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Abstract

Distributed Damage Effect on Progressive Collapse of Structures &
Variability Response Functions in 2D Elasticity Stochastic Problems

Evgenia (Jenny) Sideri

This dissertation investigates the distributed damage effect on Progressive Collapse of

structures highlighted by applications on the nonlinear static and dynamic behavior of build-

ings, and contributes to the theoretical development of the Variability Response Function

concept and its applicability extension in two-dimensional elasticity stochastic problems.

Part I of this dissertation focuses on the recently emerging research field of Progressive

Collapse of structures. The alternate load path method has so far dominated the field of

progressive collapse of structures; in order to assess the resilience of structural systems, the

concept of the removal of a key element is utilized as a means of damage introduction to

the system. Recent studies have indicated that the complete column loss notion is unreal-

istic and unable to describe a real extreme loading event, e.g. a blast, that will introduce

damage to more than one elements in its vicinity. This dissertation presents a new partial

distributed damage method (PDDM) for steel moment frames, by utilizing powerful finite

element computational tools that are able to capture loss of stability phenomena. Through

the application of a damage index δj and the investigation of damage propagation, it is

shown that the introduction of partial damage in the system can significantly modify the

collapse mechanisms and overall affect the response of the structure.

Subsequently, Part I elaborates on the distributed column damage effect on Progressive

Collapse vulnerability in steel buildings exposed to an external blast event. Recent terrorist

attacks on civil engineering infrastructure around the world have initiated extensive research

on progressive collapse analysis of multi-story buildings subjected to blast loading. The

widely accepted alternate load path method is a threat-independent method that is able to

assess the response of a structure in case of extreme hazard loads, without the consideration

of the actual loads occurring. Such simplification offers great advantages but at the same



time fails to incorporate the role of a wider damaged area into the collapse modes of struc-

tures. To this end, the investigation of damage distribution on adjacent structural members

induced by blast loads is considered critical for the evaluation of structural robustness against

abnormal loads that may initiate progressive collapse. This dissertation presents detailed

3D nonlinear finite element dynamic analyses of steel frame buildings in order to examine

the spatially distributed response and damage to frame members along the building exterior

facing an external blast. A methodology to assess the progressive collapse vulnerability is

also proposed, which includes four consecutive steps to simulate the loading event sequence.

Three case studies of steel buildings with different structural systems serve as examples for

the application of the proposed methodology. A high-rise (20-story) building is firstly sub-

jected to a blast load scenario, while the complex 3D system results in the heavily impacted

region are compared with individual column responses (SDOF) obtained from a simplified

analytical approach consistent with current design recommendations. Parameters affecting

the spatially distributed pressure and response quantities are identified, and the sensitivity

of the damage results to the spatial variation of these parameters is established for the case

of the 20-story building. Subsequently, two typical mid-rise (10-story) office steel buildings

with identical floor plan layout but different lateral load resisting systems are examined; one

including perimeter moment resisting frames (MRFs) and one including interior reinforced

concrete (RC) rigid core. It is shown that MRFs offer a substantial increase in robustness

against blast events, and the role of interior gravity columns identified as the ‘weakest links’

of the structural framing is discussed.

Part II of this dissertation focuses on the development of Variability Response Functions

for apparent material properties in 2D elasticity stochastic problems. The material properties

of a wide range of structural mechanics problems are often characterized by random spatial

fluctuations. Calculation of apparent properties of such randomly heterogeneous materials

is an important procedure, yet no general method besides Monte Carlo simulation exists

for evaluating the stochastic variability of these apparent properties for structures smaller



than the representative volume element (RVE). In this direction, the concept of Variability

Response Function (VRF) has been proposed as a means to capture the effect of stochastic

spectral characteristics of uncertain system parameters modeled by homogeneous stochastic

fields on the uncertain response of structural systems, without the need for computationally

expensive Monte Carlo simulations. Recent studies have formally proved the existence of

VRF for apparent properties for statically determinate linear beams through elastic strain

energy equivalence of the heterogeneous and equivalent homogeneous bodies, while a Monte-

Carlo based methodology for the generalization of the VRF concept to statically indeter-

minate beams has been recently developed. In this dissertation, the VRF methodology of

apparent properties is extended to two-dimensional elasticity stochastic problems discretized

on a finite element domain, in order to analytically formulate a VRF that is independent of

the marginal distribution and spectral density function of the underlying random heteroge-

neous material property field (it depends only on the boundary conditions and deterministic

structural configuration). Representative examples that illustrate the approach include two-

dimensional plane stress problems and underline the dependence of the VRFs on scale, shape

and aspect ratio of the finite elements.
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1



Part I
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Progressive Collapse of Structures
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Chapter 1

Introduction: Part I

1.1 Motivation and Background

Part I of this dissertation expands the knowledge about the influence of distributed damage

on progressive collapse vulnerability of structures. Progressive collapse of structures is initi-

ated by a localized triggering event (blast/terrorist attacks, fire, vehicle impact, construction

errors etc.) that introduces damage to a structural system, resulting in a disproportionate

to the initial event structural response. A characteristic example of progressive but also

disproportionate collapse was the Ronan Point Tower disaster of 1968 illustrated in Figure

1.1; a relatively small natural gas explosion at the 18th floor of the building caused failure of

load-bearing precast concrete panels at the building corner. Due to the loss of support at the

18th floor, the above floors also collapsed leading to a major debris impact of these collapsing

floors and eventually to a chain reaction of collapses all the way to the ground floor. This

kind of failure, labeled as sequential or progressive collapse since the initial triggering event

was by no means proportionate to the magnitude of final collapse, led to the engineering

community and public regulatory agencies to change common building design practice and

regulations towards prevention of recurrence of such tragedies.

Due to the recent Alfred P. Murrah Federal Building (1995) and World Trade Center

3



CHAPTER 1. INTRODUCTION: PART I

Figure 1.1: Ronan Point partial collapse (London, 1968) due to local gas explosion on the
18th floor

(2001) blast and impact attacks, the field of progressive collapse initiated by blast and impact

loading has attracted the interest of many researchers. In this environment, two documents

have dominated the field of regulative progressive collapse published by the Unified Facilities

Criteria, Department of Defense (DoD 2009 [1]) and the General Services Administration

(GSA 2003 [2]). These two recently published design guidelines suggest the most popular

among practitioners and researchers method for progressive collapse analysis, namely the

‘threat-independent’ Alternate Path Method (APM), which attempts to quantify the ro-

bustness of a structural system by focusing on the removal of a key load-bearing element of

the system (i.e. column) as a means to introduce damage.

Numerous research studies [3] - [23] have recently emerged in the literature that attempt
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to quantify the progressive collapse potential of structures through a variety of different

approaches. Most of the research work focuses on developing efficient and reliable progres-

sive collapse analysis methods, in order to assess the capability of structures to withstand

localized damage and enhance the structural robustness under extreme loading events. In

particular, a very significant publication by Frangopol and Curley 1987 [3] defined in de-

tail important terms such as redundancy and damage and emphasize their correlation and

role in structural systems’ resistance against collapse, while distinguishing between ‘fail-

safe’ structures (with the ability of redistributing loads and offering multiple load-paths)

and ‘weakest-link’ structures (there are no alternative load paths). Ettouney and DiMaggio

1998 [22] and most importantly Ettouney et al. 2006 [4] demonstrated the critical importance

of global stability system considerations and manifested the inability of the alternate path

method to account for global response of a structure when performing progressive collapse

analysis. The book of Starossek 2009 [5] presented explicit information about the distinction

between disproportionate and progressive collapse of structures and described a plethora of

different typologies of progressive collapse and the corresponding design methods. Many dif-

ferent aspects of progressive collapse are also discussed in Ellingwood et al. 2007 [6], where

the distinction between direct (such as the alternate path method) and indirect methods of

analysis is underlined. Marjanishvili and Agnew 2011 [7] compared linear, nonlinear, static

and dynamic analyses in 3D building configurations and concluded that material and geo-

metric nonlinearities are essential to account for. Kim and Kim 2009 [9] conducted linear and

nonlinear dynamic analysis in 2D frames by taking into account only material nonlinearities,

while Khandelwal and El-Tawil 2011 [10] studied the vertical push-down technique through

nonlinear dynamic analysis of 2D steel frames as a means to quantify robustness by taking

into account not only material but also geometric nonlinearities. Kwasniewski 2010 [12]

and Szyniszewski and Krauthammer 2012 [20] performed nonlinear dynamic analysis of 3D

frames that incorporated the slab simulation, while the latter identified buckling-induced

failure modes by using an energy-based approach. Foley et al. 2007 [15] performed linear
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dynamic analysis in 3D frames by replacing the slab with horizontal stiffeners and Alashker

et al. 2011 [21] conducted nonlinear dynamic analyses accounting for both material and

geometric nonlinearities, while comparing 2D and 3D building models.

Since the response of structures subjected to extreme events is most commonly highly

nonlinear, progressive collapse analysis methods that utilize powerful computational tools

constitute the only appropriate research approach towards reliable assessment of progressive

collapse vulnerability. It is thus crucial that those finite element tools include material and

geometric nonlinearities in order to be able to capture nonlinear loss of stability phenomena.

Recent papers by Ettouney et al. 2006 [4], Gerasimidis et al. 2014 [8], Gerasimidis 2014 [24]

and Spyridaki et al. 2013 [25] have highlighted the significance of stability considerations

within a material and geometric nonlinearity analysis framework, as the only approach for

correctly predicting collapse mechanisms and the corresponding collapse loads. The most

usually observed collapse modes of buildings can be identified as: plastification of beam edges

above the location of the column removal (yielding-type beam failure; ductile) as described

in Sideri et al. 2013 [26], loss of stability of adjacent to the removal elements (buckling-type

column failure; brittle), shear failure of beam to column connections (Khandelwal and El-

Tawil 2011 [10]) and less commonly loss of stability failure of the global structural system.

The latter mode of collapse is more frequently observed in tall and slender buildings (Yan

et al. 2013 [27]). This dissertation focuses on the identification of the first two modes of

collapse.

The most widely accepted and used method for progressive collapse is the Alternate

Path Method which adopts the notion of a single complete column loss. It is a simplified

tool that offers great advantages for engineering practitioners in the sense that is threat-

independent, but at the same time fails to incorporate the role of a wider damaged area into

the collapse modes of structures. Ellingwood 2002 [28] demonstrated that the single column

loss notion is unrealistic, mainly for two reasons. First, even under an extreme local event

it is very improbable that an element will fail completely throughout its whole length and
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second, if such an extreme event does happen there will be non-negligible damage to other

elements (beams or columns) as well. It is therefore very important to take into account

distributed damage on adjacent members instead of limiting the aftermath of an extreme

loading case, for example a blast scenario, into structural failure and subsequent removal of

a single system component. For the specific case of blast events, numerous studies (Sasani

et al. 2011 [29], Shi et al. 2010 [30], McConnell and Brown 2011 [31] and Jayasooriya

et al. 2011 [32]) have shown that near field explosions may affect a series of columns and

beams exposed to blast loading, in which cases the application of the Alternate Path Method

would be highly unconservative. Two very important progressive collapse incidents underline

the aforementioned non-applicability of the alternate path method. Firstly, the Alfred P.

Murrah Building bombing in Oklahoma City, where the extent of blast-induced damage

included failure of three main columns within the building’s external perimeter as well as

failure of some floor slabs in the immediate vicinity of the airblast (Mlakar et al. 1998 [33]).

After the loss of support from those columns, a transfer girder also collapsed leading to

progressive failure of further columns supported by the girder and subsequent failure of floor

areas supported by those columns (Figure 1.2a). Secondly, the World Trade Center collapses

in New York City that were initiated due to severe damage caused in multiple structural

components by plane impact (Abboud et al. 2003 [34]). The structural failure near the

impact zone was significantly aggravated by an extensive fire outbreak until the floors above

the impact lost their support, resulting in the collapse of the upper part of the towers and

thus to a progression of failures extending all the way to the ground (Figure 1.2b).

The above examples showcase the need for new method for progressive collapse analysis

of structures, since the Alternate Path Method of a single column removal scenario, so

far proposed by the design guidelines of building control authorities, is unable to correctly

model the extent of a serious damaging event and is thus considered not only unrealistic

and but most importantly unconservative. In this environment, it is crucial to develop a

new method that introduces partial distributed damage to different columns of a structural
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(a) Collapse of the 9-story Alfred P. Murrah
Federal Building in Oklahoma City (1995)

(b) World Trade Center collapses in New York
City (2001)

Figure 1.2: Famous progressive collapse events.

system and investigates the effects of such a distributed damage on the collapse mechanisms

of the structural system. This dissertation proposes a new methodology of partial distributed

damage scenarios that is compared to the state-of-the art approach of one complete column

removal (Gerasimidis and Sideri 2016 [11], Sideri et al. 2015 [78]). The new method is

applied to a 2D high-rise steel frame building. After different extent of local damage is

parametrically applied to multiple adjacent columns through a damage index δj, results of

nonlinear structural analyses reveal that partial damage introduction in the system leads not

only to more critical collapse loads but also to significant changes in the observed collapse

mechanisms.

Following the investigation of the effect of a more widespread damage distribution in

the system through the introduction of partial damage scenarios, this dissertation proceeds

in developing a methodology for assessing the progressive collapse vulnerability of struc-

tures against real hazardous scenarios, i.e. blast events. In contrast to the aforementioned

partial damage scenarios that essentially include parametrically applied column damage in

an idealized way (by using the damage index δj), simulation of explosions is an even more

realistic approach for examining real threat extreme load cases that affect many structural

components in their vicinity. To this end, the investigation of damage distribution on ad-

jacent structural members induced by blast loads is considered critical for the evaluation of
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structural robustness against abnormal loads that may initiate progressive collapse.

In this environment, detailed 3D nonlinear finite element dynamic analyses of steel frame

buildings are performed in order to examine the spatially distributed response and damage

to frame members along the building exterior facing an external blast (Sideri et al. 2015 [79]

and Sideri et al. 2016 [81]). A methodology to assess the progressive collapse vulnerabil-

ity is also proposed, which includes four consecutive steps to simulate the loading event

sequence. Three case studies of steel buildings with different structural systems serve as

examples for the application of the proposed methodology. A highrise (20-story) building is

firstly subjected to a blast load scenario, while the complex 3D system results in the heavily

impacted region are compared with individual column responses (SDOF) obtained from a

simplified analytical approach consistent with current design recommendations (Mullen et

al. 2015 [80]). Subsequently, two typical mid-rise (10-story) office steel buildings with iden-

tical floor plan layout but different lateral load resisting systems are examined; one including

perimeter moment resisting frames (MRFs) and one including interior reinforced concrete

(RC) rigid core. Comparisons between the performances of the building configurations sub-

jected to the same blast scenario demonstrate the effect of the building layout to the overall

structural behavior and progressive collapse. It is shown that MRFs offer a substantial in-

crease in robustness against blast events, and the role of interior gravity columns identified

as the “weakest links” of the structural framing that greatly influence the stability behavior

and may potentially initiate progressive collapse is finally discussed.

1.2 Part I Outline

Part I of this dissertation is composed of seven chapters. Following this introduction, in

Chapter 2, a new method that introduces partial distributed damage to different columns

of a structural system and investigates the effects of such a distributed damage on the

collapse loads and collapse mechanisms of the structural system is developed. The numerical
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application of the aforementioned method on a 15-story steel frame building is presented in

Chapter 3. Most of the content of these chapters derives from Sideri et al. 2015 [78] and

Gerasimidis and Sideri 2016 [11].

Chapter 4 elaborates on the sensitivity of progressive collapse vulnerability of steel build-

ings to the distribution of damage within the structural system when facing an external blast.

A methodology to assess the progressive collapse vulnerability is also presented, which in-

cludes four consecutive steps to simulate the blast loading event sequence. Details of the

blast scenario considered and how the blast loads are generated are also provided in this

chapter. Subsequently, in Chapters 5 and 6, nonlinear dynamic finite element simulation is

performed to investigate the response of a high-rise 20-story and two mid-rise 10-story 3D

buildings, assess the damage propagation and explore the possibility of progressive collapse

initiation. Most of the content of these chapters derives from Sideri et al. 2015 [79], Mullen

et al. 2015 [80] and Sideri et al. 2016 [81].

Finally, Chapter 7 concludes with a summary of the research accomplishments of Part I

and provides guidance for potential direction of future research.
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Chapter 2

Partial Distributed Damage Method

for Progressive Collapse (PDDM)

2.1 Introduction

The vast majority of researchers have accepted the Alternate Path Method as the most

useful tool to quantify an abnormal load that may trigger progressive collapse of structures.

The core engineering concept of the APM is the removal of a key element as a means of

damage introduction to the system in order to assess the resilience of structures. However,

recent remarks have questioned the adequacy of the single column loss approach in the sense

that it is poorly correlated to real life structural failure events. More specifically, Ellingwood

2002 [28] explained that the single column loss notion is far from being unrealistic, mainly for

two reasons. First, even under an extreme local event it is very improbable that an element

will fail completely throughout its whole length and second, if such an extreme event does

happen there will be non-negligible damage to other elements (beams or columns) as well.

Therefore, although practitioners and researchers often make the simplistic assumption that

the full column removal notion can easily express a way of incorporating damage in the

system, it is not the most accurate, realistic and necessarily conservative means of damage

11



CHAPTER 2. PARTIAL DISTRIBUTED DAMAGE METHOD FOR PROGRESSIVE
COLLAPSE (PDDM)

introduction. Instead, a more widespread partial damage distribution that affects more than

one structural elements is a more realistic approach for simulating extreme loading events

(for instance blast events).

The concept of partial damage of structural elements has been introduced in the work of

Gerasimidis et al. 2014 [35], by examining different cases of single and multiple partial losses

of columns, aiming at the investigation of a more distributed damage scenario. However, this

study was limited to a short steel frame, for which the stability considerations are generally

not critical.

Chapter 2 proposes a new method for progressive collapse analysis by introducing partial

distributed damage scenarios and utilizing powerful finite element computational tools that

are able to capture loss of stability phenomena. The current state-of-the-art approach of one

complete column removal scenario is compared to new partial distributed damage scenarios

of multiple adjacent columns. The locality of the damaging event is maintained and the

introduction of damage is applied to adjacent columns only. A damage index δj is utilized

to parametrically attribute different extent of local damage to the columns, where the upper

bound is full local damage and the lower bound is intact condition. Subsequently in Chapter

3, the method is applied on a 2D 15-floor steel frame and through the discussion of results,

it is shown that the introduction of partial damage to the structural system can significantly

modify the collapse mechanisms and overall affect the response of the structure. Through

the investigation of damage propagation, it is proven that partial damage not only leads to

lower and more critical collapse loads but also changes the observed collapse mechanisms,

alternating between yielding-type and stability-type collapse modes.
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2.2 Damage index δj

Damage introduction in the structural system is performed based on the classical definition

of damage by Kachanov 1986 ( [36]). Let us consider isotropic damage, in which case cracks

and voids are equally distributed in all directions. Damage indexes δj which express the

damage degree are defined as the following scalar

δj =
A− A′

A
, 0 ≤ δj ≤ 1 (2.1)

where A the overall area of the element j and A
′

the effective resisting area. The lower

bound δj = 0 corresponds to the intact state condition (no damage), the upper bound δj = 1

corresponds to the fully damaged state, while all the intermediate values of the damage index

correspond to the partial damaged state. A structural member is considered removed if the

full damage condition δj = 1 is valid for all its elements. Essentially

if δj = 0 ⇒ No damage (2.2)

if δj ∈ (0, 1) ⇒ Partial damaged state (2.3)

if δj = 1 ⇒ Fully damaged state (2.4)

The effective stress in case of uniaxial tension is defined as

σ
′
=
P

A′ =
P

A(1− δj)
=

σ

1− δj
(2.5)

where σ is the stress of the pristine element, σ
′
the effective stress of the damaged element

and P is the applied tensile force.

Based on the assumption by Lemaitre 1985 [37], the strain response of the body is

modified by damage only through the effective stress σ
′
. Moreover, let us also assume

that the rate of damage growth is determined primarily by the level of the effective stress.
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Therefore, the stress-strain behavior of the damaged material can be represented by the

constitutive equation of the pristine material (no damage) with the stress in it replaced by

the effective stress. In other words, the elastic strain of the damaged material according to

Hooke’s law is

ε =
σ

′

E
=

σ

E(1− δj)
(2.6)

which indicates that Hooke’s law is still valid for the damaged state with the pristine

Young’s modulus E
′

being replaced by the effective Young’s modulus E
′
. Essentially

E
′
= E(1− δj) (2.7)

The damaged state of an element j is thus expressed via the damage index δj, which

represents the fractured (lost) area deducted from the overall initial section area and subse-

quently leads to an equivalent reduction of the initial Young’s modulus to an effective value

E
′
. Hence, simulation of the damaged element is based on two distinct actions:

1. Reduction of the pristine area A to an effective resisting area A
′

2. Reduction of the pristine Young’s modulus E to an effective Young’s modulus E
′

2.3 Partial Distributed Damage scenarios

Following the definition of damage index δj and the description of how the damage degree

can be simulated for a single structural member, the effect of partial damage distribution

on the response of a global structural system is investigated by performing a set of vertical

push-down static analyses.

A Damage Scenario vector is defined as follows:

DSf (k) : f ∈ {1, 2, ..., n} and k ∈ {1, 2, ..., 11} (2.8)
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where f are the different building floors, ranging from 1 to n, where n represents the

total number of floors, and k are the different damage scenarios. There are 11 different

damage scenarios utilized to introduce damage in key elements of the building, i.e. columns.

These damage scenarios include 2 complete column removal scenarios DSF (1) and DSf (11)

and a set of ten partial distributed damage scenarios DSf (2) - DSf (10), for which damage

is introduced to two adjacent columns. This configuration represents a realistic damage

distribution that affects two adjacent members, for example due to a localized damaging

event such a blast event close to two corner columns of a structural frame. Future work of

this dissertation would logically include the extension of the above notion into an even more

widespread damage distribution that affects more than two structural members, in order to

simulate a more severe blast or impact loading.

A typical steel frame such as the one in Figure 2.1 can serve as an example structure

to display the aforementioned damage scenarios. The 11 damage scenarios are listed below

(the following numbering will be used as reference nomenclature from now on):

DSf (1). δA,fj = 1 ; δB,fj = 0

DSf (2). δA,fj = 0.9 ; δB,fj = 0.1

DSf (3). δA,fj = 0.8 ; δB,fj = 0.2

DSf (4). δA,fj = 0.7 ; δB,fj = 0.3

DSf (5). δA,fj = 0.6 ; δB,fj = 0.4

DSf (6). δA,fj = 0.5 ; δB,fj = 0.5

DSf (7). δA,fj = 0.4 ; δB,fj = 0.6

DSf (8). δA,fj = 0.3 ; δB,fj = 0.7

DSf (9). δA,fj = 0.2 ; δB,fj = 0.8
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Figure 2.1: Geometric morphology and reference grid of the 15-story moment-resisting steel
frame.

DSf (10). δA,fj = 0.1 ; δB,fj = 0.9

DSf (11). δA,fj = 0 ; δB,fj = 1

The first damage scenario DSf (1) corresponds to the complete loss of corner column A

of number f floor. This scenario refers to damage indexes δA,fj = 1 (full damage, i.e. column

removal) for all the elements of the corner column A of floor f and δB,fj = 0 (no damage, i.e.

intact column condition) for all the elements of the adjacent column B of floor f . Damage

scenarios DSf (2)−DSf (10) represent the scenarios for which both columns A and B of floor

f are in the state of partial damage. Finally, the last damage scenario DSf (11) corresponds
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to the full column removal of column B of floor f and the intact state condition of column

A of floor f .

The selection of the partial damage scenarios is obviously made so that the total level of

damage introduced in the structure is equivalent to one full column removal, since in every

scenario the following relation is satisfied:

δA,fj + δB,fj = 1 (2.9)

The reasoning behind this notion is to achieve consistency in comparing the results of

the alternate load path method (complete column removal) to the results from the partial

distributed damage scenarios.

This set of analyses for all damage scenarios is performed in turn for all floors of the

building, f = (1, 2, ..., n). Hence, the total number of progressive collapse scenarios examined

is the 11 damage scenarios multiplied by the total number of floors n, i.e. 11× n.

2.4 Propagation of Failure and Progressive Collapse Capacity

Each specific damage scenario includes a certain amount of partial damage introduced to

adjacent columns A and B. Following that initial damage introduction to the frame, a

first push-down progressive collapse analysis is performed. The results of this analysis have

two potential outcomes, referring to two different collapse mechanisms. Either one of the

damaged columns will fail through loss of stability, or the beam edges above the damaged

region will develop plastic hinges leading to a yielding-type collapse of the frame. Both

possible outcomes are described in detail below, along with the definition of the respective

collapse loads for each case.

2.4.1 Buckling-type column failure

Analysis I
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If the first push-down analysis reveals the buckling failure of a column, the collapse

load CLI,f (k) of Analysis I is defined as the load at which the failing column reaches

its axial capacity.

Analysis II

The second push-down analysis includes the removal of the previously buckled ele-

ment from the system. Subsequently, a new push-down progressive collapse analysis is

performed by maintaining the same level of damage to the rest of the columns. The

collapse load CLII,f (k) of Analysis II is defined in the same way as in Analysis I, i.e. as

the vertical load for which the buckling failure of an element occurs through exhaustion

of its axial load capacity.

2.4.2 Yielding-type beam failure

Analysis I

In the event that Analysis I leads to a yielding-type failure of beams above the damaged

column region, the final collapse load CLf (k) is defined as the vertical external load

for which the beams reach their bending capacity Mplastic and thus plastic hinges

are formed at the beam edges, leading to an increase of beam displacements and

rotations beyond the safety limits. In this case, the damage propagation is ceased by

beam yielding and thus there is no need for a second analysis (CLf (k) = CLI,f (k)).

Otherwise, if the first analysis leads to the buckling failure of a column, then CLI,f (k)

is defined in the same manner as section 2.4.1.

Analysis II

In case a column buckles during Analysis I at the collapse load CLI,f (k), subsequently

Analysis II is performed by removing the previously buckled column and maintaining

the same damage level for the rest of the columns. The results of Analysis II may now

show the yielding-type beam failure collapse mechanism at the load of CLII,f (k).
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2.4.3 Progressive Collapse Capacity

The final progressive collapse capacity for every damage scenario is defined as the maxi-

mum between the collapse loads of Analyses I and II, i.e. maximum between CLI,f (k) and

CLII,f (k) :

CLf (k) = max {CLI,f (k), CLII,f (k)} (2.10)

The reasoning behind the definition of progressive collapse capacity as final collapse load

of the frame, along with description of the propagation of failure, is demonstrated in detail

below.

• If Analysis I reveals a column buckling failure at a collapse load CLI,f (k), while Anal-

ysis II leads to another column buckling failure at a higher collapse load CLII,f (k), it

follows that the set of two analyses correspond to a damage propagation phenomenon

that is terminated at the higher load of the second analysis. In other words, the two

buckling failures are initiated consecutively or one after the other, meaning that the

second one requires an even higher load to occur (CLf (k) = CLII,f (k)).

• If Analysis I identifies a column buckling failure at a collapse load CLI,f (k), while

Analysis II leads to a yielding-type beam failure at a higher collapse load CLII,f (k),

then the set of two analyses form a damage propagation phenomenon that is finalized at

the higher load of the second analysis, meaning that the two failures occur consecutively

(CLf (k) = CLII,f (k)).

• If Analysis I reveals a column buckling failure at a collapse load CLI,f (k), while Anal-

ysis II leads to another buckling failure at a lower collapse load CLII,f (k), then the

second buckling failure is simultaneous to the first one, meaning that the first loading

level is high enough to trigger both failures at the same time (CLf (k) = CLI,f (k)).

• If Analysis I identifies a column buckling failure at a collapse load CLI,f (k), while

Analysis II leads to a yielding-type beam failure at a lower collapse load CLII,f (k),
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then the second yielding-type failure is immediate to the first one, since the first loading

level is high enough to cause the second failure simultaneously (CLf (k) = CLI,f (k)).

• If Analysis I identifies a yielding-type beam failure, the progressive collapse phe-

nomenon is arrested by the formation of plastic hinges at the beam edges and the

progressive collapse capacity is defined as (CLf (k) = CLI,f (k)).

The aforementioned damage propagation for the assessment of the final progressive col-

lapse capacity is schematically depicted in Figure 2.2.

Figure 2.2: Damage propagation procedure for the assessment of the final progressive collapse
capacity, according to the new partial distributed damage method (PDDM).
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It must be mentioned here that, the research community in the progressive collapse field

has generally accepted the notion of subsequent column removals after a member has failed.

