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ABSTRACT

Time-domain Compressive Beamforming

for Medical Ultrasound Imaging

Guillaume David

Over the past 10 years, Compressive Sensing has gained a lot of visibility from the medi-

cal imaging research community. The most compelling feature for the use of Compressive

Sensing is its ability to perform perfect reconstructions of under-sampled signals using l1-

minimization. Of course, that counter-intuitive feature has a cost. The lacking information is

compensated for by a priori knowledge of the signal under certain mathematical conditions.

This technology is currently used in some commercial MRI scanners to increase the acquisi-

tion rate hence decreasing discomfort for the patient while increasing patient turnover. For

echography, the applications could go from fast 3D echocardiography to simplified, cheaper

echography systems.

Real-time ultrasound imaging scanners have been available for nearly 50 years. During

these 50 years of existence, much has changed in their architecture, electronics, and technolo-

gies. However one component remains present: the beamformer. From analog beamformers

to software beamformers, the technology has evolved and brought much diversity to the

world of beam formation. Currently, most commercial scanners use several focalized ul-

trasonic pulses to probe tissue. The time between two consecutive focalized pulses is not

compressible, limiting the frame rate. Indeed, one must wait for a pulse to propagate back

and forth from the probe to the deepest point imaged before firing a new pulse.

In this work, we propose to outline the development of a novel software beamforming

technique that uses Compressive Sensing. Time-domain Compressive Beamforming (t-CBF)

uses computational models and regularization to reconstruct de-cluttered ultrasound images.

One of the main features of t-CBF is its use of only one transmit wave to insonify the



tissue. Single-wave imaging brings high frame rates to the modality, for example allowing a

physician to see precisely the movements of the heart walls or valves during a heart cycle.

t-CBF takes into account the geometry of the probe as well as its physical parameters to

improve resolution and attenuate artifacts commonly seen in single-wave imaging such as

side lobes.

In this thesis, we define a mathematical framework for the beamforming of ultrasonic

data compatible with Compressive Sensing. Then, we investigate its capabilities on simple

simulations in terms of resolution and super-resolution. Finally, we adapt t-CBF to real-life

ultrasonic data. In particular, we reconstruct 2D cardiac images at a frame rate 100-fold

higher than typical values.
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Chapter 1

Introduction: Ultrasounds in medicine

1.1 A brief history

Researchers started working on ultrasounds during World War I as a technique to reliably

detect German submarines. Nearly 40 years earlier, Pierre and Jacques Curie had discovered

the piezoelectric effect [1]: a class of crystals that has the ability to deform and vibrate under

an electric current, and that can produce an electric current when deformed. Paul Langevin

and Constantin Chilowski used this effect to generate ultrasonic waves in water and detect

subsequent echoes [2]. The innovation that resulted from this research, the SONAR system,

could indeed detect German submarines and was therefore quickly classified. At the end of

the war, the interest for ultrasound technology seemed to fade and research on ultrasound

imaging slowed down.

The interest for ultrasound imaging was revived in 1942 when Dr. Karl Theo Dussik,

an Austrian medical doctor, published a founding paper on using ultrasounds for diagnostic

purposes [3]. He called his technique “hyperphonography” and used it to make images of

the human brain [4] by transmission of ultrasonic waves through the skull. However, even

though Dussik believed he was imaging the ventricles of his patients’ brain, researchers at

MIT showed that his images were the result of artifacts. They proved that similar images
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1.2. EMERGENCE OF BEAMFORMING

could be obtained from an empty skull in a water bath [5]. The structures Dussik uncovered

were the result of multiple reflection on the skull and the wall of the water tank he was

using. This discover was an important setback for the development of diagnostic ultrasound

techniques.

Meanwhile, a Scottish researcher named Ian Donald tried using an ultrasonic metal flaw

detector to differentiate a cyst from a myoma in the human body. The idea came to him

after he observed such an apparatus being used in the Glasgow shipyards. The successful

experiment eventually led to one of the founding papers on medical ultrasounds [6].

The basis of ultrasound imaging as we know it today was introduced to the medical world

in the late 1940s by Dr. George D. Ludwig from the Naval Medical Research Institute in

Bethesda, Maryland. Originally described as a method to detect and localize gallstones

and other foreign bodies in soft tissues of the body [7] superseding X-ray imaging, this

revolutionary technique used reflection of ultrasonic pulses. It quickly evolved to become

the modality of choice in obstetrics, pediatrics, and cardiology.

1.2 Emergence of beamforming

Before the mid-1970s, scanners used single element probes and displayed a 1D signal showing

the amplitude of the echoes as a function of depth (figure 1.1). This ultrasound mode is

known as A-mode, the “A” standing for amplitude. This type of scan does not need any kind

of beamforming.

Around the same time, M-mode scanning (M for motion) appeared. It is obtained by

displaying the traces of the peaks of the A-lines swept in time (figure 1.2).

Starting around 1975, transducer arrays were developed in an effort to produce true 2D

images of a section of tissue. Ultrasonic arrays allow focusing and steering of beams by finely

controlling the delays between the elements.

From figure 1.3, one can understand how the technology moved from a single transducer
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Figure 1.1: A-mode ultrasound: the
signal shown on the screen corre-
sponds to the amplitude of the echoes
along the red A-line.

Figure 1.2: Swept M-mode ultra-
sound: the signal on the screen cor-
responds to the trace of the peaks of
the red A-line linearly swept in time.

Linear Scan Sector Scan

Arc Scan Compound Linear Scan

Reconstructed
Lines

Object to
be imaged

Figure 1.3: Single element image formation. The transducer is mechanically translated,
rotated, and tilted to reconstruct the lines of the image. Figure courtesy of E. Brunner [8].

to arrays of several transducers. The action formerly performed with a single transducer by

translating, rotating and tilting it is replaced by an array of elements that does the same

process electronically with greater accuracy and speed.

1.2.1 Focusing in transmission

Focusing in a homogeneous medium is currently achieved on most commercial scanners by

using ultrasonic probes made of an array of independent transducers. Each transducer is

connected to a separate delay line as presented on figure 1.4. They are commonly referred

to as “channels”. The size of the elements of the array and the spacing between them are
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transducer
array

focal
point

delay lines +
pulse generation

Figure 1.4: Beam steering in transmission: delays are calculated so that the waves emit-
ted by each independent element reach the target focal point at the same time, interfering
constructively.

about the size of the central wavelength of the probe or smaller. Under those conditions, the

sidelobes remain small and the grating lobes are minimized [9] ensuring proper focalization of

the energy in the medium. Each element emits the same pulse but at different times chosen

so that each pulse reaches the focal point at the same time. The propagation times or times-

of-flight between each element and the focal point are calculated. From those values, delays

are inferred and applied in emission so that the pulses emitted by each individual element

reach the target focal point at the same time, thus interfering constructively at that location.

To obtain a sharp image with the least amount of noise, a sequence of focalized pulses is

emitted in different directions, and the acquired echoes are combined off-line to form an

image. That last step relies on in silico focalization easily made possible by a direct access

to the phase of the sound waves.

1.2.2 Beamforming in reception

Beamforming in reception or image formation is a similar process. The final image is an

echo intensity map that shows the acoustic echogenicity of the medium. The greater the

echogenicity, the more intense the echo. The intensity is computed using off-line focusing.

The intensity of the sound reflected in a particular point pxi, ziq of the medium being imaged
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(x1, z1)
(x2, z2)

(x3, z3)

(x1, z1)
(x2, z2)

(x3, z3)

a.

b.

tissue phantomraw data collected
by the probe

Figure 1.5: Beamforming in reception: a. the echoes coming from three point scatterers are
acquired by the probe; b. time-of-flights from px1, z1q to each transducer are calculated and
applied to the channels, aligning the phase of the wavefronts coming from that point.

is obtained by computing the time-of-flight from the point pxi, ziq to each element of the

ultrasonic probe. From those values, delays are inferred and applied in reception so that all

the echoes originating from pxi, ziq are propagated back to that point. As shown on figure 1.5,

applying the calculated delays to each channel aligns the waveforms originating from pxi, ziq,

whereas the echoes originating from other locations do not get aligned. Finally, the aligned

channels are summed together. The waves originating from pxi, ziq interfere constructively

whereas the other waves get averaged out to small values. This process is known as coherent

summation. It is repeated for all the points pxi, ziq of the final image, and the amplitude

value for each point is stored in the corresponding pixel. This algorithm is the so-called

Delay-and-Sum [10]. It is worth noting that to the best of the author’s knowledge it has not

been proven that Delay-and-Sum is the best way to solve this inverse problem, leaving a lot

of potential for new algorithms and innovation.
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1.3 Evolution of beamformers

Real-time ultrasound imaging scanners have been available for nearly 50 years. During these

50 years of existence, much has changed in their architecture, electronics, and technologies.

However one component remains present: the beamformer. From analog and hardware

beamformers to digital and software beamformers, the technology has evolved and paradigms

have shifted and brought much diversity to the world of beam formation. In this section, we

propose to review briefly the different beamforming technologies that have been developed

over the years. We choose to focus on beamforming with linear and phased arrays, since

those are the two types of probes that were used in this work.

According to Thomenius [10],

The goal [...] is to create as narrow and uniform a beam with as low sidelobes

over as long a depth as possible.

In both transmit and receive modes, delays are applied to each individual channel to achieve

beam focusing and beam steering as desired.

When dealing with medical ultrasound imaging a few challenges arise. For example, the

maximum amplitude of the pressure one can apply at the source is limited and regulated by

the FDA to ensure the imaged tissues are not damaged in the process. Typically, pressure

amplitudes of a few hundred kiloPascal are used. As the generated wave propagates in the

tissue, it is attenuated by about 0.5 dB.cm-1.MHz-1. One must also take into considera-

tion that less than 10% of the incident pressure actually gets reflected back to the probe.

Moreover, the conversion efficiency of the piezoelectric elements is usually of 50 - 75%. As

a result, it is estimated that in order to display 40 dB of information, the scanner has to be

able to handle over 100 dB of dynamic range.
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1.3.1 Basics

The functions of a basic beamformer are presented in figure 1.6. The beamformer must be

able to generate a transmit wave, either focalized, plane, diverging, etc. It must be able

to steer the generated wave in different directions. When the emission is complete, it must

process the received signal in order to obtain the best image quality possible.

It is assumed that the elements behave as point-like sources, and generate a continuous

wavefront such as the one represented in figure 1.4. In general, the received signal is assumed

to have to following form [10]

rptq “

N
ÿ

i“1

Ari

N
ÿ

j“1

Axjs

ˆ

t ´ τri ´ τxj `
2Rf ptq

c

˙

(1.1)

where N is the number of elements in transmission and reception. The transmitted wave is

sptq, and the factors Axj and Ari represent a potential apodization function in transmission

and in reception, respectively. The delays τxj and τri refer to the transmit and receive delays

applied during the transmit and receive beamforming, respectively. The four parameters Axj ,

Ari , τxj , and τri are of critical importance in beamforming and their value greatly influences

the quality of the reconstruction, as we will discuss in the remainder of this section.

It can be proven easily that [10]

τxi “
1

c

ˆ

b

pxi ´ xf q2 ` zf 2 ´ Rf

˙

(1.2)

where c is the speed of sound, τxi is the transmit delay (a similar formula can be computed

for the receive delay), pxf , zf q are the coordinates of the focal point, and Rf is the distance

between the origin and the focal point. The focal point can be alternatively:

• a single transmit focal point,

• a series of focal points in the case of dynamic focusing,
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generate 
transmit 

wave

process 
received 

signal

apodize 
and sum 
echoes

further 
processing 
(optional)

Figure 1.6: Block diagram of a basic beamformer.

Beamformed
Pulse

Coupling
Gel

Reconstructed
Lines

Tissue Tissue

TimeTime

Figure 1.7: Linear array acquisition versus phased array acquisition. Figure courtesy of
E. Brunner [8].

• the location of a pixel in the reconstructed image.

In figure 1.7, one can understand the difference between a linear array acquisition and

a phased array acquisition. With a linear probe, a sub-aperture with optional apodization

is used. The sub-aperture is translated across the entire width of the probe to produce a

single image. In the case of the phased array, the full aperture is used to focalize a wave in

the medium at different angles. This results in multiple scans at angles that span a sector

of the tissue.
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1.3.2 Development

Linear [11, 12] and phased [13–16] array systems were initially developed for brain imaging,

echocardiography, and obstetrics. These systems were simple, and some of them did not

incorporate a focusing mechanism. Instead, they relied on the natural narrowing that oc-

curred during the propagation of a collimated beam. This design presents several limitations

such as a limited focal area, high sidelobes, and high energy in the near-field. In that case,

equation 1.1 becomes

rptq “

N
ÿ

j“1

Axjs

ˆ

t ´ τxj `
2Rf ptq

c

˙

(1.3)

which is a transmit only beamformer with constant τxj that can therefore cancel the term
2Rf ptq

c
in a single location only. Furthermore, in order to yield an acceptable depth-of-field,

the f -number has to be fairly high.

The need to eliminate sidelobes became an evidence early on [17]. To that end, apodiza-

tion functions were applied to the aperture [17–20], and a combination of both transmit and

receive beamforming was applied.

Dynamic focusing was introduced to medical ultrasound with the first Duke University

phased array system [14, 15]. Dynamic focusing along with apodization allow a great reduc-

tion of the sidelobes. Dynamic focusing also adds the advantage of keeping the f -number

low and relatively constant

The Gold Standard beamformer is the one associated with a complete dataset. To acquire

such a dataset, one has to fire each element independently and acquire the echoes with each

element independently, leading to a N2 dataset. Since the acquisition of such a dataset

would require at least N2{2 transmits and receives, assuming that reciprocity holds, it is

infeasible in-vivo.

As a result, several methods have been developed to approach the performance of the

Gold Standard beamformer, some of them being:

• using multiple transmits at different focal points,

9
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Transducers

MUX/
DEMUX

T/R
Switches

Tx AMPs

LNAs

Tx Beamformer

CW (analog)
Beamformer

TGCs

Spectral
Doppler

Processing
(D mode)

Beamformer
Central

Control System

Imaging and
Motion

Processing
(B mode)

Rx Beamformer
(B and F mode)

Color
Doppler
(PW)

Processing
(F mode)

Display
Audio
Output

Cable

Figure 1.8: Complete block diagram of a state-of-the-art beamformer. Figure courtesy of
E. Brunner [8].

• using synthetic aperture approaches,

• creating non-diffracting transmit beams [21],

• deconvolving the transmit beam pattern [22].

Figure 1.8 shows a complete block diagram of a state-of-the-art beamformer. The acquisition

happens as follows:

• The transmit beamformer produces a signal which is amplified and sent to the probe,

• the scanner then switches to reception mode and records echoes from the medium,

• the signal is amplified and pre-processed before being sent to the receive beamformer

that generates an image.

1.3.3 Capon beamformer

The idea behind the Capon beamformer comes from the observation that the quality of

B-mode images is limited not only by the resolution, but also by the interference suppression
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capabilities of the system. These in turn depend on the beam pattern of the system which

depends on the geometry of the probe and the weight applied to each individual element.

Classical weighting techniques such as static apodization are used to lower sidelobes at the

cost of a wider main lobe. In other words, static apodization sacrifices resolution to decrease

interferences. Adaptive techniques however, adapt the weights to the situation by using data

already acquired to estimate the distribution of noise and interferences [23]. The Capon

beamformer is one such technique.

Let us consider an array of n sensors. apθq is the response of the array to a plane wave

of unit amplitude, coming from direction θ. The set tapθq | θu is commonly referred to as

the array manifold. We assume that there is a source in the far field in direction θ emitting

a signal sptq. Then, the array output is given by

yptq “ apθqsptq ` vptq (1.4)

where v represents the noise as well as the effects of undesired signals. Denoting discrete

samples of y by yrks, we have

yrks “ arθssrks ` vrks (1.5)

The weighted output of the beamformer yBF is given by

yBFrks “ wJyrks “ wJarθssrks ` wJvrks (1.6)

where wJ denotes the transpose of the weight vector w.

The goal is to have
$

’

’

&

’

’

%

wJarθs „ 1 and

wJvrks “ o
`

wJarθssrks
˘

(1.7)

which amounts to saying that we want to maximize the array response in the direction θ

while making sure the contributions from the undesired signals are as small as possible. The
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expected contribution of the noise and interferences is given by

wJRyw (1.8)

where Ry is the covariance matrix of the signal y. The covariance matrix is given by the

expected value of the autocorrelation of the signal y:

Ryrks “ EryyJs (1.9)

The Minimum Variance Beamformer (MVB) is chosen as the optimal solution of

min wJRyw s.t. wJarθs “ 1 (1.10)

This is commonly referred to as the Capon beamformer [24]. Problem 1.10 has an analytic

solution given by

wMVB “
Ry

´1arθs

arθs
JRy

´1arθs
(1.11)

In practice, we do not have direct access to Ry, and it is replaced by an estimate of the

covariance matrix of the signal y, calculated from the available samples:

R̂y “
1

N

k
ÿ

i“k´N`1

yrisyrisJ (1.12)

for a signal y of length N .

The original Capon beamformer is very sensitive to mismatches between the assumed

array response and the actual array response, and numerous methods have been proposed

to make it more robust [25–27].
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1.3.4 Beamspace beamforming

Beamspace beamforming builds on the MVB previously developed by taking some of its

principles into the beamspace, as opposed to the element space, where MVB was originally

defined. The advantage is a reduction in computational complexity which is one of the main

drawbacks of Capon’s method.

The Capon beamformer relies on the inversion of the covariance matrix of the array,

which has dimensions equal to the number of elements in the array. This step is computa-

tionally intensive, making the Capon beamformer less attractive despite its advantages.

Beamspace beamforming uses the same constraints and optimality criterion as the Capon

beamformer, but from the point-of-view of beams, as opposed to elements. The beamspace

beamformer effectively combines the outputs of several Delay-and-Sum beamformers steered

in different directions instead of combining elements. This allows for a reduction in com-

plexity since the beams can be chosen to mostly cover problematic regions and effectively

cancel the underlying interferences, whereas the number of elements is fixed for a given

probe. It has been found that a low number of beams (3 beams) compared to the number of

elements (usually about 128 elements) is enough to obtain results with beamspace-Capon

beamforming that are comparable to elementspace-Capon beamforming.

A beamspace beamformer combines the outputs of several beamformers to generate or-

thogonal beams. To that end, a Butler matrix is used:

xBS “ Bx (1.13)

where B P Mm,npCq is the matrix such that

Bm,n “
1

?
M
e´j 2πmn

M (1.14)

The Butler matrix generates M orthogonal beams that have their main response lobe in
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the direction θm given in reference [28]. In this case, the Butler matrix from equation 1.14

is equivalent to an M -point Discrete Fourier Transform matrix. In practice, the result of

the products of B by another vector is computed using the FFT algorithm, which is faster

than a matrix multiplication.

This transform corresponds to the beamspace transform, and is applied to both the signal

and the weights in the element space to find their beamspace counterparts:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

yBS “ By

wBS “ Bw

xBS “ Bx

(1.15)

As an example, consider the beamspace transform of the uniformly weighted Delay-and-Sum

beamformer wDAS “ 1:

wBS-DAS “ B1 “ e1 (1.16)

where e1 is the vector with 1 as its first coordinate, and 0 otherwise.

The final step is to find the optimal selection of beams in the beamspace. This is done

using Capon’s method:

min wJ
BSRBSwBS s.t. wJ

BSarθs “ 1 (1.17)

which analytic solution is given by

wBS “
RBS

´1e1

e1JRBS
´1e1

(1.18)

where RBS “ ErxBSxBS
Js. The beamspace Capon beamformer is indeed the Fourier

domain version of the element space Capon beamformer. Beamspace beamforming is de-

veloped in further details in reference [29].
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1.3.5 Multi-beam Capon beamforming

In multibeam Capon beamforming [30], the goal is to form a single covariance matrix

R covering all the angles we need for reconstruction, as seen in figure 1.7. In fact, regular

Capon beamforming requires to build a separate covariance matrix R for each image sample.

It is also possible to build a radial covariance matrix, or per-beam covariance matrix as seen

in section 1.3.4, to decrease the computational power needed for the method.

Building a single covariance matrix for all the angles required to compute the final image

involves going back to problem 1.10 and its analytic solution 1.11. Indeed, we want to define

a far-field steering vector arθs such that

arθs “ r1 e´jπsinθ e´j2πsinθ ¨ ¨ ¨ e´jpM´1qπsinθs (1.19)

The phase shift introduced by 1.19 allows the building of a single matrix R capable of

covering all the necessary angles in the image. Therefore, the weights for a given direction

and a given range of depth can be computed using

min wJ
θ,nRwθ,n s.t. wJ

θ,nanrθs “ 1 (1.20)

which has the following analytic solution:

wθ,n “
R´1anrθs

anrθs
JR´1anrθs

(1.21)

The goal is to reduce the computational cost as much as possible, to make those meth-

ods more attractive for real-life applications. The constant evolution of computers and the

development of new tools such as cloud computing that make clusters affordable and avail-

able to everyone may increase the interest for software beamformers and accelerate their

development and implementation in commercial scanners.
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1.3.6 Spatial compounding

The first implementation of Real-Time Spatial Compounding in a commercial scanner was

introduced in 1999 by Philips [31]. The development of Spatial Compounding comes from

the observation that ultrasound images are subject to inherent artifacts that have a negative

impact on image quality and resolution. Common acoustic artifacts include:

• speckle that gives a salt-and-pepper texture to tissue and is due to coherent wave

interference,

• sidelobes and grating lobes that are due to the architecture of the probe and correspond

fundamentally to the propagation of acoustic energy in a different direction than the

one intended, causing significant echoes coming away from the focal axis and artifacts

in the reconstruction or clutter,

• multiple scattering which is commonly neglected in commercials scanners and corre-

sponds to signal generated by a scatterer from an echo coming from another scatterer,

causing artifacts in the reconstruction known as clutter,

• shadows generally observed below a bright structure, and due to the fact that the

energy available to insonify a region right below a hyperechoic structure is greatly

diminished, therefore creating a shadow below the structure.

The combination of all these artifacts decreases both the resolution and the contrast of

the image.

Spatial compounding consists in acquiring several overlapping images of the same struc-

ture but from different angles, and then combining them to form a final image. This technique

has a positive averaging effect on the image because the artifacts produced from different

view angles are different and uncorrelated. The underlying structure imaged however re-

mains constant. The effect of shadowing is also decreased by the technique. The advantages

of spatial compounding include:
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• contrast improvement making structures more differentiable,

• clutter reduction by averaging noise and combining incoherent artifacts together,

• sharpness improvement making interfaces between structures clearer.

The direct consequence of the aforementioned improvements is to increase the diagnostic

confidence.

1.3.7 Tissue Harmonic Imaging

The goal of Tissue Harmonic Imaging (THI) [32–36] is to improve the image quality in

patients that are difficult to scan with traditional techniques, such as obese patients, [37–

46].

Conventional ultrasound imaging uses echoes generated by the tissue at the emitted

frequency fc. Whereas THI uses the second harmonic signal, thus at frequency 2fc. The

second harmonic is actually not present in the original signal. It is created through non-

linear propagation of the emitted pulse in the body [47, 48]. Traditionally, it is assumed that

the propagation of ultrasonic waves in the body is within the linear range of pressures. This

implies that the pressure applied to the body is small enough that the tissue is perfectly

elastic. In reality, pressures used in ultrasound imaging are frequently outside of the elastic

domain of the tissue [49].

In non-linear propagation, the propagation speed, or speed of sound, depends on the

pressure in the body. The speed of sound is higher in areas where there is tissue compression,

and lower in areas where the tissue is relaxed. Since the sound wave is a pressure wave, the

higher pressure parts of the emitted pulse will travel faster than its lower pressure parts,

resulting in a distortion of the signal. The distortion makes the peaks of the signal look

steeper and sharper than the emitted pulse. In signal analysis, this is explained by the

generation of harmonics, as depicted in figure 1.9. In practice, the generation of harmonics

is not as efficient as shown on figure 1.9, and only the second harmonic is actually usable.
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Indeed, the second harmonic is much weaker than the fundamental, and drastic im-

provements in transducer technology and manufacturing as well as in signal processing and

de-noising had to be made before THI could be used in clinical scanners.

The main advantage of harmonic imaging is that the second harmonic is generated di-

rectly in the tissue, and is most prominent where the acoustic energy is concentrated: at

the focal point. As we know, an ultrasonic pulse generated by the probe has to go through

superficial layers of fat and muscle. Since the thickness of such layers is not the same for

all patients, they are generally assumed to be negligible. As such, the different speed of

sound of those layers is not taken into account. Since they tend to be irregular, the layers of

fat and muscle distort the wavefront emitted by the probe, degrading the focalization and

introducing artifacts. The echoes generated by the medium as a response for the excitation

pulse have to go through the exact same layers of fat and muscle, doubling the distortion

and subsequent artifacts. With THI however, the distortion due to those layers happens

only during echo reception since the second harmonic is generated deep within the tissue. It

has been shown that the profile of the harmonic beam at the focal point is narrower and its

sidelobes are lower than that of the fundamental beam [50]. Therefore, the lateral resolution

is improved. There is also an improvement of the contrast due to the fact that the amplitude

of the second harmonic signal varies with the square of the amplitude of the fundamental.

Thus, small local variations that are barely visible with the fundamental signal can be made

more obvious with THI.

1.3.8 Plane wave imaging and coherent compounding

Plane wave imaging is fairly new to the world of ultrasound, and its development comes from

the emergence of other modalities such as transient elastography. In transient elastography,

the goal is to image the propagation of a shear wave in the body, which requires a high

frame rate of over 1,000 Hz [51]. Doing so allows one to compute the speed of the shear wave

which depends on the bulk modulus of the tissue. As a result, a map of the elasticity of the
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Figure 1.9: Tissue Harmonic Imaging: the propagation of ultrasound in the body is non-
linear, due to the tissue not being perfectly elastic. The pressure peaks travel faster than the
valleys, making the signal look steeper and sharper. This is due to the creation of higher
frequencies in the tissue.
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tissue and its underlying structures can be computed and shown to the user. Some lesions

or cancers are stiffer than regular structures in the body. For that reason and others not

developed here, transient elastography is used to characterize non-invasively the elasticity

of tissue [52]. For more details on transient elastography, the interested reader can refer to

publications [53–59].

To achieve the necessary frame rate of over 1,000 Hz, transient elastography relies on plane

wave imaging [60, 61], and coherent image compounding [62]. We saw that in incoherent

image compounding, several images of the same tissue region are acquired at different angles.

Then individual images are computed from those different angles. Finally, all the images are

summed together and the final image is the average image, exhibiting attenuated artifacts,

better contrasts, less clutter, etc.

In coherent compounding, the first step remains the same: the tissue is probed with plane

waves at different angles of inclination. However, the data acquired is combined coherently,

thus before envelope detection, to focus in the medium. The simple diagram in figure 1.10

shows the acquisition process in red: a set of plane waves steered in different directions are

emitted and the echoes are recorded for each one of them. Knowing what the plane wave

angles are, one can combine the different datasets to refocus within the tissue by applying

the correct delays to form the focalized waves shown in yellow. This method gives the ability

to focalize both in depth and laterally.

