRO tries to replay the inputs recorded from the original execution.

Currently RACEPRO replays standard inputs from users and pipe or socket data received from external

processes. It does not replay data read from the file system. Instead, it checkpoints the file system before

recording an execution and restores to this checkpoint before each replay, using unionfs [88], which has low

overhead. Replaying inputs may not always work because the go-live execution differs from the original
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execution, but we have not found it a problem in our evaluation because tightly coupled processes should be

recorded together anyway.

RACEPRO can be applied recursively to detect races involving more system calls (§3.5.3). Since it

already records the go-live portion of modified executions, doing so is as easy as running the same detection

logic on these new recordings. This essentially turns RACEPRO into a model checker [45]. However, we

leave this mode off by default because exhaustive model checking is quite expensive and it is probably

more desirable to spend limited checking resources on real executions over the fake checking-generated

executions.

Replay Divergence. RACEPRO’s replayer may not be able to replay some execution branches due to replay

divergence. This can result from trying to replay a modified recording instead of the original recording.

Replay divergence occurs when there is a mismatch between the actual actions of a replayed process and

what is scripted in the execution recording. The mismatch could be between the actual system call and

the expected system call or, even if the system calls match, between the resources actually accessed by the

system call and the resources expected to be accessed. When a divergence failure occurs for some execution

branch, RACEPRO does not flag the corresponding race as a bug because it lacks evidence to that end.

Divergence is commonly caused when the reordering of the anchor system calls implies reordering of

additional system calls that also access the same resources. Consider again the execution scenario depicted

in Figure 3.8 in which the system calls S1 and S5 form a load-store race and the modified execution branch

reorders the systems calls as S3, S4, S5, and S1 while dropping S2 as being outside the cut. A replay

divergence may occur if the execution of S5 depended on S2 which was dropped out, or if the execution

of S4 depends on S1 which was reordered with respect to S4. Figure 3.9a illustrates the former scenario.

Reordering the two creat system calls would cause P2 to call unlink before P1’s creat. The call will

fail and P2 will not call creat and thus diverge from the recorded execution.

Divergence can also be caused when processes rely on a specific execution ordering of system calls

in a way that is not tracked by RACEPRO. Figure 3.9b illustrates one such scenario where process P1

executes system call S1 to write data to a file, and process P2’s execution depends on data read from file

by S2. If P2 depends on the specific data written by S1, then reordering S1 and S2 will almost certainly

cause a divergence. Were the dependency on the file’s content considered an inherent happens-before S1 →

S2, RACEPRO’s explorer would not have flagged the race in the first place. However, it is prohibitively

expensive, and in some cases impossible, to track generic semantics of applications.
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P1 P2

· · ·

S1: creat(F); · · ·

S2: · · · r = unlink(F);

if (r == 0)

S3: creat(F);

· · ·

(a)

P1 P2

· · ·

S1: write(F, x); · · ·

S2: · · · read(F, b);

if (b == ‘x’)

S3: write(F, y);

· · ·

(b)

Figure 3.9: Replay Divergence Examples.

Another cause for divergence is use of shared memory. Recall that shared memory accesses are tracked

by the recorder and enforced by the replayer. However, reordering of system calls may lead to reordering

of shared memory accesses as well, which will certainly lead to replay divergence. RACEPRO mitigates

this effect by permitting relaxed execution from where the reordering takes place. In this mode the replayer

does not enforce memory access ordering, but continues to enforce other ordering constraints such as partial

ordering of system calls. This improves the chances that the replayed execution reach the point of go-live.

However, accesses to shared memory may now resolve arbitrarily and still cause divergence. For this reason

RACEPRO is likely to be less effective in finding races on OS resources between threads of the same process.

We believe that such races are relatively unlikely to occur.

Replay divergence is reportedly a serious problem for a previous race classifier [77], where it can occur

for two reasons: the race being validated does occur and causes the execution to run code or access data

not recorded originally, or the race being validated cannot occur and is a false positive. In contrast, replay

divergence actually helps RACEPRO to distinguish root-cause races from other races. By relying on a replay

followed by transition to live execution, RACEPRO is no longer concerned with the first scenario. If replay

diverges, RACEPRO can tell that the race is a false positive and discard it.

Moreover, if the divergence is not due to untracked interactions or shared memory discussed above

(or file locking, also untracked by RACEPRO), then there must exist another race that is “tighter” than the

one being validated. The other race may involve the same resource or a different one. For example, in

Figure 3.9b the race between S1 and S3 causes divergence because of another race between S1 and S2. The

latter race is “tighter” in the sense that S2 is closer to S1 because S2 → S3; the race between S1 and S2
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Bug ID Description

debian-294579 concurrent adduser processes read and write /etc/passwd without synchroniza-

tion, corrupting this file

debian-438076 mv unlinks the target file before calling atomic rename, violating the atomicity re-

quirement on mv

debian-399930 logrotate creates a new file then sets it writable, but deamons may observe it

without write permissions

redhat-54127 ps | grep race causes a wrong version of licq 7.3 to be started

launchpad-596064 upstart does not wait until smbd creates a directory before spawning nmbd, which

requires that directory

launchpad-10809 bash updates the history file without synchronization, corrupting this file

new-1 tcsh 6.17 updates the history file without synchronization, even when “savehist

merge” is set

new-2 updatedb removes old database before renaming the new one, so locate finds

nothing (findutils 4.4.2)

new-3 concurrent updatedb processes may cause the database to be empty

new-4 incorrect dependencies in Makefile of abr2gbr 1.0.3 may causes compilation

failure

Table 3.4: Bugs Found by RACEPRO. Bugs are identified by “distribution - bug ID”. New bugs are

identified as “new - bug number”

.

subsumes the race between S1 and S3. In other words, discarding races that cause replay divergence helps

RACEPRO to find root-cause races. We believe the go-live mechanism can benefit existing replay-based

thread-race classifiers.

3.6.3 Checking Execution Branches

When the replay of an execution branch switches to live execution, RACEPRO no longer controls the execu-

tion. Rather, it records the execution from that point on, and activates a checker to monitor the execution for

failures or incorrect behavior. If the checker detects a failure that did not occur during recording, it reports

a bug and saves the combined execution recording, consisting of the original recording followed by the new
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recording, so that users can deterministically replay it for debugging.

RACEPRO provides a set of built-in checkers to detect bad application behavior. The built-in checker can

detect erroneous behavior such as segmentation faults, infinite loops (via timeouts), error messages in system

logs, and failed commands with non-zero exit status. In addition, RACEPRO can also run system-provided

checker programs such as fsck.

Moreover, RACEPRO allows users to plug in domain-specific checkers. To do so, a user need only

provide a program or even a shell script that will run concurrently along the live execution. For instance,

such scripts could compare the output produced by a modified execution to that of the original execution,

and flag significant differences as errors. It is also possible to use existing test-suites already provided with

many application packages. These test-suites are particularly handy if the target application is a server. For

instance, both the Apache web server and the MySQL database server are shipped with basic though useful

test suites, which could be executed against a modified server. Finally it may also compare the output of the

go-live execution with a linearized run [46].

By running checkers on live executions, RACEPRO guarantees that observed failures always correspond

to real executions, thus eliminating false positives if the checkers are accurate. Moreover, the process races

RACEPRO detects are often the root cause of the failures, aiding developers in diagnosis. In rare cases, after

a modified execution goes live, it may encounter an unrelated bug. RACEPRO still provides an execution

recording useful for debugging, but without pointing out the root-cause.

As in many other checking frameworks, RACEPRO can detect only what is checked. Although its built-

in checkers can detect many errors (§3.7.1), it may miss domain-specific “silent” corruptions. Fortunately,

recent work has developed techniques to check advanced properties such as conflict serializability or lin-

earizability [46], which RACEPRO can leverage.

RACEPRO may have false negatives. A main source is that RACEPRO is a dynamic tool, thus it may miss

bugs in the executions that do not occur. Fortunately, by checking deployed systems, RACEPRO increases

its checking coverage. A second source is checker inaccuracy. If a checker is too permissive or no checker

is provided to check for certain failures, RACEPRO would miss bugs.

While our checkers benefit from running on live executions, RACEPRO is unable to replay production

workload recorded after the race is triggered. RACEPRO would benefit from a built-in checker that would

replay the rest of the recorded execution. The ability to replay production workload after the race is triggered

would provide confidence that the race is benign. Replaying a recorded execution after introducing modi-
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Statistics Number of Races

Name Processes Syscalls Resources Detected Diverged Benign Harmful

debian-294579 19 5275 658 4232 3019 1171 42

debian-438076 21 1688 213 50 0 46 4

debian-399930 10 1536 279 17 0 13 4

redhat-54127 14 1298 229 35 15 16 4

launchpad-596064 34 5564 722 272 267 3 2

launchpad-10809 13 1890 205 143 117 16 10

new-1 12 2569 201 137 90 33 14

new-2 47 2621 467 82 13 27 42

new-3 30 4361 2981 17 0 13 4

new-4 19 4672 716 8 0 7 1

Table 3.5: Bug Detection Statistics. Processes is the number of processes, Syscalls the number of system

calls occured, and Resources the number of distinct shared resources tracked in the recorded executions.

For races, Detected is the number of races detected by RACEPRO, Diverged the races for which the replay

diverged (i.e., false positive), Benign the benign races, and Harmful harmful races that led to failures.

fications is difficult due to the unknown behavior and side-effects of the application during the divergence.

We explore the feasibility of such mutable replay capability in the next chapter with DORA.

3.7 Experimental Results

We have implemented a RACEPRO prototype in Linux. The prototype consists of Linux kernel components

for record, replay, and go-live, and a Python user-space exploration engine for detecting and validating

races. The current prototype has several limitations. For replaying executions and isolating the side effects

of replay, RACEPRO must checkpoint system states. It currently checkpoints only file system states, though

switching to better checkpoint mechanism [81] is straightforward. RACEPRO detects idle state simply by

reading /proc/loadavg, and can benefit from a more sophisticated idle detection algorithm [114].

Using the RACEPRO prototype, we demonstrated its functionality in finding known and unknown bugs,

and measured its performance overhead. For our experiments, the software used for RACEPRO was Linux

kernel 2.6.35, Python 2.6.6, Cython 0.14, Networkx 1.1-2, and UnionFs-Fuse 0.23.
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3.7.1 Bugs Found

We evaluated RACEPRO’s effectiveness by testing to see if it could find both known and unknown bugs. To

find known bugs, we used RACEPRO on 6 bugs from our study. Bugs were selected based on whether we

could find and compile the right version of the software and run it with RACEPRO. Some of the bugs in §3.2

are in programs that we cannot compile, so we excluded them from the experiments. For each known bug,

we wrote a shell script to perform the operations described in the bug report, without applying any stress to

make the bug easily occur. We ran this shell script without RACEPRO 50 times, and observed that the bug

never occurred. We then ran RACEPRO with the script to detect the bug.

To find unknown bugs, we used four commonly used applications. We applied RACEPRO to the locate

utility and updatedb, a utility to create a database for locate. These two utilities are commonly used

and well tested, and they touch a shared database of file names, thus they are likely to race with each

other. Inspired by the history file race in bash, we applied RACEPRO to tcsh. tcsh has a “savehist

merge” option, which should supposedly merge history files from different windows and sessions. Because

compilation of software packages often involves multiple concurrent and inter-dependent processes, we also

applied RACEPRO to the make -j command.

Table 3.4 shows all the bugs RACEPRO found. RACEPRO found a total of 10 bugs, including all of the

known bugs selected and 4 previously unknown bugs. We highlight a few interesting bugs. Of the known

bugs, the debian-294579 bug is the most serious: it leads to corruption of /etc/passwd since adduser

does not synchronize concurrent reads and writes of /etc/passwd. This bug was triggered when an

administrator tried to import users from OpenLDAP to a local machine.

The redhat-54127 bug is due to the ps | grep X race. Instant messenger program licq uses ps

| grep to detect whether KDE or Gnome is running. Due to the race in ps | grep, licq sometimes

believes a windows manager is running when it in fact is not, thus loading the wrong version of licq.

The 4 previously unknown bugs were named new-1, new-2, new-3, and new-4. In the new-1 bug,

RACEPRO found that tcsh writes to its history file without proper synchronization, even when “savehist

merge” is set. This option is supposed to merge history across windows and sessions, but unfortunately, it is

not implemented correctly.

In the new-2 bug, RACEPRO found that when locate and updatedb run concurrently, locate

may observe an empty database and return zero results. The reason is that updatedb unlinks the old

database, before calling rename to replace it with the new database. This unlink is unnecessary as rename
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guarantees atomic replacement of the destination link.

In the new-3 bug, RACEPRO found that when multiple instances of updatedb run concurrently, the

resultant database may be corrupted. Multiple updatedb processes may exist, for example, when users

manually run one instance while cron is running another. While updatedb carefully validates the size of

the new database before using it to replace the old one, the validation and replacement are not atomic, and

the database may still be corrupted.

In the new-4 bug, RACEPRO found that in the compilation of abr2gbr, a package to convert between

image formats, the build process may fail when using make -j for parallel compilation. The reason is

that the dependencies defined in the Makefile are incomplete, which produces a race condition between the

creation of an $OBJDIR directory and the use of that directory to store object files from the compilation.

3.7.2 Bug Statistics

Table 3.5 shows various statistics for each detected bug, including the number of processes involved (Pro-

cesses), the number of system calls recorded (Syscalls), the number of unique shared resources tracked

(Resources), the total number of races detected (Races), the number of races in which the replay diverged

(Diverged), the number of benign races (Benign), and the number of harmful races (Harmful). The number

of processes tends to be large because when running a shell script, the shell forks a new process for each

external command. The number of system calls in the recorded executions ranges from 1,298 to 5,564. The

number of distinct shared resources accessed by these system calls ranges from 201 to 2,981.

The number of races that RACEPRO detects varies across different bugs. For instance, RACEPRO de-

tected only 17 races for debian-399930, but it detected over 4,000 races for debian-294579. Typically only

a small number of races are harmful, while the majority are benign, as shown by the Benign column. In

addition, RACEPRO effectively pruned many false positives as shown by the Diverged column. These two

columns together illustrate the benefit of the replay and go-live approach.

The mapping between harmful races and bugs is generally many-to-one. There are multiple distinct

races that produce the same or similar failures due to a common logical bug. There are two main reasons

why a single programming error may result in multiple races. First, a bug may occur in a section of the

code that is executed multiple times, for instance in a loop, or in a function called from multiple sites. Thus,

there can be multiple races involving distinct instances of the same resource type; RACEPRO will detect and

validate each independently. Second, a bug such as missing locks around critical sections may incorrectly
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Execution Times [seconds/race]

Name Record Replay Generate Validate

debian-294579 2.47 2.43 3.42 2.92

debian-438076 3.76 0.75 0.84 2.87

debian-399930 0.59 0.57 0.75 0.84

redhat-54127 0.27 0.25 0.66 0.41

launchpad-596064 21.45 3.11 2.49 1.70

launchpad-10809 0.27 0.25 0.81 0.44

new-1 0.56 0.54 1.52 0.76

new-2 0.89 0.88 1.44 1.16

new-3 2.63 2.61 2.34 2.98

new-4 1.01 0.98 4.81 1.35

Table 3.6: RACEPRO Execution Times. Record and Replay are the times to record and replay the execu-

tions, respectively. Generate is the average time to generate an execution branch and Validate the average

time to validate a race.

allow reordering of more than two system calls, and each pair of reordered system calls could produce a

distinct race.

In most cases, we relied on built-in checkers in RACEPRO to detect the failures. For instance, RACEPRO

caught bug launchpad-596064 by using grep to find error messages in standard daemon logs, and it caught

bugs debian-438076, debian-399930, new-2, new-3, and new-4 by checking for the exit status of programs.

Writing checkers to detect other cases was also easy, and required just one line in all cases. For example,

for debian-294579, launchpad-10809, and new-1, we detected the failures simply using a diff of the old

and new versions of the affected file.

3.7.3 Performance Overhead

Low recording overhead is crucial because RACEPRO runs with deployed systems. Low replay overhead

is desirable because RACEPRO can check more execution branches within the same amount of time. Since

RACEPRO shares its record-replay engine with SCRIBE, the same recording overhead is observed. Our
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results show that RACEPRO’s recording overhead is under 2.5% for server and under 15% for desktop

applications 2.7. Replay speed was in all cases at least as fast as native execution and in some cases up to

two orders of magnitude faster. This speedup is particularly useful for enabling rapid race validation. Replay

speedup stems from omitted in-kernel work due to system calls partially or entirely skipped, and waiting

time skipped at replay. Applications that do neither operations perform the same work whether recording or

replaying, and sustain speedups close to 1.

We also measured various overhead statistics involved in finding the bugs listed in Table 3.6. These

measurements were done on an HP DL360 G3 server with dual 3.06 GHz Intel Xeon CPUs, 4 GB RAM,

and dual 18 GB local disks. For each bug, Table 3.6 shows the time to record the execution (Record) and

to replay it (Replay), the average time to generate an execution branch for a race from a recorded execution

(Generate), and the average time to validate an execution branch for a race (Validate).

In all cases, recording execution times were within 3% of the original execution times without record-

ing, and replaying the execution took less time than the original recorded execution. Replay time for each

recording ranged from 250 ms to 1.8 s, providing an upper limit on the time to replay execution branches.

Replaying execution branches is generally faster because those branches are truncated versions of the orig-

inal execution. Replay speedup was near 1 in most cases, but was as high as 7 times for launchpad-596064

due to very long idle times as part of starting up the workload. These results are in line with our other

record-replay results for desktop and server applications. In particular, the results demonstrate that RACE-

PRO recording overhead is low enough to enable its use on deployed systems.

The time for our unoptimized prototype to detect all races was under 350 ms for most bugs, but in some

cases as much as 3.8 s. This time correlates roughly with the number of unique shared kernel objects tracked

and the number of processes involved. For example, detecting all races for launchpad-596064 took 2.5 s, or

less than 0.5 ms per race. The average time to generate an execution branch for a race ranged from 0.66 s

to 4.81 s. This time correlates roughly with the number of system calls. The average time to validate a race

ranged from 0.44 s to 2.98 s. This time correlates roughly with the replay time.

In most cases, the average time to validate a race was somewhat larger than the time to replay the original

execution by 0.3 s to 2 s. The time to validate a race is longer because, in addition to the time to replay the

execution branch, it also includes the time to run the go-live execution, run the checker, and perform setup

and cleanup work between races. Replaying an execution branch which ends at the anchor system calls is

faster than replaying the whole original execution. However, during validation, the remainder of the recorded
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execution now runs live, which is usually slower than replayed execution. In one case, launchpad-596064,

validation was faster then original execution replay because nearly all of the execution branches resulted in

replay divergence relatively early, eliminating the additional time it would take to replay the entire execution

branches and have them go live.

The Generate and Validate times are averaged per race, so the total time to generate execution branches

and validate races will grow with the number of races. However, races are independent of one another, so

these operations can be easily done in parallel on multiple machines to speed them up significantly. Overall,

the results show that RACEPRO can detect harmful process races not only automatically without human

intervention, but efficiently.

3.8 Differences from SCRIBE

Our implementation of RACEPRO builds atop our deterministic SCRIBE record-replay engine introduced

in the previous chapter. However, because SCRIBE only supports deterministic record-replay, enhance-

ments had to be made to fulfill RACEPRO’s requirements. These enhancements take place at different steps

in RACEPRO’s workflow. First, the recording step had to be modified to include additional deterministic

information to permit RACEPRO to extract semantics allowing happens-before graph calculation and race

detection. Second, RACEPRO’s explorer must manipulates the recorded log file to finely control the ordering

of system calls. For this, a library was built to manipulate the recording using a general purpose abstraction.

Third, we added a barrier synchronization primitive in the replayer to allow RACEPRO to synchronize a

group of processes.

SCRIBE makes significant efforts to record just enough information to perform deterministic replay

as to minimize the recording overhead. SCRIBE focuses on capturing sources of nondeterminism and ig-

nores deterministic data. Such recording is insufficient for RACEPRO. For example, when calculating the

happens-before graph, or performing race analysis, RACEPRO needs access to system call semantics, un-

available from a SCRIBE recording. In fact, RACEPRO requires additional information in three areas. First,

when the recorded application invokes a system call, SCRIBE does not record the system call number, nor its

return value as these values are deterministic and thus provide no benefit for deterministic replay. RACEPRO

records these values to enable system call semantics extraction. For example, when performing wait-wakeup

race detection (§3.5.3), RACEPRO accesses theses recorded values to identify all wait() calls and their
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returned PIDs. Second, when recording OS resource ordering information, SCRIBE only records the ren-

dezvous point unique sequence number (§2.5). RACEPRO must identify each accessed resource to relate

system calls accessing the same resource. For this, a resource type and a unique resource identifier are

recorded along side to the sequence number of each rendezvous points. Complications arise with pipes and

sockets as the kernel considers each endpoint to be a separate resource. Because RACEPRO needs to relate

system calls accessing the same socket or pipe, extra metadata is recorded to uniquely identify the pipe or

socket being accessed, regardless of the endpoint. Third, to handle signals, SCRIBE only records the value of

signals to be delivered, to replay them verbatim while ignoring the originating cause of the signal (§2.6.1).