Alternatively, a more sophisticated approach than the element removal would be to consider

the post-buckling behavior of failed components and examine the effect of their presence in

the frame’s structural behavior. However, it is not within the scope of this thesis to include

that kind of phenomena, although it would be an excellent future extension of the current

work.
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Chapter 3

Partial Distributed Damage Method

(PDDM) - Numerical Application

3.1 Introduction

Following Chapter 2 that proposed a new method for progressive collapse analysis including

partial distributed damage scenarios, Chapter 3 presents the numerical application of the

method on a 2D 15-floor steel frame. The current state-of-the-art Alternate Path Method

of a single column loss is compared to partial distributed damage scenarios of two adjacent

columns, by utilizing powerful finite element computational tools that are able to capture

loss of stability phenomena. Through a damage index δj, different extent of local damage

is parametrically applied to adjacent columns and then static nonlinear push-down analyses

are performed. After discussion and comparison of the analyses results, it is shown that

introduction of partial damage in the system greatly affects the overall structural behavior, by

leading not only to lower and more critical collapse loads but also to significant modification

in the observed collapse mechanisms.
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3.2 Description of the Finite Element Model

The 15-floor steel frame used for the analyses is shown in Figure 2.1. It is a typical steel

moment resisting frame designed according to the Eurocodes [38] and [39], with floor height

equal to 3m and bay width equal to 5m. The tributary load areas are calculated using a

selected distance between consecutive frames of 7m, which is a typical value for steel frames.

Indicatively, column sections vary from HEB650 to HEB200, while beam sections range from

IPE450 to IPE550. Full section selection, load combinations and design considerations of

the frame can be found in the work of Gerasimidis et al. 2012 [40]. The structural steel

components follow the non-linear material characteristics of structural steel S235, described

by an elastic-plastic material model with bilinear stress-strain behavior. The yield stress of

the material is 235MPa and and the ultimate stress is 360MPa at strain 23%, with isotropic

strain hardening.

The frame is simulated using the commercial FEM code ABAQUS Simulia [41], using

beam B22 elements to simulate both beams and columns. The mesh representing the finite

element model is studied to be sufficiently fine in the areas of interest to accurately capture

the structural behavior of the system. Apart from the elements used to model the connec-

tions, each column comprises 5 elements while each beam comprises 10 elements, leading to

a total number of 1262 elements and 5956 nodes for each model. The rigid body constraint

offered in ABAQUS is utilized to model all beam-to-column connections, by constraining

the relative motion of regional elements around the connections. All base nodes of first floor

columns are considered pinned.

The proposed partial distributed damage method is applied on the 15-story frame for all

the aforementioned damage scenarios, leading to a total number of 165 progressive collapse

scenarios. Each damage scenario from DSf (2) to DSf (10) includes 2 consecutive analyses,

except damage scenarios DSf (1) and DSf (11) that are described by a single static push-

down analysis. All analyses are set to account for both material and geometric nonlinearities
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which is shown to be the only appropriate method to detect loss-of-stability phenomena and

thus to identify the correct collapse mechanisms (Gerasimidis et al. 2014 [8], Gerasimidis

2014 [24]).

3.3 Analysis Results

3.3.1 Damage Scenarios for the 1st Floor

3.3.1.1 Damage Scenario DS1(1)

The first analysis involves the removal of the corner column of the first floor, A1. Figures

3.1a and 3.1b include the horizontal (lateral) displacement at mid-height of column B1 and

the axial force of column B1, with respect to the vertical load applied on the beams of

the structure, while Figure 3.1c presents the deformed shape of the structure. All graphs

illustrate the buckling failure of column B1, while the beams exhibit little plastification and

mostly remain within the elastic range. Both the deformed shape and the displacement plot

show a rapid increase in the horizontal displacement after the application of the vertical

load of 56.4kN/m, while the axial force increases linearly until the column reaches its axial

capacity for the same loading level. After this point it is clear that the member cannot

undertake any additional axial force, therefore the collapse load is CL1(1) = 56.4kN/m.

An additional analysis is not required in this case, since the failure of the second column

certainly leads to the collapse of the structure. The kind of buckling occurring in this

case is nonlinear inelastic buckling, since the axial force cannot exceed the yield capacity

of Afy, where A is the cross sectional area and fy is the material yield stress. In addition,

the Euler buckling capacity of column B1 is much higher than its yield capacity, meaning

that this column with the prescribed geometry and section properties is prone to nonlinear

inelastic buckling rather than linear elastic Euler buckling (which is the case for slender

columns). Detailed description of different buckling failure modes can be found in the work
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Figure 3.1: Damage scenarioDS1(1): Full columnA1 removal of the first floor. (a) Horizontal
(lateral) displacement δ of the mid-height node of the adjacent-to-the-removal column B1,
(b) axial force with respect to the the vertical load and (c) deformed shape.

of Gerasimidis 2014 [24]. It must be mentioned at this point that the critical failure mode of

all columns examined for this structure is nonlinear inelastic buckling, as opposed to Euler

buckling of the weak or strong axis.

3.3.1.2 Damage Scenario DS1(2)

The next analysis performed is the partial damage distribution scenario with δA,1j = 0.9

and δB,1j = 0.1. This analysis leads to the buckling failure of column A1 at the vertical

load of CLI,1(2) = 20.7kN/m (illustrated by the dashed line in the plot of the axial force

in Figure 3.2a). After the removal of column A1, the damage propagation phenomenon
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ends with the buckling failure of B1 at the collapse load of CLII,1(2) = 51.0kN/m (Figure

3.2b), which defines the progressive collapse capacity for this damage scenario CL1(2) =

max {CLI,1(2), CLII,1(2)} = 51.0kN/m. This collapse load is lower than the CL1(1) =

56.4kN/m collapse load of the full column A1 removal scenario. A first important finding

is the decrease of the capacity when applying a partial distributed damage scenario that

includes damage distribution very close to the initial single column removal assumption;

only 10% of the damage is ‘transferred’ from column A1 to B1 and the collapse load is yet

decreased also almost by 10%.

Figure 3.2: Damage scenario DS1(2): (a) Axial force of column A1 for Analysis I, (b) axial
force of column B1 for Analysis II, with respect to the the vertical load and (c) collapse
sequence.
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3.3.1.3 Damage Scenarios DS1(3) - DS1(5) and DS1(11)

The same trend is observed when the other partial distributed damage scenarios are investi-

gated, reaching the collapse loads of CL1(3) = 45.4kN/m and CL1(4) = 51.5kN/m for the

cases of δA,1j = 0.8; δB,1j = 0.2 and δA,1j = 0.7; δB,1j = 0.3, respectively. Interestingly, the

collapse load for both these cases is lower than CL1(1) = 56.4kN/m, which is the collapse

load of the complete A1 column removal scenario.

However, for the DS1(5) (δA1
j = 0.6 and δB1

j = 0.4) damage scenario, the collapse

mode of the structure is altered. Instead of the buckling failure of A1 (which has the

highest level of damage), column B1 is the one that actually buckles first at CLI,1(5) =

61.3kN/m. The collapse load of the second analysis which results in the buckling of A1

is now CLII,1(5) = 36.8kN/m, which is lower than the initial 61.3kN/m. Therefore, the

loading level of 61.3kN/m is large enough to cause the buckling failure of both columns A1

and B1 and the final collapse load for this case is thus defined as CL1(5) = 61.3kN/m.

At this particular point, it is interesting to examine the complete loss of column B1 which

is described by DS1(11). Figure 3.3c depicts the deformed shape of the structure, which

shows the buckled shape of column C1. When plotting the axial force of that column with

respect to the vertical applied load (Figure 3.3b), the axial capacity is reached at CL1(11) =

69.0kN/m, where at the same load the column mid-height horizontal displacement begins

to increase rapidly (Figure 3.3a).

The CL1(5) = 61.3kN/m collapse load is higher than CL1(1) = 56.4kN/m but lower

than CL1(11) = 69kN/m. Moreover, since the first element that buckles in DS1(5) is B1, it

is considered more reasonable to compare the DS1(5) case with the results of DS1(11) than

the results of DS1(1), even if the damage level initially introduced to A1 is higher than B1.

Damage scenarios DS1(3) and DS1(4) lead to lower collapse loads than the corresponding

complete column removal scenarios (either DS1(1) or DS1(11)).
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Figure 3.3: Damage scenario DS1(11): Full column B1 removal of the first floor. (a) Hori-
zontal (lateral) displacement δ of the mid-height node of the adjacent-to-the-removal column
C1, (b) axial force with respect to the the vertical load and (c) deformed shape.

3.3.1.4 Damage Scenarios DS1(6) - DS1(10)

Similarly to DS1(5), all partial damage scenarios DS1(6) - DS1(10) are compared to the

B1 full column removal scenario, DS1(11). The first analysis of DS1(6) (δA,1j = 0.5 and

δB,1j = 0.5) leads to the buckling failure of column B1 at CLI,1(6) = 52.9kN/m and the

results of the second analysis show buckling of A1 at CLII,1(6) = 45.2kN/m. Therefore,

the collapse load is the highest of the two, i.e. CL1(6) = CLI,1(6) = 52.9kN/m, which is

remarkably lower (23.3%) than CL1(11) = 69.0kN/m.

Furthermore, the scenarios DS1(7) and DS1(8) show similar behavior, for which in the

first analysis column B1 fails and the second analysis reveals the buckling failure of column
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A1 at CL1(7) = CLII,1(7) = 55.0kN/m and CL1(8) = CLII,1(8) = 62.7kN/m. Lastly,

DS1(9) and DS1(10) lead to a final collapse load of CL1(9) = 66.9kN/m and CL1(10) =

67.6kN/m, respectively, due to the inelastic buckling failure of column C1, resembling the

collapse mode of the DS1(11).

The major finding of this analysis is the significant decrease of the collapse load in

almost all partial distributed damage scenarios, showing that the notion of complete column

removal is a less conservative approach than the proposed partial distributed damage method

(PDDM). In addition, there is a noticeable change in the observed collapse mechanisms. The

final buckling failure can occur either at columns A1, B1 or C1 interchangeably, depending

on the specific partial damage distribution applied in the model.

3.3.2 Partial Damage Distribution at 14th Floor

3.3.2.1 Damage Scenarios DS14(1) and DS14(11)

The next discussion of results will present the partial damage distribution study at a higher

floor, where the dominant failure is the extensive yielding of beams instead of the buckling

collapse mode of a column. The reference point to examine and compare all the partial

distributed damage scenarios will be the two column removal analyses of A14 and B14,

corresponding to DS14(1) and DS14(11) respectively.

For the scenario DS14(1), the beam edges at floors 14 and 15 reach the plastic bending

moment limit at the vertical load of CL14(1) = 62.5kN/m (Figure 3.4b). At the same load,

the vertical displacement of the node above the removal has nearly reached the value of 10cm,

while after this point it continues to grow at a higher rate (Figure 3.4a). Finally, Figure

3.4c displays the deformed shape of the structure which obviously indicates the yielding-type

collapse mechanism initiated by the excessive deformation and plastification of the beams

above the removal.

The analysis of column B14 being removed from the model leads to very similar results.
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Figure 3.4: Damage scenario DS14(1): Full column A1 removal of the 14th floor. (a) Vertical
displacement δ of the node above the removal, (b) bending moment at the beam edges of
the 14th and 15th floor with respect to the the vertical load and (c) deformed shape.

As depicted in Figure 3.5, plastic hinges are formed at all beams edges of both bays AB and

BC, for a collapse load of CL14(11) = 75.5kN/m.

3.3.2.2 Damage Scenario DS14(2)

Following the same configuration, the next analysis involves the application of 90% damage

level for column A14, while column B14 is damaged only 10%. For this scenario, the inelastic

buckling of column A14 occurs at a relatively low level of external load. After the removal

of this buckled element, the next analysis leads to the yielding-type collapse mechanism of

beams at the same vertical load of CL14(2) = CLII,14(2) = 62kN/m. The collapse load in
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Figure 3.5: Damage scenario DS14(11): Full column B1 removal of the 14th floor. (a) Vertical
displacement δ of the node above the removal, (b) bending moment at the beam edges of
the 14th and 15th floor with respect to the the vertical load and (c) deformed shape.

this case is practically the same as the DS14(1) full A14 column removal scenario.

3.3.2.3 Damage Scenario DS14(3)

The next analysis involves the application of 80% damage level for column A14, while column

B14 is damaged by 20%. For this scenario, the inelastic buckling of column A14 occurs at

a higher collapse load than DS14(2) and the second analysis reveals again the yielding-type

collapse of the beams above the damaged area, after the removal of the buckled elements.

The collapse load in this case is governed by the buckling of column A14 and it is higher

than the collapse loads of DS14(1) and DS14(2).
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3.3.2.4 Damage Scenarios DS14(4) - DS14(6)

The next three partial damage scenarios show a significant change in the overall behavior of

the structure. Interestingly, when applying 70%, 60% or 50% damage level for column A14

(equivalently 30%, 40% or 50% damage level for column B14) the results of all three analyses

show the buckling failure of column C4 at the 4th floor for practically the same vertical load

of CLI,14(4) = CLI,14(5) = CLI,14(6) = 89.3kN/m. Figure 3.6a depicts the plot of the axial

forces of both columns C4 and A14 for Analysis I of damage scenario DS14(4), where it is

obvious that column C4 reaches its axial capacity before any failure occurs at A14. When

removing the buckled column C4, all three damage scenarios lead to the buckling failure of

column B4 at a lower loading level of CLII,14(4) = CLII,14(5) = CLII,14(6) = 64.1kN/m

(Figure 3.6b for DS14(4)). Consequently, the vertical load of 89.3kN/m is large enough to

cause the buckling failure of both C4 and B4, therefore CL14(4) = CL14(5) = CL14(6) =

89.3kN/m.

Although this load is higher than for the DS14(1) full A14 column removal scenario (even

higher than the DS14(11) B14 removal scenario), the most important finding from this

scenario is the tremendous change in the collapse mechanism; instead of the yielding-type

collapse mechanism of the beams, the structure fails due to loss of stability of columns at a

much lower floor. The assessment of the progressive collapse vulnerability of this structure is

highly affected by the specific partial damage distribution scenario applied to the members

of the frame. Essentially, the yielding-type of progressive collapse is avoided in the vicinity

of the introduction of damage when the damage is distributed almost evenly in two columns.

The damaged columns are able to prevent the yielding type of collapse and therefore the

collapse is triggered in a completely different area of the frame.

3.3.2.5 Damage Scenarios DS14(7) - DS14(10)

Lastly, the damage propagation for DS14(7) - DS14(10) can be described by the buckling

failure of B14 and then, after the removal of B14, by the yielding failure of the beams at
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Figure 3.6: Damage scenario DS14(4): (a) Axial force of column A14 and C4 for Analysis
I, (b) axial force of column B4 for Analysis II with respect to the the vertical load and (c)
collapse sequence.

the 14th and 15th floor. Except DS14(7), the collapse load of which is CL14(7) = 79.1kN/m,

all the other collapse loads are slightly lower than the CL14(11) = 75.5kN/m collapse load

of the full B14 column removal scenario.

Overall, the response of the structure is only mildly affected under the event of partial

distributed damage at a higher floor, where the dominant collapse mechanism is the beam

yielding-type. However, three (DS14(4) - DS14(6)) out of nine (DS14(2) - DS14(10)) partial

distributed damage scenarios reveal that the expected critical collapse mode of beam yielding

can be replaced by the inelastic buckling failure of columns located at lower floors, rendering
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a parametric partial damage distribution study critical for the correct evaluation of the

structural integrity of a system in case of a progressive collapse scenario.

3.3.3 Synopsis of Analysis Results

Figure 3.7 provides the synopsis of all collapse loads for all damage scenarios for the 15 floors

of the frame, divided by the collapse load of the single column removal case. The upper part

of the graph, Figure 3.7a, illustrates the ratio CLf (k)/CLf (1), while the lower part, Figure

3.7b, depicts the ratio CLf (k)/CLf (11). The complete column removal at gridlines A or B

(DSf (1) or DSf (11), denoted by the red line) constitutes the reference alternate load path

scenario to which all other scenarios are compared, as it represents the current state-of-the-art

progressive collapse approach of the Alternate Path Method (APM). Both graphs show that

many damage scenarios included in the proposed Partial Distributed Damage method reach

lower collapse loads than DSf (1) and especially DSf (11), since they are located below the

red line. This trend is less apparent for the upper floors of the structure, where the collapse

loads are only mildly affected by the introduction of partial distributed damage, due to the

yielding-type nature of collapse mechanisms observed. The reduction of the collapse load

for many damage scenarios is remarkable though for the rest of the floors, where buckling

failure is dominant, resulting in CLf (k)/CLf (11) ratios as low as 0.65 (up to 35% reduction

in the collapse load).

Another interesting finding from Figure 3.7 illustrated by the red indicators at the bottom

of each graph is that for all floors except at the last two floors, the most critical scenario

is DSf (3) (δA,fj = 0.8 and δB,fj = 0.2), as it leads to the largest decrease in the collapse

load. In contrast, for the 15th floor the most critical scenario in terms of lowest collapse load

is the full column A15 (DS15(1)) removal. This finding, however, depends on the design

characteristics of the analyzed frame and cannot generally be extended to other building

configurations.
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Figure 3.7: Collapse loads of all damage scenarios for the 15 floors of the frame, divided
by (a) the collapse load of complete column A removal CLf (1) and (b) the collapse load of
complete column B removal CLf (11).
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3.3.4 Effect of PPDM on Progressive Collapse Capacity

The most important finding of this work is that the capacity of the structure is much lower

when the partial distributed damage method is considered in comparison to the simplistic

notional column removal approach of the state-of-the-art APM. It is therefore considered

highly unconservative for many cases to perform the alternate load path method for progres-

sive collapse analysis of steel frames.

Figure 3.8 highlights the discrepancy of progressive collapse capacity between the new

partial distributed damage method and the alternate load path method through an illustrated

table. The first row of the table includes the collapse loads corresponding to the complete

column A removal for all the different floors DSf (1), while the last row of the table includes

the collapse loads corresponding to the complete column B removal for all the different

floors DSf (11). Essentially, the first and last row of the table represent the collapse loads

had the APM been utilized to perform progressive collapse analysis for all the building floors.

All these values are in kN/m and refer to vertical downward loading on the beams of the

structure. The rest of the rows in the table include a measure of the discrepancy between the

state-of-the art and the proposed method which can be defined by the following equation:

df (k) =
CLf (k)− CLf (1)

CLf (1)
for k = 2, 3, 4, 5

df (k) = min

{
CLf (k)− CLf (1)

CLf (1)
,
CLf (k)− CLf (11)

CLf (11)

}
for k = 6

df (k) =
CLf (k)− CLf (11)

CLf (11)
for k = 7, 8, 9, 10

(3.1)

where df (k) is the discrepancy measure between the two methods. Equation 3.1 quantifies

the discrepancy measure by comparing damage scenarios for k = 2, 3, 4, 5, where there is more

damage at column A, to the full column A removal (k = 1), while the damage scenarios for

k = 7, 8, 9, 10, where there is more damage at column B, are compared to the full column B

removal (k = 11). For the symmetric case where equal amount of damage is applied to both
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columns A and B, the minimum of the two comparisons is adopted.

The red colored cells in the table of Figure 3.8 represent the cases for which the collapse

load of the new method is lower (and thus more critical) than the collapse load of the

alternate load path method. Collectively, there are 92 out of the total 135 analyses with

partial distributed damage that reveal more critical collapse loads than the alternate path

method. The vast majority of cases where the alternate path method is unconservative

showcase the importance of the results.

Furthermore, the decrease in the collapse load in many partial damage scenarios is con-

sidered particularly high. For example, for the first floor this decrease reaches DS1(6) =

−23.3% which is admittedly very high. Other outstanding cases are DS4(6) = −21.8%,

DS1(7) = −20.3%, DS4(4) = −19.6%, DS1(3) = −19.5%, DS10(3) = −19.5% among many

others. This finding is considered the most important one of this work, since it demonstrates

that for these cases, the state-of-the-art alternate path method is highly unconservative since

it clearly overpredicts the progressive collapse capacity of the structure.

Figure 3.8: Detailed discrepancy results for collapse capacity between the alternate path
method (DSf (1), DSf (11)) and partial distributed damage method.
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3.3.5 Effect of PPDM on Progressive Collapse Mechanisms

The second important finding of this chapter is the change in the observed collapse mecha-

nisms in case of partial damage distribution. Figure 3.9 demonstrates the damage propaga-

tion of all the damage scenarios from 1st to 5th floor performed in this chapter, along with

some selected damage scenario deformed shapes for 1st and 3rd floor. Each bar represents the

collapse load of one analysis (20 analyses per floor, 300 analyses in total for all 15 floors).The

sequence of analyses is shown by consecutive bars, with the red bars illustrating the analyses

that yield the higher collapse load and are thus considered the dominant analyses. On top of

each bar, the failing element at the end of each analysis is depicted rather than the removed

element in the beginning of each analysis, to avoid confusion. The yielding-type collapse

mechanisms are denoted by the letter Y (yielding).

The results show the alteration of the failing elements in case of partial distributed dam-

age, as opposed to full column removal scenarios DSf (1) or DSf (11). In case of buckling

modes of collapse, the element that buckles is not always the adjacent column or the column

that the corresponding full removal scenario is indicating. For example, the current state-

of-the-art Alternate Load Path Method (damage scenario DS1(11)) predicts the buckling

failure of column C1 after the complete column B1 removal. However, according to the

proposed Partial Distributed Damage Method, the deformed shape of Analysis II when con-

sidering damage scenario DS1(3) reveals the buckling failure of column B1 (after removing

the previously buckled column A1 in Analysis I). What is also remarkable is the reduction of

the collapse load according to PDDM which in this case is 34%. Similarly, at the 3rd floor,

the state-of-the-art APM predicts buckling of column C4 (damage scenario DS3(1)), whereas

the finally buckling element according to the proposed PDDM (damage scenario DS3(3)) is

column B3. Therefore, the position of the buckling element highly depends on the damage

scenario examined in each case, so an integrated progressive collapse vulnerability analysis

must take into account all damage scenarios and thus apply any design or retrofit techniques
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on a series of vulnerable elements within the structural system.

Figure 3.9: Damage propagation and analyses sequence for all damage scenarios at first five
floors, with respect to the collapse load, and selected damage scenario deformed shapes for
1st and 3rd floor.

Figure 3.10 depicts the damage propagation of all damage scenarios from 6th to 10th

floor, along with some selected damage scenario deformed shapes for 6th and 9th floor. In

the same manner as the previous floors, the observed collapse mechanisms highly depend

on specific damage scenarios investigated. For instance, at 6th floor, the state-of-the-art

APM (damage scenario DS6(11)) predicts buckling failure of column C7, while damage
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scenario DS6(3) predicts buckling failure of column B6 according to the proposed PPDM.

Additionally, when observing the damage scenarios at 9th floor, the proposed PDDM for

DS6(3) results in the buckling failure of column B9, in contrast to the state-of-the-art APM

that results in the buckling failure of column B10.

Figure 3.10: Damage propagation and analyses sequence for all damage scenarios from 6th to
10th floor, with respect to the collapse load, and selected damage scenario deformed shapes
for 6th and 9th floor.

Finally, Figure 3.11 depicts the damage propagation of all damage scenarios for the last

five floors of the building, where the dominant type of failure is beam yielding. The change
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in the collapse mechanisms is even more significant for those floors. For example, at the

12th floor, the current state-of-the-art method that includes full column B12 removal (dam-

age scenario DS12(11)) results in beam yielding failure of the beams spanning above the

removal location; a failure type that is by nature ductile and thus allows for safety warning

by appearance of significant plastic deformation. Conversely, when applying a more realistic

damage distribution scenario such as DS12(5), the collapse mode that the proposed method

predicts is tremendously different and includes loss-of-stability of a column at a much lower

floor, even outside the damaged area, i.e. column B4. In the same environment, similar con-

clusions can be drawn when comparing the state-of-the-art method to the proposed method

at floors 13th - 15th. As illustrated by the deformed shapes of the 14th floor, full column

A14 removal (DS14(1)) leads to yielding-type failure of the above beams, while damage sce-

nario DS14(5) included in the proposed PDDM leads to buckling failure of C4 column, as

previously discussed in Section 3.3.2.

Hence, it is clear that introducing a more widespread and realistic damage distribution

that affects more than one column may not lead to the predicted progressive collapse of

the flexural elements above the removal. This happens mainly due to the support that is

provided by the partial damaged column; in the APM the removed column is absent and

therefore there is a complete loss of support. This work shows that even when a small part

of the column remains in the structure, it could prevent the yielding type of collapse. A

parametric investigation about how damage is distributed into the system and how it affects

the structural response, like the one proposed in the Partial Distributed Damage Method,

is therefore crucial in order to detect the most vulnerable elements to loss-of-stability and

apply the necessary precautions in their design.
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Figure 3.11: Damage propagation and analyses sequence for all damage scenarios from 11th

to 15th floor, with respect to the collapse load, and selected damage scenario deformed shapes
for 12th and 14th floor.
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3.4 Concluding Remarks

Recent studies have questioned the validity of the simplistic current state-of-the-art concept

of key element removal for the performance of progressive collapse analysis. Although the

alternate path method is simple enough for designers and practitioners to apply, it is far

from being realistic. The reasoning behind this questioning is not only because the likeli-

hood of occurrence of an extreme event that is able to cause the complete failure of only

one element is extremely small, but also because in the case of an extreme event, the af-

fected damage area will include more than one elements. Chapters 2 and 3 introduce a new

method for progressive collapse analysis defining partial distribution damage scenarios. The

method is applied on a 15-floor steel frame showing that the column removal concept can be

unconservative. The most important findings from the present work are the following:

• For the partial damage scenarios located at the lower floors of the frame (up to the 12th

floor), where the dominant collapse mode is the column buckling failure, the collapse

loads can be significantly less than the collapse loads of the corresponding full column

removal scenarios. As a result, the application of the alternate path method is less

conservative, since the structural behavior of the frame is seriously affected by the

distribution of damage.

• For the upper floors of the frame (above 12th), where the dominant failure is the

yielding-induced collapse mechanism due to beam failure, the partial distributed dam-

age method (PDDM) leads to similar collapse loads with the complete column loss

approach. Therefore, partial damage distribution only mildly affects the response of

the structure in this case.

• The introduction of distributed damage in the system significantly changes the observed

collapse modes of the structure. More specifically, for floors where the dominant failure

is buckling, distributed damage can alternate the location of the failing element. For
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floors where the alternate path method leads to a yielding-type beam collapse mech-

anisms near the damaged area, some partial damage scenarios lead to the avoidance

of the yielding-type collapse mode and the triggering failure is the buckling failure of

elements located outside the damaged area, in much lower floors.

• For all cases examined except for the top two floors of the analyzed building, the partial

damage scenario that leads to the lower collapse load is always DSf (3) (δA,fj = 0.8 and

δB,fj = 0.2).

The conclusions of this work clearly show that the widely used and unrealistic column

removal concept of the Alternate Path Method can be less conservative and predict collapse

mechanisms and collapse loads which are not the most critical. For this reason, a reliable

study to evaluate the progressive collapse capacity of a structure must include a partial

damage distribution study as well, through the proposed partial distributed damage method

(PDDM).

The next important task in order to extend the findings of this work is the application

of the same analysis procedure to a 3D model. However, the collapse mechanisms and

thus the main conclusions are expected to remain the same, since the columns examined

herein are governed by inelastic nonlinear buckling (able to be captured in a 2D analysis

configuration) rather than elastic Euler buckling of the weak axis that can only be detected

by a 3D analysis configuration. Finally, another important task is to take into account the

post-buckling behavior of the buckled elements and examine the extent to which the collapse

loads and mechanisms will be affected.
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Chapter 4

Progressive Collapse Vulnerability of

3D High-Rise Steel Buildings under

External Blast Loading

4.1 Introduction

As opposed to the Alternate Path method, the notion of direct simulation of blast-loading

events to assess the progressive collapse potential of structures is gaining more ground. In this

environment, in the United States, FEMA 2003 [42] describes design measures for structural

infrastructure to resist blast loads. Marchand and Alfawakhiri 2005 [43] discussed general

principles and definitions for explosive loads and progressive collapse, providing recommen-

dations and response predictions for commercial and industrial buildings. Le Blanc et al.

2005 [44] developed an empirical approach for the determination of blast loads. Hamburger

and Whittaker 2004 [45] also presented design strategies against blast-induced progressive

collapse, while Krauthammer 2005 [46] reviews the blast-related survivability of steel build-

ings, focusing on steel connections. Sasani et al. 2011 [29] assessed experimentally and

analytically the progressive collapse resistance of an actual 11-story RC structure by apply-
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ing severe initial damage though explosion and removal of key columns and beams.