This method achieves good results with a limited number of plane wave, typically 3 to

5. As a result, the frame rate is greatly increased.

1.4 Challenges

Since the inception of ultrasound imaging for diagnostic purposes, the technology and the

concepts have evolved toward computational methods. Modern methods such as Capon

beamforming or beamspace beamforming rely on computational power to increase the image
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Figure 1.10: Coherent compounding: a. The tissue is probed with several plane waves
steered in different directions, one at a time, b., c., and d. The datasets are combined together
with appropriate delays to focalize a posteriori synthetically. The delays are calculated to
cover all the width and depth of the image.

quality. As computational cost decreases, digital beamforming becomes more and more at-

tractive. The emphasis on increasing the number of cores in CPUs as well as GPU computing

is an opportunity for digital beamforming, adaptive and computational methods to emerge

and become more compelling.

In the next 10 years, it is possible that beamforming techniques based on machine learning

and deep learning along with cloud computing will supercede current beamforming technolo-

gies. This work is at the interface between these technologies. The beamformer we developed,

the so-called time-domain Compressive Beamformer (t-CBF), relies on physical models as

well as computational power to extract as much information as possible from the data. It

is fully compatible with machine learning techniques and its compression capabilities can be

exploited in a cloud computing setting.

Nowadays, ultrasound imaging is faced with the following challenges:

• Most ultrasound commercial scanners rely on expensive custom built hardware. Origi-
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nally, specific hardware was needed since technology was not advanced enough to allow

the use of software beamforming. However this bridge has been gapped. Modern com-

puters have several CPU cores, and hundreds of GPU cores. They have the ability to

speed up calculations dramatically, making software beamformers and computational

techniques increasingly attractive.

• The use of several focalized transmit events to compute a single image brings more

complexity to beamforming. This makes the hardware all the more difficult to build

and therefore expensive.

• The frame rate of the modality is limited by the number of transmit events needed to

compute a single image. The time between two transmit events is not compressible.

It is equal to the propagation time between the probe and the deepest point imaged,

back and forth. Using less transmit events is then the only way to increase the frame

rate. However, it leads to artifacts and reconstruction errors with classic beamforming

techniques.

• 3D brings another technological challenge to ultrasound imaging. It is increasingly used

in echocardiography to assess the movements of the heart walls and valves. However it

requires more transmit events than 2D imaging, decreasing the frame rate significantly.

The method proposed in this work aims to address those challenges. Regarding 3D

imaging, much remains to be done but this work establishes the preliminary and necessary

steps toward this goal.

1.5 Impact

Cardiovascular diseases have a tremendous impact worldwide. In the US, it is estimated that

as many as 85.6 million American adults were living with at least one type of cardiovascular

disease in 2016 [63]. Cardiovascular diseases include:
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• High Blood Pressure: 80 million people.

• Coronary Heart Disease: 15.5 million people divided into 4 subcategories (with over-

lap):

– Myocardial Infarction: 7.6 million.

– Angina Pectoris: 8.2 million.

– Heart Failure: 5.7 million.

– Stroke: 6.6 million.

Cardiovascular disease is the leading cause of death, with a global cost of $863 billion in

2010.

Echocardiography is an increasingly used modality to diagnose cardiovascular disease

due to its low cost, non-invasiveness, and high temporal resolution compared to CT or MRI.

During a single cardiac cycle several events take place and it has been shown that a temporal

resolution of 2-5 ms is required to observe them [64, 65]. Abnormalities could be an indicator

of cardiac disease. Early detection of ischemia, arrhythmia, etc could be made possible by the

measurements of transient deformations of the myocardium at a high temporal resolution.

Indeed heart disease changes the mechanical properties of the heart dramatically.

Increasing the frame rate of the modality could help detect small, transient deformations

of the cardiac muscle that could in turn by used to diagnose early onset heart disease. Early

diagnosis is critical for early treatment and improvement of patient outcome. To that end,

frame rates of at least 200-500 frames per second are needed.

1.6 Aims

Ultrasound imaging has been used in the medical field for over 20 years for applications

ranging from fetus monitoring to tumor ablation, hence spanning both the diagnostic and
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therapeutic worlds. Its versatility and cost-effectiveness with respect to other imaging modal-

ities such as MRI and X-ray make it a great tool in the medical imaging arsenal. However in

spite of recent developments and enhancements, ultrasound imaging still has several draw-

backs. In order to compute a single image, a vast amount of data has to be acquired and

processed by the scanner impacting the frame rate of the machine among other aspects.

Independently, Compressive Sensing has emerged as an inverse problem technique and

gained a lot of interest from researchers quickly because of its ability to recover under-

sampled signals under some mathematical assumptions. After being thoroughly developed

and supported as a mathematical theory, it was successfully applied to MRI, effectively

decreasing the acquisition time significantly. Naturally, researchers from other fields have

been trying to adapt Compressive Sensing to their own problems.

This work adapts Compressive Sensing to ultrasound imaging and outlines the develop-

ment of a method that decreases the amount of data acquired while maintaining the image

quality. It relies on models, wavelets, and processing power to fill-in the gaps, so to speak.

The aims of this work are:

Aim 1: Develop a mathematical framework for beamforming that is compat-

ible with Compressive Sensing

Challenge To write beamforming as a matrix product to ensure compatibility with

Compressive Sensing, and show the theoretical equivalence with classic beamforming

techniques such as Delay-and-Sum.

Approach The medium or biological tissue is modeled as a collection of point scat-

terers in an otherwise homogeneous surrounding. The pressure field resulting from a

specific excitation pulse is calculated using temporal Green’s functions of the 2D wave

propagation equation. A one-to-one correspondence between a given point scatterer

and an excitation pulse, and the resulting pressure field is explicitly written as a matrix
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product.

Impact The aforementioned approach is a theoretical proof that Compressive Sensing

can be used for the beamforming of ultrasound signals. The framework developed is

used throughout this work as a fundamental basis for all image reconstructions.

Aim 2: Investigate the capabilities of the method through simulations, and apply

it to a phantom

Challenge To adapt the theory to in-silico and practical experiments under simple,

restrictive conditions.

Approach The framework developed in Aim 1 is a priori designed to reconstruct

images of point scatterers. Before moving to media displaying a more complicated

structure such as speckle, its performance has to be assessed on simulated, sparse wave

fields. The predicted capabilities of Compressive Sensing such as super-resolution are

also investigated.

Impact The limits of the approach are defined and used to improve on the results.

Aim 3: Develop an algorithm for ultrasound image reconstruction based on the

previous framework and the use of wavelets

Challenge To adapt the previous point scatterer-based theoretical framework to tis-

sue imaging displaying continuous structures and ultrasonic speckle using wavelets to

enhance sparsity.

Approach Several flavors of the wavelet transform are used and their performance

in the framework assessed. The images reconstructed are more sparse in the wavelet

domain, enabling the Compressive Sensing framework to work optimally. Different

families of wavelets are investigated to find an optimal transform. Different types

of wavelet transform algorithms are also investigated: decimated and undecimated

wavelet transform, as well as wavelet packet transform.
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Impact The theoretical ability to reconstruct real life images is proven in ideal condi-

tions.

Aim 4: Apply the algorithm to in-silico then in-vivo data to illustrate its ad-

vantages and limits

Challenge To acquire data in accordance with the previously developed framework,

and modify the algorithm so it can handle the big amount of data needed for real life

applications.

Approach The excitation pulse has to be coded in an ultrasonic scanner. A software

and hardware modified scanner enables the extraction of pre-beamformed raw data,

necessary to run the algorithm. The Hilbert transform is used extensively to down-

sample the raw data and allow the algorithm to run on real life data.

Impact The performance of the algorithm is assessed and improved.

1.7 Contributions

This work is organized into seven chapters. The first three chapters are meant to be an

introduction to the field of ultrasound imaging and Compressive Sensing. The following four

chapters focus on our work. It outlines how the theory of Compressive Sensing was used in

the context of ultrasound imaging.

• In chapter 2 we outline the evolution of signal representations. We focus on signal

representation that are the most efficient in terms of compression. Namely, an efficient

representation can capture most of the signal information in just a few coefficients.

• In chapter 3 we give the reader the basic information needed to understand Compres-

sive Sensing and its tools. We explain in what way Compressive Sensing is interesting,

and how it can be adapted to the solving of inverse problems.
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• In chapter 4 we develop the theory of Time-domain Compressive Beamforming. Start-

ing with a simplistic 1D example, we eventually describe a 2D beamforming framework

for the reconstruction of point scatterers that uses the tools of Compressive Sensing.

• In chapter 5 we show that the framework developed in chapter 4 can be adapted to

tissue imaging. We discuss the challenges of memory usage and speckle imaging, as

well as the robustness to noise.

• In chapter 6 we apply our algorithm to patient data.

• In chapter 7 we conclude this work by outlining some of the next steps possible for

t-CBF.
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Chapter 2

From signal representation to image

compression

Any discrete signal can be viewed as a collection of values in a vector. The values are filled

out by measurements during the acquisition process. As a result, the measurement vector

lives in a vector space that we choose to refer to as the acquisition space. Associated with this

acquisition space is an acquisition basis, which is the natural basis of the space as dictated

by the acquisition process. In an effort to clarify this statement, we provide the following

two examples:

Sound acquisition The recording of a sound is usually done by discretely sampling a con-

tinuous signal acquired by a microphone. The samples are usually equispaced and measured

at a rate corresponding to the minimum sampling frequency dictated by the Nyquist-

Shannon theorem [66]. Namely, in order to avoid any aliasing, the sampling frequency of

the signal must be at least twice the maximum frequency exhibited by the signal. In this

case, the acquisition can be seen as the convolution of a continuous signal sptq by a Dirac δ

comb δfsptq, as shown in figure 2.1. The result is a series of values that can be organized in

a vector srts, where the brackets symbolize discrete time. From this, we can deduct that the

natural acquisition basis is made of a collection of Dirac δ functions translated by a value
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Figure 2.1: Digital acquisition of an acoustic signal: the signal value is sampled regularly
fs times per second.

imposed by the sampling frequency.

MRI acquisition In the case of MRI, the acquisition happens in the k -space (as will be

briefly developed in section 3.2.4). The MRI inverse problem is solved by applying the inverse

Fourier transform to the acquired signal. Subsequently, the natural acquisition basis in

that case is a Fourier basis.

However, linear algebra teaches us that there are many more ways to represent a vector. In

fact, any invertible transform applied to the acquisition vector leads to a new representation

of the same information. This new representation then lives in the so-called transform space.

Not all transforms are made equal and some are more useful than others. In this chapter,

we focus on transforms that can help us compress a signal or an image. Such transforms

will have the desirable property of being able to give a sparse representation of the image,

meaning that few non-zero coefficients in the transform vector will be necessary to capture

all or most of the information of the image in the acquisition space.

We will see that beyond data compression, a sparse representation can be used in con-

junction with regularization to recover signals from an incomplete set of measurements.
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2.1 Evolution of representations

2.1.1 Fourier representation

In 1822, Joseph Fourier proved that some signals could be written has an infinite sum of

their weighted frequencies or harmonics. The Fourier transform comes from the study of

Fourier series where an arbitrary periodic function or signal is expanded as an infinite sum

of sines and cosines.

Definition 1. The Fourier series of a P -periodic function f is given by

fptq “

`8
ÿ

n“´8

F rnsei
2πn
P
t (2.1)

where F rns are the frequency weights.

The extension of this discrete transform to a continuous frequency variable gives the

Fourier transform. The discreet variable n designating the index of a harmonic of the

signal becomes the continuous variable ω that designates the angular frequency or angular

velocity.

Definition 2. Within the framework of the Lebesgue integral, we have:

fptq “
1

?
2π

ż

F pωqeiωtdω “ F´1rF sptq (2.2)

where F is Lebesgue integrable, hence if F P L1pRq.

The transform exists if f P L1pRq, and if F P L1pRq as well. This condition ensures one

can take the Fourier transform of a function and its inverse.

Definition 3. The Fourier transform of a function f is given by

F pωq “
1

?
2π

ż

fptqe´iωtdt “ Frf spωq (2.3)
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Corollary 1. If f P L1pRq and F P L1pRq then the transform is fully invertible and we have:

fptq “ F´1 rFrf ss ptq (2.4)

almost everywhere.

The Fourier transform is a representation of a signal from the frequency standpoint.

2.1.2 Time-frequency representation

The Fourier transform is a very powerful tool that represents all the frequencies in a signal.

However, it is not adapted to non-stationary signals by construction. It has no time resolution

which means it does not provide information about when a frequency is present in the signal

and when it is not. To alleviate this issue the Short-Time Fourier Transform (STFT) [67]

was developed by Gabor in 1946. The STFT is essentially a Fourier transform of the

signal multiplied by a moving windowing function. The signal is divided into short segments

of equal length with an optional overlap between segments. An optional windowing function

can also be applied to the segments to minimize aliasing. Then the Fourier transform of

each segment is calculated. How to cut and window the signal is a non-trivial problem in

itself. Indeed, windowing the signal corresponds to a multiplication by a windowing function

in the temporal space, which becomes a convolution in the frequency space. As a result, the

windowing function has tremendous repercussions on the result of the STFT.

In this method, time and frequency play a symmetrical role as opposed to the Fourier

transform, where it is one or the other. To illustrate this, let us consider the signal in

figure 2.2. It is an audio recording of a person speaking. The time representation gives

us information on the variation of the amplitude of the signal in time only. The STFT

representation allows us to see the frequencies that compose the signal and their variations

in time. For example we notice a change in the frequency content around 0.5 s and then

again around 0.85 sec. Those two changes correspond to the pronunciation of fricatives
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Figure 2.2: (Top) Time representation of an audio signal. (Bottom) Time-frequency rep-
resentation of the same signal using the STFT.

which contain higher frequencies. The rest of the signal contains mostly vowels which contain

mostly lower frequencies. Locating the fricatives in time would be difficult from a simple

observation of the signal. The STFT makes it effortless. However, the time-frequency

analysis allowed by the STFT is limited: according to Heisenberg’s uncertainty principle

[68], it is impossible to define a windowing function which is compactly supported both in the

time domain and in the frequency domain. In other words, a windowing function designed

to give good frequency resolution will have poor time resolution and vice versa.

2.1.3 Space-scale representation

The wavelet viewpoint is conceptually similar to the time-frequency analysis. In this frame-

work, signals and images alike can be built from a sum of multi-scale wavelets. The idea

originated from the analysis of seismic data by an engineer working for an oil company,

Jean Morlet. Petroleum geologists usually locate oil trapped underground by generating

seismic waves in the ground and measuring their propagation times. The analysis is usu-
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ally performed using Fourier analysis tools. However, Morlet first analyzed the data

using the STFT to locate transient, abrupt changes in the seismic signal. The transients

contain invaluable information for the geologists since they are due to reflections at the inter-

face of layers of different acoustic impedance, therefore of different content. Unfortunately,

Morlet could not find a window of constant width that would allow the elucidation of

the transients. As a result he started experimenting with windows of varying widths. He

called them “wavelets of constant shape” [69]. The wavelets were obtained by dilations and

shifts of a mother wavelet. This way, he built the first wavelet family. Many more were to

come. The shape of the wavelet affects the existence of the transform and its inverse, as

well as the compression properties of the decomposition. The compression properties of the

wavelet transform are going to be extremely important for the application developed in this

document. We will describe why in the following section.

Definition 4. Let f be a time signal. Then

gps, τq “
1

?
s

ż `8

´8

fptqψs,τ ptqdt @s ‰ 0 (2.5)

is the Continuous Wavelet Transform (CWT) of f .

It is the inner product of a function of interest f with a wavelet function ψs,τ in L1pRq.

Definition 5. The function ψs,τ is obtained by translations and dilations of the so-called

mother wavelet Ψ:

ψs,τ ptq “
1

?
s
Ψ

ˆ

t ´ τ

s

˙

(2.6)

τ is the translation factor and s is the scale factor.

More specifically in the case of a time signal s is the frequency and τ the time. Thus

the signal-windowing problem is alleviated in wavelet analysis by the use of a fully scalable

modulated windowing function.
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Figure 2.3: Plots of a few different types of wavelets. From the top left corner clockwise:
Haar wavelet, Daubechie 2 wavelet, Daubechie 20 wavelet, reverse biorthogonal 2.2
decomposition wavelet.

2.2 The wavelet transform

We now know the mathematical definition of the wavelet transform (equation 2.5), and we

know that it involves a mother wavelet (equation 2.6). However, what exactly constitutes a

wavelet from a mathematical standpoint?

2.2.1 Properties of the mother wavelet

For the transform to exist, the mother wavelet Ψ must have the following properties:

• Ψ must oscillate and its integral over its support must be equal to zero,

• Ψ must be square integrable (Ψ P L2pCq).

The mother wavelet must also satisfy the admissibility and regularity conditions.
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Definition 6. Admissibility A square integrable function Ψ satisfies the admissibility con-

dition if:
ż

|FrΨspωq|2

|ω|
dω ă `8 (2.7)

A wavelet Ψ satisfying the admissibility condition guarantees a signal analysis and re-

construction without loss of information.

Corollary 2. The admissibility condition implies that the Fourier transform of Ψ vanishes

at the zero frequency:

|FrΨspωq|2
ˇ

ˇ

ω“0
“ 0 (2.8)

This observation means that wavelets have a band-pass spectrum and have to oscillate

since the average value of the wavelet in time is zero.

A desirable property of wavelets for compression is the fast decaying of the coefficients

of the transform. This is related to the regularity condition by the notion of vanishing

moments [70]. If a wavelet has N vanishing moments, then the approximation order of the

transform is also N . The number of vanishing moments heavily depends on the application

and relates to the smoothness of the wavelet.

Definition 7. Regularity The wavelet Ψ is said to be r-regular if for any α P Z:

|Ψpkqptq| ă
C

p1 ` |t|αq
(2.9)

for f “ 0, ¨ ¨ ¨ , r.

2.2.2 Inversion

Definition 8. If g is the wavelet transform of a function f , then f can be reconstructed from

g using the following formula:

fptq “
1

Cψ

ĳ

R

gps, τq

s2
ψs,τ ptqdsdτ (2.10)
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where Cψ is a constant related to the type of wavelet used.

In practice, the uniqueness of the invert transform is guaranteed by the orthonormality

of the wavelet basis. Overcomplete wavelet bases can also be used.

2.2.3 In practice

Equations 2.5 and 2.10 give us a theoretical way to apply the wavelet transform. In practice

however, those integrals are difficult to compute.

First of all, according to equation 2.5 the wavelet transform is computed by convolving a

continuous scalable function and a continuous signal. As a result the wavelet coefficients will

be highly redundant. This is not desirable in this case. Also, the signals we are interested

in are discrete. Therefore we are going to have to formulate a wavelet transform for discrete

signals.

Then, the CWT is computed with an infinite number of wavelets, since s and τ are

continuous variables. The mother wavelet is continuously dilated and translated. This

makes the transform computation intractable, on top of being redundant.

Finally, equation 2.5 has no analytical solution in most cases and must be computed

numerically. These issues can be alleviated, and one way to do that is to use the so-called

dyadic wavelet transform introduced in the next section.

2.2.4 Dyadic transform

The dyadic transform was derived to make the computation of the wavelet transform trac-

table. It defines a series of countable dilations and translations of the mother wavelet that

ensures full coverage of the spectrum of the function to be analyzed. In practice, the functions

ψ are generated from a mother wavelet by:

• dyadic dilation or contraction by a factor s “ 2j,

• binary translations: τ “ ks “ 2jk @k P Z.
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The location of the wavelet coefficients is shown in figure 2.4. Subsequently, the wavelet

functions ψj,k can be computed simply from the mother wavelet Ψ

Definition 9. The wavelet function ψj,k are derived from the mother wavelet Ψ using the

following relationship:

ψj,kptq “
1

?
2j
Ψ

ˆ

t ´ 2jk

2j

˙

(2.11)

Corollary 3. For a given j and for all k in Z, the supports of the functions ψj,k are disjoint

and contiguous.

Each function ψj,k is characterized by its scale 2´j and its position k.

Property 1. In this case, the function f can be reconstructed with the following formula:

fptq “
ÿ

j,k

gpj, kqψj,kptq (2.12)

Theorem 1. The reconstruction is stable under the condition that the energy of the wavelet

coefficients is bounded.

A}f}2 ď
ÿ

j,k

| xf, ψj,ky |2 ď B}f}2 (2.13)

where }f}2 is the energy of the signal f which must be finite, and 0 ă A ă B ă `8.

When equation 2.13 is satisfied, the family of wavelets ppψj,kqqj,k is a frame. If A “ B

the frame is said to be tight and the wavelet family behaves like an orthonormal basis. If

A ‰ B, exact reconstruction is possible if a dual frame is used, meaning the decomposition

wavelet is different from the reconstruction wavelet. To minimize redundancy even further,

we can choose discrete wavelets that are orthogonal to their own dilations and translations.

However, orthogonality is not essential.

This decomposition avoids the redundancy inherent to equation 2.10. The decomposition

corresponds to the analysis of f in vector spaces of different scales V0 Ď V1 Ď ¨ ¨ ¨ Ď Vm. The

reconstruction of f from its wavelet coefficients is done by taking its mean (scale or resolution
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Figure 2.4: Plots of the location of the wavelet coefficients for the dyadic transform.

0) and adding the details at finer resolutions recursively. The transform thusly defined is

commonly referred to as multi-resolution analysis.

2.2.5 Haar wavelets

Definitions and proofs The Haar wavelet is the first wavelet that was discovered and

was described in a 1910 paper [71] as a piecewise constant function.

Definition 10. The Haar mother wavelet is the function Ψ such that

Ψptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if 0 ď t ă 1
2

´1 if 1
2

ď t ă 1

0 otherwise

(2.14)
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Corollary 4. The dilations and translations of Ψ generate an orthonormal basis:

ψj,kptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if k
2j

ď t ă k
2j

` 1
2j`1 ,

´1 if k
2j

` 1
2j`1 ď t ă k`1

2j
,

0 otherwise.

(2.15)

that can be written more concisely as:

ˆ

ψj,kptq “
1

?
2j
Ψp2jt ´ kq

˙

j,k

(2.16)

Haar gave this family of functions as an example of an orthonormal basis for the space

of square-integrable functions on r0, 1s. It is the simplest wavelet but has the significant

disadvantage of being discontinuous and therefore not differentiable.

From equation 2.15, we see that the Haar functions are supported on the interval Ij,k “

“

k
2j
, k`1

2j

“

, therefore they vanish to zero outside of the interval.

Property 2. The Haar functions verify both conditions to be a wavelet, as described in

section 2.2.1. We verify easily that

@pj, kq

ż

R
ψj,kptqdt “ 0 (2.17)

and

@pj, kq }ψj,k}
2
2 “

ż

R
ψj,kptq

2dt “ 1 (2.18)

Moreover, the Haar functions are pairwise orthogonal.

Property 3. For all pj1, k1q and pj2, k2q,

ż

R
ψj1,k1ptqψj2,k2ptqdt “ δj1,j2δk1,k2 (2.19)

where δm,n is the Kronecker delta.
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The orthogonality comes from the fact that if intervals Ij1,k1 and Ij2,k2 are not equal they

are either disjoint or the smaller of the two supports is contained fully in the lower or upper

half of the other on which the widest Haar function is constant. In this case, it follows that

the inner product of the two functions is simply equal to the integral of the narrowest Haar

function on its support. This integral is equal to zero according to equation 2.17.

As a result, the family of Haar functions ppψj,kqq is complete in L2pRq. In addition, it

is a orthonormal family, and therefore a basis of L2pRq.

This basis spans the space L2pRq of functions of finite energy.

Definition 11. A function f is said to have finite energy if:

}f}2 “

ż

R
|fptq|2dt ă `8 (2.20)

For the remainder of the work, we will need an inner product.

Definition 12. The inner product x, y on r0, 1r is the linear application such that:

xf, gy “

ż 1

0

fptqgptqdt (2.21)

then any finite energy signal can be represented by its wavelet coefficients.

Property 4. The wavelet coefficients of f correspond to the projection of f on the wavelet

basis using the inner product:

xf, ψj,ky “

ż

R
fptqψj,kptqdt (2.22)

Corollary 5. The signal can be easily recovered from these coefficients:

fptq “
ÿ

j

ÿ

k

xf, ψj,ky ψj,kptq (2.23)
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Scaling function The wavelet function is a band-pass filter. The goal of the transform

is to cover the full spectrum of a function f with the band-pass spectrum of the wavelet by

scaling and dilating it. However, an infinite number of dilations would be require to cover

the spectrum down to the 0 frequency. The scaling function associated with a given wavelet

is a low-pass filter that is used for the lowest level of the transform to ensure all the spectrum

of f is covered. The scaling function associated with the Haar wavelet is

ϕptq “

$

’

’

&

’

’

%

1 0 ď t ă 1,

0 otherwise.
(2.24)

More information on the wavelet transform as a filter bank and on the scaling function is

given in sections 2.2.6, 2.2.7, and 2.2.8.

Properties The Haar wavelet has several famous properties:

Property 5. Any continuous real function with compact support can be approximated uni-

formly by linear combinations of ϕptq, ϕp2tq, ¨ ¨ ¨ , ϕp2jtq, ¨ ¨ ¨ and their shifted functions.

Property 6. Any continuous real function on r0, 1s can be approximated uniformly on r0, 1s

by linear combinations of the constant function 1, ψptq, ψp2tq, ¨ ¨ ¨ , ψp2jtq, ¨ ¨ ¨ and their

shifted functions [71].

Property 7. The Haar wavelet has a Haar matrix associated with it:

H2 “

»

—

–

1 1

1 ´1

fi

ffi

fl

(2.25)

and

H2N “

»

—

–

HN b r1, 1s

IN b r1,´1s

fi

ffi

fl

(2.26)

where b is the Kronecker product.
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f

ψ1ψ2ψ3ψ4

Figure 2.5: Spectra of correctly designed dilated wavelets.

The Haar wavelet transform has noteworthy image compression capabilities. It is used

in the JPEG200 file format for image compression [72].

2.2.6 The wavelet transform as a band-pass filter

To make the wavelet transform efficient, we try to reduce the number of wavelets needed,

which is in theory infinite. The number of translations is evidently limited by the length of

our signal. However how many scales do we need to analyze it properly? From Fourier

theory, we know that scaling in time is equivalent to scaling the spectrum and shifting it.

Property 8. The Fourier transform of fpatq with a ‰ 0 is related to the Fourier trans-

form F of fptq by the following relationship:

Frfpatqspωq “
1

|a|
F

´ω

a

¯

(2.27)

where F is the Fourier transform of f . Hence, a compression in time by a factor 2 will

translate into a stretching of the spectrum by a factor 2 as well as a frequency shift by a

factor 2. We can use this property to cover the full finite spectrum of our signal with the

spectra of our dilated wavelets. A correct wavelet design will give the coverage shown in

figure 2.5. As a result, if we see a wavelet as a band-pass filter, then a series of wavelets can

be seen as a band-pass filter bank.
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f

ψ1ψ2ψ3φ

Figure 2.6: Role of the scaling function φ: how to cover frequencies all the way down to
zero.

2.2.7 Covering the spectrum down to the null frequency: the scaling

function

Using the previous technique, we cover the spectrum of a band limited function by stretching

and translating a wavelet by a factor 2. However, this technique would require an infinite

amount of wavelets to cover all the frequencies down to zero.

The solution to this problem is to use wavelets to cover most of the spectrum, and then

use a function that acts as a low pass filter to cover the frequencies all the way down to zero.

That function is the scaling function and its spectrum is represented in figure 2.6. From the

analysis standpoint, the width of the scaling function is very important. It must cover the

spectrum from the lowest frequency covered by the wavelet down to the numm frequency to

ensure no valuable spectral information is discarded.