To detect signal races, RACEPRO must tie the signal delivery to its corresponding source. For this, a per-

signal identifier is recorded during signal emission, and recorded again during signal delivery. By matching

these identifiers, RACEPRO can tie signal deliveries to their sources. These three areas of additional deter-

ministic recorded information do not impede performance per our findings. If performance was impacted,

RACEPRO could record a minimal log file containing only nondeterministic data akin to SCRIBE, and replay

it once to recover the required deterministic data.

RACEPRO’s explorer manipulates the recorded log file to finely control the ordering of system calls. To

simplify the explorer implementation, we built a high level abstraction to parse and manipulate recorded

log files. A log file can be seen as a list of serialized events. When processing a log file, loading all

events in memory can be prohibitive due to the large amount of events. For this reason, we followed a

streaming architecture to do our processing. The stream begins with a source, emitting each event from a

given recorded log file. The event stream then goes through a series of functional blocks that may perform

various actions. An event stream ends in a sink, which may write a new log to disk, or feed events directly

to the replayer. The explorer instantiates and connects functional blocks to generate execution branches.

Some of these blocks can add, remove, or modify certain events. Other blocks may do more complex tasks,

for example consolidating all sequence numbers of resources due to the reordering of system calls. Another

example is adding a barrier synchronization primitive at a consistent cut, to ensure that all processes reach a

certain location in their event stream simultaneously.

This barrier synchronization primitive must be supported by the replayer. During the replay, when a

barrier is encountered by a process in its event stream, the process waits for all other processes to also reach

their corresponding barrier. The last process to reach its barrier resumes the execution of the other processes.

This feature is useful in certain edge cases with wait-wakeup races, where multiple exit() calls sharing
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no common resource must be synchronized. Barrier can also be useful in detecting TOCTOU races as the

replayer can invoke a custom callback modifying the file system at a barrier right before resuming execution.

Finally, barriers are used to ensure that all processes go-live simultaneously at a specific consistent cut.

Aside from this additional barrier feature, the replayer has not gone through extensive changes compared to

SCRIBE.

RACEPRO’s record-replay engine differ from SCRIBE’s mostly from its ability to record useful deter-

ministic data, and modify recorded executions. RACEPRO and SCRIBE replayers mostly share the same

feature set, and provide no tolerance to execution divergences, which is why RACEPRO must go-live as

soon as the modified behavior has been executed.

To improve the quality of race triage, using a replayer tolerant to execution divergence may be useful

to implement a powerful automatic checker. Instead of going live, the replayer would continue replaying

past the introduced modifications and monitor the application behavior. In cases where the exhibited race

is benign, a minimal divergence is expected, when the race is harmful, a substantial divergence is expected.

Interestingly, RACEPRO could report the effect of a race by showing the difference from the original execu-

tion and the modified execution. We explore a record-replay engine tolerant to such divergences in the next

chapter with DORA.

3.9 Related Work

Thread races. Enormous work has been devoted to detecting, diagnosing, avoiding, and repairing thread

races (e.g., [43; 74; 77; 97; 123; 128]). However, as discussed in §3.1, existing systems for detecting thread

races do not directly address the challenges of detecting process races. For instance, existing static race

detectors work with programs written in only one language [43; 74]; the dynamic ones detect races within

only one process and often incur high overhead (e.g., [73]). In addition, no previous detection algorithms as

we know of explicitly detect wait-wakeup races, a common type of process races.

Nonetheless, many ideas in these systems apply to process races once RACEPRO models system call

effects as load and store micro-operations. For instance, we may leverage the algorithm in AVIO [68] to

detect atomicity violations involving multiple processes; the consequence-oriented method in ConSeq [130]

to guide the detection of process races; and serializability or linearizability checking [46].

A recent system, 2ndStrike [49], detects races that violate complex access order constraints by tracking
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the typestate of each shared object. For instance, after a thread calls close(fd), 2ndStrike transits the

file descriptor to a “closed” state; when another thread calls read(fd), 2ndStrike flags an error because

reads are allowed only on “open” file descriptors. RACEPRO may borrow this idea to model system calls

with richer effects, but we have not found the need to do so for the bugs RACEPRO caught.

RACEPRO leverages the replay-classification idea [77] to distill harmful races from false or benign ones.

The go-live mechanism in RACEPRO improves on existing work by turning a replayed execution into a real

one, thus avoiding replay divergence when a race does occur and changes the execution to run code not

recorded.

We anticipate that ideas in RACEPRO can help thread race detection, too. For instance, thread wait and

wakeup operations may also pair up in different ways, such as a sem post waking up multiple sem down

calls. Similarly, the go-live mechanism can enable other race classifiers to find “root races” instead of

derived ones.

TOCTOU races. TOCTOU race detection [111; 112; 120] has been a hot topic in the security community.

Similar to RACEPRO, these systems often perform OS-level detection because file accesses are sanitized by

the kernel. However, TOCTOU races often refer to specific types of races that allow an attacker to access

unauthorized files bypassing permission checks. In contrast, RACEPRO focuses on general process races

and resources not only files. Nonetheless, RACEPRO can be used to detect TOCTOU races in vivo, which we

leave for future work.

Checking deployed systems. Several tools can also check deployed systems. CrystalBall [125] detects

and avoids errors in a deployed distributed system using an efficient global state collection and exploration

technique. Porting CrystalBall to detect process races is difficult because it works only with programs

written in a special language, and it does checking while the deployed system is running, relying on network

delay to hide the checking overhead. in vivo testing [32] uses live program states, but it focuses on unit

testing and lacks concurrency support.

To reduce the overhead on a deployed system, several systems decouple execution recording from dy-

namic analysis [30; 78]. RACEPRO leverages this approach to check process races. One difference is that

RACEPRO uses OS-level record and replay, which has lower overhead than [30] and, unlike Speck [78],

RACEPRO works with both multiprocess and multithreaded applications. In addition, a key mechanism re-

quired for validating races is that RACEPRO can faithfully replay an execution and make it go-live at any

point, which neither previous system can do.
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OS support for determinism and transaction. Our idea to pervasively detect process races is inspired by

operating system transactions in TxOS [86] and pervasive determinism in Determinator [9] and dOS [16].

TxOS provides transaction support for heterogeneous OS resources, efficiently and consistently solving

many concurrency problems at the OS-level. For instance, it can prevent file system TOCTOU attacks.

However, as pointed out in [67], even with transaction support, execution order violations may still occur.

Determinator advocates a new, radical programming model that converts all races, including thread and

process races, into exceptions. A program conforming to this model runs deterministically in Determinator.

dOS makes legacy multithreaded programs deterministic even in the presence of races on memory and other

shared resources. None of these systems aim to detect process races.

3.10 Summary

We presented the first study of real process races, and the first system, RACEPRO, for effectively detecting

process races beyond TOCTOU and signal races. Our study has shown that process races are numerous,

elusive, and a real threat. To address this problem, RACEPRO automatically detects process races, check-

ing deployed systems in vivo by recording live executions and then checking them later. It thus increases

checking coverage beyond the configurations or executions covered by software vendors or beta testing sites.

RACEPRO builds on SCRIBE, our transparent, low overhead record-replay engine described in the previous

chapter, and extends it to allow system call reordering modifications at the end of a recorded log file. This

ability goes beyond deterministic replay and is instrumental to RACEPRO’s race validation feature. The

race detection accuracy depends on the quality of the checker which runs modified executions. The checker

would thus benefit from a replay engine tolerant to modifications in the execution. We introduce this concept

and propose an implementation in the next chapter with DORA.
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Chapter 4

DORA: Transparent Mutable

Record-Replay

4.1 Introduction

As applications grow in complexity, software bugs have become increasingly common and more difficult

to reproduce, diagnose, and fix. Aggressive release schedules exacerbate the problem, resulting in frail

software that requires patches to fix problems that occur in the field. Resolving a bug typically starts with

reproducing it in a controlled environment. Because the common approach of conveying a bug report is

often inadequate for tricky, nondeterministic bugs, record-replay has been developed to capture application

bugs as they occur and deterministically replay the bug at a later time, removing the burden of repeated

testing to reproduce the bug.

Despite an abundance of research on using record-replay systems for debugging [18; 64; 52; 5; 77; 82;

96; 102; 106], these works have focused on bug reproducibility and have had limited or no support for

diagnosing and fixing bugs. Debugging almost always requires modifying the program, whether by adding

print statements, testing if a change fixes the problem, or some other method. However, most previous

record-replay systems do not allow the recorded execution to be replayed with any modifications to the

application. A handful of systems do allow some new code to be run in the middle of a replay, but they do

not support changes to the application state [56; 30], which limits the utility of these systems for debugging

and validating changes.

To address this problem, we introduce DORA, a mutable record-replay system which allows a recorded
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execution of an application to be replayed with a modified version of the application. Mutable record-replay

provides a number of benefits for reproducing, diagnosing, and fixing software bugs. For instance, mutable

record-replay can replay a version of the recorded application that is recompiled with debugging informa-

tion, reconfigured to produce verbose log output, or modified to include additional code instrumentation

such as print statements. Further, in the previous chapter we introduced RACEPRO, a process races de-

tection system, and noted that it would benefit from the ability to replay a modified recorded execution to

improve the accuracy of its race checkers.

Mutable record-replay can also replay a recorded application execution of a production workload using a

patched version of the application. This is useful for both application developers and system administrators.

An application developer can use a recording of a bug when developing a fix. Replaying the recording on

a modified application speeds up debugging and provides a novel way of validating bug fixes for nondeter-

ministic bugs, which can otherwise be time consuming and difficult. For example, a developer who writes

a patch can test it by taking a recorded execution of the exploit on the original application and replaying it

using the patched application to quickly verify that the patch closes the vulnerability instead of painstakingly

regenerating the exploit for each attempted fix of the problem.

System administrators often worry that applying patches will break their applications. Mutable replay

allows administrators to independently test patches on production workloads. An administrator can record

the unpatched application in production, apply the patch to an offline version of the application, and then

replay the recorded execution using the patched application. If the replay succeeds, the administrator will

be more confident that the changes will not introduce regressions.

Mutable replay complements traditional quality assurance testing. Quality assurance provides broad

coverage but fails to handle many corner cases, which is why bugs arise in production in the first place.

In contrast, mutable replay isolates actual bugs that occur in production. These bugs can be timing and

configuration dependent, so some surface very rarely. This coverage is often not possible with traditional

testing due to nondeterministic program behavior. Furthermore, mutable replay provides fast turnaround

time, enabling a bug to be replayed quickly and directly tested against application changes that attempt

to fix the problem. This not only speeds up debugging, but also provides a way to validate bug fixes for

nondeterministic bugs, which can otherwise be much more time consuming and difficult.

We started with SCRIBE, our deterministic record-replay engine that aims to reenact exactly what has

happened in the past. We evolved this engine with RACEPRO, to allow reordering of system calls at the
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end of a recorded log file. This marks a departure from deterministic record-replay, but does not address

divergence problematics. With DORA, we further evolves our record-replay engine to enable mutable replay

capabilities, enabling compelling use cases.

DORA consists of three components: (1) a recorder that records application execution to a log, (2) a

replayer that can replay a modified version of the application using the log, and (3) an explorer that uses the

replayer to find the execution of the modified program that best corresponds to the log file. The recorder and

replayer build upon our previously described record-replay engines.

The recorder operates primarily at the interface between applications and the operating system (OS) to

transparently record an application’s nondeterministic interactions. It avoids imposing unnecessary timing

and ordering constraints that would hinder mutable replay with a modified application. To aid mutable

replay, the recorder also logs deterministic interactions to detect and resolve any differences between the

recorded application execution and the replay of a modified version of the application.

The replayer replays a previously recorded execution using a modified version of the application, match-

ing events from the original log with the actions of the modified program. If the application used for replay

is the same as the one recorded, the replayer provides deterministic replay of the unmodified application.

However, if the replayed application’s behavior diverges from the original’s, the replayer gathers informa-

tion for the explorer about the new code path the program was trying to execute and waits for instructions on

how to proceed. Because it operates at the OS-level like the recorder, the replayer has access to sufficient OS

semantics to understand why a replay diverges from the original execution and can leverage these semantics

to help the explorer.

The explorer evaluates several possible execution paths to find a successful mutable replay. It performs

a best-first search for an execution of the modified program that is as close to the original execution as

possible according to some cost function d. It begins by replaying a recorded execution on a modified

program. When the replay diverges from the original execution, the explorer tries to determine why. For

example, suppose the modified program made an unexpected printf() call. This could be a new call to

produce debugging information, or it could simply occur earlier than expected because code was deleted.

The explorer chooses the most promising possibility and communicates its decision to the replayer. This

process repeats until a successful execution is found.

DORA is designed to handle an wide range of real-world programs, including multi-threaded applica-

tions. It can support a broad range of useful application changes, but cannot support arbitrary changes;
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major changes to the process layout or shared memory layout are not supported. Despite this limitation,

DORA is useful in a wide range of real-world use cases for testing, debugging, and validating application

changes. In fact, we even found a previously unknown bug in Apache using DORA [6]. DORA’s usefulness

in practice makes sense given that bug fixes tend to be relatively small and rarely change core application

semantics [113; 57].

We have implemented a DORA Linux prototype that runs on commodity multicore hardware without

changing, relinking, or recompiling applications or libraries. Our experimental results with over thirty differ-

ent application changes show that DORA can (1) record unmodified real-world multi-threaded applications

with less than 10% overhead on multicore hardware, (2) replay applications that have been reconfigured

to produce verbose debugging output or modified with added debugging instrumentation, (3) replay real

exploits on patched applications to verify that the patches close these vulnerabilities, and (4) replay bench-

mark workloads to validate application patches and version upgrades despite changes in thousands of lines

of code.

We present the design, implementation, and evaluation of the DORA mutable replay system. §4.2 pro-

vides a definition of mutable replay. §4.3 describes the DORA recorder. §4.4 describes the DORA replayer.

§4.5 describes the DORA explorer and presents an example illustrating the use of the system. §4.6 presents

some key properties that can be guaranteed regarding DORA’s mutable replay behavior. §4.7 discusses limi-

tations of the current system. §4.8 presents experimental results. §4.9 discusses related work. Finally, §4.11

presents a summary and concluding remarks of this chapter.

4.2 Mutable Replay Concept

Since mutable replay is a previously undefined concept, we begin by presenting a definition. Let e be the

recorded execution of some program P . Let E′ be the set of possible executions of P ′, a modified version

of P . A mutable replay of e on P ′ will then be an execution e′ in E′ such that the differences between e and

e′ are a result of the differences between P and P ′.

The difference between two programs includes not only differences in their executables, but can also

include changes in input and environment, such as environment variables, configuration files, the file system,

and host-related information. Note that there is not always a clear mapping from input in the original

program to input in the modified program. For example, the original program could read more bytes from
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stdin than the modified program.

Since some executions in E′ are intuitively preferable to others, we introduce the concept of a d-optimal

mutable replay, an execution inE′ that is optimal according to a cost function d. The cost function measures

the difference between the original execution and the mutable replay. The value returned by d reflects the

minimal cost of transforming the execution e1 into a candidate execution e2. A lower score is better, scores

can be negative, and the score must be the lowest when e1 is identical to e2. A d-optimal mutable replay

ed of an execution e on P ′ satisfies d(e, ed) = mine′∈E′d(e, e′). There is always at least one d-optimal

mutable replay for a given execution e and a program P ′.

Finding the d-optimal mutable replay is undecidable in the general case. To show this, we first observe

that finding the d-optimal mutable replay requires running P ′ because predicting the executions of a program

is undecidable. Suppose P ′ has an added infinite loop at its beginning. Then, when running P ′, the replayer

will loop infinitely since detecting an infinite loop is undecidable. Thus, finding the d-optimal replay is

undecidable.

Even in the subset of cases in which finding a d-optimal mutable replay is decidable, it is still NP-hard

with respect to the number of events in the log. Consider a program P ′ which only adds a read() system

call of n bytes. There are O(2n) possible results of this call. In addition, arbitrary signals could be delivered

between any two instructions. If the program is threaded, they are many possible thread interleavings.

Since differences in signal delivery and thread interleaving could theoretically cause radically different

behavior, and since determining the future execution of a program is undecidable, a mutable replayer must

consider every possibility, which is infeasible. Thus, no mutable replay system can efficiently find a d-

optimal mutable replay in all cases.

Fortunately, however, many useful changes to programs are modest in size and scope. In particular,

bug fixes tend to be relatively small and rarely change core application semantics [113; 57]. The same is

typically true of code instrumentation added to a program for debugging. Based on this observation, we

designed DORA with a d function that has useful properties for testing and debugging. In this context,

§4.8 shows that DORA is able to find d-optimal mutable replays in practice using real-world applications.

Furthermore, §4.6 presents guarantees that can be made about the optimality of DORA’s approximation

algorithm.

A simple example may help further clarify the concept of mutable replay. Figure 4.1 shows a program

on the left that prints the current time in seconds to stdout. On the right, it shows a modified version of
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int main() {

printf(”d\n”, time(NULL));

return 0;

}

int main() {

FILE ∗out = fopen(”output”, ”w”);

fprintf(out, ”d\n”, time(NULL));

return 0;

}

Figure 4.1: Program Modification Example. Original program (left), modified program (right).

the original program that instead writes the output to a file. Intuitively, we want the gettimeofday()

call in the replay of the modified program to return the same time returned in the recorded execution of the

original program. We will show that DORA does this, producing a d-optimal replay with the cost function

described in §4.5.

4.3 Recorder

DORA’s recorder builds upon RACEPRO (§3) The RACEPRO record-replay engine provides five key benefits

for mutable replay. First, operating at the OS-level avoids tracking low-level hardware nondeterminism that

is unnecessary for application replay and would significantly complicate mutable replay. Second, DORA

records the execution of system calls in a manner that enables system calls and their effects on the kernel

to be fully executed during replay. As discussed in §4.4, this is essential for mutable replay because there

are times when DORA must transition processes from controlled replay to live execution to enable muta-

ble replay. Third, DORA’s recorder can record the execution of multiple processes and threads with low

overhead on production systems. Fourth, DORA’s recording is transparent to applications. It does not re-

quire changing, relinking, or recompiling applications or libraries, and it supports programs written in any

programming language. Finally, DORA’s recorder can record additional deterministic information useful to

perform mutable replay, and allow the modification of a recorded execution log file.

The recorder operates on a group of tasks (threads and processes), which we refer to as a session. DORA

records interactions between the session and its external environment, such as incoming network packets and

nondeterministic interactions between tasks, in a manner which accommodates application changes during

replay. DORA also records deterministic information to help detect changes in an application’s execution

path during replay.
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// 83 initialization events

--- cut ---

munmap(0xb76e1000, 968e) = 0

rdtsc = 000057ed322904cf

time(NULL) = 0x4f9bd2e7

fstat(1, 0xbff8d684) = 0

mmap(0, 1000, 3, 34, -1, 0) = 0xb76ea000

write(1, 0xb76ea000, 11) = 11

exit(0) = 0

Figure 4.2: Recorded Log File of Original Execution. The first 83 events are omitted.

The recorder saves the recorded execution to a log file. Figure 4.2 shows the tail of the log file generated

by running the simple program in Figure 4.1 on the left. We excluded 83 events related to program initializa-

tion, including execve() and C library bootstrapping events. The last two initialization events are shown.

The rdtsc event corresponds to seeding a random generator from the C library by reading the time stamp

counter of the CPU. The log also includes several system calls and information about their arguments.

In deterministic record-replay, all deterministic information need not be recorded because it will be

regenerated during replay, but in mutable replay, the modified application may behave differently even in

deterministic sections of code. DORA’s recorder stores additional deterministic information in the log to

help the replayer detect differences between the original and replayed executions as early as possible. Since

DORA provides deterministic replay for unmodified applications, it does not need to record the additional

deterministic information in production, but instead records such information afterwards by replaying the

original execution and recording additional deterministic information as needed.

Similarly to RACEPRO that records additional deterministic information (§3.8) to extract execution se-

mantics, DORA records all system calls executed, not just those involved in nondeterministic interactions.

DORA records the system call number, and return value for each system call. Unlike RACEPRO, DORA

also records all system call arguments. For arguments that are pointers, DORA follows the pointer chain

to record the actual memory contents, which are used during replay to see if two system calls are equiva-

lent. By recording memory contents instead of the pointer values, DORA is more tolerant of memory layout

changes caused by application modifications.

DORA also records the virtual addresses of shared memory accesses, allowing the replayer to match
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shared memory access to detect divergence. However, this mechanism means that changes to the memory

layout of writable shared memory affecting page boundaries can cause DORA to incorrectly replay data

races. Fortunately, a recent study of common security patches indicates that a vast majority of application

patches [57] do not make such changes.

Finally, when performing mutable replay, the modified application may introduce system calls that are

nondeterministic and environment dependent. DORA addresses this issue by recording two additional types

of information during the original recorded execution. First, DORA stores additional information for mu-

table replay to ensure that nondeterministic actions that occur during the modified application replay but

not during the original recorded execution are consistent with the recorded execution. For example, DORA

periodically records timing information to ensure that any new calls to time-related functions are consistent

both with each other and with any calls in the recorded execution. Second, DORA records other informa-

tion about the execution environment so that new system calls in the modified application behave as they

would have in the environment in which the program was recorded. For example, the recorder stores host

information in case the modified application requests it with a new uname() or gethostname() call.

4.4 Replayer

DORA’s replayer replays the originally recorded execution using either the original program or a modified

program. It requires that the execution is replayed on a machine which supports all the recorded instructions.