Additional studies on progressive collapse-related blast response of structures have emerged

in the literature, using up-to-date numerical simulation tools. Luccioni et al. 2004 [47] per-

formed a detailed numerical analysis that accurately reproduced the collapse of a real rein-

forced concrete building that was hit by a terrorist attack. Krauthammer and Otani 1997 [48]

investigated the effect of mesh, gravity and loading on finite element simulation of RC struc-

tures under blast loads, providing recommendations and conclusions that may improve the

efficiency of the numerical simulations. Yi et al. 2013 [49] presented a new approach for

blast load application on highway bridges that is able to simulate both blast reflection and

diffraction. Shi et al. 2008 [30] and 2010 [50] proposed a new method for progressive collapse

analysis that considers initial damage and non-zero initial conditions to adjacent structural

components under blast loading, through the application of a numerical method to generate

pressure-impulse diagrams for RC columns. McConnell and Brown 2011 [31] attempted to

quantify the blast threat that is representative of the APM analysis framework by computing

stand-off distances that correspond to different charge sizes and column properties. They

concluded that the single column removal scenario is only representative in case of ‘small’

charges and relatively large column spacing; otherwise results revealed multiple column fail-

ures that render the APM (single column removal) analysis inappropriate. Jayasooriya et al.

2011 [32] studied the non-linear response of key elements of an RC frame building subjected

to near field blast events, in order to assess their residual strength capacity and evaluate

the overall structural vulnerability to progressive collapse propagation. Fu 2013 [51] in-

vestigated the dynamic response of a 3D tall building and focused on shear and ductility

demands of columns when subjected to a typical charge at an intermediate floor, while also

comparing the results with the equivalent structural behavior based on the alternate path

method. Li and Hao 2013 [52] proposed a new method to simulate progressive collapse of

reinforced concrete frame buildings that uses the substructure technique, as opposed to the

traditional FE simulation. In order to reduce the computational time and computer mem-
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ory, the mass and stiffness parts of the structure that exhibit small elastic deformations were

condensed to the structural components close to the detonation which were only modeled

in detail. Elsanadedy et al. 2014 [53] conducted a two-stage simplified nonlinear dynamic

analysis procedure, including a local model stage to assess individual column performance

and a global model stage to investigate the overall system performance, in order to study

the vulnerability of typical multi-storey steel frame buildings under a near field blast attack.

Tadepalli and Mullen 2008 [54] examined the use of single column damage mapping based

on simplified pressure estimation considering a limited number of blast loading parameters

needed for published semi-empirical equations and the spatial mapping of the columns on the

building exterior facing the detonation source. The single-column damage was established

using nonlinear FE modeling of the columns using SAP2000 FE software including the fiber

model for section response.

The objective of Chapter 4 is to expand the knowledge about the sensitivity of progressive

collapse vulnerability of steel buildings to the distribution of damage within the structural

system when facing an external blast. In particular, focus will be placed on the investigation

of the effect of weakening of adjacent damaged columns on the load redistribution and

potential initiation of progressive collapse. A methodology to assess the progressive collapse

vulnerability is also presented, which includes four consecutive steps to simulate the blast

loading event sequence. Details of the blast scenario considered and how the blast loads are

generated are also provided in this chapter.

Subsequently, in the following Chapters 5 and 6 and through using the commercial

ABAQUS [41] code, nonlinear dynamic finite element simulation is performed to investi-

gate the response of the system, assess the damage propagation and explore the possibility

of progressive collapse initiation. Three case studies of steel buildings are presented covering

a range of different steel building structural systems. A high-rise (20-story) steel building

from the SAC-FEMA [55] steel project, designed based on practices before the Northridge

earthquake for Boston area, will serve as an initial example for the application of a blast
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load scenario. Subsequently, two typical mid-rise (10-story) office steel buildings located in

Chicago (included in the work of Agarwal and Varma 2014 [56]) with identical floor plan

layout but different lateral load resisting systems are used; one including perimeter moment

resisting frames and one including interior reinforced concrete (RC) rigid core. Comparisons

between the performances of the building configurations subjected to the same blast scenario

will demonstrate the effect of the building layout to the overall structural behavior and pro-

gressive collapse capacity. Identification of interior gravity columns as the weakest links that

greatly influence the stability behavior and may potentially initiate progressive collapse is

finally established.

4.2 Simulation of Blast Event - Method of Analysis

The following paragraphs describe the proposed method of analysis for the global progressive

collapse vulnerability assessment of buildings under blast loading. As depicted in Figure 4.1

for a typical multi-story 3D building, the proposed method pertains to a 4-step procedure.

Step I

The first step of the analysis includes the static application of the vertical loads onto

the structure, which are computed based on the load combination (1.2 Dead Load + 0.5

Live Load) proposed by the DoD 2009 [1] guidelines for progressive collapse analysis. The

nature of a static step implies the application of vertical loads as a linear ramp function

over a period of 1sec in analysis time. Although this step is static, it is combined with

the following dynamic steps to form a consecutive step sequence with an overall analysis

duration expressed in seconds.

Step II

The second step of the analysis is a dynamic step that lasts 0.5sec. It basically serves

as a transition step between the application of vertical loads and the blast event, to ensure
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that the structure is at a stable condition prior to the blast loading. No additional loads are

included in this step.

Step III

The third step of the analysis is the actual blast loading step. Within the first few

milliseconds of this explicit dynamic step, all members within the substantial influence area

of the blast event are loaded by a uniformly distributed pressure load. The response of

the structure is subsequently captured by the remaining step duration. A total duration of

3.5sec is proposed in this method of analysis, which is considered long enough for vibrations

to die out and thus to correctly capture the structural response evolution, but short enough

to offer a computationally viable solution. This step can have two possible outcomes; either

the structure reaches a steady and stable condition or it collapses. In the latter case, the

collapse load of the structure is defined as the vertical load applied in Step I, implying that

the blast scenario examined is able to initiate progressive collapse with the existing vertical

loads.

Step IV

If the structure manages to survive the blast scenario of Step III, additional vertical load

is applied with a linearly increasing ramp function through another dynamic step (vertical

push-down analysis). The analysis continues until no additional load can be undertaken and

the program shows warning signs of structural failure (the type of failure will depend on

the specific structure examined and will be thoroughly addressed in the following section of

the numerical application of the proposed method). The final collapse load is computed as

the summation of the vertical load applied in Step I (1.2DL + 0.5LL) plus the additional

vertical load of Step IV that leads to collapse. This final collapse load defines the progressive

collapse vulnerability of the building subjected to the blast scenario examined.

For a more detailed explanation of the proposed method, the reader is encouraged to

refer to the numerical example demonstrated in Chapters 5 and 6.
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Figure 4.1: The 4 steps of the proposed method of analysis for progressive collapse vulnera-
bility assessment of buildings.

4.3 Blast Scenario and Blast Loads Generation

Various possibilities for a blast scenario were considered including source charge weight and

position with respect to the building envelope. A surface blast consistent with a truck or van

parked on the street adjacent to the building was selected as a reasonable threat a high-rise

building designer might consider. Sensitivity of the pressure distribution and column damage

levels to the scenario event definition was first established using the decision-oriented software

VAPO [57] which includes a variety of global graphical and local quantitative outputs but

is not considered highly accurate. Independent calculations were then made using available
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empirical equations by Kingery and Bulmash 1984 [58] and Kinney and Graham 1985 [59] to

establish blast parameters that are consistent with available blast resistant design guidance

(Unified Facilities Criteria 2008 [60], TM5-1300 1990 [61]) and account only for equivalent

TNT charge weight and stand-off distance. Reduction of radial pressures due to angle of

incidence at each column face can be estimated through available charts in FEMA 2003

[42]. Blast parameter evaluation can be also performed by a variety of models available in

the literature, among which are ConWep [62] and A.T.-Blast [63] that both use empirical

formulas from Kingery-Bulmash and TM5-1300. In this particular study, after the above

considerations, the commercial software A.T.-Blast designed for GSA was finally chosen as

a simplified and efficient method of predicting blast effects of an open hemispheric TNT

explosion. The input of the software is weight of charge, standoff distance and angle of

incidence, while output blast parameters include shock velocity, time of arrival, overpressure,

impulse and load duration.

4.3.1 Overpressure Time Profile and Equivalent Triangular Pulse Simplifi-

cation

The overpressure time profile of a blast event (above normal atmospheric pressure) is shown

in Figure 4.2, according to UFC. It includes a positive phase where the sudden release of

energy from the explosive charge causes a sharp rise of pressure, followed by a negative

phase. The incidence pressure curve refers to open air pressure when a blast wave travels

parallel to a surface, while the reflected pressure curve represents the increase of the blast

wave intensity when it impinges on any rigid barrier at any angle not parallel to the direction

of wave travel. The related energy release of the explosion, expressed by the so-called blast

impulse, is represented by the area under the curve and directly depends on the scaled

distance Z =
R

W 1/3
(where R is the standoff distance between the charge and the target and

W is the is weight of the charge). Although the actual overpressure time profile of a real blast

wave includes an exponential decay during the positive phase, a simplification of the wave
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profile is to assume a linear decrease of the overpressure so that the actual impulse per unit

area of the blast wave is preserved. This simplification (also known as equivalent triangular

pulse) is generally considered accurate enough to correctly evaluate potential blast damage

on structures (Baker 1973 [64] and Kinney and Graham 1985 [59]). The equivalent linear

load duration (also depicted in Figure 4.2) is directly computed by A.T.-Blast software and

is utilized in this study for the application of blast loads on the structural members.

Figure 4.2: Blast wave overpressure time profile and equivalent triangular pulse simplifica-
tion.

52



Chapter 5

Progressive Collapse Vulnerability of

Steel Buildings under Blast Loading -

Numerical Application #1

5.1 Introduction

Chapter 5 presents detailed 3D nonlinear finite element dynamic analyses of steel frame

buildings in order to examine the spatially distributed response and damage to frame mem-

bers along the building exterior facing an external blast, by employing the methodologies

developed in Chapter 4. Through using the commercial ABAQUS [41] code, a high-rise

(20-story) steel building from the SAC-FEMA-355C [55] steel project, designed based on

practices before the Northridge earthquake for Boston area, is simulated to serve as an ini-

tial example for the application of a blast load scenario, investigate the response of the

system, assess the damage propagation and explore the possibility of progressive collapse

initiation. The simulation of the building includes two versions; one where the slab is simu-

lated as a load resisting element and one where the slab is omitted. It is shown that the slab

contribution in the load redistribution mechanism after the blast event tremendously affects
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the structural behavior and eventually leads to the overall system’s stabilization.

Comparison of beam-column subassembly finite element analysis and a simplified analyt-

ical approach consistent with current design recommendations are made with the complex

system results in the heavily impacted region. Parameters affecting the spatially distributed

pressure and response quantities are identified, and the sensitivity of the damage results to

the spatial variation of these parameters is established for the case considered.

5.2 Building Description

A 20-story building designed to pre-Northridge requirements [55] around the Boston area is

used as a case study as it provides a reasonable problem definition in an urban or suburban

setting and, based on recent analyses by Gerasimidis et al. 2014 [8], is tall enough to

be vulnerable to progressive collapse. The building consists of perimeter moment resisting

frames, interior gravity frames and a two-level basement. The floor plan is depicted in Figure

5.1, along with the location of the blast source and the flexible beam-column connections

between the frames to avoid bi-axial bending (every connection is flexible except for the

locations denoted by a blue triangle). Only the beams spanning from column to column

are included in the 3D model, with the secondary beams being neglected for simplicity.

The bay width is 20ft. (6.10m) and the story height is 18ft. (5.49m) at the ground level

and 13ft. (3.96m) at the rest of the floors. The nominal design vertical loads are 83psf

(3.97kPa) for roof and 96psf (4.60kPa) elsewhere for dead loads, and 20psf (0.96kPa) for

roof and 50psf (2.39kPa) elsewhere for live loads. The material utilized for all the structural

steel components is A572 Gr.50 steel with isotropic strain hardening, yield strength 50ksi

(345MPa) and ultimate strength 65ksi (450MPa) at strain 18%. The concrete material

for the steel-concrete composite slab has a compressive strength of 5.4ksi (37.5MPa) and a

tensile strength of 0.5ksi (3.5MPa), with Young’s modulus 4350ksi (30GPa). More details

about the geometry, member dimensions and section properties can be found in Appendix
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B of [55].

Figure 5.1: Plan view and geometry of 20-story building with perimeter moment resisting
frames. Locations of fixed beam-column connections are denoted by blue triangles.

The frame system offers sufficient complexity and variability of member dimensions and

section properties to observe variations in the response expected due to loading conditions

associated with both gravity generated axial loads and transverse blast pressures. The axial

loads vary due to different functions of individual members in the wind and gravity load

system response, and the pressures vary due to different distances and incidence angles from

the blast source. The primary blast impact region was selected by the authors as the first

five floors of the building, since the damage potential of blast pressures applied on higher

floors can be considered negligible (see below Section 5.3).
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5.3 Single Degree of Freedom Column Analysis

5.3.1 Beam-column Static Analysis

An initial estimate of the damage distribution in the primary blast impact region may be

obtained from analysis of individual column responses and subsequent mapping spatially

onto the surface of the region, as shown in Tadepalli and Mullen 2008 [54]. Figure 5.2 serves

as the basis for this assessment here where the pressure computed for a given column at mid

height is applied and the variation over the column height is neglected. The response of the

column is considered continuous along the length, and beam-column theory (Timoshenko

and Gere 1961 [65], Chen and Liu 1987 [66] is applied. Boundary conditions are assumed to

be fix-fix for purposes of comparison with the simulated 3D building system response.

The lateral stiffness of each column is affected by the axial load due to the interaction of

axial force and bending moment and to second order effects. Axial loads are determined for

each column from the unfactored gravity load (dead plus live) analysis of the 3D building

system model. Figure 5.3a shows color contours depicting the variation in the primary

blast impact region of gravity generated axial loads, P, for the 20 story building case. The

loads have been normalized with respect to the Euler buckling load, Pe =
π2EA

S2
, where

E=Young’s modulus, A=column section area, and S=column slenderness. Note the axial

loads vary according to the nature of the designer’s choice of a building frame system, and

the buckling load varies according to the designer’s choice of A and S, within the limitations

of governing design criteria from AISC 360-10 [67]. Here, S =
kL

r
, where the effective length

factor, k = 0.5, for fix-fix end conditions, and the column section radius of gyration, r = I/A,

again depends on the designer’s choice for the second moment of area, I, about the bending

axis controlling buckling.

All columns in the blast impact region exhibit normalized axial load ratios, P/Pe, less

than 10 percent indicating significant reserve for biaxial bending interaction in light of current
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Figure 5.2: Isolated beam-column static analysis parameters, plastic collapse mechanism,
and simple dynamic model.

design provisions [67]. If the pin-pin condition is assumed, the ratios become less than 34

percent. Figure 5.3b also shows the weak-axis S for the columns normalized by the limiting

value, S0 = 4.71

√
E

Fy
, where Fy=specified minimum yield stress. This value is recognized

in design provisions [67] as the one at which buckling switches from inelastic to elastic. All

values in Figure 5.3 are significantly less than unity indicating that all columns have been

designed to exhibit inelastic buckling. Curiously, the interior columns adjacent to the corners

exhibit noticeably higher slenderness. This pattern is also reflected in the higher axial load

ratios due to the dependence of Pe on S.
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Figure 5.3: Variation of static response parameters for columns in blast impact region.

Static strength of the columns may be characterized by the section fully plastic moment,

Mp = FyZ , where Z=plastic section modulus, and by the net lateral load at which a

plastic collapse mechanism is formed, Rm = phL. For fix-fix end conditions, neglecting

elastic contributions in comparison to that at the plastic hinges, the plastic work energy

balance at initiation of collapse requires, Rm = 16
Mp

L
. Figure 5.3c shows the variation

of the weak axis collapse load, normalized with respect to Rm0, the collapse load for the

first floor central column. Corner columns are seen to exhibit relatively high plastic section

properties. Smaller changes are introduced by the column height difference at the first floor

and the slight reduction of section properties beginning at the fourth floor. The columns
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next to the corners are seen to be not only more slender but also weaker.

The impulsive nature of the blast event requires characterization of dynamic response

as it is quickly found that the peak reflective pressures, pr, in much of the primary blast

impact region are an order of magnitude higher than the static collapse pressures, pm, for

the corresponding columns. Preliminary to the dynamic analysis, it is useful to establish an

equivalent lateral spring representation (Biggs 1694 [68]) of the column idealized as a single-

degree-of-freedom oscillator. An equivalent spring stiffness, k0, is used to characterize the

mid height lateral displacement, v(t), at any time t throughout the elastic-plastic response

history. For fix-fix end conditions, the trilinear static response, developed as hinges form at

the ends then at mid height, is captured reasonably well with a reduced effective stiffness,

ke = 0.80k0, for the bilinear elastoplastic static response (Biggs 1694 [68]) and corresponding

static collapse displacement at mid-height, vp =
Rm

ke
.

Beam-column theory indicates that the static deformation and thus stiffness are affected

by P ,p, and L, all of which have been shown to vary within the blast impact region. A

solution of the governing differential equation according to Timoshenko and Gere 1961 [65]

for the elastic case and fix-fix end conditions in terms of the above parameters is obtained

using the symbolic math software Mathematica [69] which can be shown to agree with a

corresponding result found in Chen and Liu 1987 [66]:

v(x) =
w

2EIk3

[
k(L− x)x+ L cot

kL

2
− L cos

k

2
(L− 2x) csc

kL

2

]
(5.1)

v0 = v

(
L

2

)
=

w

2EIk3

[
L

2
u+ L cotu− L cscu

]
(5.2)

where u =
kL

2
and k2 =

P

EI
.

A numerical programming MATLAB routine [70] was written to evaluate the expression

for v0 for each column in the impact region allowing for the variation in P , p, and L. A

worksheet program was then used to subsequently calculate Mp,Rm, k0 =
R

v0

, and ke. Figure

5.3d shows ke in the blast impact region normalized by ke0, the value at the first floor central
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column. Relative stiffness of corner columns over interior ones and relative flexibility of the

first story columns over higher stories are again observable in the contour plots. Similarities

with the variations in slenderness are observed due to the dependence of both on the column

height and section properties.

5.3.2 SDOF Column Damage Analysis

Response of the columns to the blast event must account for both nonlinear material and

geometric behavior. Analysis of the columns considered as isolated members assumes the end

constraints and axial loading remain constant during the blast event. Time history analysis

of the beam-column system shown in Figure 5.2 is performed to estimate v(t) at mid height

and establish the permanent offset resulting from any elastoplastic damage. An equivalent

elastoplastic single-degree-of-freedom (SDOF) oscillator idealization is adopted for ease of

calculation and consistency with recommended design practice AISC 360-10 [67]. The SDOF

results will later be compared to those from 3D simulation of the 20 story building system

response to provide a measure of the level of approximation implied by this idealization.

Even with such idealization and apparent simplification, there is considerable complexity

through the interaction of parameters in the estimation of maximum response and damage

for each column. Figure 5.4 attempts to depict and highlight the dependencies of these

parameters in the computation sequence which consists of three steps:

1. nonlinear static analysis of elastoplastic beam-column deformation to determine pa-

rameters Rm, v0, ke, and vp in the presence of distributed pressure, p, and axial load,

P

2. eigenvalue analysis of elastic beam-column vibration to determine the undamaged

natural frequency, f0, in the presence of axial load, P

3. time history analysis of SDOF oscillator, both linear and bilinear elastoplastic, to

determine the maximum dynamic response at mid height, vm, and ductility, µ = vm/vp
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Figure 5.4: Parameter interactions in estimation of maximum response for isolated columns.

The first step has been described in the previous section. Step 2 is formulated using

beam-theory by Timoshenko and Gere 1961 [65]. The frequency equation for the fix-fix

condition is (Timoshenko and Gere 1961 [65], Chen and Liu 1987 [66]):

Ω− U sinhM sinN − Ω coshM cosN = 0 (5.3)

where M =
√
−U +

√
U2 + Ω2, N =

√
U +
√
U2 + Ω2, U =

PL2

2EI
, Ω =

ωL2

α
and α2 =

EI

m
. The dependency on P , L, I, and A through m = ρ · A is now apparent through the

frequency parameters, M and N .

An approximate solution using the Galef formula (Karnovsky 2001 [71], Bažant and

Cedolin 1991 [73]) is used here for simplicity:

Ω = Ω0

√
1− P

Pe
(5.4)

where Ω0 = Ω(P = 0) and Pe =
π2EA

S2
= Euler buckling load.
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In the absence of axial load, P = 0, the column vibrates as a beam whose frequency

equation is well known (Karnovsky 2001 [71], Chopra 2011 [74]):

cosh(βL) cos(βL) = 1 (5.5)

where ω2 = β4α2 and ω0 =

(
3

2

)2

· π
2

L2
α.

Then,

Ω/Ω0 = ω/ω0 =

√
1− P

Pe
(5.6)

where ω = 2πf = ω0

√
1− P

Pe
, f =

3π

4
·

√
EI

mL4

(
1− P

Pe

)
and T =

1

f
.

The natural period is now seen to also depend on P , L, I and A (through m = ρ · A).

Evaluation of the Galef formula for columns in the blast impact region of the 20 story

building frame case indicates that, for the fix-fix condition, the effect of the axial load on T

is on average about 2 percent and in every case less than 5 percent. For the pin-pin case,

the difference may be up to nearly 25 percent. The effect of end conditions on T with or

without axial load effects is significant, with the fix-fix case being less than half that for the

pin-pin one.

Results for Steps 1 and 2 are independent of any blast scenario. Step 3, however, requires

the use of a specific blast time history. For the SDOF analysis, the simplified triangular shape

with parameters developed for the 20 story building case are applied to each column in the

blast impact region. The variation of the blast peak reflected pressure parameter, pr, and

duration, t0, for the blast scenario are depicted as contours in Figure 5.5. Each parameter

has been normalized to the value at the central column on the first floor. The pressure ratio

is seen to decay rapidly to about 10 percent well within the blast impact region, while the

duration ratio more than doubles over that distance and is over five times near the edges of

the region.

The importance of the duration ratio in terms of the column response lies in the tendency

for the impulsive pressure to amplify or de-amplify the response dynamically. Figure 5.6a
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Figure 5.5: Variation of blast pressure time function parameters across impact region.

shows contours of the ratios of the impulse duration to the natural period of the corresponding

column in the impact region of the 20 story building case and corresponding blast scenario.

The duration ratio ranges from 0.1− 0.2 in the region closest to the blast source to 0.2− 0.8

at points further away. Based on linear SDOF dynamic theory (Biggs 1964 [68], Chopra 2011

[74]), dynamic amplification factors, DAF = 0.3 − 1.0, or de-amplification would occur in

the peak dynamic responses in the nearer region and amplification factors , DAF = 1.0−1.5,

or amplification would be predicted at the edges of the region.

Both linear and nonlinear SDOF time histories have been computed for each column to

assess the peak response and damage potential as measured by the ductility, µ = vm/vp. Peak

ductility ratios are shown in Figure 5.6b and c as estimated from pseudostatic response, v0 =

R/ke, and linear dynamic time history analysis,vml = max [vl(t)] ∼= (v0 ·DAF ), respectively.

An exact result was derived using the Duhamel integral (Chopra 2011 [74]) for the case of a

triangular pulse with variable rise time, and a numerical programming MATLAB routine [70]

was written to evaluate the theoretical result, and compute a response time history analysis

from which vml was determined.

The pseudostatic and linear dynamic peak ductility ratios plotted in Figure 5.6 indicate

a significant amount of plasticity and damage potential. A more accurate assessment is pro-

vided by a nonlinear time history analysis which is performed using a numerical programming
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Figure 5.6: Variation of column response characteristics within blast impact region.

MATLAB routine [70] that implements the Newmark method with average acceleration and

modified Newton-Raphson iterations (Chopra 2011 [74]).

As Figure 5.4 indicates, the nonlinear spring properties, ke, are derived from Step 1 and T

is derived from Step 2. For a given blast scenario and column location pr and t0 are generated

and the nonlinear SDOF time history response analysis is performed in Step 3. The resulting

dynamic peak ductility ratios are plotted as contours over the impact region in Figure 5.6d.

The rapid decay of the ratios is comparable to that of the linear dynamic case, but the ratios

themselves are more reflective of the pseudostatic case. At the central first floor column, the

ratio exceeds 150 with the surrounding columns experiencing ratios of about 15. The largest

value is unattainable and reflects complete loss of load carrying capacity. The surrounding
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column values are achievable only with special connection detailing and reflect near loss of

capacity and significant redistribution of load transfer in the frame system. In reality, these

values overpredict the actual response because of three-dimensional effects that account for

the relaxation of the fix-fix conditions due to rotation and translation of the column ends.

The latter varies throughout the impact region as the frame system deforms in a complex

three-dimensional manner which will be discussed in subsequent sections.

5.4 Results of 3D Finite Element Analysis

Following the initial damage distribution estimate in the primary blast impact region of

individual columns, the global progressive collapse vulnerability assessment against the blast

scenario will be performed by the 3D finite element analysis of the building.

5.4.1 FE Model Setup

The ability of the general purpose finite element (FE) software, ABAQUS, to capture com-

plex member and system damage modes in high-rise steel moment frame buildings has been

demonstrated in recent studies (Gerasimidis et al. 2014 [8], Gerasimidis and Sideri 2016 [11],

Gerasimidis 2014 [24], Spyridaki et al. 2013 [25]). A representation of the high-rise building

case developed to previously study progressive collapse under gravity loads only is shown

in Figure 5.7. Two versions of the same building are examined in this study; Figure 5.7a

demonstrates the model which does not include floor slabs as load resisting elements. Rather,

the slab influence is restricted to the dead load effect they transfer as uniform loads onto the

beams. In addition, Figure 5.7b depicts the full model after the simulation of floor slabs,

which now receive the dead and live loads in the form of uniform applied pressure. Only the

beams spanning from column to column were simulated, while the secondary beams were

neglected.
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Figure 5.7: Geometry and reference grid of the finite element model of the high-rise 20-story
building: (a) no slab simulation model and (b) with slab simulation model. The shaded area
indicates the region that will be heavily impacted from the blast source.

The steel-concrete composite slab consisting of 3in metal deck and 2.5in concrete fill

was simulated, for the sake of simplicity, by an equivalent 4.5in uniform and homogeneous

concrete slab. The elements used for the slab simulation are 4-node shell elements S4R. The

contribution of the steel ribbed deck was included by using equivalent steel reinforcement

bars embedded in the concrete shell elements, as proposed by the simplified slab modeling

approach of Alashker et al. 2011 [21]. This equivalent reinforcement as well as additional

steel reinforcement in the slab were modeled as smeared reinforcement layers with a constant
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thickness equal to the area of each rebar divided by the reinforcing bar spacing. All beams

and columns were simulated with the beam element B32OS offered in ABAQUS library,

which can account for the warping rigidity of open-section members under torsional load-

ing. All base nodes and perimeter nodes of the two-level basement are considered pinned.

The flexible beam-column connections were simulated by the moment release command of

ABAQUS input file usage at the appropriate locations between the moment resisting frames

and the gravity frames. The analysis is set to account for both material and geometric

nonlinearities which is proven as the only appropriate method to identify the correct col-

lapse mechanisms accounting for loss-of-stability phenomena (Gerasimidis et al. 2014 [8],

Gerasimidis 2014 [24], Spyridaki et al. 2013 [25]).

5.4.2 Materials

An elastic-plastic material model in ABAQUS was utilized to describe the nonlinear material

characteristics of the A572 Gr. 50 steel of the structural steel components. As mentioned in

the building description section, the steel material has yield strength 50ksi (Fy = 345MPa)

and ultimate strength 65ksi (Fu = 450MPa) at strain εu = 18%, with isotropic strain

hardening. The material of concrete was modeled by using the CDP (Concrete Damaged

Plasticity) model in ABAQUS proposed by Lubliner at al. 1989 [75] and Lee and Fenves

1998 [76] which can effectively describe the plastic behavior of uni-axial compression test.

According to this model, the inelastic behavior of concrete is represented by utilizing concepts

of isotropic damaged elasticity in combination with isotropic tensile and compressive plas-

ticity. The concrete compressive and tensile strength was assumed 5.4ksi (fcu37.5MPa) and

0.5ksi (fct = −3.5MPa), respectively, with Young’s modulus 4350ksi (30GPa). Parameters

of the concrete damaged plasticity model were obtained by Kmiecik and Kaminski 2011 [77].

The stress-strain relation was defined for both the compressive and tensile behavior using

the Desay and Krishnan formula and the modified Wang and Hsu formula, respectively, as

given in Kmiecik and Kaminski 2011 [77]. After reaching the point of tensile cracking, the
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tensile stress-strain relationship softens as the load is transferred to the reinforcement. The

stress-strain relationship for both the steel and the concrete material utilized is illustrated

in Figure 5.8a and 5.8b, respectively.

Figure 5.8: Stress-strain relationship for a) steel and b) concrete material utilized.
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5.4.3 Blast Loads Application

In the present study, dead and live load cases have been combined with a dynamic blast

pressure load case consisting of variable input time functions for reflected pressure at each

of the columns significantly impacted by the blast scenario load case. For the building and

scenario considered, pressures with potential for causing damage were generated over a region

covering the five stories above ground level as indicated by the shaded area in Figure 5.7.

The blast pressures applied on floors above the first five were neglected, since their damage

potential is considered insignificant (according to Figures 5.5 and 5.6).

Figure 5.9: Blast load exposure of all columns and beams of first five floors in the weak axis
orientation.

