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ABSTRACT 

We can now manipulate the genetic material of living organism routinely and cheaply. This 

has inspired a burgeoning field of synthesis based on DNA as a building block. The development of 

this new synthetic field has mirrored the trajectory of synthetic organic chemistry from small 

molecular systems to complex macromolecular assemblies. At first, this field of synthetic biology 

delivered recombinant proteins that enhanced our understanding of the structure-function 

relationship of biological macromolecules. Now, as the synthetic tools and analysis methods have 

come of age, synthetic whole-cell and multicellular systems have come within reach. In Chapter 1 

we review the significant advances in DNA synthesis and analysis that have brought us to this 

point.  

In this work, we first ask what practical applications will benefit most from the unique 

qualities of synthetic whole-cell system, such as their ability to replicate, sense and respond with 

molecular specificity. In Chapter 2, we implement a pathogen detection platform based solely on 

genetically modified yeast. This approach holds the potential to deliver ultra low-cost sensors that 

can be used and produced at the point-of-care. In Chapter 3, we develop methods to target these 

yeast-based sensors for the detection of any peptide biomarker of choice. 

We next look forward to the potential of synthetic multicellular systems. While natural 

multicellular systems can be directly manipulated, our ability to rationally build multicellular 

systems from the bottom-up is still in its infancy.  There still remain gaps in the available tools to 

make and analyze such synthetic systems. In Chapter 4, we leverage the explosion of available 

genomic databases to uncover a highly extensible set of cell-cell signaling modules. In Chapter 5, we 

implement ratiometric fluorescent tags to track mixed cell populations in multiplex. Together these 

components will be useful in implementing and analyzing synthetic communication networks that 

will be key components of advanced synthetic multicellular systems. 

 
 

 



 

1 

TABLE OF CONTENTS 

1	 AN INTRODUCTION TO SYNTHETIC BIOLOGICAL SYSTEMS ............................................... 1	
1.1	 Introduction ........................................................................................................................................ 1	
1.2	 Building with DNA ........................................................................................................................... 3	

1.2.1	 Oligonucleotide synthesis .................................................................................................... 4	
1.2.2	 Gene assembly ....................................................................................................................... 4	
1.2.3	 Genome manipulation .......................................................................................................... 6	
1.2.4	 Library approaches ............................................................................................................... 7	
1.2.5	 Building synthetic multicellular systems ........................................................................... 8	

1.3	 Reading DNA and function .............................................................................................................. 9	
1.3.1	 Gene sequencing .................................................................................................................... 9	
1.3.2	 Next generation sequencing and genomics ....................................................................... 9	
1.3.3	 Reading function through screening and selection ........................................................ 11	
1.3.4	 Reading synthetic multicellular systems ......................................................................... 12	

1.4	 Conclusions ....................................................................................................................................... 13	
1.5	 References ......................................................................................................................................... 13	

2	 A YEAST SENSOR FOR LOW-COST POINT-OF-CARE PATHOGEN DETECTION .............. 19	
2.1	 Introduction ...................................................................................................................................... 19	

2.1.1	 Whole-cell sensors ............................................................................................................... 20	
2.1.2	 G-protein coupled receptors in yeast ............................................................................... 21	

2.2	 Results ................................................................................................................................................ 22	
2.2.1	 Considerations of developing a yeast-based point-of-care sensor ............................... 22	
2.2.2	 Construction of a first generation sensor ......................................................................... 25	
2.2.3	 A robust method for quantifying lycopene production ................................................ 26	
2.2.4	 An second generation lycopene reporter system ........................................................... 28	
2.2.5	 Construction of a sensor for fungal pathogens ............................................................... 31	



 

2 

2.2.6	 Characterization of sensor in non-ideal conditions ........................................................ 32	
2.2.7	 Detection of fungal pathogens ........................................................................................... 35	
2.2.8	 Development of a point-of-care dipstick assay ............................................................... 38	

2.3	 Discussion ......................................................................................................................................... 42	
2.4	 References ......................................................................................................................................... 43	

3	 DIRECTED EVOLUTION OF PEPTIDE ACTIVATED GPCRS ..................................................... 48	
3.1	 Introduction ...................................................................................................................................... 48	

3.1.1	 Current cholera detection ................................................................................................... 48	
3.2	 Results ................................................................................................................................................ 49	

3.2.1	 Overview of DE pipeline .................................................................................................... 49	
3.2.2	 Construction of a versatile reporter strain ....................................................................... 50	
3.2.3	 Hybrid peptides as intermediate ligands for evolving fungal GPCRs ........................ 54	
3.2.4	 Evolution of S. cerevisiae Ste2 towards new peptide ligands ........................................ 56	

3.3	 Discussion ......................................................................................................................................... 61	
3.4	 References ......................................................................................................................................... 61	

4	 FUNGAL RECEPTOR-PEPTIDE PAIRS: EXTENSIBLE COMMUNICATION MODULES FOR 

SYTHETIC BIOLOGY .................................................................................................................................... 66	
4.1	 Introduction ...................................................................................................................................... 66	

4.1.1	 Current systems for synthetic cell-cell communication ................................................. 66	
4.2	 Results ................................................................................................................................................ 67	

4.2.1	 Genome mining for fungal mating GPCRs ..................................................................... 67	
4.2.2	 Genome mining for fungal peptide pheromones ........................................................... 71	
4.2.3	 Functional validation of GPCR-peptide pairs ................................................................. 73	

4.3	 Discussion ......................................................................................................................................... 78	
4.4	 References ......................................................................................................................................... 79 

	



 

3 

5	 RATIOMETRIC FLUORESCENT CELLTAGS .................................................................................. 83	
5.1	 Introduction ...................................................................................................................................... 83	

5.1.1	 Current methods for characterizing multicellular systems .......................................... 83	
5.2	 Results ................................................................................................................................................ 85	

5.2.1	 Lowering noise in fluorescent protein stoichiometry .................................................... 85	
5.2.2	 Constructing a large palette of ratiometric fluorescent tags ......................................... 87	
5.2.3	 An automated gating method for high throughput analysis of tagged cells ............. 90	
5.2.4	 Tracking mixed populations of competing cells ............................................................. 92	
5.2.5	 Multiplex profiling of yeast transcriptional programs .................................................. 94	

5.3	 Discussion ......................................................................................................................................... 99	
5.4	 References ......................................................................................................................................... 99	

6	 MATERIALS AND METHODS .......................................................................................................... 104	
6.1	 Materials .......................................................................................................................................... 104	
6.2	 General cloning methods in S. cerevisiae ..................................................................................... 104	
6.3	 Methods specific to Chapter 2: Yeast Sensors ............................................................................ 105	

6.3.1	 Cloning of lycopene biosensor strains ............................................................................ 105	

6.3.2	 Characterization of the lycopene readout in liquid culture ........................................ 105	

6.3.3	 Characterization of biosensor strains in liquid culture (pH, temperature, and 

complex samples) ........................................................................................................................... 106	

6.3.4	 Preparation of culture supernatant from clinically isolated fungal pathogens. ...... 106	

6.3.5	 Detection of mating peptides in supernatants of clinically isolated fungal strains. 108	

6.3.6	 Paper-based dipstick assay for detection of fungal peptides in complex samples. . 108	

6.3.7	 Determination of lycopene content by time-lapse photography ............................... 109	

6.3.8	 Visibility threshold of lycopene readout. ....................................................................... 110	

6.4	 Methods specific to Chapter 3: GPCR directed evolution ....................................................... 111	
6.4.1	 Construction of directed evolution reporter strain ...................................................... 111	

6.4.2	 GPCR expression plasmids and library construction .................................................. 111	

6.4.3	 Positive and negative growth selection .......................................................................... 111	



 

4 

6.4.4	 Fluorescence-activated cell sorting (FACS) selection ................................................... 112	

6.4.5	 High throughput screening ............................................................................................. 112	

6.4.6	 Characterization of selected variants ............................................................................. 113	

6.5	 Methods specific to Chapter 4: Fungal genome mining ........................................................... 113	
6.5.1	 Determination and analysis of fungal GPCRs sequences ........................................... 113	

6.5.2	 Determination of fungal mating peptide sequences .................................................... 113	

6.5.3	 Construction of GPCR expression plasmids ................................................................. 114	

6.5.4	 Functional characterization of GPCR-peptide pairs .................................................... 114	

6.6	 Methods specific to Chapter 5: CellTags .................................................................................... 115	
6.6.1	 Construction of CellTag integration constructs and tagged strains .......................... 115	

6.6.2	 Characterization of CellTags by flow cytometry .......................................................... 116	

6.6.3	 Tagged MaV203 strains and Gal4 induction constructs .............................................. 116	

6.6.4	 Yeast stress reporter cocktail ........................................................................................... 116	

6.7	 References ....................................................................................................................................... 117	

7	 APPENDIX ............................................................................................................................................... 120	
7.1	 A high throughput method for quantifying pigment production in cells ............................ 120	
7.2	 Fungal receptor and peptide sequences ..................................................................................... 123	

7.2.1	 Fungal mating receptors in the Ste2 family ................................................................... 123	

7.2.2	 Fungal secreted peptide pheromones ............................................................................ 127	

7.3	 Computer scripts ............................................................................................................................ 129	
7.3.1	 Automated gating with the R package openCyto ........................................................ 129	

7.3.2	 Automated retrieval of taxonomic data from UniProt using python ........................ 138	

7.4	 Additional Figures ......................................................................................................................... 140	
7.4.1	 For Chapter 4 ...................................................................................................................... 140	

7.4.2	 For Chapter 5 ...................................................................................................................... 141	

7.5	 DNA Sequences and strains ......................................................................................................... 150	
7.5.1	 Strains. ................................................................................................................................. 150	

7.5.2	 Plasmids. ............................................................................................................................. 152	



 

5 

7.5.3	 DNA sequences of expression modules constructed ................................................... 153	

7.5.4	 Key primers ........................................................................................................................ 157	

7.5.5	 Open reading frames of fungal receptors cloned ......................................................... 159	

  



 

6 

TABLE OF FIGURES 

Figure 1.1	 Synthesis of chemical and biological systems of increasing complexity ............................. 2	

Figure 1.2	 Practical applications of chemical and biological synthesis .................................................. 3	

Figure 1.3	 The cost of oligonuclotide and gene synthesis and synthesis productivity ........................ 4	

Figure 1.4	 Synthesis of biological systems can be targeted or diversity oriented ................................. 7	

Figure 1.5	 There has been an explosion in the available genomic data ................................................ 10	

Figure 2.1	 S. cerevisiae biosensor for detection of fungal pathogens ..................................................... 20	

Figure 2.2	 Pheromone response signaling pathway ................................................................................ 21	

Figure 2.3	 Lycopene biosynthetic pathway .............................................................................................. 23	

Figure 2.4	 Genomic gene delition by Delitto Perfetto ............................................................................. 24	

Figure 2.5	 Deletion of FAR1 prevents cell cycle arrest ............................................................................ 26	

Figure 2.6	 Optical density spectrum of lycopene in yeast cells ............................................................. 27	

Figure 2.7	 Optimization of lycopene readout with plasmid-borne enhancements ............................ 28	

Figure 2.8	 Optimization of lycopene output with genomic enhancements ......................................... 29	

Figure 2.9	 Comparison of first and second generation lycopene reporters ......................................... 30	

Figure 2.10	 Optimization of fungal pathogen sensors ............................................................................ 32	

Figure 2.11	 Effects of nutrient composition on lycopene readout ......................................................... 33	

Figure 2.12	 Fungal pathogen sensors function over a range of temperatures and pH ...................... 34	

Figure 2.13	 Fungal pathogen sensors function in human urine and serum ........................................ 35	

Figure 2.14	 Detection of fungal pathogens ............................................................................................... 36	

Figure 2.15	 Initial designs for a point-of-care yeast sensor .................................................................... 37	

Figure 2.16	 Function of first sensor prototype ......................................................................................... 38	

Figure 2.17	 A paper-based dipstick device for point-of-care use of yeast sensors ............................. 39	

Figure 2.18	 Dose response of paper-based dipstick ................................................................................ 40	

Figure 2.19	 The paper-based dipstick functions in complex samples .................................................. 41	

Figure 2.20	 A plastic holder for improving dipstick portability ............................................................ 42	

Figure 3.1	 Development of receptors to new pathogen targets ............................................................. 49	



 

7 

Figure 3.2	 Directed evolution pipeline ...................................................................................................... 50	

Figure 3.3	 Determination of positive and negative selection conditions ............................................. 51	

Figure 3.4	 Behavior of reporter strain in the positive and negative selections ................................... 52	

Figure 3.5	 Validation of fluorescence reporter ......................................................................................... 53	

Figure 3.6	 Design and characterization of intermediate peptide ligands ............................................ 55	

Figure 3.7	 Summary of DE routes in phase 1 ........................................................................................... 56	

Figure 3.8	 Characterization of screening results of phase 1 ................................................................... 58	

Figure 3.9	 Phase 2 screening results ........................................................................................................... 59	

Figure 3.10	 Activity of best receptor variants for new peptide ligands ............................................... 60	

Figure 4.1	 Fungal genomes can be mined for novel communcation modules .................................... 68	

Figure 4.2	 Phylogenetic tree of mined fungal receptors ......................................................................... 70	

Figure 4.3	 Signaling regions are homologous among fungal GPCRs ................................................... 71	

Figure 4.4	 Secreted fungal peptides can be found by homology of repeasts and processing sites .. 73	

Figure 4.5	 Functional validation of peptide-receptor pairs .................................................................... 74	

Figure 4.6	 Dose response curves of fungal receptors to their cognate peptide ligands ..................... 75	

Figure 4.7	 Characterization of non-functional receptors from Aspergillus species ............................. 76	

Figure 4.8	 Fungal peptide-receptor pairs are exquisitely specific ......................................................... 77	

Figure 4.9	 Sequence homology predicts response orthogonality .......................................................... 78	

Figure 5.1	 Mixed cell populations can be tracked using ratiometric fluorescent tags ....................... 85	

Figure 5.2	 Intrinsic and extrinsic noise in fluorescent protein expression in vivo. .............................. 86	

Figure 5.3	 A set of resolvable frame shift constructs ............................................................................... 87	

Figure 5.4	 A large palette of fluorescent CellTags ................................................................................... 88	

Figure 5.5	 Frameshift motifs have secondary effects on protein levels ................................................ 89	

Figure 5.6	 A triple FP tag ............................................................................................................................. 90	

Figure 5.7	 Automated hierarchical gating of the CellTags ..................................................................... 91	

Figure 5.8	 CellTags can be used to track competing populations of cells ............................................ 92	

Figure 5.9	 CellTags can be used to assay transcription reporters in multiplex ................................... 94	

Figure 5.10	 CellTags allow recording multiplex reporters robustly and specifically ........................ 96	



 

8 

Figure 5.11	 Multiplex reporters reveal yeast activates stress responses when grown in galactose 97	

Figure 7.1	 Specificity of fungal mating receptors ................................................................................... 140	
Figure 7.2	 Reporter responses to DTT ..................................................................................................... 141	
Figure 7.3	 Reporter responses to heatshock ............................................................................................ 142	
Figure 7.4	 Reporter responses to cobalt ................................................................................................... 143	
Figure 7.5	 Reporter responses to ethanol ................................................................................................ 144	
Figure 7.6	 Reporter responses to FK506 .................................................................................................. 145	
Figure 7.7	 Reporter responses to osmotic shock .................................................................................... 146	
Figure 7.8	 Reporter responses to hydrogen peroxide ........................................................................... 147	
Figure 7.9	 Reporter responses to mating pheromone ........................................................................... 148	
Figure 7.10	 Reporter responses to 5-FOA ................................................................................................ 149	

 

 

 

  



 

9 

Papers 

Portions of chapters 2 and 4 will be published in 

Nili Ostrov*, Miguel Jimenez*, Sonja Billerbeck*, James Brisbois, Joseph Matragrano, Alastair Ager, 

Virginia W. Cornish. “A Modular Yeast Biosensor for Low-Cost Point-of-Care Pathogen Detection.” 

Submitted. 

 

Portions of chapter 5 will be published in 

Andrew V. Anzalone*, Miguel Jimenez*, Virginia W. Cornish et al. “CellTags: Resolvable Cell 

Markers for Population and Multiplexed Gene Expression Analysis”. In preparation. 

 

Casey J. Brown*, Gabriella Sanguineti*, Miguel Jimenez, Joshua L. Avins, Ruben L. Gonzalez, Jr., 

Virginia W. Cornish “Single Site Incorporation of β-Amino Acids.” In preparation. 

 

Patent Applications 

Portions of chapters 2 , 3, and 4 were submitted as part of 

Virginia W. Cornish, Nili Ostrov, Miguel Jimenez, Sonja Billerbeck. “Detection of Analytes Using 

Live Cells.” PCT Int. Appl. PCT/US15/61373 (2015). 

 

Awarded Grants 

Portions of chapters 2 and 3 were submitted as part of 

NIH R01 AI110794-01A1. PI Cornish, Co-PI Ager. “A Household Yeast Biosensor for Cholera.” 2015-

2020. 

 

Portions of chapter 4 were submitted as part of 

DARPA HR0011-15-2-0032. PI Cornish, Co-PI Boeke. “A scalable peptide/GPCR communication 

language.” 2015-2017. 

  



 

10 

ACKNOWLEDGEMENTS 

My mentor, Virginia Cornish, has been instrumental in shaping the direction and scope of the 

work presented here. I am very thankful for her guidance both scientifically and personally. I leave 

her group even more bright-eyed than when I joined. It truly has been a pleasure and a unique 

opportunity to learn from and work with her. I will never forget why we do this. 

Nili Ostrov conceived the yeast sensor work and laid the foundation that enabled me to 

realize our goal. More importantly, Nili taught me and continues to teach me how science is done. 

She has set the example as a scientist that inspired me throughout my graduate years. 

Sonja Billerbeck carried out the in depth work in validating the yeast sensors against the 

Candida pathogens. She was also key in conceiving of the fungal receptors as communication 

modules. She has also deeply shaped my approach to science, and helped me realize the richness of 

the biological fleamarket. 

Sydney Blattman played a significant role in the optimization of the lycopene reporter and 

was one of the first undergraduates that I mentored. I was extremely lucky. She allowed the project 

to proceed in double time. Ana Pascoini and Katie Kim carried out a substantial portion of the clone 

characterization for the directed evolution experiments and helped establish the orthogonality of the 

natural receptors. I am proud to have been their mentor and I look forward to their success. 

Andrew Anzalone and his in vitro work to develop the frame shift motifs both enabled and 

inspired the CellTags. Together we let our imaginations extend far beyond what we could ever hope 

to accomplish on the bench.  

Jamie Brisbois carried out the sensitivity characterization of the diverse set of fungal receptors 

and has pushed far beyond what we initially imagined. He is an impeccable experimentalist. 

Betty Lafourcade and Martin Mengel at Africhol have been an inspiration of the large impact 

that even small advances can have on overcoming the many challenges faced around the world. 

Similarly, Alastair Ager has provided many fresh views on why, how and for whom we do science. 

Fernando Rodrigues and Chad Rappleye provided the Paracoccidioides and Histoplasma 

samples. It was a pleasure communicating with such committed and responsive colleagues.  



 

11 

It has also been a pleasure working with the other members of the Cornish group on a daily 

basis. The many different trajectories provide me an endless source of intellectual and social joy. 

More recently Joe Matragrano has picked up were I have left off, almost instantly moving beyond 

learning to results. I am excited to see the yeast sensor projects continue forward. 

Ruben Gonzalez and Luis Campos have helped guide my path at Columbia. I have learned 

the most from them about how to inspire groups.  

On a personal note, Miki Hayano has provided invaluable support, happiness and 

momentum forward. Fernando Jimenez, his dreams are inspiring. Maria Helena Delgado made it all 

possible. She has set the clearest example, that really anything is possible.  

  



 

12 

 

 

 

 

 

 

 

 

 

 

To the women in my life, to whom I owe so much. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

1 AN INTRODUCTION TO SYNTHETIC BIOLOGICAL SYSTEMS 
1 FIGURE CHAPTER 
1.1 Introduction 

The discovery of the molecular nature of genes in the 1950’s fundamentally changed our 

ability to manipulate biological systems [1]. This soon led to the construction of the first recombinant 

virus and the establishment of DNA as a synthetic building block [2]. Since then, advances in 

methods to construct and sequence DNA have enabled the synthesis of ever more complex 

biological systems. The manipulation of single genes has yielded synthetic proteins such as 

recombinant human insulin, therapeutic antibodies and even enzymes that catalyze entirely non-

natural reactions [3–5]. In turn, the manipulation of multiple genes has led to the construction of 

synthetic protein pathways such as those to generate anti-malarial compounds and others that can 

compute digital logic [6,7]. Building on these advances, the manipulation of whole genomes has 

brought synthetic cells within reach [8]. Through careful consideration and design, synthetic cells 

built around synthetic proteins have the potential to transform our society as small molecules did 

before them. 

By observing the trajectory of organic chemistry and developments in small molecule 

synthesis, it is clear that we are now at a stage where synthetic cells can be targeted for practical 

applications[9]. As an example, we can take the heroic synthesis of the small molecule vitamin B12 by 

Woodward and Eschenmoser [10]. This landmark achievement drove the development of methods 

now routinely applied for the synthesis of the relatively simpler yet powerful therapeutic small 

molecules that dominate our pharmaceutical industry [11]. Likewise, the heroic projects to sequence 

the human genome and build the first fully synthetic microbial genome drove the development of 

an array of technologies that have made the manipulation of a cell’s DNA routine [12,13]. With these 

methods in place we can now turn to the synthesis of cells that can be used directly to treat and 

diagnose disease, control pollution, enhance agricultural production and even harvest clean energy 

[14]. Indeed, applications such as synthetic T-cell cancer therapy are already being put into practice 

[15].  
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Looking to the future, as the development of supramolecular chemistry has followed from advanced 

methods in small molecule synthesis, we can already anticipate that applications of synthetic 

multicellular systems are just around the corner [16,17]. 

The manipulation of DNA is however unique in several ways. Unlike small molecule 

synthesis, DNA manipulation directly yields self-replicating systems and can permanently modify 

existing species, including our own. While some of the greatest potential applications are possible 

because of these qualities, these synthetic capabilities require thoughtful consideration of possible 

ethical, legal and social implications. The scientific community set forth guiding principles 

immediately following the construction of the first recombinant DNA, and more recently has 

convened with the public at large to ratify research and development guidelines that will lower the 

risks and increase the benefits of synthetic biological systems [18,19]. Among them are (1) continued 

public international discourse to proportionally distribute risk while making resulting benefits 

widely available, (2) ethics education of the scientific community, (3) education of the public to 

increase scientific literacy, (4) prioritizing goals with the highest potential for public good, and (5) 

implementation of safeguards to monitor, contain and control synthetic biological systems. With 

these considerations in mind, we are eager to realize applications of synthetic cells, leveraging their 

unique properties in the hope of yielding substantial benefits for society.  

 

 

Figure 1.1 Synthesis of chemical and biological systems of increasing complexity 

The synthetically accessible biological systems (built with DNA) have steadily increase in complexity, 
mirroring the progress made in the synthesis of chemical systems (built with covalent bonds). 
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In this dissertation, we first describe the design, construction and evaluation of synthetic yeast 

cells for the detection of fungal pathogens (Chapter 2) and methods to develop synthetic receptors to 

expand the target range of these yeast-based sensors (Chapter 3). We then describe the development 

of tools for building (Chapter 4) and characterizing (Chapter 5) synthetic multicellular systems. As 

an introduction to this research, in the following sections we discuss the key milestones in the 

methods to construct and sequence DNA that have opened the door to this new synthetic science. 

1.2 Building with DNA 

Advances in our ability to use DNA as a synthetic building block have occurred at three 

levels: synthesis of short DNA oligonucleotides, assembly of these fragments into genes and 

incorporation of multi-gene pathways into genomes. In parallel with these target-oriented methods, 

a set of diversity-oriented methods has been developed that allow for the generation of large sets of 

variants that can be searched for the desired function. Through a combination of these two synthetic 

strategies several impressive results have already been achieved at the gene, pathway and genome 

level. The field of DNA-based synthesis is now turning to the development of tools for manipulating 

and building multicellular systems. 

 

 

Figure 1.2 Practical applications of chemical and biological synthesis 

Many of the most powerful applications of synthetic (a-c) chemical and (d-e) biological systems are often 
simple compared to the synthetically accessibible complexity (Figure 1.1).  (a) mauvine, the first mass produced 
synthetic dye. (b) Atorvastatin, one of the best selling small molecule drugs. (c) Polyethelene, polyvinylchloride 
and oligonucleic acids, some of the most widely used synthetic polymers. (d) Therapeutic antibodies, one of the 
first biologics to come to market. (e) Yeast production of artemisinic acid, one of the successful applications of 
pathway engineering. (f) Chimeric receptor T-cells, one of the first commercial use of synthetic cells. 
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1.2.1 Oligonucleotide synthesis 

By far the largest driver of progress has been 

the optimization of oligonucleotide synthesis that has 

drastically reduced the labor and cost of producing 

user-defined DNA sequences [20]. Early work 

established that phosphoramidites were the ideal 

building block for iterative construction of 

oligonucleotides [22]. Combinations of this coupling 

strategy with solid-phase synthesis and automation 

led to the commercialization of sequence-specific 

oligonucleotides in the 1980’s [20]. These strategies 

have continued to be optimized, with 

oligonucleotides of up to 100 nucleotides in length 

now widely available for less than 10¢ US per 

nucleotide [21]. These methods are now being 

surpassed by microarray-based oligonucleotide 

synthesis. Microarray-based strategies take advantage of photolithography, ink-jet printing or semi-

conductor electrochemistry for the multiplex synthesis of spatially localized oligonucleotides on a 

solid surface at high-densities [23–26]. Microarray-based synthesis is already being commercialized 

yielding oligonucleotides for less than 0.1¢ US per nucleotide with future enhancements through the 

use of microfluidics promising further reduction in cost to 0.001¢ US per nucleotide [21].  

1.2.2 Gene assembly 

Even before cheap oligonucleotides were commonplace, the field started developing reliable 

methods for assembling gene-length fragments of DNA (200-5000 bp). These methods were 

originally designed to amplify and assemble DNA fragments derived from natural sources. The 

discovery and purification of DNA restriction and ligase enzymes allowed for the sequence-specific 

cutting and pasting of DNA [27–29]. Following this, the application of thermostable DNA 

polymerases and development of the polymerase chain reaction (PCR) led to an explosion in 

The cost of oligonuclotide synthesis dropped 
from $1 per nucleotide (nt) in 1992 to $0.001 in 
2015. This led to a drop in gene synthesis cost 
and increase in total base pairs (bp) that can be 
produced. Adapted from ref. [20] and recent 
points (triangles) taken from ref. [21]. 

Figure 1.3 The cost of oligonuclotide and 

gene synthesis and synthesis productivity 
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methods to generate hybrid DNA molecules [30]. Since then, improvements have focused on 

optimizing reaction conditions and developing enzymes with improved properties in terms of 

fidelity, stability and speed. Now there is a formidable set of in vitro gene assembly methods, all 

based on some combination of DNA restriction, ligase and polymerase enzymes [31]. Among them, 

the isothermal assembly method developed by Gibson has become widely used due to its versatility 

in assembling any target sequence of choice [32]. Additionally, there has been a recent interest in 

defining gene “assembly standards” that are useful in automating and therefore commercializing 

gene assembly [33]. 

As the availability of cheap oligonucleotides has surged, many of these gene assembly 

methods have been modified to directly assemble batches of oligonucleotides into gene-length DNA. 

Here the focus has been on developing protocols that allow the correct fragments to assemble in 

“one-pot” reactions of many oligonucleotides. Small batches of oligonucleotides are routinely 

assembled using polymerase cycling assembly or isothermal assembly protocols [34,35]. The much 

larger pools of diverse oligonucleotides generated by microarray-based synthesis are assembled 

through the incorporation of auxiliary sequences. These “barcode” sequences are used to direct the 

PCR amplification of smaller subpools and are then enzymatically removed to yield small 

oligonucleotide batches that can be assembled by the standard methods [36].  

A second challenge of assembling synthetic oligonucleotides has been the reduction of errors 

that are inevitably generated in the oligonucleotide synthesis step. Even the highest quality 

oligonucleotides have error rates of 1 in 200 nt which necessitates labor-intensive screening of many 

assembly products by transformation and clonal amplification in bacterial cells to find error-free 

products [21]. Therefore, mixtures of assembly products are first error-corrected through the use of 

enzyme cocktails that recognize base pair mismatches and then degrade or correct the DNA 

fragments with errors [37]. More recent approaches involve the application of high throughput 

sequencing methods to identify and remove oligonucleotides with errors [38]. A combination of 

these approaches can now lead to final product error rates as low as 1 in 10,000 nt [21]. 
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1.2.3 Genome manipulation 

Once generated, gene-length DNA can be further assembled into the genome of a host 

organism in order to enhance or supplement natural biological process. A majority early of methods 

focused on generating recombinant plasmids (circular DNA molecules of 3000 to 15,000 nt) that 

could be easily moved in and out of cells [39]. However, as synthetic targets have become more 

ambitious, the focus has turned to methods for directly manipulating the genomes of the host 

organism. Many techniques rely on natural DNA recombination processes, with many studies in 

yeast and mammalian cells simply delivering DNA fragments with homology to genomic loci 

[40,41]. These methods were later adapted to bacteria by expression of bacteriophage recombinases 

[42]. As an alternative, in bacteria and mammalian cells, bacteriophage and viral integration is also 

used [43,44]. These methods rely on natural integration processes, however for mammalian cells, 

viral delivery sets an upper limit in the size of the DNA fragment that can be integrated into the 

genome [44]. 

This has encouraged the improvement of recombination-based methods. In yeast and 

mammalian cells recombination can be made more efficient through the generation of double-

stranded breaks to induce homologous recombination [45]. In yeast, application of homing 

endonucleases led to the development of methods such as Reiterative Recombination and Delitto 

Perfetto that allow for incorporation of large gene pathways and precise chromosomal deletions 

[46,47]. Efforts in mammalian cells have led to the development of enzyme systems such as 

TALENs, zinc finger nucleases and CRISPR-Cas9 that allow DNA cleavage at any user-specified 

location [48]. These systems, especially CRISPR-Cas9, are now being applied to a wide variety of 

organism including mammalian cells, yeast, bacteria, plants, fish and insects [49]. 

A parallel strategy aims to assemble chromosome-size DNA that can coexist with the natural 

genome of the host rather than integrating into it. This has led to the development of systems for 

bacteria (BACs), yeast (YACs and neochromosomes) and human cells (HACs) [50]. These methods 

are often used to study or assemble large pieces of DNA in a genetically tractable organism such as 

bacteria or yeast. These organisms are used as a sand box to build and produce these large DNA 

assemblies that can then be transferred to an alternate organism as a whole piece.  
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Yet another strategy involves the use mutagenic oligonucleotides to modify different locations 

in a genome. This approach has been adapted for the automated multiplex targeting of many 

genomic loci to enable large-scale modification of natural bacterial genomes [51]. 

1.2.4 Library approaches 

Diversity-oriented methods aim to generate libraries of DNA molecules that can then be 

searched for the desired target function. These methods acknowledge that our ability to rationally 

design functional biological systems is limited by gaps in our understanding of the underlying 

biological processes. Therefore, many of the DNA manipulation methods described above have been 

adapted to generate libraries of molecules rather than single target molecules.  

At the oligonucleotide level, mixtures of phosphoramidite building blocks can be used at 

defined steps in oligonucleotide synthesis. This generates libraries of oligonucleotides with 

randomized bases at user-defined positions [52]. Microarray-synthesis improves on this technique 

by individually synthesizing each desired variant oligonucleotide as just another member within the 

pool of generated oligonucleotides [53]. At the gene level, error-prone PCR techniques allow random 

miss-incorporation of nucleotides through the use of nucleotide analogues or altered buffer 

conditions [54,55]. Complementary to these techniques, gene libraries can also be generated through 

Figure 1.4 Synthesis of biological systems can be targeted or diversity oriented 

Many aspects of natural biological systems remain unknown. Therfore, synthesis of new biological systems 
builds on natural ones (top row), modifying only small portions. These modifications can be targeted (middle 
rosw) or randomized to generate libraries of diverse variants (bottom row). There are now methods for 
carrying out these manipulations from the oligonuclotide through the multicellular level. 
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“shuffling” in which homologous “parent” DNA fragments are mixed into hybrid “daughter” DNA 

fragments by various PCR methods [56,57]. At the multi-gene level, mixtures of DNA fragments can 

be used in ligation and recombination based methods to generate DNA assemblies with random 

combinations of the individual components [58]. Finally, at the genome-level, mating and protoplast 

fusion can be used to shuffle genomes [59,60]. Alternatively, randomization systems can be built 

directly into fully synthetic genomes, such as the SCRaMbLE system in Sc2.0 to generate libraries of 

synthetic cells [61]. 

An entirely different approach of generating diversity involves the use of environmental 

DNA. In these approaches random DNA is purified from environmental samples and subsequently 

inserted into microbial hosts [62]. These metagenomic libraries are then searched for a target 

function such as production of secondary metabolites. While these approaches are now primarily 

focused on biosynthetic pathways [63], it is possible that the rich source of environmental DNA can 

be searched for other complex functions, such as detection, energy storage, signaling and 

computation. 

1.2.5 Building synthetic multicellular systems 

As the tools for DNA manipulation continue to advance, soon practical applications based on 

synthetic multicellular systems will be possible. In a way, this has already occurred through the 

development of genetically modified agricultural plants [64]. While very useful, these examples are 

primarily single gene modifications. Advanced synthetic multicellular systems will be designed to 

carry out specific macroscopic functions through the collective actions of the individual synthetic 

cells. One simple method is to build such synthetic multicellular systems my mixing individually 

designed synthetic cells [65]. Examples of this have already been achieved in the laboratory. One 

example is a two-cell systems developed to oscillate only when both members are present [66]. A 

different approach involves the in situ manipulation of existing multicellular systems such as the 

microbiome [67]. A third approach involves co-opting natural developmental processes of 

multicellular organisms [68]. In the same way genome manipulations allow us to leverage existing 

cellular functions for new purposes, in situ manipulation will enable the redeployment of natural 

multicellular functions for novel applications. 
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1.3 Reading DNA and function 

Our ability to sequence DNA has progressed in parallel to DNA manipulation technologies 

with many advances intertwined. These capabilities allow us to quickly validate and characterize 

synthetic biological systems build from DNA. In addition, DNA sequencing has allowed us to build 

immense databases of natural biological systems that can be redeployed as parts in synthetic 

systems. As with DNA manipulation, the field has developed diversity-oriented methods to 

characterize large DNA libraries by linking genotypes to selectable phenotypes. Now, with 

advanced synthetic methods in hand, the focus has turned to developing tools for characterizing and 

reading the phenotypes of synthetic multicellular systems. 

1.3.1 Gene sequencing 

Methods to sequence gene-length DNA have been the key enabling technology in the 

development of DNA as a synthetic building block. Maxam and Gilbert developed the first widely 

used sequencing method in 1977 [69]. This technique used four chemical degradation reactions of 

end-labeled DNA to generate characteristic fragment patterns from which the DNA sequence could 

be deduced. Almost at the same time, Sanger developed the chain-terminating inhibitor method. 

This method used a small fraction of labeled dideoxynuclnuclotides to prematurely terminate a 

polymerase extension [70]. The lengths of the resulting fragments could then be correlated to the 

nucleotide identity at that position. The Sanger method was subsequently improved through the use 

of fluorescent labels, capillary electrophoresis and automation [71]. The commercialization of Sanger 

sequencing supplanted the Maxam-Gilbert method and became the most widely used DNA 

sequencing method for 40 years and is still in wide use today. While this method is still ideal for 

sequencing targeted regions of DNA, the effective throughput is too low for the cost-effective 

sequencing of genomes. 

1.3.2 Next generation sequencing and genomics 

The next generation of sequencing technologies all achieved improvements in the throughput 

of DNA that could be sequenced through massive parallelization, reaction miniaturization and use 

of advanced imaging devices [72]. The key advance across all the technologies was the design of 

“one-pot” reactions that could amplify individual DNA molecules while keeping identical molecules 
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spatially co-localized. This effectively amplified the signal of single DNA molecules that could then 

be assayed in parallel. First among these technologies was pyrosequencing that applied emulsion 

PCR (emPCR) to amplify DNA on beads that could then be distributed to individual microwells for 

interrogation [73]. The most successful of the second-generation sequencing methods was Illumina 

sequencing [74]. This method uses a bridge amplification technique to amplify large batches of DNA 

molecules attached to a solid surface to generate > 108 clonal DNA spots. These are then read 

through the use of a polymerase extension and reversible fluorescent terminators.  

Continued improvements in DNA sequencing technologies led to a reduction in the raw cost 

of DNA sequencing from US $2,000 per Mbp (106 base pairs) around the completion of the human 

genome project in 2003 to less than US 2¢ per Mbp in 2015 [75]. This dramatic drop in cost has 

sparked a “genomic revolution” leading to an explosion in the number of sequenced genomes from 

a total of 184 species by 2003 to 12,700 species by 2016 [77]. This database represents an immense 

amount of information and a rich source from which to derive parts for building synthetic biological 

systems. 

More recent advances in DNA sequence have focused on generating useful sequence 

information from single molecules without amplification [78]. These new methods can enable single 

cell sequencing and will be useful in quickly uncovering heterogeneity in synthetic cellular systems. 

 

 

Figure 1.5 There has been an explosion in the available genomic data 

(a) The cost to sequence a human genome has dropped at a pace far exeeding Moore’s Law for the cost of 
computer chips. This super-exponential decrease was triggered by the commercialization of next generation 
sequencing (I) and more recently by the release of the Illumina X10 (II). (b) Due to this increase in sequencing 
power, there has been an explosion in the available fully sequenced genomes in public databases. (c) Genome 
sizes of some common organisms. The costs in panel a reflect human size genome. Data retireved from [75,76] 
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1.3.3 Reading function through screening and selection 

Advances in DNA construction and sequencing enable the rapid construction of synthetic 

genotypes, however our ultimate goal is to build biological systems with a target functional 

phenotype. Evaluation of function is straightforward for target-oriented approaches that yield a 

relatively small number of synthetic biological systems. However, as discussed in Section 1.2.4, 

many of the DNA construction methods can be used in a diversity-oriented manner to generate 

large libraries of genetic variants. Current methods can generate up to 108-109 synthetic genotypes. 

Therefore, while DNA sequencing methods can easily characterize this genetic diversity, phenotype 

analysis methods have lagged behind.  

The majority of advances in phenotype screening have come from the field of metabolic 

engineering, which seeks to generate synthetic protein pathways that can biosynthesize a target 

small molecule. Direct methods use low through put screens (<103) based on gas and liquid 

chromatography coupled to mass spectrometry or NMR [79]. If the phenotype can be tied to a 

chromophore or fluorophore, micro titer plate-based or agar plate-based techniques can be applied. 

Micro titer plates can be used to screen 105 variants with high sensitivity. Agar plate-based colony 

screening methods can now cover 106 variants when coupled to robotics, however these methods 

have much lower sensitivity. In both cases, if the pheonotype does not generate a chromophore or 

fluorophore supplementary methods can be used such multiplexed extraction and chemical staining 

or incorporation of enzymes that can generate a chromophore from the target phenotype [79]. 

A complementary set of methods have been developed in the field of directed evolution, 

which seeks to apply Darwinian evolution on time-scales accessible in the laboratory to generate 

synthetic proteins [80]. In contrast to screening, the field of directed evolution has developed 

selection-based methods that effectively allow the interrogation on multiple phenotypes in “one-

pot” reactions. The most powerful methods are growth-based selections that tie the target 

phenotype to a fitness advantage [80]. These methods can search libraries of >1010 variants by 

allowing the fittest variants to enrich through exponential growth. Selections based on fluorescence-

activated cell sorting (FACS) represent a second widely used selection method [81]. In these 

methods the target phenotype is tied to the production of a fluorescent signal, and desired variants 
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are sorted at high rates that can cover libraries of 109 in one day. An analogous method relies on 

microfluidics based sorting of water-in-oil emulsions [82]. Yet another set of methods involves the 

use of batch affinity-based purification to search libraries of variants whose genotype can be tied to 

the expression of affinity tags [83]. 

All of these methods are limited to phenotypes that have an easily measured output. 

Therefore much focus has been given to the development of methods to read a larger set of 

phenotypes. Many of these methods rely on tying the target pheonotype to a reporter gene such as a 

fluorescent protein or auxotrophic marker that can be used for screening or selection. Chemical 

complementation was an early example that tied enzymatic bond formation or cleavage to the 

transcriptional modulation of a reporter gene [84]. Other methods have used allosterically 

modulated transcription factors, protein dimerization, protein stability, protein conformational 

changes and riboswitches to tie the target phenotype to a measureable output [85]. 

More recent methods seek to leverage the extremely high through put of the DNA sequencing 

technologies discussed in Section 1.3.2 to instead read phenotypes. In these methods, the target 

phenotype is tied to an output that leads to changes in the sequence, abundance or co-localization of 

DNA molecules [86,87]. Subsequent sequencing can then reveal the presence of this output signal 

encoded in DNA. 

1.3.4 Reading synthetic multicellular systems 

As the tools for reading DNA and measuring phenotypes have advanced, they have also been 

applied to the characterization of multicellular systems. For example DNA sequencing technologies 

have led to the sequencing of the human microbiome, the collection of interacting microbial 

communities that live within and around our bodies [88,89]. In addition, the most advanced 

sequencing methods are now being used to sequence the genetic variation within individual cells in 

natural multicellular organism. For example, recent methods have been developed for sequencing 

the receptor repertoire of the immune cells within one individual [90]. These methods can in turn be 

used to read the genotypes of synthetic multicellular systems. As with more simple synthetic 

biological systems, the ability to read the phenotype of multicellular systems has also lagged behind. 

Methods such as differential growth on selective plates, rRNA sequencing, quantitative PCR tagging 
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and flow cytometry have been used to measure the underlying phenotypic structure of synthetic 

multicellular systems [91–94]. However, there remains a gap in high through put methods to track 

these complex systems in real time. 

1.4 Conclusions 

Since the middle of the 20th century, we have seen an unprecedented refinement in our ability 

to build synthetic biological systems by assembling DNA and characterizing the resulting function. 

As in the development of organic chemistry, DNA-based synthesis was at first used simply as a tool 

to gain greater insight into the underlying relationships between the structure and function of 

natural biological systems. In the last 20 years, these new synthetic capabilities have been 

increasingly used to develop synthetic biological systems with novel functions not found in their 

natural counterparts. These efforts have progressively increased in ambition, from synthetic 

proteins, to synthetic protein pathways, to synthetic cells and now to synthetic multicellular 

systems. At the first of these levels, synthetic proteins such as therapeutic antibodies have already 

become standard in clinical use. Efforts at the subsequent levels are close behind. We expect that this 

DNA-based synthetic science will yield significant solutions to the most pressing challenges facing 

our society. 
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2 A YEAST SENSOR FOR LOW-COST POINT-OF-CARE 
PATHOGEN DETECTION 

2 FIGURE CHAPTER 

2.1 Introduction 

A scalable, cost-effective approach for pathogen detection outside the laboratory would 

greatly enhance our ability to track disease [1], ensure food safety [2], and neutralize bioterrorism 

threats [3]. The need for such an approach is particularly critical in the developing world [4]. While 

antibody and nucleic acid bioassays have been very effective in the laboratory and the clinic, these 

approaches are limited by the need for expensive reagents, equipment and techniques [5]. These 

challenges have spurred the development of many innovative pathogen biosensor devices, however, 

specialized reagents and matrix materials continue to be critical for function [6]. In fact, conventional 

culturing methods remain in widespread use despite being slow and requiring trained personnel [7]. 

The emerging field of synthetic biology provides a powerful toolset of parts for addressing 

this global health challenge [8,9]. Much like advances in molecular biology gave rise to antibody 

diagnostics [10], the ability to design and build synthetic organism holds the potential to fill gaps in 

existing networks for health care delivery and surveillance. While synthetic organisms have 

primarily been leveraged for economical fermentation of industrial and biomedical commodities via 

metabolic engineering [11], significant applications in public health, animal health and agriculture 

remain untapped.  

In this chapter, we describe the development of a simple and highly specific colorimetric assay 

for detection of pathogen-derived peptides based on Saccharomyces cerevisiae - a genetically tractable 

model organism and household product. Integrating G-protein coupled receptors (GPCRs) with a 

visible, reagent-free lycopene readout, we demonstrate detection of major human fungal pathogens 

with nanomolar sensitivity (Figure 2.1). We further optimized a one-step rapid dipstick prototype 

that can be used in complex samples including urine and soil. This modular biosensor can be 

economically produced at large-scale, is not reliant on cold-chain storage, can be detected without 

additional equipment, and thus is a compelling platform scalable to global surveillance of 

pathogens. 
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2.1.1 Whole-cell sensors 

The natural mechanisms used by cells to sense and react to changes in their environment have 

long been recognized as paradigm for building synthetic sensors out of whole cells. Indeed, several 

groups have established that microbial cells can be used for sensing toxic metals[12], vital 

parameters [e.g. glucose, NOx] [13], hormones [14], tumors [15], fine chemicals [16], quorum sensing 

molecules [17], antibiotics [18] and explosives [19]. Other have proposed the use of mammalian cells 

as pathogen sensors [20]. However, mammalian cell-based assays are not easily translated outside 

the laboratory since they can only survive in a narrow range of conditions. Furthermore, available 

microbial-based assays primarily rely on E. coli, a host that has the potential to become pathogenic. 