For example, a program that uses SSE instructions when it is recorded cannot be replayed on a machine

without SSE instructions unless it is recompiled to use a different ISA. The replayer uses the recorded log

file to generate a separate log file per task. Each task is replayed independently, but the replayer enforces

the recorded order of access to shared resources.

A key aspect of the replayer is that it can transition a task or a group of tasks from controlled replay to

normal execution. This feature is essential for mutable replay because a modified program may have new

code to execute that is not part of the recorded execution. DORA can run such code at any time because

it fully executes system calls and their effects on the kernel during replay. Many other replay systems

only emulate the effects they have on userspace [96; 52], but this would prevent normal execution of the

application from being enabled in the middle of replay.

As a task executes kernel code, the replayer compares the execution with what is expected in the log
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file. When the execution matches expected events in the log, the replayer ensures it behaves as it did in the

original execution. System calls match if they have the same system call numbers and arguments. When an

argument is a pointer to a buffer, DORA compares the contents of the buffers instead of the pointer addresses.

Shared memory access events match if the access types and page addresses are the same. The replay ends

successfully if all tasks terminate after consuming every recorded event. A replay that uses an unmodified

application will always end successfully in this manner.

However, if a replaying task is about to execute a code path that does not correspond to the expected

event, the replay has diverged from the log. The replayer conveys this to the explorer, which determines

how the replayer should resolve the divergence. If the explorer determines that the replayer should continue

replaying the current log, the unexpected event can be treated in number of different ways to try to resolve

the divergence so that later events will match events in the log. This ability to act on a divergence is an

improvement compared to SCRIBE and RACEPRO where a divergence always resulted in a unrecoverable

failure. For simplicity, DORA treats a divergence as one of two possible types of mutations, an addition or a

deletion.

4.4.1 Additions

An addition is an event added to the program. For example, a program could be modified by adding code

that includes a new system call. A new event is most often a system call, but it can also be a new signal or

shared memory access. When executing an event not in the log file, DORA has three main responsibilities.

First, it must decide when to execute the new event relative to events already in the log file. System calls,

signals, and shared memory events are often racy with respect to other processes or threads, so there can

be many possible orderings. Second, it must ensure that the semantics of the event are consistent with the

semantics of the recorded execution. Finally, it is useful to be able to deterministically reproduce these

decisions in subsequent replays, as explained in §4.5.

To handle these responsibilities, the replayer switches the process that encountered the addition from

controlled replay into direct mode. Direct mode switches the respective process to normal execution and

enables DORA’s recorder to record the execution. This adds a new event to the log and orders it with

respect to other events in the log. The resulting log can then be later deterministically replayed with the

same modified program. Once the process completes the additional operation, it returns to regular replay

mode; no other process has left regular replay mode. This capability previously not available in SCRIBE
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and RACEPRO is instrumental in the way DORA performs mutable replay. We discuss how switching from

controlled replay to direct mode is done in further detail for new system calls, signals, and shared memory

accesses.

System calls. When encountering a new system call, DORA executes the call and records the execution

as discussed in §4.3. This is possible because the replayer fully executes system calls and their effects

instead of just emulating them, ensuring that it is possible to switch a process to normal execution at any

time. DORA further instruments various system calls to ensure that the new system call behaves consistently

with the recorded execution. The specifics of this depend upon the semantics of the added system call. We

highlight system calls that deal with three important types of issues: environmental or timing information,

resource allocation, and sockets.

For system calls that request environmental information or timing information, DORA ensures that the

return values are made consistent with the information in the original log. This includes gettimeofday()

and gethostname(). For example, if a new gethostname() call is executed, DORA already recorded

such environmental information and ensures that the name reported is the same as what was already recorded.

For system calls that request new resources, DORA ensures that assigned resources do not conflict with

those used by the replayed execution. For example, if a new page in memory is allocated, DORA ensures

that its address will not conflict with those used in the original program. If the system call manipulates

an existing shared resource, the respective resource serial numbers are renumbered to account for the new

event.

DORA simply executes new socket-related system calls during replay except when dealing with data

streams originating from outside the session. To deal with data streams, such as external sockets, DORA

registers fake backends to the corresponding file descriptor. Socket system calls related to those data streams

will simply manipulate the recorded network data. For example, if a read() on a network socket is changed

to a recvmsg() on the same socket, DORA provides the appropriate data. If a new read() from a socket

tries to access more data than recorded, 0 is returned to indicate end of file.

Signals. When encountering a new signal, such as from a modified application with a new kill() call,

DORA needs to determine when to deliver the signal to the target process. The replayer does this much as

the recorder does. Like the recorder, the replayer defers signal delivery until the target process encounters a

sync point. This ensures that signal delivery can be replayed deterministically during subsequent replays.
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Shared memory. When encountering a new shared memory access, DORA needs to determine how to

interleave the access with other accesses. As in recording, a page fault occurs when a replayed process tries

to access a shared page that it does not own, and the process must acquire ownership of the page. Once the

process obtains ownership and completes the memory access, it releases ownership to the previous owner at

the next sync point to ensure that the access order in the original execution is respected. The new memory

events are added to the log file and the original serial numbers are reordered as necessary to ensure that

subsequent replays based on this log deterministically perform the memory access in the same way.

4.4.2 Deletions

A deletion corresponds to the removal of events from the original log file and implies that the unexpected

event matches a later event in the log. The replayer deletes the intermediate events. There can be several

possible matches for an event if the event occurs several times later in the original log. DORA identifies

possible matches and reports each possible match to the explorer. Because it is expensive to process many

events and it becomes increasingly unlikely to find a match that will result in a successful mutable replay if

an extremely large number of events need to be deleted, DORA imposes a cap on the number of events it can

remove for a deletion. The cap is 10,000 events in our implementation. We present further detail regarding

deletions that involve system calls, signals, and shared memory accesses.

System calls. Most system calls do not have any side effects in the log file, so not executing a call itself

is all that is necessary to delete it. If the system call involves a shared resource, DORA also renumbers

the serial numbers for the resource so that its serial number sequence does not contain any gaps. Deleting

system calls related to external sockets does not remove the incoming data, since it is preserved as part of

the stream of data associated with the resource. Data that is not consumed from a deleted socket system call

will eventually be consumed by other remaining or new system calls.

When a deleted system call was originally associated with the delivery of asynchronous events, the

events must be relocated to other sync points. For example, consider a program that has a SIGALRM deliv-

ery scheduled on a getpid() sync point. If the new execution no longer calls getpid(), DORA must

choose a new sync point at which to deliver the SIGALRM signal. DORA postpones the delivery of asyn-

chronous events until the next sync point the application encounters. Choosing the next sync point is better

than choosing the previous one because releasing page ownership prematurely would introduce spurious
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page faults in the application and could prevent DORA from respecting the original page access order. For

example, suppose a thread writes to a page and then releases ownership of the page at the following sync

point, which is on a system call. If the system call is removed and DORA moved the ownership release event

to a previous sync point, it would occur before the access to the page. This access would then trigger a page

fault and generate a new ownership acquisition event that may not respect the original ordering. Moving the

release of ownership to the following sync point avoids this issue.

Signals. Deleting a signal involves deleting its source, which is typically a system call. System calls that

deliver signals require additional consideration because their effects create multiple events in the log file.

For example, removing a kill() system call must also remove the delivery of the corresponding signal.

During recording, DORA associates delivered signals with their sources by using an incrementing global

token used across the entire session. When a signal is about to be delivered, DORA waits for the source to

be triggered or deleted, which respectively delivers the signal or omits the signal from being delivered.

Shared Memory. When deleting a shared memory access, the corresponding ownership acquisition event

should not be executed. However, the previous owner still releases its page ownership so that its behavior

is consistent with the original recorded execution. Asynchronous events associated with a deleted shared

memory event are relocated to other sync points in the same manner as they are for system calls.

4.4.3 Going Live

In rare cases, the entire log file is consumed before the modified application terminates. This can occur

when the original application crashes, but the patched application avoids crashing. The replayer allows the

session to go live and entirely transition from controlled replay to live execution. This enables the user to

validate the correctness of the patch. Since DORA faithfully replays kernel actions, the system is always in

a state that allows it to transition to live execution. Linux namespaces [19] create a consistent environment

for processes before and after they go live. Examples of this are demonstrated in §4.8.

4.5 Explorer

The explorer uses the replayer to search for a d-optimal replay. When the replay diverges, the explorer must

determine how to proceed. If this was the first divergence, the explorer decides whether the replayer should
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consider the mutation as an addition or a deletion. If there were previous divergences, the explorer might

also tell the replayer to reconsider a previously detected divergence and explore a different path. In this

case, the explorer provides the replayer with a new log file. Thus, the replayer needs no knowledge of the

exploration algorithm.

The explorer treats the problem of finding the best mutable replay as a search through a tree T of possible

candidate executions from a start node e, the execution of the original program, to one of many goal nodes,

which represent executions in E′. This problem is different from most other search problems because (1)

expanding a node can result in an infinite loop, (2) there can be virtually infinite goal nodes, and (3) the

paths to the goal nodes are not known beforehand because determining the possible executions of a program

in advance is undecidable.

Since an exact search is undecidable in the general case and NP-hard even when it is decidable, DORA

performs an inexact search using a modified uniform-cost search. For simplicity, DORA only considers

additions and deletions. It does not consider, for example, input fuzzing or trying all possible racy paths.

The algorithm performs the following steps:

1. Initialize T to contain the root node e.

2. Pick an unexplored execution in the tree with the lowest cost according to the cost function d.

3. Attempt to replay this execution on P ′.

(a) If this replay succeeds, this execution is selected and the exploration concludes.

(b) Otherwise, the replay diverges on an unexpected event, and new nodes are added to the graph.

One node represents an addition and the others correspond to each possible deletion. Each node

has an associated log file so that nondeterminism due to mutations is reproduced exactly across

replays. Go to step 2.

A useful feature of the explorer is that the end result of a replay up to a given node is recorded. Since this

recording can be deterministically replayed, a mutable replay is easily reproducible. Furthermore, it is easy

to compare two logs to see the differences between two executions. For example, a developer can compare

the log of the originally recorded execution with the log of a mutable replay to understand how application

modifications affected the replay.
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For simplicity, we have implemented the explorer algorithm by replaying a new execution from the

beginning of the log upon divergence. In reality, there is no inherent reason for executions to be replayed

from the beginning since each child node’s log only differs from its parent node’s log after the point of

divergence. For example, a checkpoint could be taken just before divergence occurs. Nodes created because

of this divergence could replay from the checkpoint instead of from the beginning of execution [59; 60;

81].

As mentioned in 4.2, application modifications include not only differences in their source code or

executables, but also changes in input and environment, such as environment variables, configuration files,

the file system, and host-related information. DORA does not handle any of these modifications differently

as the explorer makes decisions solely based on application behavior changes, not based on the root cause

of the change.

While any function satisfying the properties specified in §4.2 can be used for d, we present a simple

function that has useful properties for debugging purposes. Since matches are desirable and additions and

deletions are undesirable, each match has a cost of −M and each addition or deletion has a cost of +1,

where M > 1. We use a value of 3 for M in our prototype, but the process of selecting a mutable replay

was relatively insensitive to the specific value. Using a negative cost for matches means that the explorer is

unlikely to backtrack after making many contiguous matches. This also means that the uniform-cost search

is not guaranteed to find the optimal replay even amongst the nodes it considers (additions and deletions).

We made this decision because the number of nodes it would need to consider to guarantee correctness is

exponential. Since the future execution of a program is unknown, even potential executions which seem very

unpromising could theoretically match many later events in the log file and obtain a very good score. Thus,

the search would effectively become a breadth-first search if d could only return non-negative numbers.

Event logs may have billions of events long, so this would not be feasible.

Example. To make this process more clear, we return to the example introduced in §4.2, in which a

program that prints the time to stdout is modified to write the time to a file. Figure 4.3 illustrates how

the explorer replays the modified program in Figure 4.1 using the recorded execution shown in Figure 4.2

of the original program in Figure 4.1. The explorer starts by replaying the original log file on the modified

program. The complete original log file contains 90 events, but Figure 4.3 omits initialization events, such

as execve() and bootstrapping code from the C library.
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munmap(0xb76e1000, 968e) = 0

rdtsc = 000057ed322904cf

+ brk(NULL) = 0x9870000

+ brk(0x9891000) = 0x9891000

+ open("output", 577, 438) = 500

time(NULL) = 0x4f9bd2e7

+ fstat(500, 0xbff8d674) = 0

- fstat(1, 0xbff8d684) = 0

mmap(0, 1000, 3, 34, -1, 0) = 0xb76ea000

+ write(500, 0xb76ea000, 11) = 11

- write(1, 0xb76ea000, 11) = 11

exit(0) = 0

Figure 4.3: Mutable Replay of Modified Program.

The replayer matches the first 85 events successfully, which are all system call events, resulting in a

cost of -255. At this point, the replayer encounters a brk() that does not match the time() call in the

original log file and diverges. Upon divergence, DORA can treat brk() as an added system call or search

the original log for a brk() call and delete intermediate events. Since no other call to brk() occurs in the

log file, only the addition path is considered, resulting in a cost of -254 and an additional node in the tree of

candidate executions.

Following this algorithm, replayer adds two more system calls: another brk() and open(), resulting

in a cost of -252. A time() call is executed and successfully matches the expected call in the original log,

ensuring that the time returned in the replayed execution is the same as the time in the original log. The

match lowers the cost of the execution path to -255.

The changed program then executes an fstat(500, ...) in the replaying execution. Although the

system call number is the same as the fstat(1, ...) in the log, the file descriptors passed as the first

argument are different. This is treated as a mismatch. No subsequent matching fstat() calls are in the

log, so this is treated as an another addition, increasing the cost of the execution path to -254.

Next, the application diverges on the call to mmap() since it does not match fstat(1, ...). For

the first time in this example, the divergence can lead to a deletion or addition since there is a matching

mmap() in the original log. The explorer creates two nodes, and explores the unexplored node with the
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lowest cost. In this case, these two nodes are the only unexplored nodes. The addition node costs -253 since

there is a one point addition penalty. The deletion node costs -256 because there is a one point deletion

penalty for removing one node and a three point bonus for matching mmap(). Therefore, the deletion node

is selected. The addition and deletion of fstat() is effectively a replacement of the system call.

The modified program then runs a write(500, ...) in the replaying execution which is different

from the write(1, ...) in the log. Although the function calls are the same, the file descriptors are

different, so this is treated as a mismatch. Since no subsequent matching write() calls are in the file, this

must be treated as an addition, increasing the cost of the execution path to -255.

Finally, the program calls exit(), which diverges from the write(1, ...) in the original log.

The divergence can lead to an addition of exit group() or a deletion of write(1, ...), matching

the exit group() in the original log. The addition node costs -254, the deletion node costs -257, and the

unexplored node which added mmap() costs -253. The deletion node is selected.

Since the end of the log file has been reached, the explorer has found a successful replay with a cost

of -257 and terminates. In this case, the explorer has successfully found a d-optimal replay. Although

the explorer cannot prove this, the optimality of this replay is evident given the nature of the application

modification.

From this simple example, we can observe that small code changes may significantly impact the behavior

interactions of the application with the kernel API. The fopen() library call internally calls malloc(),

resulting in two new invocations to brk(). Thus, even minor changes to high-level source code can result

in relatively large changes to the low-level executable code.

4.6 Properties

We can make several useful guarantees about the behavior of DORA for certain classes of application

changes.

Property 1 DORA deterministically replays the original execution if the program is unmodified.

In other words, DORA performs traditional deterministic record-replay when the program is unchanged.

This property also implies that DORA provides d-optimal mutable replay for all d for unmodified programs.

Property 2 If all explored mutations are safe, DORA deterministically replays all events in the original

execution with the modified program.
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For our d, a safe mutation is an addition that does not change any state which is read by the original exe-

cution. These additions may store state which is later read, but the original execution must not access this

new data. This guarantee is quite useful for debugging because it implies that all behavior in the original

program, including race conditions, will be preserved deterministically.

For example, a printf() changes the internal state of the program by modifying an internal buffer,

but returns the program to its original state, assuming proper newlines. Therefore, adding a printf() to

debug a race condition always preserves recorded races because it will not change the relative ordering of

events in the log. DORA can also handle the creation of new files. Any new calls to open() will receive

a file descriptor not used by the original execution, so DORA guarantees that the original behavior of the

program will be unaffected.

As another example, consider memory changes, for both shared and private regions of memory. First,

reading the value of a variable in memory is safe. This is true even if the read is from shared memory and

triggers a page fault leading to a temporary ownership transition. Additionally, the program can allocate

and write to pages that are unused by the original execution. To avoid conflicts, DORA always assigns new

memory allocations to a reserved area that is isolated from the original memory mappings.

Property 3 DORA does not guarantee deterministic replay when given a modified application with arbi-

trary modifications.

As explained in Section 4.4, DORA does not evaluate all possible interleaving of additions. For example,

when a printf() is added in two different threads without locking, the order in which the calls are

executed is variable. DORA picks the first possibility it encounters during replay and enforces this ordering

for subsequent replays. However, this ordering is not enforced across separate invocations of the explorer.

Property 4 DORA can deterministically replay a mutable replay of a modified application.

DORA’s explorer outputs the replay it selects to a log file. Thus, DORA can deterministically replay the orig-

inal execution of the explorer using the modified program. This enables exact reproduction of a previously

found replay, allowing DORA to be used iteratively.

4.7 Limitations

DORA has several limitations as it has no knowledge of application semantics. As a result, it only supports
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replay across application changes that do not alter core application or execution semantics.

For example, an exploit might add a new entry to a MySQL database. This entry would be assigned

a particular id by MySQL, and would affect the ids of all later entries. A patch that removes the exploit

would also remove the created entry, resulting in a mismatch between the ids assigned during replay and the

recorded assignments. DORA would not find a d-optimal mutable replay because the core semantics of the

execution have changed.

Additionally, DORA currently does not effectively support major changes in the layout of shared mem-

ory. If objects are relocated from a page to another, DORA cannot always preserve the original access

ordering since DORA manages shared memory at the page level. DORA could be modified to track objects

instead of pages by instrumenting the application. Even without this functionality, however, DORA is able

to handle some changes to MySQL, which heavily uses shared memory.

Finally, DORA currently does not support process/thread layout changes. For example, if an application

was originally recorded with 10 threads running, and is now reconfigured to run with 5 threads as part of

the application modification, DORA does not provide a way to find a good mutable replay. Similarly, DORA

has difficulty with applications that use green threads as small code changes may result in radically different

schedules.

Thus, there are some types of changes for which DORA will not find the d-optimal replay. Fortunately,

DORA produces enough information for the user to identify when these conditions occur. This allows the

user to distinguish behavior caused by an application change from behavior due to DORA’s limitations and

makes DORA a useful tool for debugging and validation.

These conditions may seem restrictive, but they are often not an issue in practice because patches rarely

change core application semantics. In a study of 60 patches each for MySQL, Apache, OpenSSL, and Squid,

83% resulted in only minor changes to the application behavior. Analysis of various security patches showed

that over 75% only changed applications in minor ways [57]. This makes sense, as patches often attempt to

fix an edge case in an application.

4.8 Evaluation

We have implemented a prototype of DORA in Linux. The recorder and replayer run in kernel space while

the explorer runs in user space. Although the prototype only instruments a subset of the Linux kernel
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Name Description

apache-log Apache 2.4.2 web server

apache-sec Apache 2.2.19 web server

exim Exim 4.69 mail server

mysql MySQL 5.0.67 database server

nginx Nginx 0.8.14 web server

proftpd ProFTPD 1.3.0 ftp server

redis Redis 2.4.11 key-value store

squid Squid 3.1.7 http proxy server

wget wget 1.11.4 http client

Table 4.1: Application Descriptions.

API, we demonstrated the functionality of this prototype in diagnosing and fixing bugs and measured its

performance overhead with nine widely used real-world, multi-process, and multi-threaded applications and

32 different application changes involving thousands of lines of code. For our experiments, we used version

2.6.35 of the Linux kernel, Python 2.6.6, Cython 0.14, and UnionFs-Fuse 0.23. Measurements were done

on a set of HP DL360 G3 servers, each with dual 3.06 GHz Intel Xeon CPUs, 4 GB RAM, and dual 18 GB

local disks.

We recorded a wide range of applications as listed on Table 4.1. We ran these applications with various

workloads that exhibited bugs, as listed in the second column of Table 4.2. We verified that DORA can

deterministically replay the original recorded applications and then replayed the executions with modified

applications. §4.8.1 shows that DORA can replay these workloads using reconfigured or modified applica-

tions with additional debugging or other instrumentation. §4.8.2 shows how DORA can replay the exploits in

Table 4.2 using patched versions of the applications to help developers verify that the bug patches success-

fully resolve the problems. It also shows how DORA can replay the workloads listed in the second column of

Table 4.2 using the patched versions of the applications to help system administrators verify that the patches

do not introduce errors in production workloads. §4.8.3 shows that DORA can verify production workloads

on a series of release upgrades for the applications listed in Table 4.6. Finally, §4.8.4 presents record-replay

overhead for the production workloads.
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Name Problem/Exploit Workload Production Workload

apache-log Log format change (Apache Bug 53131) httperf 0.8 with 100KB web page

apache-sec DoS attack (CVE 2011-3192) httperf 0.8 with 100KB web page

exim Privilege escalation (CVE 2010-4344) Send 1000 1KB e-mail messages

mysql Unauthorized access (CVE 2008-2079) sql-bench

nginx Crash server (CVE 2009-2629) httperf 0.8 with 100KB web page

proftpd Crash server (CVE 2006-5815) 100 clients fetch 10MB file

redis Request with insufficient logging redis-benchmark with 50 clients

squid DoS attack (CVE 2010-3072) ab 2.3 with cached facebook.com

wget Create arbitrary file (CVE 2010-2252) 100 requests to http://www.cnn.com

Table 4.2: Application Workloads.