For simplicity, the time functions were assumed to be triangular with peak pressure and

duration parameters generated using the A.T.-Blast software (Figure 4.2), applied to the

mid-column height position and reduced to account for the angle of incidence. The pressure
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was assumed to be uniformly distributed over the column face, both width and height. The

blast scenario considered exposes the blast pressure to all exterior columns and beams in the

weak axis orientation as shown in Figure 5.9. For simplicity, façades and in-fill wall elements

are assumed to be destroyed and transfer no load to the frame system. No attempt is made

to track damage to interior elements due to the debris flow and vertical and horizontal travel

of the blast wave inside the system.

5.4.4 No Slab Simulation

Dead and design live gravity loads were statically applied as uniform line loads on beam

members at all floors, equivalent to 4.92kPa that corresponds to 1.2DL+0.5LL. A dynamic

response was then computed with the spatially distributed blast load time functions. The

blast wave time of arrival was seen to have negligible contributions to the column and overall

system responses and thus was not included in the final model. Figure 5.10a depicts the axial

force time histories of first floor exterior columns, while Figure 5.10b provides displacement

time histories at the nodes of first floor columns where the largest transverse deformations

were observed. Zoomed versions of the same plots are also provided in order to illustrate

the system’s response in more detail during the main blast event (between 1.5 − 2.5sec).

For reference, horizontal lines show the range of yield displacements of effective nonlinear

single-degree-of-freedom (SDOF) systems (Biggs 1964 [68]) corresponding to the first floor

columns idealized as beam-columns with ends fixed against both translation and rotation.

The important parameters controlling these estimates were described in the section about

single degree of freedom column analysis of this paper.

The histories in Figure 5.10 indicate that the floor column responses consist of three

phases, roughly delineated by the times: 1.5−1.53sec, 1.53−1.8sec, and 1.8−2.5sec. Phase

I occurs during the impulse event during which all the exterior columns of the first floor

undergo plastic deformation and their axial forces reach temporary tensile values. In Phase

II the highly nonlinear response of the exterior columns becomes apparent (significant loss of
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axial load capacity), when finally Phase III shows a clear initiation of a collapse mechanism

since all exterior columns deform excessively beyond the safety limits. However, as Figure

5.5 indicates the pressure decays significantly at the corners, in part due to a high angle of

incidence, the corner columns are able to respond elastically during all phases.

Figure 5.10: High-rise 20-story building, no slab simulation: a) Axial force time history
and b) horizontal displacement δ time history of exterior columns A1-A7 (blast arrival is at
t = 1.5sec)

The system behavior in the latter two phases develops after the direct influence of the

blast event on the columns and is captured in snapshots of the frame deformed shapes

shown in Figure 5.11. The top figures show the deformed shape through front views, while

the bottom figures illustrate the system’s behavior through side views. The t = 1.53sec

case corresponds roughly to the end of the impulse loading. Most of the deformation is

concentrated at the face closest to the blast source. At t = 1.80sec, after the impulse loading,
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the 3D system deformation begins to become noticeable in interior frames and apparently

is leading to amplified bending of the columns in the lower floors. Moreover, since at t =

1.80sec a large portion of the lower floors appears to be exhibiting large deformation, the

beginning of a collapse mechanism at the first floor level is apparent. Finally, at t = 2.50sec,

the lateral deformation begins to be accompanied by vertical collapse of all floors above

the first floor. It is therefore evident that the structure cannot survive the dead and live

vertical load combination along with the blast threat considered, dictating a progressive

collapse vulnerability in terms of final vertical collapse load of 4.92kPa (1.2DL+0.5LL load

combination).

The above case corresponds to the response of the frame system without consideration

of the floor slab stiffness which is most noticeable in the large relative deformation that is

permitted between the corner and adjacent columns, where no beam is present in the N-S

direction of the blast (secondary beams of gridlines 2 and 6 in floor plan layout of Figure

5.1 are not included in the 3D model). In addition the mass of the floor slabs is accounted

for only in the vertical dead load and thus axial forces in the columns. In the dynamic

solution the mass generates inertial forces contributing to the force balance calculation and

thus inter-story displacement and associated bending in the columns. It is thus considered

critical to perform the same analysis of the system including the slab in order to compare

the different building responses.
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Figure 5.11: High-rise 20-story building, no slab simulation: Deformed shape at t = 1.53sec,
t = 1.80sec and t = 2.5sec, both front and side views (blast arrival is at t = 1.5sec).
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5.4.5 With Slab Simulation

The same high-rise 20-story building was further examined to study the effect of the slab

in the response. After the static application of the dead and live gravity loads combination

(Steps I and II), the building is subjected to the blast-induced damage distribution scenario

(Step III). Figure 5.12a illustrates the deformed shape of the structure right after the blast

detonation (t = 1.55sec) where excessive deformation of columns directly affected by the

blast is evident. The deformation contours are maximized around the lower floors of the

building where the blast loads are clearly larger due to the shorter stand-off distance and

the reduced angle of incidence. Horizontal displacements at column midspan along with the

respective axial forces of first floor columns A2-A6 are plotted in Figure 5.12b and Figure

5.12c. All axial forces are linearly increased during Step I and maintain a constant value

during Step II, while horizontal displacements are zero. During the first milliseconds of the

blast event of Step III, a major disturbance is terms of axial force is clearly observed that

drives the columns into a short-term tensile state. As the analysis progresses, the behavior

of the first floor column A4 evidently indicates structural failure since the axial force drops

to negligible values accompanied by excessive horizontal displacements of more than 1m

(this column failure can be considered equivalent to a column removal scenario of typical

progressive collapse analysis suggested in DoD 2009 [1] and GSA 2003 [2]). However, the

initiation of a global progressive collapse mechanism is avoided; the available load redistri-

bution mechanism within the structural system is able to arrest the blast disturbance. More

specifically, the slab action is able to safely redistribute loads to the interior gravity columns

after the extensive damage of exterior first floor columns, without further propagation of

failure. Therefore the system eventually survives the threat until the end of dynamic Step

III.

Subsequently, additional load is applied statically in order to determine the final collapse

load of the building. During static Step IV, the building collapses due to the inelastic buckling
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Figure 5.12: High-rise 20-story building, with slab simulation: a) Deformed shape at t =
1.55sec, b) axial forces time history and c) horizontal displacements δ time history at midspan
of exterior columns along gridline A (blast arrival is at t = 1.5sec and vertical push-down
starts at t = 5sec).

failure of all basement level interior gravity columns along gridline C (Figure 5.13a). The

axial force and displacement time history of interior gravity column C3 is indicatively plotted

in Figure 5.13b and Figure 5.13c, respectively, where the inelastic column yield capacity Afy

(A is the cross sectional area and fy is the material yield stress) is reached at t = 5.18sec and

at the same time there is a rapid increase of lateral displacement (snap-through). After this

point the analysis is diverging with error messages of negative eigenvalues of the stiffness

matrix, another characteristic signature of loss-of-stability failure mechanism along with

the exhaustion of the axial load capacity. The additional load until collapse of Step IV is

calculated at t = 5.18sec as 6.03kPa. The final collapse load is the summation of the initial

load of 6.72kPa (1.2DL + 0.5LL load combination) plus the additional load of 6.03kPa,

meaning 12.75kPa in total or 1.9(1.2DL+0.5LL). In other words, the vertical load capacity
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of the building is 1.9(1.2DL+ 0.5LL) which constitutes its progressive collapse vulnerability

when exposed to the specific blast scenario investigated in this study. It is also noteworthy to

comment on the role of interior gravity columns in the progressive collapse mechanism of the

structure, since their inelastic buckling capacity define the final collapse load and collapse

mode of the entire system. Further discussion on the importance of interior gravity columns

will be presented in the following Chapter 6.

Figure 5.13: High-rise 20-story building, with slab simulation: a) Deformed shape at t =
5.34sec, b) axial forces time history and c) horizontal displacements δ time history at midspan
of interior columns along gridline C3 (blast arrival is at t = 1.5sec and vertical push-down
starts at t = 5sec).
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5.5 Comparison of 3D Response with SDOF Nonlinear Analytical

Results

Figure 5.14 illustrates the displacement time histories of the first floor columns after the initi-

ation of the blast event, as computed by both the dynamic nonlinear 3D simulation including

the slab and the dynamic nonlinear individual SDOF column analyses. The comparison in-

dicates similarities mostly regarding to columns mildly affected by the blast event (column

A1), while for the columns that were most severely damaged the discrepancies between the

3D and SDOF curves are more significant. This can be attributed to the fact that the 3D

system responds globally and thus the column response is more realistic; the columns are not

restricted to deform only individually but also as an integrated part of the global system.

Conversely, the SDOF curves have been obtained by having idealized boundary conditions

on both ends of the columns. The largest discrepancy between the 3D and SDOF curves

is observed for column A4 which has experienced the largest lateral load due to the blast

event, surprisingly leading to SDOF deformations about six times larger than those of the

3D curve. The aforementioned comparisons highlight the level of approximation introduced

by the SDOF idealizations and provide insights on the structural behavior dependencies of

individual elements within the global structural system. Although an initial estimate of

the blast-induced damage distribution on individual elements is useful, the final structural

response is dictated by the 3D model’s behavior.
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Figure 5.14: Displacement time histories of the first floor columns after the initiation of the
blast event; comparison between the individual SDOF column responses and the 3D 20-story
building model including the slab simulation.

5.6 Concluding Remarks

This chapter investigates the effect of damage distribution to the progressive collapse po-

tential of a high-rise 20-story steel building when subjected to an external blast detonation

scenario. Results from the numerical simulations and insights from damage propagation

indicate the following conclusions.

• Identification of the parameters that affect the spatially distributed pressure and re-

sponse quantities, as well as their interdependencies, is established. Comparisons be-

tween the nonlinear SDOF damage results and the 3D 20-story building model in-

cluding the slab simulation indicate that the individual column responses can be most
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accurately predicted for the columns only mildly affected by the blast event. However,

the columns in the heavily impacted blast region experience a much more severe level

of damage when simulated in a 3D global system configuration; the discrepancies be-

tween the SDOF and 3D damage results are mainly attributed to the idealized end

condition assumption of the individual column analyses.

• The 3D nonlinear dynamic analysis of the high-rise 20-story building subjected to exter-

nal blast without slab modeling shows the initiation of a progressive collapse mechanism

due to the highly nonlinear response and excessive deformation of exterior columns.

However, the same building model including the slab simulation has a radically dif-

ferent behavior; the slab contribution in the load redistribution mechanism leads to

the overall system’s stabilization and thus progressive collapse is avoided. Therefore,

simulation of the slab is of utmost importance for the correct evaluation of progressive

collapse vulnerability.

• The progressive collapse mechanisms of the building establish the role of interior gravity

columns in the assessment of resistance against progressive collapse. Identification of

these members as the weakest links of the structural system is made, since their loss-

of-stability failure defines the collapse mechanism and collapse load of the building. As

discussed in the analysis results section, after flexural failure of exterior columns due to

lateral blast loading, load redistribution causes increase in axial forces of interior gravity

columns until they reach their inelastic buckling capacity. This loss-of-stability collapse

mechanism can only be detected in 3D nonlinear dynamic analysis configurations that

take into account both material and geometric nonlinearities, performed by powerful

finite element computational tools.
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Chapter 6

Progressive Collapse Vulnerability of

Steel Buildings under Blast Loading -

Numerical Application #2

6.1 Introduction

Chapter 6 presents a second numerical application of the methodology developed in Chapter

4, which includes detailed 3D nonlinear finite element dynamic analyses of mid-rise steel

frame buildings in order to examine the spatially distributed response and damage to frame

members along the building exterior facing an external blast, by employing the methodologies

developed in Chapter 4. Two typical mid-rise (10-story) office steel buildings with identical

floor plan layout but different lateral load resisting systems are examined; one including

perimeter moment resisting frames (MRFs) and one including interior reinforced concrete

(RC) rigid core. It is shown that MRFs offer a substantial increase in robustness against

blast events, and the role of interior gravity columns identified as the ‘weakest links’ of the

structural framing is discussed.
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6.2 Building Description/Finite element model

Additional progressive collapse vulnerability analysis was performed for the case of two 10-

story office buildings designed according to U.S. building codes for combinations of dead, live,

earthquake and wind loads in Chicago, USA. The design of the buildings was conducted by

Agarwal and Varma 2014 [56] for two identical plan layouts but different lateral load resisting

systems. Figure 6.1a depicts the plan views of the first building that uses perimeter MRFs

to resist lateral loads and pin-connected gravity frames to resist vertical loads, while Figure

6.1b shows the second building which uses an interior RC rigid core for lateral loads and

gravity frames for vertical loads. Geometry, gridlines, column orientations, location of the

pinned and fixed beam-to-column connections as well as the location of the RC rigid wall for

the second building are also illustrated in the same figure. The bay width is 25ft. (7.62m)

and the story height is 12ft. (3.66m). The nominal design vertical loads are 65psf (3.1kPa)

for dead loads and 50psf (2.4kPa) for live loads. The material for all structural steel

components is A992 steel with yield strength 50ksi (345MPa) and ultimate strength 65ksi

(450MPa) with isotropic strain hardening. Detailed member design and section assignment

for both buildings can be found in Agarwal and Varma 2014 [56].

Figure 6.1: Plan view of 10-story office building with (a) perimeter moment resisting frames
and (b) interior RC rigid core. Locations of fixed beam-column connections are denoted by
blue triangles.

81



CHAPTER 6. PROGRESSIVE COLLAPSE VULNERABILITY OF STEEL
BUILDINGS UNDER BLAST LOADING - NUMERICAL APPLICATION #2

The composite slab consists of 2.5in (0.065m) thick light weight concrete on 3in (0.075m)

deep ribbed deck that spans between two secondary beams. According to the design, no

additional reinforcement was required to carry the design loads. The modeling of the slab was

simplified to an equivalent uniform and homogeneous concrete slab, where the contribution

of the steel ribbed deck was simulated by equivalent steel reinforcement bars. Cracking and

crushing of concrete was accounted for by using the same Concrete Damaged Plasticity model

as described for the case of the 20-story building. Compressive strength was assumed 5.4ksi

(37.5MPa) with Young’s modulus 4350ksi (30GPa), while tensile strength was assumed

0.5ksi (3.5MPa). The stress-strain relationship for both the steel and the concrete material

utilized is illustrated in Figure 5.8a and 5.8b, respectively, as was the case for the 20-story

building described in Chapter5. The elements used for the ABAQUS finite element model

were B32OS beam elements for beams and columns and S4R shell elements for the slab. The

interior RC rigid core was modeled simplistically by restraining the two horizontal directions

of the neighboring nodes to simulate the rigidity and the very high lateral stiffness of the

rigid core, as described in Agarwal and Varma 2014 [56]. Moment releases were utilized at

appropriate locations between the moment resisting frames and the gravity frames. Column

design dictates that all base nodes are pinned.

The method of blast load application is similar to the 20-story building case. The same

blast scenario of a surface blast consistent with a truck or van parked on the street adjacent

to the building was analyzed as a reasonable threat. The blast source exposes the highlighted

region (Figure 6.2) of the first five floors to uniformly distributed pressures along the beam

length and column height in the weak axis orientation. Blast loads were computed in a

similar manner as the 20-story building case by utilizing the ATBLAST software to account

for variable stand-off distances and angles of incidence for each member.
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Figure 6.2: Geometry of the finite element model of the mid-rise 10-story building. The
shaded area indicates the region that will be heavily impacted from the blast source.

6.3 Results of 3D Finite Element Analysis

6.3.1 10-story Building with Perimeter Moment Resisting Frames

Progressive collapse analysis under blast loading was firstly performed for the 10-story build-

ing with perimeter MRFs in order to evaluate its progressive collapse vulnerability. The same

dead and live load combination 1.2DL + 0.5LL is applied as uniform pressure load on the

slabs of each floor during Steps I and II. Figure 6.3a illustrates the deformed shape of the

structure shortly after it experiences the blast-induced damage of Step III. Similarly with
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the behavior of the 20-story building with perimeter MRFs including the slab simulation,

larger deformation is observed at the first floor exterior columns especially along the gridlines

B1 and C1. The axial load time histories of the same columns (Figure 6.3b) demonstrate a

short-term tensile state but shortly after the impact event they stabilize to fairly the same

values. The horizontal displacement time histories shown in Figure 6.3c indicate a large

inelastic horizontal deformation (approximately 12cm) that becomes residual until the end

of Step III. However, despite the damage of columns B1 and C1 the system avoids the initia-

tion of progressive collapse due to the same reasons as the 20-story building; firstly, exterior

columns are strong enough to resist failure from blast loads and secondly, the available load

redistribution mechanism via the slab action is capable of stabilizing the entire structure.

Figure 6.3: Mid-rise 10-story building with perimeter moment resisting frames: a) Deformed
shape at t = 1.57sec, b) axial forces time history and c) horizontal displacements δ time
history at midspan of exterior columns B1 and C1 (blast arrival is at t = 1.5sec and vertical
push-down starts at t = 5sec).

84



CHAPTER 6. PROGRESSIVE COLLAPSE VULNERABILITY OF STEEL
BUILDINGS UNDER BLAST LOADING - NUMERICAL APPLICATION #2

Additional vertical load during Step IV is needed for the evaluation of progressive col-

lapse vulnerability (vertical push-down analysis). As previously observed, the final collapse

mechanism is initiated due to inelastic buckling of interior gravity columns shown by the

exhaustion of inelastic column yield capacity Afy (Figure 6.4b) that causes sudden increase

in horizontal displacement at t = 5.29sec (Figure 6.4c), beyond which the analysis is showing

warning signs of instability. Propagation of damage to the rest of the interior gravity columns

that experience inelastic buckling consecutively is portrayed in Figure 6.4a. The final collapse

load is the summation of the design vertical load of 4.92kPa (1.2DL+ 0.5LL load combina-

tion) plus the additional load of 7.13kPa, meaning 12.05kPa in total or 2.45(1.2DL+0.5LL),

which expresses the progressive collapse vulnerability of the building when exposed to the

blast threat examined herein.

Figure 6.4: Mid-rise 10-story building with perimeter moment resisting frames: a) Deformed
shape at t = 5.40sec, b) axial forces time history and c) horizontal displacements δ time
history at midspan of interior gravity columns B2 and C2 (blast arrival is at t = 1.5sec and
vertical push-down starts at t = 5sec).
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The results from both analyses of buildings with perimeter moment resisting frames

(high-rise 20-story and mid-rise 10-story building) establish the role of the interior gravity

columns in the progressive collapse mechanism; the overall stability of the structural system

is directly dependent on the inelastic buckling capacity of interior gravity columns even if an

external blast scenario causes extensive damage and failure to exterior columns. Therefore, a

noteworthy conclusion derived from the aforementioned analyses is that the design of exterior

columns to provide lateral stiffness against earthquake and wind loads not only renders the

building robust enough to survive a major blast threat but also reveals that the interior

gravity columns are the weakest link of the structural system; these columns are susceptible

to inelastic buckling and are next in line to fail, defining the loss-of-stability collapse mode

of the global system.

6.3.2 10-story Building with Interior Core of RC Shear Walls

The same blast scenario and progressive collapse analysis was performed for the 10-story

building case with interior core of RC shear walls. The behavior of the building is radically

different than the one with perimeter MRFs, due to the different exterior beam and column

section design. Since the interior RC core is designed to provide lateral stiffness, all exterior

beams and columns are designed to carry only gravity loads and are therefore assigned smaller

sections. Nevertheless, the same steel sections for interior gravity columns and beams are

used in both 10-story building configurations.

The deformed shape of the building with interior core of RC shear walls is displayed in

Figure 6.5 at four different stages in respective times of dynamic Step III (at t = 1.53sec,

t = 1.80sec, t = 2.5sec, t = 3.0sec). Upon blast arrival at t = 1.5sec all first floor exterior

columns fail completely and a global collapse initiation is eminent. Large exterior column

deformation is exhibited at early stages of the blast event and due to the loss of those columns,

large vertical displacement of the slabs is also unavoidable. Gravity load redistribution to the

interior gravity columns (gridline 2) through the floor slab leads to excessive axial loading

86



CHAPTER 6. PROGRESSIVE COLLAPSE VULNERABILITY OF STEEL
BUILDINGS UNDER BLAST LOADING - NUMERICAL APPLICATION #2

of those columns as well, until they reach their inelastic column yield capacity Afy and fail

due to inelastic buckling at t = 1.75sec. Propagation of failure to the rest of the interior

gravity columns (gridline 3) is depicted at the later stages of the analysis.

Figure 6.5: Mid-rise building with interior RC rigid core: Damage propagation and progres-
sive collapse initiation at four stages of dynamic Step III (t = 1.5sec denotes blast arrival).

Figures 6.6 and 6.7 illustrate the axial force and horizontal displacement time histories

at midspan of all first floor exterior columns and interior gravity columns of gridline 2,

respectively. While it is obvious that exterior columns immediately lose their capacity to
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bear axial loads at t = 1.5sec, the buckling failure of interior gravity columns occurs after

the analysis progresses some milliseconds more (at t = 1.75sec for columns B2-C2, while

at t = 2.2sec for columns A2-D2) and thereafter their axial capacity drops dramatically as

well, with the simultaneous large increase in horizontal displacement (snapping behavior -

characteristic indicator of loss of stability). Therefore, unlike the building with perimeter

MRFs, even under service level gravity loads (1.2DL+ 0.5LL) this structure cannot survive

the damage induced by the blast scenario considered herein (there is no need to perform

Step IV).

Figure 6.6: Mid-rise 10-story building with interior RC rigid core: Axial forces and respec-
tive inelastic buckling capacities (Afy) of exterior columns (gridline 1) and interior gravity
columns (gridline 2), with respect to time (blast arrival is at t = 1 : 5sec).

In conclusion, the absence of perimeter MRFs increases the vulnerability of the 10-story

building to progressive collapse, since smaller perimeter columns and beams are unable

to stabilize the overall structural behavior and prevent collapse. Although current results

are limited to the specific building examples analyzed, similar behavior of both buildings
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Figure 6.7: Mid-rise 10-story building with interior RC rigid core: Horizontal displacements
at midspan of exterior columns (gridline 1) and interior gravity columns (gridline 2), with
respect to time (blast arrival is at t = 1.5sec).

with perimeter MRFs (high-rise 20-story and mid-rise 10-story building) that survive the

blast threat examined in comparison to progressive collapse initiation of the building with

an interior rigid core are a strong indicator of the importance of structural design against

lateral loads in the robustness of structures subjected to blast attacks.

Moreover, it is noteworthy to conclude that interior gravity columns play again a key

role in the assessment of resistance against progressive collapse, since they are found prone

to inelastic buckling failure in all cases considered. Identifying a loss-of-stability-collapse

mechanism of interior gravity columns in 3D building configurations has not yet attracted

enough attention from the research community. Although most researchers in the field of

progressive collapse have focused on yielding-type failures triggered by the plastification

of beams in the vicinity of an abnormal event (above a column removal, i.e. Alternate
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Path Method), it is within the authors’ belief that such brittle collapse modes are more

critical and should be carefully addressed for the correct assessment of progressive collapse

vulnerability of structures (Gerasimidis et al. 2014 [8], Gerasimidis 2014 [24] and Spyridaki

et al. 2013 [25]).

6.4 Concluding Remarks

This chapter investigates the effect of damage distribution to the progressive collapse poten-

tial of two mid-rise 10-story steel buildings when subjected to an external blast detonation

scenario. Results from the numerical simulations and insights from damage propagation

indicate the following conclusions.

• Comparison between the analyses results of the two 10-story mid-rise buildings (one

with perimeter MRFs and and one with interior RC rigid core as a lateral load resist-

ing system) identifies the major role of structural design against lateral loads in the

robustness of structures subjected to blast attacks. For the case of the building with in-

terior RC rigid core, the exterior columns (which belong to the gravity system) cannot

stabilize the overall system’s response and total collapse is unavoidable. Conversely,

the larger column sections of the building with perimeter moment resisting frames act

as a safety valve to ensure the system’s structural integrity after the end of the blast

attack (lower progressive collapse potential).

• The progressive collapse mechanisms of the all the buildings presented in Chapters

5 and 6 establish the role of interior gravity columns in the assessment of resistance

against progressive collapse. Identification of these members as the weakest links of

the structural system is made, since their loss-of-stability failure defines the collapse

mechanism and collapse load of the buildings. As discussed in the analysis results

section, after flexural failure of exterior columns due to lateral blast loading, load re-

distribution causes increase in axial forces of interior gravity columns until they reach
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their inelastic buckling capacity. This loss-of-stability collapse mechanism can only be

detected in 3D nonlinear dynamic analysis configurations that take into account both

material and geometric nonlinearities, performed by powerful finite element computa-

tional tools. Although such brittle-type failures are difficult to capture, they should

receive more attention by the research community in the progressive collapse field.
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Conclusions: Part I

7.1 Research Contributions

Part I of this dissertation examines the distributed damage effect on progressive collapse

of structures. Chapters 2 and 3 develop a new method that introduces partial distributed

damage to different columns of a structural system and investigates the effects of such a

distributed damage on the collapse loads and collapse mechanisms of the structural sys-

tem. Subsequently, Chapters 4, 5 and 6 develop a methodology for examining the spatially

distributed response and damage to frame members along the building exterior facing an

external blast and assessing the progressive collapse vulnerability. The main conclusions

and most important findings of Part I of this dissertation are the following:

1. The capacity of the 15-story steel frame is much lower when considering the partial

distributed damage method in comparison to the simplistic notional column removal

approach of the state-of-the-art APM. It is therefore considered highly unconservative

for many cases to perform the alternate load path method for progressive collapse anal-

ysis of steel frames, since it may clearly overpredict the progressive collapse capacity

of the structure.

2. The introduction of distributed damage in the system significantly changes the ob-
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served collapse modes of the structure. There is a clear discrepancy between the

collapse modes predicted by the state-of-the-art APM and the proposed Partial Dis-

tributed Damage method; distributed damage can alternate the location of a failing

buckling element or (most importantly) lead to the avoidance of the yielding-type duc-

tile collapse mode and trigger a brittle buckling failure of elements located even outside

the damaged area. A parametric investigation about how damage is distributed into

the system and how it affects the structural response, like the one proposed in the

Partial Distributed Damage Method, is therefore crucial in order to detect the most

vulnerable elements to loss-of-stability and apply the necessary precautions in their

design.

3. The widely used and unrealistic column removal concept of the Alternate Path Method

can be less conservative and predict collapse mechanisms and collapse loads which are

not the most critical. For this reason, a reliable study to evaluate the progressive

collapse capacity of a structure must include a partial damage distribution study as

well, through the proposed partial distributed damage method (PDDM).

4. The simulation of the slab when conducting 3D nonlinear dynamic analysis of steel

buildings subjected to external blast is of utmost importance for the correct evaluation

of progressive collapse vulnerability. It is shown that, for the case of the high-rise

20-story building, the slab simulation radically affects the structural behavior; the

slab contribution in the load redistribution mechanism leads to the overall system’s

stabilization and thus progressive collapse is avoided.

5. Nonlinear dynamic SDOF damage analyses can most accurately predict individual

column responses that are only mildly affected by an intense blast scenario. Conversely,

these SDOF analyses fail to describe the behavior of columns in the heavily impacted

blast region, which experience a much more severe level of damage when simulated

in a 3D global system configuration. The discrepancies between the SDOF and 3D
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damage results are mainly attributed to the idealized end condition assumption of the

individual column analyses. It is therefore considered critical to simulate a building

exposed to a severe blast event in a 3D finite element model configuration, as it is highly

unconservative to simplistically rely on single degree of freedom column analyses that

ignore the global system’s response.

6. Comparison between the response of the 10-story mid-rise building with perimeter

MRFs and the 10-story building with interior rigid concrete core establishes the major

role of structural design against lateral loads in the robustness of structures subjected

to blast attacks. It is shown that nonlinear dynamic analyses of the 10-story building

(as well as the 20-story building) with perimeter MRFs reveal increased robustness

against progressive collapse; the larger perimeter column sections act as a safety valve

to ensure the system’s structural integrity after the end of the blast attack. Conversely,

for the case of the 10-story building with interior rigid core, the exterior columns (which

belong to the gravity system) cannot stabilize the overall system’s response and total

collapse is unavoidable (higher progressive collapse potential).

7. The progressive collapse mechanisms of all models presented in this study establish

the role of interior gravity columns in the assessment of resistance against progressive

collapse. Identification of these members as the weakest links of the structural sys-

tem is made, since their loss-of-stability failure governs the collapse mechanism and

defines the collapse load of the buildings. This loss-of-stability collapse mechanism

can only be detected in 3D nonlinear dynamic analysis configurations that take into

account both material and geometric nonlinearities, performed by powerful finite ele-

ment computational tools. Although such brittle-type failures are difficult to capture,

they should receive more attention by the research community in the progressive col-

lapse field during evaluation, rehabilitation of existing buildings and design of future

buildings.
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7.2 Future Work

An important task in order to extend the findings of this work is the application of the Partial

Distributed Damage Method to more than two adjacent columns, for example a region

that includes three or four columns. In this case, a more widespread and severe damage

scenario that affects more than two adjacent columns could be simulated by parametrically

applying different extent of local damage to the columns located in the heavily impacted

region. However, direct comparison with the APM single column removal notion may not

be applicable anymore, since the locality of the damaging event is no longer maintained if

more than two columns are partially damaged.