Finally, these previous approaches have not developed readouts that can be used by a non-specialist 

without equipment outside the laboratory. 

 

Figure 2.1 S. cerevisiae biosensor for detection of fungal pathogens 
(a) Overview of biosensor components. Highly specific fungal receptors provide sensitive response to mating 
peptides secreted by pathogenic fungi. Activation of the downstream mating signaling pathway induces 
transcriptional activation of biosynthetic genes for production of red lycopene pigment visible to the naked 
eye. FMN: flavin-mononucleotide, FAD: flavin-adenine-dinucleotide, FPP: farnesyl-pyrophosphate, GGPP: 
geranylgeranyl-pyrophosphate. (b) Color signal as shown in paper-based dipstick assay  (bar = 0.5cm) 
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As opposed to other cell types, yeast is an ideal choice for making a product for common use. 

In contrast to E. coli and mammalian cells, the yeast S. cerevisiae is impervious to a wide range of 

environments, can be freeze-dried for long-term storage, is a non-toxic organism that has existed in 

the human diet since the rise of agriculture, and, most importantly, it is a proven commercially 

viable product already distributed worldwide in the food industry [21–24]. 

2.1.2 G-protein coupled receptors in yeast 

Previous sensors developed from yeast cells have relied on non-specific response mechanisms 

or intracellular receptors [22,25]. There have been several reports on the development of yeast 

sensors to cytotoxic compounds, however these systems use the global stress responses in yeast to 

generate a signal [25]. Therefore while useful, target compounds cannot be detected with molecular 

specificity. The second major class of yeast sensors has been developed around nuclear hormone 

receptors [26]. These receptors are allosterically regulated transcription factors that naturally 

respond to an array of small molecule hormones. While there has been great success in these 

systems, the detection is inherently limited to cell permeable compounds. Moreover, it is unclear 

how wide of a target scope can be reached by engineering these receptors. 

G-protein couple receptors (GPCRs) represent an attractive alternative for pathogen detection. 

GPCRs are the ideal sensing element because these receptors have a natural ligand diversity rivaling 

antibodies [27]. Moreover, these receptors are expressed on the cell surface and naturally transform 

an extracellular binding event into an intracellular signal. Therefore, they have the potential to be 

 

Detailed view of red arrows in Figure 

2.1. Activation of the pheromone 

response initiates a phosphorelay 

cascade that culminates in activation of 

Far1 and Ste12. Deletion of Sst2 and Far1 

allows efficient expression of reporter 

genes under the Fus1 promoter. Double 

dashed lines represent lipid bilayer. 

 

Figure 2.2 Pheromone response 

signaling pathway 
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used to sense any target ligand outside the cell. In addition, GPCR function is well established in 

yeast. There has been substantial GPCR research in yeast to develop high-throughput assays for 

drug discovery based around mammalian receptors [28–30]. Motivated by previous results, we 

initially explored mammalian GPCRs as potential pathogen sensing elements [31,32]. However, 

though functional, we found these systems to be fragile and sensitive to strain background. In this 

chapter, we instead focus on the development of pathogen sensor based around fungal mating 

GPCRs. This GPCR family naturally binds a diverse set of peptides and thus has the potential to be 

applied for the detection of any peptide biomarker. 

2.2 Results 

2.2.1 Considerations of developing a yeast-based point-of-care sensor 

Our goal was to design, build and test a sensor for pathogenic organisms that had the 

potential to be used directly outside the laboratory for point-of-care detection. Simply building a 

functional sensor could be accomplished by using one of several existing sensing and reporting 

modalities in common use for laboratory-based biosensors [33]. However, our aim was to build a 

sensing platform that could fill real unmet needs outside the laboratory by leveraging the unique 

capabilities of living cells. We thus engaged experts in pathogen surveillance, diagnostic 

development and field-testing and international implementation to establish key requirements for a 

yeast biosensor to have significant clinical and epidemiological utility. 

Analysis of existing commercial diagnostic tools suggested that a key benefit that could be 

delivered by a whole-cell biosensor was an extreme reduction in the cost per test. While available 

nucleic acid-based diagnostics are becoming the gold standard detection method in clinical 

pathology laboratories, the requirement for expensive equipment and reagents prevents widespread 

use outside the laboratory for pathogen surveillance [34]. Similarly, antibody-based assays, while 

benefiting from high molecular specificity, still remain prohibitively expensive for widespread use 

outside the laboratory. Even products specifically designed for field-use such as the Pasteur 

Institute’s rapid-diagnostic test for V. cholerae cost $10 per test and in practice are used only to 

validate highly suspect samples [35,36]. These considerations suggested that a yeast-based sensor 
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should be designed to minimize sample pre-treatment and completely eliminate the need for 

expensive equipment and reagents to generate a readout. Based on cost analysis of current yeast 

production, a reagent-less yeast-based assay could be predicted to cost less than 10 cents per test 

with the potential to cost as little as 1 cent per test. 

This guiding principle further suggested that a yeast-based biosensor would stand to have the 

highest impact for applications in resource poor settings. Specifically, detection of pathogens 

afflicting low- and middle-income countries should be considered as primary targets for detection. 

Additionally, for high-income countries, detection of pathogens afflicting agricultural crops and life 

stock should also stand to benefit from low cost sensors. Furthermore, any application requiring 

direct environmental detection or continuous real-time surveillance would also become accessible 

with the development of ultra low cost sensors. 

Ease of use by non-specialists in resource poor settings was determined to be a second key 

quality for a yeast-based sensor. A cheap and easy to use detection device would stand to enable 

community-based assessment and surveillance of disease. Due to disease characteristics and 

available infrastructure in low-income countries, substantial increases in the number of symptomatic 

individuals within a population are the first real signs of the presence of a disease outbreak.[37] 

Therefore, prompt assessment and even self-assessment of symptomatic individuals would 

potentially alert communities to the spread of a disease early in an outbreak. In addition, ease of use 

by non-specialists would enable educational applications for communities and state players to 

implement disease prevention campaigns [38]. These considerations suggested that a yeast-based 

sensor should be robust enough to function outside carefully controlled conditions only available to 

 

 

Figure 2.3 Lycopene biosynthetic 

pathway 
(a) Introduction of E. herbicola carotenoid 

enzymes (CrtEBI) result in biosynthesis 

of lycopene from endogenous yeast 

farnesyl pyrophosphate. (b) A lycopene-

producing yeast strain becomes visibly 

colored. 
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specialized personnel. This pointed to the use of robust well-established components as well as 

building the components directly into the genome of yeast to avoid the use of plasmids that require 

specialized selective media. 

This analysis led us to set the following design requirements: cost <10 cents, time to readout 

<12 hours, no reagents to generate readout, clear binary readout, amenable for “one-step” use. In 

addition, based on established rapid diagnostics we determined that detection should be based on a 

detection element with high molecular specificity and a sensitivity of < 1 uM and ideally <100 nM 

for the target analyte. Based on these requirements we designed a yeast sensor built around genome-

integrated GPCRs as modular sensing elements, the yeast pheromone response pathway as a 

universal signal transduction element and lycopene biosynthesis as a readout element visible to the 

naked eye (Figure 2.1). 

 
Figure 2.4 Genomic gene delition by Delitto Perfetto 
(a) Genes are deleted in a two step process. First, the CORE casette is integrated into the target locus (FAR1). 
Then, a double strand break is induced at the Sce-I cut site and knock out (KO) oligonucleotides are 
transformed, repairing the break and completing the deletion. (b) KO oligos are extended to make a 100 nt 
duplex before use. (c) Typical replica plating results giving a deletion efficiency of 4.8%. 
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2.2.2 Construction of a first generation sensor 

We envisioned that the natural plant pigment lycopene would be the ideal readout for a point-

of-care sensor because it can be visualized by the naked eye, is widely validated in yeast metabolic 

engineering, and is non-toxic. Lycopene is the first intermediate in carotenoid biosynthesis that has a 

sufficiently conjugated !-system to absorb in the visible region (Figure 2.3)[39]. Thus, unlike 

standard laboratory reporters like lacZ that require exogenously added caged dyes (X-gal) or 

fluorescent proteins that require specialized equipment (fluorimeter), lycopene can be directly 

observed by a non-specialist. Additionally, the biosynthesis of lycopene from endogenous yeast 

farnesyl pyrophosphate is well established, requiring only three heterologous genes.[40] This 

simplicity suggested that a lycopene-based readout would be robust enough to function outside 

ideal laboratory conditions. Finally, not only is lycopene non-toxic, metabolic engineering of yeast 

aims to produce lycopene and its derivatives at industrial scales as beneficial food supplements.[41] 

Similarly, we expected the S. cerevisiae GPCR-based pheromone response pathway to be 

ideally suited for signal transduction because it has fast kinetics and it is very well characterized. We 

expected that a simple, transcriptionally controlled reporter would give a fast readout, because 

transcripts increase in <15 min after binding the native ligand [42]. Also, all the component proteins 

of the MAP kinase pathway that mediate pheromone signaling have been well characterized and 

this pathway served as a model for elucidating other known MAP kinase pathways (Figure 2.2). 

Moreover, of the two GPCR pathways in yeast, the pheromone pathway leads to a very specific 

response: the up regulation of an established set of genes via the transcription factor, Ste12.[43,44] 

We expected the resulting sensor be robust outside ideal conditions since this endogenous signal 

transduction system has been perfected through natural selection for yeast mating in a wide range of 

environments. Finally, the demonstrated flexibility of this signaling pathway to couple to a range of 

heterologous GPCRs crucially enables the use of GPCRs as modular sensing elements to generate 

sensor to an array of targets. 

We began by generating a first generation sensor: a yeast strain that produces lycopene in 

response to the natural S. cerevisiae pheromone, α-Factor (αF). We made a parental sensor strain by 

deleting the cyclin-dependent kinase inhibitor Far1 to prevent cell-cycle arrest and deleted the G-
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protein activating protein Sst2 to prevent signal attenuation using Delitto Perfetto (Figure 2.4) 

[28,45]. As expected, a halo assay with against alpha factor demonstrated that the parental strain no 

longer had a growth arrest phenotype (Figure 2.5) [46]. However, a band of slightly lower cell 

density can be seen some distance from the inducing spot (Figure 2.5). It is clear that the underlying 

pheromone response is complex with secondary growth effects revealed by the deletion of FAR1 

and SST2. Next, using Reiterative Recombination, we placed lycopene biosynthesis under the 

control of the pheromone response pathway [47]. We accomplished this by placing carotenoid genes 

derived from E. herbicola (CrtE, CrtB) under the control of constitutive promoters and placing the 

final biosynthetic gene CrtI under control of the promoter from FUS1, a downstream target of the 

pheromone response pathway (Figure 2.2) [43]. 

In shake flask conditions, this first generation sensor took over two days to produce lycopene 

levels discernible by the naked eye. FUS1 control of CrtB was also tested but this lead to high basal 

lycopene biosynthesis. This first generation sensor validated that an extracellular analyte could 

trigger the intracellular biosynthesis of a pigment visible to the naked eye. Nevertheless, it did not 

meet our design requirements for the readout both in terms of speed and strength of the signal. 

2.2.3 A robust method for quantifying lycopene production 

 
Figure 2.5 Deletion of FAR1 prevents cell cycle arrest 
(a) PCR analysis of gene deletions. Red boxes show fragments for the target loci (far1, sst2) are smaller after 

deletion. (b) Halo assays showing far1 deletion prevents growth arrest. Dark areas have dense cell growth and 

light areas have reduced growth. �  – 10 nmol of alpha factor spoted in both panels. 
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To facilitate optimization of the lycopene signal, we developed a visible spectroscopy method 

for high throughput quantitative measurement of pigment content in cells. This method circumvents 

the low throughput chemical extraction traditionally used for measurement of lycopene yield [48]. 

Additionally, since the method is non-destructive we were able to perform time course analysis of 

the kinetics of lycopene production. This ability was integral to our goal, since unlike previous effort 

in metabolic engineering, induction speed rather than final yield was our primary target. Finally, 

due to its technical simplicity, we were able to robustly benchmark strains across different 

development years.  

We adapted a method proposed by Myers to characterize pigmented cells through optical 

density measurements at multiple wavelengths [49]. We made several improvements in order to 

reduce the noise due to variations in cell growth phase, cell density and other sample irregularities. 

This enabled the precise evaluation of lycopene content in a high throughput micro titer plate 

format. First, we determined the spectrum of lycopene absorbance directly in cells in order to 

properly select sensitive and robust wavelengths for interrogation. Second, we measured the optical 

detector response curves at these wavelengths in order to make accurate lycopene measurements 

even at high cell densities. Third, we empirically determined a low-noise approximation for 

calculating cell scatter. Lastly, we determined a recording scheme to reduce well-to-well noise when 

 
Figure 2.6 Optical density spectrum of lycopene in yeast cells 
(a) Optical density spectrum of constitutive lycopene producing and lycopene null strains. (b) The spectrum of 
lycopene in yeast cells calculated from panel a. This spectrum allows selection of wavelengths for spectroscopic 

measurement of lycopene per cell. 
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measuring a large number of samples in micro titer plates. Our method is described in detail in the 

Appendix.  

2.2.4 An second generation lycopene reporter system 

To optimize the speed of lycopene production, we used our spectroscopic method to 

characterize the effect of a variety of plasmid-borne enhancements to the carotenoid biosynthetic 

pathway (Figure 2.7). We determined that our first generation sensor (Lyco-1) generated a lycopene 

Figure 2.7 Optimization of lycopene readout with plasmid-borne enhancements 
(a) Lycopene biosynthetic pathway. Lycopene production is induced (red arrow) by mating-signal dependent 
activation of the FUS1 promoter. Biosynthetic enzymes shown in bold. Genes targeted for optimization shown 
in colors. HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme A, FMN: flavin mononucleotide, FAD: flavin 
adenine dinucleotide, FPP: farnesyl pyrophosphate, GGPP: geranylgeranyl pyrophosphate. (b,c) Time course 
of lycopene strains induced with 10 "M of S. cerevisiae peptide (solid line) or water (dotted line). Grey line 
marks visible threshold of 3.5 LPC. Strains as in d. (d) Maximal lycopene per cell calculated from time course 
data in b and c. “Null” (grey) - strain with only CrtEB; “Lyco-1” (black) - parental strain with single copy CrtE, 
CrtB and CrtI; “+tHMG1” (green) - Lyco-1 with plasmid-borne truncated copy of HMG1; “+CrtI” (orange) - 
Lyco-1 with plasmid-borne copy of CrtI; “+Fad1” (blue) - Lyco-1 with plasmid-borne copy of Fad1. (e) The 
time to half-maximal lycopene yield was used to compare readout speed. Strains as in d. 
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signal of 2.3 LPC (lycopene per cell units). This was just over a two-fold increase in the apparent 

color signal compared to a lycopene null strain (1 LPC). By measuring a constitutive lycopene 

producing strain, we determined that an acceptable lycopene signal should be > 3.5 LPC. 

We hypothesized that readout speed could be enhanced by either increasing the quantity of 

the phytoene substrate used by CrtI to make lycopene, by increasing the amount of CrtI produced 

upon pathway activation or by enhancing the catalytic activity of CrtI. Overexpression of the 

catalytic domain of the HMG-CoA reductase HMG1 has been shown to increase phytoene 

availability.[41] However, this led to no improvement in the kinetics of the lycopene readout 

(+tHMG1) and thus we reasoned that phytoene was not rate limiting. We then increased the CrtI 

amount with an additional copy of the pFus1-CrtI construct. This led to only a moderate increase in 

the maximum lycopene signal to 2.8 LPC (+CrtI). However, we observed a substantial reduction in 

the time to half-max from 22 hours down to 8.3 hours. Additionally, it has been shown that CrtI is an 

FAD-dependent enzyme, which relies on this co-factor for structural stability.[50] We thus sought to 

improve the catalytic activity of CrtI by increasing FAD content in the cell through the 

overexpression of the FAD synthetase FAD1 [51]. This led to a drastic increase of the max lycopene 

signal to 7.2 LPC as well as a further decrease in the time to half-max signal to 4.5 hours (+FAD1). 

Taken together this suggested that co-factor availability and therefore catalytically active CrtI was 

the primary rate-limiting component of the reaction.  

Figure 2.8 Optimization of 

lycopene output with genomic 
enhancements 
Strains with varying lycopene output 
constructs were induced with either 
water (dH2O) or with alpha factor 
(10uM) for 6 hours. The copy number of 
each construct present in the genome of 
each strain is listed below the 
corresponding bars. A dash indicates the 
construct is not present. The asterisk 
indicates the construct is present at an 
alternated genomic locus. 
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We next characterized genome-integrated versions of the plasmid-born enhancements. We 

initially integrated one, two and three pFus1-CrtI (Lyco-1 = 1X pFus1-CrtI). As with the plasmid-

borne variant the strain with two total pFus1-CrtI constructs also showed an improvement in 

lycopene yield relative to the single construct strain. However, a third copy of pFus1-CrtI did not 

significantly improve the lycopene yield further (Figure 2.8). We thus chose the 2X pFus1-CrtI strain 

to move forward.  

Next we integrated an FAD1 overexpression construct (pTDH3-FAD1). We observed the 

drastic increase in performance as seen with the plasmid-born variant (Figure 2.8). However, we also 

observed an increase in the lycopene signal of the uninduced strain (dH2O). While this increase was 

well below the visible threshold of 3.5 LPC, we considered whether a pheromone inducible FAD1 

construct might retain the lower uninduced level but still generate the desired enhancement upon 

induction. However, while integration of a pFus1-FAD1 construct into the 2X pFus1-CrtI strain did 

have a lower basal level, it had a much weaker enhancement of the lycopene signal (Figure 2.8). 

Therefore we chose the pTDH3-FAD1 overexpression construct to move forward. 

Finally, we tested whether a different version of this FAD1 overexpression construct could 

provide a better enhancement. We observed that in fact integration of this construct at the HO locus 

Figure 2.9 Comparison of first and second generation lycopene reporters 
 

(a) Photos of cell pellets (5x107 cells) corresponding to strains in panel B. (b) Time course of lycopene 
production in reporters induced 10 µM alpha factor. “Null” (grey) - strain with only CrtEB; “Lyco-1” (black) – 
first generation reporter with CrtEB and single copy of pFUS1-CrtI; “Lyco-2” (red) – second generation reporter 
with CrtEB, two copies of pFUS1-CrtI and one copy of pTDH3-FAD1;  Grey line marks the visible threshold of 
3.5 LPC. (c) Maximal lycopene per cell calculated from time course data in panel b. (d) The time to half-
maximal lycopene yield calculated from time course data in panel b. 
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(asterisk in Figure 2.8) led to a higher enhancement when compared to the same construct integrated 

at the FUS1 locus. This difference might be from the different genomic contexts or from the different 

terminators used in each case (tFUS1 v. tPGK1). 

In summary, we made a second-generation reporter (Lyco-2) with a greatly enhanced 

lycopene signal (Figure 2.9). When characterized in micro titer plates conditions, this optimized 

lycopene readout yielded a maximum LPC of 11 relative to 2.3 for the original strain (Lyco-1). 

Additionally, the optimization led to a decrease in the time to half-max signal to 4.3 hours relative to 

22 hours for the original strain. This enhanced reporter system met and exceeded our original design 

requirements and stood to meet them even in non-ideal conditions outside the laboratory. 

2.2.5 Construction of a sensor for fungal pathogens 

With an optimized lycopene reporter in hand, we chose to develop a second-generation sensor 

for invasive fungal pathogens. Fungal pathogens are a rising global public health burden 

particularly acute in low-income countries [52–54]. Fungal pathogens cause an estimated 2 million 

deaths annually and inflict devastating losses of plant crops and population decline in animal 

wildlife [52,54]. However, efforts to abate fungal infections prevalent in resource-limited areas are 

hampered by the dearth of fungal diagnostics [55]. We envisioned that the fungal GPCRs derived 

from these pathogens could be directly implemented as sensing elements for detection the peptide 

pheromones secreted by these human pathogens. 

Fungal GPCRs were expected to couple robustly to the native pheromone response pathway 

due to high homology in regions known to mediate signal transduction between the endogenous 

receptor Ste2p and its G-protein Gpa1p (See Chapter 4). In fact, a handful of these receptors have 

been shown to rescue growth arrest, schmoo and mating phenotypes in ste2 null mutants [56–59]. 

Additionally, we anticipated these receptors to be highly specific for their respective peptide ligands 

since they mediate species-specific mating reactions while preventing interspecies breeding [60]. 

Moreover, targeting peptides as the analyte held the potential to expand this set of GPCRs for the 

detection of unique peptide signature from any pathogen or disease [61,62] (See Chapter 3). 

We chose to target Paracoccidioides brasiliensis (Pb) and Candida albicans (Ca) since they are 

among the top ten most significant invasive fungal pathogens worldwide, causing life-threatening 
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infections in immunocompromised patients [53]. Furthermore, their GPCRs and respective peptide 

pheromones had been previously characterized in yeast [57,58]. Therefore, we integrated the Pb and 

Ca receptors into the STE2 locus of the optimized lycopene reporter. We observed that both of these 

sensor strains generated robust lycopene signal when induced with 10 µM of their respective fungal 

pathogen pheromones (Figure 2.10a). To further optimize these pathogen sensors we tested the 

effects on the lycopene signal when using a TDH3 promoter or the natural STE2 promoter to control 

the expression of the receptors. We found that strong overexpression from the TDH3 promoter led 

to a higher sensitivity for the Pb sensor and lower variability for the Ca sensor (Figure 2.10b,c). We 

therefore chose the pTDH3-receptor construct for the final optimized pathogen sensors. 

Importantly, these optimized pathogen sensors showed sensitivities to the target pathogen 

pheromones in the low nanomolar range, 1.7 nM for the Pb pheromone and 2.7 nM for the Ca 

pheromone (Figure 2.10b,c). As measured in the laboratory, these sensitivities met our design 

requirements and had the potential to be robust in non-ideal conditions. 

2.2.6 Characterization of sensor in non-ideal conditions 

To validate the potential of our pathogens sensors to function outside the laboratory, we 

characterized their sensitivity and signal levels across a variety of media, pH and temperature. 

Furthermore, we validated sensor functionality in complex clinical samples such as urine and serum. 

 
Figure 2.10 Optimization of fungal pathogen sensors 
(a) Activation of sensors for C. albicans (Ca) and P. brasiliensis (Pb) with 10 µM of the cognate ligands. 

Equivalent to colors in panels b and c. (b,c) Dose response curve of Ca (left) and Pb (right) sensors expresing 

the receptors from different promoters. Lycopene measured at 7 hours. 
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Functionality across this diverse range of conditions was a critical design goal. Since our sensors are 

based on yeast, a hardy microbe that has naturally evolved to cope with a range of environmental 

conditions, we expected that sensor functionality would be similarly resilient. 

First, we tested if the lycopene readout required specialized media to function. While our 

sensors do not require expensive reagents to generate a readout, they will require nutrients to 

maintain the viability of the yeast cells during the assay. One concern was that this function was 

dependent on defined laboratory media that is composed from more expensive highly purified 

components [63,64]. We therefore determined which if any of these components were required for 

function. As expected, there was an absolute requirement for a carbon source with a steady increase 

in signal level with increased glucose concentration (Figure 2.11). However, as little as 27.5 mM 

glucose produced significant signal level. As might be expected from an organism prototrophic for 

amino acids, we found that purified amino acid supplements were not required for function and in 

fact growth without amino acids boosted the lycopene signal (Figure 2.11). In addition, we observed 

that while a nitrogen source (YNB = yeast nitrogen base) was also necessary, increases over the 

standard quantity were not beneficial (Figure 2.11). Finally, use of a cheaper undefined complex 

media (YPD = yeast extract-peptone-dextrose) actually resulted in the highest lycopene signal 

(Figure 2.11). These results validate that our sensors do not depend on any of the specialized 

components of laboratory media. This will enable our sensors to be produced through the use of 

standard industrial yeast feed stocks such as enriched black molasses, a cheap waste product of 

 
Figure 2.11 Effects of nutrient composition on lycopene readout 
(a) The lycopene reporter was induced in synthetic media with components held constant while independently 
varying the amount of glucose (left), amino acids (middle) or yeast nitrogen base (right). Lycopene measured at 
6 hours. (b) Lycopene reporter induced in synthetic media (SC) or complex media (YPD). 
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sugar refining. 

Second, we characterized the sensitivity and signal strength of our sensors when exposed to a 

range of pH and temperatures (Figure 2.12). We observed that our sensors were functional from a 

pH range between 4.3 and 9, as well as a temperature range between 20℃ and 40℃. However, we 

did observe that lycopene signal levels generally decreases at 20℃ and 40℃ as compared to the 

ideal yeast growth temperature of 30℃ (Figure 2.12c,d). Interestingly, while the Ca sensor was 

nearly unaffected across the range of pH, the Pb sensor had worse sensitivity at both low and high 

pH (Figure 2.12a,b). This effect may be cause by the protonation state on key residues of the ligand-

binding pocket or the ligand itself. 

Third, we validated the functionality of the pathogen sensors in human serum and urine. 

These two body fluids represent a range of complex sample types that might be encountered in field 

use of the sensors. In each case the sample was diluted by 50% with media to provide the required 

carbon and nitrogen source. Surprisingly, we observed an increase in sensitivity in both urine and 

Figure 2.12 Fungal pathogen sensors function over a range of temperatures and pH 
Sensitivity and speed of response for P. brasiliensis sensor (blues, Pb) and C. albicans sensor (reds, Ca) in 

different conditions: (a,b) pH and (c,d) temperature. Dose responses at 9 hours and time courses at 1 µM. 

 



 

35 

serum. This effect was magnified for the Pb sensor, reaching an EC50 of 20-60 pM (95%CI) in urine 

and 20-0.2 pM (95%CI) in serum. As observed with the pH sensitivity, the Ca sensor was more 

resilient to effect from urine and serum resulting in a smaller improvement in the EC50 values. In 

terms of lycopene signal level, the sensors were unaffected by urine and showed a small decrease in 

serum after 6 hours.  

These results strongly support our hypothesis that our sensor platform is robust enough to 

function in non-ideal conditions. This quality is gained by embedding our sensor components 

within a living cell that can leverage a host of adaptive responses to protect and maintain the 

working environment of the sensor components. 

2.2.7 Detection of fungal pathogens 

We next challenged our sensor platform by testing it directly against clinically-isolated 

pathogen strains. Specifically, we focused on validating the Pb sensor against the target pathogen 

Figure 2.13 Fungal pathogen sensors function in human urine and serum 

 

Sensitivity and speed of response for P. brasiliensis sensor (blues, Pb) and C. albicans sensor (reds, Ca) in 

different conditions: (a,b) 50% human urine and (c,d) 50% human serum. Dose responses at 9 hours and time 

courses at 1 µM 
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Paracoccidioides brasiliensis [4]. In addition, we also 

tested the Pb sensor against strains of Histoplasma 

capsulatum . This second pathogenic fungus is 

also among the top ten leading causes of invasive 

fungal infections in humans [53]. Moreover, it is 

predicted to secrete an identical pheromone to 

Paracoccidioides brasiliensis, and so we expected to 

be able to also detect Histoplasma capsulatum with 

the Pb sensor [65]. Therefore, we aimed to 

validate whether the sensors had (1) a high 

enough sensitivity to successfully detect natural 

concentrations of these pheromones and (2) a 

high enough specificity to prevent false positive 

signals that could be caused by other fungal 

components secreted by the pathogens. 

We acquired samples from four clinically-

isolated strains, two Paracoccidioides brasiliensis. 

and two Histoplasma capsulatum. All the samples 

were of supernatants taken from the spent media 

remaining after growth of the pathogen strains. 

Importantly, since fungal species are often 

composed of a complex of distinct subspecies, we 

chose a diverse set of strains to capture potential 

differences between these different subtypes. For 

Paracoccidioides brasiliensis, we used samples from Pb18, a strain representing the major group S1, 

and from Pb01, a strain representing the Paracoccidioides lutzii subdivision of the species complex 

[66]. For Histoplasma capsulatum, we used samples from Hc06, representing the most common 

Figure 2.14 Detection of fungal pathogens 
Samples were collected from three human fungal 

pathogens species (two representative strains each): 

C. albicans, P. brasiliensis, H.capsulatum and as a 

control S. cerevisiae. Pathogen samples were assayed 

with three yeast sensors (Sc, Ca and Pb) and lycopene 

signals were measured at 9 hours. ** P ≤ 0.001 
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subtype (North America class 2) and Hc01, representing a more rare subtype (North America class 

1) [67]. 

We observed that indeed our sensors successfully detected the presence of all the pathogenic 

strains (Figure 2.14). Importantly, we used both the Ca and Sc sensors as well as control samples 

derived from laboratory strains of S. cerevisiae and C. albicans as a way to directly test the specificity 

of the assay. In no case did we observe a false positive signal from the off target sensors or the off 

target samples (Figure 2.14). Furthermore, a majority of the samples generated a lycopene signal 

well above the visible threshold (>3.5 LPC) by 9 hours. By comparing to the lycopene signals to 

those from the synthetic ligand, the pathogen samples likely contained the target pheromones in the 

range of 1-100 nM, with the Pracoccidioides brasiliensis isolates producing a signal that corresponded 

with the lower end of this range and the Histoplasma capsulatum isolates producing a signal that 

corresponded with at least 10 nM. These results support the potential of our Pb sensor for detection 

of the human pathogens Paracoccidioides brasiliensis and Histoplasma capsulatum and suggest the need 

for further investigation into the nature pheromone secretion by these pathogens. 

 
Figure 2.15 Initial designs for a point-of-care yeast sensor 
A point-of-care assay could have yeast sensor cells confined in (a) pouches, (b) small containers or as a (c) 

“Yeast Block” made of a block of nuterient gel. (d,e,f) Possible modes of use for a “Yeast Block” design. 
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2.2.8 Development of a point-of-care dipstick assay 

Having validated the robustness and functionality of our 

sensor, we next turned to developing an easy-to-use dipstick assay. 

We aimed to translate the core benefits of the yeast-based biosensors 

(cheap, sensitive, specific, robust) to a format that was usable by non-

specialists. The key goals were to (1) eliminate the need for micro 

titer plates and pipets, (2) incorporate controls to generate a reliable 

assay, and (3) develop a format amenable to cheap mass production. 

A secondary goal was to show that a “one-step” assay was possible. 

The initial challenge was to design a format that standardized the effective yeast cell 

concentration between each test and over time. While the lycopene color was clearly visible in our 

earlier characterization in micro titer plates, the apparent intensity of this colored depended strongly 

on the concentration of yeast cells. Well-suspended cultures of yeast had a lower apparent intensity, 

while pelleted cells had a high intensity color. Therefore, initial designs centered on a way of 

confining the yeast in a container that could sit undisturbed allowing the yeast to naturally settle 

and develop a strong apparent color (Figure 2.15). However, pouch-based design depended on 

potentially expensive dialysis membranes and bottle-based designs were expected to be easily 

disturbed. Inspired by our “spot blot” tests of early reporter strains, we developed an improved 

product profile that centered on a “Yeast Block” (Figure 2.15c). This design involved spotting the 

sensor strains on filter paper and subsequently placing them on a block of nutrient gel. We 

envisioned that the “Yeast Block” could then be incorporated into a range of final product casings 

depending on the specific requirements of the assay. Initial tests showed that this approach did in 

fact lead to a consistent generation of lycopene signal with high apparent color intensity (Figure 

2.16). While promising, we found that producing these “Yeast Blocks” was labor intensive and the 

nutrient gel was prone to drying and was not easily rehydrated when placed in a sample. 

We improved on our initial design by removing the nutrient gel and developing a stencil-

based approach for making a high number of yeast spots. The design involved placing two or more 

of these “Sensor Spots” onto a strip of paper towel to act as wicking paper (Figure 2.17a). 

 
Figure 2.16 Function of first 

sensor prototype 
Photographs of “Yeast Block” 

function after induction for 6 

hours with 10 nmol ligand. 
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To run the assay the wicking paper was dipped into a sample pre-mixed with media to deliver 

both the nutrients and potential pheromones to the “Sensor Spots”. This two-step assay largely met 

all three of our goals. There was no need for pipets or micro titer plates, only a small container was 

needed to mix the sample with media. We could incorporate controls by making “Sensor Spots” 

from different strains, one responsive to the target pheromone and the other responsive to an off-

target pheromone. Finally, the components had the potential for cheap mass production since the 

stencil-based filter method could be scaled easily and both the “Sensor Spot” and the media could be 

dried using standard fluidized bed driers currently used in large-scale yeast production [68]. 

With this dipstick assay in hand, we next characterized the specificity, sensitivity and speed of 

the sensors in this assay context. In addition to visual inspection, we quantified lycopene 

accumulation with time-lapse photography and pixel color analysis (see Methods). Characterization 

in plain media showed that the assay functioned as expected leading to a strong color change 

apparent with the naked eye. Importantly, we found that the molecular specificity of the sensors was 

maintained and we did not observe any false negative signals from the off-target controls (Figure 

2.19). We also measured the EC50 of the dipstick set up and observed that there was only a slight 

decrease in sensitivity for the Pb sensor from 1.7 nM to 14 nM (Figure 2.18). However, we observed a 

(a) Engineered yeast sensor cells spotted on paper are the only active component required for the dipstick 

assay. Spot diameter - 5 mm. (b) Dipstick assay includes two spots, indicator sensor strain and control strain, 

placed on top of a strip of paper towel that acts as wicking paper. The indicator sensor spot detects the target 

ligand and the negative control spot contains a strain with an off-target receptor. This design enables easy 

visual interpretation of the results as well as quantification by calculating the difference in the pixel color 

values between the two spots. (c) Photograph of the dipstick for detection of the fungal pathogen  P. brasiliensis 

in soil. Left - no mating peptide in soil. Right - mating peptide added to soil. Scale bar - 1 cm. 

Figure 2.17 A paper-based dipstick device for point-of-care use of yeast sensors 
 



 

40 

substantial decrease in sensitivity for the Ca sensor from 2.7 nM to 260 nM. We expect that this may 

be due to adverse interactions between the target pheromone and on of the non-yeast components of 

the dipstick. As the target pheromone of the Ca sensor is predicted to be more hydrophobic, it is 

possible that the decrease in sensitivity is caused by adsorption of the target pheromone to the 

wicking or filter paper leading to a lower effective concentration around the yeast sensor cells.  

In terms of the speed of signal development, we observed a decrease in the time to half-max 

signal from 4.3 hours in micro titer plates to 10 hours in the dipstick assay (Figure 2.19a,c). This 

decrease is likely due to the decrease in access to nutrients and oxygen in the crowded environment 

of the “Sensor Spot” relative to the well-mixed conditions in micro titer plates. Importantly, even 

with this decrease in speed the optimized lycopene system generated a strong visible signal in less 

than 12 hours. 

We next validated whether the dipstick assay would be compatible with detection in complex 

samples relevant for clinical and environmental detection. We observed strong signals in 100% soil, 

50% human urine and 50% human serum (Figure 2.19b,d). As with the previous characterization we 

observed a slight attenuation of the signal in serum samples. We also tested the assay with whole 

human blood, however because of the strong red color of whole blood high concentrations were not 

viable as a sample. However, we successfully observed a lycopene signal in 2% blood (Figure 

2.19b,d). These results show that the robustness of our sensors is maintained in the dipstick format. 

Importantly, while soil samples are normally too heterogeneous for measurement in micro titer 

plates, the use of our dipstick format enabled direct assay of important environmental sample type. 

 

Figure 2.18 Dose response of paper-based 

dipstick 
Paper dipsticks were made from the Pb and Ca 

sensor strains and each set was treated to a range of 

concentrations of their corresponding cognate 

pheropmone in rich media. Lycopene signal was 

measured at 12 hours and quantified by pixel color 

analysis (Methods).  
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Finally, to further increase the ease-of-use we then designed and built a simple plastic holder 

(Figure 2.20). This holder made the assay portable as it maintained all the components in proper 

register. We also found that by leaving only a small opening for the “Sensor Spots” they did not dry 

out as easily once the assay was started. We found that this plastic holder had no significant effect 

on the function of the sensors and generated a comparably visible signal (Figure 2.20c). While not 

necessary for assay function, this simple plastic holder is not expected to add substantial cost per 

 

Quantitative analysis of lycopene production using dipstick assay, as scored by time-lapse photography for 

detection of (a,b) P. brasiliensis mating pheromone by the Pb dipstick and (c,d) C. albicans mating pheromone by 

the Ca dipstick. (a, c) Time course of induction with pheromones in media. Individual runs shown in light 

color, average response shown in dark color. Shading indicates visible threshold. (b,d) Detection of mating 

pheromones in complex samples. Experiments were performed using 1 "M pheromone (color dots) or water 

(grey dots) as a negative control. YPD - media only; Soil - standard potting soil; Urine - 50% pooled human 

urine; Serum - 50% human serum; Blood - 2% whole blood. All samples were supplemented with media. 

Figure 2.19 The paper-based dipstick functions in complex samples 
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test. Important, it enables a true “one-step” assay rendering our yeast sensor platform extremely 

easy to use by a non-specialist. 

2.3 Discussion 

In this chapter we demonstrated the specificity and sensitivity of our yeast-based sensors in 

the detection of fungal pathogens in complex samples. This approach integrates all bioassay 

functions, eliminating the need for sophisticated equipment or materials for its use. In addition, the 

production of this yeast biosensor is as scalable and cost-effective as its use.  

While mammalian cells [20], and whole-cell extracts [69] have been used to detect pathogens, 

these systems require costly and complex production techniques. In contrast yeast is already 

produced in massive quantities as a household product. Since our yeast platform is a one-

component device, it can directly leverage existing yeast production infrastructure.  Using current 

production costs of packaged yeast, this indicates an expected initial cost per test of 1¢ US. 

Furthermore, yeast production is so well established that our biosensor could be produced in 

resource poor settings directly by local communities. 

Our results show that engineered yeast cells are uniquely poised to provide a practical and 

cost-effective platform for detecting pathogens outside the laboratory. As with any system based on 

 

Figure 2.20 A plastic holder for improving dipstick portability 
(a) A simple plastic holder was designed to enable portable use of the dipstick assay. Thin black bars - 2 cm. (b) 

Dipstick device in use. Inset: positive readout, “+” biosensor strain. “-” negative control strain (c) Dipstick 
holder does not affect biosensor performance as shown by time course measurement of the P. brasiliensis 
dipstick test response using 1 µM cognate peptide 
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engineered organisms, successful transfer of this technology to the field will require incorporation of 

established genetic safety mechanism [70]. Furthermore, the peptide-sensitive GPCRs described here 

lay the groundwork for generating sensors to other pathogen-specific peptides by directed evolution 

(see Chapter 3). Overall, by combining yeast, lycopene and GPCRs we developed an extremely cost-

effective approach to pathogen detection and surveillance. 
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3 DIRECTED EVOLUTION OF PEPTIDE ACTIVATED GPCRS 
3 FIGURE CHAPTER 
3.1 Introduction 

G-protein coupled receptors have the potential to be used as sensing elements for the 

detection of any biomarker of choice. This receptor family binds a diverse set of ligands and 

represents a rich source of molecular recognition rivaling that of antibodies [1,2]. In the same way 

antibodies can be raised against novel ligands by immune selection, GPCRs can be modified to bind 

novel ligands through directed evolution (DE). In fact, several groups have established DE in yeast 

as tool for changing GPCR ligand specificity [3,4].  

Among the diverse GPCR family, fungal peptide-activated GPCR represent a compelling 

starting point for directed evolution towards the detection of novel peptide ligands. First, fungal 

Ste2-type GPCRs are expected to couple robustly to the native pheromone pathway, and several 

have been expressly validated in S. cerevisiae with little to no further modifications.[5–8] Second, 

Ste2-type GPCRs from related fungi already recognize different peptides based on the natural 

evolution of this class of GPCR.[9] Third, Ste2-type receptors are highly specific for their respective 

peptides since they must mediate the species-specific mating reaction while preventing interspecies 

breeding.[10] Finally, previous groups have generated extensive biochemical characterization and 

mutagenesis data for the wild type yeast receptor that can be used as guide for DE of Ste2-type 

receptors.[11–16]  

In this chapter, we develop an optimized directed evolution pipeline to generate synthetic 

receptors that can bind to novel peptide ligands (Figure 3.1a). We then apply this method to develop 

a receptor for a peptide derived from the Cholera Toxin. These new receptors can be introduced 

directly into the yeast-based detection platform developed in the previous chapter and therefore 

have the potential to be used as a household sensor for Vibrio cholera (Figure 3.1b). 

3.1.1 Current cholera detection 

Diarrheal diseases are one of the top ten causes of death in developing countries, with 

extremely high prevalence in children under 5 years of age.[17–19] V. cholerae is one of the principal 

bacterial causative agents of diarrhea annually infecting an estimated ~4 million and killing ~120,000 
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people.[20,21] Difficulty of detection and the high virulence of V. cholerae lead to the epidemics 

characteristic of cholera. Moreover, V. cholerae can persist in water supplies for long periods adding 

to its ability to prevail on a yearly basis.[22] Though cholera can be easily treated by oral 

rehydration, there is no currently available clinical or environmental diagnostic cheap and simple 

enough for routine monitoring of this deadly pathogen by local communities.  

Antibody-based diagnostics have been extremely useful in resource-rich settings, however 

they are inadequate for cholera that prevails in resource-poor settings. Though functional, current 

commercial antibody-based dip-stick tests for cholera require sample pre-treatment, exhibit batch 

inconsistency, and are prohibitive in cost (>$10 per test).[23,24] Other commercial detection in 

widespread use is quantitative PCR, which is very expensive and requires technically complex 

equipment.[25] Thus in practice, culturing remains the real test for the presence of V. cholerae.[26] 

3.2 Results 

3.2.1 Overview of DE pipeline 

The design of our DE strategy is based on previously reported methods for DE of GPCRs in 

yeast [3,27–31]. We sought to enhance these methods in terms of throughput and control of selection 

thresholds. Central to our strategy is a more versatile reporter strain (see section 3.2.2) and a 

screening pipeline based on 384-well plates (Figure 3.2). Our reporter strain enables positive and 

negative growth selections as well as selections based on fluorescence-activated cell sorting (FACS). 

Use of FACS allows for user-defined selection thresholds. Additionally, this reporter strain enables 

fluorescence-based screening and validation of receptor variants, which reduces the time required 

 

 

Figure 3.1 Development of receptors 

to new pathogen targets 

(a) Receptors sensitive to new target 
ligands (colors) can be derived from a 

native receptor (grey) through directed 
evolution. (b) These new receptors are 
used as sensing elements in the yeast 

sensor platform developed in Chapter 2 
to make sensor for any target pathogen 
of choice, such as V. cholerae. 
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for screening and characterization to 12 hours per assay compared to 3 days for previous growth-

based reporters [3]. To further improve this screening step, we implemented a pipeline that 

combines liquid handling robotics, a pin replicator tool and 384-well screening plates (Figure 3.2b). 

A key feature of this method is the incorporation of duplicates in the screening plate with no added 

labor. This improves the confidence when potential hits are observed, further reducing labor lost to 

retransforming and sequencing spurious screening results. Finally, the choice of micro titer format 

lends itself to full automation of the DE cycle in the future. 

3.2.2 Construction of a versatile reporter strain 

We constructed a stable reporter strain to perform DE on plasmid-borne receptor variants 

(yMJ194). As with the yeast biosensor strain (See Chapter 2), the DE reporter strain is derived from a 

parental strain that has the SST2 and FAR1 genes deleted to prevent deactivation of the pheromone 

response pathway and avoid growth arrest [27]. Additionally, the STE2 gene was also deleted to 

avoid any undesired activation due to the endogenous pheromone receptor. A DE reporter strain 

should enable multiple selection and screening modalities, therefore we explored the following 

reporters: pFUS1-HIS3 or pFUS1-MET15 integrated at the FUS1 locus for positive growth selections; 

 

 

Figure 3.2 Directed evolution pipeline 

(a) Fungal GPCRs were evolved by (1) mutagenizing receptor genes, (2) transforming into yeast that carry 

pFUS1 reporter constructs and enriching responsive variants by (3) growth on selective media or (4) FACS. 

Screening in (5) micro titer plates yields hits for (6) further rounds of DE. Figure adapted from [3]. (b) In the 

screening step, individual clones are pre-grown in 96-square well plates that are replicated into 384-well plates, 

with each clone (red square) directly replicated into four screening conditions (red circles and inset). 
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pFUS2-URA3 or pFUS2-TRP1 integrated at the FUS2 locus for counter-selections; pFUS1-mCherry 

integrated at the ReRec locus for fluorescence-based selection and screening. 