4.8.1 Debugging and Diagnosis Techniques

We used a wide range of debugging and diagnosis techniques with the workloads listed in the second column

of Table 4.2. Since our work focuses on diagnosing and fixing bugs, most of the problems involve known

security vulnerabilities, as indicated by their Common Vulnerabilities and Exposures (CVE) identifiers.

However, the apache-log scenario shows a previously unknown bug in Apache that we found with DORA,

and the Redis scenario shows how to add retroactive logging without discussing a specific bug.

For each of these exploits, we show how DORA can be used to diagnose the cause of a bug. We consider

debugging techniques an experienced developer might apply to identify the root cause of each problem.

Table 4.3 lists the application changes needed to use various debugging and diagnosis techniques for each

scenario. DORA successfully found the d-optimal replay for all of these application changes. Table 4.4

shows the needed replay mutations.

apache-log was originally intended to show how DORA could be used for retroactive logging, but ended

up showing DORA finding a previously unknown Apache bug [6]. We wanted to use DORA to add user

agent and referrer information to Apache log files, since these could provide useful usage statistics for a

website administrator. Although the default Apache logging configuration will not log this information,

DORA records all HTTP header information that the server receives. Thus, an administrator using DORA

could modify a configuration file to include this information and replay the recorded execution with the
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Name Debugging Change

apache-log Modify log format in configuration file

apache-sec Add print statements for debugging

exim Recompile with debugging options enabled

mysql Add conditional print statements for debugging

nginx Change the config file to enable debug messages

proftpd Recompile with debugging options enabled

redis Log erroneous client requests

squid Save parsed requests to file

wget Change language from Italian to Japanese

Table 4.3: Debugging Scenarios.

modified configuration to generate the desired web server log.

However, doing this yields a log file with incorrectly truncated entries. This behavior was due to a

previously unknown bug in Apache. In several places in code, Apache mistakenly assumes that a call

to write() will either write the desired amount of bytes or fail, instead of checking the return value and

calling write() until all the required bytes are written. We submitted a bug report and patch to Apache [6]

which was accepted into the codebase.

apache-sec records an exploit of a heap overflow vulnerability that launches a denial of service attack

against an Apache web server using only a handful of requests. By examining Apache’s log, an experienced

Apache developer will notice oddities in some of the requests, but will not have enough information to

identify the bug with the default logging settings. In particular, it would be helpful to have more information

about the range headers of the requests. Using DORA, a developer can add print statements to Apache,

replay, and recognize that the problem was due to incorrect handling of overlapping range headers. Five

system calls were added for each request as a result of the additional print statements.

exim involves an exploit that crashes the mail server using a heap overflow vulnerability in a buggy string

formatting function that allows attackers to execute arbitrary code. If this crash was recorded in the wild, it

would be helpful to use GDB to analyze the program at the time of the crash. However, production servers

are almost always optimized and compiled without debugging symbols. Thus, a traditional record-replay
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Name Replay Mutations

apache-log Add 1 fstat(), 1 mmap(), and 3 write() per request

apache-sec Add 1 fstat(), 1 mmap() and then 2 write() per request

exim None

mysql Add 1 fstat(), 1 mmap(), 1 memory event, 12 write()

nginx Add 508 write(), delete 1064 syscalls

proftpd Add 1 close()

redis Add 1 open(), at least 3 write() and 1 close() per request

squid Add 1 open(), at least 10 write() and 1 close() per request

wget Replace 17 write(), 24 mmap(), 2 open(), and delete 5 syscalls

Table 4.4: Application Modifications for Debugging.

system would be unable to help. Using DORA, a developer can recompile the program, replay the exploit

using the recompiled program, and hook GDB to the replayed program before it crashes. When investigating

the stack trace, the nature of this attack becomes clear. No mutations were needed in the d-optimal replay,

despite various memory layout changes to the program as a result of recompilation.

mysql involves an exploit which maliciously uses symlinks to elevate permissions to a database. By

default, MySQL disables logging. Thus, a developer trying to discover how a malicious user gained access

to a database will have no information about which commands were executed. Using DORA, the developer

can modify the program to log executed commands, then replay the exploit using the modified program.

This process can be repeated, allowing the developer to iteratively add print statements to different sections

of the code and pinpoint the bug. To demonstrate this, we added enough print statements to identify the

bug. DORA found the d-optimal replay, which had mutations of fourteen added system calls and a shared

memory event.

nginx involves running Nginx, a high-performance HTTP server, and crashing one of its worker pro-

cesses with a malicious HTTP request that uses a buffer underflow attack to execute arbitrary code. The

default log does not show what actions were taken on each request, which makes debugging difficult. Using

DORA, the developer can modify the configuration file to enable verbose logging and replay the exploit with

the modified configuration. To generate verbose logs on a workload exhibiting the exploit, 508 write()
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calls were added and 1064 system calls were deleted.

proftpd records an exploit that crashes the FTP server by taking advantage of an off-by-one error to

execute arbitrary code. As with the exim use case, GDB would be a helpful debugging tool, but a production

server is unlikely to be compiled with debugging symbols. With DORA, a developer can recompile with the

Makefile configuration for debugging, replay the exploit using the recompiled program, and hook GDB to

the replayed program before it crashes. The resulting stack trace makes it easy to diagnose the problem. A

replay mutation of adding 1 close() was needed to use the debugging configuration.

redis involves recording Redis, an in-memory key-value store often used in production applications as a

caching layer on top of a general purpose database. This use case does not involve a specific bug but instead

shows how a developer can add logging to Redis and replay this modification on the original recording,

effectively turning on retroactive logging. Replay mutations of adding at least five system calls per request

was needed. The number of additions varied based on the nature of the request. For instance, a malformed

request triggered more logging than a proper request.

squid involves an exploit that crashes the Squid daemon by sending an empty Expect HTTP header

parameter. The default request logging does not provide enough information about the header to determine

the cause of the bug. Using DORA, a developer can modify the program to log each request to a file with the

complete header information of the request, then replay a recording of the exploit with the modified program.

This allows the developer to see that the requests which crash the server have empty header parameters and

narrow down the bug to a very specific section of code. At least 12 system calls were added per request.

The exact number varied depending on the type of request.

wget involves downloading a file from a malicious server that does a 301 redirect. A vulnerability in

wget allows the server to choose the destination filename. Remote servers can create or overwrite arbitrary

files and even execute arbitrary code by writing dotfile in a home directory. Because this behavior depends

on a live server behaving in a particular way, this issue may be difficult to reproduce and debug if it is

not noticed immediately. Additionally, to demonstrate the robustness of DORA, we suppose that an Italian

developer observes this behavior and wants to show it to a Japanese developer who cannot reproduce the

results because the server is no longer available. Using DORA, the second developer can replay wget in

a different language, enabling collaborative debugging across international borders and language barriers.

While this scenario is tongue-in-cheek, the translation use case is novel and has interesting applications.

The replay involved replacing 43 system calls and deleting 5 system calls.
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Name Patch LOC +/- Replay Mutations

apache-log 39+, 39- Add 1 write() per truncated log entry

apache-sec 292+, 154- Add 1 write() and replace 1 writev() per request

exim 7+, 0- Delete 18 syscalls, add 29 syscalls

mysql 170+, 60- Add 29 lstat(), delete 79 syscalls, add 1 write(), delete 15

and add 8 memory events

nginx 9+, 5- Delete 1 write() and replace 1 writev() per request, then

go live on crash

proftpd 17+, 3- Delete 694 syscalls, add 38 syscalls, delete a SIGSEGV

squid 38+, 33- Delete a SIGSEGV, 1 close(), 1 stat(), 1 write(), then

go live

wget 43+, 12- Replace 9 syscalls among stat(), write(), open(),

utime()

Table 4.5: Application Patches Tested Against Exploits.

4.8.2 Patch Validation

For each bug exhibited by the workloads listed in the second column of Table 4.2, we replayed the bug-

inducing workload on the patched application to verify that the patch successfully fixed the bug. Table 4.5

lists the number of lines of code added and deleted for each patch and the mutations needed for each replay.

Redis is not included; since it did not involve an application bug, no patch was necessary. Table 4.5 shows

three interesting points.

First, DORA found the d-optimal replay even with substantial patches of over 400 lines of code changed.

The replay mutations that were needed to find the d-optimal replay varied. Many involved executing differ-

ent system calls, but others involved changes in signal delivery and shared memory accesses. This demon-

strates DORA’s ability to replay despite a broad range of application modifications so long as the core

application semantics remain the same.

Second, we show that production workloads can be replayed using patched applications to verify that

the patch does not introduce errors into those workloads. For each workload listed in the second column of

Table 4.2, DORA recorded the workload using the unpatched application, then found a d-optimal mutable
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Name apache-upgrade redis-upgrade

Start Version Apache 2.2.19 Redis 2.4.1

Upgrades 3 (2.2.20 - 2.2.22) 12 (2.4.2 - 2.4.13)

Commits 277 137

LOC 5179+, 388- 2942+, 1154-

Workload httperf 0.8 redis-benchmark

Table 4.6: Application Upgrades

replay using patched versions of each application. We examined the output of each mutable replay and

verified that the patches did not change application behavior when running the workload. We also compared

each original recorded log with the log of the corresponding mutable replay to verify that the patches did not

change the application execution in unexpected ways. System administrators could use this technique to test

patches before deploying them to have more confidence that they will not break their production systems.

Third, Table 4.5 shows that the go live feature of the replayer can be used to validate patches even when

a recorded exploit crashes a process. The exploit for Nginx caused a worker to crash, and the Squid exploit

crashed the entire application. In both cases, DORA does not replay the original SIGSEGV and allows the

applications to go live and handle new requests. Although a worker process crashed in the proftpd scenario,

DORA did not go live because the proftpd master forks a new worker per connection and is resilient to

worker crashes, allowing subsequent requests to be replayed without going live.

4.8.3 Release Upgrades

To demonstrate another use case of DORA, we took two server applications and recorded them running the

benchmarks we used as production workloads as listed in Table 4.6. We then replayed those executions over

a series of 15 release upgrades to verify that the workloads continued to function correctly across upgrades.

DORA found the d-optimal replay in all of these cases.

apache-upgrade consists of a series of upgrades of Apache over an 8 month timeframe from 2.2.19

(May 21, 2011) to 2.2.22 (Jan 30, 2012). The upgrades involved changes of more than 5000 lines of code

and 277 separate commits. Using DORA, we recorded version 2.2.19 running httperf, then replayed the

recording with each subsequent version. We repeated this process for versions 2.2.20 and 2.2.21. DORA
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Name Recording Storage Replay

Overhead Growth Speedup

apache-log 9.3% 31 KB/s 3.8x

apache-sec 4.8% 18 KB/s 1.9x

exim 4.3% 30 KB/s 7.2x

mysql 4.7% 9.6 KB/s 1.1x

nginx 9.7% 15 KB/s 2.2x

redis 2.6% 91 KB/s 1.3x

proftpd 4.1% 22 KB/s 2.6x

squid 8.2% 124 KB/s 1.2x

wget 2.2% 19 KB/s 11x

Table 4.7: Mutable Replay Performance

successfully replayed all of these application changes. This required various add and delete mutations of

read() and brk() calls. Note that we also tried this experiment starting with Apache 2.2.18, but DORA

was unable to replay from that version due to core library modifications that caused large shared memory

layout changes between Apache 2.2.18 and 2.2.19.

redis-upgrade consists of a series of upgrades of Redis over a 7 month timeframe from 2.4.1 (October

17, 2011) to 2.4.13 (May 2, 2012). The upgrades involved changes of more than 4000 lines of code in

137 separate commits. Using DORA, we recorded version 2.4.1 running redis-benchmark, then replayed

the recording with each later version. We also repeated this experiment for version 2.4.2 and upgrades

2.4.3 to 2.4.13, version 2.4.3 and upgrades 2.4.13 to 2.4.4, and so on. DORA successfully replayed all of

these application changes. They required add and delete mutations of 12 different system calls, including

open(), close(), read(), write(), mmap(), munmap() and time() system calls.

4.8.4 Performance

To quantify the performance costs of using DORA, we measured the runtime overhead of recording and

replaying the production workloads listed in the second column of Table 4.2. Table 4.7 shows the overhead

of recording the production workload with the unpatched application, the storage growth rate of recording,
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and the speedup when replaying the recording with the patched application. Unless otherwise noted, default

configuration options were used for all applications. The standard deviations for all measurements were

negligible.

The recording overhead in all cases was less than 10% even for CPU-bound workloads designed to

stress application performance. For example, Squid performance was measured with a fully cached web

page, resulting in a CPU intensive workload. Even with these unfavorable workloads, the results indicate

that DORA can be used in production systems with modest overhead.

Similarly, the time to replay the original recording on the original application was in all cases faster

than the original execution; in one case, it was over an order of magnitude faster. This is because DORA

can bypass blocking system calls that sleep. Since production servers are likely to sleep more and service

requests less frequently than in our benchmarks, replay speedup will be much higher in practice.

While recording, the log was streamed through gzip before being persisted to disk. The storage growth

rates ranged from 10 KB/s to 130 KB/s. These storage requirements are modest considering our workloads.

DORA would take almost three months to fill a 1 TB drive at the worst of these rates, which makes it an

affordable and practical solution.

4.9 Related Work

Many record-replay approaches have been proposed to improve bug reproducibility debugging [18; 30; 64;

52; 5; 77; 82; 96; 102; 106], but none allows for mutable replay. Some approaches propose relaxing the

requirement of deterministic replay for performance reasons. For example, ODR [5] proposes only ensuring

that the output is deterministically replayed for replay debugging. This is quite different from mutable

replay, in which the output may change due to application changes.

Some record-replay systems can support a form of replay that may differ in limited ways from the

original recorded execution. Crosscut [31] can reduce the information recorded in a log so that, for example,

sensitive information can be purged before replay. Our previous work on RACEPRO detects process races

due to dependencies in the ordering of system calls by recording an application execution to a log, identifying

a pair of system calls that may be racy, truncating the log at the occurrence of the pair of system calls,

inverting their order, and then replaying the truncated log with the reordered system calls to detect process

races. However, RACEPRO only supports changes that reorder system calls and does not support changes in
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the middle of replay. None of these approaches supports mutable replay, but mutable replay could be useful

for some of these systems. For example, RACEPRO could use mutable replay to avoid replay divergence and

more effectively detect process races. Another race detection tool [77] uses the iDNA [18] record-replay

framework and would also benefit from mutable replay.

A few record-replay systems allow new code to be run while replaying a recorded execution [56;

30]. However, this new code cannot have any side effects on the program. If a replay diverges due to

new code, these systems must rollback to a point prior to the divergence for the replay to continue. In con-

trast, DORA allows replay to continue even after divergence; side effects due to new code are preserved.

Moreover, unlike DORA, these other approaches prevent application developers from leveraging existing

configurable application functionality and instead require that developers learn a new complex system. Be-

cause these other approaches work at a VM level, they are fundamentally limited in their abilities to perform

mutable replay and support the kind of application changes supported by DORA. Finally, none of these other

approaches work on multicore or multiprocessor systems.

A concept of mutable replay was mentioned as a part of DSF [107], a Java-only framework for imple-

menting distributed algorithms. DSF recognized that existing replay approaches did not allow adding print

statements for debugging. DSF requires that all applications to be written using its framework, requires mod-

ification to the applications, and is primarily simulation-based. Furthermore, DSF presents no algorithms or

mechanisms for actually doing mutable replay, and presents no experimental results demonstrating the abil-

ity to do mutable replay. More recently, a study has assessed the potential utility of mutable replay on real

patches [57], though no mutable replay system or results are presented. DORA presents the first system that

achieves transparent mutable replay, requires no application modifications, and demonstrates experimentally

that mutable replay can be used with real applications.

Alternative techniques have been proposed to help with patch validation, one use case of mutable replay.

Band-aid patching [98] and delta execution [113] instrument patches to identify portions of an application

that have changed, execute both the unpatched and patched code paths either serially or in parallel, and select

the results from one path or merge the results from both paths. However, these approaches incur substantial

performance overhead. Many simple patches cannot be handled by these approaches, such as simple changes

to data structures. Unlike DORA, these approaches do not allow patch validation on a recorded bug or offline

patch validation on a production workload. Furthermore, they are designed only for patch validation and are

not effective for debugging.
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Self-healing systems have been proposed which record the occurrence of a bug, then automatically

generate and apply a patch as a temporary fix to the problem [99]. DORA is complementary to these systems

and can be used to verify that a generated patch successfully fixes problems that occurred in the original

workload.

Finding a mutable replay has some similarities to the edit distance and longest common subsequence

problems, which have applications to approximate string matching and bioinformatics. In those problems

however, both sequences being used for matching are known in advance. In contrast, mutable replay must

match a known execution log with an execution sequence that is not known in advance, so these algorithms

cannot be directly applied.

4.10 Comparison with SCRIBE and RACEPRO

DORA builds atop RACEPRO’s record-replay engine and shares some similarities and differences with its

recorder, explorer, and replayer. RACEPRO evolves SCRIBE’s recorder to include deterministic information

in the recorded log file such as system call numbers and return values, unique resource identifiers along with

sequence numbers in rendezvous points, and signal identifiers to tie signal deliveries to their sources (§3.8).

DORA goes further in recording additional deterministic information including system calls arguments and

their associated buffers. This allows DORA to detect a divergence early. Further, DORA records additional

timing and environmental related information allowing new system calls in the modified application to

behave as they would have in the environment in which the program was recorded (§4.3).

To perform additions and deletions of events in recorded log files, DORA reuses the high level abstraction

introduced in RACEPRO for generating execution branches(§3.8). The implementation effort of the explorer

is reduced, the memory requirements are lowered, and performance is improved due to the ability to feed the

modified event stream directly to the replayer. Further, when deleting events, resource sequence numbers

must be consolidated, which is a feature RACEPRO needs and is reused with DORA.

DORA’s replayer has been improved from RACEPRO’s in its ability to act upon divergence, instead of

failing the replay or going live immediately. DORA’s replayer has the ability to switch a process thread

from controlled replay mode into record mode (i.e. direct mode) as discussed in §4.4.1. The ability to allow

threads to be replayed while other are being recorded simultaneously is a significant departure from the

replayer used in SCRIBE and RACEPRO.
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When comparing DORA and SCRIBE, the two engines perform deterministic record-replay when the

replayed application is identical to the original application. However, when the replayed application has

been modified SCRIBE fails to replay due to divergence, while DORA performs mutable replay. DORA’s

feature set is a superset of SCRIBE’s feature set.

4.11 Summary

DORA introduces the concept of mutable record-replay and is the first transparent mutable record-replay

system. It enables, for the first time, a recording of an application execution to be replayed using a modified

version of the application for a large class of application changes. Mutable record-replay is a superset of

deterministic record-replay. DORA introduces an explorer that directs the replay mechanism to identify a

mutable replay of the modified application that minimizes differences with the original unmodified applica-

tion execution. We implemented a DORA prototype based on our previously introduced RACEPRO engine.

Our experimental results demonstrate that mutable replay is feasible across a wide range of real-world ap-

plications and application changes which can reach thousands of lines of code, even without support for

major changes to core application semantics. We show that mutable replay is useful for enabling common

debugging techniques not possible with previous record-replay systems. Mutable replay can also be useful

for a vast number of use cases, including race detection systems such as RACEPRO. While we explored

mutable replay on applications implemented on a POSIX interface, our DORA prototype cannot be directly

applied to all types of applications, in particular distributed applications. In the next chapter, we introduce

SYNAPSE, a record-replay engine for distributed database systems.
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Chapter 5

SYNAPSE: Distributed Record-Replay for

Database Systems

5.1 Introduction

So far, we have explored the usefulness of execution record-replay mechanisms with the introduction the

SCRIBE, RACEPRO, and DORA systems. These systems prime use case is to improve software robustness

by facilitating debugging and detecting previously unknown bugs. Systems that provides fault-tolerance

are typically built on top of record-replay mechanisms. Resilient distributed databases replicate data on

different machines. Aside from fault-tolerance, running replicas provide other benefits such as horizontal

scalability for load balancing. Databases (DBs) that implement data replication protocols often rely on an

underlying record-replay mechanism. However, using deterministic record-replay is not desirable as these

replicas would not be able to serve any traffic, as any new incoming queries would be a divergence from the

primary execution. Data replication can be seen as replaying a recorded execution from a primary DB on a

replica DB. For example, many distributed DBs such as MongoDB, RethinkDB or Elasticsearch rely on log

based replication mechanisms, which is a form of record-replay. These distributed DBs are mostly used to

power Web applications.

Web applications are increasingly built using a service-oriented architecture that integrates composable

services using a variety of DBs. For example, graph-oriented DBs, such as Neo4j and Titan, optimize for

traversal of graph data and are often used to implement recommendation systems [21]; search-oriented DBs,

such as Elasticsearch and Solr, offer great performance for textual searches; and column-oriented DBs, such
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as Cassandra and HBase,

Often, the same data, needed by multiple services, must be replicated across different DBs and kept

in sync. Unfortunately, the data replication engines of these DBs are vendor specific and not compatible

with each other. To complicate matters further, these replication engines offer very different consistency

semantics which makes web development difficult. It is thus desirable to provide a generic data replication

system compatible with most databases and offer an easy to understand consistency model in the context of

Web applications.