Another extension of the Partial Distributed Damage Method is the application of the

same analysis procedure to a 3D model. However, the collapse mechanisms and thus the

main conclusions are expected to remain the same, since the columns examined herein are

governed by inelastic nonlinear buckling (able to be captured in a 2D analysis configuration)

rather than elastic Euler buckling of the weak axis that can only be detected by a 3D

analysis configuration. Finally, another important task is to take into account the post-

buckling behavior of the buckled elements and examine the extent to which the collapse

loads and mechanisms will be affected.

For the extension of the work pertaining to the investigation of progressive collapse

vulnerability of structures when exposed to an external blast event, more blast scenarios and

different building configurations should be considered. Additional tasks would be to include

the simulation of connections in the 3D finite element models, in order to be able to capture

more possible collapse mechanisms such as shear failure of beam to column connections.

Ultimately, a simplified approach to predict the main progressive collapse mechanisms of

buildings for predefined levels of blast-induced damage should be developed. Additional

numerical and experimental research is recommended to further investigate and corroborate

the findings of this thesis.

95



Part II

Variability Response Functions in 2D

Elasticity Stochastic Problems

96



Chapter 8

Introduction: Part II

8.1 General Background

Part II of this dissertation proceeds with the study of structural behavior but from a prob-

abilistic rather than deterministic point of view, by extending the well-known concept of

Variability Response Function as a means to efficiently evaluate the response variability of

stochastic structural systems with very limited information about the stochastic character-

istics of uncertain system parameters.

The general research field of Probabilistic Engineering Mechanics attempts to quantify

the uncertainties existing in many structural systems and analyze their effect on the sys-

tems’ performance. Those uncertainties associated with the system parameters may refer

to the geometry of the structure, boundary conditions, magnitude and distribution of the

applied loading, material properties etc. The performance and most importantly failure of

a structural system is profoundly dependent on the assumed threshold quantities of those

uncertain parameters. The use of deterministic models that include average or extreme (max-

imum/minimum) values for the uncertain parameters may result in significant errors in the

process of structural response prediction that sometimes can be unconservative. For example,

materials are often characterized by random heterogeneity (such as concrete or composites)
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and loads are often governed by randomly time-fluctuating values (such as earthquake or

wind loads), while failing to incorporate their inherent uncertainty may lead to overestima-

tion or underestimation of the respective response quantities.

To this end, the field of Probabilistic Engineering Mechanics aims at the uncertainty

quantification of stochastic structural systems in order to correctly identify the response

variability and associated failure modes. Uncertainty quantification is performed within the

framework of probability theory and theory of random processes and fields, which describes

the stochasticity of time and space-dependent uncertainties of system parameters, respec-

tively. However, such uncertainty quantification, essential in order to correctly simulate

random processes or fields, is often challenging due to lack of data, noisy measurements,

model error etc.

In this context, this thesis aims at establishing a methodology for describing uncertainties

embedded in material properties of structural systems, while focusing on two-dimensional

linear elasticity problems characterized by spatially heterogeneous material properties. The

stochastic finite element method (SFEM) will also be employed, which generally incorporates

probabilistic analysis into Computational Mechanics.

In many problems of structural and continuum mechanics, material properties that ex-

hibit random spatial fluctuations or heterogeneity are often replaced by a set of homogenized,

effective or apparent material properties, obtained by establishing some kind of equivalence

between the heterogeneous and homogeneous versions of the problem (e.g. strain energy

equivalence). The calculation of apparent material properties is particularly significant for

the application of the finite element method into such problems in order to minimize the

need for highly refined meshes around local areas of randomly varying material properties.

The work of Sab 1992 [82] demonstrates that when the size of a problem domain exceeds

a characteristic volume defined as the representative volume element (RVE), the apparent

properties can be considered deterministic in the sense that the variance of those apparent

properties approaches negligible or practically zero values. In other words, as the volume
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of a problem domain increases, then the variance of apparent properties decreases until the

point when the volume approaches the RVE and consequently the variance reaches negligi-

ble values. Conversely, when the apparent properties are computed over a problem domain

smaller than the RVE, the original stochastic problem that contains randomly fluctuating

material properties can be replaced by an equivalent homogeneous problem with apparent

material properties that are still stochastic but spatially invariant (constant). This apparent

material property randomness defines the uncertainty of the response of the equivalent ho-

mogeneous problem. It must be mentioned at this point that the characteristic volume of the

RVE is not by any means a predetermined quantity but rather an engineering choice above

which the response variability still exists but practically becomes negligible for engineering

applications.

8.1.1 Variability Response Function Concept

The estimation of the variance of apparent properties can be performed by the widely-used

brute force Monte Carlo (MC) simulation. Monte Carlo simulation is the most universal

method for describing uncertain system parameters, simulating random processes or fields

and acquiring probabilistic information of response quantities. However, this method can

be overly computationally expensive and thus it is crucial to develop new approaches that

circumvent the need for MC simulations such as the variability response function (VRF)

concept first introduced by Shinozuka 1987 [83]. The main advantage of such an approach

is that the variability response function is able to connect the spectral density of randomly

varying material properties to the variance of apparent material properties, while being inde-

pendent of the spectral density function (SDF) and probability distribution function (PDF)

of the underlying random heterogeneous property field for the case of statically determinate

structures (it is only dependent on the deterministic boundary conditions and deterministic

structural configuration of the problem). This VRF independence on the probabilistic char-

acteristics of uncertain system parameters is particularly important, since there are general
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difficulties in establishing detailed probabilistic information (such as the SDF and PDF) of

those uncertain parameters due to lack of data, model error, noisy measurements etc. For

statically indeterminate structures, the generalized variability response function (GVRF)

methodology (Miranda and Deodatis 2012 [95] and Teferra and Deodatis 2012 [96]) has

shown to produce approximate GVRFs that are only mildly dependent on the SDF and

PDF of the uncertain system parameters.

A variability response function is essentially a Green’s function that relates the variance

of a system response quantity (i.e. displacement or in this case apparent material property)

to the SDF of uncertain system parameters (usually the underlying random material proper-

ties) by a simple straightforward integration of the product of the aforementioned SDF and

the analytical deterministic VRF expression. The resulting variance is not only obtained

significantly more rapidly compared to MC simulations but is also exact, since no approx-

imation of any kind is involved for the case of statically determined structures. Moreover,

the VRF concept offers the possibility to assess the influence of the spectral content of the

underlying material property field on the sensitivity of the response variability. For example,

the VRF for the response displacement of a stochastic structural system can be expressed as

V ar [u(x)] =

∞∫
−∞

V RF (x, κ)Sff (κ) dκ (8.1)

where Sff (κ) is the spectral density function (SDF) of the homogeneous random field

f(x) modeling the system stochasticity.

The VRF is also conceptually analogous to the Frequency Response Function, encoun-

tered in Structural Dynamics, which is essentially a transfer function that expresses the

structural response in terms of displacement, velocity or acceleration due to an applied dy-

namic force (Chopra 2011 [74]). Finally, the VRF can also provide spectral distribution-free

upper and lower bounds on the variance of the response. On the one hand, an SDF with a

given variance defined by the Dirac delta function at the peak of the VRF can provide the
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supremum (upper bound) of the response variance while, on the other hand, an SDF with

a given variance defined by the Dirac delta function at wavenumbers of the smallest VRF

value can provide the lower bound of the response variance. Alternatively, an SDF with

a given variance defined by a finite power white noise can provide the lower bound of the

response variance, which approaches zero as the upper cut-off wavenumber κu approaches

infinity (Shinozuka 1987 [83]).

8.1.2 Brief Literature Review

The VRF concept was first introduced by Shinozuka 1987 [83] and later developed by Deo-

datis and Shinozuka 1989 [84]. The VRF has a closed-form exact analytical expression only

for statically determinate structures, however in the work of Deodatis 1990 [85], a first-order

Taylor expansion of the stiffness matrix was utilized to calculate an approximate VRF within

a finite element framework. The Weighted Integral Method was later developed in order to

calculate the stochastic part of the stiffness matrix with respect to a stochastic random

field (Shinozuka and Deodatis 1988 [86], Deodatis 1991 [87] and Deodatis and Shinozuka

1991 [88]). A series of approximate VRFs were further presented in the papers of Wall and

Deodatis 1994 [89], Graham and Deodatis 1998 [90], Deodatis et al. 2003 [91], Deodatis et

al. 2003 [92] and Graham and Deodatis 2001 [93], where the first-order expansion renders

the results approximate and only sufficiently accurate for small values of the variance of

stochastic system properties.

Uncertainty quantification via the VRF concept has been already explored for comput-

ing the variance of displacement response of statically determinate linear structural systems

(Wall and Deodatis 1994 [89], Graham and Deodatis 1998 [90] and Papadopoulos et al.

2005 [94]), while a generalized variability response function (GVRF) methodology has been

proposed for the investigation of displacement response variability of statically indetermi-

nate linear (Miranda and Deodatis 2012 [95]) and nonlinear (Teferra and Deodatis 2012 [96])

structural systems. The GVRF methodology has shown to produce GVRFs for statically
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indeterminate beams that are only mildly dependent on the SDF and PDF of the uncertain

system parameters. The VRF approach has also been developed to establish analytically-

derived exact variability response functions for apparent properties of linear statically deter-

minate beams (Arwade and Deodatis 2011 [97]) as well as generalized variability response

functions for apparent properties of linear statically indeterminate beam systems (Teferra

et al. 2012 [98]). Teferra et al. 2014 [99] extended the GVRF methodology to applications

of two-dimensional plane stress linear problems characterized by statically homogeneous

random fields in order to evaluate the variability of displacement response and effective com-

pliance. Furthermore, the existence of VRF for apparent material properties in a stochastic

finite element context is formally proven for the heat conduction problem by Arwade et al.

2015 [100], where the computation of apparent material properties is performed using linear

and nonlinear shape functions in one and two dimensions, and sensitivity of the proposed

VRF regarding the shape and scale of the finite element is discussed. An excellent review

of the literature can be also found in the PhD theses of Manuel Miranda 2009 [101] and

Kirubel Teferra 2012 [102].

8.1.3 Objectives

The objectives of Part II of this dissertation include an extension of the VRF concept for ap-

parent material properties to two-dimensional elasticity problems within a stochastic finite

element framework, by utilizing strain energy equivalence between the heterogeneous and

equivalent homogeneous versions of the problem. Analytical formulation of VRFs for appar-

ent material properties is presented with applications in 4-node quadrilateral plane stress

finite elements. Finally, characteristic features of the VRFs are examined and discussed,

while a series of examples are illustrated in order to underline the VRF dependence on the

scale, shape and aspect ratio of the example finite elements.
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8.2 Problem statement

Let Ω ⊂ IR2 define a solid body defined by coordinates x ∈ IR2, which is locally point-wise

isotropic and occupied by a material with properties characterized by the spatially varying

and random (heterogeneous) constitutive matrix C(x),x ∈ IR2, subject to Neumann and

Dirichlet boundary conditions. The strong form of the boundary value problem can be

written as follows

σij,j + bi = 0

σij,j = Cijkl(x)εkl

εij =
1

2
(ui,j + uj,i)

σijnj = t̄i ∈ Γt

ui = ūi ∈ Γu

Γt ∪ Γu = ∂Ω and Γt ∩ Γu = ∅

(8.2)

where σ and ε are stress and strain tensors, respectively, and u and b are displacement

and body force vectors, respectively. The spaces Γt and Γu are defined as the spaces of

prescribed traction t̄ and prescribed displacement ū, respectively. The boundary ∂Ω defined

by the outward unit normal vector n is the union of spaces Γt and Γu. The heterogeneous

constitutive matrix C(x) is a function of position x due to random fluctuations of the elastic

modulus or Poisson’s ratio of the heterogeneous material occupying Ω.

Consider now a body, subject to the same boundary conditions, occupied by a material

with properties defined by the stochastic spatially invariant (homogeneous) matrix C̄(x),x ∈

IR2. The homogeneous matrix C̄ is itself stochastic, but not spatially varying, when the

material volume VΩ is smaller than the representative volume element (RVE). C̄ is constant

within Ω but is a function of the displacement boundary conditions, traction, and an integral

expression of C(x).

It is now desirable to replace the heterogeneous material with a homogeneous material
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that is, in some sense, equivalent. In elasticity problems, the definition of apparent proper-

ties may depend on a function that has some physical meaning so that the energetics of the

homogeneous and the heterogeneous problems are equivalent, for example a key displace-

ment or strain energy. The primary objective of this paper is the uncertainty quantification

of C̄ when the definition of apparent properties lies in the equivalence of strain energy. In

this direction, it is considered that the elastic strain energy of the apparent properties is

equivalent to that in the heterogeneous version of the problem under the same set of load-

ing. The equivalence of strain energy can be expressed as

Strain energy of homogeneous problem = Strain energy of heterogeneous problem

or
1

2

∫
Ω

ε0(x) · C̄ · ε0(x) dV =
1

2

∫
Ω

ε(x) · C · ε(x) dV

=

∫
Γt

u(x)t̄(x) dΓt

(8.3)

where ε0(x) is the strain of the homogeneous body and ‘·’ denotes the tensor inner

product. Consider now the case where the Poisson’s ratio ν is a deterministic constant

and only the heterogeneous elastic modulus E(x) is randomly varying (the shear modulus

G(x) =
E(x)

2(1 + ν)
must also be heterogeneous and perfectly correlated to the elastic modulus

to preserve isotropy). Then the apparent elastic modulus Ē can be factored out from the

effective constitutive tensor C̄ = ĒC̄ ′ and thus it can be expressed as

Ē =

∫
Γt

u(x)t̄(x) dΓt

1

2

∫
Ω

ε0(x) · C̄ ′ · ε0(x) dV
=

∫
Ω

ε(x) · C · ε(x) dV∫
Ω

ε0(x) · C̄ ′ · ε0(x) dV

(8.4)

The effective elastic modulus is bounded by the Reuss and Voigt bounds, respectively, as
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follows

Ēr ≤ Ē ≤ Ēv

Ēr =
1

VΩ

∫
Ω

E(x)−1 dV

−1

Ēv =
1

VΩ

∫
Ω

E(x) dV

(8.5)

Equation (8.4) gives the variance of the apparent elastic modulus:

V ar[Ē] =
1

C∗
V ar

∫
Γt

u(x)t̄(x) dΓt

 (8.6)

where C∗ =
1

2

∫
Ω

ε0(x) · C̄ ′ · ε0(x) dV .

The purpose of this study is to propose a stochastic scheme for the computation of

apparent properties in two-dimensional elasticity problems, either plane stress or plane strain,

when the problem domain occupies a finite volume smaller than the RVE. The randomness

in the problem is introduced by the randomly varying elastic modulus defined as E(x, y) =

E0 (1 + f(x, y)), where E0 is the deterministic nominal elastic modulus and f(x, y) is a zero

mean homogeneous random field with spectral density function Sff (κ1, κ2) that is a function

of the wavenumbers κ1, κ2 ∈ IRn. The ultimate goal is to analytically provide a Variability

Response Function for the variance of the apparent elastic modulus Ē such that

V ar
[
Ē
]

=

∞∫
−∞

∞∫
−∞

V RFĒ (κ1, κ2)Sff (κ1, κ2) dκ1 dκ2 (8.7)

where V RFĒ (κ1, κ2) is a VRF of the apparent material properties that is independent

of the spectral characteristics of f(x, y), while only dependent on the deterministic bound-

ary conditions and deterministic structural configuration of the problem. Ultimately, using

V RFĒ as a means to compute V ar
[
Ē
]
, the uncertainty of Ē can be efficiently evaluated.
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8.3 Simulation of 1D and 2D Homogeneous Gaussian Random Fields

via Spectral Representation

Monte-Carlo simulation is a robust method for efficient and accurate simulation of engi-

neering problems in a fully stochastic framework that would be otherwise only considered

deterministically. The Spectral Representation Method (SRM) introduced by Shinozuka

1972 [103] is a widely-used technique for the simulation of sample realizations of random

fields and will be used in this dissertation as well. The basis of SRM is the use of the Spec-

tral Density Function (SDF) in the frequency domain which is easy to physically interpret.

SRM is also mathematically simple compared to other simulation techniques such as the

Karhunen-Loève decomposition [104] - [107], since the sample realizations are generated by

just a finite summation of cosine functions.

8.3.1 Simulation of 1D Homogeneous Gaussian Random Fields

Let us first define some important quantities. Consider a homogeneous random field F (x).

The autocorrelation function (ACF) Rf (x, ξ) describes how different space instances are

correlated to each other and is defined as

Rf (x, ξ) = E[F (x) · F (x+ ξ)] (8.8)

where x is the space instance, ξ is the separation distance or space lag and E[·] denotes

the expected value. For homogeneous fields, the ACF is only a function of the space lag,

i.e. Rf (x, ξ) = Rf (ξ). In addition, the Spectral Density Function (SDF) Sf (κ) measures

the distribution of power of the field in the wavenumber domain (equivalent to frequency

domain for random processes), where κ is the wavenumber. As mentioned before, SDF

serves as the basis of SRM. The ACF and SDF are related via a Fourier pair known as the
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Wiener-Khintchine theorem or transform [108] - [111], as following

Rf (ξ) =

∞∫
−∞

Sf (κ)eiκξ dκ

Sf (κ) =
1

2π

∞∫
−∞

Rf (ξ)e
−iκξ dξ

(8.9)

where i =
√
−1 is the imaginary unit. Therefore, a Fast Fourier Transform (FFT) is

only needed in order to transfer form SDF to ACF and vice versa, in an extremely fast

and efficient manner. This implies that whether the ACF or SDF is known, assumed or

estimated, simulation of sample realizations through the SRM technique is straightforward

through this simple transformation.

The next quantity to define is the Gaussian random field. Gaussian random fields are

established as the most widely-used random fields due to the existence of closed form ex-

pressions for complete characterization, the consequences of central limit theorem , and the

efficiency of their simulation. A homogeneous random field G(x) is a Gaussian random field

if and only if every finite set of N samples (G(x1) = g1, G(x2) = g2, ..., G(xN) = gN) is a set

of N Gaussian random variables with the following N th order joint probability distribution

function

φN(g) =
1

sqrt(2π)Ndetρgg
exp

(
−1

2
(g− µg)Tρ−1

gg (g− µG)

)
(8.10)

where is the ρgg covariance matrix and µg is the vector of means of the N samples. The

autocorrelation function of the Gaussian random field depends only on the distance between

two instances, x1 and x2, and is defined as

Rg(ξ) = E[G(x1)G(x2)] =

∞∫
−∞

∞∫
−∞

g1g2φ2(g) dg1 dg2 (8.11)

The SRM technique relies on equation (8.12) for the generation of a sample realization
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g(x) of a homogeneous Gaussian random field G(x):

g(x) =
√

2
N−1∑
j=0

√
2Sg(κj)∆κ · cos(κjx+ φj) (8.12)

where φj are independent uniformly distributed random phase angles between 0 and

2π. This equation, which is a relatively simple mathematical expression as it comprises

a summation of cosines, is analogous for the simulation of stationary Gaussian random

processes, where wavenumber κ is replaced by frequency ω and space instance x is replaced

by time t. The wavenumber domain is discretized as

∆κ =
κu
N

κj = j∆κ

(8.13)

The upper cutoff wavenumber κu is chosen such that Sg(κ > κu) can be assumed neg-

ligible. Thus, κu is a fixed value and hence ∆κ → 0 as N → ∞ so that N∆κ = κu. The

following criterion is usually satisfied to estimate the value of κu:

2

κu∫
0

Sg(κ) dκ = (1− ε)
∞∫

−∞

Sg(κ) dκ = (1− ε)Var(g) (8.14)

for ε <<< 1, for example ε = 0.01, 0.001. Equation (8.14) expresses the SDF property

that its integral over the whole wavenumber domain κ ∈ (−∞,∞) is the variance of g(x). In

order to avoid aliasing, the space increments ∆x are restricted by the Nyquist wavenumber

(analogous to the Nyquist frequency) (Shinozuka and Deodatis 1991 [112]):

∆x ≤ 2π

2κu
(8.15)

The following properties of the generated samples should be also mentioned (Shinozuka

and Deodatis 1991 [112]):
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1. The generated samples are periodic with wavelength λ =
2π

∆κ

2. Over multiples of the wavelength or as space approaches infinity, samples are ergodic

in the mean and autocorrelation, which is established if S(κ = 0) = 0.

3. As N → ∞, the generated samples are asymptotically Gaussian through the Central

Limit Theorem. However, in Shinozuka and Deodatis 1991 [112] it was shown that N

does not need to be very large before the samples tend to Gaussianity.

The FFT technique (e.g. Bringham 1988 [113]) is utilized in order to drastically reduce

the computational time of sample generation through SRM. In this environment, equation

(8.12) becomes

g(x) = Re

{
√

2
N−1∑
j=0

√
2Sg(κj)∆κ · eiφjeiκjx

}
(8.16)

The sample function gk = g(xk) is now restricted to be discrete. As an example of

the SRM application through FFT technique, a series of sample functions were generated

through a selected SDF expressed as

Sg(κ) = 0.02κ2e−2|κ| (8.17)

with variance σ2
g = 0.01 of a zero mean homogeneous stochastic field G(x) which repre-

sents the spatial variability of the elastic modulus of a beam structure with length equal to

L = 10m. Figure 8.1 depicts one characteristic generated sample function. The value of N ,

which expresses the discretization in the wavenumber domain, is sufficiently high to achieve

Gaussianity. Figure 8.2 illustrates the comparison between the histogram of all simulated

points along the beam (each beam has a total of 38 elements) of all sample realizations and

the well-known Gaussian pdf with same mean and variance. The histogram agrees well with

the Gaussian pdf as it is shown that the pdf curve intersects the centroid of the histogram

bars. The large number of simulated points, equal to 700, 000×38 = 26, 600, 000, is sufficient

to generate extreme values close to the impressive value of ±6 · σ, as observed by the left
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and right tails of Figure 8.3.

Figure 8.1: Generated sample function g(x) of zero mean homogeneous random field that
represents the spatial variability of the elastic modulus of a beam structure with length equal
to L = 10m.

Figure 8.2: Histogram of generated samples and Gaussian pdf.
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Figure 8.3: Right and left tail of histogram of generated samples and Gaussian pdf.
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8.3.2 Simulation of 2D Homogeneous Gaussian Random Fields

The simulation of multi-dimensional Gaussian random fields via Spectral Representation is

a straightforward extension of the simulation of one dimensional Gaussian random fields

described in Section 8.3.1 and is thoroughly presented in Shinozuka and Deodatis 1996

[114]. A brief review of the simulation method will be given below. Let f0(x1, x2) be a

two-dimensional univariate homogeneous zero mean Gaussian field with Spectral Density

Function Sf0f0(κ1, κ2) and Autocorrelation Function Rf0f0(ξ1, ξ2) such that:

Rf0f0(ξ1, ξ2) = E[f0(x1 + ξ1, x2 + ξ2) · f0(x1, x2)]

Rf0f0(ξ1, ξ2) =

∞∫
−∞

∞∫
−∞

Sf0f0(κ1, κ2)ei(κ1ξ1+κ2ξ2) dκ1 dκ2

(8.18)

where E[·] denotes the mathematical expectation, ξ1 and ξ2 are the separation distances

along the x1 and x2 directions, respectively, and κ1 and κ2 are the corresponding wavenum-

bers. A 2D sample function can be generated through the following equation

f0(x1, x2) =
√

2
∞∑

n1=0

∞∑
n2=0

{√
2Sf0f0(κ1n1 , κ2n2)∆κ1∆κ2 · cos(κ1n1x1 + κ2n2x2 + Φ(1)

n1n2
)+

√
2Sf0f0(−κ1n1 , κ2n2)∆κ1∆κ2 · cos(−κ1n1x1 + κ2n2x2 + Φ(2)

n1n2
)

}
(8.19)

where Φ
(1)
n1n2 and Φ

(2)
n1n2 are two different sets of independent identically distributed uni-

form random phase angles between [0, 2π]. Φ
(1)
n1n2 and Φ

(2)
n1n2 are also two-dimensional arrays

of length N1 ×N2, and the discretized wavenumber domain is given by

∆κ1 =
κ1u

N1

⇒ κ1n1 = n1∆κ1

∆κ2 =
κ2u

N2

⇒ κ2n2 = n2∆κ2

(8.20)

Equation (8.19) can be rewritten by taking advantage of the relationship between cosine
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and the exponential function, into the following form, known as the FFT technique formula

used to drastically reduce the computational time of generating sample realizations:

f(p1∆x1, p2∆x2) = Re

{
2

M1−1∑
n1=0

M2−1∑
n2=0

√
Sf0f0(κ1n1 , κ2n2)∆κ1∆κ2 · exp[iφ(1)

n1n2
]

· exp

(
i
2πn1p1

M1

+ i
2πn2p2

M2

)
+

√
Sf0f0(κ1n1 ,−κ2n2)∆κ1∆κ2 · exp[iφ(2)

n1n2
] · exp

(
i
2πn1p1

M1

− i2πn2p2

M2

)} (8.21)

where p1 = 0, 1, ...,M1 − 1 and p2 = 0, 1, ...,M2 − 1. ∆x1, ∆x2 and ∆κ1, ∆κ2 are related

in the following way:

∆x1∆κ1 =
2π

M1

and ∆x2∆κ2 =
2π

M2

(8.22)

In order to avoid aliasing, the space increments have to obey the following conditions:

∆x1 ≤
2π

2κ1u

and ∆x2 ≤
2π

2κ2u

(8.23)

which is equivalent to

M1 ≥ 2N1 and M2 ≥ 2N2 (8.24)

It can be shown that as M1,M2 → ∞, each sample function is ergodic in the mean

and autocorrelation. Equation (8.21) is used to generate sample function of the zero mean

homogeneous two-dimensional random field of Section 9.3.2; the utilized SDF and one sample

function are illustrated in Figures 9.7 and 9.8, respectively.
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8.4 Part II Outline

Part II of this dissertation consists of four chapters and is organized as follows. Following

this introductory chapter, Chapter 9 presents the formulation of finite element based Vari-

ability Response Functions for apparent material properties in 2D linear elasticity stochastic

problems. The analytical calculation of VRFs is formulated for different geometries of finite

elements, including a square isoparametric finite element in natural coordinate system, a

generic rectangular element in physical Cartesian coordinate system and finally an arbitrary

quadrilateral element that is mapped from physical to natural coordinate system.

Chapter 10 presents the analytical calculation of a series of VRFs for finite elements with

varying geometry; rectangles with different values of L
(e)
x and L

(e)
y , as well as quadrilateral

elements with different nodal coordinates. The VRF dependencies on scale, shape and aspect

ratio of the example elements is illustrated and discussed.

Part II concludes with a discussion on the accomplishments and limitations of the VRF

concept for apparent material properties in Chapter 11, while potential direction of future

research is also contemplated. Most of the content of Part II derives from Sideri et al.

2016 [115].
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Chapter 9

Finite Element based VRFs for

Apparent Material Properties

9.1 Introduction

This chapter will elaborate on the formulation of finite element based Variability Response

Functions for apparent material properties of 2D linear elasticity stochastic problems. The

VRF formulation will be presented for the following finite element geometries that summarize

all possibilities for the simulation of any two-dimensional finite element model geometry:

1. Square isoparametric finite element in natural coordinate system

2. Generic rectangular element in physical Cartesian coordinate system

3. Arbitrary quadrilateral element that is mapped from physical to natural coordinate

system

The first VRF formulation for a square isoparametric 2 × 2 finite element in natural

coordinate system constitutes the simplest case for finite element meshing. The second VRF

formulation for a generic rectangular element extends the applicability of the previous for-

mulation in the Cartesian coordinate system. The final VRF formulation for an arbitrary
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quadrilateral element constitutes the most complicated version of the problem, where the

concept of mapping from physical to natural coordinate system is employed in order to de-

velop a VRF for any element of arbitrary geometry; the calculations, which would otherwise

be impossible due to the very complex algebraic expressions of the Cartesian shape functions,

are facilitated by using the Jacobian matrix that normalizes the coordinates, i.e. maps the

physical to natural coordinates. For demonstration and simplicity purposes, the VRF for-

mulation for an arbitrary quadrilateral element will be calculated for an example trapezoid

element. However, this VRF formulation is not limited to this specific example; it and can

be extended by using the exact same procedure for any shape of quadrilateral element.