For positive growth selections, we tested pheromone induction of either HIS3 or MET15. Our 

parental strain lacks both HIS3 and MET15 [32], therefore by introducing either a pFUS1-HIS3 or 

pFUS1-MET15 construct we generated strains that should be conditionally prototrophic for histidine 

or methionine. However, when either strain was grown in selective media both strains grew at 

similar rates in the presence or absence of activation of the pheromone pathway by alpha factor. In 

both cases, high basal transcription from the FUS1 promoter likely produced enough His3 and 

Met15 gene products to render the strains prototrophic for histidine and methionine. This has been 

observed previously for selections based on the FUS1 promoter [3]. Additionally, it is well 

established that 3-amino-1,2,4-triazole (3-AT), an inhibitor of the His3 gene product, can be used to 

reduce growth due to basal levels of His3 [33]. Therefore we chose pFus1-His3 as the final positive 

selection construct. Through titration of 3-AT, we found that 40mM 3-AT reliably gave a large 

growth difference between a pheromone-induced strain and an uninduced strain (Figure 3.3a). 

(a) Strains expressing three Ste2 receptor variants were grown in positive selection media with varying 
amounts of 3-AT. 40 mM 3-AT (red square) allows substantial growth only for the induced wild-type receptor. 
(b) Strains with or without constitutive expression of TRP1 were grown in media with varying amounts of 5-
FAA. (c) Strains with or without constitutive expression of URA3 were grwon in media with varying amounts 
of 5-FOA. 2.6 mM 5-FOA (red square) prevents growth of the constitutive URA3 strain with out substantially 
affecting the strain with no URA3 expression. Optical density measured at 48 hours. 

 

Figure 3.3 Determination of positive and negative selection conditions 
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For negative growth selections, there are two 

established counter selectable genes in yeast: URA3 with 5-

fluoroorotic acid (5-FOA) and TRP1 with 5 fluoroanthrinilic 

(5-FAA) [34,35]. Initially we compared the growth difference 

between our parent DE strain either constitutively expressing 

or lacking URA3 and TRP1. Titrations of 5-FOA and 5-FAA, 

showed 3.2 mM 5-FAA and 2.6 mM 5-FOA gave the largest 

difference in growth for both negative selections (Figure 

3.3b,c). However, 5-FAA led to lower growth for the strain 

lacking the counter-selectable gene. Therefore, we chose the 

URA3 negative selection. We integrated a pFus2-Ura3 into the 

parent strain and showed that at the determined 

concentration of 5-FOA (2.6 mM) the strain had a large 

reduction in growth when induced with alpha factor relative 

to the growth of the uninduced strain (Figure 3.4). 

Furthermore, immediately after negative selection this strain, 

which also contained the positive selection construct, showed the appropriate growth behavior in 

the positive selection media.  

We then tested whether the counter selection could successfully selected against strains 

expressing constitutive variants of the Ste2 receptor. As expected, a strain expressing a constitutive 

mutant of the Ste2 receptor did not grow in the counter selection (Figure 3.4). Interestingly, when 

immediately switched to the positive selection, this constitutive strain was no longer able to grow, 

suggesting that the counter-selection not only prevented growth but also caused cell death. This is 

unexpected since previous reports showed that strains could partially grow post negative selection 

[34]. However, in the present case the more severe cell death could be a result of concomitant 

activation of the pheromone response. This fungicidal effect of 5-FOA on cells with an activated 

pheromone response is expected to enhance the effectiveness of the counter-selection for DE. This is 

because unwanted constitutive receptor variants remaining in the population after counter-selection 

The final reporter strain shows large 
differences in growth with and without 
induction in both the positive (pos.) and 
negative (neg.) selection conditions. A 
constitutive Ste2 variant does not grow 
in the negative selection and can no 
longer grow in the positive selection 
following a negative selection. 

Figure 3.4 Behavior of reporter strain 

in the positive and negative selections 
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should no longer be able to compete against the desired inducible receptor variants in a subsequent 

positive selection. 

As with reporter strains constructed previously for the yeast two-hybrid system [36], we 

sought to include a third reporter construct not based on growth. Previously, this third reporter was 

the bacterial beta-galactosidase enzyme that can be assayed quantitatively in micro titer plates by 

visual spectroscopy upon addition chromogenic substrates [37]. Instead, we chose to use a yeast 

codon optimized variant of the mCherry fluorescent protein [38]. This fluorescent reporter can be 

assayed in micro titer plates by fluorescence spectroscopy without cell pre-treatment. Additionally, 

it enables single cell characterization of the variant population by flow cytometry and selections by 

fluorescence-activated cell sorting (FACS). We thus introduced a pFus1-mCherry construct in the DE 

reporter strain by Reiterative Recombination [39]. Upon induction with alpha factor this strain 

produced a significant fluorescence signal relative to an uninduced strain (Figure 3.5a). This signal 

could be distinguished from basal fluorescence by 6 hours and peaked at 18 to 24 hours after 

induction. 

Importantly, our strain also contains a construct constitutively expressing a yeast codon 

optimized variant of the GFP fluorescent protein (eGFP) as part of the Reiterative Recombination 

locus [39]. This constitutive eGFP expression acts as an internal control for protein expression levels 

and can be used in flow cytometry and FACS to exclude dead, non-expressing cells. When this strain 

 

 

Figure 3.5 Validation of fluorescence reporter 

Measurement of the pFUS1-mCherry reporter with a (a) fluorimeter or (b, c) flow cytometer. Contour lines at 

5% density levels for b and c. I – GFP+/RFP+ population corresponting to induced cells; II – GFP+/RFP- 

population corresponding to uninduced cells; III – GFP-/RFP- population corresponding to dead cells. 
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was induced with alpha factor an activated population of cells could be clearly observed by flow 

cytometry (Figure 3.5b,c). After induction, we always observed a residual eGFP positive/mCherry 

negative population. We expect that this population represents live cells that no longer carry the 

plasmid with the receptor gene and are therefore not inducible. It is known that yeast populations 

carrying plasmids with prototrophic selectable markers can maintain auxotrophic subpopulations 

lacking the plasmid through cross-feeding [40]. Alternatively, this subpopulation may represent 

cells that have deactivated the pheromone response through mechanisms not prevented by the SST2 

deletion such as receptor internalization [41]. Additionally, the constitutive eGFP expression also 

provides a second proxy for cell number in micro titer plates in addition to optical density.  

In summary, we constructed and validated a versatile reporter strain for DE of receptors that 

activate the pheromone response pathway in yeast. This strain contains deletions of SST2, FAR1 and 

STE2 as wells the genome integrated reporters pFus1-His3, pFus2-Ura3 and pFus1-mCherry. 

3.2.3 Hybrid peptides as intermediate ligands for evolving fungal GPCRs 

An important feature of our DE platform is the choice of fungal mating GPCRs as the parent 

receptors. This protein family is ideal for development of novel sensors since these receptors bind a 

diverse range of short peptide ligands (see Chapter 4) [9]. Furthermore, peptide ligands aid the DE 

process, since it is straightforward to design “intermediate” ligands between the native peptide and 

the target peptide. The use of such intermediate molecules for incremental DE has been used 

successfully for the evolution of novel substrate specificities of enzymes such as tRNA-synthetases, 

P450 monooxygenases and steroid receptors [42–45]. Additionally, peptide synthesis is now an 

outsourced technique making receptor fine-tuning through the use of several intermediate and near-

cognate peptides very technically tractable. We therefore hypothesized that fungal GPCRs represent 

a rich repertoire of diversity that can be used to develop receptors to any peptide of choice. 

To test this idea, we chose to develop a receptor for the detection of a cholera-specific peptide. 

Specifically, we chose a well-established protein biomarker for V. cholerae: cholera toxin (CTx). The 

presence of CTx has been established in stool samples and is a validated proxy for pathogenic V. 

cholera.[46,47] Moreover, there have been several efforts to make antibody-based diagnostics for 
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CTx, validating both its utility and providing a benchmark for the sensitivity required for 

detection.[46,48]  

We expected that there is an optimal size range of peptides that can be detected with Ste2-type 

GPCRs that balance specificity and accessibility through the cell wall to the surface of the cell.  

Guided by the length of the native ligands of the fungal receptors [9] and a previously described 

CTx epitope [49] we chose two target peptides raging from 9 to 15 residues. Specifically we chose the 

peptides: VEVPGSQHIDSQKKA (CTxL) and VPGSQHIDS (CTxS), since they span a region on the 

bottom face of the cholera toxin beta subunit recognized by the GM1 ganglioside in the intestinal 

epithelium. Importantly, this region represents a conserved epitope that has been characterized as 

the target of several antibodies raised against CTx and has also been successfully used in CTx 

detection assays.[50,51] Furthermore, these peptides share some features with the S. cerevisiae alpha 

factor and related pheromones, such as a PG motif framed by a hydrophobic amino acid four 

residues from a glutamine. With these features in mind, we designed a set of intermediate peptides 

that march from alpha factor to the target CTx peptides (Figure 3.6a).  

Before beginning DE, we characterized the response of S. cerevisiae receptor to these 

intermediate ligands (Figure 3.6b,c).  As expected, the strength of the response decreased rapidly as 

the homology of the ligands decreased relative to the cognate ligand. Unexpectedly, the wild-type 

receptor showed a response to the first intermediate ligand (Int-A) at 10 µM and a minimal but 

 

 

Figure 3.6 Design and characterization of intermediate peptide ligands 

(a) Sequences of native ligand (alpha), intermediate ligands (Int-letters, grey shading) and target cholera toxin 

peptides (CTx). Regions homologous to native ligand highlighted in blue, and to the target peptides 

highlighted in red. (b) Fold activation of the parent Ste2 receptor with 10 µM (alpha, Int-A,B) or 40 µM (Int-

C,D,E, CTx-L,S). (c) Fold activation with high concentration of the peptides (250 µM) 



 

56 

measurable response to the second intermediate ligand (Int-B) at very high concentrations (0.25 

mM). This suggested that DE could begin with selections directly for Int-B and that Int-A could be 

used for neutral drift. 

3.2.4 Evolution of S. cerevisiae Ste2 towards new peptide ligands 

We undertook rounds of DE towards a CTx receptor starting from two parent fungal receptors 

from S. cerevisiae and an orthologue from V. polyspora. For library creation, we generated receptor 

variants by error-prone PCR (epPCR) [52] of the whole receptor genes or focused regions containing 

the putative ligand binding pockets. FACS was then used with the designed intermediate peptides 

in a series for neutral drift and positive selections. Screening of the selected variants was carried out 

in 384-well plates as described in Section 3.2.1 and top performing clones were retransformed into a 

naïve reporter strain for further characterization. The various routes taken during the initial phase of 

DE are shown schematically in Figure 3.7. 

We chose to mutagenize the endogenous S. cerevisiae Ste2 pheromone receptor (ScSte2) and an 

orthologue from V. polyspora (VpSte2) as the parental GPCRs since their native peptide pheromones 

resemble features of the CTx peptide targets and the designed intermediate hybrid peptides. For 

each, we generated whole gene libraries (ORF) and focused libraries spanning from the second to 

the third extracellular loops (loops). We chose this focused region since it has been implicated in 

ligand binding [14,15,53]. We generated the libraries through epPCR, with MnCl2 concentrations to 

Figure 3.7 Summary of DE routes in phase 1 

Two fungal GPCRs were used as parent receptors (ScSte2, VpSte2). Type of mutagenesis (grey boxes) and 

neutral drift ligand (orange boxes) marked in black font. Positive selection (orange boxes) and screening (green 

boxes) lignads marked in red font. Green check mark denotes roud leading to active mutant.  
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give either 1-3 (low) or 2-7 (high) mutations per gene as confirmed by sequencing 8 – 16 clones per 

library [28,52]. The final yeast libraries were made via gap repair by co-transforming amplified 

epPCR products and a linearized plasmid. Library size ranged from 105 – 106. 

Furthermore, we implemented a neutral drift strategy that has been previously applied to 

GPCRs in yeast [54,55]. Neutral drift involves pre-selecting the library with high concentrations of a 

ligand that already has activity with the parent receptor of that DE cycle. This removes non-

functional or misfolded receptor variants. The library DNA was then extracted and re-mutagenized 

for further rounds of neutral drift or selection. This iterative process accumulates receptor variants 

that are well behaved while maintaining sequence diversity.  

For FACS selections we selected thresholds based on the fluorescence level of the uninduced 

library. We set this threshold to capture between 0.5% and 1% of the uninduced library (population 

II in Figure 3.5) and collected 105-106 cells from the induced library. For neutral drift selections, this 

threshold captured 30% to 40% of the population. For positive selections with the target ligand, this 

threshold captured 1% to 2% of the population. FACS-selected cells were amplified in plasmid-

selective media and plated to recover individual clones for screening. 

In the first phase of DE, we generated 11 separate mutagenesis and selection combinations 

representing a diversity of ~107 variants. After the final selections, we screened 1134 individual 

clones of which 892 gave replicate results with a CV of less than 15%. Of these clones, we sequenced 

48 clones representing 3 high confidence clones and 43 low confidence clones (Figure 3.8a). 

Of the low confidence clones, 59% were found to be strains containing empty plasmids not 

expressing any receptor variant (15% of sequenced clones) or wild type receptors (40% of sequenced 

clones). These wild type receptors were true library members and not contamination since most had 

mutations at the DNA level that were silent at the protein level. This was expected since the parent 

receptor is enriched in neutral drift selections and should represent a significant portion of the 

negative variants observed in screening. The remaining low confidence non-responsive clones were 

strains containing a diverse set of mutations ranging from 1 to 6 amino acid changes per variant. As 

expected, when these low confidence variants were reassayed individually, all were found to have 
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no change in activity to the target ligand relative to the wild type receptor. The exceptions was a 

variant with the mutation L277S that showed an increase in the basal level. 

The three high confidence clones contained only one mutation: V276A. All of these clones 

resulted from the focused loop library of the S. cerevisiae receptor that was first neutrally selected 

with Int-1 and then positively selected with Int-2. Reassaying confirmed that this mutation increased 

the activity of the receptor to the Int-B peptide (Figure 3.8b).  

L277 and V276 are immediately adjacent to each other and both lie at the boundary between 

the third extracellular loop and seventh transmembrane helix of the receptor. Yet mutation of L277 

led to a constitutive variant and mutation of V276 lead to a functional variant with a larger ligand 

scope. Among the closely related orthologues of ScSte2 that bind different ligands, L277 is more 

highly conserved compared to V276 (Figure 3.8c). This reflects the functional difference observed in 

the variants uncovered in our DE experiment. Taken together, this suggests that these two residues 

are intimately involved in ligand recognition (V276) and signal transduction (L277). Additionally, it 

has been previously observed that a nearby residue (K269) makes contact with the N-terminal 

tryptophan of the cognate ligand [56]. Therefore the mutation of V276 to a smaller alanine residue 

(a)  Mean basal and induced signal values for each clone are used to determine which clones significantly 

deviate from the null line (black line, basal = induced). Those more than two standard deviations away (grey 

diagonals) are considered high confidence hits (marked in red). Grey area marks high basal levels. (b) 

Reassaying confirms that the V276A variant (red dots in panel a) is inducible by Int-B and the L277S variant 

(blue dot in panel a) is constitutive. (c) Analysis of close orthologues of the wild-type Sc receptor reveals that 

position 276 is highly variable, while poisition 277 is more highly conserved. 

 

 

Figure 3.8 Characterization of screening results of phase 1 
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may serve to better accommodate the N-terminus of a 

larger peptide like Int-2 that has 14 amino acids relative 

to 13 in the cognate ligand. 

Encouraged by these results, we repeated the DE 

cycle to generate higher sensitivity receptors, using the 

V276A variant as a parent receptor (Figure 3.9a). 

However, we made some changes to our selection 

thresholds. To reduce the level of non-responding 

variants observed in the screens, we increased the 

stringency of the FACS selections to a level that captured 

only 0.1% to 0.2% of the uninduced library. Additionally 

for the selections with Int-B, we lowered the 

concentration from 10 uM to 1 uM, a level that does not 

activate the V276A variant. In this phase, we generated 

three library and selection combinations representing 

~105 variants. After selection, 384 clones were screened of 

which 244 gave replicate results with CV less than 15%. 

Of these clones, 2 were high confidence non-constitutive 

clones (Figure 3.9b). 

These two clones reproducibly had higher activity 

to Int-B relative to the parent variant with only the V276A mutation. One variant had the additional 

mutation Y193C and the other variant had two additional mutations, G129S and S325P. Both Y193 

and G129 are in extracellular loops expected to interact with the peptide ligand, while S325 is in the 

intracellular C-terminal tail of the receptor. To further probe the effect of these mutations, we 

determined the EC50 values to the cognate ligand and Int-B for the wild-type receptor (grey), the 

V276A variant (red), the V276A/Y193C variant (green) and the V276A/G129S/S325P variant (blue) 

(Figure 3.10a,b,c).  

(a) Selections carried out in the second phase 
of directed evolution. Colors as in  Figure 3.7 
(b) Screening results showing two high 
confidence hits (red dots) for higher 
sensitivity receptors to Int-B. Colors and 
lines as in Figure 3.8a. 

Figure 3.9 Phase 2 screening results 
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The V276A/Y193C and the V276A/G129S/S325P variants showed a similar increase in 

sensitivity of to Int-B, however the V276A/G129S/S325P double mutant showed increased maximal  

activation (Figure 3.10b). This may be due to the S325 mutation that is near phosphorylation and 

ubiquitnation sites involved in receptor internalization [57,58]. Furthermore, while the original 

V276A variant showed no change in the EC50 value towards the cognate ligand, both phase 2 variants 

showed a decrease in sensitivity for the cognate ligand (alpha in Figure 3.10a,b). This suggests that 

these additional mutations have not only increased the ligand scope of the receptor but have also 

changed its specificity. Furthermore, when we exposed to high concentrations of Int-C, Int-D and 

Int-E, all receptor variants showed higher activity to compared to wild-type receptor. 

 
Figure 3.10 Activity of best receptor variants for new peptide ligands 

(a) Dose response of wild-type and receptor variants for Int-B (left) and cognate ligand (alpha, right). Colors as 

in panel c. (b) Comparison of sensitivity and magnitude of activation (span) for the receptor variants towards 

alpha and Int-B. Grey arrows denote the ancestry of the receptors. Colors as in panel c. (c) Detailed view of 

mutations for each of the receptor vairants. Double black lines mark the plasma membrane with the 

extracellular side up and intracellular side down. (d) Activation of the receptor variants by high concentrations 

(250 uM) of the next intermediate ligands. Colors as in panel c. 
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In summary, we generated receptor variants that showed an increase in sensitivity of nearly 

two orders of magnitude to a peptide that has 67% identical residues to the target cholera toxin 

epitopes. Additionally, the receptor variants showed measureable activity to a peptide with 80% 

identity to the target ligand and only 23% identity to the cognate ligand.  

3.3 Discussion 

We successfully designed an optimized DE strategy based on the step-wise use of 

intermediate hybrid peptides to change the ligand specificity of the GPCRs. We then applied this 

strategy to engineer a receptor that binds a hybrid peptide 67% identical to a cholera toxin (CTx) 

peptide epitope with a sensitivity of 8±2 uM. Importantly, CTx is known to be present in clinical 

samples at a concentration of 350 nM and previous assays have sensitivities ranging from 100nM to 

100pM.[47,48]. So while further optimization is required, these results largely support our 

hypothesis that fungal GPCRs can be engineered to detect any small peptide of choice. 

Looking forward, our platform may also have the potential to detect V. cholerae in 

environmental samples. Cheap detection in environmental samples is an urgent problem that 

remains largely unsolved since the gold-standard culturing technique cannot detect the dormant 

form of the pathogen. The high sensitivity demonstrated by fungal GPCRs suggests that continued 

optimization of the receptors devised here might yield extremely sensitive sensors for cholera. Such 

sensor may open the door for a new way of conducting cholera surveillance. 

Furthermore, this work raises the potential for the wider use of peptides as biomarkers in 

point-of-care diagnostics. Historically, most biomarkers have been proteins and or glycosides. 

However, there is an emerging field of “peptidomics” that seeks to determine peptide signatures for 

disease by mass-spectrometry[59,60]. This field is expected to generate a growing list of peptide 

biomarkers for various diseases. Therefore, our yeast sensors and DE strategy can serve as a 

complementary technology to generate point-of-care diagnostics to various diseases as their peptide 

biomarkers are validated. 
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4 FUNGAL RECEPTOR-PEPTIDE PAIRS: EXTENSIBLE 
COMMUNICATION MODULES FOR SYTHETIC BIOLOGY 

4 FIGURE CHAPTER 
4.1 Introduction 

The construction of synthetic multicellular systems requires a new set of parts beyond the 

ones developed for single cell systems [1–3]. One key requirement is a communication language that 

can be used to coordinate and trigger the actions of the constituent cell types [4–6]. An ideal 

communication language is composed of orthogonal communication channels whose cell-to-cell 

connections are easily programmed by the researcher [7]. One approach used by natural systems is 

the secretion of diffusible small molecules, peptides or proteins that trigger specific receptors 

uniquely expressed by the target cell [8]. Some examples include the peptide hormones and small 

molecule steroid hormones that coordinate the intricate multicellular programs of development and 

the menstrual cycle [9,10]. While, some simple multicellular systems have already been 

demonstrated [11–13], more complex systems have remained out of reach. This has been mainly due 

to inherent limitations in the synthetic communication systems currently available. The 

development of a more versatile communication language would enable access to synthetic 

multicellular systems with properties such as division of labor, self-patterning and distributed 

computation. 

In this chapter, we propose that fungal GPCRs and their peptide ligands are the ideal modules 

to develop a synthetic communication language for coordinating multicellular system. To evaluate 

this idea, we first mine fungal genomes to extract GPCR and their corresponding putative peptide 

ligands. We then express them in yeast and characterize their function, sensitivity and orthogonality. 

Our results show that these receptor-peptide pairs already far exceed what is possible with available 

systems and stand to become an easily extensible communication language.  

4.1.1 Current systems for synthetic cell-cell communication 

There has been an array of communication systems used for the implementation of synthetic 

multicellular systems in bacteria, yeast and mammalian cells [4–6]. However, almost all of these 

systems use signaling components that are not immediately extensible and therefore are inherently 

limited to the implementation of just a few communication channels. 



 

67 

By far the most used systems are based on bacterial quorum sensing. Many bacteria use 

diffusible acyl homoserine lactones as signaling molecules that trigger a population wide response 

at high concentrations [14,15]. Different bacterial species have slightly different signals with 

variation primarily in the length of the acyl chain. While some of the natural receptors are partially 

orthogonal, a majority of signals activate multiple receptors [16]. Even through protein engineering 

of the receptors, at most two fully orthogonal communication channels have been demonstrated 

simultaneously [17]. A second approach is the use of metabolic cross-feeding as type of 

communication [7,18]. In these systems the cells are made interdependent on each other for survival, 

each producing a metabolite for which the other is auxotrophic. A more recent approach, 

implemented the use of DNA as a communication channel [19]. The signal DNA was transferred 

from cell to cell via a virus that could escape from the sender cell and then infect the receiver cell. 

Synthetic communication systems in mammalian cells have also used natural diffusible 

signals such as nitrous oxide (NO), amino acids and growth factors [20–22]. Alternatively, 

mammalian systems have also been made that implement contact based signaling mediated by two 

protein domains displayed on the surface of the interacting cells [23]. 

An artificial quorum sensing system has also been implemented in yeast by rewiring secretion 

of the native mating pheromone [24]. In another example, the citokinin pheromone system from 

plants was imported and successfully linked to yeast transcription factors [25]. A third example from 

metabolic engineering showed that yeast could be co-cultured with bacteria through a system of 

cross feeding and detoxification [26]. Finally, a system was built allowing the communication 

between bakers yeast and fission yeast by mutual secretion of their respective pheromones [27]. 

These initial examples demonstrate the portability of the yeast mating receptor and peptide 

pheromone, and thus set the stage for the exploration in this chapter of the potential of these 

systems to be used as synthetic communication modules. 

4.2 Results 

4.2.1 Genome mining for fungal mating GPCRs 

While the Ste2 mating receptor of S. cerevisiae has received extensive focus for its role in the 

prototypic mitogen-activated protein kinase signal pathway in yeast [28], it has been redeployed 
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only recently as a signaling module in synthetic biology. Growing interest in this receptor has led to 

its use to implement multicellular Boolean logic and interspecies communication [27,29].  

These results reflect the extensive exploration carried out in the 1980’s that demonstrated the 

portability of the Ste2 and Ste3 receptors between different mating types [30,31], as well as more 

recent work using S. cerevisiae to explore the biological significance of receptors from other fungi 

[32–34]. Moreover, with the explosion in the number of sequenced fungal genomes [35,36], it has 

now become clear that the pheromone response pathway is highly conserved within the Ascomycete 

fungi (Figure 4.1a,b)[37]. These newly sequenced genomes have revealed that a majority of 

ascomycetes share orthologues for many of the proteins involved in this signaling pathway, from 

receptors to downstream effectors. Even fungi previously thought to be asexual, have now been 

demonstrated to have cryptic mating cycles [38]. Taken together, these previous results suggest that 

a very large set of fungal GPCRs exists that could be used as sensing elements in synthetic cell-cell 

(a) Most members of the Ascomycete fungi mate via species-specific petide/receptor signaling. (b) The 

secreted peptides (Pep) and the receptors (GPCR) that sense them are homologous and can be found by 

genome mining. (c) The underlying signal transduction pathway conserved and so receptors/peptides can be 

used in the model organism (yeast) in a plug-and-play manner. (d) These peptide-receptor pairs can be used as 

extensible communication modules for building novel communication networks. 

 
Figure 4.1 Fungal genomes can be mined for novel communcation modules 
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communication systems. Furthermore, the demonstrated portability of a handful of receptors to S. 

cerevisiae hints that in fact most fungal GPCRs might readily couple to the pheromone response 

pathway in this well understood model organism (Figure 4.1c). 

To validate this hypothesis, we first sought to build an exhaustive data set of all orthologues 

in the Ste2 receptor family. We aimed to incorporate species information in this database in order to 

filter for receptors expected to bind unique peptide ligands (those from distinct species) while also 

maintaining receptors from different variants within the same species expected to provide sequence 

information on neutral mutations. We accomplished this by curating the InterPro group IPR000366 

[39]. This is an automatically generated group of 617 sequences that match the InterPro Ste2 motif. 

We found 143 to be obsolete entries in the Uniprot datatbase, 93 to be non-fungal and 381 to be true 

Ascomycete sequences. We reduced the redundancy by removing collapsing pairs of sequences that 

were more than 98% identical (mostly removing sequences from different strains fo the same 

species). The remaining 330 sequences all contained conserved regions corresponding to the core 

seven transmembrane helix domain of the S. cerevisiae receptor (Y17 to N301). We further pruned the 

list to 303, removing members with large gaps (>20 residues) in this region. Analysis of the putative 

core receptor region revealed a highly diverse family with the lowest homology between receptor 

pairs of 10% (Figure 4.2). However on average each member was 80% homologous to its closest 

neighbor. It is interesting to note that the C-termini were highly diverse with some including 

additional predicted transmembrane domains.  

To characterize the potential portability of these receptors as functional sensing elements in S. 

cerevisiae we also characterized the conservation of residues spanning from the fifth to sixth 

transmembrane helix and including the third intracellular loop. This region has been implicated in 

signal transduction and is though to directly contact the heterotrimeric G-protein [40,41]. Receptors 

with higher homology to the S. cerevisiae Ste2 in this region are therefore predicted to couple 

functionally to the endogenous G-protein. We found that indeed residues in this region were more 

highly conserved than residues in the remaining portions of the receptors (Figure 4.3). In particular 

we found that all receptors contained positively charged residues in the third intracellular loop.  
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Figure 4.2 Phylogenetic tree of mined 

fungal receptors 

Fungal GPCRs homologous to S. cerevisiae 
Ste2 were curated from the InterPro group 

IPR000366. A high quality set was aligned 
and the conserved receptor core was 
analysized (Y15 to N301 relatice to WT 

Ste2). Phylogenetic analysis of this region 
shows a diverse family of receptors that 
mirrors the expected species phylogeny. 

Pink – receptors from the fungi orders 
Eurotiales and Onygenales including 
genuses: Penicillum, Aspergillus, Histoplasma 

and Paracocidioides. Green – receptors from 
the genus Schizosaccharomyces including the 
model organism S. pombe. Blue – receptors 
from fungi related to the human pathogen 

Candida albicans. Red – receptors from fungi 
closely related to the baker’s yeast (S. 

cerevisiae). Brown – receptors from the fungi 

order Sordariales including the model 

organism Neurospora crassa. 
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4.2.2 Genome mining for fungal peptide pheromones 

With a set of putative fungal receptors in hand we next sought to generate a corresponding set 

of pheromone genes. This goal expands on a set of putative pheromone genes reported by Martin et 

al [42]. This existing set contains pheromone genes from 64 unique fungal species. As with S. 

cerevisiae some of these fungal species have multiple structural genes encoding highly homologous 

peptide pheromones. Using these initial genes as seeds we expanded the set of putative pheromone 

genes and matched them to their corresponding receptors by using the taxonomic information 

gathered previously (see Section 4.2.1). A simple BLAST routine yielded 119 pheromone genes 

(a) Detailed view of the receptor 

topology with seven transmembrane 

helixes. Key regions involved in 

signaling are highlighted in grey 

boxes. (b) Residue conservation 

among the fungal GPCRs for the 

regions highlighted in panel a. (c). 

Percent identity of each subregion is 

higher than that of the whole receptor. 

Labels as in panel a.  

 

Figure 4.3 Signaling regions are 

homologous among fungal GPCRs 
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derived from unique fungal species [43–45]. 

As described previously, putative secreted peptides were predicted from processing motifs 

present in the pheromone genes [42]. These pheromone genes have a signature architecture 

consisting of a hydrophobic prepro secretion signal followed by repeats of the putative secreted 

peptide flanked by proteolitic processing sites [46]. The repetitive nature of these genes was the most 

salient feature that enabled prediction of a majority of the mature peptides. The repeated regions 

contained short stretches of 10-15 residues that were perfectly conserved (Figure 4.4). When there 

were different residues between these repeats the mismatched residues were often from the same 

chemical class (e.g. K and R).  

These alignments also revealed the nature and extent of variation of the flanking processing 

sites. As noted previously, these flanking processing sites were runs of X-A and X-P dipeptides, and 

Kex2-like cleavage sites (KR, QR, NR) [42,47–51]. For a subset of putative pheromone genes no 

repeats were found, however many of these members still contained the flanking processing sites, 

often with a single site preceding a short C-terminal peptide as has been observed with H. 

capsulatum and P. brasiliensis [34]. Finally, we note that the pheromone genes from the Aspergillus 

genus did not contain perfect repeats or single peptides flanked by well-defined processing sites. In 

these fungi there were often three imperfect repeats with differing termini and lengths as predicted 

from the processing sites. This variety in length stood out since other pheromone genes with 

repeated regions had near perfect conservation in predicted peptide length. This variation in the 

peptide repeats may suggest that these pheromone genes are vestigial in the historically asexual 

Aspergillus genus [38]. 

While there was great variation in the sequence of the predicted peptides there were some 

conserved features. Across all peptides, there was strong preference for aromatic amino acids at the 

termii, particularly tryptophan at the N-terminus. As with alpha-factor from S. cerevisiae these 

terminal aromatic residues may represent a feature required to engage hydrophobic regions in the 

respective receptors to induce the conformational changes required for signal transduction [52,53]. 

Additionally, a subset of peptides from related species contained paired cysteine residues near the 

termii, often at the second and penultimate positions. A possible disulfide bond suggests that these 
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peptides may be active as conformationally locked cyclic peptides. This mirrors other small peptides 

that engage cell surface proteins, such as the gram-positive bacterial autoinducing peptides and the 

scorpions toxins [54,55]. 

In summary, through mining of the available ascomycete genomes we assembled a database 

of putative receptor-peptide pairs (100+) expected to be orthogonal and to functionally couple to the 

S. cerevisiae pheromone response pathway (Figure 4.4). The large ligand diversity may be 

immediately accessible for building communication modules in yeast. 

4.2.3 Functional validation of GPCR-peptide pairs 

To validate the set of receptor-peptide pairs mined from fungal genomes, we expressed a 

small subset of receptors in our fluorescent reporter strain (see Chapter 3) and tested their function 

with synthetic peptides. We chose this subset to span a wide range of receptor and peptide 

homologies relative to the wild-type S. cerevisiae counterparts (green dots in Figure 4.4b). 

Additionally, this set included receptors genes cloned directly from the source fungal genomic DNA 

that retained the original codon bias of the host as well as receptor genes cloned from synthetic yeast 

codon-optimized DNA. Reporter strains constitutively expressing these heterologous receptors were 

induced with 5 uM of the corresponding predicted peptide ligands. Of 25 initially screened 

receptors, 22 generated a fluorescent signal above baseline when induced (Figure 4.5a). Considering 

 
Figure 4.4 Secreted fungal peptides can be found by homology of repeasts and processing sites 

(a) Two examples of determining the secreted peptide sequence from Beauvaria bassiana (Bb) and Candida tenuis 
(Ct). The sequence context is shown for the perfect repeats found in each peptide gene. Kex2-like processing 
sites in blue. Ste13-like processing sites in green. Predicted mature sequence underlined. (b) Percent identities 
of the peptide-receptor pairs to their S. cervisiae counterparts (red). Peptide-receptor pairs screened for function 

marked in Figure 4.5a marked green.  
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the range of receptor and peptide diversity represented by this subset of receptors, this result 

supports our initial hypothesis: most fungal GPCRs readily couple to the pheromone response 

pathway of the model organism S. cerevisiae. 

Next, to determine whether these receptor-peptide pairs could be used as synthetic 

communication modules, we chose to further characterize 9 receptors. We also included 3 receptors 

that did not initially show a response in the screen. We determined the EC50 and maximal fold-

activation values for all the receptors (Figure 4.5). Of the three initially non-responsive receptors, 

one (Mo) could in fact be activated with high ligand concentrations, while the two other receptors 

(Afm, Afl) could not be activated even at high ligand concentrations. The nine receptors that were 

responsive in the screen could be reproducibly activated with their cognate ligands and showed 

maximal fold-activation values similar to the wild-type receptor. Surprisingly, several of these 

receptors showed sensitivities several orders of magnitude higher than the wild-type receptor 

(Figure 4.5b). However, since our reporter strain still expresses the alpha-factor protease Bar1, the 

EC50 value measured for the wild-type receptor does not represent the true sensitivity of this receptor 

since a substantial portion of alpha factor will be degraded. Nevertheless, a handful of receptors still   

 
Figure 4.5 Functional validation of peptide-receptor pairs 

(a) An initial screen revealed that a majority of predictd peptide-receptor pairs were functional in a yeast 
reporter strain. Each receptor was induced with 5 uM of its cognate ligand. Wild-type marked in red. Receptors 
chosen for further chracterization marked in blue. (b) The receptors showed a range of sensitivities with most 
in the nanomolar range. Calculated from data in Figure 4.6. (c) Most of the receptors perform as well of better 
than the wild-type receptor (Sc) with no need for aditional engineering. 
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Heterologous mating receptors from the indicated fungal strains 

were engineered to replace the endogenous S. cerevisiae Ste2 

mating receptor. Each strain was tested with its cognate synthetic 

fungal peptide. Receptor activation was monitored by activation 

of mCherry fluorescent reporter gene under the control of FUS1 

pheromone-inducible promoter after 12 hours. 

Figure 4.6 Dose response curves of fungal receptors to their 

cognate peptide ligands 
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had higher sensitivities than that previously reported for the wild-type receptor in Bar1 

negative strains [33]. 

To further probe the two non-functional receptors we tested their function against alternate 

peptides predicted from their putative pheromone genes. As noted in Section 4.2.2, the pheromone 

genes from these Aspergillus species showed imperfect conservation between repeats of the putative 

secreted peptides. Therefore, it was possible that the sequence of the synthetic peptides originally 

used to test the receptors from these fungi did not represent the true biologically active ligands. We 

thus attempted to induce strains carrying these two receptors with three alternate synthetic 

peptides. We also included the peptide ligand from P. brasiliensis since this peptide had high 

homology to the putative peptides from the Aspergillus species. We did not observe any response 

from these receptors across this array of synthetic peptides (Figure 4.7). This may be due to 

improper expression of these receptors in our receptor strain, or because the tested peptides do not 

represent the true ligands of these receptors. Alternatively, as noted earlier, these receptors and 

pheromone genes may be vestigial in the Aspergillus species.  

Interestingly, the control receptor from P. brasiliensis showed small but measurable responses 

to some of the peptides included in the Aspergillus array. While it was only maximally activated by 

its cognate ligand, the Pb receptor responded to four of the five alternate peptides used. The Pb 

 
Figure 4.7 Characterization of non-functional receptors from Aspergillus species 

Several putative peptides can be predicted from the genomes of Aspergillus flavus (Afl.pep1,2) and Aspergillus 
fumigatus (Afm.pep1,2,3). However, even at high concentrations the peptides do not activate the predicted 

receptors. Fluorescence measured at 24 hours after induction with 100 uM of each peptide. 
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receptor even showed a response to a peptide with two internal substitutions and a three residue C-

terminal extension relative to the cognate Pb peptide. However, the Pb receptor showed no response 

to a peptide with just three internal mutations and of the same length as the cognate Pb peptide. 

The rich variety in the response of the Pb receptor to non-cognate peptides led us to ask 

whether the other fungal receptors also had overlapping ligand specificities. We therefore tested the 

cross-reactivity of set of eight receptors with unique peptide ligands. Surprisingly, this showed that 

a majority of the receptors were exquisitely specific for their own ligand showing no response to 

non-cognate ligands (Figure 4.8a). We further characterized the sensitivity of two receptors that 

showed cross-reactivity (Figure 4.8b). Even in these cases of cross-reactivity, the receptors showed a 

strong preference in sensitivity to their cognate peptides by at least one order of magnitude. In 

general, receptors that cross-reacted against non-cognate ligands had a sequence homology to the 

cognate receptors of the cross-reacting ligands of at least 30% or more (Figure 4.9). 

Within the small set of receptor-peptide pairs characterized here, we uncovered six mutually 

orthogonal pairs that represent an extensible set of communication modules for synthetic biology 

(white box in Figure 4.8a). Significantly, five of these orthogonal receptors had ligand sensitivities 

better than 100 nM with no additional engineering required. Furthermore, the characteristic 

 

Figure 4.8 Fungal peptide-receptor pairs are exquisitely specific 

(a) Specificity of heterologous fungal receptors. Receptors were activated by 5 !M of synthetic peptides and the 

response was measured by fluorescence and normalized to the maximum signal for each receptor. The white 

box marks a set of six mutually orthogonal receptors. (b) Analysis of cross reacting receptors from S. cerevisiae 

and V. polyspora reveals that cross reacting receptors retain preference for their cognate ligand (bold colors). 
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sequence homology to orthogonality relationships observed suggest that receptors with sequence 

homologies lower than 30% to each other and ligands less than 40% homologous are likely to have 

orthogonal ligand specificities (unshaded regions in Figure 4.9). Additionally, even receptors with 

sequence homology of lower than 30% relative to the wild-type Ste2 receptor coupled robustly to the 

pheromone response in S. cerevisiae. Therefore, it is likely that many more mutually orthogonal 

receptor-peptide pairs can be found in the set of receptors described here. 

4.3 Discussion 

In summary, we catalogued a set of over 100 GPCR-peptide pairs. From a subset of 25 

receptors we found that 22 were functionally expressed in yeast. Further characterization of 10 of 

these receptors showed that 7 of them were orthogonal, with a subset of 6 being exquisitely 

orthogonal. This set already represent a drastic increase over available communication systems such 

as bacterial quorum sensing which to date have only yielded two fully orthogonal communication 

modules [6]. Importantly, the set of GPCR-peptide pairs directly characterized here only represents 

a small portion of the available pairs available in the larger genome mining dataset. Furthermore as 

more fungal genomes are sequenced, the set of potential GPCR-peptide pairs will continue to grow.  

While we have demonstrated that most of the fungal GPCRs can be functionally expressed in 

yeast, it still remains to be seen how many of the corresponding peptide ligands can be successfully 

secreted. We expect that simple replacement of the wild-type pheromone sequence in the 

MFalpha1/2 genes will result in secretion of a majority of peptides. In fact, other efforts to secrete 

heterologous protein from yeast have used the MFalpha1 prepro secretion signal successfully [56–

 

Figure 4.9 Sequence homology 

predicts response orthogonality 

Receptors with higher homology to 

each other tend to respond to the 

respective off-target ligands (left). 

However, some peptides can be 

highly homologous and still not 

lead to off-target activation (right). 

Grey regions mark % identity above 

which cross-activation is expected. 
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58]. Taken together, the results described here validate the idea that fungal mating GPCRs and their 

peptide ligands have the potential to become a flexible and extensible synthetic communication 

language.  
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5 RATIOMETRIC FLUORESCENT CELLTAGS 
5 FIGURE CHAPTER 
5.1 Introduction 

Methods to analyze synthetic multicellular systems have lagged behind our ability to build 

these systems [1,2]. Available analysis methods are limited in either information bandwidth or time 

resolution [3]. Therefore only simple multicellular systems have been successfully implemented and 

characterized. Methods with high information bandwidth such as next generation sequencing are 

severely limited in their ability to be applied with high time resolution. Therefore, while next 

generation sequencing can characterize a large number of co-existing cell types, only endpoint 

measurements are practical [4]. Conversely, methods with high time resolution such as microscopy 

are limited in their ability to track more than just a few constituent cell types [5,6]. In the mean time, 

theoretical models of multicellular systems have increased in sophistication and have generated 

tantalizing predictions of the potential capabilities of synthetic multicellular systems [7–9]. 

However, without better analysis methods, these models are difficult to validate and improve. An 

ideal method should enable straightforward interrogation of many constituent cell types (10+) in 

real time and through non-destructive means [1,7].  

In this chapter we develop a new class of fluorescent tags (CellTags) for tracking mixed cell 

population by flow cytometry. CellTags are based on precise ratios of two fluorescent proteins and 

enable the simultaneous characterization of up to 20 different subpopulations. Importantly, CellTags 

use only two fluorescent protein colors, reserving a third color for use as a reporter. We apply these 

tags for tracking mixed populations of competing cells and for multiplex profiling of yeast 

transcriptional programs. 

 

5.1.1 Current methods for characterizing multicellular systems 

Several methods have been developed to characterize natural multicellular systems, with each 

differing in terms of through put, mode of interrogation, and time resolution. While powerful for 

characterizing the heterogeneity of natural systems, none of these methods can be immediately used 

for the non-destructive characterization of mixed populations in real time with out the need of 
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external tagging reagents. Furthermore a majority of studies on synthetic multicellular systems 

continue to use labor intensity colony counting on selective media to characterize population 

structure . 

Methods based on next generation sequencing have incredibly high throughput and can be 

used to distinguish >104 cell types at once [4]. However, these methods suffer from low time 

resolution and the destructive nature of the interrogation. Quantitative PCR based methods can 

distinguish 10  cell types although this number depends on the ability to obtain robustly performing 

barcodes [10]. Quantitative PCR methods can be performed at higher time resolution, however they 

also suffer from the destructive nature of the interrogation.  

As an alternative to DNA-based methods, microscopy and flow cytometry use fluorescence 

based tags to distinguish cell types [6,11]. These methods have very high time resolution; with 

microscopy able to record continuously and flow cytometry have a time resolution of 5 minutes [12]. 

However, the throughput of cell types that can be distinguished is limited by the availability of 

fluorescent tags [13]. When interrogating natural systems, these methods rely on fluorescent 

antibody-based stains that can distinguish 10 or more cell types through the combinatorial staining 

signature of each cell type [14]. More recent approaches combine flow cytometry with mass 

spectrometry and use of antibodies labeled with heavy atoms to increase the number of resolvable 

cell types [15].  

However, these methods are hindered by the need to use expensive labeling reagents and 

lengthy labeling procedures. An alternative approach is to use expressed fluorescent proteins as 

tags, however currently available fluorescent proteins enable only the characterization of at most 4 

cell types when used individually [16,17]. In the field of neurobiology, cell-tagging systems based on 

mixtures of fluorescent proteins have elegantly overcome this challenge [18,19]. However, these 

systems rely on random generation of the mixtures and use three or more fluorescent proteins. 