We present SYNAPSE, the first easy-to-use and scalable cross-DB replication system for simplifying the

development and evolution of data-driven Web applications. With SYNAPSE, different services that operate

on the same data but demand different structures can be developed independently and with their own DBs.

These DBs may differ in schema, indexes, layouts, and engines, but each can seamlessly integrate subsets of

their data from the others. SYNAPSE transparently synchronizes these data subsets in real-time with little to

no programmer effort. To use SYNAPSE, developers generally need only specify declaratively what data to

share with or incorporate from other services in a simple publish/subscribe model. The data is then delivered

to the DBs in real-time, at scale, and with delivery semantic guarantees.

SYNAPSE makes this possible by leveraging the same abstractions that Web programmers already use

in widely-used Model-View-Controller (MVC) Web frameworks, such as Ruby-on-Rails, Python Django,

or PHP Symfony. Using an MVC paradigm, programmers logically separate an application into models,

which describe the data persisted and manipulated, and controllers, which are units of work that implement

business logic and act on the models. Developers specify what data to share among services within model

declarations through SYNAPSE’s intuitive API. Models are expressed in terms of high-level objects that are

defined and automatically mapped to a DB via Object/Relational Mappers (ORMs) [15]. Although different

DBs may need different ORMs, most ORMs expose a common high-level object API to developers that

includes create, read, update, and delete operations. SYNAPSE leverages this common object API and lets

ORMs do the heavy lifting to provide a cross-DB translation layer among Web services.

We have built SYNAPSE on Ruby-on-Rails and released it as open source software on GitHub [116]. We

demonstrate three key benefits. First, SYNAPSE supports the needs of modern Web applications by enabling

them to use many combinations of heterogeneous DBs, both SQL and NoSQL. Table 5.1 shows the DBs we

support, many of which are very popular. We show that adding support for new DBs incurs limited effort.

The translation between different DBs is often automatic through SYNAPSE and its use of ORMs.



CHAPTER 5. SYNAPSE: DISTRIBUTED RECORD-REPLAY FOR DATABASE SYSTEMS 114

Type Supported Vendors Example use cases

Relational PostgreSQL, MySQL, Oracle Highly structured content

Document MongoDB,TokuMX, RethinkDB General purpose

Columnar Cassandra Write-intensive workloads

Search Elasticsearch Aggregations and analytics

Graph Neo4j Social network modeling

Table 5.1: DB Types and Vendors Supported by SYNAPSE.

Second, SYNAPSE provides programmer simplicity through a simple programming abstraction based on

a publish/subscribe data sharing model that allows programmers to choose their own data update semantics

to match the needs of their MVC Web applications. We have demonstrated SYNAPSE’s ease of use in a

case study that integrates several large and widely-used Web components such as the e-commerce platform,

Spree. SYNAPSE is already field-tested in production: a startup, Crowdtap, has been using it to support its

microservices architecture serving over 450,000 users for the past two years. Our integration and operation

experience indicates that SYNAPSE vastly simplifies the construction and evolution of complex data-driven

Web applications, providing a level of agility that is crucial in this burgeoning big-data world.

Finally, SYNAPSE can provide excellent scalability with low publisher overheads and modest update

propagation delays; we present some experimental data showing that SYNAPSE scales well up to 60,000

updates/second for various workloads. To achieve these goals, it lets subscribers parallelize their processing

of updates as much as the workload and their semantic needs permit.

This chapter is organized as follows. §5.2 introduces the MVC abstraction for Web applications. §5.3

describes the SYNAPSE API. §5.4 covers the SYNAPSE architecture. §5.5 demonstrate the usefulness of

SYNAPSE in three real world applications. §5.6 presents experimental results. §5.7 discusses related work.

Finally, §5.8 presents a summary and concluding remarks of this chapter.

5.2 Background

MVC (Model View Controller) is a widely-used Web application architecture supported by many frame-

works including Struts (Java), Django (Python), Rails (Ruby), Symfony (PHP), Enterprise Java Beans (Java),

and ASP.NET MVC (.NET). For example, GitHub, Twitter, and YellowPages are built with Rails, DailyMo-
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Abstraction Description

Publisher Service publishing attributes of a model.

Subscriber Service subscribing to attributes of a model.

Decorator Service subscribing and publishing a model.

Ephemeral DB-less publisher.

Observer DB-less subscriber.

Virtual attribute Deterministic functions (can be published).

Table 5.2: SYNAPSE Abstractions.

tion and Yahoo! Answers are built with Symfony, and Pinterest and Instragram are built with Django. In the

MVC pattern, applications define data models that describe the data, which are typically persisted to DBs.

Because the data is persisted to a DB, the model is expressed in terms of constructs that can be manipulated

by the DBs. Since MVC applications interact with DBs via ORMs (Object Relational Mappers), ORMs

provide the model definition constructs [15].

ORMs abstract many DB-related details and let programmers code in terms of high-level objects, which

generally correspond one-to-one to individual rows, or documents in the underlying DB. Although ORMs

were initially developed for relational DBs, the concept has recently been applied to many other types of

NoSQL DBs. Although different ORMs may offer different APIs, at a minimum they must provide a way to

create, update, and delete the objects in the DB. For example, an application would typically instantiate an

object, set its attributes in memory, and then invoke the ORM’s save function to persist it. Many ORMs and

MVC frameworks also support a notion of active models [48], which allow developers to specify callbacks

that are invoked before or after any ORM-based update operation.

MVC applications define controllers to implement business logic and act on the data. Controllers define

basic units of work in which data is read, manipulated, and then written back to DBs. Applications are

otherwise stateless outside of controllers. Since Web applications are typically designed to respond to and

interact with users, controllers typically operate within the context of a user session, which means their logic

is applied on a per user basis.
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API Description

publish, Annotations to denote which attributes to

subscribe publish or subscribe.

before create, Re-purposed active model callbacks for

before update, subscriber update notification. Similar

before destroy callbacks for after create/update/destroy.

add read deps, Specify explicit dependencies for read and

add write deps write DB queries.

delivery mode Parameter for selecting delivery semantic.

bootstrap? Predicate method denoting bootstrap mode.

Table 5.3: SYNAPSE API.

5.3 SYNAPSE API

SYNAPSE extends the MVC pattern to create an easy-to-use platform for integrating Web services that use

heterogeneous DBs. Because MVC frameworks and ORMs provide common abstractions that are often used

in practice for Web development, SYNAPSE leverages them to provide a transparent and mostly automatic

data propagation layer.

Using the SYNAPSE API shown in Table 5.3, developers make simple modifications to their existing

model definitions to share their data across services using SYNAPSE Abstractions shown in Table 5.2. At

a high level, an application that uses SYNAPSE consists of one or more publishers, and one or more sub-

scribers. Publishers are services that make attributes of their data models available to subscribers, which

maintain their own local, read-only copies of these attributes. SYNAPSE transparently synchronizes changes

to published models (creations, updates, or deletions of model instances) from the publisher to the sub-

scriber. It serializes updated objects on the publisher, transmits them to the subscriber, deserializes them,

and persists them through the ORM.

A service can subscribe to a model, decorate that model by adding new attributes to it, and publish

these attributes. By cascading subscribers into publishers developers can create complex ecosystems of

Web services that subscribe to data from each other, enhance it with new attributes, and publish it further.
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# Publisher side (Pub1).

class User

publish do

field :name

end

end

# Subscriber side (Sub1).

class User

subscribe from: :Pub1 do

field :name

end

end

Figure 5.1: API Example. Publisher (left), subscriber (right).

This programming model is easy to use and supports powerful use cases as shown in §5.5. We discuss the

SYNAPSE API using Ruby-on-Rails, but similar APIs can be built for other frameworks.

5.3.1 SYNAPSE Abstractions

Publishers. To publish a model, the developer simply specifies which attributes within that model should

be shared. The code at the top of Figure 5.1 shows how to publish in Ruby using the publish key-

word, with Synapse-specific code underlined. Each published model has a globally unique URI, given by

app name/model name. SYNAPSE generates a publisher file for each publisher listing the various ob-

jects and fields being published and is made available to developers who want to create subscribers for

the published data. A factory file is also made available for each publisher that provides sample data for

writing integration tests (§5.4.5). Other API calls that can be used by publishers are add read deps,

add write dep, and delivery mode, discussed in §5.3.3 and §5.4.2.

Subscribers. To subscribe to a published model, the developer simply marks the attributes of interest

accordingly. In Figure 5.1, the code at the bottom shows how to subscribe in Ruby to the publisher at the

top. Since the model name is the same in the subscriber as the publisher, it does not need to be explicitly

identified in conjunction with the subscribe keyword. A subscriber application can subscribe to some

or all of a publisher’s models, and can subscribe to models from multiple publishers. While there may

be many subscribers for a given model, there can only be one publisher (the owner of that model). The

owner is the only service who can create or delete new instances of the model (i.e., objects). Moreover,

subscribers cannot update attributes that they import from other services, although they can update their

own decoration attributes on these models. We enforce this read-only subscription model to avoid difficult

issues related to concurrent update conflicts from distinct services. That said, SYNAPSE handles concurrent
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# Notification Subscriber

class User

subscribe from: :PubApp do

field :name

field :email

end

after create do

unless Synapse.bootstrap?

self.send welcome email

end

end

end

Figure 5.2: Callback Example.

updates made from different servers from the same service. Subscribers often need to perform application-

specific processing of updates before applying them to their DBs. For example, a subscriber may need

to compute new fields, denormalize data, or send a notification. SYNAPSE supports this by piggybacking

upon active model callbacks often supported by MVC frameworks, including before/after create,

before/after update, or before/after destroy. The code on the right shows an example of

an after subscriber callback that sends a welcome email for each newly created User. These callbacks are

particularly useful to adapt schemas between publishers and subscribers, as discussed in §5.3.4. Other API

calls that can be used by subscribers are bootstrap? and delivery mode, discussed in §5.3.3.

Decorators. Decorators are services that subscribe to a model and publish new attributes for it. Concep-

tually, decorators mix the publisher and subscriber abstractions, although several subtle restrictions apply

to them. First, decorators cannot create or delete instances of a model, because they are not its origina-

tors. Second, decorators cannot update the attributes of the model that they subscribe to. Third, decorators

cannot publish attributes that they subscribe to. Our decorator abstraction encapsulates and enforces these

restrictions. As an example, the code at the top of Figure 5.3 shows a decorator service, which decorates the

User model from Pub1 with the user’s interests. The data used to compute those interests comes from other

sources, such as social activity, but is omitted here. Other services can then subscribe to any subset of the
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# Decorator side (Dec2).

class User

subscribe from: :Pub1 do

field :name

end

publish do

field :interests

end

end

# Subscriber side (Sub2).

class User

subscribe from: :Pub1 do

field :name

end

subscribe from: :Dec2 do

field :interests

end

end

Figure 5.3: Decorator Example.

model’s attributes or decorations by specifying the originators of those attributes, as shown in the code at

the bottom of Figure 5.3. Using decorators, one can construct complex ecosystems of services that enhance

the data in various ways, as shown in the examples in §5.5.

Ephemerals and Observers. SYNAPSE aims to support as many use cases for data-driven integration as

possible. Often times we find it useful to also support integration of non-persisted models. For example, one

could define a mailer application that observes user registrations and sends a welcome message, but does

not need to store the data. Similarly, although user-facing services may receive user actions (such as clicks,

searches, mouse hovering, etc.), it is backend analytics services that truly use that information. Having

the front-end application just pass on (publish) the data onto persisting subscribers is useful in such cases.

SYNAPSE hence lets programmers mix persisted models with ephemerals (non-persisted published models)

and/or observers (non-persisted subscribed models). Aside from supporting application-driven needs, non-

persisted models are often used to adapt mismatching data models across heterogeneous DBs, as shown in

§5.3.4.

Virtual Attributes. To perform data translation between ORMs, SYNAPSE simply calls field getter meth-

ods on the publisher side, and then calls the corresponding field setters on the subscriber side. SYNAPSE

additionally lets programmers introduce getters and setters for attributes that are not in the DB schema.

We call these programmer-provided attributes virtual attributes. Virtual attributes are valuable for schema

mappings, as shown in §5.3.4.

To support different team workflows, publisher and subscriber declarations can be expressed with either
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# models/user.rb

class User < ActiveRecord::Base

publish do

field :name

end

end

# models/comment.rb

class Comment < ActiveRecord::Base

publish do

:belongs to :user

end

end

# config/synapse.rb

# EOF

# models/user.rb

class User < ActiveRecord::Base

end

# models/comment.rb

class Comment < ActiveRecord::Base

end

# config/synapse.rb

Synapse.define do

publish :users do

field :name

end

publish :comments do

belongs to :user

end

end

Figure 5.4: Writing Definitions. SYNAPSE offers an inline model syntax (left) and a configuration file

syntax (right) to declare definitions.

the inline model syntax or the configuration file syntax. The inline model syntax allows developers to declare

definitions in existing model class scopes. It provides a model centric view to developers. This syntax

has been used in the previously shown API examples. The configuration file syntax allows developers

to consolidate SYNAPSE declarations in a single file. It provides a SYNAPSE centric view to developers.

Both syntaxes offer different benefits, especially when used in conjunction with a source control system.

Figure 5.4 showcases the two syntaxes in declaring a User publisher and a Comment publisher.

5.3.2 Comparison with SCRIBE

SYNAPSE is a distributed record-replay system and share many similarities with traditional OS-level record-

replay systems. Under SYNAPSE architecture, the publisher application records operations that change its
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Property SCRIBE SYNAPSE

Replicated state OS state DB state

Actors Userspace processes Web app processes (distributed)

State mutation API System calls DB operations

State mutation library libc DB driver

Parallelism Multi-Core Distributed

Synchronization engine Causal Causal

Synchronization protocol CREW CREW

Synchronization primitives Rendezvous points Dependency tracking

Recorded events API calls DB data

Log format Binary JSON

Table 5.4: Similarities Between SCRIBE and SYNAPSE. Each row depicts the equivalent entity with

SCRIBE and SYNAPSE.

state, which is entirely contained in its DB. At a later point in time, the subscriber replays these recorded

operations mutating its state. Considering a publisher app that publishes all of its models, and a subscriber

app running the same code as the publisher app that subscribes to all models, the subscriber is a perfect

replica of the publisher. This replica can be used for fault-tolerance purposes, a typical use case of record-

replay systems.

SYNAPSE shares many similarities with the deterministic record-replay system SCRIBE. Due to its go

live feature, SCRIBE must maintain a consistent and valid OS kernel state at any point in time during replay

because the application execution may continue uncontrolled at any point in time. From this perspective,

SCRIBE (resp. SYNAPSE) records and replays the state of the OS (resp. DB). Table 5.4 summarizes the simi-

larities between the two record-replay systems. The takeaway is that both systems use a similar causal engine

to record and replay state mutation operations interleavings. Due to different semantics needs, SYNAPSE

causal replay engine has the ability to replicate the recorded ordering with different levels of faithfulness as

explained in §5.3.3. Despite their similarities, the two systems do not share common features.

Could DORA, which provides a superset of SCRIBE features, be sufficient to implement a heterogeneous

DB replication engine? The answer is no for two mains reasons. Replaying a recorded execution at the OS-

level of a DB on a different DB would be impractical, even with advanced mutable replay techniques. Given
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enough differences between the two DBs, resolving replay divergences is impractical. Additionally, one

of SYNAPSE’s key insight is the use of ORM as data translation layer. Generic mutable replay offers no

solution to address this data translation problem. Further, our OS-level record-replay engine do not provide

any support for distributed applications, a requirement for multi-node DB support.

5.3.3 SYNAPSE Delivery Semantics

Update delivery semantics define the ordering of updates as viewed by subscribers and are an important part

of SYNAPSE’s programming model. Different applications may require different levels of semantics: while

some may be able to handle overwritten histories, others may prefer to see every single update. Similarly,

while some applications may be able to handle updates in any order, others may expect them in an order that

respects application logic. In support of applications with different needs, and inspired by well-established

prior art [20], SYNAPSE allows publishers and subscribers to use the delivery mode configuration di-

rective to select among three delivery semantics: global, causal, and weak.

Global Ordering. On the publisher side, global order delivery mode means that all object updates will

be sequentially ordered by the publisher. On subscribers, it means that the sequential order from a global

order publisher will be provided to subscribers. This provides the strongest semantics, but in practice limits

horizontal scaling and is rarely if ever used in production systems.

Causal Ordering. Causal ordering identifies for each update U the prior update that must be applied before

U to avoid negative effects, such as sending a notification for a new post to an out-of-date friends set. On

the publisher, causal order delivery mode means that (1) all updates to the same object are serialized, (2) all

updates performed within a controller are serialized to match developer expectations of sequential controller

code, and (3) controllers within the same user session are serialized so that all updates performed within the

same user session are serialized to match user expectations of Web applications. On the subscriber, causal

ordering provides the same three semantics as on the publisher, but also ensures causality between reads and

writes across controllers. Specifically, when a subscriber processes an update U , SYNAPSE guarantees that

if the subscriber reads objects from its DB that were specified as read dependencies during the publishing,

the values of these objects are equal to the ones on the publisher’s DB when it performed U . In other words,

it’s as if the subscriber was given a snapshot of the objects specified as read dependencies along with the

update U . These semantics are useful because publisher controllers are stateless, so updates are performed

after reading and validating dependent objects (e.g., access control, foreign keys) without relying on caches
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(otherwise the publisher would be racy). This mode provides sufficient semantics for many Web applications

without the performance limitations of global order delivery mode, as shown by Figure 5.10 in §5.4 and our

evaluation in §5.6.4.

Weak Ordering. On the publisher, weak order delivery mode means that all updates to the same object will

be sequentially ordered by the publisher, but there is no ordering guarantee regarding updates to different

objects. On subscribers, it means that the sequential order of updates for each object is provided, but

intermediate updates may be missed or ignored if they are delivered out-of-order. Essentially, weak delivery

subscribers always update objects to their latest version. This mode is suitable for applications that have

low semantic requirements and provides good scaling properties, but its most important benefit is high

availability due to its tolerance of message loss. For example, causal order delivery mode requires delivery of

every single update for all objects, so loss of an update would result in failure. In production, unfortunately,

situations occur where messages may get lost despite the use of reliable components (see §5.6.5). Weak

order delivery mode can ignore causal dependencies and only update to the latest version.

Selecting Delivery Modes. Publishers select the modes that deliver the strongest semantics that they wish

to support for their subscribers, subject to the performance overheads they can afford. The more flexible

the delivery order semantics, the more SYNAPSE can enable subscribers to process updates with as much

parallelism as possible to keep up with a high throughput publisher. Subscribers can only select delivery

semantics that are at most as strong as the publishers support. Subscribers can select different delivery

modes for data coming from different publishers. In the common case, a publisher would select to support

causal delivery, while the subscriber may configure either causal or weak delivery. For example, given

a causal mode publisher, a mailer subscriber that sends emails on the state transitions of a shopping cart

would not tolerate overwritten histories without additional code, although it is generally tolerable for the

mailer service to be unavailable for short periods of time. The causal semantic would be well fit for such

a subscriber. In contrast, a real-time analytics service that aggregates million of rows at once may not care

about orders, while being unavailable, even for short period of time, may damage the business. The weak

semantic would be sufficient for this subscriber.

There is only one constraint on delivery mode choice in SYNAPSE. During the bootstrapping period,

which occurs when a subscriber must catch up after a period of unavailability, SYNAPSE forces the weak

semantic (i.e., the subscriber may witness overwritten histories and out-of-order deliveries). We signal such

periods clearly to programmers in our API using the bootstrap? predicate. Figure 5.2 shows a usage
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# Publisher 1 (Pub1).

# Runs on MongoDB.

class User

include Mongoid::Document

publish do

field :name

end

end

# Subscriber 1a (Sub1a).

# Runs on any SQL DB.

class User < ActiveRecord::Base

subscribe from: :Pub1 do

field :name

end

end

# Subscriber 1b (Sub1b).

# Runs on Elasticsearch.

class User < Stretcher::Model

subscribe from: :Pub1 do

property :name, analyzer: :simple

end

end

# Subscriber 1c (Sub1c).

# Runs on MongoDB.

class User

include Mongoid::Document

subscribe from: :Pub1 do

field :name

end

end

Figure 5.5: Example 1: Basic Integration. Shows publishing/subscribing examples with actual ORMs.

SYNAPSE code is trivial. This is the common case in practice.

example and §5.4.4 describes this situation and explains how subscribers demanding higher semantics can

deal with semantics degradation.

5.3.4 SYNAPSE Programming by Example

SYNAPSE addresses many of the challenges of heterogeneous-DB applications automatically, often in a

completely plug-and-play manner thanks to its use of ORM abstractions. In other cases, the programmer

may need to perform explicit translations on the subscriber to align the data models. Our experience suggests

that SYNAPSE’s abstractions facilitate these translations, and we illustrate our experience using examples

showcasing SYNAPSE’s usability with each major class of DB: SQL, document, analytic, and graph.