The dilated and translated wavelets along with the scaling function form a filter bank.

2.2.8 Calculating the wavelet transform: subband coding

Building on what was explained in the previous paragraph, we consider the wavelet trans-

form as a filter bank made of wavelet functions and a scaling function. Taking the wavelet

transform of a signal can thus be seen as passing it through this filter bank. This process is

known as subband coding and predates the theory of wavelet analysis.

The filter bank needed in the subband coding framework can be derived in different ways.

One way is to build a set of bandpass filters that split the spectrum into frequency bands of
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interest. In that case, we could imagine building the filters so that the spectrum of the signal

to analyze is covered where we are expecting the information to be. The main disadvantage

of that approach is that the filters have to be designed individually, and they can only work

for a particular type of signals.

Another way is to make the process as general as possible. The filter bank is not tailored

to the signal of interest. Instead, the spectrum of the signal is divided into two equal parts:

a low-pass and a high-pass part. The high-pass contains all the smallest details of the image

and the low-pass contains all the rest. One could stop here, but the low-pass part still

contains some details. In order to discriminate the details by scale, the low-pass is split in

two again, a high-pass and a low-pass part. The high pass contains the next level of details,

and so on until we reach the desired number of subbands. The filter bank hence created

is an iterated filter bank. The process is displayed in figure 2.7. The advantage is that we

only have to design two filters. The drawback is that the transform is not adaptive and the

spectrum coverage is fixed.

At the end of the process, we are left with a set of band-pass bands with doubling

bandwidths and one low-pass bands, as depicted in figure 2.7. This kind of analysis is

generally referred to as multi-resolution analysis.

2.2.9 Decimated and non-decimated wavelet transform

After splitting the spectrum in two, the low-pass and the high-pass can be safely subsampled,

or decimated, since the sampling frequency needed to preserve the details in the signal or

the image is thereby decreased. In particular, since we arranged the filter bank to split

the spectrum in two equal parts, the low-pass and the high-pass parts can be subsampled

by a factor of 2. In that case, the iteration stops when the length of the subsampled low-

pass becomes smaller than the length of the filter. This has become standard in wavelet

transform implementations. It has the advantage of limiting redundancy and providing a de

facto stopping criteria for the decomposition algorithm. However in some cases, we will see
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Figure 2.7: Process of splitting the spectrum of our signal using an iterated filter bank.

that the added redundancy of the undecimated wavelet transform can be beneficial.

2.3 Extending the wavelet theory: wavelet packet

analysis

2.3.1 Wavelet packets

The wavelet packet decomposition is a generalization of the wavelet analysis. Richer than

regular wavelets, wavelet packets are an invaluable tool to expand a signal in a variety of

ways. The most suitable representation for a signal f can be selected using an entropy-based

criterion chosen by the user. Depending on the application, the entropy function, which can

also be seen as some form of penalty or cost function, can be adapted to the situation.

As explained in 2.2.8, the wavelet transform is calculated by splitting the approximation

coefficients into two parts: the high frequency part with the detail coefficients and the low

frequency part with the approximation coefficients at a coarser scale. Then the process

is iterated on the approximation coefficients that get split again. The information lost in

45



2.3. EXTENDING THE WAVELET THEORY: WAVELET PACKET ANALYSIS

f

f

f

f

LP HP

HP

HP

LP

LP

LP HP

HPLP

LP HP LP HP

B B B B B B B B

BBBBBBBB

Figure 2.8: Decomposition of the spectrum of a signal using wavelet packets.

the approximation is retained in the detail coefficients. However, the details never get re-

analyzed.

In the wavelet packet framework, the process of splitting coefficients into two parts,

approximation and detail coefficients, is also applied to the detail coefficients. This produces

a complete, binary tree as shown in figure 2.8.

The first fundamental observation we can make is that the wavelet packet tree contains

the wavelet tree, as well as several other bases. The leaves of every connected binary subtree

form an orthogonal basis of the initial space. As a result, any finite energy signal can be

exactly reconstructed from any wavelet packet basis, offering an adapted way to code the

signal.

2.3.2 Choosing a decomposition

The number of admissible trees can be extremely large, and explicit enumeration of all of

them is not an option. Therefore, finding an optimal decomposition with respect to a given,

efficiently computable criterion is of particular interest. In general, the criterion corresponds

to the minimization of a cost function. The goal is to reduce the redundant wavelet packet

tree to the best basis with respect to a given criterion.
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Many criteria or penalties can be used depending on the application considered and what

the user is trying to achieve. However, criterion functions verifying an additivity property

are more desirable in the case of a binary tree structure. Indeed, additivity makes updating

of the penalty easier when splitting or merging coefficients.

Theorem 2. The entropy E must be an additive cost function such that Ep0q “ 0 and

Epsq “
ÿ

i

Epsiq (2.28)

where s is the signal considered and si its wavelet packet coefficients.

A list of a few general entropy-based criteria is given below.

Definition 13. Shannon entropy

EShannonpsq “ ´
ÿ

i

s2i logps2i q (2.29)

with the convention that 0logp0q “ 0.

Definition 14. lp-norm entropy

Elppsq “
ÿ

i

|si|
p (2.30)

with p Ps0, 1s.

Definition 15. Logarithm of the energy entropy

Elogpsq “ logps2i q (2.31)

with the convention that logp0q “ 0.

Definition 16. Threshold entropy

Eϵpsq “ # ti||si| ą ϵu (2.32)
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for a certain threshold ϵ, where # is the cardinality of the set. It corresponds to the number

of times the coefficients si are greater than the threshold ϵ.

2.3.3 Best basis algorithm

The best basis algorithm was derived by Coifman and Wickerhauser and presented in

reference [73]. Essentially, it consists in starting from the bottom of the tree and comparing

for each terminal node the entropy of the parent node with the sum of the entropies of the

two child nodes. If the entropy of the parent node is smaller than the sum of the entropies of

the child nodes, then the child nodes are merged together. Otherwise they remain terminal

nodes. This process is iterated over all the terminal nodes until an optimal decomposition

is reached. The algorithm is presented in pseudocode in algorithm 1.

Algorithm 1: Best Basis Algorithm
Data: a signal s of finite energy.
Result: the best wavelet basis with respect to a certain entropy criterion E.
begin

compute full binary tree up to level N to get the set wn,k of detail and
approximation coefficients

for n ÐÝ rN, 1s do
for k ÐÝ r0, n ´ 1s do

if node pn, 2kq is a terminal node then
en,2k ÐÝ Epwn,2kq

en,2k`1 ÐÝ Epwn,2k`1q

en´1,k ÐÝ Epwn´1,kq

if en,2k ` en,2k`1 ě en´1,k then
merge nodes pn, 2kq and pn, 2k ` 1q

2.3.4 Application to l1-minimization

Depending on the application the user is envisioning, some entropy or cost functions can be

more advantageous than others. For some applications the choice is obvious. In the case

of Compressive Sensing we want the wavelet packet transform to be a the best sparsifying
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transform possible. In other words, we are looking for the basis that will lead to the signal

expansion with the lowest l1-norm.

Using the wavelet packet framework, one can improve on the wavelet decomposition. We

can choose the lp-norm entropy described in 3.21 with p “ 1. Then we can derive the wavelet

expansion with the lowest l1-norm that will lead to a perfect reconstruction using the best

basis algorithm described in 2.3.3.

2.3.5 Concluding remarks

There are many more image representations available: curvelets, chirplets, etc. For the

purpose of this document, we will not develop on those. However more information can be

found in the literature [74–78].

2.4 Sparse representations and compression

Most signals are somewhat structured. That is, if we consider an image with a given number

of pixels with values uniformly distributed in the integer interval J0, 255K, the probability of

that image to represent a given scene, object, or person is zero. Intuitively, the subset of

signals that are interpretable as “meaningful” is very small compared to the set of all possible

signals. A picture of a given scene will have structures such as recognizable shapes, shadows,

textures, etc. These features are extremely unlikely to be present in a random image.

2.4.1 Coding images efficiently

From this observation and the fact that it is true for most signals, we can build coding

schemes for specific signals that display a given set of features with a high probability. This

is the idea behind signal compression. Taking advantage of the knowledge we have on a set

of features of a given type of signal, we can derive very efficient coding strategies. In terms

of compression, an efficient coding strategy will take advantage of the features of the signal
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to find a basis in which it can be expressed with the smallest amount of non-zero coefficients.

In other words, the signal possesses a sparse expansion in that basis.

Most real-life signals are not directly sparse in their acquisition basis. Also, most signals

do not have a purely sparse expansion, for example because of the presence of noise. However,

those signals are very often compressible. This means that there exists a basis in which the

signal coefficients decay rapidly. A compelling example is the compression of images. Most

natural images can be reconstructed from very few of their wavelet coefficients, making the

wavelet transform suitable for image compression. Such an example is shown in figure 2.9.

A good representation is efficient. This means it uses few coefficients to describe the full

signal or image. An image is then compressible in a certain representation space if its sparse

approximation in the transform domain yields a good reconstruction. Mathematically we

want the mean squared error of the reconstruction to be small. It is the case with the wavelet

transform. By construction it separates the details of an image from the rest at different

scales. The sparsification is inherent to this construction: the detail coefficients are generally

sparse even for complex images, and the slowly varying content is captured by the scaling

function on very few pixels as can be seen in figure 2.9.

Even though it has never been adopted by the general public, wavelet compression is

routinely used in the JPEG2000 format. Thanks to the properties of wavelets, it is more

efficient in terms of data compression than the older JPEG format that relies on the Discrete

Cosine Transform to compress images. However, it requires a lot more computational power

which explains why its use is primarily limited to the medical imaging field. At the time the

format was developed, personal computers were not powerful enough to render a JPEG2000

image in a timely fashion.

2.4.2 Sparsity and image compression

A vector is said to be k-sparse if and only if it has k non-zero coefficients. As a result a

k-sparse vector has only k degrees of freedom and lives in a k-dimensional space. Moreover
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Figure 2.9: (Left) Original picture. (Center) Log-scaled wavelet transform of the image,
displayed DR: 60 dB. (Right) Reconstruction of the image from 26% of its most significant
wavelet coefficients, energy retained: 99.8%.

there are Cpn, kq “ n!
pn´kq!k!

k-combinations of n, or ways to fill a k-sparse vector.

If we look at the cost of coding any n float vector, we get Opnq. Now if we look at the

cost of coding a k-sparse vector, we get O
`

k log2p
n
k

q
˘

. The advantage is clear: the sparser

the signal the cheaper it gets to store it. What if that was true for the acquisition as well?

In many applications, a lot of data is acquired to produce a final “object” for the user, for

example an image. Then comes a compression step. That step usually involves performing

a lossy compression, hence discarding some of the data that was acquired earlier. What if

instead of acquiring the signal in a traditional, evident acquisition basis it were possible to

only acquire its largest coefficient in a basis were the signal is guaranteed to be sparse? Then

the number of acquisitions needed would decrease drastically, and the information acquired

would be used more efficiently, rendering the well-known Shannon sampling theory [79]

obsolete. It is one of the aspect of signal acquisition that Compressive Sensing addresses.
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Chapter 3

Compressive Sensing and

l1-regularization

3.1 Introduction

Over the past 10 years, Compressive Sensing has gained a lot of visibility from the medi-

cal imaging research community. The most compelling feature for the use of Compressive

Sensing is its ability to perform perfect reconstructions of under-sampled signals using l1-

minimization. Of course, that counter-intuitive feature has a cost. The lacking information

is compensated for by a priori knowledge of the signal, as well as certain mathematical

conditions detailed further in this work.

So far, Compressive Sensing has proven to be particularly well suited for MRI, where the

assumptions of the Compressive Sensing theory can easily be justified, and the implemen-

tation is fairly straightforward [80]. It has allowed for faster image acquisition without loss

in image quality and resolution, which is critical for applications such as cardiac MRI. The

application of Compressive Sensing to ultrasound imaging is not as straightforward due to

the very nature of the acquired signal and the inverse problem that needs to be solved.

This section presents the basics of Compressive Sensing and aims at giving the reader the
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minimal background necessary to understand the assumptions and underlying constraints of

this technique.

3.2 Motivation

In this section, we present a simple, compelling example of why compressive acquisition can

be beneficial. Then we focus on MR imaging as a hands-on example of how Compressive

Sensing can be implemented in real-life applications. MRI is inherently a slow acquisition

modality where a patient needs to be immobilized for a long period of time to produce good

images [81]. The natural question one might ask is: is there a way to make it faster?

3.2.1 A little bit of intuition

In many applications, solving a problem requires finding a solution to an underdetermined

set of linear equations. A problem is said to be underdetermined when then number of

equations is less than the number of unknowns. There exists many examples of such cases,

and this section aims at giving a simple illustration.

Definition 17. Let us consider a signal xrts, with t “ 0, ¨ ¨ ¨ , n´ 1. The Discrete Fourier

Transform (DFT) of x is given by

F txrωsu “

n´1
ÿ

t“0

xrtse´2jπ ωt
n (3.1)

for ω “ 0, ¨ ¨ ¨ , n ´ 1.

We assume that the signal is acquired in the Fourier domain, meaning that we sample

the DFT of x. This is the case for MRI, for example, as we will see later. In many ap-

plications, there is not enough time to acquire all the coefficients of the DFT of x. So let

us assume that we collected m ! n DFT coefficients. We end up with an underdetermined
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system y “ Ax where y corresponds to the coefficients of the DFT of x that we have ac-

quired, and A is the equally under-sampled DFT matrix. How does one recover x from what

appears to be a highly incomplete view of its spectrum?

The general form of the problems we are tackling is a n-dimensional vector x, a m-

dimensional measurement vector y with m ! n, and a linear operator A that links x to

y

yk “ xak, xy with k “ 1, ¨ ¨ ¨ ,m ! n (3.2)

where x, y is the inner product and ak is the kth row of A. Since A is not invertible and we

have no additional information on the missing data, there is an infinite number of solutions

to this problem. It is seemingly impossible to choose which one is the correct one without

additional information. The theory of Compressive Sensing was designed for this particular

purpose. It was shown [82] that with a “bit of structure” [83], it is possible to find the desired

solution in most cases using convex programming techniques.

By structure, the instigators of Compressive Sensing mean sparsity, or the knowledge

that a sparse expansion of the signal exists in a known basis. Sparsity can be seen as the

true number of degrees of freedom of a signal. In the case of matrix completion, a domain

also tackled by Compressive Sensing, structure means low-rank. Again it can be linked to

the number of degrees of freedom of the matrix. But is this knowledge of the structure of

the signal sufficient?

Naturally, the answer is no. As a simple counter example, consider a 1-sparse 10-

dimensional vector x whose only non-zero coefficients is the tenth. Suppose the acquisition

consists in sampling the first 5 coefficient values. The matrix A has the form

¨

˚

˝

I5 05

05 05

˛

‹

‚

(3.3)

where I5 is the 5 ˆ 5 identity matrix and 05 is the 5 ˆ 5 null matrix. The acquisition of our
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vector x can be expressed as

y “ Ax “ 0 (3.4)

Since y “ 0, it will be impossible to recover x no matter what we do. Thus it is important

for x to not be in the null space of A to ensure some information about x is acquired.

One way to make certain of this is to consider an incoherence property which states that

while x is sparse, the rows of A must not. Each measurement yk is a weighted sum of all the

components of x. Another way to look at it is to say that each ak in A must not correlate

well with x. As a result, all the yk contain a little bit of the information in x.

Under such conditions, the number of equations needed to solve the problem is roughly

equivalent to the number of degrees of freedom of the original signal.

3.2.2 Digital photography and the sensor waste

The sensor of a digital camera is made out of millions of photosites. Each photosite is a

unique sensor that acquires a tiny part of the image projected on its surface by the lens

while exposing a shot. After the light intensity value is recorded by the sensor, the data is

processed in the memory of the camera to output a compressed file, generally a JPEG.

JPEG compression is lossy. The raw data is decomposed on a discrete cosine basis, the

most significant coefficients are encoded into the JPEG file while the others are purely and

simply discarded. So we go from data acquired with millions of photosites to information

encoded in a few kilobytes. Obviously, this is a wasteful process.

Compressive Sensing is a technology that takes advantage of the compressibility of a

photograph, for example, to perform the data acquisition in an already compressed form.

Since only a few discrete cosine coefficients (typically a 105 order of magnitude) can describe

most million pixel images, why not try to acquire those coefficients, and not the others since

they are to be discarded anyway? Another way to look at it is to realize that most images

have a number of degrees of freedom in a discrete cosine space that is much smaller than the
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number of sensors used for the acquisition.

Compressive Sensing offers a way to acquire just the amount of data needed by sampling

and compressing at the same time and by providing efficient decompression algorithms.

3.2.3 MR imaging: the ideal case for Compressive Sensing

MRI is a good candidate for Compressive Sensing, mostly for two reasons:

• MR images are compressible by sparse coding in an appropriate transform domain, the

wavelet domain in most cases,

• MRI scanners acquire encoded information, as opposed to pixels for example, since the

acquisition takes place in the Fourier domain.

Hence, an MRI system can be used in a Compressive Sensing configuration:

• The user controls the gradients, as well as the RF pulses, which in turn control the

phase of the voxels in the image,

• The MR signal is received by a coil in the encoded form of k-space samples,

• Therefore the user can modify the MRI pulse sequence to perform incoherent measure-

ments of the k-space,

• Non-linear reconstruction with a sparsity condition allows the reconstruction of an

image.

3.2.4 Theory of MRI in brief

The MRI signal comes from the resonance of protons in the body. The main contribution to

the signal comes from water. The patient is placed in a strong, static magnetic field B0 that

polarizes the protons. A radio-frequency (RF) excitation B1 is then applied, producing a

transverse magnetization mprq that precesses, generating an emission of RF signal detected
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Figure 3.1: A few common acquistion trajectories in the k-space: the resolution of the
reconstructed image depends on the coverage of the k-space, and the field-of-view by the
sampling density. If the Nyquist criterion is not respected, artifacts of shapes dictated by
the sampling strategy appear.

by receiver coils. The transverse magnetization mprq can be made proportional to the proton

density in the body, as well as other properties [81]. The goal of the MR reconstruction

process is to visualize mprq.

The information is spatially encoded using linear gradients of magnetic fields: G “
¨

˚

˚

˚

˚

˝

Gx

Gy

Gz

˛

‹

‹

‹

‹

‚

. The gradient changes to resonance frequency of the protons, based on their location

in the body, making spatial discrimination of the signals possible. It can be shown that an

MR measurement signal s can be expressed as:

sptq “

¡

V

mprqe´i2πkptq¨rdr (3.5)

where V is the volume of the reconstructed area [81]. Equation 3.5 visibly corresponds to the

Fourier transform of mprq sampled at the spatial frequency kptq. Many sampling strategies

exist, and the result of the engineering of a magnetic gradient for MRI is commonly referred

to as a pulse sequence [84–86].

3.2.5 MR acquisition and image reconstruction

The pulse sequence drives the acquisition in the k-space which is the Fourier domain.

In the MR lingo, 1 acquisition corresponds to 1 RF pulse sequence, hence 1 point in the
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k-space. The sampling of the k-space follows a specific trajectory designed to meet the

Nyquist criterion. The coverage and density of the trajectory dictates the resolution and

the field-of-view. If the trajectories are lines, the reconstruction algorithm is conveniently a

simple inverse Fast Fourier Transform (FFT).

If a trajectory does not meet the Nyquist criterion, artifacts appear. The shape and

strength of the artifacts depend on the shape of the trajectory. For example aliasing if the

density is too low for a linear trajectory. One should note here that a random downsampling

of the k-space will lead to a multitude of weak artifacts that will look just like noise. This is

the phenomenon of incoherent aliasing: since the downsampling is random, each contribution

leads to different artifacts that do not add up. This phenomenon will be exploited in the

MRI implementation of Compressive Sensing.

3.2.6 Limitations

Beter performace can be obtained with higher gradient amplitude. However, it is a well-

known and demonstrated fact that high gradient amplitudes in conjunction with rapid

switching of the magnetization can lead to peripheral nerve stimulation causing negative

effects to the patient. From a minor discomfort to actual pain, this phenomenon can present

a risk when imaging the heart, for example. As a result, physiology imposes a limit to the

system’s performance [81].

Naturally, the question of overcoming this limitation arises. The benefit is clear: make

MR acquisitions faster, without degrading the image quality. Compressive Sensing is one of

the efforts that have been developed in that direction over the past 10 years.

3.2.7 Application of Compressive Sensing to MRI

Natural images are often compressible by encoding of their information in an appropri-

ate transform space. A few common transform-based compression schemes are JPEG,

JPEG2000, and MPEG [72, 87]. The strategy of such transform-based compression al-
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gorithms is to apply a sparsifying transform to the image or video in order to get a vector

of rapidly decaying coefficients. The image is then compressed by selecting the largest co-

efficients and encoding their location. The smaller coefficients are discarded. Depending

on the image and the application, one such transform can be the Discrete Wavelet Trans-

form (DWT), finite-differencing, the Discrete Cosine Transform (DCT), etc. In the case of

dynamic imaging, a potential pseudo-periodicity of the signal can also be exploited.

MRI has the advantage of:

• the encoded nature of the acquisition,

• the sparsity of the images (for example angiography) or their compressibility.

The basic principle of Compressive Sensing is to make a small number of measurements,

that are random-like linear combinations of signal values. By small, we mean smaller than

the number of samples that are necessary under Shannon’s theory. This makes sense only

if the signal is compressible since less samples are needed in the transform domain, where the

number of degrees of freedom is reduced. Thus good reconstruction is possible from fewer

measurements through a non-linear process. In the case of MRI, this would mean acquiring

random samples in the k-space rather than the entire grid.

In order to be successful, a Compressive Sensing acquisition scheme must have:

• Transform sparsity: the image we are reconstructing must have a sparse expansion

in a known transform domain. In other words, it must be compressible by transform

coding.

• Incoherence of undersampling artifacts: the undersampling artifacts that appear

when linearly reconstructing the image must be incoherent in the transform domain.

In other words, the artifacts must be noise-like.

• Non-linear reconstruction: the reconstruction method should be non-linear and

enforce sparsity of the reconstruction as well as its consistency with the data acquired.
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The question of how to randomly sample the k-space is not trivial, and is beyond the

scope of this document. We will just accept that a pseudo-random sampling of the k-space

leading to low coherence of the artifacts exists. Then the image I can be recovered. Let Ψ

be the transform coding matrix, and FS the under-sampled Fourier transform. The image

I is recovered by solving the problem:

min }ΨI}1 s.t. }FSI ´ y}2 ă ϵ (3.6)

where y is the measured k-space data that we acquired, and ϵ governs the fidelity of the

reconstruction to the data.

Definition 18. The l1-norm of a vector x is defined by

}x}1 “
ÿ

i

|xi| (3.7)

The first term in equation 3.6 promotes sparsity [82, 88, 89]. The second term enforces

data consistency.

This reconstruction scheme can be used for:

• Angiography: a contrast agent is injected into the patient’s blood stream, effectively

increasing the blood signal, and imaged in 3D. Capturing the dynamics of the contrast

agent is crucial to this application. However it requires high spatial and temporal

resolution as well as a large field-of-view. Traditional sampling fails at accomplishing

this task, but Compressive Sensing is perfectly suitable for it.

• Coronary imaging: imaging coronary arteries is a challenging task since they are

constantly in motion. The number of acquisitions is generally limited to the number

of heart beats during one breath hold. Each acquisition needs to be very short to

avoid motion blurring. Compressive Sensing can be used to decrease acquisition time,

allowing the whole heart to be imaged in a single breath hold.
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• Brain imaging: Compressive Sensing can reduce acquisition time while improving

resolution of the most common clinical application of MRI.

3.3 A Compressive Sensing primer

Compressive Sensing relies mainly on two fundamental assumptions related to the acquired

signal: sparsity and incoherence. The sparsity assumption is exploited in the form of an l1-

norm minimization algorithm that reconstructs the signal. The attentive reader might notice

a discrepancy here. In fact, a good question to ask is: since we are trying to reconstruct a

sparse vector, shouldn’t we try to minimize the number of non-zero coefficients it has?

3.3.1 The sensing framework

We consider a continuous time domain signal of interest f that we want to sample. We

assume that the information about f is acquired by inner products with a set of waveforms

φk:

yk “ xf, φky @k “ 1, ¨ ¨ ¨ ,m (3.8)

wherem is the number of waveforms used to sample f , and thus the number of measurements.

This process is equivalent to correlating the signal f with the waveforms φk. This is indeed a

classic sampling scheme. For example, if the waveforms φk are spikes, or Dirac δ functions

δk, we find that the above process is equivalent to traditional sampling:

yk “ xf, δky “ f rks (3.9)

Similarly, if φk is a sinusoid, then yk is a Fourier coefficient, which is found for example

in MR imaging. The theory of Compressive Sensing focuses on under-sampled signals, such

that m ! n where n is the dimension of the signal f . In the case of traditional sampling, n

is the number of samples imposed by the Nyquist-Shannon criteria.
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The questions that arise from this are the following:

• Is it possible to accurately reconstruct f from m ! n measurements?

• How to design m ! n waveforms φk that capture most of the information of the signal?

• If so, how can we approximate f from this information?

If A denotes a mˆn sensing matrix with the vectors φ1, ¨ ¨ ¨ , φm as rows, then the acquisition

process is given by

y “ Af (3.10)

In general, recovering f from y is ill-posed when m ă n since there is an infinity of solutions.

However, if we know about the structure of the signal, we can find a solution. Compressive

Sensing is based on two fundamental premises: sparsity and incoherence.

3.3.2 Sparsity

Many natural signals have a sparse representation in some basis as we saw with figure 2.9,

which makes them compressible by transform coding.

A vector x P Rn is said to be S-sparse if all but S of its coefficients are equal to zero.

Considering a basis Ψ “ pψiqi“1,¨¨¨ ,n of the signal space, we have:

x “

n
ÿ

i“1

xkψi (3.11)

where the pxiqiPp1,...,nq are the coefficients of x in the basis Ψ.

In that framework, x is said to be S-sparse if the subset Ω “ ti | xi ‰ 0u is of cardinality

S. Equivalently the condition }x}l0 ď S must hold true. }x}l0 is the l0-pseudonorm defined

as the number of non-zero coefficients of x.

The energy of a sparse signal in a certain basis is concentrated on a few samples. The

target number of acquisition being low, each measurement has to provide as much information
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as possible. For that reason the acquisition is performed in a different basis where the energy

of the signal is spread out on as many samples as possible. Intuitively, the two bases are

incoherent, enabling fewer measurements containing all the information required for accurate

reconstruction.

As mentioned by Romberg in [90],

A good signal representation can fundamentally aid the acquisition process.

3.3.3 Incoherence

The coherence between two bases Φ and Ψ is usually defined as the maximum absolute value

of the cross-correlation between the elements of the two bases [91]:

µpΦ,Ψq “
?
n ¨ max

1ďk,jďn
| ă φk, ψj ą | (3.12)

This value corresponds to the maximum of correlation between any two vectors of Φ and Ψ.

If the vectors are correlated, then µ is large. If they are uncorrelated, µ is small. The value

of µ is always between 1 and
?
n.

In Compressive Sensing, we are looking at low µ values which corresponds to incoherent

bases. To clarify the notion of incoherence, consider the following three examples:

Φ is a spike basis, Ψ is the Fourier basis Quick calculation shows that in that

case µ “ 1, the maximal incoherence. Indeed, spikes and sinusoids are incoherent in any

dimension.