Therefore, they are not directly portable for the deterministic characterization of synthetic 

multicellular systems. Nevertheless, these stoichiometry-based tags provide a good intellectual 

starting point for designing a tag system with high information bandwidth and time resolution, 

while maintaining an economy of parts and labor.  
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5.2 Results 

5.2.1 Lowering noise in fluorescent protein stoichiometry 

We envisioned that resolvable tags could be generated based on tightly controlled 

stoichiometries between two fluorescent proteins within the cell. Different relative stoichiometries of 

two proteins can be directly achieved by expressing these proteins from different strength promoters 

on a plasmid [20]. However, these systems suffer from high extrinsic and intrinsic noise and 

generally have wide distributions in the total protein levels as well as in the relative ratios between 

the two proteins [21,22]. Therefore, previous groups primarily rely simply on the presence or 

absence of a fluorescent protein to distinguish between mixed populations [12,16]. Thus, to make a 

large palette of ratiometric fluorescent tags we first sought to lower intrinsic noise by controlling 

relative protein levels with frame shift motifs and extrinsic noise by genome integration  

To reduce intrinsic noise at the transcriptional and translational level we were inspired by a 

recently developed set of small RNA motives that induce programed -1 ribosomal frameshifting 

[23]. When placed between two open reading frames, these frameshift (fs) motifs were shown to 

produce a range of ratios between the two protein products [23]. By expressing both fluorescent 

proteins from a single mRNA we can avoid intrinsic noise introduced by stochastic differences in the 

Figure 5.1  Mixed cell populations can be tracked using ratiometric fluorescent tags 
 

 

(a) Fluorescent proteins (colored circles) with fixed ratios provide a way to track individual cells within a 
mixed population. Only two fluorescent colors are required to track N different cells as long as the ratios can 
be resolved from each other. (b) Programmed -1 frame shifting (fs) sets a specific ratio of two gene products 
such as red (mCherry) and green (eGFP) fluorescent proteins. Weak frame shifting gives a small ratio of 
mCherry to eGFP and strong frame shifting gives a larger ratio. 
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upstream activation pathway, transcription factors levels, rate of transcription initiation and mRNA 

stability which affect proteins expressed from different promoters [24]. Additionally, since these fs 

motifs set the relative ratio co-translationally we also avoid intrinsic noise due to differences in the 

rate of translation initiation observed between proteins controlled by different ribosome entry sites 

[25]. Indeed, when we placed one of these fs motifs between two distinct fluorescent proteins, we 

observed reduced variation in the relative ratio between the two proteins relative to a construct 

expressing these proteins from different promoters (yellow line in Figure 5.2 a,b).  

 

Flow cytometry analysis of the distribution of single cell expression of two fluorescent proteins (eGFP, 

mCherry). Black contour lines mark 5% density levels. (a,d) FPs expressed from two separate promoters on 

the chromosome. (b,e) FPs expressed from one frameshift (fs) construct on a plasmid. (c,f) FPs expressed 

from one fs construct on the chromoseme. (a,b,c) raw fluorescence or (d,e,f) fluorescence normalized to side 

scatter. Colored lines mark relative scale of intrinsic (yellow) and extrinsic (blue) noise. 

Figure 5.2  Intrinsic and extrinsic noise in fluorescent protein expression in vivo. 
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To reduce extrinsic noise we designed the tag constructs to be readily integrated into the 

chromosome. Variation in the absolute protein levels between cells is caused primarily by 

differences in cell size and DNA copy number [22]. Variations in cell size can be easily corrected by 

normalizing to scatter parameters in flow cytometry that are known to correlate with cell size (blue 

lines, top vs. bottom rows in Figure 5.2 ) [12]. Variation in plasmid copy number is significant in 

yeast, even for centromeric plasmids that range from 

2 to 5 copies per cell [26]. Thus, integration of the 

constructs into the genome resulted in a drastic 

reduction in the distribution of absolute fluorescence 

compared to the same construct expressed from a 

centromeric plasmid (blue lines in Figure 5.2 e,f). 

5.2.2 Constructing a large palette of ratiometric 

fluorescent tags 

With a low noise design in hand, we next 

screened a library of fs motifs to find a mutually 

resolvable set. The fs motif library was inserted 

between a green fluorescent protein (eGFP) and a red 

fluorescent protein (mCherry) and screened for a 

range of mCherry : eGFP ratios. We found a set of 9 fs 

motifs that that lead to mCherry fluorescence 

spanning more than two orders of magnitude and 

gave relative mCherry : eGFP ratios from 0.3 to 100 

percent (Figure 5.3 b). We chose a subset of 5 fs motifs 

that gave baseline separation between populations 

both for total mCherry fluorescence and mCherry : 

eGFP ratios (Figure 5.3 c).  

We next designed a modular dual fs dual FP 

construct to generate a large combinatorial palette of 

 
Figure 5.3  A set of resolvable frame shift 

constructs 
(a) A set of dual FP constructs was made from 

a library of frameshift motifs (fs). (b) Flow 

cytometry distributions in absolute mCherry 

expression and ratios (%) relative to the 

upstream eGFP. (c) A subset is resolvable with 

baseline separation of the distributions. 
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ratiometric fluorescent tags (Figure 5.4 a). Using 5 fs motifs combined with two possible fs 

arrangements, this construct can generate 45 theoretically distinct FP stoichiometries. However, 

since the absolute level of the second open reading frame is a result of the multiplied frameshift 

efficiencies of both fs motifs that precede it, we expected that combinations of two low efficiency fs 

motifs would result in a level indistinguishable from background cell fluorescence. Even with this 

limitation, we constructed a total of 20 resolvable ratiometric fluorescent CellTags (Figure 5.4 b). 

Even closely spaced CellTags had distinct 95% density contour levels when plotted against their 

mCherry : eGFP ratios (Figure 5.4 c). We note that the remaining spectral space could accommodate 

an additional 7 tags. 

It is interesting to note that the fs motifs have unexpected effects beyond simple control of the 

downstream open reading frame. First, we observed that as the frameshift efficiency of the fs motif is 

decreased the absolute level of a FP preceding the fs motif also decreases (Figure 5.5 a). Nonsense 

mediated decay (NMD) of the mRNA is a likely cause, since constructs with lower efficiency fs 

motifs are expected to present a higher portion ribosomes at premature termination codons (PTCs) 

leading to NMD and an overall decrease in expression from the construct [27]. We also observed that 

an “early” fs motif close to the 5’ end of the mRNA leads to a reduction in expression relative to the 

expression level from the same fs motif placed “late” in the middle of the mRNA (Figure 5.5 b). This 

Figure 5.4  A large palette of fluorescent CellTags 
 

(a) Design of a dual frameshift (fs) dual fluorescent protein (FP) construct to make a pallet of CellTags, 

combining 5 fs motifs and 2 FPs. (b) Single cell fluorescence distributions of a mixture of populations marked 

with 20 CellTag. Contour lines mark 5% density levels. (c) Populations in grey box in panel b plotted by ratio of 

mCherry to eGFP fluorescence. Side scatter is used as a second dimension to calculate 5% contour lines. 
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effect is also likely caused by NMD. It is well established that PTCs close to the 5’ end of an mRNA 

cause more NMD than PTCs closer to the 3’ end of an mRNA [27]. CellTag constructs with early fs 

motifs have an early PTC that is expected to lower mRNA levels compared to constructs with late fs 

motifs leading to the effect observed. One possible confounding factor is that the expressed protein 

is different (eGFP fused after or before mCherry) and so may lead to different protein levels due to 

non-mRNA related effects such as protein stability. However, we observe a symmetry of effects 

regardless of which FP fluorescence is analyzed. This points to an mRNA-based mechanism. 

Overall, the combination of these effects leads to a puckered arrangement of the CellTags (Figure 5.4 

b). Importantly, these potential NMD effects do not detract from our ability to robustly distinguish 

the CellTags from each other. In fact, these NMD effect may be exploited to generate additional tags. 

For example, insertion of a leading “dummy” open reading frame into all the constructs with an 

early fs may generate intermediate protein stoichiometries that result in CellTags that could be 

accommodated into the currently available spectral space.  

An important feature of our system is that it is based on just two fluorescent proteins. 

Therefore, a third fluorescent protein can be used as an orthogonal reporter. To determine which 

third fluorescent protein would be most appropriate, we tested four additional FPs: mTagBFP2, 

mTurquoise2, mVenus and mKO2 [28–31]. Each additional FP was placed under control of a 

galactose-inducible promoter and expressed in conjunction with a CellTag with intermediate levels 

of eGFP and mCherry. By comparing the effect of the third FP on the CellTag between induced and 

Figure 5.5  Frameshift motifs have 

secondary effects on protein levels  

 

(a) Fluorescence distributions of eGFP 
show that frameshift motifs (fs) also 
affect the expression of the upstream 
open reading frame. Efficiency of fs is 
calculated as mCherry/eGFP signal. (b) 
Comparison of eGFP fluorescence 
controlled by late (purple) or early 
(black) fs motifs. The same fs motifs are 
used as in panel a, labeled by their 
efficiency. 
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uninduced conditions we found that mTagBFP2 (BFP) was 

an ideal third FP with no impact on the CellTag signal.  

We also note that our CellTag design could be easily 

extended in the future (Figure 5.6 ). In addition to its use as 

an orthogonal reporter, the third FP can instead be used to 

generate even more CellTags. By simply replacing either 

GFP or RFP in the validated dual fs dual FP constructs we 

could generate 29 additional tags for a total of 49 CellTags. 

Furthermore, by constructing triple fs triple FP constructs 

we could access the full three dimensional (RFP, GFP, BFP) 

space to generate at least 80 total CellTags. These triple FP 

tags could in turn be combined with recently reported infra 

red FPs that are expected to be orthogonal to the three FPs 

currently used in our constructs [32,33]. 

5.2.3 An automated gating method for high throughput analysis of tagged cells 

In order to take full advantage of the CellTag palette we designed an automated high 

throughput flow cytometry analysis pipeline. Flow cytometry data is commonly analyzed using 

programs such as FlowJo (Tree Star, http://www.flowjo.com). While they are powerful tools for 

discovering relationships in single cell data, they are cumbersome to apply for the analysis of 

multiplexed CellTag data since they require manual gating. Although we initially implemented 

fixed gates to deconvolute CellTag signals, we observed that the precise location of the CellTags 

shifted depending on growth conditions. These shifts were on the scale of the peak-to-peak distance 

between the CellTags and led to misaligned gates that often required manual adjustment. 

Importantly, these shifts always affected all the CellTags in concert leaving the relative spacing 

between CellTags preserved. We thus envisioned that peak-finding algorithms could be 

implemented to automatically and reproducible extract individual CellTag signals. 

We built this automated gating pipeline around openCyto, an R package that enables 

programmatic processing and analysis of flow cytometry data [34]. Although there are two- 

Figure 5.6  A triple FP tag 
 

The three fluorescent proteins (FPs) 

mCherry, eGFP and mTagBFP2 can be 

used to make triple fs triple FP tags. This 

expands the possible number of 

resolvable CellTags. 
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dimensional multi-cluster prediction algorithms that can locate the CellTags in a single calculation 

[35], we found that these were computationally costly when applied to a 20-member cluster. Instead, 

we developed a hierarchical subdivision routine based around fast one-dimensional peak finding 

algorithms (Figure 5.7  and Appendix). This approach takes advantage of the sharp peaks and 

valleys characteristic of the CellTags as well as the predictable superposition between CellTags 

along one-dimensional histograms. Importantly, this analysis pipeline makes no assumption about 

the absolute fluorescence values in the data and is therefore unaffected by differences due to 

instrument parameters. Instead, the subdivision routine relies on the known peak/valley order. 

Since not all experiments make use of the full set of 20 CellTags, we also implemented an 

automated gating template generator. In standard use, the openCyto tool requires an input “gating 

template” that is applied to gate the flow cytometry data [34]. To facilitate the use of our CellTag 

analysis pipeline, we included a subroutine to automatically generate the required gating template. 

This builds a gating template based on a user-provided list of the CellTags present in the samples.  

 

An automated gating routine was developed base on the openCyto R package. Starting from a “root” 

population, each CellTag (CT#) is isolated through hirerarchical subdivisions (left to right) based on simple 1- 

dimensional gating methods (arrows). Each final population is gated in two dimensions (pink, flowClust.2d) to 

capture only cells in the 80% quantile of the peak and excluding cells in peak overlap regions. 

Figure 5.7  Automated hierarchical gating of the CellTags 
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By using this automated analysis tool in R, we were able to process high throughput samples 

containing over 4000 data points (220 samples x 20 CellTags) in just a few minutes. The data is 

output as graphs for visual inspection or in CSV format for further analysis. 

5.2.4 Tracking mixed populations of competing cells 

To experimentally validate the CellTags, we applied them to characterize mixed populations 

of cells competing for a shared resource. We expected that the CellTags would enable direct 

interrogation of how such mixed communities of cells evolve over time and how they are affected by 

initial conditions. We chose a simple system based around strains with different growth rates in a 

selective media. When grown in a mixed culture these cells have different abilities to compete for the 

shared carbon source (glucose) with fast growing strains expected to dominate over slow growing 

strains. Such a predictable outcome allowed us to validate the robustness of the CellTags. 

We built this system of strains from the well-characterized yeast-three hybrid reporter strain, 

MaV203 [36]. This strain contains a URA3 reporter gene under the control of a Gal4-inducible 

(a) Individual growth curves of five strains of yeast with varying degrees of fitness in a 5-FOA selection. These 
strains were tagged and grown as a mixture in either (b) non-selective conditions or (c) in the 5-FOA selction. 

Population percent for each strain was determined by flow cytometry of the mixture and counting the number 

of cells in each CellTag cluster. (d) Titration of the two fittest strains relative to the total number of cells. 

Figure 5.8  CellTags can be used to track competing populations of cells 
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promoter. When grown in counter selective media containing 5-fluorouracil (5-FOA), the growth 

rate of the strain depends on the level of URA3 induction, with high induction leading to slow 

growing strains and vice versa. Thus we generated a set of strains with a variety of fitnesses by 

introducing constructs that produced different fixed levels of Gal4-mediated induction. These Gal4 

activation constructs have been previously described and consist of translationally set ratios of 

active Gal4 (with an activation domain) and inactive Gal4 (lacking an activation domain) [23]. As 

with our CellTags, these ratios are set with frameshift motifs. We initially built a set of five MaV203 

derived strains that were also tagged with the CellTags. We validated that these strains had different 

growth rates when grown in 5-FOA media, with two fast, one medium and two slow growing 

strains (Figure 5.8 a). 

We next used the CellTags to track the evolution of a mixture of these strains over time. As 

expected, when grown in non-selective media, we observed maintenance of even population 

proportions over the entire growth period of the culture (Figure 5.8 b). When grown in selective 

media, the fast growing strains dominated the community even at early time points. Even though 

when individually grown the two fast growing strains had nearly identical growth rates, in the 

mixed competitive environment we observe a significant differentiation between these strains 

(Figure 5.8 c). This is expected as the slight differences in fitness are compounded over time in 

exponentially growing cultures.  

To probe the characteristics of this system, we titrated the initial fraction of the two fast 

growing strains relative to the other three strains (Figure 5.8 d). Surprisingly even with a 1:20 

starting disadvantage the fast-growing strains dominated the culture by 24 hours. Even with a 1:100 

disadvantage the fastest growing strain still held the highest proportion of the population by 48 

hours. We observed domination by the medium growth strain only when it had at least a 500:1 

advantage over the fast growing cells. Even though the slow growing strains had measurable 

growth when grown individually, these still were not able to compete in our system at any dilution 

of the fast growing strains. 

These results demonstrate that the CellTag system developed here enables simple tracking of 

mixed yeast populations with high time resolution. The proportions of the individual 
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subpopulations can be extracted during different phases of growth and in different media growth 

conditions. While we only track 5 populations here, we used the most closely spaced CellTags so it 

will be possible to apply this system to more complex mixed population experiments. 

5.2.5 Multiplex profiling of yeast transcriptional programs 

By using a third fluorescent protein reporter, our CellTag system can also be applied to the 

multiplex profiling of transcriptional programs of the cell. A transcriptional response in the cell can 

be studied quantitatively by placing a fluorescent protein reporter under the control of a promoter 

responsive to a particular cellular program of interest [37]. We envisioned that we could multiplex 

this method by introducing multiple transcriptional reporters into the same strain and indexing 

them with CellTags. In this modality, each CellTag does not define a unique strain but rather serves 

to specify the identity of the reporter present in each particular subset of cells (Figure 5.9 a). A 

mixture of these tagged strains could then be used as a “reporter cocktail” to effectively report on 

multiple cellular responses simultaneously. 

To test this approach, we chose to build a reporter cocktail for several stress and metabolic 

responses in S. cerevisiae (Figure 5.9 b). We chose 18 well-established promoter reporters for general 

stress (HSP12), heat shock (SSA1), unfolded proteins (ERO1), osmotic stress (GPD1), mating 

pheromone (FUS1), oxidative stress (TRX2), DNA damage (RNR3), galactose (GAL1), glucose 

(HXT1), copper toxicity (CUP1), low zinc (ZRT1), low iron (FET3), arsenic toxicity (ARR3), amino 

acid starvation (HIS4), cell wall stress (PRM5), the nitrogen catabolite response (DAL5), calcineurin 

(a) Transcriptional reporters (promoter-BFP) can be assayed in multiplex by indexing the identity of the 
promoter with a CellTag. The mixture of reporters is co-cultured and co-treated across many conditions. The 
resulting BFP signals are deconvoluted by flow cytometry using the CellTags. (b) List of reporters used. 

Figure 5.9  CellTags can be used to assay transcription reporters in multiplex 

 



 

95 

signaling (PMC1) and hypoxia/cobalt (OLE1) [38–55]. We also included 2 promoters from 

housekeeping genes (ACT1, TEF1) as controls [56,57]. Each of these promoters was put into a BFP 

fluorescent reporter construct and indexed by transforming into a corresponding CellTag derivative 

of the laboratory strain FY251.  

We then mixed these reporters together to generate a reporter cocktail for characterizing the 

global stress and metabolic responses of yeast to a variety of conditions. We first tested whether our 

approach was reproducible by comparing the distributions from two samples of the reporter cocktail 

allowed to grow independently. While there was great variation in the shape of the distributions 

between different promoters, the distribution of each promoter across the two samples was nearly 

identical (Figure 5.10 a).  

Next, we tested galactose induction, a system commonly used to control engineered systems 

in yeast. We observed that while galactose induced its target promoter (GAL1) it also had 

widespread effects on multiple transcriptional programs. Some were expected such as a decrease 

signal from the glucose reporter (HXT1) [46], however others were unexpected such as significant 

signals from the general stress (HSP12), heat shock (SSA1), osmostress (GPD1) and amino acid 

starvation (HIS4) response (Figure 5.11 a). Such a drastic change in the global transcriptional 

program might be expected from an organism like yeast for which carbon metabolism is a key part 

of its life style. When this galactose induction is performed in the laboratory, the media is often 

supplemented with raffinose a preferred carbon source that does not cause repression of GAL genes 

[58]. When we exposed the reporter cocktail to a mixture of galactose and raffinose, we did in fact 

observe that most of the transcriptional response returned to baseline levels while the galactose 

targets (GAL1, HXT1) were modulated as expected (Figure 5.11 b). Though this system has 

substantial off-target effects it is still widely used due to the large fold induction observed. 

We next characterized the copper induction, another system commonly used to control 

engineered systems. When exposed to high copper concentrations our reporter cocktail showed the 

expected signal from the copper reporter (Figure 5.10 b) [47]. In contrast to galactose induction, our 

reporter cocktail revealed that this induction is quite specific showing almost no change for any of 

the other transcriptional programs. Surprisingly, we observed that exposure to hydrogen peroxide,  
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Figure 5.10  CellTags allow recording multiplex reporters robustly and specifically 

(a) Reporter mixture was incubated in media for 6 hours. Two replicates show nearly identical BFP 
distributions for each of the 20 reporters. (b) Reporter mixture was treated with water or 400 uM CuSO4 in 
media for 6 hours. The copper reporter (CUP1) shows a signal while the rest of the reporters remain at baseline. 
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Figure 5.11  Multiplex reporters reveal yeast activates stress responses when grown in galactose 

 

(a) Reporter mixture was incubated in 2% glucose or 2% galactose media for 6 hours. In galactose yeast 

upregulates pathways for general stress (HSP12), heat shock (SSA1), osmostress (GPD1) and amino acid 

starvation (HIS4). (b) All these stress responses return to baseline when yeast is grown in 2% galactose media 

supplemented with 2% raffinose. Galactose (GAL1) and low glucose (HXT1) responses are still observed. 
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also had very specific effect on the cells, leading only to a large increase in the redox stress reporter 

(TRX2) with some smaller increases noted in the low iron (FET3) and hypoxia/cobalt (OLE1) 

reporters. Our results with reporter cocktail suggest that the oxidative response in combination with 

low quantities of hydrogen peroxide could be used as an alternative low cost inducer [59]. 

When exposed to the alpha factor pheromone our reporter cocktail showed drastic changes 

across multiple transcriptional programs. This was expected from induction of the pheromone 

response pathway that causes cell cycle arrest, cell shape remodeling and other widespread 

phenotypic changes in preparation for mating [60]. In addition we also observed increases in BFP 

negative cells across all the reporter cell subsets. This is possibly due to the cell cycle arrest, which is 

expected to decrease the selective pressure for maintaining an auxotrophic growth marker. This 

phenomenon was also observed on exposure to 5-FOA that also caused growth arrest since all our 

cell subsets express URA3, which converts 5-FOA into a cytotoxic compound [61]. Therefore as 

expected from this effect we observed that 5-FOA also caused a large increase in the signal from the 

DNA damage reporter (RNR3).  

Finally, when exposed to FK506 an inhibitor of calcineurin signaling in yeast, we observed 

several of the expected downstream effects. The calcineurin/calcium reporter (PMC1) showed a 

decrease in signal [54]. Additionally FK506 is known to inhibit amino acid transport in yeast [62], 

and as an expected downstream effect of this activity we observed increased signal from the amino 

acid starvation reporter (HIS4). In addition to these established effects, we also observed a reduction 

in signal from the cell wall damage (PRM5) and pheromone (FUS1) reporters. FK506 and its effect on 

calcium flux has in fact been previously linked to both the cell wall damage response and the 

pheromone response pathways that in turn also modulate calcium levels [63].  

Taken together these results largely validate that the CellTag system can function as a robust 

and sensitive multiplex reporter for a wide array of cellular transcriptional programs. Furthermore, 

due to the ease of use, we were able to quickly recapitulate a diverse set of key results from yeast 

genetics in a single experiment. Importantly, our approach also captures the effects of a treatment 

across the entire panel of reporters and so it also reports on unexpected effects that may reveal 

previously unrecognized connections between transcriptional networks. 
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5.3 Discussion 

In summary, we developed a palette of ratiometric fluorescent tags that can be used to track 

mixed cultures of yeast with up two 20 subpopulations. Furthermore, we validated that a third 

fluorescent reporter can be tracked in each of these subpopulations. Importantly, these CellTags can 

be measured directly, are non-destructive and require minimal hands-on time. Therefore, they 

enable high throughput, time resolved experiments. Additionally, since the information is available 

immediately from a small sample of cells, the experimental parameters can be updated in real time. 

We envision that the CellTags could be combined with continuous flow cytometers and chemo stats 

to generate, manipulate and tune complex microbial communities. 

Furthermore, the underlying principle of translationally controlled protein ratios can be easily 

applied to generate equivalent CellTag systems for bacteria and mammalian cells. A range of 

bacterial CellTags can be immediately envisioned through the use of the well-characterized variants 

of the dnaX of RF2 frame shift motifs [64–66]. In mammalian cells, the initial reported library of 

frame shift motifs could be searched for variants with the appropriate properties. 

Applications of the CellTags beyond the ones tested explicitly in this chapter include: profiling 

of drug-receptor interactions, use to develop a sensor cocktail based on mix of multiple sensor cells 

and mapping cell-cell communication networks. 
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6 MATERIALS AND METHODS 
6 FIGURE CHAPTER 
6.1 Materials 

Chemical reagents were purchased from Sigma Aldrich (St. Louis, MO, USA). Synthetic 

mating peptides (≥ 95% purity) were ordered from GenScript  (Piscataway, NJ, USA) or Zymo 

Research (Irvine, CA, USA). Polymerases, restriction enzymes and Gibson assembly mix were 

obtained from New England Biolabs (NEB) (Ipswich, MA, USA). Media components were obtained 

from BD Bioscience (Franklin Lakes, NJ, USA) and Sigma Aldrich (St. Luis, MO, USA). Primers and 

synthetic DNA were purchased from Integrated DNA Technologies (IDT) (Coralville, Iowa, USA). 

Plasmids were cloned and amplified in either E. coli TG1 (Lucigen, Madison, WI, USA) or C3040 

(NEB). Human urine (Catalog No: IR100007P) and single donor human whole blood (Catalog No: 

IPLA-WB1)  were purchased from Innovative Research (Novi, MI, USA). Human serum, normal off-

the-clot (frozen) (Catalog No: HSER-2ML) was purchased from ZenBio (Research Triangle Park, NC, 

USA). Professional potting mix soil was purchased from Fafard (Agawam, MA, USA).  

6.2 General cloning methods in S. cerevisiae  

All strains were derived from parental Reiterative Recombination acceptor strain LW2591 

(MATa-inc genotype), the common laboratory strain FY251 (ATCC 96098) or the yeast two-hybrid 

reporter strain MaV203 [1,2]. Cloning of expression modules into the HO locus was performed using 

Reiterative Recombination [1]. Scarless gene deletions and some gene replacements were carried out 

using Delitto Perfetto [3]. The remainder of genomic manipulations was carried out by homology-

mediated recombination using PCR fragments [4]. Endogenous yeast promoters, terminators and 

open reading frames were obtained by PCR from strain FY251 or LW2591 [1]. Yeast transformations 

were carried out using the lithium acetate method [5]. All plasmids are derivatives of the pRS41x 

series of centromeric shuttle plasmids, cloned using standard molecular biology protocols and 

Gibson assembly [6]. See Appendix for list of sequences used. 
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6.3 Methods specific to Chapter 2: Yeast Sensors  

6.3.1 Cloning of lycopene biosensor strains 

The parent lycopene biosensor strain (Lyco-1; yMJ118) was constructed by cloning of lycopene 

pathway genes from Erwinia herbicola at reiterative recombination acceptor site in strain yMJ105. The 

CrtE, CrtB and CrtI ORFs were obtained from plasmid pSC203 [7] (kind gift from Gregory 

Stephanopolous). The CrtE (geranylgeranyl diphosphate synthase) and CrtB (phytoene synthase) 

ORFs were cloned into a constitutive expression module containing promoters from TEF1 and PGK1 

and the bidirectional terminator ADH1. The CrtI (lycopene synthase) ORF was cloned into a 

pheromone-inducible expression module containing FUS1 promoter the ACT1 terminator. The 

enhanced parent lycopene biosensor strain (Lyco-2; yMJ251) carried an additional copy of the 

pFUS1-CrtI-tACT1 expression module integrated at the MET15 locus and a pTDH3-FAD1-tCYC1 

overexpression module integrated at the reiterative recombination acceptor site. All fungal biosensor 

strains described in this study were derived from yMJ251 by replacement of the endogenous STE2 

gene with the appropriate fungal receptor expression module (Table S4) 

6.3.2 Characterization of the lycopene readout in liquid culture 

Induction of lycopene was assayed using strains yMJ118 or yMJ251 in 96-well microtiter plates 

cultured at 30 °C and 800 RPM. Cells were seeded at an OD600 of 2 in standard complete synthetic 

media (2% dextrose) supplemented with 5% yeast extract peptone dextrose media (YPD) and with 

the indicated concentration of synthetic peptide. All measurements were performed in triplicates. 

Cell density and media conditions were chosen to more closely mimic conditions relevant for the 

yeast-based paper assay (i.e. high cell density and non-selective complex media) while enabling 

more precise spectroscopic determination of lycopene content (i.e. higher bulk signal at early time 

points and low-absorbance media). Under these conditions the cultures grew to maximal OD600 of 6. 

Relative lycopene content was calculated by spectroscopy [8] using Eq. S5 (Appendix). Optical 

densities were measured with an Infinite M200 plate reader (Tecan). Lycopene values were 

normalized by the culture OD600 to give a measure of lycopene per cell. For each strain, maximum 

yield of lycopene per OD600 was determined as the largest observed value over a 72-hour period for 

each biological replicate. Half-max lycopene per cell for each biological replicate was calculated as 
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the average of the largest and smallest lycopene per OD600 value observed over a 72-hour period. 

Time to half-max lycopene per cell for each strain was determined by linear interpolation between 

the two time points with lycopene per OD600 values that spanned the calculated half-max lycopene 

per OD600 for each biological replicate. 

6.3.3 Characterization of biosensor strains in liquid culture (pH, temperature, and complex 

samples)  

P. brasiliensis or C. albicans biosensor strains (yMJ258 and yMJ260, respectively) were 

characterized in 96-well microtiter plates cultured at 800 RPM. Cells were seeded at an OD600 of 2 in 

standard complete synthetic media (2% dextrose) supplemented with 5% yeast extract peptone 

dextrose media (YPD) and the indicated concentration of synthetic peptide. A 2x stock of media and 

a 10x stock of the ligand were diluted to reach the appropriate 1x concentration. All measurements 

were performed in triplicates. Lycopene production was measured by absorbance as described 

above. For temperature assays, the microtiter plate shaker was pre-equalized to the appropriate 

temperature for 1 hour before the start of the assay. For pH assays, the pH of the media stock was 

titrated to the appropriate value with sodium hydroxide. For complex sample assays, urine and 

serum were centrifuged to remove particulates and used at a final concentration of 50% (in YPD).  

6.3.4 Preparation of culture supernatant from clinically isolated fungal pathogens.  

H. capsulatum - supernatants from strains Hc01 and Hc06 cultures were a generous gift from 

Dr. Chad Rappleye, Department of Microbiology, Ohio State University, Columbus, OH, USA. 

These strains are clinical isolates representing North America class 2 (NAm2) and North America 

class 1 (NAm1), respectively [9].  H. capsulatum strains were added to liquid SDA medium (40 g/L 

glucose, 10 g/L peptone) at 105 cells/mL and incubated for 10 days at 26 °C  without agitation to 

induce conversion to mycelia.  Conversion to mycelia was confirmed by phase-contrast 

microscopy.  Mycelia were then transferred to HMM media [10] and the cultures incubated at 26°C. 

After 3 weeks of growth, mycelia were separated from the supernatant by filtration through a 

cellulose filter (Whatman qualitative filter paper #2, 8 µm-diameter pores) and the filtrate 

subsequently filtered through a polyethersulfone membrane (0.45 µm diameter pores) to obtain the 
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final culture filtrate. The supernatants were lyophilized, resuspended in 0.1 volume of H2O (10x 

concentration) and kept at -20°C. 

Paracoccidioides - supernatants from P. brasiliensis Pb18 and P. lutzii Pb01 cultures were a 

generous gift from Dr. Fernando Rodrigues, Life and Health Sciences Research Institute (ICVS), 

University of Minho, Braga, Portugal. These strains are clinical isolates containing mating loci 

MAT1-2 and MAT1-1, respectively [11]. The mycelium form was grown at 24°C at 150 rpm in 

synthetic McVeigh Morton (MMvM) liquid medium [12]. Supernatants were collected by filtration 

10 days after the yeast-mycelium transition. The supernatants were lyophilized, resuspended in 0.1 

volume of  H2O (10x concentration) and kept at -20°C. 

C. albicans - Human isolate GC75 with MTLα/MTLα [13], was a generous gift from Dr. 

Richard Bennett, Department of Molecular Microbiology and Immunology, Brown University, 

Providence, RI, USA. A second human isolate of C. albicans was generously provided by Dr. Anne-

Catrin Uhlemann, Department of Medicine, Division of Infectious Diseases, Columbia University, 

New York, NY, USA. This isolate, referred to as ySB36, was genotyped by PCR for its mating loci 

using genomic DNA as template as described previously[14] and found to be heterozygous for its 

mating loci, MTLa/MTLα (for primers see Supplementary Table 4). Homozygous MTLα/MTLα 

derivatives of ySB36 were obtained by selection on sorbose as previously described[15]. In brief: 

ySB36 was cultured for 16 hours in YPD liquid media at 30°C, washed once with water and ~ 105 cells 

were plated on 2% sorbose media (0.67% yeast nitrogen base without amino acids, 2% sorbose). 

Colonies were visible after 4 days incubation at 30°C. Several colonies were re-streaked on 2% 

sorbose media, followed by re-streaking on YPD media and genotyping by colony PCR as above. 

One homozygous MTLα/MTLα isolate (ySB45) was used for supernatant 

preparation.Phenotypically switched opaque colonies of GC75 and ySB45 were isolated by Phloxine 

B staining as previously described [16]. In brief: A single colony of GC75 or ySB45 was incubated for 

24 h at 25°C in liquid YPD media without agitation. In total ~ 2x103 cells were plated on YPD agar 

supplemented with 5 #g/ml Phloxine B (Sigma Aldrich) and incubated at 25°C for 4 days. Opaque 

colonies stained pink on Phloxine B containing media. For supernatant preparation, a single opaque 

colony of C. albicans GC75 or ySB45 was cultured overnight in YPD media at 25°C, and used to 
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inoculate 50 ml of YPD liquid media. Cells were cultured for ~ 24 h at 25°C to a final OD600 of 9.5 

(~2.8x108 cells/ml) and 7.9 (~2.3x108 cells/ml), respectively. Cells were pelleted by centrifugation, the 

supernatant was reduced to dryness by vacuum concentration and resuspended in 0.1 volume H2O 

(10x concentration) and kept at -20°C. 

S. cerevisiae - samples were obtained from S. cerevisiae strain FY250 with MTLα [17] and W303-

1B with MTLα (ATCC 201238). Cells were cultured in 50 ml YPD media for 20 h at 30°C to a final 

OD600 of 9.8 (~2.9x108 cells/ml) and 8.5 (~2.5x108 cells/ml), respectively. Cells were pelleted by 

centrifugation, the supernatant of FY250 was reduced to dryness by vacuum concentration and 

resuspended in 0.1 volume H2O (10x concentration) and kept at -20°C. The supernatant of W303-1B 

was kept at 1x concentration at -20°C. 

6.3.5 Detection of mating peptides in supernatants of clinically isolated fungal strains.  

P. brasiliensis or C. albicans biosensor strains (yMJ258 and yMJ260, respectively) and a control 

S. cerevisiae strain (yMJ251) were used to test for the presence of the respective mating peptides in 

supernatants derived from clinically isolated pathogenic fungi or S. cerevisiae (supernatants 

preparation described above). Cells were seeded at an OD600 of 2 in the indicated supernatant mixed 

with standard complete synthetic media (2% dextrose) supplemented with 5% YPD in 96-well 

microtiter plates, cultured at 30°C and 800 RPM, and lycopene production was measured by 

absorbance as described above. A 2x stock of media and a 10x stock of the supernatant were used 

and diluted to reach the appropriate 1x concentration. The control supernatant for W303-1B was 

diluted to 50% in the final assay. Statistical significance of signal (i.e. biosensor strain treated with its 

cognate-supernatant) over noise (same biosensor strain treated with non-cognate supernatants) was 

determined by performing a paired parametric t-test in Prism (GraphPad). All measurements were 

performed in triplicates. 

6.3.6 Paper-based dipstick assay for detection of fungal peptides in complex samples.  

A simple, low-cost dipstick assay was designed with the biosensor strains spotted on paper as 

the only required active component. To assemble the dipstick, the biosensor strains were pre-

cultured in 50 mL of yeast extract peptone dextrose media (YPD) at 30 °C  at 300 RPM for 72 hours. 

The culture was diluted with water to an OD600 of 2.5 and vacuum filtered onto a glass fiber filter 
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paper (Thermo Scientific, DS0281-7500) using a plastic stencil to generate spots with a diameter of 5 

mm. An appropriate culture volume was used to give about 5x107 cells per spot. The filter paper 

with biosensor spots was cut into small squares (8x8 mm, 1 biosensor spot) and placed onto a strip 

of wicking paper made of a standard brown paper towel. Each paper-based dipstick assay contained 

two different spots - an indicator (biosensor) spot and a control spot composed of S. cerevisiae 

carrying off-target receptor as a negative control. 

To characterize its functionality, the dipstick was dipped into 1 mL of liquid sample and 

incubated at 30°C. The lycopene readout was inspected visually and quantitatively measured using 

time-lapse photography analyzed with ImageJ  (see next section) [18]. A 24-well plate was used to 

easily array several dipsticks in the field of view of the camera. For all assays, a 10x stock of media 

was used and diluted to reach the appropriate 1x concentration. All measurements were performed 

in three or more replicates. For YPD assays, the dipstick was dipped into YPD media supplemented 

with 1 µM of the indicated fungal pathogen peptide. For soil assays, 0.5 g of soil was pre-

conditioned with 2 nmol (in 200 µL of water) of the indicated fungal pathogen peptide and allowed 

to air dry for 1 hour. Then the dipstick was inserted into the soil added with 2 mL of YPD media to 

give a concentration of 1 µM of fungal peptide. For urine and serum assays, the samples were 

vortexed briefly to resuspend particles, supplemented with YPD media and diluted to give a 

concentration of 50%. For blood assays, the sample was supplemented with YPD media and diluted 

to give a final concentration of 2% blood. 

Additionally, we designed a small plastic holder to facilitate the ease of use of this dipstick 

assay. This plastic holder was 3D printed out of acrylonitrile butadiene styrene (ABS). We validated 

the holder it did not negatively impact the assay functionality. 

6.3.7 Determination of lycopene content by time-lapse photography 

To enable quantitative characterization of the paper-based dipstick assay we developed a 

method to measure lycopene production based on time-lapse photography and pixel color value 

analysis. Specifically, dipsticks dipped in samples and a tripod-mounted digital single-lens reflex 

camera (DSLR, Nikon D7000) were placed in a dark box kept at 30 °C. Flash photographs were taken 

automatically every 5 minutes. The resulting sequence of photographs was analyzed using ImageJ49. 
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For each time point, the average pixel color values were measured for each of the two dipstick spots 

using constant measurement areas. The apparent level of red color of each spot was first calculated 

by the following:  

 !!""!#$!"  =  ! − !+!!
!  (7) 

where R, G, B are the measured red, green and blue color values, respectively. Since the color 

of the biosensor spots ranges from off-white to red-orange the color values are such that R>G>B is 

always true. Therefore, Rapparent is a value that scores the level of red from 0 to 1. We then calculated the 

total level of positive lycopene readout produced by the dipstick by the following: 

 

 ∆ !"# !"#"$ =  !!"",!"#!$%&'( −  !!"",!"#$%&'" (8) 

where Rapp, indicator and Rapp, negative are the apparent red color values of the indicator biosensor spot and 

the negative control yeast spot, respectively given by Equation 7. Importantly, since the two yeast 

spots of the dipstick assay are always in close proximity to each other, the Δ Red Color value is not 

sensitive to variations in light levels and can be used to compare dipsticks placed anywhere in the 

field of view of the camera. 

Using these sequences of photographs we also generated time-lapse clips showing that the 

lycopene color change can be visualized by the naked eye. These clips are motion and exposure 

equalized to remove flicker between frames. 

6.3.8 Visibility threshold of lycopene readout.  

When measured spectroscopically (Appendix), we determined a visible threshold of 3.5 

lycopene per cell units (LPC) in liquid cultures. This threshold was determined by visually 

inspecting pellets of 5x107 cells.  

We also determined a visibility threshold for paper-based dipstick assay when measured by 

time-lapse photography and pixel color analysis (see previous section). This was done by visually 

inspecting time-lapse clips. The visible threshold for the dipstick assay was determined to be 4 Δ 

Red Color units.  
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6.4 Methods specific to Chapter 3: GPCR directed evolution 

6.4.1 Construction of directed evolution reporter strain 

A codon-optimized copy of the mCherry fluorescent reporter gene [19] was cloned with S. 

cerevisiae pheromone-inducible promoter FUS1 and ACT1 terminator. This expression module was 

integrated at the reiterative recombination acceptor site in strain yMJ105.  The pFUS1-HIS3-tHIS3 

construct was integrated into the FUS1 locus by selection on histidine minus media. The pFUS2-

URA3-tFUS2 was integrated into the FUS2 locus by selection on uracil minus media and subsequent 

selection on 5-FOA media. The STE2 gene was deleted to yield the fluorescent reporter strain 

yMJ194. 

6.4.2 GPCR expression plasmids and library construction 

Receptor variants were incorporated into expression modules containing the S. cerevisiae 

TDH3 promoter and STE2 terminator. These expression modules were cloned by gap repair into low 

copy plasmids derived from pRS414. For library generation, parental expression modules were 

amplified in an error-prone PCR with MnCl2 and then reamplified for transformation into strain 

yMJ194. Transformations were performed on a large scale of 109 cells and transformants were 

selected in batch liquid culture (1 L) allowing an enrichment of at least 10x over the initial cell 

density. Diversity and transformation yield of the library was analyzed by isolating individual 

transformants and comparing the number to the number of colonies on non selective plates. The 

receptor ORF was amplified by colony PCR and sequenced for 10 – 20 clones. A portion of the 

plasmid-enriched libraries were kept as glycerol stocks and combined with later transformations at a 

proportional diversity. 

6.4.3 Positive and negative growth selection 

Transformed libraries were selected in 1 to 10 mL volume cultures incubated at 30°C and 230 

RPM. Cells were seeded at an OD600 of 0.01 in standard synthetic dropout media (2% dextrose). For 

positive selections the media lacked histidine and was supplemented with 40 mM 3-AT and the 

indicated concentration of selection ligand. For negative selections the media was supplemented 

with 2.6 mM 5-FOA. The cultures were grown until substantial growth above baseline occurred 
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(ususually 2-3 days). The selected libraries were then plated to isolate individual clones for 

screening. 

6.4.4 Fluorescence-activated cell sorting (FACS) selection 

Transformed libraries were induced in 1 mL volume cultures with the indicated concentration 

of selection ligand and incubated for 12 – 18 hours at 30°C and 230 RPM. Clonal control cultures and 

uninduced samples were grown in parallel. Cells were seeded at an OD600 of 0.1 in standard synthetic 

dropout media (2% dextrose) selecting for the plasmid. Flow cytometry analysis of the control 

samples was used to determine gating thresholds to capture the indicated residual population 

percent. Induced libraries were diluted in PBS buffer and FACS was used to collect 105-106 cells 

falling within the target gates resulting in 0.1 to 1 mL samples. The sorted cells were pelleted at 3K 

RMP for 30 minutes, 90% of the supernatant was removed and replaced with 0.5 volume of fresh 

media. After substantial growth occurred (1-2 days) the cells were plated to isolate individual 

clones. 

6.4.5 High throughput screening 

Isolated colonies from the selections were inoculated into 96-square well plates prefilled with 

plasmid selective media. At this stage, control strains were also inoculated into reserved wells of the 

micro titer plate. These master clone plates were incubated at 30°C without shaking for 24 hours, 

then a portion was used for screening and the remaining cultures were supplemented with glycerol 

and stocked at -80°C directly in the 96-square well plates. 

384-well screening plates were pre-filled with 45uL of growth media using a robotic liquid 

handling system (BioMek FX, Beckman Coulter). 5 uL of induction ligands were transferred from 

384-well 10X ligand stock plates arrayed in the desired configuration of plus and minus ligand. 

Lgand stock plates were kept at -80°C and the prefilled screening plates were kept at 4°C until use 

(<24 hours). 

To initiate screening, the master clone plates were resuspended by shaking at 800 RPM for 5 

minutes. Then the clones were transferred from the 96-square well master clone plates to the 384-

well screening plates using a 384-pin replicator with 2uL transfer notches (VP384S2, V & P 
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Scientific). The screening plates were incubated at 30°C without shaking. Fluorescence and culture 

turbidity (OD600) were measured using an Infinite M200 plate reader (Tecan). 

6.4.6 Characterization of selected variants 

Clones chosen for further characterization were regrown from the stocked master clone plates 

and then assayed in 96-well microtiter plates cultured at 30°C and 800 RPM. Cells were seeded at an 

OD600 of 0.1 in standard synthetic dropout media (2% dextrose) lacking the appropriate selective 

component with the indicated concentration of ligand or water (control). Measurements were 

performed in duplicates using an Infinite M200 plate reader (Tecan). 

6.5 Methods specific to Chapter 4: Fungal genome mining  

6.5.1 Determination and analysis of fungal GPCRs sequences 

A database of fungal receptors was curated from the InterPro (IPR000366) [20] and PFAM 

(PF02116) families [21]. Sequence identifiers were standardized using the UniProt ID mapping tool 

(http://www.uniprot.org/uploadlists/). UniProt IDs were used to programmatically retrieve 

associated taxonomic information (Appendix). Taxonomic information was used to filter out non-

fungal sequences and fragments. Sequences homology relationships and percent identity was 

calculated by multiple sequence alignment using MUSCLE [22]. Sequence alignments were curated 

using the Jalview alignment editor [23]. Sequences were curated by trimming N- and C-terminal 

residues corresponding to those before tyrosine 17 and those after asparagine 301 in the S. cerevisiae 

Ste2 protein. The redundancy was reduced by removing sequences with greater than 98% identity. 

Sequences with large gaps (>20 residues) in highly conserved regions across the group were also 

removed. Phylogenetic and conservation analysis of the resulting receptor list was carried out with 

the Phylogeny.fr [24] and Skylign [25] tools. Positions of the extracellular loops, cytoplasmic loops 

and treansmembrane helices were predicted using the TMHMM2.0 tool [26]. See Appendix for list of 

receptors. 