Example 1: Basic Integrations. Our experience suggests that most integrations with SYNAPSE are en-
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tirely automatic and require only simple annotations of what should be published or subscribed to, similar

to the ones shown in Figure 5.1. For example, Figure 5.5 shows the integration of a MongoDB publisher

(Pub1) with three subscribers: SQL (Sub1a), Elasticsearch (Sub1b), and MongoDB (Sub1c). The pro-

grammers write their models using the specific syntax that the underlying ORM provides. Barring the

publish/subscribe keywords, the models are exactly how each programmer would write them if they

were not using SYNAPSE (i.e., the data were local to their service). In our experience deploying SYNAPSE,

this is by far the most frequent case of integration.

That said, there are at times more complex situations, where programmers must intervene to address

mismatches between schemas, supported data types, or optimal layouts. We find that even in these cases,

SYNAPSE provides just the right abstractions to help the programmer address them easily and elegantly.

We describe next complex examples, which illustrate SYNAPSE’s flexibility and great added value. We

stress that not all integrations between a given DB pair will face such difficulties, and vice versa, the same

difficulty might be faced between other pairs than those we illustrate.

Example 2: Mapping Data Models with Observers. Different DBs model data in different ways so as to

optimize different modes of accessing it. This example shows how to map the data models between a SQL

and Neo4j DB to best leverage the DBs’ functions. Neo4j, a graph-oriented DB, is optimized for graph-

structured data and queries. It stores relationships between data items – such as users in a social network

or products in an e-commerce app – as edges in a graph and is optimized for queries that must traverse the

graph such as those of recommendation engines. In contrast, SQL stores relationships in separate tables.

When integrating these two DBs, model mismatches may occur. Figure 5.6 illustrates this use case with an

example.

Pub2, the main application, stores Users and their friends in a SQL DB. Sub2, an add-on recommenda-

tion engine, integrates the user and friendship information into Neo4j to provide users with recommenda-

tions of what their friends or network of friends liked. Its common type of query thus involves traversing

the user’s social graph, perhaps several levels deep. As in the previous examples, we see here that the pro-

grammer defines his subscriber’s User model in the way that she would normally do so for that DB (the

top of Sub2). However, in this case, SYNAPSE’s default translation (achieved by just annotating data with

publish/subscribe) would yield low performance since it would store both the user and the friendship models

as nodes just like the publisher’s SQL schema does, ignoring the benefits of Neo4j.

To instead store friendships as edges in a graph between users, the programmer leverages our observer
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# Publisher 2 (Pub2).

# Runs on any SQL DB.

class User < ActiveRecord::Base

publish do

field :name

field :likes

end

has many :friendships

end

class Friendship < ActiveRecord::Base

publish do

belongs to :user1, class: User

belongs to :user2, class: User

end

end

# Subscriber 2 (Sub2).

# Runs on Neo4j.

class User # persisted model

include Neo4j::ActiveNode

subscribe from: :Pub2 do

property :name

property :likes

end

has many :both, :friends, \

class: User

end

class Friendship # not persisted

include Synapse::Observer

subscribe from: :Pub2 do

belongs to :user1, class: User

belongs to :user2, class: User

end

after create do

user1.friends << user2

end

after destroy do

user1.friends.delete(user2)

end

end

Figure 5.6: Example 2: SQL/Neo4j. Pub2 (SQL) stores friendships in their own table; Sub2 (Neo4j) stores

them as edges between Users. Edges are added through an Observer.
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abstraction. She defines an observer model to subscribe to the Friendship model, which rather than persisting

the data as-is, simply adds or removes edges among User nodes. This solution, which involves minimal and

conceptually simple programmer input, lets the subscriber leverage Neo4j’s full power.

Example 3: Matching Data Types with Virtual Attributes. At times, DBs may mismatch on data

types. As an example, we present a specific case of integration between MongoDB and SQL. MongoDB,

a document-oriented database, has recently become popular among startups thanks to its schemaless data

model that allows for frequent structural changes. Since the DB imposes so little structure, importing data

into or exporting data from MongoDB is typically similar to Figure 5.5. We choose here a more corner case

example to show SYNAPSE’s applicability to complex situations.

Figure 5.7 shows a MongoDB publisher (Pub3), which leverages a special MongoDB feature that is not

generally available in SQL, Array types, to store user interests. Figure 5.7 shows two options for integrating

the interests in a SQL subscriber, both of which work with all SQL DBs. The first option (Sub3a) is to

automatically flatten the array and stores it as text, but this would not support efficient queries on interests.

The typical solution to translate this array type to a generic SQL DB is to create an additional model,

Interest, and a one-to-many relationship to it from User. Sub3b shows how SYNAPSE’s virtual attribute

abstraction easily accomplishes this task, creating the Interest model and a virtual attribute (interests virt) to

insert the new interests received into the separate table.

5.4 SYNAPSE Architecture

Figure 5.8 shows the SYNAPSE architecture applied to an application with a single publisher and sub-

scriber. The publisher and subscriber may be backed by different DBs with distinct engines, data models,

and disk layouts. In our example, the publisher runs on PostgreSQL, a relational DB, while the subscriber

runs on MongoDB, a document DB. At a high level, SYNAPSE marshals the publisher’s model instances

(i.e., objects) and publishes them to subscribers, which unmarshal the objects and persist them through the

subscribers’ ORMs.

SYNAPSE consists of two DB- and ORM-agnostic modules (SYNAPSE Publisher and SYNAPSE Sub-

scriber), which encapsulate most of the publishing and subscribing logic, and one DB-specific module

(SYNAPSE Query Intercept), which intercepts queries and relates them to the objects they access. At the

publisher, SYNAPSE interposes between the ORM and the DB driver to intercept updates of all published
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# Publisher 3 (Pub3).

# Runs on MongoDB.

class User

include Mongoid::Document

publish do

field :interests

end

end

# Subscriber 3a (Sub3a).

# Runs on any SQL DB.

# Searching for users based on

# interest is not supported.

class User < ActiveRecord::Base

subscribe, from: :Pub3 do

field :interests

end

serialize :interests

end

# Subscriber 3b (Sub3b).

# Runs on any SQL DB.

# Supports searching for users by interest.

class User < ActiveRecord::Base

has many :interests

subscribe from: :Pub3 do

field :interests, as: :interests virt

end

def interests virt=(tags)

Interest.add or remove(self, tags)

end

end

class Interest < ActiveRecord::Base

belongs to :user

field :tag

def self.add or remove(user, tags)

# create/remove interests from DB.

end

end

Figure 5.7: Example 3: MongoDB/SQL. Shows one publisher running on MongoDB (Pub3) and two SQL

subscribers (Sub3a,b). Default translations work, but may be suboptimal due to mismatches between DBs.

Optimizing translation is easy with SYNAPSE.
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{"app:"“pub3”,
""operations:"["{
""""operation:"“update”,
""""type:"[“User”],
""""id:"100,
""""attributes:"{"""
""""""interests:"[“cats”,"“dogs”]
""""}"}"],
""dependencies:"{
""""“pub3/users/id/100”:"42"},
""published_at:"“10/11/14"07:59:00”,
""generation:"1"}

(a) The Synapse Architecture (b) Sample Write Message

Figure 5.8: The SYNAPSE Architecture. SYNAPSE components are shaded. To replicate data between

heterogeneous DBs, SYNAPSE marshals the publisher’s objects and sends them to subscribers, which un-

marshal and save them into their DBs.

models, such as creations, updates, or deletions of instances – collectively called writes – before they are

committed to the DB. The interposition layer identifies exactly which objects are being written and passes

them onto the SYNAPSE Publisher, SYNAPSE’s DB-independent core. The Publisher then marshals all pub-

lished attributes of any created or updated objects, attaches the IDs of any deleted objects, and constructs a

write message. SYNAPSE sends the message to a reliable, persistent, and scalable message broker system,

which distributes the message to the subscribers. All writes within a single transaction are combined into a

single message.

The message broker reliably disseminates the write message across subscribers. Of the many existing

message brokers [121; 8; 89], we use RabbitMQ [89] in our implementation, using it to provide a dedicated

queue for each subscriber app. Messages in the queue are processed in parallel by multiple subscriber

workers per application, which can be threads, processes, or machines.

When a new message is available in the message broker, a SYNAPSE subscriber worker picks it up and

unmarshals all received objects by invoking relevant constructors and attribute setters (using the language’s

reflection interface). The worker then persists the update to the underlying DB and then acks the message

to the broker.
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{

app: "pub3",

operations: [ {

operation: "update",

type: ["User"],

id: 100,

attributes: {

interests: ["cats", "dogs"]

}

} ],

dependencies: { "pub3/users/id/100": 42 },

published_at: "10/11/14 07:59:00",

generation: 1

}

Figure 5.9: Published Message Format (JSON).

5.4.1 Model-Driven Replication

To synchronize distinct DBs, SYNAPSE needs to (1) identify the objects being written on the publisher, (2)

marshal them for shipping to the subscribers, (3) unmarshal back to objects at the subscriber, (4) and persist

them. Although steps 1 and 4 seem completely DB specific, we leverage ORMs to abstract most DB specific

logic.

To intercept writes, SYNAPSE uses a DB-engine specific query interceptor. Collecting information about

objects written is generally straightforward, as many DBs can easily output the rows affected by each query.

For example, in SQL, an INSERT, or DELETE query ending with RETURNING * will return the contents

of the written rows. Many DBs support this feature, including: Oracle, PostgreSQL, SQL Server, MongoDB,

TokuMX, and RethinkDB. For DBs without this feature (e.g., MySQL, Cassandra), we develop a protocol

that involves performing an additional query to identify data being written; it is safe but somewhat more

expensive.

After intercepting a write, SYNAPSE uses the ORM to map from the raw data written back to applica-

tion objects (e.g., an instance of the User model). The published attributes of these written object(s) are

marshaled to JSON, and published along with object dependencies (described in §5.4.2) and a generation
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number (for recovery, described in §5.4.4). When marshalling objects, SYNAPSE also includes each object’s

complete inheritance tree, allowing subscribers to consume polymorphic models. Figure 5.9 shows a write

message produced upon a User creation; the post object’s marshalling is in the message’s attributes

field.

On the subscriber, SYNAPSE unmarshals a new or updated object by (1) instantiating a new instance of

that type, or finding it in the DB based on its primary key with the ORM’s find method, (2) recursively

assigning its subscribed attributes from those included in the message by calling the object setter methods,

and (3) calling the save or destroy method on the object. For a delete operation, step (2) is skipped.

Different ORMs may have different names for these methods (e.g., find vs find by) but their translation

is trivial. Any callbacks specified by the programmer are automatically called by the ORM.

5.4.2 Enforcing Delivery Semantics

SYNAPSE enforces update-message ordering from publishers to subscribers to be able to provide subscribers

with a view of object updates that is consistent with what would be perceived if the subscribers had direct

access to the publisher’s DB. Specific consistency semantics are determined based on the choice of pub-

lisher and subscriber delivery order modes, global, causal, and weak. In all cases, SYNAPSE uses the same

general update delivery mechanism, which is inspired by deterministic execution record-replay of SCRIBE

and DORA.

The update delivery mechanism identifies dependencies on objects during persistence operations and

tracks their version numbers to send to subscribers. SYNAPSE defines an operation as having a dependency

on an object if the operation, or the construction of the operation, may reference the object. On the pub-

lisher, SYNAPSE tracks two kinds of dependencies: read and write dependencies. An operation has a read

dependency on an object if the object was read, but not written, and used to construct the given operation.

An operation has a write dependency on an object if the operation modifies the object. An operation may

have a combination of both read and write dependencies on different objects. Since an object may have

many versions due to updates, SYNAPSE uses version numbers to track object versions and expresses de-

pendencies in terms of specific object versions. For each object, SYNAPSE maintains two counters at the

publisher, ops and version, which represent the number of operations that have referenced the object so far

and the version number of the object, respectively. For each operation at the publisher, SYNAPSE identifies

its dependencies and uses this information to publish a message to the subscriber.
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At the publisher, SYNAPSE performs the following steps. First, locks are acquired on the write de-

pendencies. Then, for each dependency, a) SYNAPSE increments ops, b) sets version to ops in the case

of a write dependency, and c) use version for read dependencies and version − 1 for write dependen-

cies as the version to be included in the final message. Next, the operation is performed, written objects

are read back, and locks are released. Finally, the message is prepared and sent to subscribers. In our

implementation, the publishing algorithm is slightly more complex due to 2PC protocols at every step of

the algorithm to allow recovery at any point in case of failures. At the subscriber, SYNAPSE maintains

a version store that keeps track of the latest ops counter for each dependency. In contrast, the publisher

maintains two counters per dependency. When the subscriber receives a message, it waits until all spec-

ified dependencies’ versions in its version store are greater than or equal to those in the message, then

processes the message and updates its version store by incrementing the ops counter for each dependency

in the message. When subscribers publish messages (e.g., when decorating models), published messages

include dependencies from reading other apps objects allowing cross-application dependencies. These ex-

ternal dependencies behave similarly to read dependencies, except they are not incremented at the pub-

lisher nor the subscriber, relaxing semantics to a level similar to traditional causal replication systems [65;

66].

With this mechanism in place, SYNAPSE can enforce various update-message ordering semantics. To

support global order delivery from the publisher, SYNAPSE simply adds a write dependency on a global

object for every operation which serializes all writes across all objects because all operations are serialized

on the global object. To support causal order delivery from the publisher, SYNAPSE serializes all updates

within a controller by adding the previously performed update’s first write dependency as a read dependency

to the next update operation. To serialize all writes within a user context, it is sufficient to add the current

user object as a write dependency to each write operation (shown in Figure 5.10(b)). To support weak order

delivery from the publisher, SYNAPSE only tracks the write dependency for each object being updated. To

support the same delivery mode at the subscriber as provided by the publisher, SYNAPSE respects all the

dependency information provided in the messages from the publisher. In the case of weak order delivery,

the subscriber also discards any messages with a version lower than what is stored in its version store. To

support weaker delivery semantics at the subscriber, SYNAPSE ignores some of the dependency information

provided in the messages from the publisher. For example, a causal order delivery subscriber will ignore

global object dependencies in the messages from a global order delivery publisher. Similarly, a weak order
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delivery subscriber will respect the dependency information in the message for the respective object being

updated by the message, but ignore other dependency information from a global or causal order delivery

publisher.

Figure 5.10 shows an example of how the read and write dependencies translate into dependencies

in messages. Both publisher and subscriber use causal delivery mode. Figure 5.10(a) shows four code

snippets processing four user requests. User1 creates a post, User2 comments on it, User1 comments back

on it, and then User1 updates the post. SYNAPSE automatically detects four different writes, automatically

detects their dependencies, updates the version store, and generates messages as shown in Figure 5.10(b).

A subscriber processing these messages would follow the dependency graph shown in Figure 5.10(c) by

following the subscriber algorithm.

Tracking Dependencies. To enforce causal ordering semantics, SYNAPSE discovers and tracks depen-

dencies between operations. SYNAPSE implicitly tracks data dependencies within the scope of individual

controllers (serving HTTP requests), and the scope of individual background jobs (e.g., with Sidekiq [84]).

Within these scopes, SYNAPSE intercepts read and write queries to transparently detect corresponding de-

pendencies. In contrast, prior work relies on explicit dependencies and requires their use with all writes [12;

11], which is onerous for developers and error-prone.

SYNAPSE always infers the correct set of dependencies when encountering read queries that return ob-

jects, including joins. For example, when running a query of the form SELECT id,... FROM table

WHERE ..., SYNAPSE registers an object dependency on each returned row. Note that SYNAPSE auto-

matically injects primary key selectors in read queries if these are missing. In our experience, read queries

returning objects constitute the vast majority of true dependency queries. The other types of read queries are

aggregations (e.g., count) and their results are not true dependencies in practice. However, in the hypothet-

ical case where one would need to track dependencies on such queries, SYNAPSE lets developers express

explicit dependencies with add read deps and add write deps to synchronize arbitrary read queries

with any write queries. In over a dozen applications we integrated with SYNAPSE, we have not encoun-

tered one single query that could be considered as a dependency but is not marked as such by SYNAPSE

automatically.

SYNAPSE always infers the correct set of dependencies when encountering write queries. When en-

countering write queries issued to transactional DBs, SYNAPSE infers the updated objects from the result

of the write query (with RETURNING *), or by performing an additional read query. It registers these ob-
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# Users issue requests

# against the application.

# ’−’ separates controller executions.

current user = User.find(1)

Post.create(

author: current user,

body: ”helo”)

−

current user = User.find(2)

post = Post.find(1)

Comment.create(post: post,

author: current user,

body: ”you have a typo”)

−

current user = User.find(1)

post = Post.find(1)

Comment.create(post: post,

author: current user,

body: ”thanks for noticing”)

−

current user = User.find(1)

post = Post.find(1)

post.update(body: ”hello”)

(a)

M1

M2 M3

M4 (c)

# Assume ”post/id/1” hashes to ”p1”,

# ”user/id/2” hashes to ”u2”, etc.

W1: write(...,

read deps: [],

write deps: [”user/id/1”, ”post/id/1”])

# u1.ops = 1, u1.version = 1

# p1.ops = 1, p1.version = 1

M1: {..., dependencies: [”u1”: 0, ”p1”: 0]}

W2: write(...,

read deps: [”post/id/1”],

write deps: [”user/id/2”, ”comment/id/1”])

# u2.ops = 1, u2.version = 1

# c1.ops = 1, c1.version = 1

# p1.ops = 2, p1.version = 1

M2: {..., dependencies: [”u2”: 0, ”c1”: 0, ”p1”: 1]}

W3: write(...,

read deps: [”post/id/1”],

write deps: [”user/id/1”, ”comment/id/2”])

# u1.ops = 2, u1.version = 2

# c2.ops = 1, c2.version = 1

# p1.ops = 3, p1.version = 1

M3: {..., dependencies: [”u1”: 1, ”c2”: 0, ”p1”: 1]}

W4: write(...,

read deps: [],

write deps: [”user/id/1”, ”post/id/1”])

# u1.ops = 3, u1.version = 3

# p1.ops = 4, p1.version = 4

M4: {..., dependencies: [”u1”: 2, ”p1”: 3]}

(b)

Figure 5.10: Dependencies and Message Generation. (a) shows controller code being executed at the

publisher. (b) shows the writes SYNAPSE instruments with their detected dependencies, along with the

publisher’s version store state updates in comments, and the resulting generated messages. (c) shows a

dependency graph resulting from applying the subscriber algorithm. M2 and M3 are processed when the

typo is present in the post.
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jects as write dependencies, which are later used during the commit operation. With non-transactional DBs,

SYNAPSE supports write queries that update at most one, well identified object (so the corresponding lock

can be acquired before performing the write query). Multi-object updates queries are seldom used as their

usage prevents model-defined callbacks to be triggered. However, when encountering such query, SYNAPSE

unrolls the multi-object update into single-object updates.

Scaling the Version Store. We implemented the version stores with Redis [93], an in-memory datastore. All

SYNAPSE operations are performed by atomically executing LUA scripts on Redis. This technique avoids

costly round-trips, and simplifies the 2PC implementation in the algorithm. Scaling can be problematic in

two ways. First, the version store can become a throughput bottleneck due to network or CPU, so SYNAPSE

shards the version store using a hash ring similar to Dynamo [38] and incorporates mechanisms to avoid

deadlocks on subscribers as atomicity of the LUA scripts across shards can not be assumed. Second, the

version store memory can be limiting, so SYNAPSE hashes dependency names with a stable hash function

at the publisher. This way, all version stores consume O(1) memory. When a hash collision occurs between

two dependencies, serialization happens between two unrelated objects, reducing parallelism. The number

of effective dependencies that SYNAPSE uses is the cardinal of the hashing function output space. Each

dependency consumes around 100 bytes of memory, so a 1GB server can host 10M effective dependencies,

which is more than enough in practice. As an interesting property, using a 1-entry dependency hash space

is equivalent to using global ordering for both the publisher and its subscribers.

Transactions. When publishers support transactions, we enforce the same atomicity in messages deliv-

ery, allowing these properties to hold for subscribers. All writes in a transaction are included in the same

message. Subscribers process messages in a transaction with the highest level of isolation and atomicity

the underlying DB permits (e.g., logged batched updates with Cassandra). At the publisher, we also hi-

jack the DB driver’s transaction commit functions and execute the transaction as a two-phase commit (2PC)

transaction instead. The 2PC lets us ensure that either the following operations all happen or that none

do: (1) commit the transaction locally, (2) increment version dependencies and (3) publish the message to

the reliable message broker. As an optimization, the publisher algorithm does not attempt to lock write

dependencies as the underlying DB retains locks on the written objects until the commit is persisted.
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5.4.3 Live Schema Migrations

When deploying new features or refactoring code, it may happen that the local DB schema must be changed,

or new data must be published or subscribed. A few rules must be respected: 1) Updating a publisher DB

schema must be done in isolation such that subscribers are not able to observe the internal changes done

to the publisher. For example, before removing a published attribute from the DB, a virtual attribute of the

same name must be added. 2) The semantics of a published attribute must not change; e.g., its type must

not change. Instead of changing the semantics of a published attribute, one can publish a new attribute, and

eventually stop publishing the old one. 3) Publishing a new attribute is often motivated by the need of a

subscriber. When adding the same attribute in a publisher and subscriber, the publisher must be deployed

first. Finally, once the new code is in place, a partial data bootstrap may be performed to allow subscribers

to digest newly subscribed data.

5.4.4 Bootstrapping and Reliability

When a new subscriber comes online, it must synchronize with the publisher in a three-step bootstrapping

process. First, all current publisher versions are sent in bulk and saved in the subscriber’s version store.