Φ is the noiselet basis, Ψ is the Haar wavelet basis Noiselets were derived to be

as incoherent as possible with Haar wavelets. It has be shown that in that case µ “
?
2.

Noiselets are also maximally incoherent with spikes and incoherent with the Fourier basis.
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Φ is an orthonormal basis picked at random, Ψ is any basis Then µ is approximately
?
2logn.

3.3.4 The reconstruction of under-sampled sparse signals

Assuming that the acquisition is limited to m ! n samples, we collect the data yk according

to the following process:

yk “ xf, φky k P M (3.13)

where M is a subset of t1, ¨ ¨ ¨ , nu of cardinality m ! n. We decide to recover the signal from

the information at hand by l1-minimiation. The reconstruction f˚ is f˚ “ Ψx˚ where x˚ is

the solution to the problem

min }x}l1 s.t. yk “ xφk,Ψxy @k P M (3.14)

This means that among all the possible solutions f “ Ψx consistent with the data, we choose

the one with the minimal l1-norm. If f is sparse enough, then the reconstruction is exact.

3.3.5 Why minimizing the l1-norm?

In practice, the number of non-zero coefficients in a vector is given by the so-called l0-norm.

Definition 19. The l0-norm is defined by:

@x, }x}l0 “ #txi|xi ‰ 0u (3.15)

Unfortunately, the “l0-norm” is in fact not a norm in the mathematical sense. It is a

pseudonorm since it does not satisfy the homogeneity requirement. In fact, we have:

}λx}l0 “ }x}l0 @x (3.16)
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Therefore, the expectation that one could solve the following problem:

min }ΨI}0 s.t. }FSI ´ y}2 ă ϵ (3.17)

falls flat. This problem is infamously computationally intractable. It is a NP-hard problem.

The l1-norm is used as an approximation of the l0-pseudonorm to make the computation

tractable. Historically, the l1-norm has been used in various applications as a natural pro-

moter of sparsity. One way to understand how the l1-norm promotes sparsity is to consider

a vector x “ p1, ϵq P R2 with ϵ ! 1. Then the l1- and l2-norms of x are given by, respectively:

}x}l1 “ 1 ` ϵ and }x}2l2 “ 1 ` ϵ2 (3.18)

Now if we reduce, as part of the regularization procedure, the magnitude of one of the

coefficients of x by δ ď ϵ, say x1, the resulting norms become:

}x}l1 “ 1 ´ δ ` ϵ and }x}2l2 “ 1 ´ 2δ ` δ2 ` ϵ2 (3.19)

On the other hand, reducing x2 by δ gives:

}x}l1 “ 1 ´ δ ` ϵ and }x}2l2 “ 1 ´ 2ϵδ ` δ2 ` ϵ2 (3.20)

As a result, in the case of a l2-penalty, reducing the larger term x1 leads to a much greater

reduction in norm than doing so to the smaller term x2. In the case of the l1-penalty, the

reduction in norm is the same for both coefficients.

Thus, a model using an l2-penalty is very unlikely to set any coefficients to zero, since the

reduction in coefficients approaches zero when the coefficient is small. On the other hand, a

model based on a l1-penalty will see a reduction by δ in both cases.
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Considering the lp-norm:

}x}p “

˜

ÿ

i

|xi|
p

¸
1
p

, @p Ps0, 1s (3.21)

we observe that the more p approaches zero, the more the norm promotes sparsity.

3.3.6 How sparse should a signal be?

A natural question that arises from the previous observation is: how do we know that a

signal is sufficiently sparse?

Theorem 3. Let f be a signal, and x its coefficients in the basis Ψ such that x is a S-sparse

vector. Suppose that we perform m measurements of f uniformly at random in the domain

Φ. Then if

m ě C ¨ µ2pΦ,Ψq ¨ S ¨ log n (3.22)

for C ą 0, the solution to the minimization problem 3.14 is exact with overwhelming proba-

bility [92].

Corollary 6. The probability of exact recovery is greater than 1 ´ δ if

m ě C ¨ µ2pΦ,Ψq ¨ S ¨ log n (3.23)

A few comments can be made of theorem 3 and equation 3.22:

1. The lower the coherence, the fewer measurements we need, making the significance of

incoherence evident.

2. The entirety of the information is preserved if we make any m measurements.

3. The signal can be recovered from the compressed dataset by convex minimization

without further assumptions on the total number of non-zero coefficients of x, their

location, and their amplitude.
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We can see a data acquisition protocol emerge from all this:

• sample non-adaptively in an incoherent domain,

• decode the data using l1-minimization.

We have shown that Compressive Sensing could recover sparse under-sampled signals from a

few measurements. However, in order to be useful as an acquisition paradigm, Compressive

Sensing has to be robust to signals that are only nearly sparse, as well as noise. In fact,

most natural signals are compressible, or approximately sparse in a certain basis, but not

exactly sparse. Can Compressive Sensing reconstruct compressible signals from just a few

measurements? And since most acquisitions are corrupted by a certain level of noise, can

Compressive Sensing accurately reconstruct compressible signals from noisy data? Finally,

another desirable feature is stability : does a small perturbation in the data translate to a

small perturbation in the reconstruction?

3.3.7 Robustness to non-sparse signals

From now on, we will assume that the acquisition takes the form

y “ Ax ` z (3.24)

where z is the additive noise vector. We have f “ Ψx, and y “ DΦf whereD is a decimation,

or undersampling, matrix that selects m coefficients at random. Thus the sensing matrix A

is given by A “ DΦΨ.

For the rest of this development, we need to introduce a new, useful tool: the so-called

Restricted Isometry Property, or RIP.

Definition 20. @S P t1, 2, ¨ ¨ ¨ u, the isometry constant δS of a matrix A is defined to be the

smallest number such that

p1 ´ δSq }x}2l2 ď }Ax}2l2 ď p1 ` δSq }x}2l2 (3.25)
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holds for all S-sparse vectors x [93].

Hence, a matrix A obeys the RIP of order S if δS is not too close to 1. It follows from

this that if the RIP holds, then A approximately preserves the Euclidean length of S-sparse

vectors, which in turn implies that any S-sparse vector cannot be in the null space of A,

which would make any attempt to reconstruct such a vector unsuccessful.

This result is fundamental. In fact, if we consider two S-sparse vectors x1 and x2, we

have that x1 ´ x2 is 2S-sparse. Then if the 2S-RIP holds for A, we have

p1 ´ δ2Sq }x1 ´ x2}2l2 ď }Ax1 ´ Ax2}2l2 ď p1 ` δ2Sq }x1 ´ x2}
2
l2

(3.26)

with δ2S not too close to 1. This means that the sensing matrix A approximately preserves

Euclidean distances, guaranteeing the possibility of algorithmically discriminating S-sparse

vectors or signals based on their compressed measurements.

Theorem 4. If δ2S ă
?
2 ´ 1, then the solution x˚ to 3.14 obeys

$

’

’

&

’

’

%

}x˚ ´ x}l2 ď C0 ¨
}x´xS}l2?

S
and

}x˚ ´ x}l1 ď C0 ¨ }x ´ XS}l1

(3.27)

for C ą 0, where xS is the S-sparse approximation of x, that is the vector x with all but its

largest S coefficients set to 0 [94–96].

Theorem 4 states that if x is not S-sparse, then the Compressive Sensing reconstruction

is at least as good the S-sparse approximation of x, denoted by xS. The previous results

are strong, but raise a new question: how to design a matrix A that is S-RIP with S close

to m? Before giving examples of such matrices, we examine the robustness of Compressive

Sensing to noisy data.
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3.3.8 Robustness to noisy data

In the presence of noise, we relax the constraint to solve the following problem:

min}x}l1 s.t. }Ax ´ y}l2 ď ϵ (3.28)

This problem is the so-called LASSO [97].

Theorem 5. Assuming that δ2S ă
?
2 ´ 1, the solution x˚ to 3.28 obeys

}x˚ ´ x}l2 ď C0 ¨
}x ´ xS}l1?

S
` C1 ¨ ϵ (3.29)

for C0 ą 0 and C1 ą 0 [95].

The interpretation of theorem 5 is fairly straightforward: the reconstruction error is

bounded by the sum of the reconstruction error from noiseless data, and the noise level.

It follows that Compressive Sensing is robust to noisy data.

3.3.9 Examples of random sensing matrices

One can obtain a sensing matrix A that obeys the RIP by

• sampling n columns uniformly at random on the unit sphere of Rm,

• sampling i.i.d. entries from the normal distribution with mean 0 and variance 1
m

,

• sampling a random projection P ,

• sampling i.i.d. entries from a symmetric Bernoulli distribution.

All the previous strategies lead to RIP compliant sensing matrices if

m ě C ¨ S ¨ log
´n

S

¯

(3.30)
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3.3.10 Non-linear reconstruction

To give the reader intuition on how Compressive Sensing reconstruction actually works, a

one-dimensional heuristic case is presented in this section. Figure 3.2 shows how a signal

can be recovered from random under-sampled acquisitions using the iterative thresholding

algorithm.

Figure 3.2.a shows a sparse signal. The data acquisition happens in the k-space, shown

in figure 3.2.b. In the case of an equispaced undersampling of the k-space, the reconstructed

signal will show aliasing leading to ambiguity. If the undersampling is somewhat random

then the artifacts generated in the signal space are not coherent and create a noise-like

pattern added to the signal we are reconstructing, as shown in figure 3.2.c.

The first step of the iterative thresholding algorithm is to select the most significant

coefficients in the signal space (figure 3.2.d), and set the other ones to zero (figure 3.2.e).

This first approximation of the signal is then used to calculate what the acquisition data

would look like if only those coefficients were present. The result is subtracted from the data,

and thresholded again, as shown in figure 3.2.g, allowing the recovery of smaller coefficients

[98].

Algorithm 2: Iterative Thresholding Algorithm
Data: a randomly sampled signal x of finite energy.
Result: the recovery of the full signal x.
begin

error ÐÝ }Ax ´ y}l2
set threshold to given value
while error > 0 do

xn ÐÝ x px ě thresholdq

yn ÐÝ Axn ´ y
update threshold

From this example, it is clear that Compressive Sensing can help recover signals from

under-sampled data that would otherwise be lost in the noise caused by the undersampling.
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Figure 3.2: Iterative thresholding algorithm for signal reconstruction from under-sampled
data.

3.3.11 Wrap-up

The classic data acquisition paradigm is extremely wasteful. It starts with the acquisition of

a huge amount of data that usually gets compressed for ease of storage. In the compression

process a lot of the data gets discarded. The Compressive Sensing paradigm works as if we

could acquire only the necessary encoded compression coefficients of the signal. Just the

right amount of data gets collected by using O
`

S ¨ log
`

n
S

˘˘

random projections. This data

collection in an already compressed form coupled with efficient decoding algorithms allows

us to obtain potentially super-resolved signals from just a few measurements.

Herein, we introduce some of the notation that we will use for the remainder of this work,

in an effort to bridge the gap between the Compressive Sensing theory and the application

we developed.

Let us consider a continuous object we wish to acquire represented by the function f .
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We assume that f has a sparse representation I in the basis Ψ

f “ ΨI (3.31)

The acquisition is performed in the basis Φ. Let R0 denote the complete dataset acquired

at the Nyquist rate. We have

R0 “ Φf (3.32)

The coherence between Φ and Ψ is assumed to be low.

Compressive Sensing focuses on under-sampled signals. Thus, if R0 is a vector sampled

at the Nyquist frequency and has n samples, we only consider a subset Ωu of samples with

a cardinality m ă n. The under-sampling or decimation is modeled by the matrix denoted

D P Mm,npRq. We will loosely define D as the matrix that picks m coefficients out of n.

The under-sampled data R is obtained from R0 by multiplication with the matrix D. Using

the expression for R0 from equation 3.32, we find that:

R “ DR0 “ D Φf (3.33)

Subsequently, we have a linear relationship between the under-sampled data R and the

representation of the original object we want to acquire I, given by:

R “ D Φ ΨI “ GI (3.34)

with G “ DΦΨ. G is the linear application that links the sparse representation of the signal

I, and the under-sampled data R.

Under the previous assumptions, the theory of Compressive Sensing states that the orig-

inal signal f can be reconstructed from the under-sampled subset of coefficients R using
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l1-minimization [99]. That is, the problem:

min
ÎPRN

}Î}l1 subject to GÎ “ R (3.35)

has a unique solution, and that solution is exactly I. This result can then be used to recover

f using equation 3.32.

Equation 3.35 simply states that we aim at iteratively minimizing the l1-norm of a vector

Î under the constraint GÎ “ R. That constraint ensures that Î stays consistent with the

acquired data throughout the minimization process. This problem is known as the Basis

Pursuit (BP) [100].

In the presence of noise, the constraint may be relaxed and the problem becomes:

min
ÎPRN

}Î}l1 subject to }GÎ ´ R}l2 ď ϵ (3.36)

where ϵ is the noise level. This minimization problem is known as the Basis Pursuit De-

Noising (BPDN) [100].

As a last remark, we will note that the signal doesn’t have to be exactly sparse in some

basis. In fact, it is almost never the case with physical signals. Compressibility is sufficient: a

signal f is compressible in the basis Ψ if its coefficients ordered by magnitude decay relatively

fast. In that perspective, Compressive Sensing is a more efficient way to acquire the same

amount of information from a signal.

For more information on the theory of Compressive Sensing, the interested reader could

refer to [82, 91, 99, 101, 102], and [103].
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3.4 Solving the inverse problem

3.4.1 What is an inverse problem?

It is generally admitted that a problem is inverse when:

• the output is known, either everywhere or on a certain domain,

• the input is the unknown.

The acquisition can be modeled by a measurement operator G such that:

R “ GpIq (3.37)

where R is the output, the data acquired, and I is the input, the information we are trying

to determine. It corresponds to the forward process. In the case of linear measurements, the

operator G becomes the matrix G and we have:

R “ GI (3.38)

Of course, the above equality must be taken with a grain of salt. It is only valid if the model

employed perfectly describes the problem, and in the absence of noise. Those two conditions

are seldom verified in real-life.

With that in mind, we can now focus on the necessary conditions to solve inverse prob-

lems. Hadamard [104, 105] has described a set of conditions for well-posedness of inverse

problems. This set of conditions is generally accepted to be necessary:

• Existence: a solution must exist,

• Uniqueness: the solution must be unique, or at least in limited number,
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• Stability: the solution must depend continuously on the data, meaning that a small

perturbation in the data must result in a small perturbation in the solution.

For the measurement operator G, this means that:

• G must be injective: Gpx1q “ Gpx2q ùñ x1 “ x2,

• G must be stable: if we have y1 “ Gpx1q and y2 “ Gpx2q then Gpx1q ÝÑ
x1Ñx2

Gpx2q.

Unfortunately, most inverse problems are ill-posed, or well-posed but badly conditioned.

The echography inverse problem is no exception to that rule. However, if the class of the

solution is known the restriction of the problem to that particular class might be solvable.

It is a regularization of the problem.

3.4.2 The ultrasound imaging inverse problem

Ultrasound imaging is based on the probing of tissue with a sound wave. For that purpose,

the human body is generally considered like a homogeneous fluid, such as water.

Variables and equations on hand The independent variables are time t and space x.

The dependent variables that we want to determine are:

• the wave propagation speed: vpx, tq,

• the pressure field: ppx, tq,

• the density: ρpx, tq.

These variables are linked by equations such as:

• the conservation of mass,

• Euler’s equation,

• an equation of state,

that we will develop in this section.
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Conservation of mass First of all, let us consider a volume V0 of fluid bounded by the

closed surface S0. The mass of the fluid is given by:

m “

¡

V0

ρdV (3.39)

The amount of fluid that flows through a surface element dS with its normal pointing outward

is given by ρv ¨ dS. Thus, the total variation of the fluid mass is given by:

Bm

Bt
“ ´

£

S0

ρv ¨ dS (3.40)

Using equation 3.39 and differentiating under the integral sign (since t and x are indepen-

dent), we get:

@V0

¡

V0

ˆ

Bρ

Bt
` divρv

˙

dV “ 0 (3.41)

This relationship must hold true for any volume of fluid V0 which means the integrand must

be equal to 0. We can write:
Bρ

Bt
` divρv “ 0 (3.42)

Equation 3.42 is known as the conservation of mass.

Euler’s equation Euler’s equation is obtained by balancing the forces being applied

to a volume V0 of fluid. To that end, we need a volumic expression of the pressure forces.

Considering the surface S0 bounding the volume V0, the total pressure at the surface Ptot is

given by:

Ptot “ ´

£

S0

pdS (3.43)
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Using Gauss-Ostrogradsky’s theorem [106] that relates the flux of a vector field through

a surface to the vector field in the volume defined by that surface, we find that:

Ptot “ ´

¡

V0

∇pdV (3.44)

Therefore the pressure forces in the volume V0 can be expressed using the vector ∇p. We

use this expression in Euler’s equation:

ρ
Dv

Dt
“ ´∇p (3.45)

where D
Dt

is the material derivative [107] defined by:

D

Dt
“

B

Bt
` pv ¨ ∇q (3.46)

This yields the conservation of the linear momentum also known as Euler’s equation:

Bv

Bt
` pv ¨ ∇qv “ ´

1

ρ
∇p (3.47)

At this point, we have derived a set of 3 ` 1 equations: 3 of those come from Euler’s

equation, while the other one is the conservation of mass. However, we are working with

5 unknowns: v, p, and ρ. Evidently, we need another equation to ensure the problem is

well-posed. One such equation is the equation of state.

Equation of state The equation of state describes the thermodynamic behavior of the

fluid and can be written p “ fpρ, sq, where s is the entropy of the system, for a certain

function f . In the case of an ideal gas for example, we can invoke the reversible and adiabatic

nature of the wave propagation to show that the entropy is constant, yielding:

p

p0
“

ˆ

ρ

ρ0

˙γ

(3.48)
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with p0 and ρ0 describing the pressure and density at a reference state, and γ “ CP

CV
the

adiabatic index, corresponding to the ratio of the heat capacity at constant pressure CP and

the heat capacity at constant volume CV [107].

However, this relationship is not true in the case of an ideal liquid. In fact, there is no

general equation of state for an ideal liquid. Fortunately, we can expand p in a Taylor

series:

ppρ, sq “ p0 ` pρ ´ ρ0q
Bp

Bρ

ˇ

ˇ

ˇ

ˇ

s0,ρ0

` ps ´ s0q
Bp

Bs

ˇ

ˇ

ˇ

ˇ

s0,ρ0

`
1

2
pρ ´ ρ0qps ´ s0q

B2p

BsBρ

ˇ

ˇ

ˇ

ˇ

s0,ρ0

`
1

2
pρ ´ ρ0q

2 B2p

Bρ2

ˇ

ˇ

ˇ

ˇ

s0,ρ0

`
1

2
ps ´ s0q

2 B2p

Bs2

ˇ

ˇ

ˇ

ˇ

s0,ρ0

` opρ2, s2q (3.49)

We have already established that the sound wave propagation is isentropic, so the previous

equation becomes:

p “ p0 ` A
ρ ´ ρ0
ρ0

`
B

2

ˆ

ρ ´ ρ0
ρ0

˙2

` opρ2q (3.50)

with A “ ρ0
Bp
Bρ

ˇ

ˇ

ˇ

s0,ρ0
and B “ ρ20

B2p
Bρ2

ˇ

ˇ

ˇ

s0,ρ0
. A is actually the isentropic bulk modulus of the

fluid χs: A “ χs.

Wave equation We now have 5 relationships that describe the behavior of our 5 variables,

ensuring the well-posedness of the forward problem. To derive the wave equation, we assume

that a sound wave is a small perturbation of the state of the system at equilibrium. This

way we have p´p0
p0

! 1, ρ´ρ0
ρ0

! 1, and }v} ! 1. We denote the perturbation ρ1, p1, v1, then

we have:

p “ p0 ` p1 (3.51)

ρ “ ρ0 ` ρ1 (3.52)

v “ 0 ` v1 (3.53)
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Euler’s equation becomes:

pρ0 ` ρ1q

„

Bv1

Bt
` pv1 ¨ ∇qv1

ȷ

“ ´∇p1 (3.54)

Limiting the devlopment to the first order, we get:

ρ0
Bv1

Bt
“ ´∇p1 (3.55)

Simliarly, the conservation of mass becomes:

Bρ1
Bt

` pρ0 ` ρ1qdiv v1 ` v1 ¨ ∇ρ1 “ 0 (3.56)

yielding, when keeping only first order terms:

Bρ1
Bt

` ρ0div v1 “ 0 (3.57)

The equation of state gives:

p “ p0 ` χs
ρ1
ρ0

(3.58)

Since we have p “ p0 ` p1, we get:

p1 “ χs
ρ1
ρ0

(3.59)

Inputing equation 3.59 in equation 3.57, we get:

1

χs

Bp1
Bt

` div v1 “ 0 (3.60)

We can then differentiate equation 3.55 with respect to time and use equation 3.60 to elim-

inate p1 and find the propagation equation for v1:

B2v1

Bt2
´
χs
ρ0

∆v1 “ 0 (3.61)
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since ∇div “ ∆.

Speed of sound Equation 3.61 is the wave equation for speed, also known as d’Alembert’s

equation. Similarly, the wave equation for pressure can be derived by differentiating equa-

tion 3.60 with respect to time and use equation 3.55 to eliminate v1 and find the wave

equation for pressure:
B2p1
Bt2

´
χs
ρ0

∆p1 “ 0 (3.62)

A dimensional analysis of χs

ρ0
shows that this quantity has the physical dimensions of a

squared speed. Thus, let c0 be the speed of sound defined by:

c0 “

c

χs
ρ0

(3.63)

Equation 3.63 shows that the speed of sound in a fluid depends on the inverse of its density

ρ0 and on the its isentropic bulk modulus χs. Subsequently, the speed of sound in a medium

increases with its stiffness and decreases with its density. The velocity c0 represents the

maximum propagation speed of a wave in a homogeneous medium.

Solutions to the wave equation Therefore, we have a set of two equations that govern

the pressure and the speed associated with an acoustic wave propagating in a homogeneous

medium. In practice we define the d’Alembert operator or d’Alembertian l such that

equations 3.61 and 3.62 can be written

l p “ 0 (3.64)

l v “ 0 (3.65)
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The most general solution of d’Alembert’s equation can be found exactly using d’Alembert’s

solution [108] for example:

φipxi, tq “ f
´

t ´
xi
c

¯

` g
´

t `
xi
c

¯

(3.66)

where the φi are the projections of φ on each of the coordinate system axes. Here, f

corresponds to a wave that propagates toward increasing values of xi whereas g is a wave

that propagates toward decreasing values of xi.

The Helmholtz equation We can apply the Fourier transform as a way to simplify

the resolution of equation 3.62. It allows us to study monochromatic solutions of equa-

tion 3.62. And since any signal can be written as a sum of sines and cosines, we can then

derive more general solutions.

In the Fourier domain, the derivatives with respect to time can be simplified since

$

’

’

&

’

’

%

B
Bt

becomes iω

B2

Bt2
becomes ´ ω2

(3.67)

As a result, the Fourier transform of equation 3.62 is

`

∆ ` k2
˘

P “ 0 (3.68)

where P is the Fourier transform of p and k “ ω2

c2
is the wave number. This is commonly

known as the Helmholtz equation.

Let us consider a monochromatic plane wave p0ejωt`ϕ0 , where p0 and ϕ0 are constant.

Then based on d’Alembert’s solution,

p “ p0e
jpωt´x

c q`ϕ0 (3.69)
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is solution of equation 3.62. Therefore it also verifies the Helmholtz equation. Inputing

the plane wave 3.69 into equation 3.68, we find that

k “ ˘
ω

c
(3.70)

which is the dispersion relation for plane waves and gives the relationship between the wave

number, the pulsation, and the speed of sound. In 2D or 3D, the previous relationship

becomes

k “
ω

c
n “ kn (3.71)

where n is the unit vector in the direction of propagation, leading to the pressure field

p “ p0e
jϕ0ejpωt´k¨xq (3.72)

Equation 3.72 shows that a monochromatic plane wave is not only cyclic in time with a

period of 1
f
, but is also cyclic with the distance of propagation, with a repetition length 2π

k
,

commonly known as the wavelength λ. Since we have k “ ω
c

and ω “ 2πf , we find that

λf “ c (3.73)

first coined in Newton’s Principia [109].

Reminder on Green’s functions The d’Alembertian is a linear, hyperbolic differential

operator. As such, we can calculate its Green’s function. The Green’s function of an

operator corresponds to its impulse response, that is to say the solution of the differential

equation if the source were replaced by an impulse in time and space: δpx ´ x0, t ´ t0q “

δpx ´ x0qδpt ´ t0q. In the case of the d’Alembertian, it is the solution to the following
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inhomogeneous equation:

l gpx, t|x0, t0q “ δpx ´ x0qδpt ´ t0q (3.74)

where the source is located in x0 and emits at t0. The motivation for the Green’s function

is to solve the general equation

l upx, tq “ spx, tq (3.75)

for u, where s is a given source in the medium. It can be justified by multiplying equation 3.74

by spx0, t0q first, and then integrate with respect to x0 and t0 to obtain

ĳ

lgpx, t|x0, t0qspx0, t0qdx0dt0 “

ĳ

δpx ´ x0qδpt ´ t0qspx0, t0qdx0dt0 “ spx, tq (3.76)

The right hand side is given by equation 3.75 to be equal to lupx, tq, yielding

l upx, tq “

ĳ

lgpx, t|x0, t0qspx0, t0qdx0dt0 (3.77)

The double integral acts on x0 and t0, whereas the linear operator l acts on x and t alone.

Therefore the operator l can be taken outside the double integration. We obtain

l upx, tq “ l

ˆ
ĳ

gpx, t|x0, t0qspx0, t0qdx0dt0

˙

(3.78)

which in turn suggests

upx, tq “

ĳ

gpx, t|x0, t0qspx0, t0qdx0dt0 (3.79)

Finally, since the d’Alembert operator has constant coefficients with respect to both x

and t, the Green’s function can be written

gpx, t|x0, t0q “ gpx ´ x0, t ´ t0q (3.80)
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and we find that the solution u to equation 3.75 is given by

upx, tq “

ĳ

gpx ´ x0, t ´ t0qspx0, t0qdx0dt0 “ pg b sq px, tq (3.81)

Free-space Green’s function of the wave equation In this paragraph we compute

the Green’s function associated with the equation

l gpr, tq “ ´δprqδptq (3.82)

The choice of putting the source in r0 “ 0 and emitting at t0 “ 0 yields no loss of generality

since g is the free-space Green’s function. We choose the source to emit a negative pulse

for convenience and without loss of generality.

First, we take the temporal Fourier transform of equation 3.82 to obtain the Helmholtz

equation [110]

∆Gtpr, ωq ´
ω2

c20
Gtpr, ωq “ ´δprq (3.83)

where Gt is the temporal Fourier transform of g. Then we take the spatial Fourier

transform of equation 3.83 to find

Gpk, ωq “ ´
1

k2 ´ k2p
“ ´

1

pk ´ kpqpk ` kpq
(3.84)

where k “ }k} and kp “ ω
c

is the wave number for a plane wave and is a function of ω. By

convention, the Fourier transform of g is denoted by G.