6.5.2 Determination of fungal mating peptide sequences 

The corresponding peptide ligands were taken determined by using the method of Martin et 

al [27]. Using these pheromone genes as a starting point, additional putative pheromone genes were 

gathered by BLAST searches against the UniProt KB database. This process was repeated excluding 
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species for which the pheromone gene was already gathered. The resulting set of pheromone genes 

was manually curated to determine the presence of repeated peptide sequences and putative 

processing sites. Putative repeats and surrounding residues for each pheromone gene were aligned 

using MUSCLE to reveal core conserved regions and present aligned processing sites for manual 

determination of predicted secreted peptide sequences. The final set of secreted peptide sequences 

was realigned with MUSCLE to determine homology relationships and percent identity. See 

Appendix for list peptides. 

6.5.3 Construction of GPCR expression plasmids 

Mating receptor ORFs were synthesized as codon optimized genes for S. cerevisiae and others 

were cloned directly from the appropriate fungal genomic DNA (American Type Culture Collection) 

or plasmid pLPreB. All receptor ORFs were incorporated into expression modules containing the S. 

cerevisiae TDH3 promoter and STE2 terminator. For fluorescent assays using reporter strain yMJ183, 

receptor expression modules were cloned into low copy plasmids derived from pRS416. 

6.5.4 Functional characterization of GPCR-peptide pairs 

Fungal mating receptor Ste2 activity was measured in strain yMJ183 using the fluorescent 

reporter mCherry. The fluorescent reporter strains carrying the appropriate fungal Ste2 expression 

plasmid were assayed in 96-well microtiter plates cultured at 30°C and 800 RPM. Cells were seeded 

at an OD600 of 1 in standard synthetic dropout media (2% dextrose) lacking the appropriate selective 

component with either synthetic fungal mating peptide or water (control) as indicated. All 

measurements were performed in triplicates. mCherry fluorescence (excitation: 588nm, emission: 

620nm) and culture turbidity (OD600) were measured using an Infinite M200 plate reader (Tecan). For 

determination of EC50 and fold-activation values, the fluorescence response of strain yMJ183 carrying 

the appropriate Ste2 receptor was measured at different concentrations of the appropriate synthetic 

mating peptide. All raw fluorescence values were normalized by the OD600, plotted against the 

corresponding peptide concentration and the points fit with a four-parameter logistic curve using 

Prism (GraphPad). Fold-activation was calculated for each receptor strain as the maximum OD600-

normalized fluorescence of peptide-treated cells divided by the OD600 normalized fluorescence value 

of water-treated cells. For cross-reactivity measurements, receptor activation was individually 
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measured using each of the synthetic fungal mating peptides (5 µM). Percent receptor activation was 

calculated by setting the OD600-normalized fluorescence value of cognate-peptide activation to 100% 

and the value of water treated-cells to 0% (see Appendix). 

6.6 Methods specific to Chapter 5: CellTags  

6.6.1 Construction of CellTag integration constructs and tagged strains 

The integration construct was derived from the pNH600 series of vectors [28]. These vectors 

contain integration constructs with a multiple cloning site, an ADH1 terminator from Candida 

albicans, selectable auxotrophic markers from Candida glabrata and flanking 500 bp homology regions 

to the target locus (pNH605: LEU2). These integration constructs were cloned onto a pRS416 

backbone to allow comparison of plasmid-borne and genome-integrated constructs from the same 

vector.  

The CellTag constructs are expressed from a TDH3 promoter and contain fluorescent open 

reading frames spaced by a framsshift motif consisting of an intervening linker peptide (FLAG tag), 

a slippery site, a stop codon, and a pseudoknot region as described previously [29]. For frame shift 

motifs placed at the 5’ end of the open reading frame an alternate short leader peptide is used 

instead of the linker peptide. 

A library of framshift motifs was cloned into the integration vector by gap repair in yeast 

strain FY251. Individual clones were isolated by plating and the ratios of eGFP and mCherry 

fluorescence were assayed in 96-well plates using an Infinite M200 plate reader (Tecan). Variants 

representing a range of fluoresnce protein ratios were selected, the plasmids were extracted and 

amplified in E. coli, and the sequence of the frameshift motif was determined. These selected vectors 

were linearized and integrated into the LEU2 locus of a fresh FY251 strain. The resulting 

fluorescence stoichiometries were then characterized by flow cytometry. 

The expanded palette of CellTags was constructed by constructing all possible combinations 

of 5 frame shift motifs at early and late positions, with two fluorescent proteins. The resulting 

vectors were linearized and integrated individually into strain FY251. The resulting strains were 

characterized by flow cytometry and a well resolved set of 20 CellTags was chosen. 
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6.6.2 Characterization of CellTags by flow cytometry 

Cells were precultured overnight to high density in 96-well plates and then inoculated into 

fresh mediat (2% glucose) at an OD600 of 0.03 and allowed to grow for less than 12 hours at 30°C 

and 800 RPM. Samples were diluted with PBS and analyzed by flow cytometry. The resulting 

fluorescence values were normalized by dividing by the side scatter and scaled to match the initial 

value range. Individual CellTags were inspected manually using FlowJo and mixtures of CellTags 

were analyzed programmatically using the openCyto R package (see Appendix) [30]. 

6.6.3 Tagged MaV203 strains and Gal4 induction constructs 

The CellTag vectors were purified from E. coli and linearized as a mixture. This CellTag 

library was integrated into the LEU2 locus of the yeast two-hybrid reporter strain MaV203. The 

transformed library was plated to isolate individual clones, which were then characterized by flow 

cytometry to yield a set of tagged MaV203 strains. 

Well characterized frameshift motives were introduced between the Gal4 DNA binding 

domain and activation domain on a pRS414 plasmid as previously described [29]. This set of Gal4 

constructs up regulates the expression of genes under the control of the GAL1 promoter at a level set 

by the efficiency of the frame shift motif. These Gal4 induction construct were individually 

transformed into separated CellTag MaV203 strains, and the individual fitness in 5-FOA media was 

characterized in 96-well plates. 

These strains were grown as a mixture and inoculated into 5-FOA selective media at an 

OD600 of 0.01. The growth was measured by optical density measurements and the proportion of 

the subpopulations was analyzed by flow cytometry. 

6.6.4 Yeast stress reporter cocktail 

A set of native promoters was cloned into an mTagBFP2 expression construct on pRS416 

plasmids (see Appendix for promoter sequences). These reporter plasmids were transformed 

individually into separate CellTag FY251 strains. These strains were grown over night as a mixture 

and inoculated into 96-well plates at and OD600 of 0.1 in growth media supplemented with the 

indicated inducing agents. The mixed cultures were incubated for 4 – 6 hours at 30°C and 800 RPM 
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and subsequently analyzed by flow cytometry. The bulk signal from the mTagBFP2 reporters was 

subdivided programmatically using the CellTag populations for deconvolution (see Appendix). 
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7 APPENDIX 
7 FIGURE CHAPTER 
7.1 A high throughput method for quantifying pigment production in cells 

As described by Myers et al. [8] density of the cell suspension measured at a sensitive 

wavelength (i.e. corresponding to an absorption maxima of the pigment) is approximately 

composed of two additive components: scatter due to cells and absorbance due to the pigment. 

Therefore the pigment content in a cell suspension is proportional to the measured optical density 

corrected for the scattering component as follows: 

 !"#$%&' ∝ !"#!,! = !"! − !"!,!"#$ (1) 

where AbsS,P is the absorbance due to the pigment at the sensitive wavelength S, ODS is the 

measured optical density at the sensitive wavelength S, and ODS,scat is a calculated scattering 

component at the sensitive wavelength S. Since there was noticeable Raleigh-like wavelength 

dependence in the scatter of lycopene null strains we chose the following functional form to 

approximate scatter at a particular wavelength λ: 

 !"!,!"#$ = ! − !"#!" ! − !
!   (2) 

where A and B are constants that reflect changes in cell density and other sample 

irregularities. At each time point and for each sample, we can calculate the corresponding values of 

A and B by using the optical density values measured at two robust wavelengths (i.e. corresponding 

to wavelengths where scatter is the only or dominant component). Substituting these additional 

scatter-only optical density measurements into Eq. S2 and solving for A and B we get: 

 ! =  !! ! ! !
!!
!! ! !

 ,  where  ! = !"!"!!! !"!!  (3) 

 ! =  !"!! + !"#!" ! −  !!!   (4) 

where ODR1 and ODR2 are the measured optical densities at the robust wavelengths R1 and R2. 

Therefore, by setting λ = S and substituting Eq. S2 into Eq. S1, the relative content of lycopene in a 

cell suspension is given by: 
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 !"#$%&' ∝ !"#!,! = !"! + !"#!" ! − !
! − !   (5) 

To apply this method to lycopene in yeast, we determined the appropriate sensitive and 

robust wavelengths by obtaining the absorbance spectrum of lycopene directly in yeast cells. The 

spectrum was determined by subtracting the optical density spectrum of a lycopene null strain 

yMJ105 from that of a constitutive lycopene producing strain LW2671 (Extended Data Fig. 1b). This 

spectrum showed the characteristic profile of lycopene absorbance and had two major absorbance 

maxima at 485 nm and 520 nm (Extended Data Fig. 1c). Based on this spectrum, 520 nm was chosen 

as the sensitive wavelength (S = 520) since it is furthest away from other natural chromophores in 

yeast that absorb below 500 nm (e.g. flavins). 395 nm and 600 nm were chosen as the two robust 

wavelengths (R1 = 600 and R2 = 395) with low absorbance from lycopene and other natural 

chromophores. 

 

Three additional considerations were crucial to yield reproducible lycopene measurements in 

a microtiter plate format. First, all three optical density measurements (at 395 nm, 520 nm and 600 

nm) were taken at the same time for each well to reduce errors due to the settling of cells during the 

measurement of a whole microtiter plate. Second, assay wells were blanked using a reference well 

on the same microtiter plate containing identical media conditions as the assay wells but with no 

cells. This was particularly important when colored media was used. Finally, high cell densities 

(OD600 ≥ 2) were used to yield larger bulk lycopene signals even with the short path length of micro 

titer plates (~3 mm). Since these high optical density values were outside the linear range of the 

photodetector, all optical density values were first corrected using the following formula to give true 

optical density values: 

 !"!"#$ =  !∙!"!"#$
!"!"# ! !"!"#$

   (6) 

where ODmeas is the measured optical density, ODsat is the saturation value of the photodetector 

and k is the true optical density at which the detector reaches half saturation of the measured optical 

density. Appropriate values for ODsat and k were determined by plotting direct optical density 
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measurements of a range of cultures of several strains, against the true optical densities determined 

by dilution to the linear range. Optical densities were taken at 395 nm, 520 nm and 600 nm. All 

points were fit once with Equation 6 using Prism (GraphPad) to give ODsat = 3.57 and k = 3.16. These 

values were used to correct all optical density measurements in this study. 
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7.2 Fungal receptor and peptide sequences 

7.2.1 Fungal mating receptors in the Ste2 family 

 

Species name 
Receptor 
UniProt ID 

Species 
Taxonomic ID Family Order 

Acidomyces_richmondensis_BFW A0A150VDK8 766039 Dothideomycetes incertae 
sedis 

Dothideomycetes 
Acremonium_chrysogenum_strain_ATCC_11550 A0A086SWK6 857340 Hypocreales incertae sedis Hypocreales 
Ajellomyces_capsulatus_strain_G186AR C0NQ16 447093 Ajellomycetaceae Onygenales 
Ajellomyces_capsulatus_strain_H143 C6HLQ1 544712 Ajellomycetaceae Onygenales 
Ajellomyces_capsulatus_strain_NAm1 A6QUU6 339724 Ajellomycetaceae Onygenales 
Ajellomyces_dermatitidis_strain_SLH14081 A0A179UUK7 559298 Ajellomycetaceae Onygenales 
Alternaria_alternata A0A177DMP1 5599 Pleosporaceae Pleosporales 
Arthrobotrys_oligospora_strain_ATCC_24927 G1X8M4 756982 Orbiliaceae Orbiliales 
Arthroderma_benhamiae_strain_ATCC_MYA-4681 D4AND1 663331 Arthrodermataceae Onygenales 
Arthroderma_gypseum_strain_ATCC_MYA-4604 E5R1C9 535722 Arthrodermataceae Onygenales 
Arthroderma_otae_strain_ATCC_MYA-4605 C5FBT2 554155 Arthrodermataceae Onygenales 
Aschersonia_aleyrodis_RCEF_2490 A0A168AUR9 1081109 Clavicipitaceae Hypocreales 
Ascosphaera_apis_ARSEF_7405 A0A167VMP9 392613 Ascosphaeraceae Onygenales 
Ashbya_aceri R9XEV1 566037 Saccharomycetaceae Saccharomycetales 
Ashbya_gossypii_strain_ATCC_10895 Q752Q1 284811 Saccharomycetaceae Saccharomycetales 
Aspergillus_calidoustus A0A0U5CD47 454130 Aspergillaceae Eurotiales 
Aspergillus_clavatus_strain_ATCC_1007 A1CLD3 344612 Aspergillaceae Eurotiales 
Aspergillus_flavus_strain_ATCC_200026 B8NF30 332952 Aspergillaceae Eurotiales 
Aspergillus_fumigatus_Z5 A0A0J5PTK8 1437362 Aspergillaceae Eurotiales 
Aspergillus_kawachii_strain_NBRC_4308 G7XMN4 1033177 Aspergillaceae Eurotiales 
Aspergillus_lentulus A0A0S7DJF6 293939 Aspergillaceae Eurotiales 
Aspergillus_luchuensis A0A146FQ34 1069201 Aspergillaceae Eurotiales 
Aspergillus_niger A0A100IM28 5061 Aspergillaceae Eurotiales 
Aspergillus_niger_strain_CBS_51388 A2QU32 425011 Aspergillaceae Eurotiales 
Aspergillus_nomius_NRRL_13137 A0A0L1J1T8 1509407 Aspergillaceae Eurotiales 
Aspergillus_ochraceoroseus A0A0F8U8N5 138278 Aspergillaceae Eurotiales 
Aspergillus_oryzae_strain_3042 I8U4V3 1160506 Aspergillaceae Eurotiales 
Aspergillus_parasiticus_strain_ATCC_56775 A0A0F0I7R7 1403190 Aspergillaceae Eurotiales 
Aspergillus_rambellii A0A0F8U3T7 308745 Aspergillaceae Eurotiales 
Aspergillus_ruber_CBS_135680 A0A017S298 1388766 Aspergillaceae Eurotiales 
Aspergillus_terreus_strain_NIH_2624 Q0CS34 341663 Aspergillaceae Eurotiales 
Aspergillus_udagawae A0A0K8L9B1 91492 Aspergillaceae Eurotiales 
Aureobasidium_melanogenum_CBS_110374 A0A074VLE7 1043003 Aureobasidiaceae Dothideales 
Aureobasidium_namibiae_CBS_14797 A0A074XMD1 1043004 Aureobasidiaceae Dothideales 
Aureobasidium_pullulans_EXF-150 A0A074XT98 1043002 Aureobasidiaceae Dothideales 
Aureobasidium_subglaciale_EXF-2481 A0A074YTM0 1043005 Aureobasidiaceae Dothideales 
Baudoinia_compniacensis_strain_UAMH_10762 M2LX19 717646 Teratosphaeriaceae Capnodiales 
Beauveria_bassiana_D1-5 A0A0A2VS91 1245745 Cordycipitaceae Hypocreales 
Beauveria_bassiana_strain_ARSEF_2860 J5JMP7 655819 Cordycipitaceae Hypocreales 
Bionectria_ochroleuca A0A0B7KEZ6 29856 Bionectriaceae Hypocreales 
Bipolaris_oryzae_ATCC_44560 W6Z6J4 930090 Pleosporaceae Pleosporineae 
Bipolaris_victoriae_FI3 W7EF59 930091 Pleosporaceae Pleosporineae 
Bipolaris_zeicola_26-R-13 W6YNK7 930089 Pleosporaceae Pleosporineae 
Blastobotrys_adeninivorans A0A060T2K3 409370 Trichomonascaceae Saccharomycetales 
Blumeria_graminis_f_sp_hordei_strain_DH14 N1J7M2 546991 Erysiphaceae Erysiphales 
Botryosphaeria_parva_strain_UCR-NP2 R1GET9 1287680 Botryosphaeriaceae Botryosphaeriales 
Botryotinia_fuckeliana_strain_T4 G2YE05 999810 Sclerotiniaceae Helotiales 
Byssochlamys_spectabilis_strain_No_5 V5GA62 1356009 Thermoascaceae Eurotiales 
Candida_albicans_P75010 A0A0A6JZS6 1094994 Debaryomycetaceae Saccharomycetales 
Candida_albicans_strain_SC5314 Q59Q04 237561 Debaryomycetaceae Saccharomycetales 
Candida_albicans_strain_WO-1 C4YM83 294748 Debaryomycetaceae Saccharomycetales 
Candida_auris A0A0L0P8C9 498019 Metschnikowiaceae Saccharomycetales 
Candida_dubliniensis_strain_CD36 B9WM67 573826 Debaryomycetaceae Saccharomycetales 
Candida_glabrata A0A0W0DD93 5478 Saccharomycetaceae Saccharomycetales 
Candida_glabrata_strain_ATCC_2001 Q6FLY8 284593 Saccharomycetaceae Saccharomycetales 
Candida_maltosa_strain_Xu316 M3K0H9 1245528 Debaryomycetaceae Saccharomycetales 
Candida_orthopsilosis_strain_90-125 H8X566 1136231 Debaryomycetaceae Saccharomycetales 
Candida_parapsilosis_strain_CDC_317 G8BFM9 578454 Debaryomycetaceae Saccharomycetales 
Candida_tenuis_strain_ATCC_10573 G3BD19 590646 Debaryomycetaceae Saccharomycetales 
Candida_tropicalis_strain_ATCC_MYA-3404 C5M3P6 294747 Debaryomycetaceae Saccharomycetales 
Capronia_epimyces_CBS_60696 W9X9V4 1182542 Herpotrichiellaceae Chaetothyriales 
Capronia_semi-immersa A0A0D2CB06 5601 Herpotrichiellaceae Chaetothyriales 
Ceratocystis_fimbriata_f_sp_platani A0A0F8B357 88771 Ceratocystidaceae Microascales 
Chaetomium_globosum_strain_ATCC_6205 Q2GU85 306901 Chaetomiaceae Sordariales 
Chaetomium_thermophilum_strain_DSM_1495 G0S9F6 759272 Chaetomiaceae Sordariales 
Cladophialophora_bantiana_CBS_17352 A0A0D2H164 1442370 Herpotrichiellaceae Chaetothyriales 
Cladophialophora_carrionii_CBS_16054 V9D2C4 1279043 Herpotrichiellaceae Chaetothyriales 
Cladophialophora_psammophila_CBS_110553 W9VYJ4 1182543 Herpotrichiellaceae Chaetothyriales 
Cladophialophora_yegresii_CBS_114405 W9VGJ2 1182544 Herpotrichiellaceae Chaetothyriales 
Claviceps_purpurea_strain_201 M1WDR5 1111077 Clavicipitaceae Hypocreales 
Clavispora_lusitaniae_strain_ATCC_42720 C4Y9B0 306902 Metschnikowiaceae Saccharomycetales 
Coccidioides_posadasii_strain_C735 C5PF60 222929 Onygenales incertae sedis Onygenales 
Cochliobolus_heterostrophus_strain_C5 M2URM4 701091 Pleosporaceae Pleosporineae 
Cochliobolus_sativus_strain_ND90Pr M2QUN4 665912 Pleosporaceae Pleosporineae 
Colletotrichum_fioriniae_PJ7 A0A010Q0K6 1445577 Glomerellaceae Glomerellales 
Colletotrichum_gloeosporioides_strain_Cg-14 T0K3N5 1237896 Glomerellaceae Glomerellales 
Colletotrichum_gloeosporioides_strain_Nara_gc5 L2FCZ0 1213859 Glomerellaceae Glomerellales 
Coniosporium_apollinis_strain_CBS_100218 R7YPZ5 1168221 Herpotrichiellaceae Chaetothyriales 
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Cordyceps_brongniartii_RCEF_3172 A0A167IHY8 1081107 Cordycipitaceae Hypocreales 
Cordyceps_confragosa A0A179ILG3 1105325 Cordycipitaceae Hypocreales 
Cordyceps_confragosa_RCEF_1005 A0A168IZL0 1081108 Cordycipitaceae Hypocreales 
Cordyceps_militaris_strain_CM01 G3JKW0 983644 Cordycipitaceae Hypocreales 
Cyberlindnera_fabianii A0A061AJE3 36022 Phaffomycetaceae Saccharomycetales 
Cyberlindnera_jadinii A0A0H5BZE0 4903 Phaffomycetaceae Saccharomycetales 
Cyphellophora_europaea_CBS_101466 W2S4E2 1220924 Cyphellophoraceae Chaetothyriales 
Debaryomyces_fabryi A0A0V1PSR1 58627 Debaryomycetaceae Saccharomycetales 
Debaryomyces_hansenii_strain_ATCC_36239 Q6BYC0 284592 Debaryomycetaceae Saccharomycetales 
Diaporthe_ampelina A0A0G2FGT3 1214573 Diaporthaceae Diaporthales 
Didymella_rabiei A0A163BXA9 5454 Didymellaceae Pleosporineae 
Diplodia_seriata A0A0G2E461 420778 Botryosphaeriaceae Botryosphaeriales 
Dothistroma_septosporum_strain_NZE10 N1Q4Q2 675120 Mycosphaerellaceae Capnodiales 
Drechmeria_coniospora A0A151GM17 98403 Ophiocordycipitaceae Hypocreales 
Drechslerella_stenobrocha_248 W7I376 1043628 Orbiliaceae Orbiliales 
Emericella_nidulans Q7SI72 162425 Aspergillaceae Eurotiales 
Emmonsia_crescens_UAMH_3008 A0A0G2J9S8 1247875 Ajellomycetaceae Onygenales 
Emmonsia_parva_UAMH_139 A0A0H1BAF5 1246674 Ajellomycetaceae Onygenales 
Endocarpon_pusillum_strain_Z07020 U1HY26 1263415 Verrucariaceae Verrucariales 
Eremothecium_cymbalariae G0XP51 45285 Saccharomycetaceae Saccharomycetales 
Eremothecium_cymbalariae_strain_CBS_27075 G8JMH5 931890 Saccharomycetaceae Saccharomycetales 
Eremothecium_sinecaudum A0A0X8HRQ0 45286 Saccharomycetaceae Saccharomycetales 
Escovopsis_weberi A0A0M8MV01 150374 Hypocreaceae Hypocreales 
Eutypa_lata_strain_UCR-EL1 M7T4F8 1287681 Diatrypaceae Xylariales 
Exophiala_aquamarina_CBS_119918 A0A072PDE7 1182545 Herpotrichiellaceae Chaetothyriales 
Exophiala_dermatitidis_strain_ATCC_34100 H6BSM7 858893 Herpotrichiellaceae Chaetothyriales 
Exophiala_mesophila A0A0D1X796 212818 Herpotrichiellaceae Chaetothyriales 
Exophiala_oligosperma A0A0D2DBN2 215243 Herpotrichiellaceae Chaetothyriales 
Exophiala_sideris A0A0D1YM75 1016849 Herpotrichiellaceae Chaetothyriales 
Exophiala_spinifera A0A0D1YGB1 91928 Herpotrichiellaceae Chaetothyriales 
Exophiala_xenobiotica A0A0D2C0F9 348802 Herpotrichiellaceae Chaetothyriales 
Fonsecaea_erecta A0A178Z6Z0 1367422 Herpotrichiellaceae Chaetothyriales 
Fonsecaea_monophora A0A177F142 254056 Herpotrichiellaceae Chaetothyriales 
Fonsecaea_multimorphosa A0A178BUX8 979981 Herpotrichiellaceae Chaetothyriales 
Fonsecaea_multimorphosa_CBS_102226 A0A0D2JMN8 1442371 Herpotrichiellaceae Chaetothyriales 
Fonsecaea_nubica A0A178DBT6 856822 Herpotrichiellaceae Chaetothyriales 
Fonsecaea_pedrosoi_CBS_27137 A0A0D2EJA9 1442368 Herpotrichiellaceae Chaetothyriales 
Fusarium_langsethiae A0A0N0DGM2 179993 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_cubense_strain_race_1 N4UWI3 1229664 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_cubense_strain_race_4 N1RVA8 1229665 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_cubense_tropical_race_4
_54006 

X0KQL5 1089451 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_lycopersici_strain_4287 A0A0D2Y2Y4 426428 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_melonis_26406 X0AAF8 1089452 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_pisi_HDV247 W9PM09 1080344 Nectriaceae Hypocreales 
Fusarium_oxysporum_f_sp_raphani_54005 X0CCQ3 1089458 Nectriaceae Hypocreales 
Fusarium_oxysporum_Fo47 W9K2M0 660027 Nectriaceae Hypocreales 
Fusarium_oxysporum_FOSC_3-a W9IAH9 909455 Nectriaceae Hypocreales 
Fusarium_oxysporum_strain_Fo5176 F9F4J6 660025 Nectriaceae Hypocreales 
Fusarium_pseudograminearum_strain_CS3096 K3V2E5 1028729 Nectriaceae Hypocreales 
Gaeumannomyces_graminis_var_tritici_strain_R3-
111a-1 

J3P889 644352 Magnaporthaceae Magnaporthales 
Geotrichum_candidum A0A0J9X829 1173061 Dipodascaceae Saccharomycetales 
Gibberella_fujikuroi A0A0J0BY83 5127 Nectriaceae Hypocreales 
Gibberella_fujikuroi_strain_CBS_19534 S0E2K7 1279085 Nectriaceae Hypocreales 
Gibberella_moniliformis_strain_M3125 W7MQM8 334819 Nectriaceae Hypocreales 
Gibberella_zeae_strain_PH-1 I1RG07 229533 Nectriaceae Hypocreales 
Glarea_lozoyensis_strain_ATCC_20868 S3DBU4 1116229 Helotiaceae Helotiales 
Grosmannia_clavigera_strain_kw1407 F0XDY3 655863 Ophiostomataceae Ophiostomatales 
Hanseniaspora_uvarum_DSM_2768 A0A0F4XDF5 1246595 Saccharomycodaceae Saccharomycetales 
Hypocrea_atroviridis_strain_ATCC_20476 G9NY94 452589 Hypocreaceae Hypocreales 
Hypocrea_jecorina G9IJ58 51453 Hypocreaceae Hypocreales 
Hypocrea_jecorina_strain_ATCC_56765 A0A024S6P5 1344414 Hypocreaceae Hypocreales 
Hypocrea_jecorina_strain_QM6a G0RMK2 431241 Hypocreaceae Hypocreales 
Hypocrea_virens_strain_Gv29-8 G9MQ44 413071 Hypocreaceae Hypocreales 
Hypocrella_siamensis A0A172Q4C2 696354 Clavicipitaceae Hypocreales 
Isaria_fumosorosea_ARSEF_2679 A0A167XIR1 1081104 Cordycipitaceae Hypocreales 
Kazachstania_africana_strain_ATCC_22294 H2ASI7 1071382 Saccharomycetaceae Saccharomycetales 
Kazachstania_naganishii_strain_ATCC_MYA-139 J7RM21 1071383 Saccharomycetaceae Saccharomycetales 
Kluyveromyces_dobzhanskii_CBS_2104 A0A0A8LC24 1427455 Saccharomycetaceae Saccharomycetales 
Kluyveromyces_lactis_strain_ATCC_8585 Q6CIP0 284590 Saccharomycetaceae Saccharomycetales 
Kluyveromyces_marxianus_DMKU3-1042 W0TFI2 1003335 Saccharomycetaceae Saccharomycetales 
Komagataella_pastoris_strain_GS115 C4R6X5 644223 Phaffomycetaceae Saccharomycetales 
Kuraishia_capsulata_CBS_1993 W6MJ91 1382522 Saccharomycetales incertae 

sedis 
Saccharomycetales 

Lachancea_kluyveri P12384 4934 Saccharomycetaceae Saccharomycetales 
Lachancea_lanzarotensis A0A0C7N6G7 1245769 Saccharomycetaceae Saccharomycetales 
Lachancea_quebecensis A0A0P1KZX7 1654605 Saccharomycetaceae Saccharomycetales 
Lachancea_thermotolerans_strain_ATCC_56472 C5DBK0 559295 Saccharomycetaceae Saccharomycetales 
Leptosphaeria_maculans_strain_JN3 E5A529 985895 Leptosphaeria Pleosporineae 
Lodderomyces_elongisporus_strain_ATCC_11503 A5E1D9 379508 Debaryomycetaceae Saccharomycetales 
Macrophomina_phaseolina_strain_MS6 K2S5Z6 1126212 Botryosphaeriaceae Botryosphaeriales 
Madurella_mycetomatis A0A175W3I2 100816 mitosporic Sordariales Sordariales 
Magnaporthe_oryzae_strain_70-15 G4MR89 242507 Magnaporthaceae Magnaporthales 
Magnaporthe_oryzae_strain_Y34 L7HVB4 1143189 Magnaporthaceae Magnaporthales 
Magnaporthiopsis_poae_strain_ATCC_64411 A0A0C4DS73 644358 Magnaporthaceae Magnaporthales 
Marssonina_brunnea_f_sp_multigermtubi_strain_MB
_m1 

K1X8D8 1072389 Dermateaceae Helotiales 
Metarhizium_acridum_strain_CQMa_102 E9DXW9 655827 Clavicipitaceae Hypocreales 
Metarhizium_album_ARSEF_1941 A0A0B2WQA5 1081103 Clavicipitaceae Hypocreales 
Metarhizium_anisopliae_ARSEF_549 A0A0B4EKU5 1276135 Clavicipitaceae Hypocreales 
Metarhizium_anisopliae_BRIP_53293 A0A0D9NQS0 1291518 Clavicipitaceae Hypocreales 
Metarhizium_brunneum_ARSEF_3297 A0A0B4FKS3 1276141 Clavicipitaceae Hypocreales 
Metarhizium_guizhouense_ARSEF_977 A0A0B4H8M1 1276136 Clavicipitaceae Hypocreales 
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Metarhizium_majus_ARSEF_297 A0A0B4HXD6 1276143 Clavicipitaceae Hypocreales 
Metarhizium_rileyi_RCEF_4871 A0A167AMF2 1081105 Clavicipitaceae Hypocreales 
Metarhizium_robertsii A0A014PAK1 568076 Clavicipitaceae Hypocreales 
Metarhizium_robertsii_strain_ARSEF_23 E9EMS3 655844 Clavicipitaceae Hypocreales 
Meyerozyma_guilliermondii_strain_ATCC_6260 A5DFC0 294746 Debaryomycetaceae Saccharomycetales 
Naumovozyma_castellii_strain_ATCC_76901 G0VD13 1064592 Saccharomycetaceae Saccharomycetales 
Naumovozyma_dairenensis_strain_ATCC_10597 G0WE84 1071378 Saccharomycetaceae Saccharomycetales 
Nectria_haematococca_strain_77-13-4 C7ZA34 660122 Nectriaceae Hypocreales 
Neonectria_ditissima A0A0P7AWF2 78410 Nectriaceae Hypocreales 
Neosartorya_fischeri_strain_ATCC_1020 A1D5Z2 331117 Aspergillaceae Eurotiales 
Neosartorya_fumigata_strain_CEA10 B0XZZ4 451804 Aspergillaceae Eurotiales 
Neurospora_africana K7ZVW9 5143 Sordariaceae Sordariales 
Neurospora_calospora K7ZWV9 165411 Sordariaceae Sordariales 
Neurospora_cerealis K7ZW01 29881 Sordariaceae Sordariales 
Neurospora_crassa D2N2E0 5141 Sordariaceae Sordariales 
Neurospora_crassa_strain_ATCC_24698 Q1K6I3 367110 Sordariaceae Sordariales 
Neurospora_galapagosensis K7ZWN2 88769 Sordariaceae Sordariales 
Neurospora_hapsidophora K7ZW48 176947 Sordariaceae Sordariales 
Neurospora_intermedia D2N2E7 5142 Sordariaceae Sordariales 
Neurospora_kobi K7ZVX0 241062 Sordariaceae Sordariales 
Neurospora_lineolata K7ZWW0 88717 Sordariaceae Sordariales 
Neurospora_novoguineensis K7ZW03 241060 Sordariaceae Sordariales 
Neurospora_pannonica K7ZWN3 83678 Sordariaceae Sordariales 
Neurospora_retispora K7ZW49 241054 Sordariaceae Sordariales 
Neurospora_santi-florii K7ZVX1 176682 Sordariaceae Sordariales 
Neurospora_sitophila D2N2F3 40126 Sordariaceae Sordariales 
Neurospora_sp_FGSC_8780 D2N2G4 482004 Sordariaceae Sordariales 
Neurospora_sp_FGSC_8815 D2N2F6 228687 Sordariaceae Sordariales 
Neurospora_sp_FGSC_8817 D2N2F7 481997 Sordariaceae Sordariales 
Neurospora_sp_FGSC_8827 D2N2G3 482003 Sordariaceae Sordariales 
Neurospora_sp_FGSC_8842 D2N2G2 482002 Sordariaceae Sordariales 
Neurospora_sp_FGSC_8853 D2N2F9 481999 Sordariaceae Sordariales 
Neurospora_sublineolata K7ZWW1 165293 Sordariaceae Sordariales 
Neurospora_terricola K7ZWN4 88718 Sordariaceae Sordariales 
Neurospora_tetrasperma D2N2F4 40127 Sordariaceae Sordariales 
Neurospora_uniporata K7ZW50 241063 Sordariaceae Sordariales 
Ogataea_parapolymorpha_strain_ATCC_26012 W1QE65 871575 Pichiaceae Saccharomycetales 
Oidiodendron_maius_Zn A0A0C3HTW3 913774 mitosporic Myxotrichaceae Leotiomycetes incertae sedis 
Ophiocordyceps_sinensis_strain_Co18 T5A148 911162 Ophiocordycipitaceae Hypocreales 
Ophiocordyceps_unilateralis A0A0L9SIN1 268505 Ophiocordycipitaceae Hypocreales 
Ophiostoma_piceae_strain_UAMH_11346 S3C5N9 1262450 Ophiostomataceae Ophiostomatales 
Paracoccidioides_brasiliensis_strain_Pb03 C0SDN9 482561 Onygenales incertae sedis Onygenales 
Paracoccidioides_brasiliensis_strain_Pb18 C1GFU7 502780 Onygenales incertae sedis Onygenales 
Paracoccidioides_lutzii_strain_ATCC_MYA-826 C1H517 502779 Onygenales incertae sedis Onygenales 
Paraphaeosphaeria_sporulosa A0A177CPX6 1460663 Didymosphaeriaceae Massarineae 
Penicillium_brasilianum A0A0F7TPZ2 104259 Aspergillaceae Eurotiales 
Penicillium_camemberti_FM_013 A0A0G4P840 1429867 Aspergillaceae Eurotiales 
Penicillium_chrysogenum B1GVB8 5076 Aspergillaceae Eurotiales 
Penicillium_digitatum_strain_PHI26 K9G3Z6 1170229 Aspergillaceae Eurotiales 
Penicillium_expansum A0A0A2K1S7 27334 Aspergillaceae Eurotiales 
Penicillium_freii A0A101MNI9 48697 Aspergillaceae Eurotiales 
Penicillium_italicum A0A0A2LAS4 40296 Aspergillaceae Eurotiales 
Penicillium_nordicum A0A0M8PFN9 229535 Aspergillaceae Eurotiales 
Penicillium_oxalicum_strain_114-2 S7Z940 933388 Aspergillaceae Eurotiales 
Penicillium_patulum A0A135LCC8 5078 Aspergillaceae Eurotiales 
Penicillium_roqueforti_strain_FM164 W6PVN7 1365484 Aspergillaceae Eurotiales 
Pestalotiopsis_fici_W106-1 W3XDQ7 1229662 Sporocadaceae Xylariales 
Phaeomoniella_chlamydospora A0A0G2HF89 158046 Phaeomoniellales incertae 

sedis 
Phaeomoniellales 

Phaeosphaeria_nodorum_strain_SN15 Q0UCT8 321614 Phaeosphaeriaceae Pleosporineae 
Pichia_kudriavzevii A0A099NXR5 4909 Pichiaceae Saccharomycetales 
Pichia_sorbitophila_strain_ATCC_MYA-4447 G8YMJ7 559304 Debaryomycetaceae Saccharomycetales 
Pichia_sorbitophila_strain_ATCC_MYA-4447 G8YMZ0 559304 Debaryomycetaceae Saccharomycetales 
Pneumocystis_carinii A2TJ26 4754 Pneumocystidaceae Pneumocystidomycetes 
Pneumocystis_carinii_B80 A0A0W4ZHE5 1408658 Pneumocystidaceae Pneumocystidomycetes 
Pneumocystis_jiroveci_strain_SE8 L0PDU6 1209962 Pneumocystidaceae Pneumocystidomycetes 
Pneumocystis_jirovecii_RU7 A0A0W4ZVY3 1408657 Pneumocystidaceae Pneumocystidomycetes 
Pneumocystis_murina_strain_B123 M7P3B3 1069680 Pneumocystidaceae Pneumocystidomycetes 
Pochonia_chlamydosporia_170 A0A179FF27 1380566 Clavicipitaceae Hypocreales 
Podospora_anserina_strain_S B2ADL1 515849 Lasiosphaeriaceae Sordariales 
Pseudocercospora_fijiensis_strain_CIRAD86 N1Q996 383855 Mycosphaerellaceae Capnodiales 
Pseudogymnoascus_destructans A0A177ADM2 655981 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_destructans_strain_ATCC_MYA
-4855 

L8G637 658429 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-103 A0A094E1R1 1420912 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-3557 A0A093XIK8 1437433 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-3775 A0A094AA23 1420901 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-3808 A0A093YGI7 1391699 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4246 A0A093Z5B5 1420902 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4281_FW-2241 A0A094CRD8 1420906 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4513_FW-928 A0A094BQ07 1420907 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4515_FW-2607 A0A094FEM7 1420909 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4516_FW-969 A0A094CTP6 1420910 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4517_FW-2822 A0A094FK10 1420911 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4518_FW-2643 A0A094ET92 1420913 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4519_FW-2642 A0A094K4N9 1420914 Pseudeurotiaceae Leotiomycetes incertae sedis 
Pseudogymnoascus_sp_VKM_F-4520_FW-2644 A0A094JHH7 1420915 Pseudeurotiaceae Leotiomycetes incertae sedis 
Purpureocillium_lilacinum A0A179GB12 33203 Ophiocordycipitaceae Hypocreales 
Pyrenochaeta_sp_DS3sAY3a A0A178DZ21 765867 Cucurbitariaceae Pleosporineae 
Pyrenophora_teres_f_teres_strain_0-1 E3RI43 861557 Pleosporaceae Pleosporineae 
Pyrenophora_tritici-repentis_strain_Pt-1C-BFP B2WIP5 426418 Pleosporaceae Pleosporineae 
Pyronema_omphalodes_strain_CBS_100304 U4LPJ5 1076935 Pyronemataceae Pezizales 
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Rasamsonia_emersonii_CBS_39364 A0A0F4YHC8 1408163 Trichocomaceae Eurotiales 
Rhinocladiella_mackenziei_CBS_65093 A0A0D2H556 1442369 Herpotrichiellaceae Chaetothyriales 
Saccharomyces_arboricola_strain_H-6 J8Q5L6 1160507 Saccharomycetaceae Saccharomycetales 
Saccharomyces_bayanus Q8J1R6 4931 Saccharomycetaceae Saccharomycetales 
Saccharomyces_cerevisiae_strain_ATCC_204508 D6VTK4 559292 Saccharomycetaceae Saccharomycetales 
Saccharomyces_cerevisiae_strain_AWRI796 E7KC22 764097 Saccharomycetaceae Saccharomycetales 
Saccharomyces_cerevisiae_strain_FostersO E7NH73 764101 Saccharomycetaceae Saccharomycetales 
Saccharomyces_cerevisiae_strain_RM11-1a B3LUI5 285006 Saccharomycetaceae Saccharomycetales 
Saccharomyces_cerevisiae_strain_YJM789 A7A213 307796 Saccharomycetaceae Saccharomycetales 
Saccharomyces_cerevisiae_x_Saccharomyces_kudri
avzevii_strain_VIN7 

H0GU93 1095631 Saccharomycetaceae Saccharomycetales 
Saccharomyces_paradoxus Q8J080 27291 Saccharomycetaceae Saccharomycetales 
Saccharomyces_pastorianus Q8J1Q4 27292 Saccharomycetaceae Saccharomycetales 
Saccharomyces_sp_'boulardii' A0A0L8VRV2 252598 Saccharomycetaceae Saccharomycetales 
Saitoella_complicata_NRRL_Y-17804 A0A0E9NKH5 698492 Protomycetaceae Taphrinales 
Scedosporium_apiospermum A0A084FZY6 563466 Microascaceae Microascales 
Scheffersomyces_stipitis_strain_ATCC_58785 A3LXU7 322104 Debaryomycetaceae Saccharomycetales 
Schizosaccharomyces_cryophilus_strain_OY26 S9VVX5 653667 Schizosaccharomycetaceae Schizosaccharomycetales 
Schizosaccharomyces_japonicus_strain_yFS275 B6JZE2 402676 Schizosaccharomycetaceae Schizosaccharomycetales 
Schizosaccharomyces_octosporus_strain_yFS286 S9PVP9 483514 Schizosaccharomycetaceae Schizosaccharomycetales 
Schizosaccharomyces_pombe_strain_972 Q00619 284812 Schizosaccharomycetaceae Schizosaccharomycetales 
Sclerotinia_borealis_F-4157 W9C8T9 1432307 Sclerotiniaceae Helotiales 
Sclerotinia_sclerotiorum_strain_ATCC_18683 A7EY95 665079 Sclerotiniaceae Helotiales 
Setosphaeria_turcica_strain_28A R0KC11 671987 Pleosporaceae Pleosporineae 
Sordaria_macrospora_strain_ATCC_MYA-333 F7W5S1 771870 Sordariaceae Sordariales 
Spathaspora_passalidarum_strain_NRRL_Y-27907 G3AJU2 619300 Debaryomycetaceae Saccharomycetales 
Sphaerulina_musiva_strain_SO2202 N1QN82 692275 Mycosphaerellaceae Capnodiales 
Sporothrix_brasiliensis_5110 A0A0C2IIS5 1398154 Ophiostomataceae Ophiostomatales 
Sporothrix_insectorum_RCEF_264 A0A162MTF1 1081102 Ophiostomataceae Ophiostomatales 
Sporothrix_schenckii H9XTI1 29908 Ophiostomataceae Ophiostomatales 
Sporothrix_schenckii_1099-18 A0A0F2M7E2 1397361 Ophiostomataceae Ophiostomatales 
Sporothrix_schenckii_strain_ATCC_58251 U7Q511 1391915 Ophiostomataceae Ophiostomatales 
Stachybotrys_chartarum_IBT_40288 A0A084RP20 1283842 Stachybotriaceae Hypocreales 
Stachybotrys_chartarum_IBT_7711 A0A084ASH4 1280523 Stachybotriaceae Hypocreales 
Stachybotrys_chlorohalonata_IBT_40285 A0A084QT65 1283841 Stachybotriaceae Hypocreales 
Stagonospora_sp_SRC1lsM3a A0A178ACM9 765868 Massarinaceae Massarineae 
Stemphylium_lycopersici A0A0L1HGK2 183478 Pleosporaceae Pleosporineae 
Sugiyamaella_lignohabitans A0A161HL65 796027 Trichomonascaceae Saccharomycetales 
Talaromyces_islandicus A0A0U1LRR7 28573 Trichocomaceae Eurotiales 
Talaromyces_marneffei_PM1 A0A093XYN6 1077442 Trichocomaceae Eurotiales 
Talaromyces_marneffei_strain_ATCC_18224 B6Q4A9 441960 Trichocomaceae Eurotiales 
Talaromyces_stipitatus_strain_ATCC_10500 B8M557 441959 Trichocomaceae Eurotiales 
Tetrapisispora_blattae_strain_ATCC_34711 I2H305 1071380 Saccharomycetaceae Saccharomycetales 
Tetrapisispora_phaffii_strain_ATCC_24235 G8C206 1071381 Saccharomycetaceae Saccharomycetales 
Togninia_minima_strain_UCR-PA7 R8BGY4 1286976 Togniniaceae Togniniales 
Tolypocladium_ophioglossoides_CBS_100239 A0A0L0N0N3 1163406 Ophiocordycipitaceae Hypocreales 
Torrubiella_hemipterigena A0A0A1SZJ6 1531966 Clavicipitaceae Hypocreales 
Torulaspora_delbrueckii_strain_ATCC_10662 G8ZR18 1076872 Saccharomycetaceae Saccharomycetales 
Trichoderma_gamsii A0A0W7VR33 398673 Hypocreaceae Hypocreales 
Trichoderma_harzianum A0A0F9XI50 5544 Hypocreaceae Hypocreales 
Trichophyton_equinum_strain_ATCC_MYA-4606 F2PNP9 559882 Arthrodermataceae Onygenales 
Trichophyton_interdigitale_MR816 A0A059J435 1215338 Arthrodermataceae Onygenales 
Trichophyton_rubrum A0A178ETN9 5551 Arthrodermataceae Onygenales 
Trichophyton_rubrum_CBS_28886 A0A022VRI2 1215330 Arthrodermataceae Onygenales 
Trichophyton_verrucosum_strain_HKI_0517 D4DBK6 663202 Arthrodermataceae Onygenales 
Trichophyton_violaceum A0A178FB33 34388 Arthrodermataceae Onygenales 
Tuber_melanosporum_strain_Mel28 D5GJK5 656061 Tuberaceae Pezizales 
Uncinocarpus_reesii_strain_UAMH_1704 C4JL18 336963 Onygenaceae Onygenales 
Uncinula_necator A0A0B1P9N6 52586 Erysiphaceae Erysiphales 
Ustilaginoidea_virens A0A063BN49 1159556 Hypocreales incertae sedis Hypocreales 
Vanderwaltozyma_polyspora_strain_ATCC_22028 A7TJQ6 436907 Saccharomycetaceae Saccharomycetales 
Vanderwaltozyma_polyspora_strain_ATCC_22028 A7TQX4 436907 Saccharomycetaceae Saccharomycetales 
Verruconis_gallopava A0A0D2AMB2 253628 Sympoventuriaceae Venturiales 
Verticillium_alfalfae_strain_VaMs102 C9SGY3 526221 Plectosphaerellaceae Glomerellales 
Verticillium_dahliae_strain_VdLs17 G2X5W7 498257 Plectosphaerellaceae Glomerellales 
Verticillium_longisporum A0A0G4M417 100787 Plectosphaerellaceae Glomerellales 
Wickerhamomyces_ciferrii_strain_F-60-10 K0KPE3 1206466 Phaffomycetaceae Saccharomycetales 
Xylona_heveae_TC161 A0A165HIN9 1328760 Xylonomycetaceae Xylonomycetales 
Yarrowia_lipolytica_strain_CLIB_122 Q6C2Z3 284591 Dipodascaceae Saccharomycetales 
Zygosaccharomyces_bailii_ISA1307 W0VI75 1355161 Saccharomycetaceae Saccharomycetales 
Zygosaccharomyces_bailii_strain_CLIB_213 S6EXB4 1333698 Saccharomycetaceae Saccharomycetales 
Zygosaccharomyces_rouxii_strain_ATCC_2623 C5DX97 559307 Saccharomycetaceae Saccharomycetales 
Zymoseptoria_brevis A0A0F4GDL4 1047168 Mycosphaerellaceae Capnodiales 
Zymoseptoria_tritici_strain_CBS_115943 F9X131 336722 Mycosphaerellaceae Capnodiales 
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7.2.2 Fungal secreted peptide pheromones 