Second, all objects in the subscribed model are sent and persisted to the subscriber’s DB. Third, all messages

published during the previous steps are processed to finish synchronizing the objects and versions. Once all

messages are processed, the subscriber is now in sync and operates with the configured delivery semantics.

Subscriber code may call Synapse.bootstrap? to determine whether SYNAPSE is still bootstrapping

or in sync. Figure 5.2 shows an example of how the mailer subscriber checks for bootstrapping completion

before sending emails.

Should the subscriber fail, its queue may grow to an arbitrary size. To alleviate this issue, SYNAPSE

decommissions the subscriber from the SYNAPSE ecosystem and kills its queue once the queue size reaches a

configurable limit. If the subscriber comes back, SYNAPSE initiates a partial bootstrap to get the application

back in sync.

Failures may also happen when the version store dies on either the publisher or subscriber side. When

the subscriber’s version store dies, a partial bootstrap is initiated. When the publisher’s version store dies,

a generation number reliably stored (e.g., Chubby [24], or ZooKeeper [7]) is incremented and publishing

resumes. Messages embed this generation number as shown on Figure 5.9. When subscribers see this

new generation number in messages, they wait until all the previous generation messages are processed,
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DB ORM Pub? Sub? ORM LoC DB LoC

PostgreSQL ActiveRecord Y Y 474 44

MySQL ActiveRecord Y Y ” 52

Oracle ActiveRecord Y Y ” 47

MongoDB Mongoid Y Y 399 0

TokuMX Mongoid Y Y ” 0

Cassandra Cequel Y Y 219 0

Elasticsearch Stretcher N/A Y 0 0

Neo4j Neo4j N Y 0 0

RethinkDB NoBrainer N Y 0 0

Ephemerals N/A Y N/A N/A N/A

Observers N/A N/A Y N/A N/A

Table 5.5: Support for Various DBs. Shows ORM- and DB-specific lines of code (LoC) to support varied

DBs. For ORMs supporting many DBs (e.g., ActiveRecord), adding a new DB comes for free.

flush their version store, and process the new generation messages. This generation change incurs a global

synchronization barrier and temporarily slows subscribers.

5.4.5 Testing Framework

SYNAPSE provides a solid testing framework to help with development and maintenance of apps. For

instance, SYNAPSE statically checks that subscribers don’t attempt to subscribe to models and attributes that

are unpublished, providing warnings immediately. SYNAPSE also simplifies integration testing by reusing

model factories from publishers on subscribers. If a publisher provides a model factory [44] (i.e., data

samples), then developers can use them to write integration tests on the subscribers. SYNAPSE will emulate

the payloads that would be received by the subscriber in a production environment. This way, developers

are confident that the integration of their ecosystem of applications is well tested before deploying into the

production environment.
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5.4.6 Supporting New DBs and ORMs

Adding subscriber support for a new ORM is trivial: a developer need only map the CRUD operations

(create/read/update/delete) to SYNAPSE’s engine. To add publisher support for a new ORM, a developer

needs to first plug into the ORM’s interfaces to intercept queries on their way to the DB (all queries for

causality and writes for replication). Then, the developer needs to add two phase commit hooks to the DB

driver for transactional DBs (as discussed in §5.4.2).

To illustrate the effort of supporting new DBs and ORMs, we report our development experience on

the nine DBs listed in Table 5.5. A single developer implemented support for our first DB, PostgreSQL in

approximately one week, writing 474 lines of code specific to the ORM (ActiveRecord) and 44 lines specific

to the DB for two phase commit. After building support for this DB, supporting other SQL DBs, such as

MySQL and Oracle, was trivial: about 50 lines of DB-specific, each implemented in only several hours.

Supporting subsequent DBs (e.g., MongoDB, TokuMX, and Cassandra) was equally easy and took only a

few days and 200-300 lines of code per ORM. We find that supporting various DBs is a reasonable task for

an experienced programmer.

5.5 Applications

We and others have built or modified 14 web applications to share data with one another via SYNAPSE.

Those built by others have been deployed in production by a startup, Crowdtap. The applications we built

extend popular open-source apps to integrate them into data-driven ecosystems. We also split a popular

open-source app into a service oriented architecture to demonstrate the usefulness of SYNAPSE in the context

of single applications. Overall, our development and deployment experience has been positive: we made no

logical changes to application code, only adding on average a single line of configuration per attribute of

each model published.

5.5.1 SYNAPSE at Crowdtap

Crowdtap is an online marketing-services company contracted by major brands such as Verizon, AT&T,

Sony and MasterCard. Crowdtap has grown rapidly since its founding, and by October 2014 has seen over

450,000 users. As Crowdtap grew and gained more clients, both their application offering and development

team evolved. At first, engineers attempted to enhance their core application by building new features
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Main App
(MongoDB)

Moderation
(MongoDB)

Analytics
(Elasticsearch)

Spree
(PostgreSQL)

Targeting
(MongoDB)

FB Crawler
(MongoDB)

Mailer
(MongoDB)

Search Engine
(Elasticsearch)

Reporting
(MongoDB)

Causal Order Weak Order

Figure 5.11: Crowdtap’s Services. Arrows show SYNAPSE connections.

directly into the same codebase and DB. However, as new features were added, the data was used in different

ways, requiring different indexes and denormalization, bloating the DB. When features were canceled, traces

of their schema changes were often left orphaned. Moreover, it was difficult to bring newly hired engineers

up to speed with the complex and rapidly evolving codebase and DB. To alleviate this issue, engineers

factored out some features and used synchronous APIs to connect them to the core DB, but found this

technique difficult to get right. Specifically, a bug in an e-commerce service, which accessed user data

from Crowdtap’s core app via a synchronous API, was able to bring down the entire app due to the lack of

performance isolation. Installing rate limits between the components of their app was not good option for

Crowdtap, and they preferred the de-coupling that a replication-based solution cross-service would provide.

Synchronization of these DBs then became a challenge.

To address these challenges, Crowdtap began to experiment with SYNAPSE, first to provide synchro-

nization between their original core app and a separate targeting service. These services had previously

communicated over a synchronous API; this API was factored out, and replaced with SYNAPSE, reduc-

ing the app from 1500 LoC to 500 LoC. While previous attempts to integrate this feature required deep

knowledge of the core application held by senior engineers, this integration was performed by a newly-hired

engineer thanks to the abstractions provided by SYNAPSE.

After this initial integration, two other Crowdtap engineers extracted two other business features, the

mailer and the analytics engine from the main application, using SYNAPSE. The email service subscribes to

24 of the core service’s models to isolate all notification related aspects within their application, while the

analytics engine subscribes to a similar number of models.
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Figure 5.12: Social Product Recommender. Arrows show SYNAPSE connections.

Crowdtap’s engineering management was so pleased with the ease of development, ease of mainte-

nance, and performance of SYNAPSE, that after this experience, all major features have been built with it.

Figure 5.11 shows the high-level architecture of the SYNAPSE ecosystem at Crowdtap with the main app

supported by eight microservices. SYNAPSE-related code is trivial in size and logic. The Crowdtap main

app consists of approximately 17,000 lines of ruby code, and publishes 257 attributes of 53 different models.

However, SYNAPSE-related configuration lines are minimal: only 360 (less than 7 lines of configuration per

model, on average).

Crowdtap has chosen different delivery semantics for their various subscribers (shown with different

arrows in Figure 5.11). While all publishers are configured to support causal delivery mode, subscribers

are configured with either causal or weak delivery modes, depending on their semantics requirements. The

mailer service registers for data from the main app in causal mode so as to avoid sending inconsistent emails.

In contrast, the analytics engine lacks stringent order requirements, hence selects a weak consistency mode.

5.5.2 Integrating Open-Source Apps with SYNAPSE

We used SYNAPSE to build a new feature for Spree, a popular open source e-commerce application that

powers over 45,000 e-commerce websites world wide [101]. By integrating Diaspora, a Facebook-like open

source social networking application and Discourse, an open source discussion board, with Spree, we were

able to create a social-based product recommender. Figure 5.12 shows the architecture of the ecosystem.

We configured Diaspora and Discourse to publish the models for posts, friends, and access control lists. We

needed to add only several lines of declarative configuration each app: 23 for Diaspora (compared to its 30k

lines of code), 5 for Discourse (compared to its 21k lines), and 7 for Spree (compared to its 37k lines).
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Figure 5.13: Execution Sample. ¬ A user posts on Diaspora. The mailer ­ and semantic analyzer ®

receive the post in parallel. Diaspora ¯ and Spree ° each receive the decorated model with in parallel.

Next, we built a semantic analyzer that subscribes to these posts and extracts topics of interest, decorating

Users with apparent topics of interest (using an out-of-the-box semantic analyzer, Textalytics [108]). The

analyzer publishes its decorated User model (with user interests) to Spree.

Finally, since Spree did not have any recommendation mechanism in place, we added several lines of

code to it to implement generic targeted searching. With this code in place, one can construct as complex

of a recommendation engine as desired, although our prototype uses a very simple keyword-based matching

between the users’ interests and product descriptions. Such code need not be concerned with where the

user’s interests come from as they automatically exist as part of the data model (thanks to SYNAPSE).

5.5.3 Splitting a monolithic app into services with SYNAPSE

We used SYNAPSE to split an open source monolithic application, GitLab, into a service oriented archi-

tecture application. GitLab is a source revision system frontend similar to GitHub. GitLab is built on

Ruby-on-Rails and used by more than 100,000 companies. With SYNAPSE, we were able to extract all

email functionality into a separate service, independent of the core application, running on its own database.

We extracted 276 lines from GitLab core application into the mailer. 10 models had to be published

out of a total of 22. To increase our confidence that the extraction was successful, we leveraged SYNAPSE

testing framework. We were able to migrate 124 tests cases (700 lines of code) related to the mailer from

the GitLab core application to the extracted mailer service. We did not have to rewrite or modify any of

these test cases. SYNAPSE transparently reuse the data factories to mock SYNAPSE messages as if they were

received from the main application, exactly like it would happen in a deployed system. These passing test
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Figure 5.14: Execution with Subscriber Disconnection. ¬ and ® User 1 posts. ­ and ¯ User 2 posts.

Mailer comes online and processes the each users first request °, then each user’s second request ± in

parallel.

cases demonstrate the correctness of the feature extraction into its own service.

Even through SYNAPSE greatly eases data sharing between the two services, extracting the mailer func-

tionality from the core GitLab application took a significant effort due to tight coupling between components

in the original application.

5.6 Evaluation

5.6.1 Sample Executions

We leverage both our deployment and the applications we built to answer three core evaluation questions

about SYNAPSE: (Q1) How expensive is it at the publisher? (Q2) How well does it scale? (Q3) How do its

various delivery modes compare? and (Q4) How useful is it in practice?

To answer these questions, we ran experiments on Amazon AWS with up to 1,000 c3.large instances

(2-core, 4GB) running simultaneously to saturate SYNAPSE. We use the in-memory datastore Redis [93]

for version stores. As workloads, we used a mix of Crowdtap production traffic and microbenchmarks that

stress the system in ways that production workload cannot. Unless otherwise noted, our evaluation focuses

on the causal delivery mode for both publishers and subscribers, which is the default setting in our prototype.

After providing some sample executions, we next discuss each evaluation question in turn.

To build intuition into how SYNAPSE behaves and the kinds of overheads it brings, we show two sample

executions of our open-source ecosystem applications (see §5.5.2). All applications are configured with a
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Most Popular % Calls Published Dependencies Controller SYNAPSE

Controllers (of 170k) Messages per Message Time (ms) Time (ms)

mean 99th mean 99th mean 99th mean 99th

awards/index 17.0% 0.00 0 0.0 0 56.5 574.1 0.0 (0.0%) 0

brands/show 16.0% 0.03 2 1.0 2 97.6 333.4 0.8 (0.8%) 44.9

actions/index 15.0% 0.67 3 17.8 339 181.4 1676.8 14.4 (8.6%) 114.7

me/show 12.0% 0.00 0 0.0 0 14.7 39.3 0.0 (0.0%) 0

actions/update 11.5% 3.46 6 1.8 4 305.9 759.0 84.1 (37.9%) 207.9

Overhead across all 55 controllers: mean=8%

Table 5.6: Crowdtap Dependencies and Overheads. For each of the five most frequently invoked con-

trollers in Crowdtap, shows the percent of calls to it, average number of published messages, average number

of dependencies between messages, the average controller execution time, and the average overhead from

SYNAPSE. Data sampled from production data.

causal delivery mode, hence the examples reflect this mode’s functioning.

Figure 5.13 shows a timeline of the applications’ execution starting with a user’s post to Diaspora and

ending with Spree’s receipt of the semantically-enhanced User model. We observe that SYNAPSE delivers

messages shortly after publication (within 5ms), in parallel to both the mailer and the semantic analyzer.

Figure 5.14 illustrates visually SYNAPSE’s causal engine in action. It shows two users posting messages

on different Diaspora profiles app while a Mailer subscriber is deployed to notify a user’s friends whenever

the user makes a new post. Initially, the mailer is disconnected. When the mailer comes back online, it

processes messages from the two users in parallel, but processes each user’s posts in serial order, thereby

enforcing causality.

5.6.2 Application Overheads (Q1)

We next evaluate SYNAPSE’s publishing overheads in the context of real applications: Crowdtap and the

open-source apps we modified. For Crowdtap, we instrumented Crowdtap’s main Web application to record

performance metrics and recorded accesses to the application over the 24 hour period of April 16, 2014.

In total, we recorded one fifth of the traffic totaling 170,000 accesses to application controllers. For each

controller, we measured the number of published messages, the number of dependencies per message pub-

lished, the total execution time of the controller, and the SYNAPSE execution time within these controllers.
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For each of these quantities, we measured the arithmetic mean and 99th percentile.

Figure 5.6 shows our results. In total, 55 controllers were invoked. We show average overheads across

them, as well as detailed information about the five most frequently accessed controllers, which account for

over 70% of the traffic. On average, SYNAPSE overheads are low: 8%. For the most popular two controllers

(awards/index and brands/show), the overheads are even lower: 0.0-0.8%. This is because they

exhibit very few published messages (writes). As expected, SYNAPSE overhead is higher in controllers that

publish more messages, showing an average overhead of 37.9% for the controller actions/update. The

number of dependencies stays low enough to not become a bottleneck with actions/index showing

17.8 dependencies per message on average. To further illustrate SYNAPSE’s impact, we also show the

99th percentile of controller execution time and SYNAPSE’s execution time within the controller. Some

controller executions are long (> 1 second). These high response times may be attributed to network issues,

and Ruby’s garbage collector. Indeed, SYNAPSE is unlikely to be the cause of these latency spikes as the

99th percentile of its execution time remains under 0.2s.

To complement our Crowdtap results, we measured controllers in our open-source applications, as

well. Figure 5.15 shows the SYNAPSE overheads for several controllers within Diaspora and Discourse

(plus Crowdtap for consistency). Grey areas are SYNAPSE overheads. Overheads remain low for the

two open-source applications when benchmarked with synthetic workloads. Read-only controllers, such

as stream/index and topics/index in Diaspora and Discourse, respectively, exhibit near-zero over-

heads; write controllers have up to 20% overhead.

These results show that SYNAPSE overheads with real applications are low and likely unnoticeable to

users. However, the results are insufficient to assess performance under stress, a topic that we discuss next.

5.6.3 Scalability (Q2)

To evaluate SYNAPSE throughput and latency under high load, we developed a stress-test microbenchmark,

which simulates a social networking site. Users continuously create posts and comments, similar to the code

on Figure 5.10. Comments are related to posts and create cross-user dependencies. We issue traffic as fast

as possible to saturate SYNAPSE, with a uniform distribution of 25% posts and 75% comments. We run this

experiment by deploying identical numbers of publishers and subscribers (up to 400 for each) in Amazon

AWS. We use several of our supported DBs and combinations as persistence layers. We applied different

DBs as publishers and subscribers. We measure a variety of metrics, including the overheads for creating a
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Figure 5.15: SYNAPSE Overhead. Shown for 3 controllers in 3 different applications. Gray bars depict

overhead. Labels give the total controller times.

post, as well as SYNAPSE’s throughput.

Overheads under Heavy Load. Figure 5.16 shows the overheads for different DBs with increasing num-

bers of dependencies. Focusing on the one-dependency case (x=1), SYNAPSE adds overheads ranging from

4.5ms overhead on Cassandra to 6.5ms on PostgreSQL. This is in comparison to the 0.81ms and 1.9ms

latencies that PostgreSQL and Cassandra, respectively, exhibit without SYNAPSE. However, compared to

realistic Web controller latencies of tens of ms, these overheads are barely user-visible. As the number

of dependencies increases, the overhead grows slowly at first, remaining below 10ms for up to 20 depen-

dencies. It then shoots up to a high 173ms for 1,000 dependencies. Fortunately, as shown in Figure 5.6,

dependencies in real applications remain low enough to avoid causing a bottleneck.

Cross-DB Throughputs. Figure 5.17 shows how SYNAPSE’s end-to-end throughput scales with the num-

ber of publisher/subscriber workers, for various DB combinations, as well as for our DB-less models (ob-

server to ephemeral). We keep the number of dependencies per message constant at 4 and shard the version

stores on 80 AWS instances. We have not sharded any of the DBs. For ephemerals, SYNAPSE scales lin-

early with the number of workers, reaching a throughput of more than 60,000 msg/s. Even at such high

rates, SYNAPSE does not become a bottleneck. When DBs are used to back the publishers and subscribers,

the throughput grows linearly with the number of workers until one of the DBs saturates. Saturation happens

when the slowest of the publisher and subscriber DBs reaches its maximum throughput. For each combi-

nation, we label the limiting DB with a *. For instance, PostgreSQL bottlenecks at 12,000 writes/s, and

Elasticsearch at 20,000 writes/s.
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5.6.4 Delivery Semantic Comparison (Q3)

SYNAPSE supports three delivery modes – global, causal, and weak – which provide different scaling prop-

erties. Figure 5.18 compares subscriber scalability with increased number of subscriber workers available

to process writes in parallel. We configure subscribers with a 100-ms callback delay to simulate heavy pro-

cessing, such as sending emails. Each line shows a different delivery mode, for which we both configure the

publisher and the subscriber to operate under that delivery mode. The global delivery mode, which requires

the subscriber to commit each write serially, scales poorly. The causal delivery mode, which only requires

the subscriber to serialize dependent updates, provides much better scalability. Its peak throughput is limited

by the inherent parallelism of the workload. Finally, the weak delivery mode scales perfectly, never reaching

its peak up to 400 subscriber workers. In practice, we recommend choosing causal for the publisher and

either the causal or weak mode for subscribers.
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5.6.5 Production Notes (Q4)

Crowdtap has given us very positive feedback on SYNAPSE’s usability and value, including the following

interesting stories from their use of SYNAPSE in production.

Supports Heavy Refactoring: Crowdtap discovered a new use for SYNAPSE that we had not anticipated:

implementing live DB migrations. Unhappy with MongoDB’s performance, they migrated their Main App

to TokuMX, another document-oriented DB. To do so, they bootstrapped a subscriber app implementing the

same functionality as the original app but running on TokuMX. The subscriber registered for all the Main

App’s data. Once it was up to date, developers just switched their load balancer to the new application and

the migration was completed with little downtime. They also applied this mechanism to address otherwise

difficult schema migration challenges. For example, after performing a heavy refactor on one of their ser-

vices, instead of updating the deployed service, they deployed the new version as a different service with

its own DB to ensure that everything was running as expected. For some period of time, the two differ-

ent versions of the same service run simultaneously, enabling the team to perform QA on the new version,

while keeping the possibility to rollback to the old version if needed. This mechanism allow no downtime

procedures.

Supports Agile Development: A key aspect in a startup company is agility. New features must be rolled

out quickly and securely evaluated. According to Crowdtap, SYNAPSE helps with that. One developer said:

“It allows us to be very agile. We can experiment with new features, with real data coming from production.”

For example, during a hackathon, one of the developers implemented a new reporting prototype. He was

able to subscribe to real time production data without impacting the rest of the system thanks to SYNAPSE’s

isolation properties. The business team immediately adopted this reporting tool, and has been using it ever

since.

Flexible Semantic Matters: Interestingly, Crowdtap initially configured all of its services to run in causal

mode. However, during an upgrade of RabbitMQ, the (otherwise reliable) message queuing system that

SYNAPSE relies upon, some updates were lost due to an upgrade failure. Two subscribers deadlocked, and

their queues were filling up, since they were missing dependencies and could not consume the updates. Af-

ter timeouts, SYNAPSE’s recovery mechanisms, which rebootstrap the subscribers, kicked in and the system

was unblocked. However, the subscriber apps were unavailable for a long period of time. Crowdtap now

chooses between causal and weak delivery modes for each of its subscribers, taking into account its avail-

ability/consistency needs. It is not an easy choice, but it can and must be done in a production environment
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where even reliable components can fail. We recommend other engineers implementing causal systems to

make message loss recovery an integral part of their system design, specifically to avoid human intervention

during failures. Ideally, subscribers would operate in causal mode, with a mechanism to give up on waiting

for late (or lost) messages, with a configurable timeout. Given these semantics, SYNAPSE’s weak and causal

modes are achieved with the timeout set to 0s and∞, respectively.