9.2 Finite Element Analysis of Linear Elastic Plane Stress Problem

In this section, plane stress finite elements will be developed in the framework of classical

2D linear elasticity. The necessary governing equations (strong form) are presented below

Equilibrium equation: ∇T
Sσ + b = 0

Kinematics equation (strain-displacement relation): ε = ∇Su

Constitutive equation (stress-strain relation): σ = Dε

(9.1)

where σ is the stress tensor, ε is the strain tensor, D is the constitutive tensor, u is the

displacement vector and ∇S is the symmetric gradient matrix operator defined as

∇S =



∂

∂x
0

0
∂

∂y

∂

∂x

∂

∂y


(9.2)

There are two types of boundary conditions; the portion of the boundary where the

traction is prescribed is denoted by Γt, while the portion of the boundary where the dis-
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placement is prescribed is denoted by Γu. The traction boundary condition can be expressed

as σ n = t ∈ Γt, where n is the outward unit normal vector, while the displacement boundary

condition is written as u = ū ∈ Γu. The displacement boundary condition is an essential

boundary condition, meaning that it must be satisfied by the displacement field, while the

traction boundary condition is a natural boundary condition. The displacement and traction

cannot be both prescribed on any portion of the boundary, therefore Γt ∩ Γu = ∅. However,

either the displacement or traction must be prescribed on any portion of the boundary, i.e.

Γt ∪ Γu = ∂Ω.

If Ω is subject to plane stress conditions, the following approximations hold

σzz = σyz = σxz = 0 (9.3)

leading to the following vectors for stress, strain and displacement

σT =

[
σxx σyy σxy

]
εT =

[
εxx εyy 2γxy

]
uT =

[
ux(x, y) uy(x, y)

] (9.4)

The constitutive tensor or material property matrix is defined as

D(e)(x, y) =
E(e)(x, y)

1− ν2



1 ν 0

ν 1 0

0 0
1− ν

2


(9.5)

where E(x, y) is the heterogeneous elastic modulus and ν is deterministic Poisson’s ratio.
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The strains in the z direction are given by

εzz = − ν
E

(σxx + σyy)

εyz = εxz = 0

(9.6)

To obtain the weak form of the equilibrium equation of equation (9.1), we multiply

the equilibrium equation by a kinematically admissible virtual displacement field v, i.e.

v = 0 ∈ Γu), integrate over the domain and employ the divergence theorem. Under the

assumption that the body force is zero, the weak form can be expressed as

∫
Ω

∇S σ v dΩ = σ n v

∣∣∣∣
Γt

−
∫
Ω

σ ∇S v dΩ ⇒

∫
Ω

σ ∇S v dΩ− t v = 0

(9.7)
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9.3 Formulation of VRFs of a Square Isoparametric Plane Stress

Element in Natural Coordinate System

This section describes the derivation of the variability response function for apparent ma-

terial properties, in order to analyze stochastic plane stress problems by using the bilinear

isoparametric 2 × 2 square element shown in Figure 9.1. The derivation will be conducted

in the natural (ξ, η) coordinate system, which essentially corresponds to the case where a

rectangular element in physical Cartesian (x, y) coordinate system is already mapped into a

square element in the natural (ξ, η) coordinate system (Figure 9.1).

Figure 9.1: 4-node square plane stress element in natural coordinate system.

The element has eight degrees of freedom (two per node) and isoparametric shape func-

tions given by Hughes 1987 [116] as shown in Figure 9.2

N1 =
1

4
(1− ξ)(1− η) ; N2 =

1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η) ; N4 =

1

4
(1− ξ)(1 + η)

(9.8)

where ξ and η are the natural coordinates defined in Figure 9.1. The strain-displacement
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Figure 9.2: Graphical illustration of bilinear 4-node element shape functions.

matrix is 3× 8 given by

B(e)(ξ, η) =
1

4



η − 1 0 1− η 0 η + 1 0 −1− η 0

0 ξ − 1 0 −ξ − 1 0 ξ + 1 0 1− ξ

ξ − 1 η − 1 −ξ − 1 1− η ξ + 1 η + 1 1− ξ −1− η


(9.9)

The nodal values of the ξ and η coordinates are

ξ1 = −1 ; ξ2 = +1 ; ξ3 = +1 ; ξ4 = −1

η1 = −1 ; η2 = −1 ; η3 = +1 ; η4 = +1

(9.10)

The material property matrix is defined for plane-stress problems as

D(e)(ξ, η) =
E(e)(ξ, η)

1− ν2



1 ν 0

ν 1 0

0 0
1− ν

2


(9.11)
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In the above equation, ν denotes Poisson’s ratio as a deterministic constant and E(e)(ξ, η)

is the heterogeneous randomly varying elastic modulus defined by the equation

E(e)(ξ, η) = E0 (1 + f(ξ, η)) (9.12)

where E0 is the nominal elastic modulus and f(ξ, η) is a zero mean homogeneous random

field with spectral density function Sff (κ1, κ2) that is a function of the wavenumbers κ1, κ2 ∈

IRn. It must be reminded at this point that the shear modulus G(e)(ξ, η) must also be

heterogeneous and perfectly correlated to the elastic modulus E(e)(ξ, η) (since the Poisson’s

ratio is a deterministic constant), in order to preserve isotropy.

The strain energy stored within each element of the heterogeneous body can be expressed

by

W
(e)
het =

1

2

∫∫
Ω

U (e)T
(

[B]T [D][B]
)
U (e) dΩ (9.13)

where U (e) is the displacement vector of each element. Considering now an imposed unit

displacement along the 1st degree of freedom, the expression for the strain energy leads to

W
(e)
het =

1

2

∫∫
Ω

[
1 0 0 0 0 0 0 0

](
[B]T [D][B]

)



1

0

0

0

0

0

0

0



dΩ (9.14)
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which reduces to

W
(e)
het =

1

2

∫∫
Ω

(
[B]T [D][B]

)
11
dΩ =

1

2

1∫
−1

1∫
−1

(
E0 (1 + f(ξ, η))

16(1− ν2)
·

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

] )
dξ dη

(9.15)

The respective element strain energy of the homogeneous body with apparent properties

is

W
(e)
hom =

1

2

1∫
−1

1∫
−1

(
Ē1

16(1− ν2)
·

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

] )
dξ dη (9.16)

where Ē1 is the equivalent apparent elastic modulus for the 1st degree of freedom. By

equating the two expressions for strain energy, the apparent elastic modulus Ē1 reduces to

the expression

Ē1 = E0 ·

1∫
−1

1∫
−1

(1 + f(ξ, η)) ·

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
dξ dη

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
dξ dη

(9.17)

Let us define the denominator in the expression of Ē1, which is only a deterministic

constant, as

M1 =

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
dξ dη (9.18)

The variance of Ē1 is calculated by taking the expectation and the mean square of the

above equation. The expectation is given by

E
[
Ē1

]
= E0 (9.19)
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The square of the expectation is given by

[
Ē1

]2
=
E2

0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
×

[
(w − 1)2 +

(
1− ν

2

)
(u− 1)2

]
(1 + f(ξ, η)) (1 + f(u,w)) dξ dη du dw

(9.20)

The mean square of Ē1 is given by the equation

E
[
Ē2

1

]
=

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
×

[
(w − 1)2 +

(
1− ν

2

)
(u− 1)2

][
1 +Rff (s1, s2)

]
dξ dη du dw

(9.21)

where Rff (s1, s2) = E
[
f(ξ, η)f(u,w)

]
is the spatial correlation function of f(ξ, η) and

s1, s2 ∈ IR are vectors of distances with s1 = ξ − u and s2 = η − w.

The variance of the apparent material property Ē1 can be therefore expressed as

V ar
[
Ē1

]
=E

[
Ē2

1

]
− E

[
Ē1

]2
=

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
×

[
(w − 1)2 +

(
1− ν

2

)
(u− 1)2

]
· Rff (s1, s2) dξ dη du dw

(9.22)

If the spectral density Sff (κ1, κ2) is substituted for Rff (s1, s2) through the Wiener-

Khintchine transform, and if we change the order of integration, then

V ar
[
Ē1

]
=

∞∫
−∞

∞∫
−∞

V RFĒ1
(κ1, κ2)Sff (κ1, κ2) dκ1 dκ2 (9.23)
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where V RFĒ1
is defined as

V RFĒ1
(κ1, κ2) =

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
×

[
(w − 1)2 +

(
1− ν

2

)
(u− 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.24)

After some algebra

V RFĒ1
(κ1, κ2) =

4E2
0

κ6
1κ

6
2

(
8ν

3
− 8

)2

[
4κ3

1κ
3
2(−1 + ν)− 4κ2

1κ
2
2(−1 + κ2

2)(−1 + ν)− κ4
2(−1 + ν)2 − 2

κ4
1(2 + 2κ2

2(−1 + ν) + κ4
2(7 + (−4 + ν)ν)) + cos(2κ1)(−4κ4

1(−1 + κ4
2(−3 + ν)− κ2

2(−1 + ν))− 4κ3
1κ

3
2

(−1 + ν)− 2κ2
1κ

2
2(2 + κ2

2(−3 + ν))(−1 + ν) + κ4
2(−1 + ν)2 + (4κ4

1(−1− κ2
2(−3 + ν) + κ4

2(−1 + ν)) + 4κ3
1

κ3
2(−1 + ν) + 2κ2

1κ
2
2(2 + κ2

2(−3 + ν))(−1 + ν)− κ4
2(−1 + ν)2)cos(2κ2)) + cos(2κ2)(2κ4

1(2 + κ2
2

(2 + κ2
2(−1 + ν))(−3 + ν))− 4κ3

1κ
3
2(−1 + ν) + 4κ2

1κ
2
2(−1 + κ2

2)(−1 + ν) + κ4
2(−1 + ν)2 + 2κ1κ

2
2

(2κ3
1κ2 − 2κ2

1(−1 + κ2
2)− κ2

2(−1 + ν))(−1 + ν)sin(2κ1)) + 2κ1κ2(κ2(−2κ3
1κ2 + 2κ2

1(−1+

κ2
2) + κ2

2(−1 + ν))(−1 + ν)sin(2κ1) + 4κ1sin(κ1)(κ1κ
2
2(1 + κ1κ2)(−1 + ν)cos(κ1) + (κ2

1(2

+ κ2
2(−1 + ν))− κ2

2(−1 + ν)− κ1κ
3
2(−1 + ν))sin(κ1))sin(2κ2))

]

(9.25)

Equations 9.23 and 9.25 are key expressions for the exact computation of the variance of

apparent properties within the finite element, without the need for computationally expen-

sive Monte-Carlo simulations or any other kind of approximations. Additionally, the final

expression for the VRF is only dependent on deterministic quantities like the isoparametric

element’s dimensions a and b, Poisson’s ratio ν and nominal elastic modulus E0, while it is

independent of the spectral density function Sff and probability distribution function PDF

of the zero mean homogeneous random field f(ξ, η).

Figure 9.3 depicts the plot of V RFĒ1
for the 1st degree of freedom in one quadrant along

positive values of κ1 and κ2, with the various parameters assigned as following: E0 = 125·106

and ν = 0.3. As a typical characteristic of VRFs, the spectral contribution to variance has a

peak for κ1 = κ2 = 0 and displays a decaying sequence of peaks with increasing wavenumber.
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The maximum value of the VRF for κ1 = κ2 = 0 is equal to E2
0 . In addition, the VRF is

not isotropic in the κ space, since the decay rate is faster along the κ1 = κ2 diagonal

than along the κ1 and κ2 axes. The decay rate is also faster along κ1 axis, while it is

slower along κ2 axis. Another usual characteristic of the VRF is the asymptotic values of

limκ1,κ2→∞ V RFĒ(κ1, κ2) = 0. Detailed discussion of the symmetry properties of the VRF

is found in the following section.

Figure 9.3: V RFĒ1
(κ1, κ2) of 1st degree of freedom of 4-node 2× 2 square element in natural

coordinate system.

Similarly, the rest of the VRFs are derived for the remaining 7 degrees of freedom, by

imposing unit displacements in the respective d.o.f. according to Figure 9.1 and performing

the same calculations. The expressions for the rest of the VRFs are as following:
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V RFĒ2
(κ1, κ2) =

E2
0

M2
2

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(ξ − 1)2 +

(
1− ν

2

)
(η − 1)2

]
×

[
(u− 1)2 +

(
1− ν

2

)
(w − 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.26)

V RFĒ3
(κ1, κ2) =

E2
0

M2
3

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ + 1)2

]
×

[
(w − 1)2 +

(
1− ν

2

)
(u+ 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.27)

V RFĒ4
(κ1, κ2) =

E2
0

M2
4

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(ξ + 1)2 +

(
1− ν

2

)
(η − 1)2

]
×

[
(u+ 1)2 +

(
1− ν

2

)
(w − 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.28)

V RFĒ5
(κ1, κ2) =

E2
0

M2
5

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η + 1)2 +

(
1− ν

2

)
(ξ + 1)2

]
×

[
(w + 1)2 +

(
1− ν

2

)
(u+ 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.29)

V RFĒ6
(κ1, κ2) =

E2
0

M2
6

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(ξ + 1)2 +

(
1− ν

2

)
(η + 1)2

]
×

[
(u+ 1)2 +

(
1− ν

2

)
(w + 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.30)
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V RFĒ7
(κ1, κ2) =

E2
0

M2
7

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(η + 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
×

[
(w + 1)2 +

(
1− ν

2

)
(u− 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.31)

V RFĒ8
(κ1, κ2) =

E2
0

M2
8

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
(ξ − 1)2 +

(
1− ν

2

)
(η + 1)2

]
×

[
(u− 1)2 +

(
1− ν

2

)
(w + 1)2

]
· e−i(κ1s1+κ2s2) dξ dη du dw

(9.32)

where the deterministic quantities of M2 − M8 are defined as

M2 =

1∫
−1

1∫
−1

[
(ξ − 1)2 +

(
1− ν

2

)
(η − 1)2

]
dξ dη (9.33)

M3 =

1∫
−1

1∫
−1

[
(η − 1)2 +

(
1− ν

2

)
(ξ + 1)2

]
dξ dη (9.34)

M4 =

1∫
−1

1∫
−1

[
(ξ + 1)2 +

(
1− ν

2

)
(η − 1)2

]
dξ dη (9.35)

M5 =

1∫
−1

1∫
−1

[
(η + 1)2 +

(
1− ν

2

)
(ξ + 1)2

]
dξ dη (9.36)

M6 =

1∫
−1

1∫
−1

[
(ξ + 1)2 +

(
1− ν

2

)
(η + 1)2

]
dξ dη (9.37)

M7 =

1∫
−1

1∫
−1

[
(η + 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
dξ dη (9.38)
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M8 =

1∫
−1

1∫
−1

[
(ξ − 1)2 +

(
1− ν

2

)
(η + 1)2

]
dξ dη (9.39)

Figure 9.4 illustrates the plot of V RFĒ1
− V RFĒ8

for all the degrees of freedom of the

2×2 square element in one quadrant along positive values of κ1 and κ2, with the same values

for the parameters: E0 = 125 · 106 and ν = 0.3. Pairs of VRFs for the degrees of freedom

Ē1 & Ē5, Ē2 & Ē6, Ē3 & Ē7 and Ē4 & Ē8 are identical.

(a) V RFĒ1
(κ1, κ2) & V RFĒ5

(κ1, κ2) (b) V RFĒ2
(κ1, κ2) & V RFĒ6

(κ1, κ2)

(c) V RFĒ3
(κ1, κ2) & V RFĒ7

(κ1, κ2) (d) V RFĒ4
(κ1, κ6) & V RFĒ8

(κ1, κ2)

Figure 9.4: V RFĒ1−Ē8
(κ1, κ2) of all degrees of freedom of 4-node 2 × 2 square element in

natural coordinate system.
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9.3.1 Symmetry Properties of VRFs

The VRFs of all degrees of freedom V RFĒ1
− V RFĒ8

exhibit a series of symmetries that

stem from the symmetric geometry of the 4-node square element itself.

1. Symmetry around κ1 axis (κ2 = 0) and κ2 axis (κ1 = 0). This property allows for

plotting the VRFs in only one quadrant (κ1, κ2 > 0), as depicted in Figure 9.3 for

V RFĒ1
.

2. Non-symmetry when κ1, κ2 6= 0, for example around κ1 = κ2 axis, as illustrated also

in Figure 9.3. This property dictates that the variance computed from equation 8.7, if

a non-symmetric power spectrum Sff is also chosen, will have a different value in each

quadrant. Therefore, the computed variance must be the summation of the variances

in each quadrant (for more details, refer to examples in the following section).

3. Pairs of VRFs of apparent properties Ē1 & Ē5, Ē2 & Ē6, Ē3 & Ē7 and Ē4 & Ē8

are identical, that is V RFĒ1
= V RFĒ5

, V RFĒ2
= V RFĒ6

, V RFĒ3
= V RFĒ7

and

V RFĒ4
= V RFĒ8

. Those pairs of degrees of freedom refer to diagonal matches in

horizontal and vertical directions.

4. VRFs of horizontal degrees of freedom Ē1 & Ē5 are identical to vertical Ē4 & Ē8 when

rotated by 90◦.

5. VRFs of vertical degrees of freedom Ē2 & Ē6 are identical to horizontal Ē3 & Ē7 when

rotated by 90◦.

6. VRFs of horizontal degrees of freedom Ē1 & Ē5 are identical to horizontal Ē3 & Ē7

when κ1 and κ2 are switched in the respective analytical expressions (meaning that

they are mirrored around κ1 and κ2 axis).

7. VRFs of vertical degrees of freedom Ē2 & Ē6 are identical to vertical Ē4 & Ē8 when

κ1 and κ2 are switched in the respective analytical expressions (meaning that they are
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mirrored around κ1 and κ2 axis).

Figure 9.5: Virtual plot of VRFs of all degrees of freedom in two quadrants (the other two
are symmetric). Letter notation denotes which radii are identified as identical ‘slice’ plots.

As an illustration of the above symmetries, Figure 9.5 shows a virtual plot of the VRFs of

all the degrees of freedom at 2 quadrants (the other two quadrants are directly symmetric).

The letter notation denotes which radii are identified as identical ‘slices’ of the VRF plots.

For example, symmetry property 4 is obvious when comparing the circle of Ē1 & Ē5 to the

circle of Ē4 & Ē8. Similarly, symmetry property 5 is confirmed when observing the pattern

of radii for the circles of Ē2 & Ē6 and Ē3 & Ē7. Lastly, symmetry properties 6 and 7 are
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also clarified in Figure 9.5, as they refer to the way the VRFs are mirrored around κ2 axis

(same holds for κ1 axis for the symmetric quadrants not shown in the figure for simplicity).

(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 9.6: VRFs of degrees of freedom Ē1 − Ē4 of 4-node square element in natural
coordinate system.

Figure 9.6a and b depicts the VRFs of degrees of freedom Ē1 − Ē4 in edge sections

obtained by setting κ1 = 0 and κ2 = 0 and in diagonal sections with κ1 = κ2, respectively
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(VRFs of degrees of freedom Ē5 − Ē8 are identical to the first four curves, as indicated

in symmetry property 3). The radii denoted with the letter ‘J’ are essentially depicted in

the edge sections (κ1 = 0 and κ2 = 0) where VRFs of degrees of freedom Ē1 & Ē3 and

Ē2 & Ē4 coincide. Moreover, the radii denoted with the letters ‘A’ and ‘B’ are depicted in

the diagonal sections (κ1 = κ2) where VRFs of degrees of freedom Ē1 & Ē2 and Ē3 & Ē4

coincide, respectively. These ‘slice’ plots confirm symmetry properties 6 and 7 because when

κ1 = κ2 then the wavenumbers κ1 and κ2 can be considered switched to each other.

It is therefore obvious that the VRFs for the 8 degrees of freedom are all related to

each other. The aforementioned symmetry properties indicate that there is only one truly

independent VRF expression which can be utilized to generate the VRF expressions of all

the rest of the degrees of freedom. The following numerical validation demonstrates results

for the target variance of apparent material properties V ar
[
Ē
]

between different degrees of

freedom.

9.3.2 Numerical Validation of VRFs

The numerical validation of all VRFs for the 8 degrees of freedom will be performed by

analytically calculating the variance of apparent material properties according to equation

(9.23) and comparing the results to direct Monte Carlo simulations with a sufficient number

of sample functions for convergence. Consider now the spectral density function shown in

Figure 9.7:

Sff,1 =
0.0002

π
· e−0.024·κ21−0.015·κ22 , κ1, κ2 ∈ IRn (9.40)

with variance σ2
ff = 0.01 of the zero mean homogeneous random field f(ξ, η). This exam-

ple spectrum is non-symmetric since the decay rate is faster along κ1 axis, while it is slower

along κ2 axis. Figure 9.8 displays a sample function in the natural (ξ, η) coordinate system

generated from the above spectrum by employing the Spectral Representation Method in

two dimensions following the procedures in Shinozuka and Deodatis 1996 [114], as described
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Figure 9.7: Non-symmetric spectral density function Sff,1(κ1, κ2) of zero mean homogeneous
random field f(x, y).

in Section 8.3.2 of this thesis. The computational cost of generating sample functions was

drastically reduced by using the Fast Fourier Transform technique (e.g. Brigham 1988 [113]).

The analytically calculated variances of apparent properties for the 8 degrees of freedom

through the respective variability response functions V RFĒ1
− V RFĒ8

and equation (9.23)

are:

V ar
[
Ē1

]
= V ar

[
Ē3

]
= V ar

[
Ē5

]
= V ar

[
Ē7

]
= 1.108 · 1013

V ar
[
Ē2

]
= V ar

[
Ē4

]
= V ar

[
Ē6

]
= V ar

[
Ē8

]
= 1.091 · 1013

(9.41)

by using the same parameters E0 = 125 · 106 and ν = 0.3. These values agree well with

results obtained from direct MC simulations with one million generated sample functions

for f(ξ, η) through using equation (9.17), which yield for example V ar
[
Ē1

]
= 1.112 · 1013

and V ar
[
Ē2

]
= 1.097 · 1013. Note that the very large number of sample functions that need

to be generated in order to achieve convergence is attributed to the two-dimensionality of
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Figure 9.8: Generated sample function of the zero mean homogeneous stochastic field f(ξ, η)
using the non-symmetric spectral density function Sff,1(κ1, κ2) with variance σ2

ff = 0.01.

the problem examined in this study. The small discrepancy between the analytical VRF

approach and MC simulations stems from various potential sources of numerical error, such

as error associated with the finite number of sample functions used in the MC simulations

(even if there is convergence) and most importantly error associated with the numerical

integration of the product of the VRFs and the spectral density function for predicting the

variance in equation (9.23) (sensitivity of the value of the numerical integral on discretization

of variables etc.)

Overall, the variability response functions introduced in this study provide very similar

results for the predicted variance of apparent properties for the 8 degrees of freedom of

the isoparametric square element. Although there is not a unique value for the variance

but rather two values, it is considered by the authors that the VRF expressions effectively

predict almost identical values for the variance of apparent material properties (1.5% error

between the two predicted values). Nevertheless, it is proven that there is only one truly
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independent VRF expression; this single expression can be utilized to generate the rest of

the VRF expressions that can in turn predict two distinct but very similar values for the

variance of apparent material properties.

However, when the spectral density function of the zero mean homogeneous random field

f(ξ, η) that characterizes the spatially varying elastic modulus E(ξ, η) is in fact symmetric,

then the VRFs of all the degrees of freedom predict the exact same value for the variance of

apparent material properties. Let us consider for example the following symmetric SDF:

Sff,2 =
0.0002

π
· e−0.02·κ21−0.02·κ22 , κ1, κ2 ∈ IRn (9.42)

The analytically calculated variances of apparent properties for the 8 degrees of freedom

are in this case an identical number; V ar
[
Ē1

]
= V ar

[
Ē2

]
= V ar

[
Ē3

]
= V ar

[
Ē4

]
=

V ar
[
Ē5

]
= V ar

[
Ē6

]
= V ar

[
Ē7

]
= V ar

[
Ē8

]
= 1.093 · 1013.

It should be noted at this point that the one truly independent VRF expression (reduced

from the initial 8 degrees of freedom of the square 2 × 2 element) that predicts one or

two values for the variance of apparent properties in case of a symmetric or non-symmetric

spectrum, respectively, constitutes a minimum number of independent VRF expressions, i.e.

an idealized case for a square finite element directly defined in the natural coordinate system.

The number of independent VRF expressions may be more than one, when considering

arbitrary shapes of finite elements. In the next sections of this chapter, it will be shown that

for rectangular elements there are two independent VRF expressions, however for arbitrary

shaped elements there are four independent VRF expressions.
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9.4 Formulation of VRFs of a Rectangular Plane Stress Element in

Physical Cartesian Coordinate System

Consider now a rectangular element in the physical Cartesian (x, y) coordinate system, with-

out being mapped into the natural (ξ, η) coordinate system. In this case, the derivation of

the VRFs for each degree of freedom will depend on the specific dimensions L
(e)
x and L

(e)
y of

the element. This allows for analytical formulation of a series of VRFs which are dependent

on the scale, shape and aspect ratio of example rectangular elements. The aforementioned

dependence discussion and relevant conclusions are the main focus of Chapter 10: Examples

that follows.

The derivation of V RFĒ1
−V RFĒ8

in the physical Cartesian (x, y) coordinate system will

follow the same procedure as the VRFs derivation in the natural (ξ, η) coordinate system.

The shape functions for the 8 degrees of freedom are given by Segerlind 1984 [117]

N1(x, y) =

[
1− x

L
(e)
x

] [
1− y

L
(e)
y

]
; N2(x, y) =

x

L
(e)
x

[
1− y

L
(e)
y

]

N3(x, y) =
xy

L
(e)
x L

(e)
y

; N4(x, y) =
y

L
(e)
y

[
1− x

L
(e)
x

] (9.43)

where x and y are the physical coordinates defined in Figure 9.1. The strain-displacement

matrix is 3× 8 given by

B(e)(x, y) =



−L(e)
y + y

L
(e)
x L

(e)
y

0
L

(e)
y − y
L

(e)
x L

(e)
y

0
y

L
(e)
x L

(e)
y

0
−y

L
(e)
x L

(e)
y

0

0
−L(e)

x + x

L
(e)
x L

(e)
y

0
−x

L
(e)
x L

(e)
y

0
x

L
(e)
x L

(e)
y

0
L

(e)
x − x
L

(e)
x L

(e)
y

−L(e)
x + x

L
(e)
x L

(e)
y

−L(e)
y + y

L
(e)
x L

(e)
y

−x
L

(e)
x L

(e)
y

L
(e)
y − y
L

(e)
x L

(e)
y

x

L
(e)
x L

(e)
y

y

L
(e)
x L

(e)
y

L
(e)
x − x
L

(e)
x L

(e)
y

−y
L

(e)
x L

(e)
y


(9.44)

where L
(e)
x and L

(e)
y are the dimensions of element (e) along the x and y axes, respectively
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(see Figure 9.1).

The material property matrix and the random varying elastic modulus, as well as the ex-

pressions for the strain energy of the homogeneous and heterogeneous bodies are formulated

as in Section 9.3. After imposing a unit displacement along the 1st degree of freedom, the

strain energy of the heterogeneous body is defined by the equation

W
(e)
het =

1

2

∫∫
Ω

[
1 0 0 0 0 0 0 0

](
[B]T [D][B]

)



1

0

0

0

0

0

0

0



dΩ (9.45)

which reduces to

W
(e)
het =

1

2

∫∫
Ω

(
[B]T [D][B]

)
11
dΩ =

1

2

L
(e)
y∫

0

L
(e)
x∫

0

(
E0 (1 + f(x, y))

1− ν2
·

[(
y − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
x− L(e)

x

L
(e)
x L

(e)
y

)2] )
dx dy

(9.46)

where E0 is the nominal elastic modulus and f(x, y) is a zero mean homogeneous random

field with spectral density function Sff (κ1, κ2) that is a function of the wavenumbers κ1, κ2 ∈

IRn. The respective element strain energy of the homogeneous body is

W
(e)
hom =

1

2

L
(e)
y∫

0

L
(e)
x∫

0

(
Ē1

1− ν2
·

[(
y − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
x− L(e)

x

L
(e)
x L

(e)
y

)2] )
dx dy (9.47)
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where Ē1 is the equivalent apparent elastic modulus for the 1st degree of freedom. By

equating the two expressions for the strain energy, the apparent elastic modulus Ē1 in the

(x, y) Cartesian coordinate system reduces to the expression

Ē1 = E0 ·

L
(e)
y∫

0

L
(e)
x∫

0

(1 + f(x, y)) ·

[(
y − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
x− L(e)

x

L
(e)
x L

(e)
y

)2]
dx dy

L
(e)
y∫

0

L
(e)
x∫

0

[(
y − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
x− L(e)

x

L
(e)
x L

(e)
y

)2]
dx dy

(9.48)

Let us define the deterministic denominator in the expression of Ē1 as

M1 =

L
(e)
y∫

0

L
(e)
x∫

0

[(
y − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
x− L(e)

x

L
(e)
x L

(e)
y

)2]
dx dy (9.49)

The target variance of Ē1 is calculated by computing the expectation and the mean

square of the above equation. After some algebra

V ar
[
Ē1

]
=E

[
Ē2

1

]
− E

[
Ē1

]2
=

E2
0

M2
1

·
L
(e)
y∫

0

L
(e)
x∫

0

L
(e)
y∫

0

L
(e)
x∫

0

[(
y − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
x− L(e)

x

L
(e)
x L

(e)
y

)2]
×

[(
w − L(e)

y

L
(e)
x L

(e)
y

)2

+

(
1− ν

2

)(
u− L(e)

x

L
(e)
x L

(e)
y

)2]
· Rff (s1, s2) dx dy du dw

(9.50)

where Rff (s1, s2) = E
[
f(x, y)f(u,w)

]
is the spatial correlation function of f(x, y) and

s1, s2 ∈ IR are vectors of separation distances with s1 = x− u and s2 = y − w.