In order to calculate g, we need to invert the spatial Fourier transform, and then the

temporal Fourier transform. Indeed we have

Gtpr, ωq “ ´
1

p2πq3

¡

e´jk¨r

k2 ´ k2p
d3k (3.85)
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and then

gpr, tq “ ´
1

2π

ż

Gtpr, ωqejωtdω “
1

p2πq4

ż ¡

ejpωt´k¨rq

k2 ´ k2ppωq
d3kdω (3.86)

To compute equation 3.85 we use the spherical coordinate system oriented such that the

third component of k is parallel to r as shown on figure 3.3 without loss of generality.

Expression 3.85 then becomes

Gtpr, ωq “ ´
1

p2πq3

`8
ż

k“´8

2π
ż

θ“0

π{2
ż

φ“0

k2sinφ
e´jkrcosφ

pk ´ kpqpk ` kpq
dkdθdφ (3.87)

where r “ }r}. Furthermore, it is easy to prove, with the change of variable ψ “ ´cosφ for

example, that
π{2
ż

0

sinφe´jkrcosφdφ “
1

jkr
´
ejkr

jkr
(3.88)

The term 1
jkr

is anti-symmetrical in k and vanishes in the k-integration. Using this and the

fact that the integrand is independent from the variable θ, we find

Gtpr, ωq “ ´
j

p2πq2r

`8
ż

´8

ke´jkr

pk ´ kpqpk ` kpq
dk (3.89)

The integral in 3.89 can be computed using the residue theorem [111]. To that end, we

extend the integrand to the complex plane and integrate on the closed contour C “ C1 Y C2.

C1 follows the Repkq axis, whereas C2 is a semi-circle in the Impkq ă 0 plane, defined by

k “ aejβ. On C2, we have

e´jkr “ e´jarcosβearsinβ (3.90)

Since C2 is in the lower half-plane, sinβ ă 0, and equation 3.90 shows us that the integrand
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thus vanishes when a Ñ `8, proving that

lim
aÑ`8

¿

C

ke´jkr

pk ´ kpqpk ` kpq
dk “

`8
ż

´8

ke´jkr

pk ´ kpqpk ` kpq
dk (3.91)

The integrand has two simple poles in R: k “ kp and k “ ´kp. Knowing that for a given

function f with a simple pole c we have, Respf, cq “ lim
xÑc

px ´ cqfpxq, the residues of the

integrand are
e´jkpr

2
and

ejkpr

2
(3.92)

Finally, we are ready to apply the residue theorem. The integrand ipk, rq is compatible with

the existence of the Cauchy principal values, so we have

`8
ż

´8

ipk, rqdk “ 2jπ
ÿ

Im zjă0

Respi, zjq ` jπ
ÿ

xj

Respi, xjq “ 0 `
jπ

2

`

e´jkpr ` ejkpr
˘

(3.93)

The term ejkpr corresponds to a wave converging at the source, which is a contradiction.

In fact, according to the Sommerfeld radiation condition the energy of the total wave is

radiated outward [110]. Thus we choose to only consider the diverging term e´jkpr. This

yields

Gtpr, ωq “
e´jkpr

4πr
(3.94)

which can be inverted using the invert temporal Fourier transform to get the Green’s

function of the time-space wave equation

gpr, tq “
δpt ´ r

c
q

4πr
(3.95)

Since we are in the free-space, the Green’s function for a source located in r0 and emitting

at t0 “ 0 can be derived by shifting or translating the previous function.
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k1

k2

k3

k

r

ϕ

θ

Figure 3.3: Coordinate system chosen to compute integral 3.85.

Theorem 6. The Green’s function associated with the d’Alembertian operator is given by:

gpr, t|r0, t0q “
δpt ´

}r´r0}

c
q

4π}r ´ r0}
(3.96)

Throughout the remainder of this work, we will use the mathematical objects hereby

defined as well as algorithmics to solve the ultrasound inverse problem in the context of

medical imaging.

3.5 Conclusion

Traditionally, the ultrasonic inverse problem is solved using the Delay-and-Sum (DAS) al-

gorithm. Delay-and-Sum assumes that the human body is homogeneous almost everywhere

with a constant speed of sound. The scatterers embedded in tissue that reflect the excita-

tion pulse are seen as sources of short ultrasonic waves emitting with a relative delay that

corresponds to their location in the tissue. Using this assumption, Delay-and-Sum can com-
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Im k
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Figure 3.4: Contour designed to compute integral 3.89.

pute the intensity at a certain location by synthetically focusing a posteriori. This is done

by applying the appropriate delays across the acquisition channels, aligning the wavefronts

coming from that particular location, and adding the channels with one another. The exact

architecture of the Delay-and-Sum algorithm depends on the application and the probe used.

However it has not been demonstrated that Delay-and-Sum is the best way to solve

this problem, mathematically speaking, leaving much room for improvement. The Capon

beamformer along with other algorithmic alternatives are efforts in the direction of finding

an optimum beamformer. In this work, we are trying to address a few limitations of current

approaches.

Single wave insonification The approach herein introduced is based on a mathematical

framework called Compressive Sensing. The compression will intervene on the acquisition

side. We want to be able to acquire just the right amount of ultrasonic data to reconstruct

an image. Hence, we are focusing on single wave imaging, assuming that we can insonify the

whole medium in one ultrasonic pulse firing.
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Sidelobe suppression In this approach, we will build a model of the acquisition process.

The model will take into account the geometry of the probe and the physics of the acquisition.

By doing so, we can expect to observe an attenuation of the sidelobes since their cause will

be inherently included in the model.

Grating lobes suppression In the case of grating lobes, a similar argument can be used.

We expect potential grating lobes to be at least attenuated since the geometry of the probe

is taken into account in the model.
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Chapter 4

Compressive Sensing and ultrasound

imaging: the theory of t-CBF

4.1 Introduction

Over the past decade, Compressive Sensing (CS) has gained a lot of visibility and recogni-

tion from the signal processing community. This inverse problem technique allows for drastic

down-sampling of a signal. It relies on computational power as well as a priori information

on the signal in the form of the knowledge of a basis where the signal has a sparse repre-

sentation to account for the missing samples. The signal recovery is performed using convex

optimization.

The seminal work of Candès [99], Baraniuk [101], and Romberg [103] has led to

innovations in a lot of different fields ranging from astronomy to seismology and radars.

This technology is currently used in some commercial MRI scanners. In MR imaging, the

gain for a higher acquisition rate is obvious: by allowing a smaller number of measurements,

it enables shorter acquisition times [80], resulting in less discomfort for the patient, less

artifacts and a higher daily patient turnover. For echography, the applications could go from

fast 3D echocardiography to simplified echography systems.
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Classic beamforming schemes use many transmit waves to insonify a medium [112] and

sample echoes at a high acquisition rate of tens of millions of samples per second. While

many successful attempts to reduce the number of transmit waves have been made, several

beams are still necessary to maintain good image quality [113, 114]. One of the advantages

of Compressive Sensing is its ability to require less information for accurate reconstruction

when certain mathematical conditions hold. As far as ultrasound imaging is concerned,

two aspects of beamforming or image formation could benefit from this new approach. In

medical echography, the reconstruction of an image classically requires expensive arrays made

of hundreds to thousands of transducers that emit sequences of focalized transmit pulses

[112]. First, Compressive Sensing could mean implementing simplified hardware such as an

ultrasonic probe with a small number of independent transducers, making ultrasonic systems

more affordable. Then, it could mean using less transmit pulses, making the acquisition faster

and the frame rate higher.

Compressive Sensing has started to get the attention of acoustic physicists. It has been

successfully implemented in the frequency domain by Schiffner [115], it has been used with

wave atoms and wavelets by Friboulet [116], and in the Xampling framework by Eldar [117].

Our approach is different in the sense that it is a time domain implementation of Compressive

Beamforming, and aims at reducing both the number of transmit waves and the number of

receiving transducers, while decreasing the sampling frequency. This work is the first of its

kind to justify formally the Compressive Sensing framework for ultrasound imaging in the

time domain. It can be put into the perspective of the work of Schiffner [115], as the time

and frequency domains are related to each other by the Fourier transform.

This section focuses on the beamforming of ultrasonic fields and introduces the Compres-

sive Sensing approach in a medium containing only a few point scatterers. First, a simple

1D example is given. Then, the approach is justified using the theory of wave propagation

in a homogeneous medium, and the fundamentals of the theory are laid out. In addition,

simulation results are presented alongside the limitations of the described approach. Further
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developments to overcome these limitations are proposed. Finally, images of a phantom are

shown and compared again a state-of-the-art reconstruction algorithm.

4.2 A simple 1D example

In this section we explore a simple 1D setup. The purpose of this is to introduce the concepts

of Compressive Sensing into the field of beamforming. The 1D model is greatly simplified

compared to a real-life 2D situation but it provides some ground work and basis to build

upon.

4.2.1 Description of the experimental setup

In order to simplify the technical aspects of beamforming, we consider a simple setup that

we will reduce to a 1-dimensional problem. The setup is described in figure 4.1 and consists

in a generic ultrasonic probe made of a collection of individual transducers. The probe emits

a monochromatic plane wave.

A small number of scatterers are located in the focal plane of the probe and in the focal

plane only. To reduce the setup to a 1-dimensional problem, we reconstruct the distribution

of scatterers in the focal plane. As a result, the reconstruction will be a cross-sectional

amplitude profile of the medium at the focal depth.

In transmit mode (figure 4.1.a), the probe emits a monochromatic plane wave. In receive

mode (figure 4.1.b), the incident plane wave is reflected back to the probe by the scatterers

located in the focal plane. Since we are in the far-field approximation, the scattered waves

can be approximated by plane waves. The far-field approximation, or Fraunhofer approx-

imation [118], is justified because we are observing the pressure field at the focal plane of

the probe. Depending on the position and echogenicity of the scatterers, the probe will see

a sum of plane waves of different amplitudes and coming from different angles propagating

back to it.
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From this description of the process, we can understand that to each scatterer in the

focal plane corresponds a unique reflected plane wave characterized by the angle its wave

vector makes with the axis of the probe and its amplitude. Those two parameters depend

on the echogenicity of the scatterers as well as their location.

In terms of mathematical framework, the scatterers in the focal plane can be described

by a Dirac δ basis. Indeed, if a scatterer is present at a certain location, then the corre-

sponding coefficient in the Dirac δ basis will be non-zero, and equal to the echogenicity of

the scatterer. This way, the two parameters aforementioned, location and echogenicity, are

fully taken into account.

On the acquisition side, the plane waves seen by the probe can be characterized by their

amplitude and the angle of their wave vector with respect to the axis of the probe. These

two parameters can be described by a basis of complex exponentials which are typically used

in the study of monochromatic plane waves.

As a result, we can see clearly what the acquisition and the reconstruction spaces will be.

On the one hand, we have the focal plane of the probe, where scatterers will be simulated.

The reconstructed profile of the focal plane will be the “image”. Thus, the focal plane is the

reconstruction space. On the other hand, we have the probe and more specifically its surface

divided into individual piezoelectric transducers, or elements. Each element acquires a small

portion of the echoed wavefronts coming from the focal plane. This second 1D space will be

our acquisition space.

4.2.2 Acquisition and reconstruction bases

According to Fraunhofer’s diffraction theory, the transverse amplitude of the focal point

is a sinc function of width λF
A

where F is the focal length and A the size of the aperture,

centered at the focal point. For the purpose of this experiment we choose F
A

“ 1. Therefore,

the resolution in the focal plane is limited by the wavelength λ. Namely, a focalized ultrasonic

pulse emitted by the probe will have, after propagation to the focal plane, a transverse
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a.

b.
Figure 4.1: a. Transmit mode: a single plane wave is emitted by the probe; 2 scatterers
(in red) are in the focal plane, symbolized by the black dashed line. b. Receive mode:
In the far-field approximation, the 2 echoes produced by the scattering can be seen as plane
waves angled with respect of the axis of the probe; to each scatterer position in the focal plane
corresponds a single angled plane wave.
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amplitude profile described by a sinc function: a central main lobe of width λ, and secondary

lobes spaced λ
2

from each other. A spatial sampling frequency of λ
2

is then well adapted,

since a scatterer in the focal plane can be efficiently represented as a Dirac δ function as

shown in figure 4.2:

ψjpxq “ δ

ˆ

x ´ j
λ

2

˙

(4.1)

where j is an integer. A discrete basis of the focal plane can thus be derived by calculating

the family of functions 4.1 for xi “ iλ
2

and storing it in a matrix Ψ:

Ψij “ ψjpxiq “ δ

ˆ

xi ´ j
λ

2

˙

“ δpi ´ jq (4.2)

The columns of Ψ are orthonormal.

Now that an efficient basis of the representation space is derived, we can focus our effort

on the derivation of a basis for the acquisition space. To do so, we select a point in the focal

plane to have a scatterer. When insonified, the scatterer reflects the incident wave yielding

a reflected spherical wave that propagates back to the probe. This wave gets recorded by

the elements of the probe. In the far field approximation, it can be approximated as a plane

wave. As a result, there is a one to one correspondence between a scatterer in the focal

plane of the probe and the plane wave it generated, as seen by the probe. In the case of

the Fraunhofer [118] approximation, the two bases are linked by the Fourier transform.

This guarantees the orthogonality of the plane wave basis. Let us consider a scatterer located

in rl “

¨

˚

˝

xl

F

˛

‹

‚

. It yields a plane wave of wave vector kl:

φlprq “ eikl¨pr´rlq “ e´ikl¨rleikl¨r (4.3)

where kl is a propagation vector, r is a position vector, and l is an integer. The field is

observed at the surface of the transducer rk “

¨

˚

˝

xk

0

˛

‹

‚

where k is the index of a transducer
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Parameter fc bw λ Nelements p F csound fs

Value 3.08 MHz 0.6 500 µm 128 λ{2 6.4 cm 1540 m.s-1 32 MHz

Table 4.1: Parameters used to build G for the 1D experiment.

of the probe. The phase term in equation 4.3 can be safely omitted since it is constant for

a given scatterer. The wave vector can be expressed as:

kl “ ´
2π

λ

rl
}rl}

(4.4)

For the sake of simplicity, the projection of the propagation vector onto the x-axis is denoted

kl. Let Φ be the acquisition basis. Then we have:

Φkl “ φlprkq “ eiklxk (4.5)

A diagram of the bases is shown on figure 4.2. The signification of those two bases is

straightforward: each column of Ψ is a vector that represents a scatterer at a given location

in the focal plane, each column of Φ is a plane wave coming from a scatterer in the focal plane.

A point scatterer in the image is represented by a Dirac δ function. From this we see that

there is a one-to-one correspondence between a point scatterer in the reconstruction space

and a plane wave in the acquisition space. It is common knowledge that when the Nyquist

criterion holds the two bases are orthonormal and linked by the Fourier transform.

4.2.3 Application to simulation

We apply the theoretical framework previously derived to an in silico experiment. The

parameters of the simulation are presented in table 4.1, including the physical parameters

of the ultrasonic probe.

The goal of the experiment is first of all didactic. We want to understand how Compres-

sive Sensing can be applied in the context of medical ultrasound imaging. Then, we want

96



4.2. A SIMPLE 1D EXAMPLE

to explore the different ways we can take advantage of the data compression capabilities

of Compressive Sensing. To that end, we simulate a data acquisition using only 32 central

elements out of the 128 the probe has. We are expecting to preserve the resolution of the

full aperture.

We are reconstructing 4 scatterers located in the focal plane. The amplitudes of the

scatterers are stored in a vector I for “image”. We obtain the simulated data by multiplying

I by the acquisition matrix G. G is a combination of a sparsifying basis for I and a model

for our data. Thus, we are using Compressive Sensing to solve the inverse problem from

incomplete ultrasonic measurements.

To derive G, we go back to 4.2.2, where we derived the acquisition and the reconstruction

bases. Since we are reconstructing 4 scatterers, the image I is directly sparse. As a result

we choose the reconstruction basis Ψ to be the identity matrix. We saw that in our case, the

columns of the acquisition basis Φ are the eiklxk . If we stop our reasoning here and define G

such that:

G “ ΨΦ (4.6)

the data R “ GI is complete. In the case of Compressive Sensing, the goal is to reconstruct

missing data. As a result, we need to define a decimation operator D. Here, D is the

operator that chooses which transducers are acquiring signals, and which are left out. There

are several ways of selecting acquiring transducers and we will develop some of them in the

following section. This way, we have:

R “ D ΨΦI “ GI (4.7)

where R is the data vector as acquired by our system, and I is a map of scatterers in the

focal plane. We are then all set to use l1-regularization in the form of the BP algorithm to

reconstruct the image. The l1-minimization is performed using SPGL1 [119, 120].
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4.2.4 SPGL1

SPGL1 (Spectral Projection-Gradient for l1-minimization) [119] is a general purpose convex

minimization algorithm. It was chosen to carry out this work because of its flexibility, and

its ability to handle large-scale sparse reconstructions in the complex domain.

The flexibility of SPGL1 comes from its capability to solve the basis pursuit problem

(equation 3.35), the basis pursuit denoising problem (equation 3.36) as well as the LASSO

(equation 4.9) [120]. Despite its name, SPGL1 is not limited to the l1-norm and can solve the

previous three problems for any norm providing that the user specifies scripts to compute:

1. the norm }x}

2. its dual norm }x}˚

3. the Euclidian projection

Pτ pxq “ min
p

}p ´ x}l2 s.t. }p} ď τ (4.8)

SPGL1 relies only on the applications GI and GJR and accepts both explicit matrices and

functions that evaluate these products. In the worst case scenario, the authors claim the

algorithm runs in OpN logNq operations [121].

It is also compatible with multiple measurement vectors [122, 123], where the vector

I becomes a matrix containing as many columns as measurements, as well as group spar-

sity [120, 124].

The approach of SPGL1 is to efficiently solve a succession of LASSO problems

min
x

}Ax ´ b}l2 s.t. }x}l1 ď τ (4.9)

using a spectral gradient-projection method. The solution of each LASSO subproblem brings

information on how to update the parameter τ so that the solutions of the LASSO get closer
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and closer to the solution of the BPDN at each iteration.

4.2.5 Results

To allow for a clear assessment of resolution and contrast evolution between the under-

sampled image and the Compressive Sensing reconstruction, we compute a reference image

vector. In this case the reference image can be computed easily since the relationship be-

tween I and R is the Fourier transform. We expect the resolution of the reference image

to be the same as the resolution of a 32-element probe. By using Compressive Sensing, we

hope to recover the full resolution of the original 128-element probe. The results are com-

piled in figure 4.3, which shows a resolution and contrast comparison between the reference

image and the Compressive Sensing reconstruction both acquired under the same conditions.

Unsurprisingly, the direct image exhibits the resolution of a narrower 32 transducer probe.

Nevertheless, Compressive Sensing was able to perform the reconstruction with the resolu-

tion of the wider 128 transducer probe. The full contrast has also been recovered and the

closest scatterers are well separated.

4.2.6 Conclusion

The purpose of this simulation was to illustrate with a simplistic example the capabilities

and potential of Compressive Sensing for ultrasound image reconstruction. This simple

simulation suggests that Compressive Sensing could be used in the field of ultrasonic imaging

and would contribute toward simpler hardware, among other things. A simpler probe with

less transducers could reduce costs while Compressive Sensing would preserve the resolution

of the final image.
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δ[(i - j)∆x]

x
a.

eikl xk

x

z

kl

b.
Figure 4.2: a. Basis of the focal plane of the probe, here a Dirac δ function basis with
∆x “ λ

2
; the continuous intensity distribution at the focal point is also given. b. Plane wave

basis, the first kl is represented. The transducers are represented by the rectangles along the
x-axis .
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Figure 4.3: 1D projection of the focal plane with 4 scatterers using only 32 of the central
transducers of the probe. The signal is interpolated in the Fourier domain to show the differ-
ence in resolution: the dashed line corresponds to the image without Compressive Sensing,
the continuous line shows the image with Compressive Sensing. The two scatterers on the
far left are separated only when Compressive Sensing is used.
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4.3. 2D TIME-DOMAIN COMPRESSIVE BEAMFORMING

4.3 2D Time-domain Compressive Beamforming

In the field of medical ultrasound imaging, images live in a 2D or a 3D space. In this section,

we introduce a Compressive Sensing approach to the 2D image formation paradigm. We

demonstrate how we can use simulated Green’s functions to define a linear beamforming

operator G. G will live in our computer’s memory as a wavefront dictionary, a matrix

containing the wavefronts resulting from the insonification of every single scatterer located

on the image grid. We show that the operator G defines a linear relationship R “ GI between

the raw data R and the image I compatible with Compressive Sensing. Therefore, we will

show that this beamforming operator G can be used in the context of Compressive Sensing to

solve the ultrasound inverse problem from incomplete data. We will also give a more precise

definition of “incomplete” in this case. Time-domain Compressive Beamforming (t-CBF) will

be built upon this basis. Finally, we will show the equivalence between beamforming using

G and the classic Delay-and-Sum algorithm.

4.3.1 Linear beamforming operator G

One of the burning issues of Compressive Sensing is to find a suitable matrix G that follows

the mathematical conditions of Compressive Sensing. It must link a sparse representation

of our image and the data in the acquisition space. Let us consider a homogeneous medium

with a distribution of scatterers of reflectivity Iprq, where r “

¨

˚

˝

x

z

˛

‹

‚

denotes a position

vector. An array of transducers is used for the acquisition. The array emits a sound wave

that propagates through the medium to the scatterers. The scatterers reflect the excitation

wave and these echoes, propagating back to the array, are acquired by the transducers.

The acquisition is thus bidimensional, as each sample corresponds to a particular instant in

time and a particular position in space. We consider each spatio-temporal sample acquired

after insonification of the medium by a single wave as a measurement, in the Compressive
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4.3. 2D TIME-DOMAIN COMPRESSIVE BEAMFORMING

Sensing terminology. Classic beamforming schemes use many transmit waves to insonify

the medium, and sample the echoes at a high rate of several million samples per second.

Thus, some strategies can be envisioned and combined to compress the acquisition: first

the acquisition of a single image could be done with less transmit waves, then the hardware

could be simplified to use less independent transducers. Finally, a lower sampling frequency

could reduce the amount of data transferred to the scanner. In the following development,

we focus on a single plane wave excitation of the medium. However, the formalism hence

introduced can be easily generalized to any kind of excitation wave.

Let R P MNt,NelpRq be a matrix containing the raw data after only one insonification. Nt

is the number of time samples, Nel is the number of transducers used during the acquisition.

I P MNx,NzpRq is the original distribution of scatterers corresponding to our final image. Nx

and Nz are the number of pixels in azimuth and depth respectively. To apply the principles

of Compressive Sensing, we need to define a linear relationship between the data R and the

image I. Namely we are looking for a tensor G P MNt,Nel,Nx,NzpRq such that:

R “ GI (4.10)

In order to define the matrix G, the acquisition process is broken down into the following

steps. First, the transducers of the array are excited by an electrical temporal impulse

denoted by hiexptq for the ith transducer. The transducers are considered to have equivalent

physical properties, and have the same impulse response denoted by htransptq. As a result,

the impulse response of the acquisition system in emission is:

hisys,Txptq “

ˆ

hiex b
t
htrans

˙

ptq (4.11)

Expression 4.11 takes into account the impulse response of the acquisition system in emission

which includes the central frequency and bandwidth of the probe as well as the transmitted

amplitude.
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The sound wave thus emitted propagates through the medium from the array to each

scatterer. The impulse response of the forward propagation process of the emitted wave is

denoted by hfwdptc, rq. Part of the energy of the wave gets reflected by the scatterers in the

form of spherical waves. The reflected amplitude for each scatterer is given by the reflectivity

Iprq. The impulse response of the backward propagation process is denoted by hibwdptc, rq,

the index i corresponding to the index of the transducer used for the acquisition. Finally, the

pressure field is converted into an electrical signal by the probe and acquired by the scanner,

with the impulse response htransptq mentioned earlier.

We can now infer the mathematical expression of the total pressure field recorded by the

probe by convolving in time the different terms aforementioned and summing over space:

Riptq “

ż

r

ˆ

hisys,Txptcq b
tc
hfwdptc, rq b

tc
hibwdptc, rq b

tc
htransptcq

˙

ptq ¨ Iprqdr (4.12)

under the assumption that multiple scattering is negligible which is a classic approximation

in medical ultrasound imaging.

In equation 4.12, the terms hisys,Tx and htrans can be grouped: they describe the impulse

response of the acquisition system, denoted hisys, TxRx. The term hisys, TxRx takes into account

the central frequency of the probe, as well as its bandwidth, usually modeled by a Gaussian

function. As a result, for the sake of simplicity we can leave that term out of the development,

keeping in mind that depending on the parameters of the probe, those terms have to be added

back when calculating the matrix G. This leads to:

Riptq “

ż

r

ˆ

hfwdptc, rq b
tc
hibwdptc, rq

˙

ptq ¨ Iprqdr (4.13)

The next step is to discretize the simplified equation 4.13. The time variable t becomes

tj “ j∆t where ∆t “ 1
fs

, fs being the sampling frequency of the system. The spatial variable

r becomes rkl “

¨

˚

˝

xk

zl

˛

‹

‚

“

¨

˚

˝

k∆x

l∆z

˛

‹

‚

where ∆x and ∆z are the grid spacing in azimuth
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and depth respectively. This yields to:

Rij “

Nx
ÿ

k“1

Nz
ÿ

l“1

¨

ˆ

hfwdptc; k, lq b
tc
hibwdptc; k, lq

˙

pjqIkl (4.14)

Equation 4.14 is indeed a tensor product between a bi-dimensional matrix I “ pIklqk,l and a

four-dimensional tensor G “ pGijklqi,j,k,l. Following this notation, we have:

Gijkl “

ˆ

hfwdptc; k, lq b
tc
hibwdptc; k, lq

˙

pjq (4.15)

which may be discretized to:

Gijkl “

Nt
ÿ

u“1

hfwdpj ´ u; k, lqhibwdpu; k, lq (4.16)

Based on this framework, we can particularize the solution. For a plane wave excitation

propagating along the axis of the probe in a homogeneous medium, the propagation to a

scatterer in r “

¨

˚

˝

x

z

˛

‹

‚

can be modeled by the following forward impulse response:

hifwdpt, rq “ δ
´

t ´
z

c

¯

(4.17)

which doesn’t depend on the emitting transducer i in the case of a plane wave excitation:

the individual excitation pulses are synchronized on all the channels.

After propagation through the medium, the plane wave reaches a scatterer in r and gets

reflected. The scatterer is assumed to be smaller than λ, thus generating a spherical wave

which yields to the following backward impulse response that describes the propagation from

the scatterer in r back to the ith transducer of the array [110]:

hibwdpt, rq “
δ

´

t ´
}r´ri}
c

¯

4π}r ´ ri}
(4.18)
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which is the Green’s function of the homogeneous medium.

From equations 4.17 and 4.18, we can infer the mathematical expression of the pressure

field resulting from an excitation of the medium by a plane wave and its reflection on a

scatterer located in r:

hfwdptc, rq b
tc
hibwdptc, rqptq “

δ
´

t ´ z
c

´
}r´ri}
c

¯

4π}r ´ ri}
(4.19)

Discretizing equation 4.19 leads to the following expression for Gijkl:

Gijkl “
δ

´

tj ´ zl
c

´
}rkl´ri}

c

¯

4π}rkl ´ ri}
(4.20)

Equation 4.20 corresponds to the diffraction impulse response of a homogeneous medium

with one point scatterer located at rkl, in other words the Green’s function of the medium

that takes into account both the transmission and the reception parts. Therefore, Gijkl is

the Green’s function of the medium, observed at the time sample j by the ith transducer

when a point scatterer is at the position rkl in space.