Species Gene ID 
Predicted  
Peptide Sequence 

Previously 
predicted in [27] 

Alternaria_brasicicola ACIW01002317 WSFTQKRPYGLPIG * 
Arthrobotrys_oligospora G1X8M4 WCPYNSCP 

 Ashbya_aceri R9XEV1 WHWLRFGDGQSM 
 Ashbya_gossypii Q752Q1 WFRLSLHHGQSM 
 Aspergillus_clavatus A1CLD3 QWCELPGQGCYMI * 

Aspergillus_flavus B8NF30 WCSLPAQGCYML * 
Aspergillus_fumigata Q4WYU8 WCHLPGQGCYML * 
Aspergillus_kawachii G7XMN4 WCHLPGQPCNMI 

 Aspergillus_nidulans Q5BAB0 WCRFAGRICPPT * 
Aspergillus_niger G3XMV3 WCVLPGQPCNMI * 
Aspergillus_oryzae Q2U819 WCALPGQGC * 
Aspergillus_ruber A0A017S298 WCALPGQICS 

 Aspergillus_terreus Q0CS34 WCWLPGQGCYML * 
Baudoinia_compniacensis M2LX19 GWIGRCGVPGSSC 

 Beauveria_bassiana J5JMP7 WCMRPGQPCW 
 Botryosphaeria_parva R1GET9 WCRWKGQPCS 
 Botrytis_cinerea G2YE05 WCGRPGQPC * 

Candida_albicans Q59Q04 GFRLTNFGYFEPG * 
Candida_dubliniensis B9WM67 KFKLTNFGYFEPG * 
Candida_glabrata Q6FLY8 WHWVRLRKGQGLF * 
Candida_guilliermondii A5DFC0 KKNSRFLTYWFFQPIM 

 Candida_lusitaniae C4Y9B0 WKWIKFRNTDVIG 
 Candida_parapsilosis G8BFM9 KPHWTTYGYYEPQ * 

Candida_tenuis G3BD19 FSWNYRLKWQPIS 
 Candida_tropicalis C5M3P6 KFKFRLTRYGWFSPN * 

Capronia_coronata W9Y1I9 LSYWKGVNDGGSS 
 Capronia_epimyces W9X9V4 LSYWAGVNDGGSS 
 Chaetomium_globosum Q2GU85 WCKQFLGMPCW * 

Chaetomium_thermophilum G0S9F6 SWCTRFPGQPCW 
 Chryphonectria_parasitica O14431 WCLFHGEGCW * 

Claviceps_purpurea M1WDR5 WCWRPGQGCW 
 Coccidioides_immitis J3KG99 WCQRPGEPC 
 Colletotrichum_gloeosporioides T0K3N5 WCTKPGQPCW 
 Coniosporium_apollinis R7YPZ5 WGSRFCHKTGQGCP 
 Dactylellina_haptotyla S8AWC4 WCVYNSCP 
 Debaryomyces_hansenii Q6BYC0 KFHWMTYRFFQPNL * 

Endocarpon_pusillum U1HY26 WWGFRWSRHGTSSW 
 Eremothecium_cymbalariae G8JMH5 WHWLRFDRGQPIH 
 Fusarium_oxysporum F9F4J6 WCTWRGQPCW  * 

Fusarium_pseudograminearum K3V2E5 WCTWKGQPCW 
 Gaeumannomyces_graminis J3P889 QNGCQYRGQSCW 
 Geotrichum_candidum A0A024JBH3 DWGWFWYVPRPGDPAM 
 Gibberella_fujikuroi S0E2K7 WCTWRGQPCW 
 Gibberella_moniliformis W7MQM8 WCTWRGQPCW 
 Gibberella_zeae I1RG07 WCWWKGQPCW * 

Glarea_lozoyensis S3DBU4 QCIRHGQPCW 
 Grosmannia_clavigera F0XDY3 QWCQWYGQACW  
 Kazachstania_africana H2ASI7 WHWLSIAPGQPMYI 
 Kazachstania_naganishii J7RM21 WHWLRLSYGQPIY 
 Kluyveromyces_lactis Q6CIP0 WSWITLRPGQPIF * 

Kluyveromyces_marxianus W0TFI2 WKWLSLRVGQPIY 
 Kluyveromyces_waltii AADM01000052 WRWLSLARGQPMY * 

Komagataella_pastoris F2R066 FRWRNNEKNQPFG 
 Kuraishia_capsulata W6MJ91 RLGARIYAKGQPIY 
 Lachancea_kluyveri P12384 WHWLSFSKGEPMY 
 Lachancea_thermotolerans C5DBK0 WRWLSLSRGQPMY * 

Lodderomyces_elongisporus A5E1D9 WMWTRYGRFSPV * 
Magnaporthe_oryzae G4MR89 QWCPRRGQPCW * 
Magnaporthe_poae M4FRS1 QNGCPYPGQSCW 

 Marssonina_brunnea K1X8D8 CGYRGQPCP 
 Metarhizium_acridum E9DXW9 WCWQPGQPCW 
 Metarhizium_anisopliae E9EMS3 WCWRPGQPCW 
 Mycosphaerella_graminicola F9X131 GNSFVGWCGAIGAPCA 
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Mycosphaerella_pini N1Q4Q2 GVLTRCTVPGLACG 
 Nectria_haematococca C7ZA34 WCFYPGQPCW 
 Neosartorya_fischeri A1D5Z2 WCHLPGQGCYML * 

Neurospora_crassa Q1K6I3 QWCRIHGQSCW * 
Neurospora_tetrasperma F8MS57 QWCRIHGQSCW 

 Ogataea_parapolymorpha W1QE65 WGWHRVNRNEVIF 
 Ophiostoma_piceae S3C5N9 QWCPMVGQPCW 
 Paracoccidioides_lutzii C1H517 WCTRPGQGC 
 Penicillium_chrysogenum B6H2Y5 WCGHIGQGCY * 

Penicillium_digitatum K9GDZ2 WCGHIGQGCY 
 Penicillium_oxalicum S7Z940 WCAHPGQGCA 
 Penicillium_roqueforti W6PVN7 WCGHIGQGCY 
 Phaeosphaeria_nodorum Q0UCT8 YNGWRYRPYGLPVG * 

Pichia_sorbitophila G8YMJ7 FHWFKYNKYDPIT 
 Podospora_anserina B2ADL1 QWCLRFVGQSCW * 

Pseudogymnoascus_destructans L8G637 FCWRPGQPCG 
 Pyrenophora_teres_f_teres E3RI43 VTWTQKRPYGMPVG 
 Pyrenophora_tritici-repentis B2WIP5 SWTQKRPYGMPVG * 

Saccharomyces_bayanus Q8J1R6 WHWLQLKPGQPMY * 
Saccharomyces_castellii G0VD13 NWHWLRLDPGQPLY * 
Saccharomyces_cerevisiae P0CI39 WHWLQLKPGQPMY * 
Saccharomyces_dairenensis G0WE84 WHWLRLDPGQPLY * 
Saccharomyces_mikatae AACH01001097 WHWLQLKPGQPMY * 
Saccharomyces_paradoxis Q8J094 WHWLQLKPGQPMY * 
Scheffersomyces_stipitis A3LXU7 WHWTSYGVFEPG * 
Schizosaccharomyces_japonicus B6JZE2 VSDRVKQMLSHWWNFRNPDTANL * 
Schizosaccharomyces_octosporus S9PVP9 KTYEDFLRVYKNWWSFQNPDRPDL * 
Schizosaccharomyces_pombe Q00619 KTYADFLRAYQSWNTFVNPDRPNL * 
Sclerotinia_borealis W9C8T9 WCGRPGQPC 

 Sclerotinia_sclerotiorum A7EY95 WCGRPGQPC * 
Sordaria_macrospora F7W5S1 QWCRIHGQSCW * 
Sporothrix_schenckii H9XTI1 YCPLKGQSCW 

 Tetrapisispora_blattae I2H305 HWLRLGRGEPLY 
 Tetrapisispora_phaffii G8C206 WHWLRLDPGQPLY 
 Thielavia_heterothallica G2QGA8 WCVQFLGMPCW 
 Togninia_minima R8BGY4 WCTKHGQSCW 
 Torulaspora_delbrueckii G8ZR18 GWMRLRLGQPL 
 Trichoderma_atroviridis G9NY94 WCWRVGESCW * 

Trichoderma_jecorina G0RMK2 WCYRIGEPCW * 
Trichoderma_virens G9MQ44 WCYRVGMTCGW * 
Tuber_melanosporum D5GJK5 WTPRPGRGAY 

 Vanderwaltozyma_polyspora_1 A7TJQ6 WHWLELDNGQPIY * 
Vanderwaltozyma_polyspora_2 A7TQX4 WHWLRLRYGEPIY * 
Verticillium_alfalfae C9SGY3 PCPRPGQGCW * 
Verticillium_dahliae G2X5W7 PCPRPGQGCW * 
Wickerhamomyces_ciferrii K0KPE3 WQWRKYLNGSPNY 

 Yarrowia_lipolytica Q6C2Z3 WRWFWLPGYGEPNW * 
Zygosaccharomyces_bailii S6EXB4 HLVRLSPGAAMF 

 Zygosaccharomyces_rouxii C5DX97 HFIELDPGQPMF * 
 

  



 

129 

7.3 Computer scripts 

7.3.1 Automated gating with the R package openCyto  

library(flowWorkspace)	
library(openCyto)	#needs	to	be	>=1.11.8,	from	Bioc	Devel	as	of	Aug	2016	
library(ggcyto)	
library(flowIncubator)		#install	from	GitHub	
library(parallel)	
	
numCores	<-	detectCores()-1	
	
#	ask	for	input	folder	
inFolder	<-	readline(prompt="Enter	path	of	folder	FCS	files:	")	
	
#detect/ask	for	CellTag	index	file	
ctFile	<-	list.files(path	=	inFolder,	pattern	=	"CellTag-Strain",	full	=	TRUE)	
if	(length(ctFile)==0)	ctFile	<-	readline(prompt="Enter	path	of	CellTag-Strain.csv	index	file:	")	
CTindex	=	read.csv(ctFile,	stringsAsFactors	=	FALSE)	
	
#extract	CT	names	and	corresponding	strain	identities	
CellTagName	<-	CTindex[["CellTag"]]	
StrainName	<-	CTindex[["Strain"]]	
	
#detect/ask	for	tube	identities	file	
tubeFile	<-	list.files(path	=	inFolder,	pattern	=	"Tube-Treatment",	full	=	TRUE)	
if	(length(tubeFile)==0)	tubeFile	<-	readline(prompt="Enter	path	of	Tube-Treatment.csv	index	file:	")	
Tubeindex	=	read.csv(tubeFile,	stringsAsFactors	=	FALSE)	
Tubeindex$gsIndex	<-	0	#gtIndex	column	
	
#	get	names	of	csv	files	to	analyze,	path	defaulting	to	current	working	directory	
fcsFilePaths	<-	list.files(path	=	inFolder,	pattern	=	"*.fcs",	full	=	TRUE)	
	
#	load	FCS	files	
fs		<-	read.flowSet(fcsFilePaths,	alter.names=TRUE)	
	
#	create	folder	to	output	files	
dir.create(file.path(inFolder,	"output"))	
	
#extract	parameter	names	and	display	
channelNames	<-	colnames(fs)	
cat("The	detected	parameters	are:",	channelNames,sep="\n")	
	
	
#####	set	normalization	parameters	
#	ask	for	correct	channels	
gfpName	<-	readline(prompt="Enter	name	of	GFP	channel:	")	
rfpName	<-	readline(prompt="Enter	name	of	RFP	channel:	")	
bfpName	<-	readline(prompt="Enter	name	of	BFP	channel:	")	
sscName	<-	readline(prompt="Enter	name	of	SSC	Area	channel:	")	
fscName	<-	readline(prompt="Enter	name	of	FSC	Area	channel:	")	
#fschName	<-	readline(prompt="Enter	name	of	FSC	Height	channel:	")	
	
scaleBy1	<-	100000	#factor	to	scale	ssc	normalized	fluorescence	to	match	original	scale	of	fluorescence	
minNormFluor	<-	-1000	#minimum	G.n,R.n,B.n	cutoff	to	avoid	extreme	neg	values	generated	by	scaling,	only	
important	for	logicle	estimation	
	
ratioRange	<-	10	#expected	range	of	log10(R.n/G.n),	only	needed	for	auto	plotting	
logicleMin	<-	-0.5	#expected	minimum	value	of	logicle(G.n,R.n,B.n),	only	needed	for	auto	plotting	
	
	
cat("Starting	analysis...\n")	
if(gfpName	==	"")	gfpName	<-	"GFP.A"	
if(rfpName	==	"")	rfpName	<-	"mCherry.A"	
if(bfpName	==	"")	bfpName	<-	"Cascade.Blue.A"	
if(sscName	==	"")	sscName	<-	"SSC.A"	
if(fscName	==	"")	fscName	<-	"FSC.A"	
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gfpIndex	<-	which(colnames(fs)==gfpName)	

rfpIndex	<-	which(colnames(fs)==rfpName)	

bfpIndex	<-	which(colnames(fs)==bfpName)	

sscIndex	<-	which(colnames(fs)==sscName)	

fscIndex	<-	which(colnames(fs)==fscName)	

#fschIndex	<-	which(colnames(fs)==fschName)	

	

	

#	rename	columns	for	custom	transform	

colnames(fs)[gfpIndex]	<-	"G"	

colnames(fs)[rfpIndex]	<-	"R"	

colnames(fs)[bfpIndex]	<-	"B"	

colnames(fs)[sscIndex]	<-	"S.A"	

colnames(fs)[fscIndex]	<-	"F.A"	#	can't	use	just	"F",	reserved	for	false	

#colnames(fs)[fschIndex]	<-	"F.H"	

	

	

#	normalize	by	SSC	

cat("Normalizing	by	SSC...")	

fs	<-	transform(fs,	G.n	=	scaleBy1*(G/S.A),	R.n	=	scaleBy1*(R/S.A),	B.n	=	scaleBy1*(B/S.A))	

cat("Done\n")	

	

#truncate	for	extreme	negs	produced	by	SSC	normalization/scaling	

truncTrans	<-	truncateTransform(transformationId="truncTrans",	a=minNormFluor)	

fs	<-	transform(fs,	G.n=truncTrans(G.n),	R.n=truncTrans(R.n),	B.n=truncTrans(B.n))	

	

	

#	extract	fluor	total	and	R:G	fluor	ratio	as	log	

cat("Calculating	R:G	ratio	and	total...")	

fs	<-	transform(fs,	fTotal	=	log10(G.n+R.n),	fRatio	=	log10(R.n/G.n))	

cat("Done\n")	

	

	

#	clean	up	min	max	for	better	plotting	and	logicle	transform	

p	<-	parameters(fs[[1]])	

G.nIndex	<-	which(colnames(fs)=="G.n")	

R.nIndex	<-	which(colnames(fs)=="R.n")	

B.nIndex	<-	which(colnames(fs)=="B.n")	

fTotalIndex	<-	which(colnames(fs)=="fTotal")	

fRatioIndex	<-	which(colnames(fs)=="fRatio")	

p[['maxRange']][G.nIndex]	<-	p[['maxRange']][gfpIndex]	

p[['maxRange']][R.nIndex]	<-	p[['maxRange']][rfpIndex]	

p[['maxRange']][B.nIndex]	<-	p[['maxRange']][bfpIndex]	

p[['maxRange']][fTotalIndex]	<-	log10(p[['maxRange']][gfpIndex]	+	p[['maxRange']][rfpIndex])	

p[['maxRange']][fRatioIndex]	<-	ratioRange/2	

p[['minRange']][G.nIndex]	<-	p[['minRange']][gfpIndex]	

p[['minRange']][R.nIndex]	<-	p[['minRange']][rfpIndex]	

p[['minRange']][B.nIndex]	<-	p[['minRange']][bfpIndex]	

p[['minRange']][fTotalIndex]	<-	0	

p[['minRange']][fRatioIndex]	<-	-ratioRange/2	

L	<-	length(fs)	

res	<-	mapply(1:L,	FUN	=	function(x){parameters(fs[[x]])	<-	p})	

	

#	transform	with	Logicle	transform	

cat("Logicle	transform	of	G,R,B...")	

transFuncts	<-	estimateLogicle(fs[[1]],	channels	=	c("G.n",	"R.n",	"B.n"))	

fs	<-	transform(fs,	transFuncts)	

cat("Done\n")	

	

#clean	up	minRange	after	logical	transform	

p	<-	parameters(fs[[1]])	

p[['minRange']][G.nIndex]	<-	logicleMin	

p[['minRange']][R.nIndex]	<-	logicleMin	

p[['minRange']][B.nIndex]	<-	logicleMin	

L	<-	length(fs)	

res	<-	mapply(1:L,	FUN	=	function(x){parameters(fs[[x]])	<-	p})	
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#	clean	up	desc	column	(marker	names)	automatically	generated	by	transform()	
chnls	<-	colnames(fs)	
markers	<-	rep(NA_character_,length(chnls))	#	use	R's	NA	character	value	
names(markers)	<-	chnls	
markernames(fs)	<-	markers	
	
###	create	custom	gating	methods	
#mindensity	method	were	peaks	to	use	are	selected	by	left	to	right	rank	order	
.specificMindensity	<-	function(fr,	pp_res,	channels=NA,	filterId="specificMindensity",	selectedPeak=1,	
totalPeaks=NULL,	selectFromRight=FALSE,	findAdjust=2,	peakMeanDensityThreshold=0.1,	minAdjust=1,	...){	
					
	 x	<-	exprs(fr)[,	channels]	
	 peaks	<-	openCyto:::.find_peaks(x,	num_peaks=totalPeaks,	adjust=findAdjust,	...)	
	 meanPeaks	<-	mean(peaks[,"y"])	
	 peaks	<-	peaks[peaks[,"y"]	>	(meanPeaks*peakMeanDensityThreshold),	"x"]	#reject	minor	peaks	below	
average	
	 peaks	<-	sort(peaks,	decreasing=selectFromRight)	
	 min	<-	peaks[selectedPeak]	
	 max	<-	peaks[selectedPeak	+	1]	
	 	
	
				my_gate	<-	openCyto:::.mindensity(fr,	channel=channels,	filterId	=	filterId,	min=min,	max=max,	
adjust=minAdjust,	...)	
				return(my_gate)	
}	
registerPlugins(fun=.specificMindensity,methodName='specificMindensity',dep=NA)	
	
	
#register	gating	method	for	when	a	CellTag	is	missing	and	want	to	gate	whole	range	
.dummySubgate	<-	function(fr,	pp_res,	channels=NA,	filterId="dummySubgate",minAtmin=T,	...){	
					
	 x	<-	exprs(fr)[,	channels]	
	 if	(minAtmin)	{	
	 	 min	<-	min(x,	na.rm=T)	#	ignore	NaN	as	they	can	be	produced	by	normalization	
	 	 max	<-	NULL	
	 }	else	{	
	 	 min	<-	max(x,	na.rm=T)	
	 	 max	<-	NULL	
	 }	
	 my_gate	<-	openCyto:::.boundary(fr,	channels=channels,	min=min,	max=max,...)	
					 return(my_gate)	
}	
registerPlugins(fun=.dummySubgate,methodName='dummySubgate',dep=NA)	
	
	
###	automatically	make	gating	template	based	on	CTs	in	index	file	
#	function	for	adding	rows	to	gating	template	data	frame	to	reduce	syntax	
addGtRow	<-	function(df,	alias=NA,	pop=NA,	parent=NA,	dims=NA,	gmethod=NA,	gargs=NA)	{	
	 row	<-	list(alias=alias	
	 	 	 ,	pop=pop	
	 	 	 ,	parent=parent	
	 	 	 ,	dims=dims	
	 	 	 ,	gating_method=gmethod	
	 	 	 ,	gating_args=gargs)	
	 df[nrow(df)+1,	names(row)]	<-	row	
	 return(df)	
}	
	
#detect	which	CellTags	are	present	in	primary	and	secondary	quadrants	
Q1	<-	c("CT1","CT2","CT3","CT4"	
	 ,"CT6","CT7","CT8","CT9"	
	 ,"CT11","CT12","CT13","CT16","CT17")	
Q1	<-	Q1	%in%	CellTagName	
	
Q2	<-	c("CT20","CT21",	"CT22")	%in%	CellTagName	
Q3	<-	c("CT19")	%in%	CellTagName	
Q4	<-	c("CT5","CT10",	"CT15")	%in%	CellTagName	
	
if(sum(Q1,Q2,Q3,Q4)<1)	{	stop("No	recognized	CellTags	in	index	file!")}	
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q1	<-	c("CT1","CT2","CT3"	
	 ,"CT6","CT7","CT8"	
	 ,"CT11","CT12")	
q1	<-	q1	%in%	CellTagName	
	
q2	<-	c("CT16","CT17")	%in%	CellTagName	
q3	<-	c("CT13")	%in%	CellTagName	
q4	<-	c("CT4","CT9")	%in%	CellTagName	
	
	
#ask	for	scatter	cutoffs,	default	by	no	answer	
fscMIN	<-	readline(prompt="Enter	min	FSC.A	cutoff	(default=3e4):	")	
fscMAX	<-	readline(prompt="Enter	max	FSC.A	cutoff	(default=2.6e5):	")	
sscMIN	<-	readline(prompt="Enter	min	SSC.A	cutoff	(default=1.5e4):	")	
sscMAX	<-	readline(prompt="Enter	max	SSC.A	cutoff	(default=2.6e5):	")	
	
if(fscMIN	==	"")	fscMIN	<-	"3e4"	
if(fscMAX	==	"")	fscMAX	<-	"2.6e5"	
if(sscMIN	==	"")	sscMIN	<-	"1.5e4"	
if(sscMAX	==	"")	sscMAX	<-	"2.6e5"	
	
#add	scatter	gate	
scGateArgs	<-	paste("min	=	c("	
	 	 	 ,fscMIN	
	 	 	 ,","	
	 	 	 ,sscMIN	
	 	 	 ,"),	max=c("	
	 	 	 ,fscMAX	
	 	 	 ,","	
	 	 	 ,sscMAX	
	 	 	 ,")"	
	 	 	 ,	sep="")	
	
#initialize	gating	template	data	frame	
df	<-	data.frame(alias=character(),	
																	pop=character(),	
																	parent=character(),	
																	dims=character(),	
																	gating_method=character(),	
																	gating_args=character(),	
																	collapseDataForGating=character(),	
																	groupBy=character(),	
																	preprocessing_method=character(),	
																	preprocessing_args=character(),	
																	stringsAsFactors=FALSE)	
	
	
df	<-	addGtRow(df,"nonMaxS",	"nonMaxS+",	"root",		"F.A,S.A",	"boundary",	scGateArgs)	
	
###	primary	quadrants	(Q)	###	
#G.n	Q	ref	split	
alias	<-	"Q1Q4"	
pop	<-	"G.n+"	
parent	<-	"nonMaxS"	
dims	<-	"G.n"	
if	(sum(Q1,Q4)>0	&	sum(Q2,Q3)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"specificMindensity",	"selectedPeak=1,	
findAdjust=2.5")	
}	else	if	(sum(Q1,Q4)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate")	
}	else	if	(sum(Q2,Q3)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate",	"minAtmin=F")	
}	
	
	
#R.n	Q	ref	split	
alias	<-	"Q1Q2"	
pop	<-	"R.n+"	
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parent	<-	"nonMaxS"	
dims	<-	"R.n"	
if	(sum(Q1,Q2)>0	&	sum(Q3,Q4)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"specificMindensity",	"selectedPeak=1,	
findAdjust=2.6,	totalPeaks=3")	
}	else	if	(sum(Q1,Q2)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate")	
}	else	if	(sum(Q3,Q4)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate",	"minAtmin=F")	
}	
	
#Q	gates	
parent	<-	"nonMaxS"	
dims	<-	"G.n,R.n"	
method	<-	"refGate"	
args	<-	"Q1Q4:Q1Q2"	
#Q1	gate	
if	(sum(Q1)>0)	df	<-	addGtRow(df,	"Q1",	"G.n+R.n+",	parent,	dims,	method,	args)	
#Q2	gate	
if	(sum(Q2)>0)	df	<-	addGtRow(df,	"Q2",	"G.n-R.n+",	parent,	dims,	method,	args)	
#Q3	gate	
if	(sum(Q3)>0)	df	<-	addGtRow(df,	"Q3",	"G.n-R.n-",	parent,	dims,	method,	args)	
#Q4	gate	
if	(sum(Q4)>0)	df	<-	addGtRow(df,	"Q4",	"G.n+R.n-",	parent,	dims,	method,	args)	
	
	
###	secondary	quadrants	in	Q1	(q)	###	
#G.n	q	ref	split	
alias	<-	"q1q4"	
pop	<-	"G.n+"	
parent	<-	"Q1"	
dims	<-	"G.n"	
if	(sum(q1,q4)>0	&	sum(q2,q3)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"specificMindensity",	"selectedPeak=1,	findAdjust=1,	
minAdjust=1.5")	
}	else	if	(sum(q1,q4)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate")	
}	else	if	(sum(q2,q3)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate",	"minAtmin=F")	
}	
	
	
#R.n	q	ref	split	
alias	<-	"q1q2"	
pop	<-	"R.n+"	
parent	<-	"Q1"	
dims	<-	"R.n"	
if	(sum(q1,q2)>0	&	sum(Q3,Q4)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"specificMindensity",	"selectedPeak=1,	findAdjust=1,	
minAdjust=1.5")	
}	else	if	(sum(q1,q2)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate")	
}	else	if	(sum(q3,q4)>0)	{	
	 df	<-	addGtRow(df,	alias,	pop,	parent,		dims,	"dummySubgate",	"minAtmin=F")	
}	
	
#q	gates	
parent	<-	"Q1"	
dims	<-	"G.n,R.n"	
method	<-	"refGate"	
args	<-	"q1q4:q1q2"	
#q1	gate	
if	(sum(q1)>0)	df	<-	addGtRow(df,	"q1",	"G.n+R.n+",	parent,	dims,	method,	args)	
#q2	gate	
if	(sum(q2)>0)	df	<-	addGtRow(df,	"q2",	"G.n-R.n+",	parent,	dims,	method,	args)	
#q3	gate	
if	(sum(q3)>0)	df	<-	addGtRow(df,	"q3",	"G.n-R.n-",	parent,	dims,	method,	args)	
#q4	gate	
if	(sum(q4)>0)	df	<-	addGtRow(df,	"q4",	"G.n+R.n-",	parent,	dims,	method,	args)	
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###	subgates	in	Q4,	Q2	###	
##	gates	in	Q4	##	
low	<-	"CT15"	%in%	CellTagName	
hi	<-	isTRUE(sum(c("CT5","CT10")	%in%	CellTagName)	>	0)	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT15p",	"G.n-",	"Q4",	"G.n",	"specificMindensity",	"selectedPeak=1")	
	 df	<-	addGtRow(df,	"CT.5.10",	"G.n+",	"Q4",	"G.n",	"specificMindensity",	"selectedPeak=1")	
}	else	if	(low)	{		
	 df	<-	addGtRow(df,	"CT15p",	"G.n+",	"Q4",	"G.n",	"dummySubgate")		
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT.5.10",	"G.n+",	"Q4",	"G.n",	"dummySubgate")	
}	
	
low	<-	"CT10"	%in%	CellTagName	
hi	<-	"CT5"	%in%	CellTagName	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT10p",	"G.n-",	"CT.5.10",	"G.n",	"mindensity")	
	 df	<-	addGtRow(df,	"CT5p",	"G.n+",	"CT.5.10",	"G.n",	"mindensity")	
}	else	if	(low)	{	
	 df	<-	addGtRow(df,	"CT10p",	"G.n+",	"CT.5.10",	"G.n",	"dummySubgate")	
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT5p",	"G.n+",	"CT.5.10",	"G.n",	"dummySubgate")	
}	
	
	
##	gates	in	Q2	##	
low	<-	"CT22"	%in%	CellTagName	
hi	<-	isTRUE(sum(c("CT20","CT21")	%in%	CellTagName)	>	0)	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT22p",	"R.n-",	"Q2",	"R.n",	"specificMindensity",	"selectedPeak=1")	
	 df	<-	addGtRow(df,	"CT.20.21",	"R.n+",	"Q2",	"R.n",	"specificMindensity",	"selectedPeak=1")	
}	else	if	(low)	{	
	 df	<-	addGtRow(df,	"CT22p",	"R.n+",	"Q2",	"R.n",	"dummySubgate")	
}	else	if	(hi)	{	
	 df	<-	addGtRow(df,	"CT.20.21",	"R.n+",	"Q2",	"R.n",	"dummySubgate")	
}	
	
low	<-	"CT21"	%in%	CellTagName	
hi	<-	"CT20"	%in%	CellTagName	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT21p",	"R.n-",	"CT.20.21",	"R.n",	"mindensity")	
	 df	<-	addGtRow(df,	"CT20p",	"R.n+",	"CT.20.21",	"R.n",	"mindensity")	
}	else	if	(low)	{	
	 df	<-	addGtRow(df,	"CT21p",	"R.n+",	"CT.20.21",	"R.n",	"dummySubgate")	
}	else	if	(hi)	{	
	 df	<-	addGtRow(df,	"CT20p",	"R.n+",	"CT.20.21",	"R.n",	"dummySubgate")	
}	
	
	
###	subgates	in	q4,	q2	###	
##	gates	in	q4	##	
low	<-	"CT9"	%in%	CellTagName	
hi	<-	"CT4"	%in%	CellTagName	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT9p",	"G.n-",	"q4",	"G.n",	"mindensity")	
	 df	<-	addGtRow(df,	"CT4p",	"G.n+",	"q4",	"G.n",	"mindensity")	
}	else	if	(low)	{		
	 df	<-	addGtRow(df,	"CT9p",	"G.n+",	"q4",	"G.n",	"dummySubgate")		
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT4p",	"G.n+",	"q4",	"G.n",	"dummySubgate")	
}	
	
##	gates	in	q2	##	
low	<-	"CT17"	%in%	CellTagName	
hi	<-	"CT16"	%in%	CellTagName	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT17p",	"R.n-",	"q2",	"R.n",	"mindensity")	
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	 df	<-	addGtRow(df,	"CT16p",	"R.n+",	"q2",	"R.n",	"mindensity")	
}	else	if	(low)	{		
	 df	<-	addGtRow(df,	"CT17p",	"R.n+",	"q2",	"R.n",	"dummySubgate")		
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT16p",	"R.n+",	"q2",	"R.n",	"dummySubgate")	
}	
	
	
###	subgates	in	q1	###	
##	gate	q1	low	wing	##	
low	<-	"CT3"	%in%	CellTagName	
mid	<-	isTRUE(sum(c("CT2","CT8")	%in%	CellTagName)	>	0)	
hi	<-	isTRUE(sum(c("CT1","CT6","CT7","CT11","CT12")	%in%	CellTagName)	>	0)	
if	((low	|	mid)	&	hi)	{	
	 if	(low	&	mid)	{		
	 	 args	<-	paste("selectedPeak=",	"2",	",	totalPeaks=5",	sep="")	
	 }	else	{	
	 	 args	<-	paste("selectedPeak=",	"1",	",	totalPeaks=5",	sep="")	
	 }	
	 df	<-	addGtRow(df,	"CT.2.3.8",	"fRatio-",	"q1",	"fRatio",	"specificMindensity",	args)	
	 df	<-	addGtRow(df,	"CT.1.6.7.11.12",	"fRatio+",	"q1",	"fRatio",	"specificMindensity",	args)	
}	else	if	(low	|	mid)	{		
	 df	<-	addGtRow(df,	"CT.2.3.8",	"fRatio+",	"q1",	"fRatio",	"dummySubgate")		
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT.1.6.7.11.12",	"fRatio+",	"q1",	"fRatio",	"dummySubgate")	
}	
	
	
#	subgates	in	q1	low	wing	#	
low	<-	"CT3"	%in%	CellTagName	
hi	<-	isTRUE(sum(c("CT2","CT8")	%in%	CellTagName)	>	0)	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT3p",	"fRatio-",	"CT.2.3.8",	"fRatio",	"specificMindensity",	
"selectedPeak=1")	
	 df	<-	addGtRow(df,	"CT.2.8",	"fRatio+",	"CT.2.3.8",	"fRatio",	"specificMindensity",	
"selectedPeak=1")	
}	else	if	(low)	{		
	 df	<-	addGtRow(df,	"CT3p",	"fRatio+",	"CT.2.3.8",	"fRatio",	"dummySubgate")		
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT.2.8",	"fRatio+",	"CT.2.3.8",	"fRatio",	"dummySubgate")	
}	
	
low	<-	"CT8"	%in%	CellTagName	
hi	<-	"CT2"	%in%	CellTagName	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT8p",	"fTotal-",	"CT.2.8",	"fTotal",	"mindensity")	
	 df	<-	addGtRow(df,	"CT2p",	"fTotal+",	"CT.2.8",	"fTotal",	"mindensity")	
}	else	if	(low)	{		
	 df	<-	addGtRow(df,	"CT8p",	"fTotal+",	"CT.2.8",	"fTotal",	"dummySubgate")	
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT2p",	"fTotal+",	"CT.2.8",	"fTotal",	"dummySubgate")	
}	
	
##	gate	q1	high	wing	##	
low	<-	isTRUE(sum(c("CT1","CT7")	%in%	CellTagName)	>	0)	
hi	<-	isTRUE(sum(c("CT6","CT11","CT12")	%in%	CellTagName)	>	0)	
if	(low	&	hi)	{	
	 df	<-	addGtRow(df,	"CT.1.7",	"fRatio-",	"CT.1.6.7.11.12",	"fRatio",	"specificMindensity",	
"selectedPeak=1")	
	 df	<-	addGtRow(df,	"CT.6.11.12",	"fRatio+",	"CT.1.6.7.11.12",	"fRatio",	"specificMindensity",	
"selectedPeak=1")	
}	else	if	(low)	{		
	 df	<-	addGtRow(df,	"CT.1.7",	"fRatio+",	"CT.1.6.7.11.12",	"fRatio",	"dummySubgate")		
}	else	if	(hi)	{		
	 df	<-	addGtRow(df,	"CT.6.11.12",	"fRatio+",	"CT.1.6.7.11.12",	"fRatio",	"dummySubgate")	
}	
	
#	subgates	in	q1	high	wing	#	
low	<-	isTRUE(sum(c("CT6","CT12")	%in%	CellTagName)	>	0)	
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hi	<-	"CT11"	%in%	CellTagName	

if	(low	&	hi)	{	

	 df	<-	addGtRow(df,	"CT.6.12",	"fRatio-",	"CT.6.11.12",	"fRatio",	"specificMindensity",	

"selectedPeak=1,	selectFromRight=TRUE")	

	 df	<-	addGtRow(df,	"CT11p",	"fRatio+",	"CT.6.11.12",	"fRatio",	"specificMindensity",	

"selectedPeak=1,	selectFromRight=TRUE")	

}	else	if	(low)	{		

	 df	<-	addGtRow(df,	"CT.6.12",	"fRatio+",	"CT.6.11.12",	"fRatio",	"dummySubgate")	

}	else	if	(hi)	{		

	 df	<-	addGtRow(df,	"CT.11p",	"fRatio+",	"CT.6.11.12",	"fRatio",	"dummySubgate")	

}	

	

	

low	<-	"CT12"	%in%	CellTagName	

hi	<-	"CT6"	%in%	CellTagName	

if	(low	&	hi)	{	

	 df	<-	addGtRow(df,	"CT12p",	"fTotal-",	"CT.6.12",	"fTotal",	"mindensity")	

	 df	<-	addGtRow(df,	"CT6p",	"fTotal+",	"CT.6.12",	"fTotal",	"mindensity")	

}	else	if	(low)	{		

	 df	<-	addGtRow(df,	"CT12p",	"fTotal+",	"CT.6.12",	"fTotal",	"dummySubgate")	

}	else	if	(hi)	{		

	 df	<-	addGtRow(df,	"CT6p",	"fTotal+",	"CT.6.12",	"fTotal",	"dummySubgate")	

}	

	

##	subgates	in	q1	mid	wing	##	

low	<-	"CT7"	%in%	CellTagName	

hi	<-	"CT1"	%in%	CellTagName	

if	(low	&	hi)	{	

	 df	<-	addGtRow(df,	"CT7p",	"fTotal-",	"CT.1.7",	"fTotal",	"mindensity")	

	 df	<-	addGtRow(df,	"CT1p",	"fTotal+",	"CT.1.7",	"fTotal",	"mindensity")	

}	else	if	(low)	{		

	 df	<-	addGtRow(df,	"CT7p",	"fTotal+",	"CT.1.7",	"fTotal",	"dummySubgate")	

}	else	if	(hi)	{		

	 df	<-	addGtRow(df,	"CT1p",	"fTotal+",	"CT.1.7",	"fTotal",	"dummySubgate")	

}	

	

	

	

###	all	final	population	gates	###	

dims	<-	"G.n,R.n"	

method	<-	"flowClust"	

args	<-	"K=1,	quantile=0.8"	

	

if	("CT1"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT1",	"CT1",	"CT1p",	dims,	method,	args)	

if	("CT2"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT2",	"CT2",	"CT2p",	dims,	method,	args)	

if	("CT3"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT3",	"CT3",	"CT3p",	dims,	method,	args)	

if	("CT4"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT4",	"CT4",	"CT4p",	dims,	method,	args)	

if	("CT5"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT5",	"CT5",	"CT5p",	dims,	method,	args)	

if	("CT6"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT6",	"CT6",	"CT6p",	dims,	method,	args)	

if	("CT7"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT7",	"CT7",	"CT7p",	dims,	method,	args)	

if	("CT8"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT8",	"CT8",	"CT8p",	dims,	method,	args)	

if	("CT9"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT9",	"CT9",	"CT9p",	dims,	method,	args)	

if	("CT10"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT10",	"CT10",	"CT10p",	dims,	method,	args)	

if	("CT11"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT11",	"CT11",	"CT11p",	dims,	method,	args)	

if	("CT12"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT12",	"CT12",	"CT12p",	dims,	method,	args)	

if	("CT13"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT13",	"CT13",	"q3",	dims,	method,	args)	

if	("CT15"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT15",	"CT15",	"CT15p",	dims,	method,	args)	

if	("CT16"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT16",	"CT16",	"CT16p",	dims,	method,	args)	

if	("CT17"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT17",	"CT17",	"CT17p",	dims,	method,	args)	

if	("CT19"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT19",	"CT19",	"Q3",	dims,	method,	args)	

if	("CT20"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT20",	"CT20",	"CT20p",	dims,	method,	args)	

if	("CT21"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT21",	"CT21",	"CT21p",	dims,	method,	args)	

if	("CT22"	%in%	CellTagName)	df	<-	addGtRow(df,	"CT22",	"CT22",	"CT22p",	dims,	method,	args)	

	

	

##	make	temp	cvs	from	df	

tmp	=	tempfile(fileext=".csv")	

write.csv(df,tmp,row.names=FALSE)	
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##	apply	gating	template	cvs	to	fs	
gt	<-	gatingTemplate(tmp,	autostart	=	1L)	
gs	<-	GatingSet(fs)	
gating(gt,	gs,	parallel_type="multicore",mc.cores=numCores)	
	
#	adjust	param	for	plotGate()	
flowWorkspace.par.set("plotGate",	list(default.y	=	"S.A"))	#	set	default	Y-axis	from	"SSC-A"	to	"S.A"	
	
#extract	gated	CT	populations,	add	keywords	corresponding	to	CT/strain	identities	
cat("Extracting	final	gated	CellTag	populations...")	
res	<-	vector("list",	0)	
for	(i	in	1:length(gs))	{	
	 fFrames	<-	lapply(X=1:length(CellTagName),	FUN=function(X){	
	 	 	
	 	 tmp	<-	getData(gs[[i]],	CellTagName[X])	
	 	 keyword(tmp)	<-	c(keyword(tmp),	CellTag=CellTagName[X],	Strain=StrainName[X])	
	 	 return(tmp)	
	 })	
	 res[[i]]	<-	flowSet(fFrames)	
	 pData(res[[i]])$Sample	<-	keyword(res[[i]],	"TUBE	NAME")[,1]	
	 pData(res[[i]])$Strain	<-	keyword(res[[i]],	"Strain")[,1]	
	 	
	 #	extract	tube	number	from	tube	name	
	 n	<-	strsplit(pData(res[[i]])[1,"Sample"],	"[^0-9]+")	#split	string	to	get	""		and	tube	numer	as	
list	
	 n	<-	as.numeric(unlist(n))[2]	#unlist	and	take	only	second	entry,	not	first	""	
	 	
	 #	add	gs	index	to	row	in	tube	index	dataframe	that	matches	tube	number	
	 Tubeindex[Tubeindex$Tube	==	n,]$gsIndex	<-	i	
}	
cat("Done\n")	
	
	
#find	control	
ctrlIndex	<-	Tubeindex[tolower(Tubeindex$Treatment)	==	"control",]	
ctrlIndex	<-	ctrlIndex$gsIndex	
if	(length(ctrlIndex)<1)	{	
	 cat("The	detected	treatments	are:",	Tubeindex[,"Treatment"],sep="\n")	
	 ctrlIndex	<-	readline(prompt="Enter	name	of	control	treatment:	")	
	 ctrlIndex	<-	Tubeindex[Tubeindex$Treatment	==	ctrlIndex,]	
	 ctrlIndex	<-	ctrlIndex$gsIndex	
}	
	
#plot	blue	fluorescence	results	write	file,	use	sample	1	to	set	min/max	
cat("Creating	summary	png	files\n")	
min	<-	parameters(res[[1]][[1]])[["minRange"]][B.nIndex]	
max	<-	parameters(res[[1]][[1]])[["maxRange"]][B.nIndex]	
	
for	(i	in	1:length(gs))	{	
	 p	<-	ggcyto(res[[ctrlIndex]],	aes(x	=	B.n))		
	 p	<-	p	+	geom_density(alpha	=	0.2,	fill="black")		
	 p	<-	p	+	geom_density(data=res[[i]],	alpha	=	0.2,	fill="red")	
	 p	<-	p	+	scale_x_continuous(limits	=	c(min,	max))	
	 p	<-	p	+	facet_wrap(~Strain)		
	
	 name	<-	Tubeindex[Tubeindex$gsIndex	==	i,]	
	 name	<-	paste("Tube",	name$Tube,	"_",	name$Treatment,	sep="")	
	 p	<-	p	+	labs(title=name)	
	 p	<-	p	+	theme(strip.text.x	=	element_text(size	=	16))	
	
	 outName	<-	paste(name,	".png",	sep="")	
	 png(filename=file.path(inFolder,	"output",	outName)	
	 	 ,	width	=	1024,	height	=	768)	
	 plot(p)	
	 dev.off()	
	 cat(paste(outName,	"\n",	sep=""))	
}	
	
cat("Finished!\n")	 	
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7.3.2 Automated retrieval of taxonomic fata from UniProt using python 