If the spectral density Sff (κ1, κ2) is substituted for Rff (s1, s2) through the Wiener-
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Khintchine transform, and if we change the order of integration, then

V ar
[
Ē1

]
=

∞∫
−∞

∞∫
−∞

V RFĒ1
(κ1, κ2)Sff (κ1, κ2) dκ1 dκ2 (9.51)

where V RFĒ1
is defined as

V RFĒ1
(κ1, κ2) =

E2
0
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1

·
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+
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x
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+
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)(
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x
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· e−i(κ1s1+κ2s2) dx dy du dw

(9.52)

After some algebra

V RFĒ1
(κ1, κ2) =

E2
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2κ6
1κ
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4
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4
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3
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]

(9.53)

Naturally, the above VRF expression is only dependent on the following deterministic

quantities: element’s specific dimensions L
(e)
x and L

(e)
y , Poisson’s ratio ν and nominal elastic

modulus E0, while it is independent of the spectral density function Sff and probability

distribution function of the zero mean homogeneous random field f(x, y).

The rest of the VRFs for the remaining 7 degrees of freedom are derived similarly, by
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imposing unit displacements in the respective d.o.f. and performing the same calculations.

The expressions for the rest of the VRFs in the physical Cartesian coordinate system are as

following

V RFĒ2
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E2
0

M2
2

·
L
(e)
y∫

0

L
(e)
x∫

0

L
(e)
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(9.54)
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V RFĒ5
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(9.57)

140



CHAPTER 9. FINITE ELEMENT BASED VRFS FOR APPARENT MATERIAL
PROPERTIES

V RFĒ6
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where the deterministic quantities of M2 − M8 are defined as
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Figure 9.9: Comparison of V RFĒ1
curves of rectangle element with L

(e)
x = 2 and L

(e)
y = 2

and isoparametric square element of Section 9.3.
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9.4.1 Example 1 - Analytical Verification

Let us firstly consider an example rectangle element with L
(e)
x = 2 and L

(e)
y = 2. The

VRFs of all degrees of freedom in this case are reduced, as expected, to those computed

for the isoparametric 2 × 2 square element of Section 9.3 shown in Figure 9.6. In other

words, equation (9.25) of V RFĒ1
for the isoparametric 2 × 2 square plane stress element

in natural coordinate system provides an identical VRF curve as equation (9.53) of the

rectangular plane stress element in physical Cartesian coordinate system with L
(e)
x = 2 and

L
(e)
y = 2 (Figure 9.9). Moreover, the two curves provide identical values for the analytically

calculated variances for the 8 degrees of freedom through equation (9.23) and by utilizing

the non-symmetric spectrum of equation (9.40); indicatively for the first degree of freedom

V ar
[
Ē1

]
= 1.108 · 1013 (see equation 9.41).

9.4.2 Example 2

The VRFs of degrees of freedom Ē1 − Ē4 for a second example rectangle element with

L
(e)
x = 0.5 and L

(e)
y = 2 are plotted in Figure 9.10 in edge sections obtained by setting κ1 = 0

and κ2 = 0 and in diagonal sections with κ1 = κ2, by using the parameters E0 = 125 · 106

and ν = 0.3. All VRFs display their maximum value of E2
0 for zero wavenumber. The same

symmetry properties 1-3 are observed as was the case for the isoparametric square element;

the VRFs are symmetric around κ1 and κ2 axis and they are non-symmetric for κ1, κ2 6= 0.

Furthermore, the expressions for the pairs Ē1 & Ē5, Ē2 & Ē6, Ē3 & Ē7 and Ē4 & Ē8 are

still identical. However, the rest of the symmetries 4-7 seem to have been quite diminished

but not entirely; the curves seem to appear in close but not identical pairs according to the

edge and diagonal sections shown in Figure 9.10. Nevertheless, it can be shown that there

are only two independent expressions for the VRFs of different degrees of freedom that can

predict two values of variance of apparent material properties. Let us again consider the non-

symmetric spectral density function of equation (9.40). The analytically calculated variances
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of apparent properties for the 8 degrees of freedom through the respective variability response

functions V RFĒ1
− V RFĒ8

and equation (9.51) are:

V ar
[
Ē1

]
= V ar

[
Ē3

]
= V ar

[
Ē5

]
= V ar

[
Ē7

]
= 3.752 · 1013

V ar
[
Ē2

]
= V ar

[
Ē4

]
= V ar

[
Ē6

]
= V ar

[
Ē8

]
= 3.392 · 1013

(9.68)

Overall, the variability response functions for a generic rectangular element provide very

similar results for the predicted variance of apparent properties for the 8 degrees of freedom.

Although there is not a unique VRF but rather two independent expressions, those VRFs

essentially predict very comparable values for the variance of apparent material properties

(6.5% error between the two predicted values). Moreover, if the spectrum utilized were to

be symmetric as is the case with the spectral density function of equation (9.42), there are

still two different values for the variance of apparent material properties:

V ar
[
Ē1

]
= V ar

[
Ē3

]
= V ar

[
Ē5

]
= V ar

[
Ē7

]
= 3.812 · 1013

V ar
[
Ē2

]
= V ar

[
Ē4

]
= V ar

[
Ē6

]
= V ar

[
Ē8

]
= 3.454 · 1013

(9.69)

in contrast to the isoparametric square element of Section 9.3 where there is a single

value for the variance in case of a symmetric SDF.
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(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 9.10: VRFs of degrees of freedom Ē1 − Ē4 of 4-node example rectangular element
with L

(e)
x = 0.5 and L

(e)
y = 2 in physical coordinate system.
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9.5 Formulation of VRFs of a Quadrilateral Isoparametric Plane

Stress Element in Natural Coordinate System

Figure 9.11: Quadrilateral 4-node plane stress element and mapping from physical to natural
coordinate system.

After the formulation of VRFs of apparent material properties for rectangular elements in

both the natural and physical coordinate system, the most general case is to develop a VRF

in the natural coordinate system for any 4-node quadrilateral element, including arbitrary

shapes such as trapezoids, that can accommodate simulation of complex geometry systems.

Figure 9.11 depicts such a general isoparametric formulation where a quadrilateral element

in the physical (x, y) coordinate system is mapped into an equivalent isoparametric square

element in the natural (ξ, η) coordinate system. The VRF formulation will follow the same

procedure as the previous sections, while for demonstration and simplicity purposes, the

VRF will be calculated for an example trapezoid element (Figure 9.12). However, this VRF

formulation is not limited to this specific example; it and can be performed for any shape of

quadrilateral element.
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Figure 9.12: Trapezoid example finite element with nodal coordinates.

The isoparametric shape functions of the parent element are given by equation (9.8). The

nodal coordinate matrix and Jacobian matrix for the example trapezoid element is

[x(e) y(e)] =



x
(e)
1 y

(e)
1

x
(e)
2 y

(e)
2

x
(e)
3 y

(e)
3

x
(e)
4 y

(e)
4


=



0 0

2 0.5

2 1

0 1


(9.70)

J (e) = [GN ] · [x(e) y(e)] =


∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4
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x
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1 y

(e)
1

x
(e)
2 y

(e)
2

x
(e)
3 y

(e)
3

x
(e)
4 y
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(9.71)
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After substituting

J (e) =
1

4

η − 1 1− η 1− η 1 + η −1− η

ξ − 1 −ξ − 1 1 + ξ 1 + ξ 1− ξ





0 0

2 0.5

2 1

0 1


(9.72)

and thus

J (e) =

1 0.125− 0.125η

0 0.375− 0.125ξ

 (9.73)

where G is the gradient operator in the natural (ξ, η) coordinate system and thus [GN ]

is the partial derivative matrix of the isoparametric shape functions. The determinant and

inverse of the Jacobian are

|J (e)| = 0.375− 0.125ξ , (J (e))−1 =


1

η − 1

3− ξ

0
8

3− ξ

 (9.74)

For the 3×8 strain-displacement matrix B(e)(ξ, η), we perform the following calculations

(J (e))−1 · [GN ] =

1

4


η − 1

3− ξ
(ξ − 1) + η − 1

η − 1

3− ξ
(−1− ξ) + 1− η η − 1

3− ξ
(ξ + 1) + η + 1

η − 1

3− ξ
(1− ξ)− 1− η

8

3− ξ
(ξ − 1)

8

3− ξ
(−1− ξ) 8

3− ξ
(ξ + 1)

8

3− ξ
(1− ξ)


(9.75)
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and thus B(e)(ξ, η) =
1

4
×



η − 1

3− ξ
(ξ − 1) + η − 1 0

η − 1

3− ξ
(−1− ξ) + 1− η 0

η − 1

3− ξ
(ξ + 1) + η + 1 0

η − 1

3− ξ
(1− ξ)− 1− η 0

0
8

3− ξ
(ξ − 1) 0

8

3− ξ
(−1− ξ) 0

8

3− ξ
(ξ + 1) 0

8

3− ξ
(1− ξ)

8

3− ξ
(ξ − 1)

η − 1

3− ξ
(ξ − 1) + η − 1

8

3− ξ
(−1− ξ) η − 1

3− ξ
(−1− ξ) + 1− η 8

3− ξ
(ξ + 1)

η − 1

3− ξ
(ξ + 1) + η + 1

8

3− ξ
(1− ξ) η − 1

3− ξ
(1− ξ)− 1− η


(9.76)

The material property matrix is defined for plane-stress problems as

D(e)(x, y) =
E(e)(x, y)

1− ν2



1 ν 0

ν 1 0

0 0
1− ν

2


(9.77)

In the above equation, ν denotes Poisson’s ratio and E(e)(x, y) is the randomly varying

elastic modulus defined by the equation

E(e)(x, y) = E0 (1 + f(x, y)) (9.78)

where E0 is the nominal elastic modulus and f(x, y) is a zero mean homogeneous random

field with spectral density function Sff (κ1, κ2) that is a function of the wavenumbers κ1, κ2 ∈

IRn. Note that f(x, y) is expressed in the physical Cartesian coordinate system and thus it

must be mapped to the natural (ξ, η) coordinate system. Let us recall the mapping of the

physical element from the parent element through the four-node shape functions

x(ξ, η) = N(ξ, η)x(e) , y(ξ, η) = N(ξ, η)x(e) (9.79)

where N(ξ, η) are the four-node element shape functions in the parent coordinate system

and x(e), y(e) are column matrices denoting x and y coordinates of element nodes. For the

example trapezoid element considered:
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x(ξ, η) =
1

4

[
(1− ξ)(1− η) (1 + ξ)(1− η) (1 + ξ)(1 + η) (1− ξ)(1 + η)

]


0

2

2

0


= 1 + ξ

(9.80)

y(ξ, η) =
1

4

[
(1− ξ)(1− η) (1 + ξ)(1− η) (1 + ξ)(1 + η) (1− ξ)(1 + η)

]


0

0.5

1

1


= 0.125ξ + 0.375η − 0.125ξ · η + 0.625

(9.81)

Therefore, the randomly varying elastic modulus E(e) [x(ξ, η), y(ξ, η)], present in the ma-

terial property matrix D(e) [x(ξ, η), y(ξ, η)], is transformed to the natural coordinate system

as

E(e) [x(ξ, η), y(ξ, η)] = E0 (1 + f [x(ξ, η), y(ξ, η)])

= E0 (1 + f(1 + ξ, 0.125ξ + 0.375η − 0.125ξ · η + 0.625))

(9.82)

After imposing a unit displacement along the 1st degree of freedom, the strain energy of
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the heterogeneous body is defined by the equation

W
(e)
het =

1

2

∫∫
Ω

[
1 0 0 0 0 0 0 0

](
[B]T [D][B]

)



1

0

0

0

0

0

0

0



dΩ (9.83)

which reduces to

W
(e)
het =

1

2

∫∫
Ω

(
[B]T [D][B]

)
11
dΩ =

1

2

1∫
−1

1∫
−1

(
[B]T [D][B]

)
11
|J (e)| dξ dη =

1

2

1∫
−1

1∫
−1

E(e) [x(ξ, η), y(ξ, η)])

16(1− ν2)

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)
·

(0.375− 0.125ξ) dξ dη

(9.84)

The respective element strain energy of the homogeneous body with apparent properties

W
(e)
hom is derived similarly by substituting the randomly varying elastic modulusE(e) [x(ξ, η), y(ξ, η)]

with the equivalent apparent elastic modulus for the 1st degree of freedom Ē1

W
(e)
hom =

1

2

1∫
−1

1∫
−1

Ē1

16(1− ν2)

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)
·

(0.375− 0.125ξ) dξ dη

(9.85)

By equating the two expressions for strain energy, the apparent elastic modulus Ē1 re-
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duces to the expression

Ē1 = E0 ·

1∫
−1

1∫
−1

(1 + f [x(ξ, η), y(ξ, η)])

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)

(0.375− 0.125ξ) dξ dη

1∫
−1

1∫
−1

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)

(0.375− 0.125ξ) dξ dη

(9.86)

where M1 is defined as the deterministic denominator of the above equation

M1 =

1∫
−1

1∫
−1

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)

(0.375− 0.125ξ) dξ dη (9.87)

The target variance of Ē1 is calculated by computing the expectation and the mean

square of the above equation. After performing the same algebraic manipulations as in the

previous sections

V ar
[
Ē1

]
= E

[
Ē2

1

]
− E

[
Ē1

]2
=

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)
×

([
w − 1

3− u
(u− 1) + w − 1

]2

+

(
1− ν

2

)[
8

3− u
(u− 1)

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) ·Rff (s1, s2) dξ dη du dw

(9.88)

where Rff (s1, s2) is the spatial correlation function of f [x(ξ, η), y(ξ, η)] and s1, s2 ∈ IR

are vectors of separation distances with

s1 = 1 + ξ − (1 + u) = ξ − u

s2 = 0.125ξ + 0.375η − 0.125ξ · η + 0.625− (0.125u+ 0.375w − 0.125u · w + 0.625)

= 0.125(ξ − u) + 0.375(η − w)− 0.125(ξ · η − u · w)

(9.89)

If the spectral density Sff (κ1, κ2) is substituted for Rff (s1, s2) through the Wiener-
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Khintchine transform, and if we change the order of integration, then

V ar
[
Ē1

]
=

∞∫
−∞

∞∫
−∞

V RFĒ1
(κ1, κ2)Sff (κ1, κ2) dκ1 dκ2 (9.90)

where V RFĒ1
is defined as

V RFĒ1
(κ1, κ2) =

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
η − 1

3− ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ − 1)

]2
)
×

([
w − 1

3− u
(u− 1) + w − 1

]2

+

(
1− ν

2

)[
8

3− u
(u− 1)

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.91)

Figure 9.13: V RFĒ1
(κ1, κ2) of 1st degree of freedom of 4-node example trapezoid element

shown in Figure 9.12.
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Although the analytical integration of the above expression can be very cumbersome, it

can be numerically integrated relatively easily. Figure 9.13 depicts the plot of V RFĒ1
for the

1st degree of freedom of the example trapezoid element, in one quadrant along positive values

of κ1 and κ2, with the various parameters assigned as following: E0 = 125 · 106 and ν = 0.3.

The characteristics of this VRF are similar to the ones described in Figure 9.3 for the case

of a square isoparametric plane stress element in natural coordinate system in Section 9.3.

The curved surface peaks for κ1 = κ2 = 0 at the value of E2
0 , while displaying a decaying

sequence of peaks with increasing wavenumber. In addition, the VRF is not isotropic in the

κ space, since the decay rate is faster along the κ1 = κ2 diagonal than along the κ1 and κ2

axes. The decay rate is also faster along κ1 axis, while it is slower along κ2 axis. The VRF

also naturally reaches the asymptotic values of limκ1,κ2→∞ V RFĒ(κ1, κ2) = 0.

Similarly, the rest of the VRFs are derived for the remaining 7 degrees of freedom, by

imposing unit displacements in the respective d.o.f. according to Figure 9.11 and performing

the same calculations. The expressions for the rest of the VRFs are as following:

V RFĒ2
(κ1, κ2) =

E2
0

M2
2

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
8

3− ξ
(ξ − 1)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(ξ − 1) + η − 1

]2
)
×

([
8

3− u
(u− 1)

]2

+

(
1− ν

2

)[
w − 1

3− u
(u− 1) + w − 1

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.92)

V RFĒ3
(κ1, κ2) =

E2
0

M2
3

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
η − 1

3− ξ
(−ξ − 1) + 1− η

]2

+

(
1− ν

2

)[
8

3− ξ
(−ξ − 1)

]2
)
×

([
w − 1

3− u
(−u− 1) + 1− w

]2

+

(
1− ν

2

)[
8

3− u
(−u− 1)

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.93)
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V RFĒ4
(κ1, κ2) =

E2
0

M2
4

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
8

3− ξ
(−ξ − 1)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(−ξ − 1) + 1− η

]2
)
×

([
8

3− u
(−u− 1)

]2

+

(
1− ν

2

)[
w − 1

3− u
(−u− 1) + 1− w

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.94)

V RFĒ5
(κ1, κ2) =

E2
0

M2
5

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
η − 1

3− ξ
(ξ + 1) + η + 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ + 1)

]2
)
×

([
w − 1

3− u
(u+ 1) + w + 1

]2

+

(
1− ν

2

)[
8

3− u
(u+ 1)

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.95)

V RFĒ6
(κ1, κ2) =

E2
0

M2
6

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
8

3− ξ
(ξ + 1)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(ξ + 1) + η + 1

]2
)
×

([
8

3− u
(u+ 1)

]2

+

(
1− ν

2

)[
w − 1

3− u
(u+ 1) + w + 1

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.96)

V RFĒ7
(κ1, κ2) =

E2
0

M2
7

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
η − 1

3− ξ
(1− ξ)− η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(1− ξ)

]2
)
×

([
w − 1

3− u
(1− u)− w − 1

]2

+

(
1− ν

2

)[
8

w − 3
(w − 1)

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.97)
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V RFĒ8
(κ1, κ2) =

E2
0

M2
8

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
8

3− ξ
(1− ξ)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(1− ξ)− η − 1

]2
)
×

([
8

3− u
(1− u)

]2

+

(
1− ν

2

)[
w − 1

3− u
(1− u)− w − 1

]2
)
×

(0.375− 0.125ξ) · (0.375− 0.125u) · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.98)

where the deterministic quantities of M2 − M8 are defined as

M2 =

1∫
−1

1∫
−1

([
8

3− ξ
(ξ − 1)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(ξ − 1) + η − 1

]2
)

(0.375− 0.125ξ) dξ dη (9.99)

M3 =

1∫
−1

1∫
−1

([
η − 1

3− ξ
(−ξ − 1) + 1− η

]2

+

(
1− ν

2

)[
8

3− ξ
(−ξ − 1)

]2
)

(0.375− 0.125ξ) dξ dη (9.100)

M4 =

1∫
−1

1∫
−1

([
8

3− ξ
(−ξ − 1)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(−ξ − 1) + 1− η

]2
)

(0.375− 0.125ξ) dξ dη (9.101)

M5 =

1∫
−1

1∫
−1

([
η − 1

3− ξ
(ξ + 1) + η + 1

]2

+

(
1− ν

2

)[
8

3− ξ
(ξ + 1)

]2
)

(0.375− 0.125ξ) dξ dη (9.102)

M6 =

1∫
−1

1∫
−1

([
8

3− ξ
(ξ + 1)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(ξ + 1) + η + 1

]2
)

(0.375− 0.125ξ) dξ dη (9.103)
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M7 =

1∫
−1

1∫
−1

([
η − 1

3− ξ
(1− ξ)− η − 1

]2

+

(
1− ν

2

)[
8

3− ξ
(1− ξ)

]2
)

(0.375− 0.125ξ) dξ dη (9.104)

M8 =

1∫
−1

1∫
−1

([
8

3− ξ
(1− ξ)

]2

+

(
1− ν

2

)[
η − 1

3− ξ
(1− ξ)− η − 1

]2
)

(0.375− 0.125ξ) dξ dη (9.105)

Figure 9.14 depicts the VRFs of degrees of freedom Ē1 − Ē8 in diagonal sections with

κ1 = κ2 and in edge sections obtained by setting κ2 = 0. All VRFs display their maximum

value of E2
0 for zero wavenumber. It should be noted at this point that unlike the cases for

the isoparametric 2×2 square and the rectangular element, there are no identical VRF pairs

and thus all VRFs for all degrees of freedom are displayed in the graph.

Let us again consider the non-symmetric spectral density function of equation (9.40).

The analytically calculated variances of apparent properties for the 8 degrees of freedom

through the respective variability response functions V RFĒ1
− V RFĒ8

and equation (9.90)

are:

V ar
[
Ē1

]
= V ar

[
Ē7

]
= 2.229 · 1013

V ar
[
Ē2

]
= V ar

[
Ē8

]
= 2.442 · 1013

V ar
[
Ē3

]
= V ar

[
Ē5

]
= 3.051 · 1013

V ar
[
Ē4

]
= V ar

[
Ē6

]
= 3.762 · 1013

(9.106)

If the spectrum utilized were to be symmetric as is the case with the spectral density

function of equation (9.42), the analytically calculated variances of apparent properties for
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the 8 degrees of freedom are:

V ar
[
Ē1

]
= V ar

[
Ē7

]
= 2.167 · 1013

V ar
[
Ē2

]
= V ar

[
Ē8

]
= 2.411 · 1013

V ar
[
Ē3

]
= V ar

[
Ē5

]
= 2.964 · 1013

V ar
[
Ē4

]
= V ar

[
Ē6

]
= 3.672 · 1013

(9.107)

In contrast to the isoparametric 2 × 2 square and the rectangular element, there are 4

different values for the predicted variances which lead to the conclusion that for an arbitrary

quadrilateral element, there are 4 independent expressions for the VRFs of different degrees

of freedom. The VRF pairs that produce the same variances are Ē1 & Ē7, Ē2 & Ē8, Ē3 & Ē5

and Ē4 & Ē6. Furthermore, the calculated variances deviate much more from each other,

compared to the minor differences of the variances for the square and rectangular element. It

is therefore obvious that the usage of square or rectangular elements render the computation

of apparent material properties of a finite element model more straightforward; there are only

one (for square elements) or two (for rectangular elements) independent VRF expressions and

most importantly the analytically calculated variances for all degrees of freedom are almost

identical or very similar. However, when utilizing arbitrary shaped elements, there are four

independent expressions for the VRFs and also the apparent property variability varies more

significantly for different degrees of freedom. This conclusion will be further confirmed by the

following example of an arbitrary irregular 4-node element with no symmetry whatsoever.
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(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 9.14: VRFs of degrees of freedom Ē1 − Ē8 of 4-node example trapezoid element.
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9.5.1 Example: Arbitrary Shaped Element

Figure 9.15: Arbitrary shaped example element with nodal coordinates.

Let us now consider an even more irregularly shaped arbitrary 4-node element as the one

shown in Figure 9.15, with the following nodal coordinates

[x(e) y(e)] =



0 0

1 0

2 0.5

1 1


(9.108)

After formulating the VRFs for the 8 degrees of freedom in the same way as the example

trapezoid shown in Figure 9.12, we obtain the following expressions for the VRFs

V RFĒ1
(κ1, κ2) =

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(η − 1) +

2η + 2

η − ξ + 4
(ξ − 1)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(η − 1) +

8

η − ξ + 4
(ξ − 1)

]2
)
×

([
−2u+ 6

w − u+ 4
(w − 1) +

2w + 2

w − u+ 4
(u− 1)

]2

+

(
1− ν

2

)[
−8

w − u+ 4
(w − 1) +

8

w − u+ 4
(u− 1)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.109)
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V RFĒ2
(κ1, κ2) =

E2
0

M2
2

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(η − 1) +

8

η − ξ + 4
(ξ − 1)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(η − 1) +

2η + 2

η − ξ + 4
(ξ − 1)

]2
)
×

([
−8

w − u+ 4
(w − 1) +

8

w − u+ 4
(u− 1)

]2

+

(
1− ν

2

)[
−2u+ 6

w − u+ 4
(w − 1) +

2w + 2

w − u+ 4
(u− 1)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.110)

V RFĒ3
(κ1, κ2) =

E2
0

M2
3

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(1− η) +

2η + 2

η − ξ + 4
(−ξ − 1)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(1− η) +

8

η − ξ + 4
(−ξ − 1)

]2
)
×

([
−2u+ 6

w − u+ 4
(1− w) +

2w + 2

w − u+ 4
(−u− 1)

]2

+

(
1− ν

2

)[
−8

w − u+ 4
(1− w) +

8

w − u+ 4
(−u− 1)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.111)

V RFĒ4
(κ1, κ2) =

E2
0

M2
4

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(1− η) +

8

η − ξ + 4
(−ξ − 1)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(1− η) +

2η + 2

η − ξ + 4
(−ξ − 1)

]2
)
×

([
−8

w − u+ 4
(1− w) +

8

w − u+ 4
(−u− 1)

]2

+

(
1− ν

2

)[
−2u+ 6

w − u+ 4
(1− w) +

2w + 2

w − u+ 4
(−u− 1)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.112)

V RFĒ5
(κ1, κ2) =

E2
0

M2
5

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(1 + η) +

2η + 2

η − ξ + 4
(ξ + 1)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(1 + η) +

8

η − ξ + 4
(ξ + 1)

]2
)
×

([
−2u+ 6

w − u+ 4
(1 + w) +

2w + 2

w − u+ 4
(u+ 1)

]2

+

(
1− ν

2

)[
−8

w − u+ 4
(1 + w) +

8

w − u+ 4
(u+ 1)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.113)

V RFĒ6
(κ1, κ2) =

E2
0

M2
6

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(1 + η) +

8

η − ξ + 4
(ξ + 1)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(1 + η) +

2η + 2

η − ξ + 4
(ξ + 1)

]2
)
×

([
−8

w − u+ 4
(1 + w) +

8

w − u+ 4
(u+ 1)

]2

+

(
1− ν

2

)[
−2u+ 6

w − u+ 4
(1 + w) +

2w + 2

w − u+ 4
(u+ 1)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.114)
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V RFĒ7
(κ1, κ2) =

E2
0

M2
7

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(−1− η) +

2η + 2

η − ξ + 4
(1− ξ)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(−1− η) +

8

η − ξ + 4
(1− ξ)

]2
)
×

([
−2u+ 6

w − u+ 4
(−1− w) +

2w + 2

w − u+ 4
(1− u)

]2

+

(
1− ν

2

)[
−8

w − u+ 4
(−1− w) +

8

w − u+ 4
(1− u)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.115)

V RFĒ8
(κ1, κ2) =

E2
0

M2
8

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(−1− η) +

8

η − ξ + 4
(1− ξ)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(−1− η) +

2η + 2

η − ξ + 4
(1− ξ)

]2
)
×

([
−8

w − u+ 4
(−1− w) +

8

w − u+ 4
(1− u)

]2

+

(
1− ν

2

)[
−2u+ 6

w − u+ 4
(−1− w) +

2w + 2

w − u+ 4
(1− u)

]2
)
×

[0.0625(η − ξ) + 0.25] · [0.0625(w − u) + 0.25] · e−i(κ1·s1+κ2·s2) dξ dη du dw

(9.116)

where the deterministic quantities of M1 − M8 are defined as

M1 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(η − 1) +

2η + 2

η − ξ + 4
(ξ − 1)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(η − 1) +

8

η − ξ + 4
(ξ − 1)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.117)

M2 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(η − 1) +

8

η − ξ + 4
(ξ − 1)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(η − 1) +

2η + 2

η − ξ + 4
(ξ − 1)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.118)

M3 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(1− η) +

2η + 2

η − ξ + 4
(−ξ − 1)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(1− η) +

8

η − ξ + 4
(−ξ − 1)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.119)

M4 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(1− η) +

8

η − ξ + 4
(−ξ − 1)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(1− η) +

2η + 2

η − ξ + 4
(−ξ − 1)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.120)
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M5 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(1 + η) +

2η + 2

η − ξ + 4
(ξ + 1)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(1 + η) +

8

η − ξ + 4
(ξ + 1)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.121)

M6 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(1 + η) +

8

η − ξ + 4
(ξ + 1)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(1 + η) +

2η + 2

η − ξ + 4
(ξ + 1)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.122)

M7 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−2ξ + 6

η − ξ + 4
(−1− η) +

2η + 2

η − ξ + 4
(1− ξ)

]2

+

(
1− ν

2

)[
−8

η − ξ + 4
(−1− η) +

8

η − ξ + 4
(1− ξ)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.123)

M8 =

1∫
−1

1∫
−1

1∫
−1

1∫
−1

([
−8

η − ξ + 4
(−1− η) +

8

η − ξ + 4
(1− ξ)

]2

+

(
1− ν

2

)[
−2ξ + 6

η − ξ + 4
(−1− η) +

2η + 2

η − ξ + 4
(1− ξ)

]2
)
×

[0.0625(η − ξ) + 0.25] dξ dη

(9.124)

and s1, s2 ∈ IR are vectors of separation distances with

s1 = 0.5(ξ + η − u− w)

s2 = −0.125(ξ − u) + 0.375(η − w)− 0.125(ξ · η − u · w)

(9.125)

Figure 9.16 depicts the plot of V RFĒ1
for the 1st degree of freedom of the example

arbitrary shaped element, in one quadrant along positive values of κ1 and κ2, with the

various parameters assigned as following: E0 = 125 ·106 and ν = 0.3. The VRF plot exhibits

all the usual characteristics as described previously, while the main attribute of this plot

is the very slow decay of the VRF along κ2 axis. Figure 9.17 depicts the VRFs of degrees

of freedom Ē1 − Ē8 in diagonal sections with κ1 = κ2 and in edge sections obtained

by setting κ2 = 0. All VRFs display their maximum value of E2
0 for zero wavenumber.
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Figure 9.16: V RFĒ1
(κ1, κ2) of 1st degree of freedom of arbitrary shaped example element

shown in Figure 9.15.