We have defined a 4-dimensional tensor G that gives a linear relationship between a map

of scatterers I in a homogeneous medium, and the raw data R acquired by the array of

transducers:

R “ GI (4.21)

For Compressive Sensing, we need to write equation 4.21 in the form of a matrix product.

To that end, we perform a change of indexes going from pi, j, k, lq to pα, βq with:

$

’

&

’

%

α “ j ` Ntpi ´ 1q

β “ l ` Nzpk ´ 1q

(4.22)

which is a bijective C1 change of variable. The change of variable allows the unwrapping

of matrices R and I into vectors as shown in figure 4.4, and of tensor G into a matrix.
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By remapping the indices, the 4-dimensional problem is transformed into an equivalent 2-

dimensional problem adapted to the Compressive Sensing framework.

With that notation, we have:

Rα “ GαβIβ (4.23)

using Einstein’s convention, where the repeated index β is implicitly summed across all its

accessible values.

4.3.2 Relationship with Delay-and-Sum

The standard beamforming algorithm described in the literature and widely used in available

commercial scanners, called the Delay-and-Sum, is a reconstruction algorithm that computes

an image D based on the raw data R by using the principle of coherent summation [10]. In

that framework, the propagation delays from the surface of the transducers to the different

points of the final image defined by the grid G are applied to each channel of the raw data

before summation and detection. Thus, the level value of the pixel pk, lq in the image D is

given by:

Dkl “

Nel
ÿ

i“1

R

ˆ

ri,
zl
c

`
}rkl ´ ri}

c

˙

(4.24)

where the term zl
c

`
}rkl´ri}

c
corresponds to the propagation time, back and forth, from the

probe’s ith element to the position rkl for a plane wave excitation.

The right hand side of equation 4.24 can be interpreted as a convolution product of

R pri, tq and δ
´

t ´ zl
c

`
}rkl´ri}

c

¯

. In discrete time, we have:

Dkl “

Nel
ÿ

i“1

Nt
ÿ

j“1

δ

ˆ

tj ´
zl
c

´
}rkl ´ ri}

c

˙

¨ Rpri, tjq (4.25)

Delay-and-Sum classically neglects the amplitude term 1
4π}rkl´ri}

that is due to propagation

[10] as well as the impulse response of the transducer. The interested reader can refer to

reference [125] which describes a back propagation beamforming algorithm that does not
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Nx

Nz

Nx×Nz

…

…

Figure 4.4: Unwrapping of a matrix into a vector. This simple remapping allows the
transformation of our image and data, which are 2-dimensional matrices, into 1-dimensional
vectors. Similarly, the 4-dimensional tensor G can be remapped into a 2-dimensional matrix,
making the problem dimensionally suited for the tools of Compressive Sensing.
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neglect the amplitude term and the impulse response of the transducer, and [126] which

describes a matched filter approach to beamforming that also accounts for the amplitude

term by modeling the wavefront propagation. Adding that term back in equation 4.25, we

find that Delay-and-Sum is equivalent to:

D “ GTR (4.26)

which involves the same matrix G as we are using in the t-CBF framework. Subsequently,

G can be interpreted as a beamforming matrix.The final image D is obtained by successive

projections of the raw data on the columns of dictionary G.

Equations 4.21 and 4.26 combined together define a direct relationship between the Delay-

and-Sum image D and the scatterer distribution I:

D “ GTGI (4.27)

From this, we can sense the importance of the matrix GTG: it links the scatterer distribution

to the final Delay-and-Sum image and can therefore be seen as a Point Spread Function

(PSF) of the acquisition system. In the Compressive Sensing framework, it is often called

the mutual coherence of G.

Equation 4.27 also shows that we should expect the Delay-and-Sum and the t-CBF images

to be different in nature.

4.3.3 Practical implementation

In the previous development, we established a formal expression for Gijkl leaving out the

influence of the parameters of the acquisition system such as the central frequency fc, and

the bandwidth bw of the probe. The bandwidth is generally modeled by a Gaussian function.

Usually, the electrical excitation pulse hiex is a simple temporal Dirac δ pulse. In the case

of a plane wave, the pulses are synchronized on all the channels, therefore hisys, Tx does not
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depend on i and is equal to htrans. Finally, the term hisys, TxRx from equation 4.12 is the

auto-convolution of the Gaussian pulse, which can be approximated by another Gaussian

pulse of same central frequency fc and bandwidth
?
2
2
bw:

hsys, TxRxptq « gauspulspt, fc,
?
2

2
bwq (4.28)

where the function gauspuls is the modulated pulse with a Gaussian bandwidth defined by:

gauspulspt, fc, bwq “ e´ t2

2tv cos p2πfctq (4.29)

with tv “ ´
8 logp10´6{20q

4π2bw2f2c
.

To get the final expression for Gijkl, expression 4.20 is convolved with hsys, TxRx:

Gijkl “ gauspuls
ˆ

tj ´
zl
c

´
}rkl ´ ri}

c
, fc,

?
2

2
bw

˙

(4.30)

which is the expression used in the experiments section.

Therefore, in this particular setting, we can link a point scatterer at a certain location

with a wavefront recorded by the probe, or simulated, as shown on figure 4.6. By repeating

this process for all the points of a grid G that spans the whole final image space, one can

populate a dictionary of wavefronts G that links a map of scatterers in a medium to the

pressure field generated by them and acquired by the probe. Intuitively, one can expect this

dictionary to be suitable for Compressive Sensing as long as the number of scatterers in the

medium is small enough to ensure sparsity, and the grid spacing in depth and azimuth is

chosen wisely, to ensure that the dictionary has a low coherence.

4.3.4 Towards a compressed beamforming algorithm

According to the definition of G, each of its columns contains the Green’s function of a given

scatterer. In that sense, it is a dictionary of Green’s functions that associate a diffraction
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a.

b.
Figure 4.5: a. The pressure field in the medium after emission by the ultrasonic probe. The
black dot is a scatterer. The arrow indicates the direction of propagation of the ultrasonic
wave. b. The pressure field after reflection on the scatterer.
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a. b.
Figure 4.6: Representation of a point scatterer in: a. the image space, b. the acquisition
space.

impulse response to a distribution of scatterers.

So within the limitations of our model, if R is a signal acquired with the ultrasonic probe,

then there exists a spatial distribution of scatterers I such that:

R “ GI (4.31)

Using equation 4.31, we may infer a BP beamforming algorithm based on l1-minimization:

min
ÎPRNimg

}Î}l1 such that R “ GÎ (4.32)

in the absence of noise and if the distribution of scatterers I is sparse.

In order to take into account the acquisition noise and the inaccuracies of our model, one
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can relax the constraint with an inequality:

min
ÎPRNimg

}Î}l1 such that }GÎ ´ R}l2 ď ϵ (4.33)

where the parameter ϵ accounts for the noise and the model inaccuracies. This yields a

BPDN beamforming algorithm, that is tat the very core of t-CBF.

4.4 Simulations and under-sampling performance

In this section, we present and discuss simulation results. We simulated a linear ultrasonic

probe (table 4.2) made of Nel “ 128 elements. The central frequency is fc “ 7.3 MHz, which

gives λ “ 211 µm at c “ 1540 m.s-1. The distance between the center of two consecutive

elements is equal to λ in order to minimize the grating lobes. The sampling frequency is set

to fs “ 40 MHz, which means that if the final image is a sector that spans 7 cm in azimuth

and 7 cm in depth, each simulated Green’s functions will be a 128ˆ 2000 sample matrix at

least. After the column-wise unwrapping, this gives a 256, 000 value vector. Now if we work

on a grid G defined by the pitches ∆x “ λ{2 in azimuth and ∆z “ λ{2 in depth, we need to

simulate roughly 670ˆ 670 “ 448, 900 Green’s functions. Using these parameters, the final

matrix G will be a 256, 000 ˆ 448, 900 matrix of double precision floating point numbers.

Hence, the size of the entire matrix G would be roughly 920 GB. Having that matrix readily

accessible in the RAM of the system is unrealistic. This first limitation could be mitigated

by the use of a multi-core GPU card to compute the coefficients of G on-the-fly as opposed

to storing them in the RAM. Another solution, that we chose to pursue in this chapter, is to

restrain the simulation to a small domain of 192 ˆ 192 pixels. In the next chapter, we will

derive a method to work on a larger field-of-view by using the Hilbert transform.

Another important aspect is the computation time needed to calculate a single image.

Here, Matlab is used to carry out the computation for proof of concept. As a result, process-

ing times can be significant. In the long run, a few strategies could be pursued to improve
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Parameter fc bw λ Nelements p csound fs

Value 7.3 MHz 0.6 211 µm 128 211 µm 1540 m.s-1 40 MHz

Table 4.2: Simulation and experimental parameters used in the reconstruction of the images
in figure 4.7 and generally throughout this chapter.

on this: the algorithm could be adapted to C language, heavy GPU parallelization could be

used, etc. The following development focuses on off-line reconstruction only.

All the pressure fields are simulated using Jensen’s Field II [127].

4.4.1 t-CBF using a plane wave excitation and 128 transducers in

reception

In this section we simulate a homogeneous medium containing a finite number of point

scatterers and we investigate the influence of the scatterers’ position on the reconstruction.

1 point scatterer simulation

For this simulation, a unique point scatterer is considered. The field-of-view (FOV) is a

192 ˆ 192 pixel image and the pitch in azimuth and depth is ∆x “ 5λ
2

and ∆z “ 3λ
2

respectively. Attenuation is neglected as a first approximation, and the image is centered on

x “ 0 cm, z “ 2.5 cm. The excitation is a plane wave: all the transducers fire the same pulse

at the same time. The full aperture is used in reception. On figure 4.7, the point scatterer

is located in the center of the image, at x “ 0 cm, z “ 2.5 cm. The results from both the

l1-minimization and the dynamic focusing Delay-and-Sum [10] are presented on figure 4.7.

The l1-minimization recovers the map of the scatterers in the medium. The appearance

of the image computed with Delay-and-Sum is different: it displays sidelobes and a coarser

resolution. The differences between the two reconstructions can be explained by equation

4.27. The t-CBF would be a de-convolved version of the Delay-and-Sum image to a certain

extent. For that reason, the result obtained through l1-minimization is a single white pixel,
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whereas the image obtained using Delay-and-Sum shows sidelobes on each side of the point

scatterer. Obtaining a comparable resolution with Delay-and-Sum would require many fo-

calized transmit beams (typically 84, figure 4.7), or many plane wave excitations in the case

of plane wave compounding (typically 12) [62] as well as a wide aperture.

Point scatterers selected at random

In this section we briefly look into the limits of the sparsity constraint. One of the main

assumptions we have made so far is that the number of scatterers is relatively small. In that

section, the ultrasonic field generated by 128 scatterers was simulated. The position and

reflectivity of each scatterer are chosen at random on the grid G. On figure 4.8, the images

obtained using Delay-and-Sum, projections on the matrix G, and l1-minimization are given

for comparison. The reconstruction on figure 4.8.c was very accurate, as the amplitude

of each scatterer was recovered as well as their position. However, when the number of

scatterers increases, the quality of the recovery decreases and the convergence time of the

algorithm increases.

The resolution is much better than in the case of 84 transmit beams (figure 4.8.b).

For that simulation, the point scatterers were located on a known grid, which made it

easier for the algorithm to recover the map. However, the model was not perfect and the

wavefronts generated for the simulation differed from the wavefronts stored in the dictionary

G. The attenuation was not considered, and neither was the influence of the directivity of

the transducers.

4.4.2 t-CBF using a plane wave excitation and 16 transducers in

reception

One of the great benefits of Compressive Sensing is the ability to decrease the number of

measurements necessary to perform an accurate reconstruction. In our case, that could mean

acquiring less samples in time, or less samples in space, or both. It could also mean imaging
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a. b.

c. d.
Figure 4.7: Simulation of one point scatterer at azimuth 0 and depth 25 mm. Images
obtained using: a. plane wave Delay-and-Sum, b. conventional Delay-and-Sum with 84
focalized transmit beams, c. projection of the raw data on the matrix G, d. l1-minimization.
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a. b.

c. d.
Figure 4.8: Simulation of 128 point scatterers chosen at random on the grid G. Images
obtained using: a. plane wave Delay-and-Sum, b. conventional Delay-and-Sum with 84
focalized transmit beams, c. projection of the raw data on the matrix G, d. l1-minimization.
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a medium using less transmits. In this section, we focus on acquiring less spatial samples,

and less transmits, as it seems to be the most beneficial way to use Compressive Sensing for

ultrasound beamforming.

The reduction of the number of transmits was implicitly used in the beginning of the

paper: we assumed that the medium was insonified by a single plane wave. Usually, many

focalized transmits are used to generate a single image, affecting the frame rate. The use of

one, or a few, non-focalized transmits would allow for higher frame rates.

Reducing the number of transducers in acquisition can take several forms. In fact, using

less elements in the probe raises a simple question: how to select the elements in a way

that satisfies the principles of Compressive Sensing. The selection process is not trivial, as

it directly impacts the mutual coherence of the measurement matrix. Figure 4.9 shows the

evolution of the mutual coherence of the matrix G. It is generated by computing the scalar

products of all the columns of G and sorting them by descending order of magnitude. The

mutual coherence µ of a matrix G is commonly defined as the maximum absolute value of

the cross-correlations of the columns of G. In this case:

µG “ max
1ďi,jďNimg

|GT
i Gj| (4.34)

The acquisition using the entire aperture of 128 elements is here taken as a reference and

compared against different element selection strategies: the signal is acquired using a) the

Nacq central transducers; or b) Nacq transducers equally spaced, and spanning the entire

aperture; or c) Nacq transducers selected at random, and spanning the entire aperture, used

throughout the acquisition; or finally d) Nacq transducers selected at random at each time

sample.

We simulate two scatterers: one is positioned on the grid G while the other one is off the

grid. The reason for that experiment is that when the expansion of a wavefront originating

from a point on G is evident, the expansion of the wavefront coming from a point off grid is

not. It is expected to be wider.
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On selecting the central transducers

A first strategy would be to select the central transducers of the probe, and to try to recover

the image as if it had been acquired with the entire aperture. However, this approach leads

to a high coherence of the measurement matrix and proves to be inefficient, as shown on

figures 4.9 and 4.10.a. Using a smaller aperture means a loss in resolution as the main lobe

of the PSF of the system becomes wider [128]. Therefore, if we consider a distribution of

neighboring scatterers located in the vicinity of each other’s main lobes it becomes evident

that discriminating them would be a daunting task. The vectors of G corresponding to those

points are highly coherent as the signals coming from them are very similar. Intuitively, we

know that using a smaller aperture causes the far-field of the probe to be shallower [110].

Hence, the deepest wavefronts acquired by the probe are very close to plane waves. The

points considered being close to the axis of the probe, the waveforms generated by scatterers

located within a few wavelengths from each other are highly correlated, making it harder

for the algorithm to discriminate point scatterers in azimuth for a given depth. The result,

shown on figure 4.10.a, is that the main lobe of the point on-grid is a few pixels wide, and

the PSF of the off-grid point is wider and somewhat noisy. The algorithm was able to detect

a scatterer at the right depth but it had more troubles discriminating it in azimuth.

On selecting equally spaced transducers spanning the whole aperture

To alleviate the limitation aforementioned, a second strategy would be selecting transducers

across the entire aperture. It should be beneficial for discriminating scatterers in azimuth.

This way, the algorithm is still using only a small subset of transducers, but the entire

physical aperture is used. At first, we selected equally spaced transducers. In a classic

setting and if the distance between transducers is greater than λ, the issue with using equally

spaced transducers is the appearance of grating lobes [128]. In fact, the space between two

transducers in an ultrasonic probe is calculated so that the angle at which the grating lobes

exist is about 90˝ from the axis of the probe, minimizing their effect on image quality.
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Surprisingly, the grating lobe artifact didn’t seem to affect the image quality too much, as

can be observed on figure 4.10.b. The results are much better as the two PSFs are equivalent.

The PSF of the point on-grid is almost a single pixel, as expected, whereas the PSF of the

point off-grid is much narrower than in the previous case.

However, it is to be expected that due to the sidelobes, the coherence of G will be higher

for points located in the secondary lobes of each other. As a result, an image with more

scatterers would be less accurately reconstructed.

On selecting randomly spaced transducers spanning the whole aperture

In order to attenuate the grating lobe effect, another selection strategy would be to use a

subset of randomly spaced transducers to make sure the grating lobe issue doesn’t occur.

Before acquisition, a subset of elements is chosen at random and used in the generation of

the matrix G as well as in the acquisition process.

Figure 4.10.c shows a result that is not fundamentally different from what was obtained

previously, because the two scatterers are not located in the vicinity of each other’s grating

lobes.

On selecting randomly spaced transducers for each time sample

In order to decrease mutual coherence even further, one could think of using a different

random set of transducers for each time sample. For example, if the user wants to acquire

1600 time samples with 16 transducers, a 16ˆ1600 map of transducer numbers can be gen-

erated and used in the generation of G, as well as to perform the acquisition. This way, the

acquisition basis is well-known and well-defined.

From figure 4.9, we can see that the performance improves in terms of coherence. For the

neighboring scatterers, the coherence of the sub-sampled basis follows the one of the original

one. In azimuth, the coherence decreases faster than what we observed in the previous cases.

The end result, shown on figure 4.10.d, displays an improvement in the focalization of
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Figure 4.9: Sorted coherence of sub-sampled G (dashed lines) vs. complete G (continuous
line): selecting only the central transducers leads to high coherence and a slow decay of µ,
whereas selecting random transducers .

the energy as the PSF is this time a single pixel exactly for both the on-grid and the off-grid

points. The incoherence of G greatly improves the quality of the reconstruction.

4.5 Super-resolution

4.5.1 Principle

In very specific conditions, we can hope to use Compressive Sensing to achieve super-

resolution. In fact, the matrix G links a pixel to a wavefront like a dictionary. If the

dictionary includes wavefronts originating from scatterers closer than λ
2
, we can hope to sep-

arate them. Of course, one could object that with such a fine grid, the coherence of G will
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a. b.

c. d.
Figure 4.10: Results obtained from sub-sampled data: a. using 16 central transducers;
b. using 16 equally-spaced transducers spanning the entire aperture; c. 16 randomly-spaced
transducers spanning the entire aperture; d. using a different set of 16 randomly-chosen
transducers for each time sample.
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increase drastically. However, in silico experiments suggest that in the case of a model G

that describes the data R exactly, super-resolution is indeed achievable. Similarly, the PSF

of a point scatterer should be a single pixel without sidelobes. In that very specific case, the

raw data R is generated using the same function gauspuls mentioned in 4.30 than the matrix

G. This way, we know that the raw data R corresponds to an image that is exactly sparse.

4.5.2 Results

For this experiment, a finer grid spacing of ∆x “ λ
10

in azimuth and ∆z “ λ
10

is used.

The other parameters remain unchanged. We consider a homogeneous medium with two

point scatterers located at the same depth but at different azimuths. The reconstruction

algorithm is applied to the raw data generated analytically using equation 4.30. The Delay-

and-Sum image is generated using a standard pulse sequence for a linear array such as the

Philips L12-5 : a translating aperture of 64 elements is used resulting in 64 focalized pulses

fired en face the probe. The two scatterers are located at depth zs “ 15 mm. Figure

4.11 shows a performance comparison in terms of resolution between t-CBF and Delay-and-

Sum. Four cases are presented: a) the two scatterers are distant enough to be perfectly

separated by Delay-and-Sum: the distance between the two scatterers is ∆xs “ 8λ, b) the

scatterers are at the limit of separation as defined by the Rayleigh criterion: ∆xs “ 2λ,

c) the scatterers are no longer separated by Delay-and-Sum but t-CBF can still separate the

points, the classic reconstruction showing only one main lobe: ∆xs “ 2λ{3, and d) neither

of the reconstructions can separate the scatterers: ∆xs “ λ{2. Overall, the contrast seems

better as it is not affected by sidelobes.
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a. b.

c. d.
Figure 4.11: Delay-and-Sum is used as a reference: a. separated points: ∆xs “ 8λ; b. at
the limit of separation for Delay-and-Sum according to the Rayleigh criterion: ∆xs “ 2λ;
c. Delay-and-Sum no longer separates the two scatterers: ∆xs “ 2λ{3; d. t-CBF and
Delay-and-Sum cannot separate the two scatterers: ∆xs “ λ{2
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4.6 Imaging a sparse wire phantom

4.6.1 Introduction

The last experiment is realized using an iU22 ultrasound scanner from Philips (Bothell WA,

USA) with a modified hardware that allows the collection of the raw data. The acquisition

is done using a Philips S5-1 sector probe. The phantom is made of a series of taut fishing

lines of diameter close to λ parallel to each other, in a water tank. The speed of sound in

water is assumed to be unchanged throughout the experiment. S5-1 acquires echoes in a

2D plane perpendicular to the orientation of the fishing lines so that each of them acts as a

point scatterer. This way, the expected image should be a set of aligned bright spots on a

dark background, ensuring the sparsity we need for Compressive Sensing.

4.6.2 Results

Figure 4.12 shows the images obtained using Delay-and-Sum (figure 4.12.a) and t-CBF (fig-

ure 4.12.b). For this particular experiment and because we are using a sector probe, the

excitation wave is a diverging wave. The advantage of using a diverging wave is that if the

parameters are chosen wisely the entire sector can be insonified at once. The image obtained

with t-CBF appears more resolved, there are no sidelobes, and each wire is separated from

the next and well-defined in space. The Delay-and-Sum image displays a lower resolution

and intertwined sidelobes.

4.7 Conclusion

Over the past decade, the importance of Compressive Sensing in the medical imaging world

has increased drastically. So far and to the best of our knowledge, that revolutionary in-

verse problem technique had never been applied for time-domain beamforming of ultrasonic
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a.

b.
Figure 4.12: Wire phantom
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fields. We presented a brief overview of Compressive Sensing, and more importantly we

justified theoretically the feasibility and validity of the framework. Through simulations and

experimentations we showed that an image of point scatterers can be recovered from the

insonification of a medium by a single plane wave, when in the case of conventional Delay-

and-Sum, more than a hundred focalized excitation pulses would be necessary and, in the

case of plane wave compounding, more than ten excitation pulses would be required. We

showed that the number of transducers in reception can be reduced from 128 to 16 transdu-

cers without significant loss of image quality. Finally, we showed that in specific, controlled

conditions (near-perfect model, point scatterers on a known grid) t-CBF can be used to

achieve super resolution of point scatterers.

The technique presented here is for time-domain beamforming. Other groups such as

Schiffner et al have proposed a Compressive Sensing framework in the frequency domain.

However, the relationship between the two frameworks is direct. In fact, the matrix G used

by Schiffner et al is an under-sampled Fourier transform of the matrix G described in

this paper.

As a result, the great potential of Compressive Sensing for ultrasonic beamforming has

been formally proven. The next steps include, but are not limited to, working on decreasing

the size of the matrix G while retaining all the information needed for the reconstruction,

finding bases better suited to describing speckle and tissue structures, applying the algorithm

to medical phantom, and eventually use the technique in-vivo. Those aspects are the subject

of the remainder of this work.
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Chapter 5

On adapting t-CBF to tissue imaging

5.1 Introduction

The frame rate of pulse echo imaging is limited by factors such as the number of focalized

pulses used to compute an image and the imaging depth [118]. Indeed, the time elapsed

between two consecutive ultrasonic pulses is incompressible: before emitting another pulse,

one must wait for all the echoes up to a certain depth to travel back to the probe. As a result,

the time delay separating two consecutive pulses is the time corresponding to a round-trip

propagation of the emitted pulse from the surface of the probe to the deepest point imaged.

In the case of cardiac imaging where a typical field-of-view can go as deep as 14 cm, the

maximum frame rate achievable is about 10 Hz for 2D and less than 1 Hz for 3D if no further

method, like volume stitching, is in use. The straightforward way to increase the frame rate

is to use less pulses to probe the medium. Unfortunately, doing so can lead to increased

artifacts and a spatial under-sampling of the medium. Decreasing the number of transmit

events while maintaining the image quality is thus a particularly arduous challenge.

Over the past few years, Compressive Sensing [99, 101] has gained interest from the

beamforming community as it allows the reconstruction of images from less measurements

than conventional techniques such as Delay-and-Sum. In this chapter, we propose to study
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how t-CBF performs on images displaying a speckle pattern and in-vivo data using a single

diverging wave as the excitation pulse.

5.2 Decreasing the size of G

As stated in 4.4, the size of G can be prohibitive, even to recover small images. For t-CBF

to be viable and applicable to clinical imaging problems, its size has to be made manageable.

The Hilbert transform is not unfamiliar to beamforming scientists. It is classically

used as an envelope detector, after the Delay-and-Sum algorithm is applied. Indeed, the

Delay-and-Sum reconstructs an image that is still modulated at the carrier frequency since

it simply combines modulated wavefronts to focalize a posteriori. The demodulation is thus

performed with the Hilbert transform [129]: the transform is used to calculate the analytic

extension of the signal, which absolute value gives the demodulated signal.

However, envelope detection is only one of the many uses of the Hilbert transform. It

is especially useful when applied to the analysis of real signals, which have a spectrum that

is symmetrical about the f “ 0 Hz axis. The Hilbert transform extends a real signal into

the complex plane in a way that satisfies the Cauchy-Riemann equations [130–132]. The

complex extension hence obtained is therefore analytic in C.

Before we explain further in what way the Hilbert transform can help us decrease the

size of the matrix G, we need a few basics.

Definition 21. The Hilbert transform of f P RR is given by [133]

H tfpx1qu pxq “
1

π
p.v.

ż `8

´8

fpx1q

x1 ´ x
dx1 “ Hfpxq (5.1)

where the divergence at x “ x1 is allowed for by taking the Cauchy principal value of the

integral, denoted p.v. in equation 5.1.

Corollary 7. The Hilbert transform is given by the convolution of fpxq with the function
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´1{πx

Hfpxq “ f b

ˆ

´
1

πx

˙

(5.2)

Based on equations 5.1 and 5.2, applying the Hilbert transform may not seem straight-

forward. However, its interpretation is made easier in the Fourier domain. To show this,

let us take the Fourier transform of definition 5.2. We know that the Fourier transform

of the convolution of two functions is equal to the product of their respective Fourier

transforms.

Property 9. The Fourier transform of the convolution of f and g is the product of the

Fourier transform of f by the Fourier transform of g:

FHfpωq “ Ff ˆ F
"

´
1

πx

*

(5.3)

The Fourier transform of ´1{πx is given by

F
"

´
1

πx

*

“ ´
1

π
p.v.

`8
ż

´8

e´iωx

x
dx (5.4)

We can simplify this integral by writing e´iωx “ cospωxq ´ isinpωxq. Additionally, cospωxq

x
is

anti-symmetrical with respect to x, so its integral over R vanishes to zero, and we are left

with

F
"

´
1

πx

*

“
i

π

ż

R

sinpωxq

x
dx (5.5)

The integral in equation 5.5 is well-known and we have

ż

R

sinpωxq

x
dx “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´π for ω ă 0

0 for ω “ 0

π for ω ą 0

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

“ π sgnpωq (5.6)
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where sgn is the signum function. This brings, finally

F
"

´
1

πx

*

“ i sgnpωq (5.7)

Therefore, we have proven theorem 7.