	
#	Adapted	from	https://github.com/Ensembl/ensembl-rest/wiki/Example-Python-Client	
import	sys	
import	urllib	
import	urllib2	
import	json	
import	time	
import	requests	
import	socket	
import	csv	
import	code	
import	untangle	#sudo	easy_install	pip	#sudo	pip	install	untangle	
	
class	EnsemblRestClient(object):	
				def	__init__(self,	server='http://www.uniprot.org/uniprot/',	reqs_per_sec=15):	
								self.server	=	server	
								self.reqs_per_sec	=	reqs_per_sec	
								self.req_count	=	0	
								self.last_req	=	0	
	
				def	perform_rest_action(self,	id,	targetProp,	endpoint,	hdrs=None):	
								if	hdrs	is	None:	
												hdrs	=	{}	
	
								if	'Content-Type'	not	in	hdrs:	
												hdrs['Content-Type']	=	'application/json'	
	
								data	=	None	
	
								#	check	if	we	need	to	rate	limit	ourselves	
								if	self.req_count	>=	self.reqs_per_sec:	
												delta	=	time.time()	-	self.last_req	
												if	delta	<	1:	
																time.sleep(1	-	delta)	
												self.last_req	=	time.time()	
												self.req_count	=	0	
	
								try:	
												request	=	urllib2.Request(self.server	+	endpoint,	headers=hdrs)	
												response	=	urllib2.urlopen(request,	timeout=4)	
												content	=	response.read()	
												if	content:	
																data	=	untangle.parse(content)	
												self.req_count	+=	1	
	
								except	urllib2.HTTPError,	e:	
												#	check	if	we	are	being	rate	limited	by	the	server	
												if	e.code	==	429:	
																if	'Retry-After'	in	e.headers:	
																				retry	=	e.headers['Retry-After']	
																				time.sleep(float(retry))	
																				self.perform_rest_action(endpoint,	hdrs,	params)	
												else:	
																sys.stderr.write('Request	failed	for	{0}:	Status	code:	{1.code}	Reason:	
{1.reason}\n'.format(endpoint,	e))	
																return	{'id':	id,	targetProp:	e}	
	
								except	socket.timeout,	e:	
												#	For	Python	2.7	
												sys.stderr.write('Request	failed	for	{0}:	Reason:	{1}\n'.format(id,	e))	
												return	{'id':	id,	targetProp:	e}	
	
								return	data	
	
				def	get_data(self,	id,	targetProp):	
								seq	=	self.perform_rest_action(	
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												id=id,	
												targetProp=targetProp,	
												endpoint='{0}.xml'.format(id)	
												#params={'db':	'taxonomy',	'id':	id	}	
	
								)	
								if	seq:	
												return	seq	
								return	None	
	
	
def	run(idsFile):	
				targetProp	=	'info'	#1	'seq'	
				geneIDs	=	[]	
				with	open(idsFile)	as	f:	
								csv_f	=	csv.reader(f)	
								for	row	in	csv_f:	
												geneIDs.append(row[0])	
	
				with	open('out.csv',	'w')	as	outfile:	
								writer	=	csv.writer(outfile)	
								writer.writerow(['ID',	'txid',	'scientific	name',	'common	name',	'synonym',	'taxonomy'])	
	
								for	ID	in	geneIDs:	
												client	=	EnsemblRestClient()	
												data	=	client.get_data(ID,	targetProp)	
												#code.interact(local=locals())	
												if	data:	
																if	data.uniprot.entry.organism.name['type'=='scientific']:	
																				sciName	=	data.uniprot.entry.organism.name['type'=='scientific'].cdata	
																else:	
																				sciName	=	data.uniprot.entry.organism.name.cdata	
																if	data.uniprot.entry.organism.name['type'=='common']:	
																				commonName	=	data.uniprot.entry.organism.name['type'=='common'].cdata	
																else:	
																				commonName	=	'none'	
																if	data.uniprot.entry.organism.name['type'=='synonym']:	
																				synName	=	data.uniprot.entry.organism.name['type'=='synonym'].cdata	
																else:	
																				synName	=	'none'	
																txid	=	data.uniprot.entry.organism.dbReference['id']	#get	target	id	
																l	=	len(data.uniprot.entry.organism.lineage.taxon)	
																i	=	1	
																tax	=	[]	
																while	i	<=	l:	
																				if	data.uniprot.entry.organism.lineage.taxon[l-i]:	
																								tax.append(data.uniprot.entry.organism.lineage.taxon[l-i].cdata)	
																				else:	
																								tax.append('no	tax{0}	found'.format(i))	
																				i	+=	1	
																writer.writerow([	ID,	txid,	sciName,	commonName,	synName]	+	tax)	
																print	targetProp	+	'	retrieved	for	{1}:	{0}'.format(sciName,	ID)	
	
#efetch.fcgi?db=taxonomy&id=1182543	
	
	
if	__name__	==	'__main__':	
				if	len(sys.argv)	==	2:	
								idsFile	=	sys.argv[1]	
				else:	
								idsFile	=	'in.csv'	
	
				run(idsFile)	
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7.4 Additional Figures 

7.4.1 For Chapter 4 

 

Figure 7.1  Specificity of fungal mating receptors  

(a) Heterologous receptors (‘species.Ste2’) were induced with 5 µM of the indicated fungal mating peptide. 

mCherry fluorescence was measured after 9 hours. Basal (0%) and maximal (100%) fluorescence used to 

generate orthogonality figure in Chapter 4. (b) Data as in a. Activation of heterologous mating receptors shown 

here grouped by mating peptide. 
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7.4.2 For Chapter 5 

 

 

 

 

 

 

 

 

Figure 7.2  Reporter responses to DTT 

Reporter cocktail was exposed to either standard media (grey histograms) or media with 50mM dithiothreitol 

(DTT, red histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) was 

deconvoluted using the CellTag signals. 
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Figure 7.3  Reporter responses to heatshock 

Reporter cocktail was exposed to either standard temperature 23C (grey histograms) or 42C (red histograms) 

for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) was deconvoluted using the CellTag 

signals. 
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Figure 7.4  Reporter responses to cobalt 

Reporter cocktail was exposed to either standard media (grey histograms) or media with 400uM CoCl2 (red 

histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) was deconvoluted 

using the CellTag signals. 
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Figure 7.5  Reporter responses to ethanol 

Reporter cocktail was exposed to either standard media with 2% glucose (grey histograms) or media with 2% 

ethanol as a sole carbon source (red histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 

reporter (B.n) was deconvoluted using the CellTag signals. 
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Reporter cocktail was exposed to either standard media (grey histograms) or media with 50uM FK506 (red 

histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) was deconvoluted 

using the CellTag signals. 

 

Figure 7.6  Reporter responses to FK506 
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Reporter cocktail was exposed to either standard media (grey histograms) or media with 0.7M NaCl (red 

histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) was deconvoluted 

using the CellTag signals. 

 

Figure 7.7  Reporter responses to osmotic shock 
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Figure 7.8  Reporter responses to hydrogen peroxide 

Reporter cocktail was exposed to either standard media (grey histograms) or media with 1mM hydrogen 

peroxide (red histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) was 

deconvoluted using the CellTag signals. 
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Figure 7.9  Reporter responses to mating pheromone 

Reporter cocktail was exposed to either standard media (grey histograms) or media with 5uM alpha factor 

mating pheromone (red histograms) for 6 hours. The normalized fluorescece from the mTagBFP2 reporter (B.n) 

was deconvoluted using the CellTag signals. 
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Reporter cocktail was exposed to either standard media (grey histograms) or media with 500uM 5-FOA (red 
histograms) for 6 hours. All the strains express the Ura3 gene product that converts 5-FOA to the cytotoxic 

compount 5-FU. The normalized fluorescece from the mTagBFP2 reporter (B.n) was deconvoluted using the 
CellTag signals. 

 

Figure 7.10  Reporter responses to 5-FOA 
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7.5 DNA Sequences and strains 

7.5.1 Strains.  

All strains are S. cerevisiae unless otherwise noted. Strains were generated in this study except where 

a source is noted. The nomenclature “ReRec[N]::” refers to expression modules inserted in the Nth 

round of reiterative recombination at the acceptor site located in the HO locus (31). 

Strain Genotype Comments 
FY251 MATa his3-Δ200, leu2-Δ1 trp1-Δ63, ura3-52 ATCC 96098 
BY4733 MATa his3Δ200 leu2Δ0 met15Δ0 trp1Δ63 ura3Δ0 ATCC 200895 

LW2591 BY4733 MATa-inc HOΔ::ReRec Reiterative Recombination 
acceptor strain (31)  

LW2671 BY4733 derivative overexpressing CrtEBI Constitutive lycopene 
producing strain (38)  

yMJ105 LW2591 sst2-Δ far1-Δ Parental biosensor strain 
Fluorescence Readout Strains 

yMJ183 yMJ105 ste2-Δ fus1Δ::pFUS1-HIS3-tHIS3 
ReRec[1]::pFUS1-yCherry-tACT1 

Receptor-less fluorescence 
reporter strain 

yMJ281 yMJ183 + pMJ093 S. cerevisiae Ste2 
yMJ282 yMJ183 + pMJ090 C. albicans Ste2 
yMJ284 yMJ183 + pMJ095 B. cinerea Ste2 
yMJ285 yMJ183 + pMJ096 C. glabrata Ste2 
yMJ286 yMJ183 + pMJ097 F. graminearum Ste2 
yMJ288 yMJ183 + pMJ099 L. elongisporous Ste2 
yMJ289 yMJ183 + pMJ100 M. oryzea Ste2 
yMJ290 yMJ183 + pMJ101 P. brasiliensis Ste2 
yMJ294 yMJ183 + pMJ105 Z. bailii Ste2 
yMJ295 yMJ183 + pMJ106 Z. rouxii Ste2 
yMJ312 yMJ183 + pMJ117 H. capsulatum Ste2 

yJM06 yMJ183 + pJM13 Codon-optimized C. glabrata 
Ste2 

Lycopene Sensor Strains 
yMJ116 yMJ105 ReRec[1]::pTEF1-CrtE-tADH1-(CrtB-pPGK1,rev) Lycopene null strain 

yMJ118 
yMJ105 
ReRec[1]::pTEF1-CrtE-tADH1-(CrtB-pPGK1,rev) 
ReRec[2]::pFUS1-CrtI-tACT1 

Unoptimized lycopene 
biosensor Lyco-1 

yMJ151 yMJ118 + pMJ006 “+ 2X CrtI” intermediate 
yMJ152 yMJ118 + pMJ009 “+ tHMG1” intermediate 
yMJ165 yMJ118 + pMJ012 “+ FAD1” intermediate 

yMJ251 

yMJ105 met15Δ::pFUS1-CrtI-tACT1-MET15 
ReRec[1]::pTEF1-CrtE-tADH1-(CrtB-pPGK1,rev) 
ReRec[2]::pFUS1-CrtI-tACT1 
ReRec[3]::pTDH3-FAD1-tPGK1 

Optimized lycopene biosensor 
Lyco-2 (Sc biosensor) 

yMJ258 yMJ251 ste2Δ::pTDH3-Pb.Ste2-tSTE2 Pb biosensor 
yMJ260 yMJ251 ste2Δ::pTDH3-Ca.Ste2-tSTE2 Ca biosensor 
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Strains Used to Generate Pathogen and Control Supernatants 
W303-1B MATα leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 ATCC 201238 
FY250 MATα his3-Δ200, leu2-Δ1 trp1-Δ63, ura3-52 (48)  

GC75 Candida albicans, MTLα/MTLα Genebank assembly number 
GCA_000773735.1 (44) 

ySB36 Candida albicans, MTLa/MTLα 

Clinical isolate obtained from 
A-C. Uhlemann, mating loci 
(MTL) were genotyped by 
PCR 

ySB45 Candida albicans, MTLα/MTLα 
sorbose selected isolate, 
derivative of isolate ySB36, 
MTL were genotyped by PCR 

Pb01 Paracoccidioides lutzii, MAT1-1 Supernatant prepared by Prof. 
Fernando Rodrigues (42) 

Pb18 Paracoccidioides brasiliensis, MAT1-2 Supernatant prepared by Prof. 
Fernando Rodrigues (42) 

Hc01 Histoplasma capsulatum, NAm2 Supernatant prepared by Prof. 
Chad Rappleye (40) 

Hc06 Histoplasma capsulatum, NAm1 Supernatant prepared by Prof. 
Chad Rappleye (40) 
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7.5.2 Plasmids.   

Plasmids were generated in this study except where a source is noted. 

Plasmid Construct Details Comments 
pSC203 Erwinia herbicola CrtEBI Kind gift from Gregory Stephanopoulos 
yEpGAP-
Cherry Yeast codon-optimized mCherry Kind gift from Neta Dean (37)  

pLPreB P. brasiliensis mating receptor Kind gift from Fernando Rodrigues (30) 
pMJ006 pRS416, pFUS1-CrtI-tACT1 Pheromone inducible CrtI 
pMJ009 pRS416, pTDH3-tHMG1-tCYC1 Overexpressed truncated HMG1 
pMJ012 pRS416, pTDH3-FAD1-tCYC1 Overexpressed FAD1 
pMJ090 pRS416, pTDH3-Ca.Ste2-tSTE2 Overexpressed C. albicans Ste2 homologue 
pMJ093 pRS416, pTDH3-Sc.Ste2-tSTE2 Overexpressed wild type Ste2 
pMJ095 pRS416, pTDH3-Bc.Ste2-tSTE2 Overexpressed B. cinerea Ste2 homologue 
pMJ096 pRS416, pTDH3-Cg.Ste2-tSTE2 Overexpressed C. glabrata Ste2 homologue 
pMJ097 pRS416, pTDH3-Fg.Ste2-tSTE2 Overexpressed F. graminearum Ste2 homologue 
pMJ099 pRS416, pTDH3-Le.Ste2-tSTE2 Overexpressed L. elongisporus Ste2 homologue 
pMJ100 pRS416, pTDH3-Mo.Ste2-tSTE2 Overexpressed M. oryzea Ste2 homologue 
pMJ101 pRS416, pTDH3-Pb.Ste2-tSTE2 Overexpressed P. brasiliensis Ste2 homologue 
pMJ105 pRS416, pTDH3-Zb.Ste2-tSTE2 Overexpressed Z. bailii Ste2 homologue 
pMJ106 pRS416, pTDH3-Zr.Ste2-tSTE2 Overexpressed Z. rouxii Ste2 homologue 
pMJ117 pRS416, pTDH3-Hc.Ste2-tSTE2 Overexpressed H. capsulatum Ste2 homologue 

pJM13 pRS416, pTDH3-Cg.Ste2opt-tSTE2 Overexpressed codon-optimized C. glabrata Ste2 
homologue 
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7.5.3  DNA sequences of expression modules constructed  

Promoters and terminators in upper case, open reading frames (ORFs) in lower case. 

Description Sequences 
Receptor Expression Module 

pTDH3- 
species.Ste2- 
tSTE2 

AGTTTATCATTATCAATACTGCCATTTCAAAGAATACGTAAATAATTAATAGTAGTGATTTTCCTAACTTTA
TTTAGTCAAAAAATTAGCCTTTTAATTCTGCTGTAACCCGTACATGCCCAAAATAGGGGGCGGGTTACACA
GAATATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACTAAATATAATGGAGCCCGC
TTTTTAAGCTGGCATCCAGAAAAAAAAAGAATCCCAGCACCAAAATATTGTTTTCTTCACCAACCATCAGTT
CATAGGTCCATTCTCTTAGCGCAACTACAGAGAACAGGGGCACAAACAGGCAAAAAACGGGCACAACCTC
AATGGAGTGATGCAACCTGCCTGGAGTAAATGATGACACAAGGCAATTGACCCACGCATGTATCTATCTCA
TTTTCTTACACCTTCTATTACCTTCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTGAAACCAGT
TCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATAAAGACGGTAGGTATTGATTGTAATTCTGTAAAT
CTATTTCTTAAACTTCTTAAATTCTACTTTTATAGTTAGTCTTTTTTTTAGTTTTAAAACACCAAGAACTTAGT
TTCGACGGATACTAGTAAA[receptor ORF]CTCGAGACGGCTTTGAAAAAGTAATTTCGTGACCTTCGGTATA 
AGGTTACTACTAGATTCAGGTGCTCATCAGATGCACCACATTCTCTATAAAAAAAAATGGTATCTTTCTTAT
TTGATAATATTTAAACTCCTTTACATAATAAACATCTCGTAAGTAGTGGTAGAAACCACCTTTGCTTTTACG
AGTTCAAGCTTTTTTCTTGCCATGATCTAGAACTCTCAGGCAATATATACAGTTAATCTTTTTTTACTGGGTT
GTAGTTCTAATGTATTGTTTCGAAAAATAGCAACCAGGCACA 

Fluorescent Reporter Module (yMJ183,yMJ194) 

pFUS1- 
yCherry-tACT1 

TACCATGTGGACCCTTTCAAAACAGAGTTGTATCTCTGCAGGATGCCCTTTTTGACGTATTGAATGGCATAA
TTGCACTGTCACTTTTCGCGCTGTCTCATTTTGGTGCGATGATGAAACAAACATGAAACGTCTGTAATTTGA
AACAAATAACGTAATTCTCGGGATTGGTTTTATTTAAATGACAATGTAAGAGTGGCTTTGTAAGGTATGTGT
TGCTCTTAAAATATTTGGATACGACATCCTTTATCTTTTTTCCTTTAAGAGCAGGATATAAGCCATCAAGTTT
CTGAAAATCAAAatggtttcaaaaggtgaagaagataatatggctattattaaagaatttatgagatttaaagttcatatggaaggttcagttaatggtcatgaatttgaaatt
gaaggtgaaggtgaaggtagaccatatgaaggtactcaaactgctaaattgaaagttactaaaggtggtccattaccatttgcttgggatattttgtcaccacaatttatgtatggttca
aaagcttatgttaaacatccagctgatattccagattatttaaaattgtcatttccagaaggttttaaatgggaaagagttatgaattttgaagatggtggtgttgttactgttactcaagatt
catcattacaagatggtgaatttatttataaagttaaattgagaggtactaattttccatcagatggtccagttatgcaaaaaaaaactatgggttgggaagcttcatcagaaagaatgt
atccagaagatggtgctttaaaaggtgaaattaaacaaagattgaaattaaaagatggtggtcattatgatgctgaagttaaaactacttataaagctaaaaaaccagttcaattacca
ggtgcttataatgttaatattaaattggatattacttcacataatgaagattatactattgttgaacaatatgaaagagctgaaggtagacattcaactggtggtatggatgaattatataa
ataaTCTCTGCTTTTGTGCGCGTATGTTTATGTATGTACCTCTCTCTCTATTTCTATTTTTAAACCACCCTCTCA
ATAAAATAAAAATAATAAAGTATTTTTAAGGAAAAGACGTGTTTAAGCACTGACTTTATCTACTTTTTGTAC
GTTTTCATTGATATAATGTGTTTTGTCTCTCCCTTTTCTACGAAAATTTCAAAAATTGACCAAAAAAAGGAA
TATATATACGAAAAACTATTATATTTATATATCATAGTGT 

Positive Selection Reporter Module (yMJ183,yMJ194) 

pFUS1- 
HIS3-tHIS3 
@FUS1 

TACCATGTGGACCCTTTCAAAACAGAGTTGTATCTCTGCAGGATGCCCTTTTTGACGTATTGAATGGCATAA
TTGCACTGTCACTTTTCGCGCTGTCTCATTTTGGTGCGATGATGAAACAAACATGAAACGTCTGTAATTTGA
AACAAATAACGTAATTCTCGGGATTGGTTTTATTTAAATGACAATGTAAGAGTGGCTTTGTAAGGTATGTGT
TGCTCTTAAAATATTTGGATACGACATCCTTTATCTTTTTTCCTTTAAGAGCAGGATATAAGCCATCAAGTTT
CTGAAAATCAAAatgacagagcagaaagccctagtaaagcgtattacaaatgaaaccaagattcagattgcgatctctttaaagggtggtcccctagcgatagagcac
tcgatcttcccagaaaaagaggcagaagcagtagcagaacaggccacacaatcgcaagtgattaacgtccacacaggtatagggtttctggaccatatgatacatgctctggcc
aagcattccggctggtcgctaatcgttgagtgcattggtgacttacacatagacgaccatcacaccactgaagactgcgggattgctctcggtcaagcttttaaagaggccctactg
gcgcgtggagtaaaaaggtttggatcaggatttgcgcctttggatgaggcactttccagagcggtggtagatctttcgaacaggccgtacgcagttgtcgaacttggtttgcaaag
ggagaaagtaggagatctctcttgcgagatgatcccgcattttcttgaaagctttgcagaggctagcagaattaccctccacgttgattgtctgcgaggcaagaatgatcatcaccg
tagtgagagtgcgttcaaggctcttgcggttgccataagagaagccacctcgcccaatggtaccaacgatgttccctccaccaaaggtgttcttatgtagTGACACCGAT
TATTTAAAGCTGCAGCATACGATATATATACATGTGTATATATGTATACCTATGAATGTCAGTAAGTATGTA
TACGAACAGTATGATACTGAAGATGACAAGGTAATGCATCATTCTATACGTGTCATTCTGAACGAGGCGCG
CTTTCCTTTTTTCTTTTTGCTTTTTCTTTTTTTTTCTCTTGAACTCGACGGATCTGAAAATAATATTGACGTTCGCA
TTTAATCTATACCTATAATTCTGTACTTATATACTGTT 

Negative Selection Reporter Module (yMJ194) 

pFUS2- 
URA3-tFUS2 
@FUS2 

TTTTTCTTTGTGAAACCAATTTTAGGTTTTCTTGTTATAGTAAGTTCTTAAGAAAAAGACAAGAAAACCCCT
TGCGatgtcgaaagctacatataaggaacgtgctgctactcatcctagtcctgttgctgccaagctatttaatatcatgcacgaaaagcaaacaaacttgtgtgcttcattggatgt
tcgtaccaccaaggaattactggagttagttgaagcattaggtcccaaaatttgtttactaaaaacacatgtggatatcttgactgatttttccatggagggcacagttaagccgctaaa
ggcattatccgccaagtacaattttttactcttcgaagacagaaaatttgctgacattggtaatacagtcaaattgcagtactctgcgggtgtatacagaatagcagaatgggcagac
attacgaatgcacacggtgtggtgggcccaggtattgttagcggtttgaagcaggcggcagaagaagtaacaaaggaacctagaggccttttgatgttagcagaattgtcatgca
agggctccctatctactggagaatatactaagggtactgttgacattgcgaagagcgacaaagattttgttatcggctttattgctcaaagagacatgggtggaagagatgaaggtt
acgattggttgattatgacacccggtgtgggtttagatgacaagggagacgcattgggtcaacagtatagaaccgtggatgatgtggtctctacaggatctgacattattattgttgg
aagaggactatttgcaaagggaagggatgctaaggtagagggtgaacgttacagaaaagcaggctgggaagcatatttgagaagatgcggccagcaaaactaaCAAAA
GAGTATATTTAGCTTATAGTTTTTAGAATGTTTTGTTTTCTTTTTTATTAAAGTAGTACTACTGCGCTG 

Lycopene Readout Modules (yMJ116, yMJ118, yMJ251) 
pTEF1- 
CrtE-tADH1- 

ATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCGTACCACT
TCAAAACACCCAAGCACAGCATACTAAATTTCCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACT
AAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTTTT
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(CrtB-pPGK1, 
rev) 

ATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTTGATTTTTTTCTCTTTCGATGACCTCCCATTGATATTTAAGT
TAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTGC
TCATTAGAAAGAAAGCATAGCAATCTAATCTAAGTTTTAATTACAAAatggtttctggttcgaaagcaggagtatcacctcataggg
aaatcgaagtcatgagacagtccattgatgaccacttagcaggattgttgccagaaacagattcccaggatatcgttagccttgctatgagagaaggtgttatggcacctggtaaac
gtatcagacctttgctgatgttacttgctgcaagagacctgagatatcagggttctatgcctacactactggatctagcttgtgctgttgaactgacacatactgcttccttgatgctgga
tgacatgccttgtatggacaatgcggaacttagaagaggtcaaccaacaacccacaagaaattcggagaatctgttgccattttggcttctgtaggtctgttgtcgaaagcttttggct
tgattgctgcaactggtgatcttccaggtgaaaggagagcacaagctgtaaacgagctatctactgcagttggtgttcaaggtctagtcttaggacagttcagagatttgaatgacg
cagctttggacagaactcctgatgctatcctgtctacgaaccatctgaagactggcatcttgttctcagctatgttgcaaatcgtagccattgcttctgcttcttcaccatctactaggga
aacgttacacgcattcgcattggactttggtcaagcctttcaactgctagacgatttgagggatgatcatccagagacaggtaaagaccgtaacaaagacgctggtaaaagcactc
tagtcaacagattgggtgctgatgcagctagacagaaactgagagagcacattgactctgctgacaaacacctgacatttgcatgtccacaaggaggtgctataaggcagtttatg
cacctatggtttggacaccatcttgctgattggtctccagtgatgaagatcgcctaaGCGAATTTCTTATGATTTATGATTTTTATTATTAAATA
AGTTATAAAAAAAATAAGTGTATACAAATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTT
GAGTAACTCTTTCCTGTAGGTCAGGTTGCTTTCTCAGGTATAGCATGAGGTCGCTCttagacaggtctttgccataaaccagc
aggtcttggtgtaactctggttgttttggcacgaatgacttgtcctggtgcagccataagcatcgcaatcttctctcctttgctagtgtgttgacgtctatcccaagcagaaccacctgc
agcttttaccttgatgccaatctctctgtagacagatcttgcagtagctatagcccaagcacatctaggtggtagatcatgcaatccagcttgacttgagatgtaatagggttcagcag
cgtctatcagcctttcagcaactcttgctaatgcagctctgttctctcttgcagcgtaattctcaggagttagaccagcatcttgcaaccattcagcaggtagatagcatctgtcaatag
ctgcatcgtcgataatatctctcgcgatgtttgtcagctgaaaagccaaacctagatcacaagctctgtccaaaaccctttcgtctcttacacccattactcttgccatcatcaaaccaa
ctactccagcaacatggtagcagtatctcaaggtgtcttcaaaggtcacgtaacgagtttgagcaacatccattgcgaaaccatccaagtgatcaagtgccattcttggcgtaatac
cgtgtgttagtgcaacttcttggaatgcagcaaaagcaggatcttgcatctcagcaccttcaaaagctgcaagtgtaagcgttctcaatctagccaatctctgagtagcctcttcttctg
cagcagcttcagatgcgaaaccatgtgtctggtcatctataacgtcatcacagtgtctacaccaagtgtacagcataagcactgatcttctagtagctgggtcaaacagtttagctgc
tgtagcaaaggacttggaaccattagccatcgtttgagtagcatgatccaacaaaggtggttgactcatTGTTTTATATTTGTTGTAAAAAGTAGATAA
TTACTTCCTTGATGATCTGTAAAAAAGAGAAAAAGAAAGCATCTAAGAACTTGAAAAACTACGAATTAGA
AAAGACCAAATATGTATTTCTTGCATTGACCAATTTATGCAAGTTTATATATATGTAAATGTAAGTTTCACG
AGGTTCTACTAAACTAAACCACCCCCTTGGTTAGAAGAAAAGAGTGTGTGAGAACAGGCTGTTGTTGTCAC
ACGATTCGGACAATTCTGTTTGAAAGAGAGAGAGTAACAGTACGATCGAACGAACTTTGCTCTGGAGATCA
CAGTGGGCATCATAGCATGTGGTACTAAACCCTTTCCCGCCATTCCAGAACCTTCGATTGCTTGTTACAAAA
CCTGTGAGCCGTCGCTAGGACCTTGTTGTGTGACGAAATTGGAAGCTGCAATCAATAGGAAGACAGGAAGT
CGAGCGTGTCTGGGTTTTTTCAGTTTTGTTCTTTTTGCAAACAAATCACGAGCGACGGTAATTTCTTTCTCGA
TAAGAGGCCACGTGCTTTATGAGGGTAACATCAATTCAAGAAGGAGGGAAACACTTCCTTTTTCTGGCCCT
GATAATAGTATGAGGGTGAAGCCAAAATAAAGGATTCGCGCCCAAATCGGCATCTTTAAATGCAGGTATGC
GATAGTTCCTCACTCTTTCCTTACTCACGAGTAATTCTTGCAAATGCCTATTATGCAGATGTTATAATATCTG
TGCGTCTTGAGTTGAAGTCAGGAATCTAAAATAAAAATTAAGGTTAATAAAAAGAGGAAAGAAAAAAAAA
TTAATCGATTTACAGAAACTTGCACACTAAAAATACACAACTAAAAGCAATTACAGTATGGGAAGTCATCG
ACGTTATCTCTACTATAGTATATTATCATTTCTATTATTATCCTGCTCAGTGGTACTTGCAAAACAAGATAA
GACCCCATTCTTTGAAGGTACTTCTTCGAAAAATTCGCGTCT 

pFUS1- 
CrtI-tACT1 

TACCATGTGGACCCTTTCAAAACAGAGTTGTATCTCTGCAGGATGCCCTTTTTGACGTATTGAATGGCATAA
TTGCACTGTCACTTTTCGCGCTGTCTCATTTTGGTGCGATGATGAAACAAACATGAAACGTCTGTAATTTGA
AACAAATAACGTAATTCTCGGGATTGGTTTTATTTAAATGACAATGTAAGAGTGGCTTTGTAAGGTATGTGT
TGCTCTTAAAATATTTGGATACGACATCCTTTATCTTTTTTCCTTTAAGAGCAGGATATAAGCCATCAAGTTT
CTGAAAATCAAAatgaagaaaaccgtagtgattggtgcaggttttggtggtttagctttggctatacgtctacaagctgcaggtattcctacagtgctattggagcaaaga
gacaaaccaggaggaagagcttatgtttggcacgatcaaggctttacctttgatgctggtcctacagtcatcactgatcctactgcattggaagctttgttcaccttagctggtagaag
aatggaagattatgtccgtctattgcctgtcaagccgttttacagattgtgttgggaatctggtaaaaccctagattacgccaatgacagtgctgaactagaagctcagattacgcagt
ttaatcccagagatgtcgaaggttacaggagattccttgcctattcccaagctgttttccaagagggttatcttcgtttgggttcagttccattcctgtcctttagggatatgcttagagca
ggtcctcagttgttgaagctacaagcatggcaaagtgtgtatcagtctgtttcgagatttatcgaggatgaacatctgagacaagcattctcattccacagtcttctagttggaggtaat
ccctttaccacatcgagcatatatacgttgattcacgctttggaaagagaatggggagtttggtttcctgaaggtggaacaggtgctttggttaatggtatggtgaagctattcacgga
tttgggtggagaaatagagctgaatgcaagagtggaagaacttgttgtagcagacaacagagtctcacaagttagacttgctgatggtaggatcttcgatacagatgctgtagcttc
aaacgcagatgtagtgaacacttataaaaagttgttgggacatcatcctgttggacaaaagagagcagctgctttggagaggaaatctatgagcaactcgttgtttgtcctttactttg
ggctgaatcaaccacactcacaactagctcatcacacaatctgctttggtcctagatacagagagctgatagatgaaattttcactggatctgctttagcagacgatttttccctgtact
tgcattcaccatgtgttactgatccctctttagcaccacctggttgtgctagcttctatgtactagcacctgtaccacatttgggtaatgctccattagattgggcacaagaaggaccga
aattgagggataggatcttcgactatttggaagaacgttacatgccaggtttgagatctcagttggttacacagaggatattcacaccagctgattttcatgatactctagatgcgcatt
taggtagcgctttttccattgagccacttttgacgcaaagtgcttggtttagaccacacaacagagattctgacattgccaatctgtacctagtaggtgcaggaactcatccaggagct
ggtattcctggagttgtagcttctgctaaagctactgctagtctgatgatcgaggatttgcagtaaTCTCTGCTTTTGTGCGCGTATGTTTATGTATGT
ACCTCTCTCTCTATTTCTATTTTTAAACCACCCTCTCAATAAAATAAAAATAATAAAGTATTTTTAAGGAAA
AGACGTGTTTAAGCACTGACTTTATCTACTTTTTGTACGTTTTCATTGATATAATGTGTTTTGTCTCTCCCTTT
TCTACGAAAATTTCAAAAATTGACCAAAAAAAGGAATATATATACGAAAAACTATTATATTTATATATCAT
AGTGT 

pTDH3- 
FAD1-tPGK1 

AGTTTATCATTATCAATACTCGCCATTTCAAAGAATACGTAAATAATTAATAGTAGTGATTTTCCTAACTTT
ATTTAGTCAAAAAATTAGCCTTTTAATTCTGCTGTAACCCGTACATGCCCAAAATAGGGGGCGGGTTACAC
AGAATATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACTAAATATAATGGAGCCCG
CTTTTTAAGCTGGCATCCAGAAAAAAAAAGAATCCCAGCACCAAAATATTGTTTTCTTCACCAACCATCAG
TTCATAGGTCCATTCTCTTAGCGCAACTACAGAGAACAGGGGCACAAACAGGCAAAAAACGGGCACAACC
TCAATGGAGTGATGCAACCTGCCTGGAGTAAATGATGACACAAGGCAATTGACCCACGCATGTATCTATCT
CATTTTCTTACACCTTCTATTACCTTCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTGAAACCA
GTTCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATAAAGACGGTAGGTATTGATTGTAATTCTGTAA
ATCTATTTCTTAAACTTCTTAAATTCTACTTTTATAGTTAGTCTTTTTTTTAGTTTTAAAACACCAAGAACTTA
GTTTCGAAGGATTCTAGAACTAGTAACatgcagttgagcaaggctgctgagatgtgttatgagataacaaactcttacttacacatagaccagaaatctc
agataatagcaagtacacaagaagcgatacggttgacaagaaaatacttactaagtgaaatttttgtacgttggagtccactgaatggggaaatatcattctcgtacaacggaggaa
aagattgccaggtattactactgttatatctgagttgcttatgggaatatttcttcattaaggctcaaaattcccaattcgatttcgagtttcaaagcttccccatgcaaagacttccaactg
ttttcattgatcaagaagaaactttccctacattagagaattttgtactggaaacctcagagcgatattgcctttccttatacgaatcacaaaggcaatctggtgcatcggtcaatatggc
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agacgcatttagagattttataaagatataccctgagaccgaagctatagtgataggtattagacacacagacccatttggtgaagcattaaagcctattcaaagaacagattctaac
tggcctgattttatgaggttgcaacctctcttacactgggacttaaccaatatatggagtttcttactgtattctaatgagccaatttgtggactatatggtaaaggtttcacatcaatcggc
ggaattaacaactcattgcctaacccacacttgagaaaggactccaataatccagccttgcattttgaatgggaaatcattcatgcatttggcaaggacgcagaaggcgaacgtagt
tccgctataaacacgtcacctatttccgtggtggataaggaaagattcagcaaataccatgacaattactatcctggctggtatttggttgatgacactttagagagagcaggcagga
tcaagaattaaATTGAATTGAATTGAAATCGATAGATCAATTTTTTTCTTTTCTCTTTCCCCATCCTTTACGCTAAA
ATAATAGTTTATTTTATTTTTTGAATATTTTTTATTTATATACGTATATATAGACTATTATTTATCTTTTAATG
ATTATTAAGATTTTTATTAAAAAAAAATTCGCTCCTCTTTTAATGCCTTTATGCAGTTTTTTTTTCCCATTCG
ATATTTCTATGTTCGGGTTCAGCGTATTTTAAGTTTAATAACTCGAAAATTCTGCGTTCGTTAAAGCTTTCGA
GAAGGATATTATTTCGAAATAAACCGTGTTGTGTAAGCTTGAAGCCTTTTTGCGCTGCCAATATTCTTATCC
ATCTATTGTACTCTTTAGATCCAGTATAGTGTATTCTTCCTG 

Expression Modules for Lycopene Readout Optimization (pMJ006, pMJ009, pMJ012) 
pFUS1- 
CrtI-tACT1 Same as pFUS1-CrtI-tACT1 expression module in Lycopene Readout Modules above. 

pTDH3- 
tHMG1-tCYC1 

AGTTTATCATTATCAATACTCGCCATTTCAAAGAATACGTAAATAATTAATAGTAGTGATTTTCCTAACTTT
ATTTAGTCAAAAAATTAGCCTTTTAATTCTGCTGTAACCCGTACATGCCCAAAATAGGGGGCGGGTTACAC
AGAATATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACTAAATATAATGGAGCCCG
CTTTTTAAGCTGGCATCCAGAAAAAAAAAGAATCCCAGCACCAAAATATTGTTTTCTTCACCAACCATCAG
TTCATAGGTCCATTCTCTTAGCGCAACTACAGAGAACAGGGGCACAAACAGGCAAAAAACGGGCACAACC
TCAATGGAGTGATGCAACCTGCCTGGAGTAAATGATGACACAAGGCAATTGACCCACGCATGTATCTATCT
CATTTTCTTACACCTTCTATTACCTTCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTGAAACCA
GTTCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATAAAGACGGTAGGTATTGATTGTAATTCTGTAA
ATCTATTTCTTAAACTTCTTAAATTCTACTTTTATAGTTAGTCTTTTTTTTAGTTTTAAAACACCAGAACTTAG
TTTCGACGGATTCTAGAACTAGTatggaccaattggtgaaaactgaagtcaccaagaagtcttttactgctcctgtacaaaaggcttctacaccagttttaacc
aataaaacagtcatttctggatcgaaagtcaaaagtttatcatctgcgcaatcgagctcatcaggaccttcatcatctagtgaggaagatgattcccgcgatattgaaagcttggataa
gaaaatacgtcctttagaagaattagaagcattattaagtagtggaaatacaaaacaattgaagaacaaagaggtcgctgccttggttattcacggtaagttacctttgtacgctttgg
agaaaaaattaggtgatactacgagagcggttgcggtacgtaggaaggctctttcaattttggcagaagctcctgtattagcatctgatcgtttaccatataaaaattatgactacgac
cgcgtatttggcgcttgttgtgaaaatgttataggttacatgcctttgcccgttggtgttataggccccttggttatcgatggtacatcttatcatataccaatggcaactacagagggtt
gtttggtagcttctgccatgcgtggctgtaaggcaatcaatgctggcggtggtgcaacaactgttttaactaaggatggtatgacaagaggcccagtagtccgtttcccaactttgaa
aagatctggtgcctgtaagatatggttagactcagaagagggacaaaacgcaattaaaaaagcttttaactctacatcaagatttgcacgtctgcaacatattcaaacttgtctagca
ggagatttactcttcatgagatttagaacaactactggtgacgcaatgggtatgaatatgatttctaaaggtgtcgaatactcattaaagcaaatggtagaagagtatggctgggaag
atatggaggttgtctccgtttctggtaactactgtaccgacaaaaaaccagctgccatcaactggatcgaaggtcgtggtaagagtgtcgtcgcagaagctactattcctggtgatgt
tgtcagaaaagtgttaaaaagtgatgtttccgcattggttgagttgaacattgctaagaatttggttggatctgcaatggctgggtctgttggtggatttaacgcacatgcagctaattta
gtgacagctgttttcttggcattaggacaagatcctgcacaaaatgttgaaagttccaactgtataacattgatgaaagaagtggacggtgatttgagaatttccgtatccatgccatc
catcgaagtaggtaccatcggtggtggtactgttctagaaccacaaggtgccatgttggacttattaggtgtaagaggcccgcatgctaccgctcctggtaccaacgcacgtcaatt
agcaagaatagttgcctgtgccgtcttggcaggtgaattatccttatgtgctgccctagcagccggccatttggttcaaagtcatatgacccacaacaggaaacctgctgaaccaac
aaaacctaacaatttggacgccactgatataaatcgtttgaaagatgggtccgtcacctgcattaaatcctaaCTCGAGTCATGTAATTAGTTATGTCACG
CTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGG
TCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGT
ACAGACGCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCT
TTAATTTGCGGCC 

pTDH3- 
FAD1-tCYC1 

AGTTTATCATTATCAATACTCGCCATTTCAAAGAATACGTAAATAATTAATAGTAGTGATTTTCCTAACTTT
ATTTAGTCAAAAAATTAGCCTTTTAATTCTGCTGTAACCCGTACATGCCCAAAATAGGGGGCGGGTTACAC
AGAATATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACTAAATATAATGGAGCCCG
CTTTTTAAGCTGGCATCCAGAAAAAAAAAGAATCCCAGCACCAAAATATTGTTTTCTTCACCAACCATCAG
TTCATAGGTCCATTCTCTTAGCGCAACTACAGAGAACAGGGGCACAAACAGGCAAAAAACGGGCACAACC
TCAATGGAGTGATGCAACCTGCCTGGAGTAAATGATGACACAAGGCAATTGACCCACGCATGTATCTATCT
CATTTTCTTACACCTTCTATTACCTTCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTGAAACCA
GTTCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATAAAGACGGTAGGTATTGATTGTAATTCTGTAA
ATCTATTTCTTAAACTTCTTAAATTCTACTTTTATAGTTAGTCTTTTTTTTAGTTTTAAAACACCAGAACTTAG
TTTCGACGGATTCTAGAACTAGTAACatgcagttgagcaaggctgctgagatgtgttatgagataacaaactcttacttacacatagaccagaaatctcag
ataatagcaagtacacaagaagcgatacggttgacaagaaaatacttactaagtgaaatttttgtacgttggagtccactgaatggggaaatatcattctcgtacaacggaggaaaa
gattgccaggtattactactgttatatctgagttgcttatgggaatatttcttcattaaggctcaaaattcccaattcgatttcgagtttcaaagcttccccatgcaaagacttccaactgttt
tcattgatcaagaagaaactttccctacattagagaattttgtactggaaacctcagagcgatattgcctttccttatacgaatcacaaaggcaatctggtgcatcggtcaatatggca
gacgcatttagagattttataaagatataccctgagaccgaagctatagtgataggtattagacacacagacccatttggtgaagcattaaagcctattcaaagaacagattctaact
ggcctgattttatgaggttgcaacctctcttacactgggacttaaccaatatatggagtttcttactgtattctaatgagccaatttgtggactatatggtaaaggtttcacatcaatcggc
ggaattaacaactcattgcctaacccacacttgagaaaggactccaataatccagccttgcattttgaatgggaaatcattcatgcatttggcaaggacgcagaaggcgaacgtagt
tccgctataaacacgtcacctatttccgtggtggataaggaaagattcagcaaataccatgacaattactatcctggctggtatttggttgatgacactttagagagagcaggcagga
tcaagaattaaCTCGAGTCATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCG
AAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAA
CGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTATACTGAAAAC
CTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCGGCC 
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CellTag Expression Modules 

main CellTag 
expression 
 
pTDH3-
(CellTag)-
tCaADH1 

CAGTTCGAGTTTATCATTATCAATACTGCCATTTCAAAGAATACGTAAATAATTAATAGTAGTGATTTTCCT
AACTTTATTTAGTCAAAAAATTAGCCTTTTAATTCTGCTGTAACCCGTACATGCCCAAAATAGGGGGCGGGT
TACACAGAATATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACTAAATATAATGGAG
CCCGCTTTTTAAGCTGGCATCCAGAAAAAAAAAGAATCCCAGCACCAAAATATTGTTTTCTTCACCAACCAT
CAGTTCATAGGTCCATTCTCTTAGCGCAACTACAGAGAACAGGGGCACAAACAGGCAAAAAACGGGCACA
ACCTCAATGGAGTGATGCAACCTGCCTGGAGTAAATGATGACACAAGGCAATTGACCCACGCATGTATCTA
TCTCATTTTCTTACACCTTCTATTACCTTCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTGAAAC
CAGTTCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATAAAGACGGTAGGTATTGATTGTAATTCTGT
AAATCTATTTCTTAAACTTCTTAAATTCTACTTTTATAGTTAGTCTTTTTTTTAGTTTTAAAACACCAAGAACT
TAGTTTCGAATAAACACACATAAACAAACAAA.(CellTag ORF).tagCCGCGGTAAGCAAATAGCTAAATTATA 
TACGAATTAATATTATGATTAAGTGTTTACGTGAGTGCGATATTTTTATTACTATCTTATACAGTTGTATATA
CTCTATAAAATGAGTTGTCTATTAATTAACGCGATGAATGCTTTCTGGGTTTACCTCTCCAACAACTCTAGTT
TACTTCTCAATACATTCAATTGTATTTGATTTGTCAATACTTCATCATTAATCAATTCTATAGTTTTGTTTTTC
TCGTTTATTTCCAAATTTAATGCATCAATTTTATTATTCAATTTGTCGTTGATTTTGGTTAATGATTTTATGGT
TTGATCTCTGGCATTGATTGTTTGTGTTAGTTTTTCATTATTGATAATTAAATTATTTAAGTTAGTTATCAACT
CGGTGTTTTCAAGTTTCAAGTTTTCAATTTCTTTAGAGTTTATTAGATTTGTCAAAGTTTCTGAATTGCTTGAT
TGGTCCTGTAGAAGAGTATTTGTTGTTGTGGATAATTGATTCAATTTTTGAGACAATTGCTGGAAGGCGTTG
AAATATCTAGCATCAATCTCATGGTTTTTTTCCCGAGAGTCTCGTAGATTCAATTGTTTTAATATATCTTGGG
ACCACTCTTGATTTGAACTCATGGAAATTAAACTGGGTGTTGTGTTGTGGTGTAATGATTGTACCCCCTTTGC
TTATAATTGTGTGG 

ORF type 1 
(FP1-fs-FP2) 
 
eGFP-fs-
mCherry 
 
FPs in lower 
case, slippery 
site underlined, 
internal stop in 
bold 

Atgtctaaaggtgaagaattattcactggtgttgtcccaattttggttgaattagatggtgatgttaatggtcacaaattttctgtctccggtgaaggtgaaggtgatgctacttacggta
aattgaccttaaaatttatttgtactactggtaaattgccagttccatggccaaccttagtcactactttcggttatggtgttcaatgttttgctagatacccagatcatatgaaacaacatg
actttttcaagtctgccatgccagaaggttatgttcaagaaagaactatttttttcaaagatgacggtaactacaagaccagagctgaagtcaagtttgaaggtgataccttagttaata
gaatcgaattaaaaggtattgattttaaagaagatggtaacattttaggtcacaaattggaatacaactataactctcacaatgtttacatcatggctgacaaacaaaagaatggtatca
aagttaacttcaaaattagacacaacattgaagatggttctgttcaattagctgaccattatcaacaaaatactccaattggtgatggtccagtcttgttaccagacaaccattacttatc
cactcaatctgccttatccaaagatccaaacgaaaagagagaccacatggtcttgttagaatttgttactgctgctggtattacccatggtatggatgaattgtacaaaGCTAGC
GGCAGCGGCGACTACAAGGACGACGACGACAAGACTTTAAACTAGTTGA[pseudoknot variable region]GGCG 
GTTCTATGGGAATGTCTGGAGACGTCatggtttcaaaaggtgaagaagataatatggctattattaaagaatttatgagatttaaagttcatatggaaggttc
agttaatggtcatgaatttgaaattgaaggtgaaggtgaaggtagaccatatgaaggtactcaaactgctaaattgaaagttactaaaggtggtccattaccatttgcttgggatatttt
gtcaccacaatttatgtatggttcaaaagcttatgttaaacatccagctgatattccagattatttaaaattgtcatttccagaaggttttaaatgggaaagagttatgaattttgaagatgg
tggtgttgttactgttactcaagattcatcattacaagatggtgaatttatttataaagttaaattgagaggtactaattttccatcagatggtccagttatgcaaaaaaaaactatgggttg
ggaagcttcatcagaaagaatgtatccagaagatggtgctttaaaaggtgaaattaaacaaagattgaaattaaaagatggtggtcattatgatgctgaagttaaaactacttataaa
gctaaaaaaccagttcaattaccaggtgcttataatgttaatattaaattggatattacttcacataatgaagattatactattgttgaacaatatgaaagagctgaaggtagacattcaa
ctggtggtatggatgaattatataaa 

ORF type 2 
(FP2-fs-FP1) 
 
mCherry-fs-
eGFP 

Same as eGFP-fs-mCherry module with portions in lower case exactly swapped. 