5.7 Related Work

SYNAPSE builds on prior work in DB replication, data warehousing, federated DBs, publish/subscribe sys-

tems, and consistency models. We adopt various techniques from these areas, but instantiate them in unique

ways for the domain of modern MVC-based applications. This lets us break through challenges incurred

by more general prior approaches, and design the first real-time service integration system that supports

heterogeneous DBs with strong delivery semantics.

Same-DB Replication. The vast majority of work in DB replication, as surveyed in [26], involves repli-

cating data across different instances of the same DB engine to increase the DB’s availability, reliability, or

throughput [33]. Traditional DB replication systems plug in at low levels [26], which makes them DB spe-

cific: e.g., they intercept updates inside their engines (e.g., Postgres replication [87]), between the DB driver

and the DB engine (e.g., MySQL replication [80]), or at the driver level (e.g., Middle-R [83]). SYNAPSE

operates at a much higher level – the ORM – keeping it largely independent of the DB.

Data Warehousing and Change Capture Systems. Data warehousing is a traditional approach for repli-

cating data across heterogeneous DBs [40; 28]. While many warehousing techniques [27; 53; 126; 118;

122; 105] are not suitable for real-time integration across SQL and NoSQL engines. Replication is usually

implemented either by installing triggers that update data in other DBs upon local updates, or by tailing the

transaction log and replaying it on other DBs, as LinkedIn’s Databus does [36]. Although transaction logs

are often available, it is generally agreed that parsing these logs is extremely fragile since the logs are propri-

etary and not guaranteed to be stable across version updates. SYNAPSE differs from all of these systems by

replicating at the level of ORMs, a much more generic and stable layer, which lets it replicate data between

both SQL and NoSQL engines.

In general, existing systems for replicating between SQL and NoSQL DBs, such as MoSQL [105], or

MongoRiver [122] work between only specific pairs of DBs, and offer different programming abstractions
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and semantics. In contrast, SYNAPSE provides a unified framework for integrating heterogeneous DB in

realtime.

DB Federation. The DB community has long studied the general topic of integrating data from different

DBs into one application, a topic generally known as DB federation [91]. Like SYNAPSE, federation systems

establish a translation layer between the different DBs, and typically rely on DB views – materialized or not

– to perform translations. Some systems even leverage ORMs to achieve uniform access to heterogeneous

DBs [13]. However, these systems are fundamentally different from SYNAPSE: they let the same application

access data stored in different DBs uniformly, whereas SYNAPSE lets different applications (subscribers)

replicate data from one DB (the publisher). Such replication, inspired by service-oriented architectures,

promotes isolation and lets the subscribers use the best types of DBs, indexes, and layouts that are optimal

for each case.

Similar to DB federation is projects that aim to create “universal” ORMs, which definite a common

interface to all DBs (SQL or otherwise), such as Hibernate [92], DataMapper [58] and CaminteJS [51].

Such ORMs should in theory ease development of an application that accesses data across different DBs,

a problem complementary to that which SYNAPSE solves. However, since they expose a purely generic

interface, such an ORM will encourage a design that does not cater to the individual features provided by

each DB. In contrast, SYNAPSE encourages developers to use different ORMs for different sorts of DBs,

providing a common programming abstraction to replicate the data across them.

Publish/Subscribe Systems. SYNAPSE’s API is inspired by publish/subscribe systems [25; 94; 4; 104;

85]. These systems require programmers to specify which messages should be included in which unit of

order, while SYNAPSE transparently intercepts data updates, compiles their dependencies automatically, and

publishes them.

5.8 Summary

SYNAPSE is an easy-to-use framework for structuring complex, heterogeneous-database Web applications

into ecosystems of microservices that integrate data from one another through clean APIs. SYNAPSE

builds upon commonly used abstractions provided by MVC Web frameworks, such as Ruby-on-Rails,

Python Django, or PHP Symfony. It leverages models and ORMs to perform data integration at data

object level, which provides a level of compatibility between both SQL and NoSQL DBs. It leverages
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controllers to support application-specific consistency semantics without sacrificing scalability. We have

implemented SYNAPSE for Ruby-on-Rails, shown that it provides good performance and scalability, re-

leased it on GitHub [116], and deployed it in production to run the microservices for a company. Under

the cover, SYNAPSE embeds a record-replay engine that implement a partial ordering mechanism akin to

SCRIBE’s rendezvous points. We have shown many similarities between the SCRIBE record-replay engine

and SYNAPSE. Due to these similarities, we expect record-replay applications such as RACEPRO and DORA

to be implementable for distributed applications using SYNAPSE. We discuss such possibilities in the next

chapter.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We presented four different record-replay systems to achieve different goals. We introduced SCRIBE, an OS-

level deterministic execution record-replay system to capture and reproduce hard to find bugs; RACEPRO, a

process-race detection system to improve software correctness in deployed systems; DORA, a mutable replay

system to reproduce nondeterministic bugs with retroactive debugging; and SYNAPSE, a replication system

for distributed applications to facilitate the use of heterogeneous databases in service-oriented architectures.

Throughout each system we presented, we gradually moved away from deterministic replay, opening the

range of use cases.

First, we presented SCRIBE, the first operating system mechanism to provide transparent, deterministic

execution record and replay of multi-threaded and multi-process applications on commodity multiprocessors

and operating systems. SCRIBE records and replays multiple processes by accounting for nondeterministic

interactions among processes and their execution environment. SCRIBE introduces rendezvous points to

ensure correct partial ordering of execution based on system call dependencies, and sync points to convert

asynchronous interactions that can occur at arbitrary times into synchronous events that are much easier to

record and replay. SCRIBE can transition an application to running live at any time, and use checkpoints

to record and replay from any point in time. We have implemented SCRIBE without changing, relinking,

or recompiling applications, libraries, or operating system kernels, and without any specialized hardware

support. It works on commodity Linux operating systems, and commodity multi-core and multiproces-

sor hardware. Our evaluation shows for the first time that an operating system mechanism can correctly
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and transparently record and replay multi-process and multi-threaded applications on multiprocessors. The

evaluation also provides strong empirical evidence that real server and desktop applications perform fre-

quent operating system activities which can serve as sync points. SCRIBE recording overhead is modest for

server applications including Apache and MySQL, and for desktop applications including Firefox, Acrobat,

OpenOffice, parallel kernel compilation, and movie playback.

Second, we have presented the first study of real process races, and the first system, RACEPRO, for

effectively detecting process races beyond TOCTOU and signal races. Our study has shown that process

races are numerous, elusive, and a real threat. To address this problem, RACEPRO automatically detects

process races, checking deployed systems in vivo by recording live executions and then checking them later.

It thus increases checking coverage beyond the configurations or executions covered by software vendors

or beta testing sites. First, RACEPRO records executions of multiple processes while tracking accesses to

shared kernel resources via system calls. Second, it detects process races by modeling recorded system

calls as load and store micro-operations to shared resources and leveraging existing memory race detection

algorithms. Third, for each detected race, it modifies the original recorded execution to reproduce the race

by changing the order of system calls involved in the races. It replays the modified recording up to the race,

allows it to resume live execution, and checks for failures to determine if the race is harmful. RACEPRO

heavily relies on record-replay mechanisms to perform its tasks. Its engine extends SCRIBE’s to allow

specific modifications at the end of a recorded log file. We have implemented RACEPRO, shown that it

has low recording overhead so that it can be used with minimal impact on deployed systems, and used it

with real applications to effectively detect 10 process races, including several previously unknown bugs in

shells, databases, and makefiles. While RACEPRO’s engine supports minimal modifications at the end of a

recorded log file, it must go live once these modifications are executed during the replay due to divergence

issues. We explored how to alleviate these issues with DORA.

Third, we introduced the concept of mutable replay, and the first transparent mutable record-replay sys-

tem with DORA, allowing a recorded execution of an application to be replayed with a modified version of

the application. This feature, not available in previous record-replay systems, enables powerful new func-

tionality. In particular, DORA can help reproduce, diagnose, and fix software bugs by replaying a version of

a recorded application that is recompiled with debugging information, reconfigured to produce verbose log

output, modified to include additional print statements, or patched to fix a bug. This is made possible by the

use of lightweight operating system mechanisms to record and replay without imposing unnecessary timing
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and ordering constraints. DORA introduces an explorer that directs the replay mechanism to identify a mu-

table replay of the modified application that minimizes differences with the original unmodified application

execution. DORA’s feature set is a superset of SCRIBE’s. When the replayed application has not been mod-

ified, DORA behaves similarly to SCRIBE. Thus, mutable replay supports at least all use cases deterministic

replay offers. To implement mutable replay, DORA extends RACEPRO’s record-replay engine that paved

the way to enable modifications in a recorded execution. Our experimental results on a Linux prototype

demonstrate that mutable replay is feasible across a wide range of real-world applications and application

changes which can reach thousands of lines of code, even without support for major changes to core ap-

plication semantics. We show that mutable replay is useful for enabling common debugging techniques

not possible with previous record-replay systems. We also show that mutable replay enables validation of

security patches against both exploits and production workloads. This is all accomplished without requiring

source code modifications and with low recording overhead, enabling usage on production systems. These

results demonstrate that mutable replay has the potential to enable new techniques for debugging and patch

testing and validation, which can lead to substantial improvements in software reliability and developer pro-

ductivity. Until this point, we only explored OS-level record-replay mechanisms. These mechanisms have

limited support for distributed applications such as web applications.

Lastly, we presented SYNAPSE, an heterogeneous database replication system specifically designed for

web applications in a service-oriented architecture. These applications run on top of their own databases,

whose layouts, and engines can be completely different, and incorporate read-only views of each others’

shared data. SYNAPSE synchronizes these views in real-time using a new scalable, consistent replication

mechanism that leverages the high-level data models in popular MVC-based Web applications to replicate

data across heterogeneous databases. This replication is performed with record-replay techniques similar to

the ones introduced with our OS-level record-replay engines. Execution is partially ordered by DB object

access sequence numbers, in a similar way our OS-level record-replay engines order OS resources accesses.

SYNAPSE leverages models and ORMs to perform data integration at data object level, which provides a

level of compatibility between both SQL and NoSQL DBs. It leverages controllers to support application-

specific consistency semantics without sacrificing scalability. We have implemented SYNAPSE for Ruby-on-

Rails, shown that it provides good performance and scalability, and deployed it in production for a company.

We have shown four systems implementing transparent application execution record-replay to achieve

various use cases. These four systems are presented in an order where replay semantics are increasingly
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broaden to enable new use cases. With SCRIBE, we explored an implementation of deterministic record-

replay where the replayed execution appears to be identical to the original one from an application perspec-

tive, but in reality, differs due to differences in scheduling to improve performance. With RACEPRO, we

showed how to apply minor changes at the end of a recorded execution and replay such changes before

going live. With DORA, we introduced mutable replay which allow a modified version of the same ap-

plication to be replayed. With SYNAPSE, we achieved heterogeneous database replication with distributed

record-replay mechanisms implemented in web frameworks. Our findings showcase numerous use cases of

record-replay, ranging from (1) transparent fault tolerance by recording a primary and replaying on replicas,

(2) dynamic application analysis by performing costly instrumentation on replicas that replay application

behavior recorded on production systems, such as process-race detection, (3) debugging applications by

capturing hard-to-find bugs and reproducing them with recompiled and reconfigured version of applications

to greatly facilitate debugging, and (4) heterogeneous database replication. We gradually broaden the replay

semantics throughout our systems to show

This dissertation has shown how to make deterministic record-replay fast and efficient, how broadening

replay semantics can enable powerful new use cases, and how choosing the right level of abstraction for

record-replay can support distributed and heterogeneous database replication with little effort.

6.2 Future Work

The work developed in this dissertation raises the possibility for a number of improvements and challeng-

ing questions to consider for future research directions. While SCRIBE shows excellent recording overhead

in many applications, it can exhibit high overhead with applications where multiple threads write at a very

high rate to the same memory page, causing page ownership to ping-pong between threads degrading perfor-

mance significantly. Page ownership ping-ponging may also occur due to false data sharing among threads.

For example, if two private objects of two different threads are placed on the same page, SCRIBE would

serialize accesses to these objects even though these objects are private to each thread. To alleviate this

overhead issue, applications could cooperate with SCRIBE: instead of recording page access ordering trans-

parently at the kernel level, applications could inform the recording engine about which objects are accessed.

This cooperation can be done in two ways. With the first one, SCRIBE still performs memory tracking as

usual, except that the recorded application is modified in a way to acquire and release pages ownership in
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specific hot code paths. In addition, the application would have to store unrelated objects on different pages

to avoid false sharing effects. This method is tolerant to application bugs as the kernel would still serial-

ize all memory accesses even when hints given by the applications are incorrect. The second method is to

offload the serialization of all object accesses to the application Since the application should already have

serialization primitives to protect multiple writers accessing the same object, this mechanism is analogous

to SCRIBE’s rendezvous points, but operating with the application objects as opposed to kernel objects. This

mechanism would thus have a very modest overhead, despite high contention, and have no false sharing

issues. However, if developers misuse these user-space rendezvous points, SCRIBE would no longer be able

to guarantee deterministic replay, as opposed to the first method. This second method is thus more suitable

to implement in runtime environments, such as the Java Virtual Machine (JVM). In these cases, assuming

the runtime environment is correctly implemented, SCRIBE would be able to guarantee deterministic replay

with a much lower overhead.

As an increasing number of applications are using higher level languages running atop of virtual ma-

chines, such as the JVM, the Ruby runtime, Python’s interpreter, the V8 engine for JavaScript to name a few,

it becomes natural to offload SCRIBE’s recording engine of certain tasks. As discussed earlier, using user-

space rendezvous points is beneficial for performance, but would also allow better application semantics

extraction for use cases such as RACEPRO or DORA. Other tasks can be offloaded, such as the interaction

tracking of the runtime environment with the kernel. For example, certain user-space APIs could cooperate

with SCRIBE to disable kernel-level recording of certain system calls, while performing its own recording.

For example, when performing an HTTP request, only the request headers and body could be recorded, as

opposed to recording the low-level interaction with the underlying sockets. In this case, achieving determin-

istic replay is still guaranteed while the recorded log no longer needs to contain the information of doing

DNS lookups, whether a keep-alive connection was used, if the connection was redirected through 302 sta-

tus codes, or if the stream was encrypted through SSL. This hybrid approach can be done in many ways as

user-space applications often have deep call stacks spawning multiple libraries. For example, in Ruby, a call

to Net::HTTP.get(URI("www.google.com")) invokes a few libraries written in Ruby, invoking

the Ruby runtime, then libresolv, libnss, zlib, openssl, which in turn rely on libc to finally invoke around 50

system calls. Using a hybrid approach is versatile as one could instrument a specific set of APIs while retain-

ing the original SCRIBE behavior for other unrelated APIs. This way, deterministic recording guarantees can

still be preserved, even when a high-level application uses a non-instrumented C extension. Tools that lever-
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age record-replay mechanisms such as DORA and RACEPRO can benefit hugely from these higher-level of

recording abstractions as the recorded log contains a more precise representation of application semantics.

RACEPRO benefits directly from this hybrid approach. Since RACEPRO’s race detection engine feeds

directly from recorded object accesses via rendezvous points, using user-space rendezvous points would

allow RACEPRO to detect not only process races, but also application races. It would be able to do so much

faster as the recorded log would be smaller and contain a lot fewer rendezvous points.

DORA is currently limited as it explores program execution by removing and adding system calls. Lever-

aging application semantics allows much better exploration. For example, consider a recorded application

that performs two HTTP GET requests that are sharing the same socket through HTTP pipelining. When op-

erating at the kernel-level, DORA is not be able to find a good mutable replay as it would have to understand

the underlying HTTP protocol to discard the appropriate data from the received buffer on the corresponding

socket, which may be infeasible when using SSL connections. On the other hand, when recording at the

HTTP API level, DORA would be able to just simply discard that one GET request from the recording to

find the optimal replay. By using a hybrid recording approach, DORA not only would be able to find better

mutable replays, but would do so much quicker as there are less nodes to explore in the execution graph.

Additionally, both RACEPRO and DORA would benefit from a in-memory cloning mechanism applied to

an entire process container, with copy-on-write optimizations. Indeed, both engines replay many executions

that are identical from their start up to a certain point. A lot of CPU is wasted replaying many times the

same execution up to that point. For example, when RACEPRO explores a race after that point, it has to

replay an entire execution up to that point, and then to the race to be analyzed. Having checkpoints to

replay from during the original execution would greatly improve performance as the majority of the CPU

is wasted replaying the beginning of the execution. Similarly, DORA replays entire executions, while it

would be much more efficient to replay from the point of divergence. Implementing an in-memory cloning

mechanism entails a substantial amount of work as many kernel objects would have to implement a copy-

on-write mechanism.

Earlier, we introduced SYNAPSE which does record-replay in a distributed environment. While SYNAPSE

records all application state modifications by interposing on the database layer, it does not record enough

information to deterministically replay an execution. For example, SYNAPSE does not record any of the

incoming HTTP requests made to the application. Together with a hybrid record-replay implementation

of SCRIBE, a useful distributed deterministic record-replay system can be built. While previous work has
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explored the concept of distributed deterministic record-replay, it has failed to provide useful semantics to

build higher level tools. For example, DDOS [55] records information at the packet level, and is not suitable

for high level frameworks used in web applications. With a hybrid record-replay system based on SCRIBE

and SYNAPSE, we could build a distributed deterministic record-replay system for web applications suitable

for implementing higher level mechanisms such as race detection and mutable replay.

This hybrid record-replay system would complement the original premise of SYNAPSE which was to

cleanly share data among services. SYNAPSE currently sends application state modifications from publish-

ers to subscribers through a message broker. The new hybrid system could publish additional messages

interleaved with the existing state modifications messages, providing necessary information to do determin-

istic record-replay. For example, messages would include received HTTP requests, or API call responses

from third-party services such as payment gateways. Recording data based nondeterminism is easy con-

sidering that these data accesses are typically made through well-defined and simple APIs (unlike a UNIX

kernel API). However, recording time based nondeterminism is hard. Thankfully, the underlying mecha-

nism of the causal delivery mechanism of SYNAPSE is a mechanism similar to SCRIBE’s rendezvous points

allowing record-replay. The hybrid record-replay system can record both data- and time-based sources of

nondeterminism in an efficient manner, send the recorded log to the message broker alongside with regular

SYNAPSE messages, and let subscriber services implement useful tools atop of record-replay.

Being able to subscribe to message streams from publishers that contain enough information to perform

deterministic record-replay allows, in addition to all the traditional SYNAPSE use cases, a set of new pos-

sibilities. A subscriber service can be deployed to perform race detection in the background with a similar

engine to RACEPRO. Race detection can be very useful to save money. For example, Crowdtap suffered

from a bug in an open-source application they used for their e-commerce store which allows users to redeem

their points for Amazon gift cards. The application was decrementing the inventory item quantity by read-

ing the quantity and writing it back in a read-committed transaction (the default in most SQL databases) as

opposed to a serializable transaction. The race manifested in giving away thousands of Amazon gift cards in

excess. Having a subscriber service that detects races in the background could be valuable to improve soft-

ware reliability. Further, a subscriber akin to DORA can be deployed to implement mutable replay. This can

be useful to reproduce and debug elusive bugs. Adding logging after-the-fact can be very useful. At Crowd-

tap, a bug resulted in throwing away acquired gift cards due to a faulty retry loop in the gift card acquisition

process. The bug was discovered when the accounting team confronted their Amazon bills with the num-
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bers of given gift cards. Sadly, the developer implemented this feature without logging any requests which

made the recovery of gift cards difficult. It would have been useful to replay the application with a code

modification allowing logging of gift cards. To summarize, useful services can be implemented on top of

deterministic record-replay mechanisms for distributed web applications. We discussed race detection and

mutable replay, but other use cases could be envisioned, like performing after-the-fact metric extraction, or

performance analysis. Further, these added-value services could be implemented by third-party companies

which would consume the message stream from the existing SYNAPSE message broker of the application.

In addition to backend record-replay, it would be useful to perform frontend record-replay as an increas-

ing number of web applications are deploying substantial amount of logic in user devices. This avenue has

already been explored by Mugshot [70], a lightweight record-replay engine for JavaScript that can run on

unmodified browsers. By combining the recording of the client application and the backend application,

a developer could replay a user session entirely from the frontend interactions down to the database, in-

cluding possible recorded races. This would provide the ability to reproduce user behavior on the frontend,

introspect interactions with other users through backend services, and provide an accurate time machine for

after-the-fact auditing and code modifications.

In our experience, the success of mutable replay heavily relies on the quality of the semantics extracted

from the recorded execution. The ability to distil core application state changes depends on the abstraction

level at which data is recorded. For example, recovering meaningful application state changes by analyzing a

hardware level recording would be near impossible. On the other hand, if the application is written in a way

where state changes are explicitly described, usually in the form of immutable domain logic events (e.g.

event(UserSignUp, params)), mutable replay becomes trivial to perform. An incarnation of this

design pattern is event sourcing [47]. In the context of Web applications, Event Store [127] is an example

of database with native support for such design pattern. Redux [3] is an example of application state store

for frontend applications. The latter is particularly interesting as it already provides mutable replay features

allowing hot code reloading and time travel capabilities [2].

To conclude, we only scratched the surface of what we can do with record-replay mechanisms. Ap-

plications are increasingly built with high level abstractions, on heterogeneous machines, with complex

distributed semantics. Our current set of record-replay tools are incapable of providing value for these ap-

plications. We discussed feasible research avenues to build tools suitable for these distributed applications.
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