Theorem 7. The Hilbert transform is a multiplier of the Fourier transform and

FHfpωq “ i sgnpωqFf (5.8)

Equation 5.8 shows that applying the Hilbert transform to a signal f amounts to

shifting the phase of its negative frequency components by ´π{2, and to shifting the phase

of its positive frequency component by π{2.

Definition 22. The analytic function associated with f P RR is the complex function fa P CR

given by

faptq “ fptq ´ iHfptq (5.9)

The Hilbert transform of f is commonly referred to as the quadrature function of f .

Taking the Fourier transform of fa to analyze its frequency components, we get

Fpfaqpωq “ Fpfqpωq ´ iFHpfqpωq (5.10)

Knowing that the Hilbert transform is a multiplier of the Fourier transform (equa-

tion 5.8), we prove theorem 8.

Theorem 8. The spectrum of the analytic continuation fa is obtained by multiplying the

spectrum of f with the Heaviside step function:

Fpfaqpωq “ r1 ` sgnpωqsFpfqpωq (5.11)

Therefore, it is clear from 5.11 that the analytic continuation fa contains no negative
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frequency components. Hence, the simplest way to compute the analytical signal fa is to

discard all the negative frequency components of f .

This last property is particularly interesting in our case. Recalling Shannon’s sampling

theorem [79], we know we have to ensure the sampling frequency of our system is at least

twice as fast as the highest frequency component present in our signal. One can easily

understand that boundary by considering the frequency spectrum of a real, band-limited

signal represented in figure 5.1. The signal studied is a Gaussian model of an ultrasonic

pulse of central frequency f0 and limited bandwidth. In order to make sure that the entire

spectrum is covered in the acquisition process, the sampling frequency must span it entirely.

Since the signal is in R, its spectrum is symmetrical about the f “ 0 Hz axis. As a result, the

sampling frequency must span frequency components from fmax all the way to its symmetric

about the f “ 0 Hz axis ´fmax, yielding the famous fs ě 2fmax. For a signal such as a narrow

band RF signal, this process is far from optimal since many empty frequency components

are covered.

That is where the Hilbert transform becomes extremely advantageous. As shown by

equation 5.11, the Hilbert transform of a real signal is equivalent to discarding the signal’s

negative frequency content, with no loss of information. However, as shown in figure 5.2,

the sampling only needs to span the frequency components in the bandwidth of the signal,

around the central frequency. This way, we only need fHi
s ě fmax ´ fmin, where fHi

s is the

sampling frequency of the Hilbert transform of the signal.

According to the parameters in table 5.1 for example, the scanner samples the signal at

32 MHz. Using the analytic signal obtained thanks to the Hilbert transform, we find that

the minimum sampling frequency for our application is

fHi
s “ 2fcbw “ 2 ˆ 2.7 MHz ˆ 0.6 “ 6.24 MHz (5.12)

which is 5 times lower than 32 MHz. As a result, if we image 5 cm deep, we decrease
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-f0 f0

fs

|fft|

Figure 5.1: Spectrum of the Gaussian pulse emitted by an ultrasonic probe. The sampling
frequency has to be at least 2fmax.

Parameter fc bw λ Nelements p csound fs

Value 5.2 MHz 0.6 295.7 µm 128 300 µm 1540 m.s-1 20.8 MHz

Table 5.1: Simulation and experimental parameters used in the reconstruction of the images
in figure 5.4.

the number of time samples from 2078 to 405. The images in figure 5.4 are reconstructed

on a 305 by 386 pixel grid. Since we simulate the per-channel data for each pixel on the

grid to populate G, we end up with a 250.5 gigabyte (GB) matrix G if we use the pre-

Hilbert transform data. Using the post-Hilbert transform data, G is only 48.8 GB which

is manageable by our server.

5.3 Tissue image compression

In chapter 4, we used t-CBF to recover images of point scatterers in a homogeneous medium.

Since the number of point scatterers was kept low, we were expecting the images to be
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-f0 f0

fs

|fft|

Figure 5.2: Spectrum of the same signal processed with the Hilbert transform. The
negative frequencies are discarded, leading to a complex signal that requires a smaller sampling
frequency imposed by its bandwidth.

extremely sparse in the image domain. That is, we needed not apply a sparsifying transform.

This specific case is not common in tissue imaging. Images of tissue usually display a speckle

pattern, due to the medium being a collection of several thousand randomly positioned point

scatterers. The reflection of the transmit wave on this dense collection of scatterers produce

reflected waves that randomly interfere with each other, giving a salt-and-pepper aspect to

the image.

As we are moving from a few point scatterers to thousands of them, we are losing the

sparsity in the pixel domain. A sparsifying transform needs to be used to successfully apply

t-CBF. As mentioned in chapter 2, the wavelet transform is one of the best promoters of

sparsity.
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5.3.1 Sparsifying speckle with wavelets

The wavelet transform famously provides us with sparse representations and is not specific

to a particular type of images. It is widely used in image compression for example in the

JPEG2000 format [134]. It separates details in an image at various scales from the bulk of

the image.

The wavelet transform is classically used in Compressive Sensing to recover unsparse sig-

nals or images. It is an efficient way to represent a signal, thanks to its ability to encode most

of the information of the signal in a few coefficients. Moreover, the wavelet transform is fully

compatible with the Compressive Sensing framework, and requires only minor modifications

to work.

Let Ψ be a generic wavelet transform operator. By generic, we mean that we are not

specifying a particular wavelet family or decomposition level at this point. Applying the

wavelet transform to a vector-image I then amounts to computing ΨI. To understand fully

how the wavelet transform can be used together with t-CBF to recover unsparse images, one

should consider that if the vector I we want to recover is now unsparse, the vector ΨI is,

indeed, sparse. Thus, we can apply the minimization algorithm 4.33 to ΨI:

min
IPRN

}ΨI}l1 subject to }GI ´ R}l2 ď ϵ (5.13)

This problems amounts to minimizing the l1-norm of the wavelet transform of I under the

constraint }GI ´ R}l2 ď ϵ. Similarly, we can also solve

min
IPRN

}W }l1 subject to }GΨW ´ R}l2 ď ϵ (5.14)

where W “ ΨI is the wavelet transform of I, and GΨ “ GΨ´1 is the linear operator that

relates the wavelet transform of I to the raw acquired data R.
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5.3.2 Choosing a wavelet family

There are several flavors of the wavelet transform: different wavelet families (Haar, Daubechie,

splines, etc), different ways to compute it, decimate the result, etc. As a result, choosing the

transform that is the most suitable for our problem is not trivial.

One naive way of choosing a transform would be to run t-CBF on a set of phantoms a

number of times, and changing the sparsifying transform every time with the hope that one

transform will stand out. As a first step towards a more robust way of selecting a sparsifying

transform, that is what we did. For example, figure 5.3 shows the results of t-CBF applied

to a phantom displaying equispaced point scatterers, as well as walls made out of speckle.

At first, no sparsifying transform was applied. We notice that the image has a lot of holes in

the speckle. This is directly due to the fact that no sparsifying transform was applied: the

algorithm is looking for the most significant coefficients that lead to a bounded error and a

sparse solution. As a result, the parts of the speckle that would have a very low intensity

are simply thresholded out and set to zero. The image works as a first approximation, but

is certainly not suitable for clinical applications.

Then we went on to apply the wavelet transform using a Haar mother wavelet. The

reconstructed image has a less hole-y speckle structure, which is desirable. This is directly

related to the compression capabilities of the wavelet transform. We also note that the image

is generally smoother, making it more appealing. This is due to the fact that thresholding in

the wavelet space produces a smoother result than thresholding in the pixel domain directly.

First and third order spline wavelets were also tried. Their smoothness is an advantage

in the reconstruction, since they produce a smoother image. However, the fact that they are

not orthogonal raises an issue. The point scatterers are not well-reconstructed. One can see

in figure 2.15 that in fact, the reconstructed point scatterers are asymmetrical.

The choice of a wavelet family is inherent to the type of images we need to reconstruct.

Different structures in an image can be represented efficiently in different wavelet bases. For
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those reasons, there is probably not an absolute best basis choice to apply t-CBF.

Using wavelets helps improve the aspect of the speckle pattern. On figure 5.3.a we can

see that the speckle has a lot of zero-valued pixels and its texture is off. Figures 5.3.b, c,

and d have a smoother speckle pattern that looks more similar to what sonographers are

accustomed to.

Then, the resolution seems to be affected by the size of the support of the wavelet basis.

More compact supports lead to better resolution: the more compact Haar wavelets used in

figure 5.3.c lead to better resolution of the point scatterers.

From this very preliminary glimpse into the world of t-CBF reconstructions, it appears

that using an orthonormal wavelet family with a compact support is the best option.

5.3.3 Description of the phantoms

Another way to look at the problem is to consider the amount of compression that such a

transform can bring to our image. To achieve that goal, we chose to work on four phantoms:

two simulated phantoms, and two physical phantoms. Reconstructions using Delay-and-Sum

are displayed in figure 5.4.

Phantoms 5.4.a and 5.4.c allows assessment of resolution. They incorporate point scatter-

ers that give an idea of the Point Spread Function (PSF) [128] of the system. Furthermore,

phantom 5.4.c is a physical phantom that has point scatterers in a matrix of tissue that

produces a typical speckle pattern.

Phantoms 5.4.b and 5.4.d are designed to assess the contrast of the reconstruction, with

cysts and lesions. Moreover, phantom 5.4.d is a physical phantom that incorporates different

kinds of cysts: anechoic, hypoechoic, and hyperechoic.

Those four phantoms are then taken to the transform space. Namely, we apply the

wavelet transform, and study the compressibility of the result. In order to do so, a criteria is

imposed: we want the compressed image to retain at least 99% of the energy of the original

image.
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a. b.

c. d.
Figure 5.3: Numerical phantom recovered with t-CBF: a. without wavelet trans-
form, b. with first order spline wavelets, c. with Haar wavelets, d. with third
order spline wavelets.
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a. b.

c. d.
Figure 5.4: Phantoms used in the assessment of wavelet bases. The simulations
or acquisitions are done with 75 plane waves. The reconstructions are performed
using the classic Delay-and-Sum algorithm. The phantoms allow the observation of
a wide range of acoustic structures, from point scatterers to speckle patterns.
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5.3.4 Definition of the parameters

Definition 23. In the case of orthogonal wavelets, the retained energy is given by

ewavelet “ 100
}Xwavelet}2

}X}2
(5.15)

where “wavelet” is the wavelet family used for the decomposition Xwavelet of image X. ewavelet

is the l2-norm recovery score.

On the other hand, we need the compression score to be as high as possible.

Definition 24. Similarly, a compression score is defined by

cwavelet “ 100
#ti | Xwavelet

i ‰ 0u

#ti | Xi ‰ 0u
(5.16)

where # is the cardinality of the set, that is the number of individual elements in the set.

The parameters used in the simulations and the experiments are summarized in table 5.1.

Since the condition we impose is on the retained energy, we only display the compression

performance. It is worth noticing that for this first exploration, the classic dyadic wavelet

transform, or critically sampled wavelet transform, has been used. The wavelet families we

study are orthonormal and exhibit compact support

• Haar wavelets, commonly used in the JPEG2000 format,

• Daubechie wavelets, which are a higher order expansion of the Haar wavelets,

• Symmlets, also spelled symlets, which introduce more symmetry to Daubechie wave-

lets, and are used for image coding where symmetrical errors are believed to be less

perceptible to the human eye,

• Coiflets, used in the sampling approximation of smooth functions [135], which is of

particular interest in our application.
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5.3.5 Compressibility of various types of phantoms

The compressibility of the four images is different, due to the very differences in the structure

of the phantoms. To assess the compressibility of each image, we compute the cwavelet com-

pression performance for different levels of decomposition. The resulting score is stored in a

matrix, and the final result is displayed as a heat map. For the representation of the score,

we choose a diverging color map that goes from blue for low values, to white for average

values, and finally to red for high values.

To get a good cwavelet compression score, the wavelet must be able to represent the image

very well. A rule of thumbs that consistently comes up in the literature is that one should

select a mother wavelet that matches the features of the image to be analyzed. In the case

of point scatterers for example, we expect a compact wavelet to perform better than a less

compact one. If the goal is to reconstruct the point scatterers as bright spots, then a certain

level of discontinuity might be preferable. For this study, we are working with the Delay-

and-Sum image which is limited by the resolution in the form of a low-pass filter. As a result

the Delay-and-Sum image is relatively smooth, even in the case of point scatterers.

As far as the level of decomposition is concerned, one must take into account that the

higher the level of decomposition, the more we split the spectrum of the image. As a

result, a slowly varying, smooth image will most likely not be well represented by a low

decomposition level. If we consider a level 1 decomposition, then the spectrum is split only

once, with the high-pass containing little information. The low-pass will contain most of the

information, but since our image only has low frequencies, the split won’t be optimal in terms

of representation efficiency. If we consider the generic signal with a Gaussian bandwidth in

figure 5.5, we see that the first split is beneficial but not optimal. The second split of

the spectrum is also beneficial, and optimally separates the (non-existent) high-frequency

content from the low-frequency content (the actual signal). Now we see that a third split

does not bring anything new to the decomposition since it is essentially splitting a part of
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Figure 5.5: Wavelet decomposition of a generic signal with a Gaussian bandwidth. The
level 1 and level 2 decompositions are beneficial since they separate frequencies efficiently.
The level 3 decomposition is simply splitting a part of the spectrum that is empty, adding
complexity to the transform but not bringing anything advantageous.

the spectrum that is empty of content. It also increases the complexity of the transform.

Therefore, in that case a level 2 decomposition is the most efficient representation.

Point scatterers in a homogeneous medium Phantom 5.4.a is made out of a collection

of bright point scatterers on a dark background. The image is actually already sparse in

the the pixel domain. However, for the sake of the study, we compute its expansion in the

transform space for a number of wavelet families. The results are shown in figure 5.6. As

expected, the wavelets with the most compact support of their respective family (Haar,

Daubechie2, Symmlet2, and Coiflet1) are the best performers at low decomposition levels.

That being considered, we notice that the compression performance at different decomposi-

tion levels varies to reach an optimum. On figure 5.6.b, we see that for a very short wavelet

such as the Haar wavelet the maximum would be obtained for a hypothetical decomposition

level less than 1. In general, we observe that the compression capabilities of more compact

wavelets are better at low decomposition levels. For the less compactly supported wavelets

142



5.3. TISSUE IMAGE COMPRESSION

of the set, such as Coiflet5 the maximum of compressibility is obtained for a decomposition

level greater than 5. Whereas for a shorter wavelet such as Coiflet1, the decomposition level

that leads to the maximum of compressibility is 2. The most compressible decomposition is

obtained for a Symmlet4 at decomposition level 2.

Hypoechoic cysts in speckle As for phantom 5.4.b, it is a simulated phantom containing

cysts in a speckle matrix. The contrast is maximum since the cysts are empty of any diffusers.

The speckle level is constant throughout the image. The presence of the speckle along with

sharp edges makes the compression of the image somewhat more challenging. As we see

on figure 5.7.b, the maximum level of compression obtained is slightly above 88%, when

it was over 97% for the previous image. In terms of global compression performance, a

similar pattern than previously observed is present: for a given wavelet, e.g. Coiflet4, the

compression performance increases with the decomposition level up to a certain point, where

it reaches a maximum and starts decreasing. Figure 5.7.b shows this trend for all wavelets

used. We also note that the Haar wavelets have by far the worst performance, when

the Coiflet4 shows the best performance. For this particular image, the best compression

performance is thus obtained with Coiflet4 at decomposition level 3, where the image shows

a compressibility of over 88%.

Point scatterers and hyperechoic lesion in speckle Phantom 5.4.c is a physical phan-

tom with a circular lesion and 7 point scatterers in a cross pattern. We notice immediately

that the compressibility of image 5.6 is significantly lower than its simulated counterpart.

This is due to the fact that the simulated image 5.6 has extensive region of solid black, since

it only contains point scatterers and no speckle. However, image 5.8 is closer to what one

would observe in tissue. That being said, a similar pattern than previsouly observed hereby

emerges. The Haar wavelet has poor performance and for a given wavelet the compressibil-

ity reaches a maximum for a certain decomposition level. The best compression performance

is reached for Symmlet4 at decomposition level 2.
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a. b.
Figure 5.6: Compression performance for the resolution simulation. Since we are
compressing an image of bright points on a black background, the wavelet has to
be good at representing points. We notice that the performance decreases as the
support of the wavelet increases, regardless of the family.
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a. b.
Figure 5.7: Compression performance for the contrast simulation. We are try-
ing to compress speckle while keeping edges sharp. Wavelets are known to offer
poor representations of edges. Compressing speckle is challenging because its very
structure depends on both the tissue observed and the system used to image it.
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a. b.
Figure 5.8: Compression performance for the resolution physical phantom. It
is a typical resolution phantom with a circular lesion, and a collection of 7 point
scatterers in a cross pattern. The image appears to be less compressible than im-
age 5.6 and 5.7. This might be due to the fact that image 5.6 does not display
extensive regions of solid black. To the contrary, the image has no cyst as opposed
to image 5.7.
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Hypo and hyperechoic regions in speckle Phantom 5.4.c is a very complete and

realistic phantom that contains all the common structures one can observe in tissue:

• a point scatterer, which could be a calcification,

• a low contrast, circular hypoechoic region, which corresponds to a low contrast cyst,

• a low contrat, circular hyperechoic region, which corresponds to a low contrast lesion,

• two high contrast, circular hypoechoic regions, which correspond to high contrast cysts,

• a speckle pattern, commonly observed in tissue.

Probably due to the cysts that are solid black, image 5.9 is more compressible than

image 5.6. Once again, the Haar wavelet leads to poor performance, and for a given

wavelet the compression score reaches a maximum value for a certain decomposition level,

before decreasing again sharply. The best compression score is obtained for a Coiflet4 wavelet,

at decomposition level 3.

The best wavelets from the compression standpoint are compiled in table 5.2 for future

reference.

The next step is to compute the images using t-CBF and taking into account what we

just learned about wavelet and decomposition level choices. Then we compute the images

using the JPEG2000 standard Haar wavelet at the best decomposition level for comparison.

The goal is to determine if the extra computational cost is worth it in terms of reconstruction

quality.

5.3.6 Point scatterers in a homogeneous medium

We start with the sparsest phantom of the study, whose Delay-and-Sum reconstruction is

shown in figure 5.10.a. The t-CBF reconstruction is carried out two separate times, using

different wavelets in the sparsifying transform:
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a. b.
Figure 5.9: Compression performance for the contrast physical phantom. This
phantom contains both high-contrast and low-contrast cysts and lesions, as well as
a point scatterer.
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Phantom 5.4.a 5.4.b 5.4.c 5.4.d

Type of data simulated simulated experimental experimental

Features point scatterers
in free-space

hypoechoic cysts
in speckle

point scatterers
and hyperechoic
lesion in speckle

hypoechoic and
hyperechoic
regions and

point scatterers
in speckle

Assessment resolution contrast resolution contrast

Best wavelet Symmlet4 Coiflet4 Symmlet4 Coiflet4

Best level 2 3 2 3

Compressibility 97.54% 88.83% 82.22% 87.22%

Table 5.2: Summary of the best wavelet and compression score results.

• Haar wavelet at decomposition level 1: the reconstruction is shown in figure 5.10.b.

The resolution of the point scatterers is much improved, from the Delay-and-Sum

reconstruction. The image was reconstructed in about 10 minutes.

• Symmlet4 wavelet at decomposition level 2: the reconstruction is shown in figure 5.10.c.

The resolution is comparable to the Delay-and-Sum reconstruction, by the aspect of

the point scatterers is unusual. Their spread is the same in the x- and z-dimensions,

giving them a cross-shape. The image was reconstructed in about 7 minutes. It is

faster than the Haar reconstruction, but the aspect of the image is not acceptable.

5.3.7 Hypoechoic cysts in speckle

We continue with the other simulated phantom: the contrast phantom whose Delay-and-

Sum reconstruction is shown in figure 5.11.a. The t-CBF reconstruction is carried out two

separate times, using different wavelets in the sparsifying transform:

• Haar wavelet at decomposition level 2: the reconstruction is shown in figure 5.11.b.

The image has a pixelated aspect, but the edges are sharp and the contrast preserved.
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a. b. c.
Figure 5.10: Reconstruction of the simulated resolution phantom: a. Delay-and-
Sum reconstruction using 75 plane waves, b. t-CBF reconstruction using a single
plane wave, and Haar wavelet at decomposition level 1, c. t-CBF reconstruction
using a single plane wave, and Symmlet4 wavelet at decomposition level 2.

The image was reconstructed in about 8 minutes.

• Coiflet4 wavelet at decomposition level 3: the reconstruction is shown in figure 5.11.c.

The contrast is slightly degraded, but the edges are still sharp. The image was recon-

structed in about 29 minutes. It is much slower than the Haar reconstruction, but

the image does not have the pixelated aspect of the Haar image.

a. b. c.
Figure 5.11: Reconstruction of the simulated contrast phantom: a. Delay-and-
Sum reconstruction using 75 plane waves, b. t-CBF reconstruction using a single
plane wave, and Haar wavelet at decomposition level 2, c. t-CBF reconstruction
using a single plane wave, and Coiflet4 wavelet at decomposition level 3.
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5.3.8 Point scatterers and hyperechoic lesion in speckle

Next, we move on to the first experimental phantom, whose Delay-and-Sum reconstruction

is shown in figure 5.12.a. Once again, the t-CBF reconstruction is carried out two separate

times, using different wavelets in the sparsifying transform:

• Haar wavelet at decomposition level 2: the reconstruction is shown in figure 5.12.b.

Again, the image has a pixelated aspect. The resolution is degraded, and the speckle

is not well rendered. The image was reconstructed in about 19 minutes.

• Symmlet4 wavelet at decomposition level 2: the reconstruction is shown in figure 5.12.c.

The comments about the resolution and speckle we made previously are also applicable

to the Symmlet4 reconstruction. The image was reconstructed in about 14 minutes. It

is comparable to the Haar reconstruction, but the image does not have the pixelated

aspect of the Haar image.

a. b. c.
Figure 5.12: Reconstruction of the experimental resolution phantom: a. Delay-
and-Sum reconstruction using 75 plane waves, b. t-CBF reconstruction using a
single plane wave, and Haar wavelet at decomposition level 2, c. t-CBF recon-
struction using a single plane wave, and Symmlet4 wavelet at decomposition level
2.
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5.3.9 Hypo and hyperechoic regions in speckle

Finally, we study the second experimental phantom, whose Delay-and-Sum reconstruction

is shown in figure 5.13.a. Once again, the t-CBF reconstruction is carried out two separate

times, using different wavelets in the sparsifying transform:

• Haar wavelet at decomposition level 2: the reconstruction is shown in figure 5.13.b.

Again, the image has a pixelated aspect. The resolution is slightly degraded, and the

speckle is not well rendered. The image was reconstructed in about 11 minutes.

• Coiflet4 wavelet at decomposition level 2: the reconstruction is shown in figure 5.13.c.

The comments about the resolution and speckle we made previously are also applicable

to the Coiflet4 reconstruction. The image was reconstructed in about 39 minutes. It

is considerably more than the Haar reconstruction.

a. b. c.
Figure 5.13: Reconstruction of the simulated resolution phantom: a. Delay-and-
Sum reconstruction using 75 plane waves, b. t-CBF reconstruction using a single
plane wave, and Haar wavelet at decomposition level 2, c. t-CBF reconstruction
using a single plane wave, and Coiflet4 wavelet at decomposition level 2.

5.3.10 Wrap-up

The conclusion we can draw from this study is that the choice of a particular wavelet against

another is far from being trivial. While some wavelets have better compression capabilities
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than others, the performance of the t-CBF reconstruction does not always correlate. Some

of those can be explained. While computing the previous images using t-CBF, all the pa-

rameters except for the wavelet used in the sparsifying transform were kept constant. This

means that the number of coefficients recovered in the case of the Haar wavelet and in the

case of the wavelet leading to the best compression score is roughly the same. However, since

the latter wavelet sparsifies the image further, it is easier for the algorithm to pick up more

information, and sometimes artifacts. In a way, using a more powerful sparsifying transform

while all the other parameters remain constant relaxes the sparsity condition in favor of

the fidelity or l2-error term in equation 5.13. Unfortunately, our model being imperfect in

essence, the l2-constraint brings out more artifacts and we are faced with a tradeoff between

the sparsity and the fidelity to our data.

It is found best to choose a wavelet that has the most compact support, and then to work

the other parameters around it to get the best image possible without sacrificing the quality.

In practice, the wavelet that produces good resolution and visually acceptable results is the

Coiflet1 at decomposition level 1. The support of the Coiflet1 wavelet is the most compact

of the Coiflets, which ensures the preservation of the resolution. The decomposition at

level 1 limits the number of computational operations to apply to the image, making the

computation optimally fast.

5.3.11 Decimated or undecimated wavelets?

As seen in chapter 2, the wavelet transform classically includes a decimation by a factor

2. It is the so-called critically sampled wavelet transform. It is the most suitable for image

compression in part because the maximum number of coefficients in the transform is bounded

by the number of pixels in the image.

However, there exists a version of the wavelet transform that does not decimate the result

of the low-pass and the high-pass filters. This transform is commonly referred to as the sta-

tionary wavelet transform, or the non-decimated wavelet transform. The stationary wavelet
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transform brings redundancy to the transform, and its maximum number of coefficients is

a function of the level of decomposition. The higher the level, the more coefficients there

are in the transform. For that reason, the stationary wavelet transform is not well suited

for image compression. However, the added redundancy it brings is beneficial for t-CBF

reconstructions in certain cases when it comes to the aspect of the image.

To give a rough example of the improvement in image quality one can expect from the

stationary wavelet transform, we applied t-CBF to a numerical phantom displaying lesions,

cysts, and speckle. We selected Haar wavelets, decomposed at level 1, and ran t-CBF with

the classic decimated wavelet transform first and then the non-decimated wavelet transform.

The results are presented in figure 5.14.

As we can see on figure 5.14.b, a Haar wavelet reconstruction leads to an image with

a pixelated aspect. This pattern is attenuated when reconstructing the image with the

stationary wavelet transform, all other transform parameters kept constant. It is also clear

that the resolution of image 5.14.c is better than image 5.14.b, as the point scatterer in the

center are far less spread out in the azimuth dimension. The general aspect of the speckle is

also closer to the one we would obtain with the Delay-and-Sum algorithm.

However, the stationary wavelet has a major drawback: it makes t-CBF even more

computationally intensive since the transform in itself has more operations, and also because

there are many more coefficients to recover to get a comparable level of details. Moving

forward, it is preferable to simply use a wavelet that does not produce the pixelated artifact,

such as the Coiflet1 at decomposition level 1.

Decimation speeds up minimization. The decimated wavelet transform leads to less po-

tential coefficients to recover, making the minimization easier. Undecimation introduces

redundancy as well as smoothness which is a desirable property in our case. A quick com-

parison of figure 5.14.b and 5.14.c leads to the following observations:

• First, the contrast in the cysts and the lesions is better with undecimated wavelets.

The lesions and cysts are well-separated from regular tissue.
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• Then, the resolution of the point scatterers is better when using undecimated wavelets.

The image reconstructed using decimated wavelets shows a great reduction of the

resolution as we go deeper into the tissue. It even seems to be better than the DAS

image in figure 5.14.a.