Let us again consider the non-symmetric spectral density function of equation (9.40). The

analytically calculated variances of apparent properties for the 8 degrees of freedom through

the respective variability response functions V RFĒ1
− V RFĒ8

and equation (9.90) are:

V ar
[
Ē1

]
= V ar

[
Ē2

]
= 3.391 · 1013

V ar
[
Ē3

]
= V ar

[
Ē4

]
= 4.096 · 1013

V ar
[
Ē5

]
= V ar

[
Ē6

]
= 3.111 · 1013

V ar
[
Ē7

]
= V ar

[
Ē8

]
= 2.915 · 1013

(9.126)

If the spectrum utilized were to be symmetric as is the case with the spectral density

function of equation (9.42), the analytically calculated variances of apparent properties for
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the 8 degrees of freedom are:

V ar
[
Ē1

]
= V ar

[
Ē2

]
= 3.230 · 1013

V ar
[
Ē3

]
= V ar

[
Ē4

]
= 3.820 · 1013

V ar
[
Ē5

]
= V ar

[
Ē6

]
= 3.018 · 1013

V ar
[
Ē7

]
= V ar

[
Ē8

]
= 2.829 · 1013

(9.127)

It is thus obvious that for this irregular arbitrary quadrilateral there are again 4 different

values for the predicted variances which refer to 4 independent VRF expressions. This

constitutes a major conclusion, since the number of independent VRF expressions continues

to be 4 even when there is no symmetry whatsoever for the element examined. The VRF

pairs that produce the same variances are Ē1 & Ē2, Ē3 & Ē4, Ē5 & Ē6 and Ē7 & Ē8. It should

be noted that for this particular element the VRF pairs that produce the same variances

have changed, when compared to the VRF pairs of the example trapezoid element of the

previous section or the VRF pairs of the square and rectangle elements. The calculated

variances continue to deviate significantly from each other, which strengthens the argument

that estimation of apparent property variability via the usage of square or rectangle elements

is more straightforward.
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(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 9.17: VRFs of degrees of freedom Ē1 − Ē8 of 4-node example arbitrary shaped
element.
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9.5.2 Analytical Verification

9.5.2.1 Example 1

The methodology presented in Section 9.5 for the VRF formulation of arbitrary quadri-

lateral isoparametric plane stress elements in natural coordinate system will be verified by

comparing the resulting VRFs of an example rectangle element with the equivalent VRFs

obtained by the methodology for VRF formulation of rectangular plane stress elements in

physical Cartesian coordinate system of Section 9.4. The example rectangle element cho-

sen to demonstrate the comparison of the two methodologies has the following dimensions;

L
(e)
x = 1 and L

(e)
y = 2.

On the one hand, equation (9.53) provides a straightforward way of computing V RFĒ1

by simply substituting L
(e)
x = 1, L

(e)
y = 2, E0 = 125 · 106 and ν = 0.3. On the other hand,

if the methodology of Section 9.5 is to be followed, the nodal coordinates and the Jacobian

matrix of the element are

[x(e) y(e)] =



x
(e)
1 y

(e)
1

x
(e)
2 y

(e)
2

x
(e)
3 y

(e)
3

x
(e)
4 y

(e)
4


=



0 0

1 0

1 2

0 2


(9.128)

J (e) =

0.5 0

0 1

 (9.129)

with |J (e)| = 0.5. The resulting VRF for the first degree of freedom is
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V RFĒ1
(κ1, κ2) =

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

[
4 (η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
×

[
4 (w − 1)2 +

(
1− ν

2

)
(u− 1)2

]
· e−i(κ1s1+κ2s2) · 0.5 · 0.5 dξ dη du dw

(9.130)

where

M1 =

1∫
−1

1∫
−1

[
4 (η − 1)2 +

(
1− ν

2

)
(ξ − 1)2

]
·0.5 dξ dη (9.131)

and

s1 = 0.5(ξ − u) & s2 = η − w (9.132)

Figure 9.18 demonstrates that the two VRFs obtained by the two methodologies are

identical and thus verifies the validity of both VRF formulations.

Figure 9.18: Comparison of V RFĒ1
curves of rectangle element with L

(e)
x = 1 and L

(e)
y = 2 for

the two methodologies of VRF formulation presented in Sections 9.4 for physical coordinates
and Section 9.5 for natural coordinates.
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9.5.2.2 Example 2

Let us now consider the trivial example of a rectangle element with L
(e)
x = 2 and L

(e)
y = 2. In

Section 9.4.1, it was shown that the equation (9.25) of V RFĒ1
for the square isoparametric

plane stress element in natural coordinate system provides an identical VRF curve as equa-

tion (9.53) of the rectangular plane stress element in physical Cartesian coordinate system

with L
(e)
x = 2 and L

(e)
y = 2 (Figure 9.9). Therefore, the methodologies of Sections 9.3 and

9.4 reduce to the same VRF curves for this trivial example. The next analytical verification

is to compare the VRFs derived from Section 9.5 for the same trivial example but obtained

through the formulation of mapping from the natural to the physical coordinates by using

the Jacobian matrix. The nodal coordinates and the Jacobian matrix of the element are

[x(e) y(e)] =



x
(e)
1 y

(e)
1

x
(e)
2 y

(e)
2

x
(e)
3 y

(e)
3

x
(e)
4 y

(e)
4


=



0 0

2 0

2 2

0 2


(9.133)

J (e) =

1 0

0 1

 (9.134)

which is the essentially the identity matrix I. Therefore, the VRF expression reduces to

the equation (9.25) of V RFĒ1
for the square isoparametric element (which is already proven

to be identical to equation (9.53) of the rectangular element with L
(e)
x = 2 and L

(e)
y = 2).

The methodology of Section 9.5 is thus successfully verified.
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9.6 Concluding Remarks

After finalizing the apparent property VRF formulation procedure for the isoparametric

2× 2 square in natural coordinates, for rectangles in physical coordinates as well as for any

4-node arbitrary quadrilateral element through mapping in the natural coordinate system,

it is obvious that the variance assessment of apparent material properties can be performed

for any shape of finite element and thus any system geometry. For well-constructed meshes

where the system geometry can be divided into the simplest square elements in the natural

coordinate system, the VRF is provided analytically through equation (9.25). For more

complicated meshes where the geometry allows for simulation of rectangular elements with

different values of L
(e)
x and L

(e)
y , the VRF is also analytically estimated through equation

(9.53). Finally, if the system geometry is complicated enough so that it cannot be simulated

by rectangles but rather by arbitrary 4-node quadrilateral elements (or a combination of

rectangles and quadrilaterals), it is encouraged to follow the procedure presented in this

section in order to analytically derive the desired VRF in integral form for each quadrilateral

separately, and consequently integrate the result numerically.

The VRF formulation procedure presented in this chapter reveals a set of VRFs corre-

sponding to a 4-node plane stress element, i.e. one VRF for each of the 8 degrees of freedom.

It is shown that the inherent symmetries embedded in the isoparametric 2×2 square in nat-

ural coordinates render the 8 VRF expressions to be reduced to only one truly independent

VRF expression that yields either one or two very similar values for the variance of apparent

material properties, for a given symmetric or a non-symmetric SDF, respectively. Similar

conclusions are drawn for the rectangular element, where the VRF formulation in physical

Cartesian coordinates yields only two independent VRF expressions that also predict two

similar values for the variance of apparent material properties (for either a symmetric or non-

symmetric SDF). However, the VRF formulation for arbitrary shaped elements yields four

independent VRF expressions with predicted variances that may deviate significantly from
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each other. It is therefore obvious that the usage of square or rectangle elements render the

computation of apparent material properties of a finite element model more straightforward.

These results are quite encouraging as regards to the application of the VRF methodology

to a broad set of finite element models that comprise mainly rectangular elements.

Towards the direction of surmounting the challenge of the VRFs not being uniquely

defined for a single element, future research work should be dedicated on establishing a

unified VRF which corresponds to a single apparent material property and thus a single

value for its variance. One way of achieving the above is to introduce a weighted sum of

the VRFs (Arwade et al. 2015 [100]) in a way that the selected weights minimize the error

between the homogeneous and the heterogeneous versions of the problem.
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Chapter 10

Effect of Element Geometry on VRF

Form

After formulating the variability response functions of apparent material properties of rect-

angular elements and 4-node arbitrary quadrilateral elements, the calculation of a series of

VRFs for rectangles with different values of L
(e)
x and L

(e)
y , as well as for arbitrary quadri-

lateral elements with different nodal coordinates, will be presented in this chapter. The

following examples display observations based on those VRFs, regarding the effect of the

element geometry on the form of the VRFs. More specifically, the dependencies of the VRFs

on scale, shape and aspect ratio of the example rectangular elements will be illustrated and

discussed. For reference, the VRF only for the 1st degree of freedom of each element will be

presented, without loss of generality for the rest of degrees of freedom, especially due to the

minor differences observed between VRFs of different d.o.f’s when considering square and

rectangle elements.
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10.1 Scale Effect

Firstly, the scale effect on the form of the VRFs is addressed. Consider the following rect-

angular elements with constant aspect ratio
L

(e)
y

L
(e)
x

= 2

1. R1: L
(e)
x = 1 ; L

(e)
y = 2

2. R2: L
(e)
x = 2 ; L

(e)
y = 4

3. R3: L
(e)
x = 4 ; L

(e)
y = 8

4. R4: L
(e)
x = 6 ; L

(e)
y = 12

For all the example rectangles, V RFĒ1
is analytically computed according to equation

(9.53) for the 1st degree of freedom and E0 = 125 · 106 and ν = 0.3. The diagonal sections

with κ1 = κ2 of those VRFs, along with edge sections obtained by setting κ1 = 0 and κ2 = 0,

are depicted in Figure 10.1. The plots exhibit the usual VRF characteristics of peak around

zero wavenumbers at the value of E2
0 and asymptotic values with increasing wavenumbers.

There is also a decaying sequence of peaks at the κ2 = 0 edge sections, when compared

to a smoother decay for the κ1 = κ2 diagonal sections. The series of VRFs demonstrate a

sensitivity of the VRF to the area of the rectangular element, given a uniform aspect ratio

for all cases: the larger the element (R4), the faster the decay of the VRF.

The effect of scale in the VRF form is most effectively demonstrated by calculating

the associated variances of Ē1 through equation (9.23) when considering the non-symmetric

spectrum of equation (9.40). The calculated results are as follows: V ar
[
Ē1

]
R1

= 2.255 ·1013,

V ar
[
Ē1

]
R2

= 0.670 · 1013, V ar
[
Ē1

]
R3

= 0.178 · 1013 and V ar
[
Ē1

]
R4

= 0.079 · 1013. It

is evident that the larger the area of the element the smaller the variance is predicted,

indicating that larger elements reduce the variance and thus provide higher stability of

apparent material properties.
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(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 10.1: V RFĒ1
for rectangular 4-node elements R1−R4 with dimensions L

(e)
x and L

(e)
y .

Scale effect on VRF form.

The VRFs for elements with dimensions with constant aspect ratio can be scaled to

coincide when the wavenumber is also scaled by the following quantity, for example for

elements R1 and R2

κ̂1 = κ1

√
A1

A2

& κ̂2 = κ2

√
A1

A2

(10.1)
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and therefore

V RF
(R1)

Ē
(κ1, κ2) = V RF

(R2)

Ē
(κ̂1, κ̂2) (10.2)

as depicted in Figure 10.2.

Figure 10.2: V RFĒ1
(κ1, κ2) of 1st degree of freedom of 4-node elements R1 and R2 with

same aspect ratio, showing that VRFs coincide with appropriate scaling of the wavenumber
κ̂1, κ̂2.

The same equality holds for the rest of example rectangles when the respective VRFs are

scaled accordingly:

V RF
(R1)

Ē
(κ1, κ2) = V RF

(R3)

Ē
(κ̂1, κ̂2) for κ̂1 = κ1

√
A1

A3

& κ̂2 = κ2

√
A1

A3

V RF
(R1)

Ē
(κ1, κ2) = V RF

(R4)

Ē
(κ̂1, κ̂2) for κ̂1 = κ1

√
A1

A4

& κ̂2 = κ2

√
A1

A4

(10.3)
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10.2 Aspect Ratio Effect

Next, the following paragraphs will discuss the influence of aspect ratio on the VRF form.

Consider the below example rectangular elements with common L
(e)
x = 1

1. A1: L
(e)
x = 1 ; L

(e)
y = 1

2. A2: L
(e)
x = 1 ; L

(e)
y = 2

3. A3: L
(e)
x = 1 ; L

(e)
y = 3

4. A4: L
(e)
x = 1 ; L

(e)
y = 5

the VRFs of which are illustrated in Figure 10.3, both as edge sections with κ1 = 0 and

κ2 = 0 and diagonal sections with κ1 = κ2. As expected, the VRFs decay more rapidly

with increasing wavenumber as the height of the element increases. Naturally, this leads

to an equivalent decrease in the associated variances with increasing element height, when

the variances of Ē1 are calculated through equation (9.23) and the non-symmetric spectrum

of equation (9.40); V ar
[
Ē1

]
A1

= 3.462 · 1013, V ar
[
Ē1

]
A2

= 2.255 · 1013, V ar
[
Ē1

]
A3

=

1.643 · 1013 and V ar
[
Ē1

]
A4

= 1.046 · 1013 (those values become V ar
[
Ē1

]
A1

= 3.380 · 1013,

V ar
[
Ē1

]
A2

= 2.238 · 1013, V ar
[
Ē1

]
A3

= 1.644 · 1013 and V ar
[
Ē1

]
A4

= 1.054 · 1013 if the

symmetric spectrum of equation (9.42) is utilized).

This effect can be largely attributed to the increasing area of the elements with larger

side lengths. In order to highlight the effect of aspect ratio only, while neglecting the effect of

scale associated with larger areas of those example elements, the same plots are illustrated

in Figure 10.4 with respect to the scaled wavenumbers κ̂1 and κ̂2 as defined in Section

10.1. For κ2 = 0, the VRFs decay more rapidly with decreasing of the maximum element

side length (until L
(e)
x = 1 ; L

(e)
y = 1) but the exact opposite holds for κ1 = 0, where

the VRFs decay more rapidly with increasing of the maximum element side length (until

L
(e)
x = 1 ; L

(e)
y = 5). The new associated variances, when considering the spectrum of
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equation (9.40), are: V ar
[
Ē1

]
A1

= 3.462 · 1013, V ar
[
Ē1

]
A2

= 3.854 · 1013, V ar
[
Ē1

]
A3

=

3.881 · 1013 and V ar
[
Ē1

]
A4

= 3.779 · 1013 (those values become V ar
[
Ē1

]
A1

= 3.380 · 1013,

V ar
[
Ē1

]
A2

= 3.821 · 1013, V ar
[
Ē1

]
A3

= 3.875 · 1013 and V ar
[
Ē1

]
A4

= 3.808 · 1013 if the

symmetric spectrum of equation (9.42) is utilized). It therefore follows that while the curves

are significantly shifted due to scaling of the wavenumber, the final computed variances

are very similar, meaning that the aspect ratio does not impose any significant effect on

the VRF form. The initial variance discrepancies are attributed to the different areas of the

example elements rather than their different aspect ratios (strengthening the effect of scale of

Section 10.1). However, it should be noted here that the element that produces the minimum

variance of apparent properties is the square element, meaning that it demonstrates slightly

higher stability compared to the rest of the rectangular elements.
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(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 10.3: V RFĒ1
for rectangular 4-node elements A1−A4 with dimensions L

(e)
x and L

(e)
y .

Aspect ratio effect on VRF form.
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(a) Edge sections with κ̂1 = 0 and κ̂2 = 0.

(b) Diagonal sections with κ̂1 = κ̂2.

Figure 10.4: V RFĒ1
for rectangular 4-node elementsA1−A4 plotted against scaled wavenum-

bers κ̂1, κ̂2.

179



CHAPTER 10. EFFECT OF ELEMENT GEOMETRY ON VRF FORM

10.3 Shape Effect

Lastly, in order to address the effect of shape in the form of VRFs, consider the following

rectangular and trapezoid elements with same area (equal to 9) but different shape

1. S1: L
(e)
x = 3 ; L

(e)
y = 3

2. S2: L
(e)
x = 2 ; L

(e)
y = 4.5

3. S3: L
(e)
x = 1 ; L

(e)
y = 9

4. T1 with nodal coordinates (x1, y1) = (0, 0), (x2, y2) = (2, 5), (x3, y3)=(2,7) and (x4, y4) =

(0, 7)

The variability response functions V RFĒ1
for the rectangular elements will be calculated

according to equation (9.53) for the specific values of L
(e)
x and L

(e)
y for each case, while for the

trapezoid element T1 the calculation of the VRF follows the procedure presented in Section

9.5. For all cases, E0 = 125 · 106 and ν = 0.3. The resulting V RFĒ1
of the trapezoid can be

expressed as

V RFĒ1
(κ1, κ2) =

E2
0

M2
1

·
1∫

−1

1∫
−1

1∫
−1

1∫
−1

([
5η − 5

12− 5ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
4

12− 5ξ
(ξ − 1)

]2
)
×

([
5w − 5

12− 5u
(u− 1) + w − 1

]2

+

(
1− ν

2

)[
4

12− 5u
(u− 1)

]2
)
×

(3− 1.25ξ)(3− 1.25u)e−i(κ1·s1+κ2·s2) dξ dη du dw

(10.4)

where

M1 =

1∫
−1

1∫
−1

([
5η − 5

12− 5ξ
(ξ − 1) + η − 1

]2

+

(
1− ν

2

)[
4

12− 5ξ
(ξ − 1)

]2
)

(3− 1.25ξ) dξ dη (10.5)

and

s1 = ξ − u & s2 = 1.25(ξ − u) + 2.25(η − w)− 1.25(ξ · η − u · w) (10.6)
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For reference and demonstration purposes, only the VRF for the 1st degree of freedom will

be presented, although in Chapter 9 it was proven that there can be a significant deviation

between the VRFs of different degrees of freedom for arbitrary quadrilaterals. Therefore, the

following comparisons are considered by the author as preliminary, until future research on

the topic of defining a unified VRF which corresponds to a single apparent material property

is conducted.

The VRFs of the aforementioned elements are depicted in Figure 10.5, both as edge

sections with κ1 = 0 and κ2 = 0 and diagonal sections with κ1 = κ2. The same trend as in

the Section 10.2 is observed herein; for κ2 = 0, the VRFs decay more rapidly with decreasing

of the maximum element side length (until L
(e)
x = 3 ; L

(e)
y = 3) but the exact opposite

holds for κ1 = 0, where the VRFs decay more rapidly with increasing of the maximum

element side length (almost until L
(e)
x = 1 ; L

(e)
y = 9). The associated variances, when

considering the non-symmetric spectrum of equation (9.40), are: V ar
[
Ē1

]
S1

= 0.530 · 1013,

V ar
[
Ē1

]
S2

= 0.608 · 1013, V ar
[
Ē1

]
S3

= 0.596 · 1013 and V ar
[
Ē1

]
T1

= 0.624 · 1013 (those

values become V ar
[
Ē1

]
S1

= 0.526 ·1013, V ar
[
Ē1

]
S2

= 0.606 ·1013, V ar
[
Ē1

]
S3

= 0.604 ·1013

and V ar
[
Ē1

]
T1

= 0.632 · 1013 if the symmetric spectrum of equation (9.42) is utilized).

Consequently, the predicted variances are very similar, meaning that the shape effect does not

impose any significant effect on the VRF form. Nevertheless, the square element continues

to provide the minimum variance, as was the case at Section 10.2, and thus enhances the

stability of apparent material properties.
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(a) Edge sections with κ1 = 0 and κ2 = 0.

(b) Diagonal sections with κ1 = κ2.

Figure 10.5: V RFĒ1
for rectangular 4-node elements S1− S3 with dimensions L

(e)
x and L

(e)
y

and trapezoid element T1. Shape effect on VRF form.
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10.4 Concluding Remarks

All the above examples underline the significant effect of the element geometry on the form

of variability response functions. The most significant influence on the VRF form is proven

to be the element scale, since different elements of increasing scale clearly produce very

distinct VRFs in the sense that they decay more rapidly. Moreover, the influence of element

aspect ratio on the VRF form is shown to be eliminated through appropriate scaling of the

wavenumber. Finally, no significant effect of the element shape (for elements with constant

area) was detected in this study, since the associated variances computed for each different

shaped element were similar.

The influence of the element geometry on the form of variability response functions

demonstrates that the estimation of apparent property variability through the VRF concept

in a finite element domain can be challenging, since a different VRF has to be computed for

each element in a mesh. The computational effort to calculate different VRFs for square and

rectangle elements in a finite element mesh is relatively small since analytical expressions are

provided in this dissertation for either cases, i.e. for a simple 2× 2 square and for rectangles

of any geometry with Lx and Ly. The associated variances of apparent material properties

can be calculated by using the analytical VRF expressions and performing Gauss quadrature

to integrate the product of the VRFs and the given SDF (equation 8.7). Nevertheless, there

is an additional computational cost when calculating the VRFs for arbitrary quadrilateral

elements, since this dissertation provides only the analytical expression of their integral

definition. Although it is very cumbersome to calculate this integral definition analytically,

the integration can be instead numerical (Gauss quadrature is again applicable) but will of

course increase the computational intensity of the approach.

The aforementioned computational cost for the estimation of apparent property variabil-

ity through the VRF concept in a finite element domain is to be compared with the classical

FEA approach of calculating the local stiffness matrices for every element in a mesh and
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then assembling into a global stiffness matrix. Let us consider a very unstructured mesh

where a different VRF has to be computed for each element...........

Moreover, this VRF dependence on the element geometry constitutes a further justifica-

tion for the use of well-constructed meshes with elements of consistent size and shape, in order

not only to achieve small condition numbers of the characteristic FE matrices (e.g. stiffness

matrix) but also an approximate uniformity in the VRF form across the FE model. Finally,

in the case where it is practically impossible to simulate a system with finite elements of

uniform size and shape, an alternative of computing a separate VRF for each element would

be to compute a single VRF for an average-sized element geometry that would essentially

represent an average VRF. Although this would lead to a less accurate estimation of the

apparent property variability, the error introduced would be relatively small provided that

the elements size and shape do not vary significantly throughout the finite element model.
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Chapter 11

Conclusions: Part II

11.1 Research Contributions

This dissertation presents the formulation of variability response functions for apparent prop-

erties in 2D plane stress problems discretized in a finite element domain. The VRFs in-

troduced here provide an efficient means for evaluating the variance of apparent material

properties averaged over finite material volumes. The VRFs are also independent of the

spectrum and marginal distribution of the underlying material property homogeneous ran-

dom field f(x, y). Thus, the VRFs need to be calculated analytically only once and then

they can be used to compute the variance of apparent material properties for any underlying

random field, provided that the spectral characteristics are available. In other words, the

VRFs are useful for conducting a full sensitivity analysis of the apparent property variability

to the spectral contents of the underlying material property stochastic field, without recourse

to any additional Monte Carlo simulation and with the minimal computational effort of a

simple analytical integration.

The analytical formulation of the apparent property VRFs is performed through strain

energy equivalence between a randomly varying (heterogeneous) material property, i.e. mod-

ulus of elasticity, and an equivalent homogeneous spatially constant material property. The
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VRF formulation for 4-node quadrilateral elements is performed for the following cases,

which summarize all possibilities for simulating any geometry of finite element models, from

simple square domains to more complicated or arbitrary shapes:

1. Square isoparametric finite element in natural coordinate system

2. Generic rectangular element in physical Cartesian coordinate system

3. Arbitrary quadrilateral element that is mapped from physical to natural coordinate

system

The estimation of apparent property variability is conducted for every degree of freedom

of 4-node elements by imposing unit displacements in the respective d.o.f. For square ele-

ments, it is shown that there is only one truly independent VRF for all the degrees of freedom

of a single element. For rectangular elements, it is shown that there is not a unique VRF

expression for all the degrees of freedom but rather two independent expressions. However,

for both square and rectangular elements, it is demonstrated through relevant examples that

the analytically computed variances of apparent material properties (associated with either

a single independent VRF or two independent VRFs) are quantitatively very similar. For

arbitrary quadrilateral elements, it is proven that there are four independent VRF expres-

sions with predicted variances that may deviate significantly from each other, depending on

the specific element geometry. It is therefore obvious that the usage of square or rectangle

elements render the computation of apparent material properties of a finite element model

more straightforward. These results are quite encouraging as regards to the application of the

VRF methodology to a broad set of finite element models that comprise mainly rectangular

elements.

For demonstration purposes, a series of example VRFs have been calculated and com-

pared, in order to highlight the efficacy of the VRF approach for predicting the variance of

apparent material properties and underline the effect of the element scale, shape and aspect
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ratio in the resulting VRF form. No significant effect of aspect ratio or shape of the ele-

ment was detected, provided that the scale effect is eliminated by appropriate scaling of the

wavenumber. However, it is proven that there is a strong dependence of the VRF form on

the scale of the element; the larger the size of an element, the faster decay is exhibited in

the VRF curve and thus the smaller associated apparent property variance is computed.

11.2 Future Research Opportunities

An important assumption made in this work is that the Poisson’s ratio ν is a deterministic

constant, while the only varying quantity is the heterogeneous elastic modulus E(x, y). This

assumption also leads to the statement that the shear modulus G(x, y) =
E(x, y)

2(1 + ν)
must also

be heterogeneous and perfectly correlated to the elastic modulus in order to preserve isotropy.

An interesting research direction is to investigate the validity of this assumption by exploring

the stochasticity of Poisson’s ratio and its effect on the analytical calculation of variability

response functions for apparent material properties. In order to treat Poisson’s ratio as

another randomly varying quantity, it is also necessary that appropriate correlation functions

between Poisson’s ratio and the already varying modulus of elasticity are established.

The methodology presented in this dissertation reveals that the VRFs of apparent ma-

terial properties of 4-node plane stress elements are not uniquely defined, since there is a

minimum of one truly independent VRF expression (for the case of square elements), and

intermediate case of two independent VRF expressions (for rectangular elements) and a max-

imum of four independent VRF expressions (for the case of arbitrary shaped elements). In

further work on this topic, it is anticipated that a unified VRF is defined which corresponds

to a single apparent material property and thus a single value for its variance. One way of

achieving the above is to introduce a weighted sum of the VRFs (Arwade et al. 2015 [100])

in a way that the selected weights minimize the error between the homogeneous and the

heterogeneous versions of the problem.
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In this dissertation, the analytical procedure to calculate VRFs for apparent material

properties has been developed over a single finite element rather than a global finite element

model of an entire body. The methodology presented herein may constitute an important ac-

complishment towards a multiscale analysis of stochastic material properties. Let us consider

a body that is discretized into finite elements with randomly fluctuating elastic modulus. By

utilizing the VRF formulations described in the Chapter 9 for any 4-node element geometry,

it is possible that the elastic modulus can be modeled as a random variable with mean value

E0 and variance computed by equation 8.7, for every element. The marginal distribution of

those random variables ought also to be assumed or approximated, for example as a Gaus-

sian distribution. The next step towards a real stochastic material upscaling is to determine

whether those random variables are element-to-element independent or not. If the elements

are large enough then the random variables representing the elastic modulus of each element

can be considered independent, however there is a threshold where the size of the elements

could approach the RVE and thus the variances of the random variables may become very

small or negligible. Therefore, a more realistic approach is to consider the random variables

as dependent by establishing appropriate covariance matrices. Once the covariance matrices

are determined, along with the marginal distribution, mean value and variance of those ran-

dom variables, generation of sets of sample realizations over the entire finite element model

could be possible.
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