ORF type 3 
(fs-FP1-fs-FP2) 
 
fs-eGFP-fs-
mCherry 

ATGGGTTCAGGTGAACAATCAAAGACTTTAAACTAGTTGA[pseudoknot variable region]GGCGGTTCTATGGG 
AATGTCTGGAGTCGAC[eGFP ORF from above]GCTAGCGGCAGCGGCGACTACAAGGACGACGACGACAAG 
ACTTTAAACTAGTTGA[pseudoknot variable region]GGCGGTTCTATGGGAATGTCTGGAGACGTC[mCherry 
ORFfrom above] 

ORF type 4 
(fs-FP2-fs-FP1) 
 
fs-mCherry-fs-
eGFP 

Same as fs-eGFP-fs-mCherry module with FP ORFs exactly swapped. 

Pseudoknot A 
(0.3%) CGCGCAACTAATTCAGGCCGCGTTAAACGTTCTAGAA 

Pseudoknot B 
(4.2%) CGCGTCGCTAACACGTGGCGCGTTAAACCATCTAGAA 

Pseudoknot C 
(9.4%) CGCGGATCTAGCTTGTAACGCGTTAAACCAGCTAGAA 

Pseudoknot D 
(30%) CGCGTCGCTACCGCCCGGCGCGTTAAACACACTAGAA 
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7.5.4 Key primers 

Gibson assembly was used for receptor cloning except where restriction sites are underlined. 

Primers used for cloning fungal receptors from genomic DNA and pLPreB 

Sc.Ste2 MJ492  ACCAAGAACTTAGTTTCGACGGATACTAGTAAAATGTCTGATGCGGCTCCTTC 
MJ493  ACGAAATTACTTTTTCAAAGCCGTCTCGAGCTATAAATTATTATTATCTTCAGTCCAGAA 

Ca.Ste2 MJ440  acgtcaaggagaaaaaaccccggaaactagtaAAATGAATATCAATTCAACTTTCATACC 
MJ362  gcaagtctcgagCTACACTCTTTTGATGGTGATTTG 

Cg.Ste2 MJ498  ACCAAGAACTTAGTTTCGACGGATACTAGTAAAATGGAGATGGGCTACGATCC 
MJ499  ACGAAATTACTTTTTCAAAGCCGTCTCGAGCTATTTGTCACACTGACTTTGTTG 

Le.Ste2 MJ504  ACCAAGAACTTAGTTTCGACGGATACTAGTAAAATGGACGAAGCAATCAATGCAAAC 
MJ505  ACGAAATTACTTTTTCAAAGCCGTCTCGAGCTATTTTTTCAACATAGTCACTTC    

Pb.Ste2 MJ508  ACCAAGAACTTAGTTTCGACGGATACTAGTAAAATGGCACCCTCATTCGACC 
MJ509  ACGAAATTACTTTTTCAAAGCCGTCTCGAGCTAGGCCTTTGTGCCAGCTTC 

Zr.Ste2 MJ518  ACCAAGAACTTAGTTTCGACGGATACTAGTAAAATGAGTGAGATTAACAATTCTACCTAC 
MJ519  ACGAAATTACTTTTTCAAAGCCGTCTCGAGCTATAATTTCTTTAGGATAATTTTTTTACT 

Primers used for genotyping MTL loci of C. albicans 

MTLα SB469  TGTAAACATCCTCAATTGTACCCGA 
SB470  TTCGAGTACATTCTGGTCGCG 

MTLa1 SB471  TTCGAGTACATTCTGGTCGCG 
SB472  ATCAATTCCCTTTCTCTTCGATTAGG 

Primers used for cloning stress promoter reporters 

pACT1  MJ615  ctcactaaagggaacaaaagctggagctctagtCCTTAAAAACATATGCCTCACCCT 
MJ616  GCATATTTTCTTTAATCAATTCAGACATtttctagaCAGTAAATTTTCGATCTTGGGAAG 

pTEF1  MJ617  ctcactaaagggaacaaaagctggagctctagtATAGCTTCAAAATGTTTCTACTCCT 
MJ618  GCATATTTTCTTTAATCAATTCAGACATtttctagaTTAGATTGCTATGCTTTCTTTC 

pHSP12 MJ619  ctcactaaagggaacaaaagctggagctctagtAGTGAAAATCTCCGGGAGCG 
MJ620  GCATATTTTCTTTAATCAATTCAGACATtttctagaTGAGTTGTTTGTTTGAGATTATCG 

pSSA1  MJ621  ctcactaaagggaacaaaagctggagctctagtGGCATTTTCGTTCTTGTGGA 
MJ622  GCATATTTTCTTTAATCAATTCAGACATtttctagaATTTTTGTTTCTTGTAATACTTGA 

pERO1  MJ623  ctcactaaagggaacaaaagctggagctctagtAAAGAACACGGCGGTAAGAA 
MJ624  GCATATTTTCTTTAATCAATTCAGACATtttctagaTTTACCTGCACGTTACTGTGG 

pGPD1  MJ625  ctcactaaagggaacaaaagctggagctctagtCTGGGGTTTGAGCAAGTCTA 
MJ626  GCATATTTTCTTTAATCAATTCAGACATtttctagaTTATCAATATTTGTGTTTGTGGAG 

pFUS1  MJ627  ctcactaaagggaacaaaagctggagctctagtTGCCTCAATCCTTCTTTTGCTT 
MJ628  GCATATTTTCTTTAATCAATTCAGACATtttctagACTTGATGGCTTATATCCTGCTCT 

pTRX2  MJ629  ctcactaaagggaacaaaagctggagctctagtACTTTTACGGGTGGCAACG 
MJ630  GCATATTTTCTTTAATCAATTCAGACATtttctagaTCGTAGACTCTCGTGTATGTGTGC 

pRNR3  MJ631  ctcactaaagggaacaaaagctggagctctagtGTAATAACAAGCAGGTGGGCG 
MJ632  GCATATTTTCTTTAATCAATTCAGACATtttctagaTTATTGCTGCTGCTATTCTTGCTT 

pHXT1  MJ633  ctcactaaagggaacaaaagctggagctctagtTGCAAAAAGCTTCCGATCCT 
MJ634  GCATATTTTCTTTAATCAATTCAGACATtttctagACGTATATCAACTAGTTGACGATTA 

pCUP1  MJ635  ctcactaaagggaacaaaagctggagctctagtTCACCACCCTTTATTTCAGGC 
MJ636  GCATATTTTCTTTAATCAATTCAGACATtttctagaTGTGATGATTGATTGATTGATTGT 

pZRT1  MJ637  ctcactaaagggaacaaaagctggagctctagtGGCAAGAGTATTTCAGACTTTCCT 
MJ638  GCATATTTTCTTTAATCAATTCAGACATtttctagATTTGTGCTGTTGTTTTATTGTCT 

pFET3  MJ666  ctcactaaagggaacaaaagctggagctctagtGATAATGCCTTGGCTTGCCT 
MJ640  GCATATTTTCTTTAATCAATTCAGACATtttctagaTACTCTTCCTTACACTGGGGTCC 

pARR3  MJ641  ctcactaaagggaacaaaagctggagctctagtCACGTGCAAAATCTTCTCTTCG 
MJ642  GCATATTTTCTTTAATCAATTCAGACATtttctagaCCTGATGATTTGTTGGTTGGGT 

pHIS4  MJ643  ctcactaaagggaacaaaagctggagctctagtAAACCCATGCACAGTGACTC 
MJ644  GCATATTTTCTTTAATCAATTCAGACATtttctagaATTGTATTACTATTACACAGCGCA 

pPRM5  MJ645  ctcactaaagggaacaaaagctggagctctagtCTCACCCGGATCGTAGTCAC 
MJ646  GCATATTTTCTTTAATCAATTCAGACATtttctagaTCTTGCGTTTTGAGTGTCAATTT 

pDAL5  MJ649  ctcactaaagggaacaaaagctggagctctagtAGCGTTCTCATCAGTCACTTG 
MJ650  GCATATTTTCTTTAATCAATTCAGACATtttctagaATCCTTGTTTTGTTGTTTTCTTCA 

pPMC1  MJ651  ctcactaaagggaacaaaagctggagctctagtGTTTTTACCCGGCAAAGAAGC 
MJ652  GCATATTTTCTTTAATCAATTCAGACATtttctagaTATTTTTTTTGTTACGCACACAGT 
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pOLE1  MJ653  ctcactaaagggaacaaaagctggagctctagtCATGTCCCGGGGTTAGCG 
MJ654  GCATATTTTCTTTAATCAATTCAGACATtttctagaTTGTTGTAATGTTTTAGTGCTGT 
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7.5.5  Open reading frames of fungal receptors cloned 

Description Sequence 

Yeast codon-optimized fungal receptor ORFs 

B. cinerea STE2 
homologue 

ATGGCTTCTAACTCTTCTAACTTCGACCCATTGACTCAATCTATCACTATCTTGATGGCTGACGGTA
TCACTACTGTTTCTTTCACTCCATTGGACATCGACTTCTTCTACTACTACAACGTTGCTTGTTGTATC
AACTACGGTGCTCAAGCTGGTGCTTGTTTGTTGATGTTCTTCGTTGTTGTTGTTTTGACTAAGGCTGT
TAAGAGAAAGACTTTGTTGTTCGTTTTGAACGTTTTGTCTTTGATCTTCGGTTTCTTGAGAGCTATGT
TGTACGCTATCTACTTCTTGCAAGGTTTCAACGACTTCTACGCTGCTTTCACTTTCGACTTCTCTAGA
GTTCCAAGATCTTCTTACGCTTCTTCTGTTGCTGGTTCTGTTATCCCATTGTGTATGACTATCACTGT
TAACATGTCTTTGTACTTGCAAGCTTACACTGTTTGTAAGAACTTGGACGACATCAAGAGAATCAT
CTTGACTACTTTGTCTGCTATCGTTGCTTTGTTGGCTATCGGTTTCAGATTCGCTGCTACTGTTGTTA
ACTCTGTTGCTATCTTGGCTACTTCTGCTTCTTCTGTTCCAATGCAATGGTTGGTTAAGGGTACTTTG
GTTACTGAAACTATCTCTATCTGGTTCTTCTCTTTGATCTTCACTGGTAAGTTGGTTTGGACTTTGTA
CAACAGAAGAAGAAACGGTTGGAGACAATGGTCTGCTGTTAGAATCTTGGCTGCTATGGGTGGTTG
TACTATGGTTATCCCATCTATCTTCGCTATCTTGGAATACGTTACTCCAGTTTCTTTCCCAGAAGCTG
GTTCTATCGCTTTGACTTCTGTTGCTTTGTTGTTGCCAATCTCTTCTTTGTGGGCTGGTATGGTTACT
GACGAAGAAACTTCTGCTATCGACGTTTCTAACTTGACTGGTTCTAGAACTATGTTGGGTTCTCAAT
CTGGTAACTTCTCTAGAAAGACTCACGCTTCTGACATCACTGCTCAATCTTCTCACTTGGACTTCTC
TTCTAGAAAGGGTTCTAACGCTACTATGATGAGAAAGGGTTCTAACGCTATGGACCAAGTTACTAC
TATCGACTGTGTTGTTGAAGACAACCAAGCTAACAGAGGTTTGAGAGACTCTACTGAAATGGACTT
GGAAGCTATGGGTGTTAGAGTTAACAAGTCTTACGGTGTTCAAAAGGCTTAG 

F. graminearum STE2 
homologue 

ATGTCTAAGGAAGTTTTCGACCCATTCACTCAAAACGTTACTTTCTTCGCTCCAGACGGTAAGACTG
AAATCTCTATCCCAGTTGCTGCTATCGACCAAGTTAGAAGAATGATGGTTAACACTACTATCAACT
ACGCTACTCAATTGGGTGCTTGTTTGATCATGTTGGTTGTTTTGTTGGTTATGGTTCCAAAGGAAAA
GTTCAGAAGACCATTCATGATCTTGCAAATCACTTCTTTGGTTATCTCTTGTTGTAGAATGTTGTTGT
TGTCTATCTTCCACTCTTCTCAATTCTTGGACTTCTACGTTTTCTGGGGTGACGACCACTCTAGAATC
CCAAGATCTGCTTACGCTCCATCTGTTGCTGGTAACACTATGTCTTTGTGTTTGGTTATCTCTGTTGA
AACTATGTTGATGTCTCAAGCTTGGACTATGGTTAGATTGTGGCCAAACGTTTGGAAGTACATCAT
CGCTGGTGTTTCTTTGATCGTTTCTATCATGGCTATCTCTGTTAGATTGGCTTACACTATCATCCAAA
ACAACGCTGTTTTGAAGTTGGAACCAGCTTTCCACATGTTCTGGTTGATCAAGTGGACTGTTATCAT
GAACGTTGCTTCTATCTCTTGGTGGTGTGCTATCTTCAACATCAAGTTGGTTTGGCACTTGATCTCT
AACAGAGGTATCTTGCCATCTTACAAGACTTTCACTCCAATGGAAGTTTTGATCATGACTAACGGT
ATCTTGATGATCATCCCAGTTATCTTCGCTTCTTTGGAATGGGCTCACTTCGTTAACTTCGAATCTGC
TTCTTTGACTTTGACTTCTGTTGCTGTTATCTTGCCATTGGGTACTTTGGCTGCTCAAAGAATCGCTT
CTTCTGCTCCATCTTCTGCTAACTCTACTGGTGCTTCTTCTGGTATCAGATACGGTGTTTCTGGTCCA
TCTTCTTTCACTGGTTTCAAGGCTCCATCTTTCTCTACTGGTACTACTGACAGACCACACGTTTCTAT
CTACGCTAGATGTGAAGCTGGTACTTCTTCTAGAGAACACATCAACCCACAAGGTGTTGAATTGGC
TAAGTTGGACCCAGAAACTGACCACCACGTTAGAGTTGACAGAGCTTTCTTGCAAAGAGAAGAAA
GAATCAGAGCTCCATTGTAG 

M. oryzea 
STE2 homologue 

ATGGACCAAACTTTGTCTGCTACTGGTACTGCTACTTCTCCACCAGGTCCAGCTTTGACTGTTGACC
CAAGATTCCAAACTATCACTATGTTGACTCCAGCTTTGATGGGTCAAGGTTTCGAAGAAGTTCAAA
CTACTCCAGCTGAAATCAACGACGTTTACTTCTTGGCTTTCAACACTGCTATCGGTTACTCTACTCA
AATCGGTGCTTGTTTCATCATGTTGTTGGTTTTGTTGACTATGACTGCTAAGGCTAGATTCGCTAGA
ATCCCAACTATCATCAACACTGCTGCTTTGGTTGTTTCTATCATCAGATGTACTTTGTTGGTTATCTT
CTTCACTTCTACTATGATGGAATTCTACACTATCTTCTCTGACGACTTCTCTTTCGTTCACCCAAACG
ACATCAGAAGATCTGTTGCTGCTACTGTTTTCGCTCCATTGCAATTGGCTTTGGTTGAAGCTGCTTT
GATGGTTCAAGCTTGGGCTATGGTTGAATTGTGGCCAAGAGCTTGGAAGGTTTCTGGTATCGCTTTC
TCTTTGATCTTGGCTACTGTTACTGTTGCTTTCAAGTGTGCTTCTGCTGCTGTTACTGTTAAGTCTGC
TTTGGAACCATTGGACCCAAGACCATACTTGTGGATCAGACAAACTGACTTGGCTTTCACTACTGC
TATGGTTACTTGGTTCTGTTTCTTGTTCAACGTTAGATTGATCATGCACATGTGGCAAAACAGATCT
ATCTTGCCAACTGTTAAGGGTTTGTCTCCAATGGAAGTTTTGGTTATGGCTAACGGTTTGTTGATGG
TTTTCCCAGTTTTGTTCGCTGGTTTGTACTACGGTAACTTCGGTCAATTCGAATCTGCTTCTTTGACT
ATCACTTCTGTTGTTTTGGTTTTGCCATTGGGTACTTTGGTTGCTCAAAGATTGGCTGTTAACAACA
CTGTTGCTGGTTCTTCTGCTAACACTGACATGGACGACAAGTTGGCTTTCTTGGGTAACGCTACTAC
TGTTACTTCTTCTGCTGCTGGTTTCGCTGGTTCTTCTGCTTCTGCTACTAGATCTAGATTGGCTTCTC
CAAGACAAAACTCTCAATTGTCTACTTCTGTTTCTGCTGGTAAGCCAAGAGCTGACCCAATCGACTT
GGAATTGCAAAGAATCGACGACGAAGACGACGACTTCTCTAGATCTGGTTCTGCTGGTGGTGTTAG
AGTTGAAAGATCTATCGAAAGAAGAGAAGAAAGATTGTAG 

Z. bailii  
STE2 homologue 

ATGTCTGGTTTGGCTAACAACACCTCTTACAACCCATTGGAATCTTTCATTATTTTCACTTCTGTTTA
CGGTGGTGATACCATGGTTAAGTTCGAAGACTTGCAATTAGTCTTCACCAAGCGTATTACTGAAGG
TATTTTGTTCGGTGTCAAGGTTGGTGCCGCTTCTTTGACTATGATTGTTATGTGGATGATTTCCAGA
AGAAGAACCTCCCCAATCTTCATCATGAACCAATTGTCTTTGGTTTTCACCATCTTGCACGCTTCTT
TTTACTTTAAGTACTTATTGGACGGTTTCGGTTCTATTGTCTACACTTTGACCTTGTTCCCACAATTA
ATTACTTCCTCTGACTTGCACGTTTTCGCTACTGCTAACGTTGTTGAAGTCTTATTGGTTTCTTCCAT
CGAAGCCTCTTTGGTTTTCCAAGTCAACGTCATGTTCGCTGGTTCTAACCACAGAAAGTTCGCTTGG
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TTGTTGGTCGGTTTCTCTTTGGGTTTGGCTTTGGCCACTGTCGCTTTGTACTTCGTTACTGCTGTCAA
GATGATCGCTTCCGCTTACGCTTCTCAACCACCAACTAACCCAATCTACTTCAACGTTTCCTTGTTC
TTGTTGGCTGCCTCCGTTTTCTTGATGACTTTAATGTTGACCGTCAAGTTGATCTTGGCTATCAGATC
CAGAAGATTCTTGGGTTTGAAGCAATTCGACTCTTTCCACATTTTGTTGATTATGTCTTGTCAAACT
TTGATCGCTCCATCTGTTTTGTACATCTTGGGTTTTATTTTGGATCACAGAAAGGGTAACGACTACT
TGATTACCGTCGCTCAATTGTTGGTCGTTTTGTCTTTGCCATTGTCCTCCATGTGGGCCACTACTGCT
AACGATGCTTCCTCCGGTACTTCTATGTCTTCCAAGGAATCCGTCTACGGTTCTGATTCCTTATACT
CTAAGTCTAAGTGTTCCCAATTCACCAGAACCTTCATGAACAGATTCTCTACTAAGCCAACTAAGA
ACGACGAAATTTCTGATTCCGCTTTCGTCGCTGTTGATTCCTTGGAAAAGAACGCTCCACAAGGTAT
CTCTGAACACGTTTGTGAATTCCCACAATCTGACTTATCTGATCAAGCTACTTCCATCTCCTCCAGA
AAAAAGGAAGCTGTTGTTTACGCTTCCACTGTTGATGAAGATAAGGGTTCTTTCTCCTCTGACATCA
ACGGTTACACTGTTACCAACATGCCATTGGCTTCCGCTGCTTCTGCTAACTGTGAAAACTCCCCATG
TCACGTTCCAAGACCATACGAAGAAAACGAAGGTGTCGTCGAAACCAGAAAAATTATTTTGAAGA
AGAACGTCAAATGGTAG 

H. capsulatum  
STE2 homologue 

ATGTCTTCCTCTTTCGACCCATTCGACCAAAACGTTGTCTTCCACAAGGCTGATGGTACTCCATTCA
ACGTTTCCATTCACGACTTGGACGAATTCGTCCAATACGGTATTAGAGTCTGTATCAACTACGCTGC
TCAATTGGGTGCCACTGTCATTGCTATTGTCATGTTGGCTTTGTTGACTCAATCCGATAAGAGAAGA
ACCCCAGTCTTCTTCTTGAACACTTCTGCTTTGACTATGAACTTCGCTAGATTGTTGTGTATGACTAT
TTACTTCACCACTGGTTTCAACTCTACCTACGCTTTCTTCTCTTTGGACTACTCCAGAGTCCCAGGTT
CTGCCTACGCTGATTCTATCTTGGGTATCGCTTTCGCTACTATTTTGGTCATTTGTATGGAAATGTCT
TTGGTTATTCAAACTCAAGTTGTTTGTGCCACCTTGTCTGAAATCCAAAGAAGATTGTTGTTGGTCG
TCTCCATTTTGATCGCTTTGTTGGCTATTGGTTTCAGAATGGGTTTGATGGTTGAAAACTGTATCGC
TATCATGAACGCCTCTAACTTCAGACCATTCATCTGGTTGCAATCCGCTTCTAACATTGCTATTACC
ATCTCTACTTGTTTCTTCTCTGCTGTTTTCGTCACCAAGTTGGGTTACGCTTTGGTTACCAGAAGAAG
ATTGGGTATGACTAGATTCGGTGCTATGCAAGTCATGTTCATTATGTCCTTCCAAACTATGGTCATC
CCAGCTATTTTCTCCATTATCCAATACCCAATCCCATTGTACGAAATGAACTCTAACGTCTTCACTT
TGGTCGCTATTTTCTTGCCATTGTCTTCCTTGTGGGCCGCTGCTGCTACTAAGCACTCCTTCGAAACT
TTGACCTCTGGTCCACACCAATACTTGTGGTCCTCTGAAAGATCCAACTCTACCTCTTCCGCTACCG
GTCACCAAGGTTCTTTGTGTCAAAACCAATCTACTATCAGATCTGGTGGTTCTGTTGCTACTTCCTT
GTCCCCAGACCAATTGGACAGATTGTACACTGGTTTGGACTTCGACGCCTGTGCCAAGGCTTAG 

C. glabrata  
STE2 homologue 

ATGGAAATGGGTTACGACCCAAGAATGTACAACCCAAGAAACGAATACTTGAACTTCACTTCTGTT
TACGACGTTAACGACACTATCAGATTCTCTACTTTGGACGCTATCGTTAAGGGTTTGTTGAGAATCG
CTATCGTTCACGGTGTTAGATTGGGTGCTATCTTCATGACTTTGATCATCATGTTCATCTCTTCTAAC
ACTTGGAAGAAGCCAATCTTCATCATCAACATGGTTTCTTTGATGTTGGTTATGATCCACTCTGCTT
TGTCTTTCCACTACTTGTTGTCTAACTACTCTTCTATCTCTTACATCTTGACTGGTTTCCCACAATTG
ATCACTTCTAACAACAAGAGAATCCAAGACGCTGCTTCTATCGTTCAAGTTTTGTTGGTTGCTGCTA
TCGAAGCTTCTTTGGTTTTCCAAATCCACGTTATGTTCACTATCGAAAACATCAAGTTGATCAGAGA
AATCGTTTTGTCTATCTCTATCGCTATGGGTTTGGCTACTGTTGCTACTTACTTGGCTGCTGCTATCA
AGTTGATCAGAGGTTTGCACGACGAAGTTATGCCACAAACTCACTTGATCTTCAACTTGTCTATCAT
CTTATTGGCTTCTTCTATCAACTTCATGACTTTCATCTTAGTTATCAAGTTGTTCTTCGCTATCAGAT
CTAGAAGATACTTAGGTTTGAGACAATTCGACGCTTTCCACATCTTGTTGATCATGTTCTGTCAATC
TTTGTTGATCCCATCTGTTTTGTACATCATCGTTTACGCTGTTGACTCTAGATCTAACCAAGACTACT
TGATCCCAATCGCTAACTTGTTCGTTGTTTTGTCTTTGCCATTGTCTTCTATCTGGGCTAACACTTCT
AACAACTCTTCTAGATCTCCAAAGTACTGGAAGAACTCTCAAACTAACAAGTCTAACGGTTCTTTC
GTTTCTTCTATCTCTGTTAACTCTGACTCTCAAAACCCATTGTACAAGAAGATCGTTAGATTCACTT
CTAAGGGTGACACTACTAGATCTATCGTTTCTGACTCTACTTTGGCTGAAGTTGGTAAGTACTCTAT
GCAAGACGTTTCTAACTCTAACTTCGAATGTAGAGACTTGGACTTCGAAAAGGTTAAGCACACTTG
TGAAAACTTCGGTAGAATCTCTGAAACTTACTCTGAATTGTCTACTTTGGACACTACTGCTTTGAAC
GAAACTAGATTGTTCTGGAAGCAACAATCTCAATGTGACAAGTAG 

Fungal receptor ORFs from genomic DNA (stop codons changed to TAG) 

Wildtype  
S. cerevisiae STE2 

ATGTCTGATGCGGCTCCTTCATTGAGCAATCTATTTTATGATCCAACGTATAATCCTGGTCAAAGCA
CCATTAACTACACTTCCATATATGGGAATGGATCTACCATCACTTTCGATGAGTTGCAAGGTTTAGT
TAACAGTACTGTTACTCAGGCCATTATGTTTGGTGTCAGATGTGGTGCAGCTGCTTTGACTTTGATT
GTCATGTGGATGACATCGAGAAGCAGAAAAACGCCGATTTTCATTATCAACCAAGTTTCATTGTTT
TTAATCATTTTGCATTCTGCACTCTATTTTAAATATTTACTGTCTAATTACTCTTCAGTGACTTACGC
TCTCACCGGATTTCCTCAGTTCATCAGTAGAGGTGACGTTCATGTTTATGGTGCTACAAATATAATT
CAAGTCCTTCTTGTGGCTTCTATTGAGACTTCACTGGTGTTTCAGATAAAAGTTATTTTCACAGGCG
ACAACTTCAAAAGGATAGGTTTGATGCTGACGTCGATATCTTTCACTTTAGGGATTGCTACAGTTAC
CATGTATTTTGTAAGCGCTGTTAAAGGTATGATTGTGACTTATAATGATGTTAGTGCCACCCAAGAT
AAATACTTCAATGCATCCACAATTTTACTTGCATCCTCAATAAACTTTATGTCATTTGTCCTGGTAG
TTAAATTGATTTTAGCTATTAGATCAAGAAGATTCCTTGGTCTCAAGCAGTTCGATAGTTTCCATAT
TTTACTCATAATGTCATGTCAATCTTTGTTGGTTCCATCGATAATATTCATCCTCGCATACAGTTTGA
AACCAAACCAGGGAACAGATGTCTTGACTACTGTTGCAACATTACTTGCTGTATTGTCTTTACCATT
ATCATCAATGTGGGCCACGGCTGCTAATAATGCATCCAAAACAAACACAATTACTTCAGACTTTAC
AACATCCACAGATAGGTTTTATCCAGGCACGCTGTCTAGCTTTCAAACTGATAGTATCAACAACGA
TGCTAAAAGCAGTCTCAGAAGTAGATTATATGACCTATATCCTAGAAGGAAGGAAACAACATCGG
ATAAACATTCGGAAAGAACTTTTGTTTCTGAGACTGCAGATGATATAGAGAAAAATCAGTTTTATC
AGTTGCCCACACCTACGAGTTCAAAAAATACTAGGATAGGACCGTTTGCTGATGCAAGTTACAAAG
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AGGGAGAAGTTGAACCCGTCGACATGTACACTCCCGATACGGCAGCTGATGAGGAAGCCAGAAAG
TTCTGGACTGAAGATAATAATAATTTATAG 

C. glabrata 
STE2 homologue 

ATGGAGATGGGCTACGATCCAAGAATGTATAATCCAAGAAATGAATACTTGAATTTCACGTCGGTA
TATGATGTAAATGACACAATCAGATTTTCGACTCTGGACGCCATTGTAAAAGGATTGCTTAGAATT
GCCATTGTTCATGGAGTTAGATTGGGAGCAATATTCATGACGTTAATAATAATGTTTATCTCATCAA
ATACATGGAAAAAACCCATATTTATAATTAACATGGTGTCGTTGATGTTAGTTATGATTCATTCCGC
ACTTAGCTTCCATTACCTTTTATCGAATTATTCTTCAATTTCTTATATACTGACAGGGTTTCCTCAGT
TGATTACAAGCAATAATAAACGAATTCAAGATGCAGCGAGTATAGTCCAAGTTTTATTGGTTGCTG
CGATAGAAGCATCATTGGTATTTCAGATTCATGTTATGTTTACGATTGAAAACATTAAGCTTATTAG
AGAAATAGTACTCTCTATATCGATAGCAATGGGATTGGCAACAGTGGCTACATATCTTGCTGCAGC
AATAAAGCTGATAAGAGGACTGCATGATGAGGTAATGCCACAAACACATCTTATTTTCAATTTATC
TATAATATTGCTTGCATCCTCCATAAATTTTATGACATTTATATTGGTCATTAAACTTTTCTTCGCTA
TTAGATCTAGAAGATATCTCGGTCTTCGTCAATTCGATGCTTTTCATATTTTATTAATCATGTTCTGC
CAGTCATTATTGATACCCTCAGTATTATATATTATAGTTTACGCGGTTGATAGCAGATCTAATCAGG
ATTATCTGATTCCAATTGCCAATTTATTTGTTGTTTTATCTTTGCCATTATCCTCTATCTGGGCTAAC
ACATCAAATAACTCATCCAGATCTCCAAAATATTGGAAAAACTCTCAAACGAATAAGAGCAATGG
GTCTTTTGTCTCTTCAATATCTGTCAATAGTGACTCACAAAACCCTTTGTACAAAAAGATTGTACGT
TTTACATCAAAAGGCGACACTACCCGTAGTATTGTAAGTGATTCAACATTAGCAGAGGTGGGAAAA
TACTCTATGCAAGACGTTAGCAATTCAAACTTTGAATGTCGAGACCTTGATTTTGAGAAGGTAAAA
CATACTTGCGAAAATTTTGGCAGAATATCTGAAACATATAGTGAGTTAAGTACTTTAGATACCACT
GCCCTCAATGAGACTCGGTTGTTTTGGAAACAACAAAGTCAGTGTGACAAATAG 

C. albicans 
STE2 homologue 

ATGAATATCAATTCAACTTTCATACCTGATAAACCAGGCGATATAATTATTAGTTATTCAATTCCAG
GATTAGATCAACCAATTCAAATTCCTTTCCATTCATTAGATTCATTTCAAACCGATCAAGCTAAAAT
AGCTTTAGTCATGGGGATAACTATTGGGAGTTGTTCAATGACATTAATTTTTTTGATTTCTATAATG
TATAAAACTAATAAATTAACAAATTTAAAATTAAAATTAAAATTAAAATATATCTTGCAATGGATA
AATCAAAAAATCTTCACCAAAAAAAGGAATGACAACAAACAACAACAACAACAACAACAACAAC
AAATTGAATCATCATCATATAACAATACTACTACTACGCTGGGGGGTTATAAATTATTTTTATTTTA
TCTTAATTCATTGATTTTATTAATTGGTATTATTCGATCAGGTTGTTATTTAAATTATAATTTAGGTC
CATTAAATTCACTTAGTTTTGTATTTACTGGTTGGTATGATGGATCATCATTTATATCATCCGATGTA
ACTAATGGATTTAAATGTATTTTATATGCTTTAGTGGAAATTTCATTAGGTTTCCAAGTTTATGTGA
TGTTCAAAACTTCAAATTTAAAAATTTGGGGGATAATGGCATCATTATTATCAATTGGTTTAGGATT
GATTGTTGTTGCCTTTCAAATCAATTTAACAATTTTATCTCATATTCGATTTTCCCGGGCTATATCAA
CTAACAGAAGTGAAGAAGAATCATCATCATCATTATCATCTGATTCGGTTGGGTATGTGATTAATT
CAATATGGATGGATTTACCAACAATATTATTTTCCATTAGTATTAATATAATGACAATATTATTGAT
TGGTAAACTTATAATTGCTATTAGAACAAGACGTTATTTAGGATTGAAACAATTTGATAGTTTCCAT
ATTTTATTAATTGGTTTCAGTCAAACATTAATTATTCCTTCAATTATTTTGGTGGTTCATTATTTTTA
TTTATCACAAAATAAAGATTCTTTATTACAACAAATTAGTCTTTTATTGATTATTTTAATGTTACCAT
TAAGTTCTTTATGGGCTCAAACTGCTAATAATACTCATAATATTAATTCATCTCCAAGTTTATCATT
CATATCTCGTCATCATCTGTCTGATAGTAGTCGTAGTGGTGGTTCCAATACAATTGTTAGTAATGGT
GGTAGTAATGGTGGTGGTGGTGGTGGTGGGAATTTCCCTGTTTCAGGTATTGATGCACAATTACCA
CCTGATATTGAAAAAATCTTACATGAAGATAATAATTATAAATTACTTAATAGTAATAATGAAAGT
GTAAATGATGGAGATATTATCATTAATGATGAAGGTATGATTACTAAACAAATCACCATCAAAAGA
GTGTAG 

L. elongisporus 
STE2 homologue 

ATGGACGAAGCAATCAATGCAAACCTTGTTTCTGGAGATATTATAGTCTCTTTTAACATTCCTGGTT
TGCCAGAACCGGTACAAGTGCCATTCAGCGAATTTGATTCGTTTCATAAAGACCAGCTCATTGGAG
TCATCATTCTTGGAGTCACTATTGGAGCATGCTCGCTTTTGTTGATATTGCTACTTGGAATGTTATA
CAAGAGCCGTGAAAAGTATTGGAAATCACTATTATTTATGCTCAATGTATGCATCTTGGCTGCCAC
AATCTTAAGGAGCGGTTGCTTCTTAGACTATTATCTAAGTGATTTGGCCAGTATCAGTTATACATTT
ACTGGAGTATACAATGGTACCAGCTTTGCTAGCTCTGACGCGGCAAATGTGTTCAAGACTATTATG
TTTGCCTTGATTGAAACTTCGTTAACCTTTCAAGTGTATGTCATGTTTCAAGGGACCACTTGGAAAA
ATTGGGGCCATGCTGTCACTGCATTATCGGGTCTCTTGTCTGTTGCCTCAGTGGCGTTCCAGATCTA
CACCACGATTTTATCCCACAATAATTTCAATGCTACAATCTCGGGAACCGGTACATTAACTTCAGGT
GTTTGGATGGACTTACCAACACTCTTGTTTGCCGCAAGTATCAATTTTATGACCATTTTGTTGTTATT
TAAGTTGGGAATGGCCATTAGACAAAGAAGGTATTTAGGTTTAAAACAGTTTGATGGGTTCCATAT
CTTATTCATCATGTTTACCCAAACATTGTTCATACCCTCGATTTTGCTTGTGATCCACTACTTTTACC
AGGCAATGTCTGGACCATTCATCATCAACATGGCGTTGTTCTTGGTGGTGGCATTCTTGCCATTGAG
TTCATTATGGGCACAAACTGCAAACACTACTAAAAAGATTGAATCTTCGCCAAGTATGAGCTTTAT
TACTAGACGAAAATCAGAGGATGAGTCACCACTGGCTGCTAACGACGAGGATAGGTTACGAAAAT
TCACCACAACTTTGGATTTGTCGGGCAACAAGAACAATACAACAAACAATAATAACAATAGCAAC
AACATTAACAACAATATGAGCAACATCAACTACCCTTCTACAGGACTGGGAGAAGACGATAAATC
CTTTATATTTGAGATGGAACCCAGTCGGGAAAGAGCTGCAATAGAAGAGATTGATCTTGGAGCAA
GGATCGATACCGGTTTGCCCAGAGATTTAGAGAAATTTCTAGTTGATGGGTTTGACGATAGTGATG
ACGGAGAAGGAATGATAGCCAGAGAAGTGACTATGTTGAAAAAATAG 

P. brasiliensis (lutzii) 
STE2 homologue 

ATGGCACCCTCATTCGACCCCTTCAACCAAAGCGTGGTCTTCCACAAGGCCGACGGAACTCCATTC
AACGTCTCAATCCATGAACTAGACGACTTCGTGCAGTACAACACCAAAGTCTGCATCAACTACTCT
TCCCAGCTCGGAGCATCTGTCATTGCAGGACTCATGCTTGCCATGCTGACACACTCAGAAAAGCGT
CGTCTGCCAGTTTTCTTCCTAAACACATTCGCACTGGCCATGAACTTTGCCCGCCTGCTCTGCATGA
CCATCTACTTCACCACGGGCTTCAACAAGTCCTATGCCTACTTTGGTCAGGATTACTCCCAGGTGCC
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TGGGAGCGCCTACGCAGCCTCTGTCTTGGGCGTTGTCTTCACCACTCTCCTGGTAATCAGCATGGAA
ATGTCCCTCCTGATCCAAACAAGGGTTGTCTGCACGACCCTTCCGGATATCCAACGTTATCTACTCA
TGGCAGTTTCCTCCGCGATTTCCCTGATGGCCATCGGGTTCCGCCTTGGCTTAATGGTTGAGAACTG
CATTGCCATTGTGCAGGCGTCGAATTTCGCCCCTTTTATCTGGCTTCAAAGCGCCTCGAACATCACC
ATTACGATCAGCACATGTTTCTTCAGTGCCGTCTTTGTTACGAAATTGGCATATGCACTCGTCACTC
GTATACGACTAGGCTTGACGAGGTTTGGTGCTATGCAGGTTATGTTCATCATGTCCTGCCAGACTAT
GGTGATTCCAGCCATCTTCTCAATTCTCCAATACCCACTCCCCAAGTACGAAATGAACTCCAACCTC
TTTACGCTGGTGGCCATTTTCCTCCCTCTTTCCTCGCTATGGGCTTCAGTTGCTACGAGATCCAGTTT
CGAGACGTCTTCTTCCGGCCGCCATCAGTATCTTTGGCCAAGCGAACAGAGCAATAACGTCACCAA
TTCGGAAATTAAGTATCAGGTCAGCTTCTCTCAGAACCACACTACGTTGCGGTCTGGAGGGTCTGT
GGCCACGACACTCTCCCCGGACCGGCTCGACCCGGTTTATTGTGAAGTTGAAGCTGGCACAAAGGC
CTAG 

Z. rouxii 
STE2 homologue 

ATGAGTGAGATTAACAATTCTACCTACAATCCAATGAATGCATATGTAACGTTTACATCAATATAT
GGTGATGATACTATGGTACGTTTCAAAGATGTGGAATTGGTAGTTAACAAAAGGGTTACAGAAGCC
ATTATGTTCGGCGTCAAAGTTGGTGCAGCTTCGTTGACACTCATCATCATGTGGATGATCTCTAAGA
AAAGAACAACACCGATATTTATCATAAATCAGTCTTCGCTTGTATTTACCATAATACATGCTTCGCT
TTATTTTGGGTACCTTTTGTCAGGATTTGGTAGTATAGTTTACAATATGACATCGTTCCCGCAGTTA
ATAAGCTCCAATGACGTTCGTGTGTACGCAGCTACAAATATTTTTGAGGTCCTGTTGGTAGCATCTA
TCGAAATCTCTCTGGTTTTTCAGGTCAAAGTTATGTTTGCCAACAATAATGGTCGAAGATGGACTTG
GTGTTTGATGGTAGTTTCCATAGGGATGGCACTAGCTACTGTAGGACTTTATTTTGCCACTGCCGTT
GAGTTGATCAGAGCTGCTTACAGCAATGATACTGTTAGCCGCCATGTTTTTTACAATGTTTCTCTGA
TCTTACTAGCGTCATCTGTCAATCTAATGACACTAATGCTAGTGGTAAAATTAGTATTAGCGATCAG
ATCAAGAAGATTTTTGGGGTTAAAACAGTTTGACAGTTTCCACATATTACTTATAATGTCTTGCCAG
ACTCTAATAGCACCTTCCATTCTATTCATTTTGGGTTGGACCTTAGACCCTCATACTGGTAATGAGG
TTTTAATTACAGTTGGTCAATTGCTAATAGTACTGTCATTACCGCTGTCATCTATGTGGGCTACAAC
CGCTAACAATACCAGTTCATCTAGTAGTTCGGTGTCCTGTAATGACAGCTCTTTTGGTAATGACAAT
CTCTGTTCCAAGAGTTCGCAATTTAGAAGAACTTTTATGAATAGATTCCGTCCCAAGTCGGTTAATG
GTGACGGTAATTCTGAAAATACCTTTGTTACAATTGATGATTTGGAAAAAAGCGTTTTTCAAGAAT
TATCAACACCTGTTAGCGGAGAATCAAAGATAGATCATGATCATGCAAGTAGTATTTCATGTCAAA
AGACATGTAATCATGTTCATGCTTCGACAGTGAATTCAGATAAGGGATCTTGGTCCTCTGATGGTA
GTTGTGGCAGTTCTCCGTTAAGAAAGACTTCCACCGTTAATTCTGAAGATTTACCTCCACATATATT
GAGCGCCTACGATGACGATCGAGGTATAGTAGAAAGTAAAAAAATTATCCTAAAGAAATTATAG 

 

 

 

 

 

 

 

 

 