• Finally, figure 5.14.b displays harsh intensity transitions while figure 5.14.c is much

smoother.

Those results corroborate with similar experiments we conducted on different types of phan-

toms. It suggests that using undecimated wavelets is beneficial to t-CBF. However, the

computational cost is so high that at the moment it is more efficient to use the critically

sampled wavelet transform.

5.4 Reconstructed field-of-view

Ultrasound images are generally subject to clutter noise. The acoustic clutter comes from

objects and structures that are off-axis, or outside of the field-of-view. The beamformer does

not generally take into account to possibility that off-axis scatterers or outside of the field-of-

view scatterers can get insonify during a transmit event. This is due to the very nature of how

the transmit wave is generated. Looking at figure 5.15.a we can understand this phenomenon

better. Even though we are firing all the elements at the same time to create a plane wave

propagating directly en-face the probe, the profile of the wave actually generated is quite

different. It corresponds to the coherent sum of multiple spherical waves generated at the

surface of the probe by each individual element. The spherical waves interfere constructively

wherever they are in phase. As a result, the amplitudes add up to form what looks like

a plane wave, when we restrict the observation to the field-of-view, represented by a blue

rectangle in figure 5.15. However outside of that window the constructive interference stops,

and a wave corresponding roughly to the wavefront generated by the extremal elements

can be observed. Even though the amplitude is less significant on the sides, they still get
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a. b.

c.
Figure 5.14: Numerical phantom with lesions, cysts, point scatterers in speckle:
a. classic Delay-and-Sum reconstruction using a single diverging wave, b. t-CBF
reconstruction using a single diverging wave, a Haar wavelet at decomposition level
1 and the critically sampled wavelet transform, and c. t-CBF reconstruction using
a single diverging wave, a Haar wavelet at decomposition level 1 and the stationary
wavelet transform.
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insonified.

Figure 5.15.b shows the reflections created by the scatterers in the medium. The two

scatterers located in the green area (field-of-view) will produce reflections that will be taken

into account by the beamformer. However the scatterer in the red area (outside of the

field-of-view), will also produce a wavefront. Since this last wave front will not be taken into

account by the beamformer, it will simply add to the noise in the image. This phenomenon is

more significant with phased array. The elements in a phased array are usually small enough

(about λ{2) that they are not directive and fire energy in all directions forward as shown in

figure 5.16.b. In linear arrays, the phenomenon is still a problem, even though the bigger

elements (about λ) are far less directive and fire energy primarily in a π{2 sector as shown in

figure 5.16.a. This difference in directivity can be explained by the size of the elements. In

the case of a phased array, the element width is close to λ{2, making the element physically

equivalent to a point scatterer. For a linear array, the element width is usually around λ.

In order to take into account the reflections coming from outside the field-of-view of the

image displayed to the user, we increase the width of the field-of-view beyond the width of

the probe. This way t-CBF can discriminate the signals that come from en-face the probe

from the signals that come from the sides.

To illustrate this phenomenon, we reconstruct a cardiac image with different field-of-view

sizes. The data is acquired with a single diverging wave, and the parameters of the probe are

given in 6.2. The results are shown in figures 5.17 and 5.18. Figure 5.17.a is the reference

image. It is reconstructed using the display field-of-view, that is to say a π{4 sector. In

that case, the problem at the boundaries of the field-of-view is ignored. The corresponding

reconstruction shows a lot of clutter in the atria resulting in a loss of contrast. The following

three images shown in figure 5.17.b, c, and d are reconstructed with progressively wider

fields-of-view. We notice a sharp decrease in the amount of clutter in the atria, as well as in

the ventricles.

The image can be decluttered further by adopting an even wider field-of-view, as shown
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a. b.
Figure 5.15: Influence of the scatterers outside of the reconstruction field-of-view: a. The
transmit wave is not a perfect plane wave, therefore scatterers outside of the reconstruction
field-of-view are insonified, b. They produce echoes that travel back to the probe, and create
noise in the reconstruction.

in figure 5.18.a, b, c, and d. Of course, making the reconstruction field-of-view wider comes

at the cost of added computations. However, it is a trade-off with the convergence time.

A wider field-of-view can help t-CBF making sense of some of the wavefronts that produce

the clutter in figure 5.17.a. By doing so, the reconstruction error is decreased, making the

convergence faster. When the field-of-view becomes too wide, this advantage is lost because

the computational cost becomes too significant. From the present data set, a reconstruction

field-of-view 40% larger than the display field-of-view seems to be optimal. It leads to both

a decluttered image and a decrease in the total computation time. Above this value, the

image quality does not change significantly, but the computation time increases. Below this

value, the image shows clutter.
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a. b.
Figure 5.16: Transducer directivity: a. Elements with a π{2 directivity, typical of a linear
probe, b. Almost isotropic, smaller elements that are far less directional, typical of a phased
array.
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a. b.

c. d.
Figure 5.17: Influence of the reconstruction field-of-view (FOV): a. the recon-
struction field-of-view FOVrecon is equal to the displayed field-if-view FOVdisp “ π{4
and the computation time trecon is 3.2 minutes, b. FOVrecon is 10% wider than
FOVdisp and trecon “ 3.8 min, c. FOVrecon is 20% wider than FOVdisp and
trecon “ 3.9 min, d. FOVrecon is 30% wider than FOVdisp and trecon “ 3.7 min.
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a. b.

c. d.
Figure 5.18: Influence of the reconstruction field-of-view (FOV): a. FOVrecon

is 40% wider than FOVdisp and trecon “ 3.2 min, b. FOVrecon is 50% wider than
FOVdisp and trecon “ 3.6 min, c. FOVrecon is 75% wider than FOVdisp and trecon “

6.1 min, d. FOVrecon is 100% wider than FOVdisp and trecon “ 4.8 min.
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5.5 Parallelization

Parallelization can speed up the reconstruction. The increase in speed is due to two factors:

• The problem is divided into ncores smaller sub-problems, where ncores is the number of

CPU cores we use. Each core reconstructs a portion, or slice of the image.

• The slicing itself allows for a reduction of the amount of RAM used, and the total

amount of RAM used by the parallelized problem is less than the amount of RAM

used by the complete problem.

In order to parallelize the problem, we need to choose a sub-division of the image we want

to reconstruct. Suppose we choose to slice the image in the x-dimension. In that case,

the boundaries in the azimuth direction are computed and the data is sliced accordingly.

Let us consider a medium with two point scatterers at the same depth. We want to divide

the problem into two sub-problems. Thus we compute the boundary between the two sub-

problems. Let us assume that one scatterer belongs to sub-problem 1 (SB1), and the second

scatterer belongs to sub-problem 2 (SB2). Each sub-problem should then easily reconstruct

the correct scatterers. However when we consider the slicing of the data, we are faced with a

difficulty: there is no way to slice the data that will separate completely the wavefront of the

scatterer in SB1 from the wavefront of the scatterer in SB2. This phenomenon is shown in

figure 5.19. Figure 5.19.c in particular shows that we end up with two sub-images with one

scatterer each, but the sub-divided data shows two wavefronts for each sub-problem. Thus

this sub-division leads to a greater reconstruction error, since the matrix G does not have

the wavefronts necessary to model that data in its dictionary.

As a result, we slice the image in the z-dimension. In that case, the boundaries of the

data can be computed by referring to the time-of-flights of the shallowest and the deepest

points in each sub-image. This case is illustrated by figure 5.20. In that case, we see that each

sub-image contains one scatterer, and each sub-division of the data contains one wavefront.
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The maximum number of sub-division is dictated by common sense: if a sub-domain is

so small that it cannot contain a complete wavefront, then its size must be increased. In

general, we obtain good results with sub-domains spanning about 1 cm of depth.

Figure 5.20.c shows another advantage of this technique. For each sub-image, the corre-

sponding boundaries in the acquisition domain are calculated in order to sub-divide the data.

Let us assume that the original data has 3, 200 time samples, and that the reconstruction is

carried out using 4 CPUs. If the data is sub-divided into 4 sets of equal size, we end up with

a set having 800ˆ 64 samples in total. If the total size of the image is 160ˆ 128 samples, we

are reconstructing 4 sub-images of size 40ˆ128 samples. The implication in terms of memory

usage is that each sub-matrix G is going to have 800ˆ64ˆ40ˆ128 “ 262, 144, 000 samples.

The total for the 4 sub-problems is then 1, 048, 576, 000 samples. However, if we compute the

image with the regular t-CBF, the size of the matrixG is 800ˆ64ˆ160ˆ128 “ 4, 194, 304, 000

samples which is 4 times more. Therefore we come to the conclusion that the more CPUs we

use the less RAM we need. The time needed to compute an image decreases significantly with

this technique, going from several hours to a few minutes. Since the memory requirements

are more manageable with parallelized t-CBF, we can also compute bigger images.

5.6 Robustness to noise

Compressive Sensing is generally robust to noise as we saw in section 3.3.8. However, is

t-CBF robust to noisy data? In this section, we applied t-CBF to simulated phantom data

with different noise levels.

The noise level is expressed in decibels with the reference set at the maximum absolute

value of the noiseless signal. We compute the reconstructions for noise levels from -60 dB

to 0 dB. At -60 dB, the noise is essentially inconsequential, since it is below the minimum

amplitude that we show. At 0 dB the level of noise is higher than most of the signal. As

a result, we expect to reconstruct a noisy image lacking all the features of the phantom in
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a. b. c.
Figure 5.19: Sub-division of the problem in the x-axis: a. insonification of the medium, b.
echoes generated by the scatterers, c. sub-division of the data. Figure c. clearly shows the
problem: the sub-images have only one scatterer each, but the sub-divided data shows two
wavefronts in both cases.

a. b. c.
Figure 5.20: Sub-division of the problem in the z-axis: a. insonification of the medium, b.
echoes generated by the scatterers, c. sub-division of the data. Figure c. clearly shows the
advantage of such sub-division: each sub-image has one scatterer, and the sub-divided data
contains one wavefront in both cases.
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that case.

The noise U is chosen uniformly at random in the interval r0, 1s, and scaled later on. The

noisy data is obtained by adding U to the noiseless data:

Rnoisy “ R ` U (5.17)

In figure 5.21.a-c we see that the noise level in the data has little impact on the reconstruc-

tion. However starting at 30 dB of noise (figure 5.21.d-f), strong artifacts appear on the

reconstruction. The contrast in the cysts decreases drastically, and the deepest scatterer in

the center disappears. The resolution does not seem to be affected by the noise.

The same experiment is carried out a second time using wavelet packets. The packet tree

is chosen from the first approximation of the image GJR obtained from the noiseless data.

We want to see if the wavelet packet tree that best represents the image will help denoising

the reconstruction. The results are shown in figure 5.22.

Figures 5.21 and 5.22 show that the added computational cost of using wavelet packet

does not translate to significant improvement of the robustness of t-CBF to noise.

5.7 Conclusion

In this chapter, we showed that t-CBF could be adapted to tissue imaging.

In order to accommodate actual data from a scanner and reconstruct actual ultrasound

images, we showed that using the Hilbert transform as a way to decrease the size of G

was an acceptable strategy. Further, parallelization made t-CBF even more attractive by

accelerating the convergence of the algorithm as well as making it less RAM greedy.

To be able to reconstruct images with thousands of scatterers and displaying a speckle

pattern, we showed that using the wavelet transform as a sparsifier was visibly beneficial.

Among the many wavelet families and algorithms, we saw that in most cases simpler was bet-

ter. The critically sampled wavelet transform in conjunction with Coiflet1 at decomposition
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a. b. c.

d. e. f.
Figure 5.21: Robustness of t-CBF to noise: a. 60 dB SNR, b. 50 dB SNR, c. 40
dB SNR, d. 30 dB SNR, e. 20 dB SNR, and f. 10 dB SNR.
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a. b. c.

d. e. f.
Figure 5.22: Robustness of t-CBF to noise using wavelet packets: a. 60 dB SNR,
b. 50 dB SNR, c. 40 dB SNR, d. 30 dB SNR, e. 20 dB SNR, and f. 10 dB SNR.
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level 1 led to good results in most cases.

Then, we emphasized on the necessity to reconstruct a wider field-of-view than the one

displayed to the user. In fact, doing so redued the clutter in the final image. This phe-

nomenon was due to the fact that with a wider field-of-view, t-CBF could understand some

of the wavefronts coming from outside the theoretical insonification area. Scatterers outside

of this area were insonified because of the lack of directivity of the elements.

We also showed that t-CBF was robust to a certain level of noise, and could produce

acceptable results with SNR above 30 dB.

The next chapter is simply an application of all the refinements that were developed to

in-vivo echocardiography.
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Chapter 6

Application to in-vivo echocardiography

6.1 Introduction

Some applications of ultrasound imaging require a high frame rate to capture the movement

of organs with precision. Such an application is echocardiography, where a physician captures

images of a beating heart with an ultrasonic scanner in order to detect a pathology related

to its movement, or the movement of its valves. Because such movements are quick, a high

frame rate is required to capture them [136].

6.2 Approaching in-vivo cardiac imaging

The previous improvements allow us to work on real images. The use of the Hilbert

transform in the pre-processing of the data as well as in the building of the matrix G ensures

the amount of RAM and computations remain manageable. This step is needed to reduce

the number of time samples in the data without aliasing. Indeed, imaging at a 14 cm depth

at 32 MHz means that we acquire 5818 samples in depth. However, the analytic signal can

be sampled at 3.24 MHz, requiring only 589 time samples.

This mathematical trick allows the use of t-CBF with data acquired with a commercial

US scanner. First, we used a hardware modified iU22 from Philips (Best, Netherlands) that
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Parameter fc bw λ Nelements p csound fs

Value 2.7 MHz 0.6 570 µm 80 λ{2 1540 m.s-1 32 MHz

Table 6.1: Parameters used to build G for our first cardiac dataset.

allows us to collect raw data, before any kind of processing is applied to the signal. We used

the S5-1 probe for those experiments (table 6.1).

Because the pulse sequence we use is not standard, the scanner’s software was also mod-

ified to emit diverging waves. The modification has not been approved for use on human

subjects. For that reason, we used a mathematical trick to produce the data we used for

reconstruction. Starting from a cardiac dataset we acquired using a classic pulse sequence

made of several focalized transmit waves, we applied the virtual transducers principle [137]

to calculate the synthetic aperture data [138]. From there, it was straightforward to calculate

the response to a diverging wave.

The t-CBF image showed in figure 6.1c. is much cleaner than the DAS images. It allows

us to locate structures that are not easily discernible on the DAS images, such as the left

ventricular wall. The other structures are preserved and clear.

Those results are very encouraging and the next step is to now perform the acquisition

with a diverging transmit wave directly.

6.3 High frame rate in-vivo cardiac imaging

Next, we used data acquired with a Verasonics scanner and a P4-2 probe whose parameters

are summarized in table 6.2. That data set we used was critically sampled, meaning that the

sampling frequency was strictly equal to the double of the central frequency of the probe.

Moreover, the data was acquired using a diverging wave as a transmit wave. A succession of

4,000 consecutive frames was acquired at a 4.9 kHz frame rate. A sample image is shown in

figure 6.2.b along with the Delay-and-Sum reconstruction (figure 6.2.a). The Delay-and-Sum

image is cluttered and has a low contrast. The t-CBF image is much cleaner, with better
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a. b.

c.
Figure 6.1: a. DAS image with 1 diverging transmit wave, b. DAS with 11
diverging transmit waves, and c. t-CBF image with 1 diverging transmit wave.
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contrast in the atria and ventricles. The cardiac walls and the valves are much easier to

locate in the t-CBF image.

Overall t-CBF was able to reconstruct an image with better resolution, better contrast,

and less clutter than Delay-and-Sum, from the exact same data.

Parameter fc bw λ Nelements p csound fs

Value 2.5 MHz 0.6 616 µm 64 λ{2 1540 m.s-1 10 MHz

Table 6.2: Parameters used to build G for the second cardiac dataset.

6.4 Conclusion

We demonstrated that t-CBF could be used on a cardiac dataset. First, we proposed a way

to sparsify the image, making the recovery of speckle patterns by t-CBF more robust. We

studied a few wavelet families and selected the most relevant. Then, we investigated the

advantages and drawbacks of using a decimated or undecimated wavelet transform. Finally

we used the Hilbert transform on our dataset as well as to calculate the matrix G in order

to decrease its size and make t-CBF applicable to real life images.
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a.

b.
Figure 6.2: in-vivo cardiac data acquired with a single diverging wave: a. Delay-
and-Sum reconstruction, b. t-CBF reconstruction. The t-CBF reconstruction took
1.4 minutes. The t-CBF image is much cleaner, with far less clutter in the atria
and ventricles, making the cardiac walls and valves easier to see.
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Chapter 7

Concluding remarks

7.1 Introduction

With t-CBF, we built a feature-rich modern beamformer. t-CBF relies on physical models

and computational power and can be adapted to scenarios going from plane wave imaging

to focalized imaging, coded excitation imaging, or potentially harmonic imaging.

7.2 Focalized t-CBF

7.2.1 Introduction

Time-domain Compressive Beamforming was designed originally for plane wave imaging. It

was introduced as a solution to the problem of high quality, high frame rate imaging. Using

only one plane wave, t-CBF can achieve resolutions comparable to focalized Delay-and-Sum.

It was later adapted to diverging wave imaging, in an effort to generalize it and use it in the

context of echocardiography. Once again, diverging wave t-CBF was design with high frame

rates in mind, hence it used only one transmit wave.

However, t-CBF can be used in other contexts. Since we have full control over the model

that we use to build the matrix G, we can adapt it to focalized transmit waves. Of course,
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the frame rate in that case would be equivalent to what can be obtained classically with

the Delay-and-Sum. However, we can hope to improve the image quality. This assumption

comes from the observation that the PSF of the Delay-and-Sum, shown in figure 4.7.b, is

much wider than the PSF of t-CBF, shown in figure 4.7.d. Therefore, replacing Delay-and-

Sum by t-CBF should allow for an increase in resolution, as well as weaker sidelobes.

In this chapter, we propose to investigate the use of t-CBF in conjunction with focalized

transmit waves. A comparison with Delay-and-Sum is then drawn.

7.2.2 Imaging with focalized waves & a linear array

Imaging with a linear array is done by focusing at a fixed depth immediately en-face a sub-

aperture of the probe. In general, the sub-aperture is half as large as the total aperture. To

span the tissue, the sub-aperture is translated across the full aperture as shown in figure 7.1.a.

Only the scatterers in the way of the focalized wave are excited by the transmit event, as

shown in figure 7.1.b. A Delay-and-Sum reconstruction is then performed to reconstruct the

part of the image that corresponds to the insonified region.

This acquisition scheme can be adapted to t-CBF. The focalization is simply built into

the matrix G. Thus, we build a matrix G for each focal point, and apply t-CBF to the

corresponding data. The result is an image of the tissue where most of the amplitude is

reconstructed along the path of the focalized wave, as shown in figure 7.2.a, b and c. We

reconstruct as many images as there are focal points, and eventually combine them together

to compute the full image. The final reconstruction is thus carried out by selecting the row,

or line, that is directly en-face the focal point. Figure 7.3.a shows the final reconstruction

along with the Delay-and-Sum image (figure 7.3.b). The main difference between the two

images is the side lobe levels. Looking at the deepest point scatterers, we see that their PSF

is much narrower in the t-CBF reconstruction.
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a. b.

Figure 7.1: Focalized imaging with a linear array: a. the medium is insonified by a translat-
ing sub-aperture in a direction orthogonal to the elements. The tissue is primarily insonified
in the area delimited by the dashed lines. b. The focalization ensures that most of the echoes
come from scatterers in the way of the beam, as opposed to anywhere else in the medium.

a. b. c.
Figure 7.2: Examples of t-CBF reconstructions from focalized data: the path of the focalized
beam can clearly be seen, and the area reconstructed by the algorithm corresponds primarily
to the beam path.
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a. b.
Figure 7.3: Completed reconstruction: a. with t-CBF, b. with Delay-and-Sum. The t-CBF
image has lower side lobes than the Delay-and-Sum image.

7.2.3 Imaging with focalized waves & a phased array

Time-domain Compressive Beamforming can also be used in conjunction with a focalized

phased array. In that case, the full aperture is used to create beams steered in different

directions at constant focal length as shown in figure 7.4.a. Similarly to the case of the

linear array, the medium is insonified primarily in the direction of the focalized beam, hence

minimizing the potential echoes coming from other locations, as shown in figure 7.4.b.

The t-CBF reconstruction is carried out by computing one image per beam, as shown

in figure 7.5.a, b, and c. Then the final image is obtained by selecting the lines along the

focal directions and stitching them together. The images computed with 80 lines and 160

lines are shown in figures 7.6.a and b, respectively. As a reference, the Delay-and-Sum image

computed with 80 lines is shown in figure 7.6.c. The resolution of the t-CBF image is better,

with less distortions than the Delay-and-Sum image. In fact, the circular cysts display an

oblong shape in the Delay-and-Sum image. They remain perfectly circular in the t-CBF

images.
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The 80 line t-CBF image seems to have less contrast in the cysts than the Delay-and-Sum

image.

7.3 Coded excitation

Originally used in radars to increase the SNR [139], coded excitation for ultrasound imaging

was investigated as early as 1979 [140, 141]. Since then, an extensive literature has been

published on the subject. The coded excitation technique come from the observation that in

ultrasound imaging, the axial resolution is limited by the duration of the pulse, with shorter

pulses leading the best resolution. In other words, pulses of higher frequency and larger

bandwidth produce better resolution. However, the attenuation of waves in the human body

increases with the frequency of the pulse. To counteract this effect, higher amplitudes could

be used. But higher amplitudes lead to side effects, such as tissue heating and damaging. In

creasing the pulse duration prevents such side effects, compensates for the attenuation since

the total energy being emitted increases, but degrades the resolution.

Coded excitation along with pulse compression provides an answer to the problem. More

information can be found in references [142–146].

Time-domain Compressive Beamforming is compatible with coded excitation. This means

that the transmit event can be made of several pulses. For example, we can imagine a trans-

mit event composed of three plane waves steered in three different directions, as shown in

figure 7.7.

7.4 Data compression by random matrices

In chapter 3, we saw that Compressive Sensing has the ability to recover signals from com-

pressed measurements. In section 3.3.9, we described a few acquisition matrices that have

the capability of compressing the signal. They are also fully compatible with the Compres-

sive Sensing framework meaning that when used in a sensing scheme in conjunction with
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a.

b.

Figure 7.4: Focalized imaging with a phased array: a. the medium is insonified by the full
aperture, and the beam is steered in different directions at constant focal length. The tissue
is primarily insonified in the area delimited by the dashed lines. b. The focalization ensures
that most of the echoes come from scatterers in the way of the beam, as opposed to anywhere
else in the medium.
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a. b.

c.
Figure 7.5: Examples of t-CBF reconstructions from focalized data: the path of the focalized
beam can clearly be seen, and the area reconstructed by the algorithm corresponds primarily
to the beam path.
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a. b.

c.
Figure 7.6: Completed reconstruction: a. with t-CBF and 80 lines, b. with t-CBF and
160 lines, c. with Delay-and-Sum. The t-CBF images have better resolution than the Delay-
and-Sum image, as well as less distortion. It seems the contrast in the cysts for the 80 line
t-CBF image could be improved.
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a. b.

Figure 7.7: Coded excitation: a. Insonification with a transmit event made of 3 different
ultrasonic pulses of different durations, b. (top) Typical ultrasonic impulse, b. (bottom)
coded excitation.

convex optimization they introduce no loss of information. In this section, we investigate

how random projections can benefit t-CBF.

To take advantage of the data compression offered by Compressive Sensing further, we

consider a random compression matrix K at first.

Definition 25. The compression matrix is a matrix K P MNcomp,NdatapRq, where Ndata “

NtˆNel is the number of samples in the data and Ncomp ă Ndata is the number of compressive

acquisitions, such that the compressed data is obtained by:

Rcomp “ KR (7.1)

The compression matrix K needs to be taken into account in our minimization scheme.

Corollary 8. The compression matrix K is incorporated to the model G by projecting the

rows of G onto K:

Gcomp “ KG (7.2)

with Gcomp P MNcompˆNimgpCq

The matrix K is built by selecting N2
data coefficients uniformly a random in r0, 1ss. K
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is then orthogonalized using the Gram-Schmidt process [147]. Finally, K is truncated to

become a Ncomp ˆ Ndata matrix.

The t-CBF reconstruction is carried out normally otherwise, that is to say we use

SPGL1 [119] to solve the BPDN problem

min
ÎPRNimg

}Î}l1 such that }GcompÎ ´ Rcomp}l2 ď ϵ (7.3)

described in chapter 4.

Figures 7.8.a, b, c, and d show the results obtained with no compression, then 5%, 10%,

and 20% respectively. There is no significant difference in image quality between the four

reconstructions.

Figures 7.9.a, b, c, and d show the results obtained with 30% 40%, 60%, and 80%

respectively. Figure 7.9.a is still comparable to figure 7.8 in terms of image quality. With

a compression rate superior to 30% however, the image starts to degrade. The part of the

image that is the most affected by the degradation is the part containing the cysts. The

contrast tends to decrease as they fill with artifacts. The resolution of the point scatterers

stays constant, and the bright lesions are not significantly affected by the compression.

The projections on random vectors could be replaced by the use of the noiselet transform.

Noiselets were designed to be incoherent with the Haar wavelets, and wavelets in general.

Therefore, using them in place of the random matrix K would bring two advantages:

1. It would alleviate the need to generate a sizable random matrix K, since the noiselet

transform can be computed efficiently in Opn log nq operations.

2. It would increase the incoherence between the acquisition space and the reconstruction

space.
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a. b.

c. d.
Figure 7.8: Data compression and t-CBF reconstruction: a. Original reconstruc-
tion with no compression, b. 5% data compression, c. 10% data compression, d.
20% data compression.
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e. f.

e. f.
Figure 7.9: Data compression and t-CBF reconstruction: a. 30% data compres-
sion, b. 40% data compression, c. 60% data compression, d. 80% data compression.
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7.5 Conclusion

This chapter was meant as a glance into the possible next steps for t-CBF. This power-

ful beamforming technique offers the advantage of being flexible and adaptable to many

scenarios.

The applications mentioned in this chapter are some of the logical next steps in the

improvement of t-CBF. Some of those have already been investigated and the preliminary

results hereby presented are promising.

This work started as a mere observation that the theory of Compressive Sensing was

extremely beneficial to MRI. It led to a logical question: could it be similarly beneficial

to ultrasound imaging? While this work provided a framework and parts of an answer to

that question, it is not isolated. Several ultrasound groups are presently working on this

subject, using different approaches and ideas. The excitation around Compressive Sensing

has led to hundreds of publications in ultrasound since its inception. The leading ultrasound

conferences now have several presentations on the topic every year.

We believe that this work broke new ground in the field of ultrasound imaging. We hope

that it will be further developed in the future, and that some of the next steps outlined in

this chapter will be tried. Taking this work to the next level would also mean adapting it to

3D imaging. Currently the computational power required to achieve this goal has prevented

us from doing so. It would be most interesting to implement this algorithm in the cloud

where computational power is cheap and readily available. We believe that the compression

capabilities of t-CBF would be a great asset in the development of cloud-beamforming.

We can hope that the continuing development in computer technology will enable the

widespread use of computational methods for beamforming which have proven to be supe-

rior. Such evolution would certainly make the modality more affordable and accessible to

developing countries all over the world.
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