
A Measurement Study of ARM Virtualization Performance

Christoffer Dall, Shih-Wei Li, Jintack Lim, and Jason Nieh
{cdall, shihwei, jintack, nieh}@cs.columbia.edu

Department of Computer Science, Columbia University
Technical Report CUCS-XXX-XX

November 2015

ABSTRACT
ARM servers are becoming increasingly common, making
server technologies such as virtualization for ARM of grow-
ing importance. We present the first in-depth study of ARM
virtualization performance on ARM server hardware, includ-
ing measurements of two popular ARM and x86 hypervi-
sors, KVM and Xen. We show how the ARM hardware
support for virtualization can support much faster transitions
between VMs and the hypervisor, a key hypervisor opera-
tion. However, current hypervisor designs, including both
Type 1 hypervisors such as Xen and Type 2 hypervisors such
as KVM, are not able to leverage this performance benefit
in practice for real application workloads. We discuss the
reasons why and show that other factors related to hypervi-
sor software design and implementation have a larger role
in overall performance. Based on our measurements, we
discuss changes to ARM’s hardware virtualization support
that can potentially bridge the gap to bring its faster VM-to-
hypervisor transition mechanism to modern Type 2 hyper-
visors running real applications. These changes have been
incorporated into the latest ARM architecture.

1. INTRODUCTION
ARM CPUs have become the platform of choice across

mobile and embedded systems, leveraging their benefits in
customizability and power efficiency in these markets. The
release of the 64-bit ARM architecture, ARMv8 [1], with its
improved computing capabilities is spurring an upward push
of ARM CPUs into traditional server systems. A growing
number of companies are deploying commercially available
ARM servers to meet their computing infrastructure needs.
As virtualization plays an important role for servers, ARMv8
provides hardware virtualization support. Major virtualiza-
tion players, including KVM and Xen, leverage ARM hard-
ware virtualization extensions to support existing operating
systems (OSes) and applications with improved hypervisor
performance.

Despite these trends and the importance of ARM virtual-
ization, little is known in practice regarding how well virtu-
alized systems perform using ARM. There are no detailed
studies of ARM virtualization performance on server hard-
ware. Although KVM and Xen both have ARM and x86
virtualization solutions, there are substantial differences be-

tween their ARM and x86 approaches because of key archi-
tectural differences between the underlying ARM and x86
hardware virtualization mechanisms. It is unclear whether
these differences have a material impact, positive or nega-
tive, on performance. The lack of clear performance data
limits the ability of hardware and software architects to build
efficient ARM virtualization solutions, and limits the ability
of companies to evaluate how best to deploy ARM virtual-
ization solutions to meet their infrastructure needs. The in-
creasing demand for ARM-based solutions and growing in-
vestments in ARM server infrastructure makes this problem
one of key importance.

We present the first in-depth study of ARM virtualization
performance on multi-core server hardware. We measure
the performance of the two most popular ARM hypervisors,
KVM and Xen, and compare them with their respective x86
counterparts. These hypervisors are important and useful to
compare on ARM given their popularity and their different
design choices. Xen is a standalone bare-metal hypervisor,
commonly referred to as a Type 1 hypervisor. KVM is a
hosted hypervisor integrated within an existing OS kernel,
commonly referred to as a Type 2 hypervisor.

We have designed and run a number of microbenchmarks
to analyze the performance of frequent low-level hypervisor
operations, and we use these results to highlight differences
in performance between Type 1 and Type 2 hypervisors on
ARM. A key characteristic of hypervisor performance is the
cost of transitioning from a virtual machine (VM) to the hy-
pervisor, for example to process interrupts, allocate mem-
ory to the VM, or perform I/O. We show that Type 1 hy-
pervisors, such as Xen, can transition between the VM and
the hypervisor much faster than Type 2 hypervisors, such
as KVM, on ARM. We show that ARM can enable signif-
icantly faster transitions between the VM and a Type 1 hy-
pervisor compared to x86. On the other hand, Type 2 hy-
pervisors such as KVM, incur much higher overhead on VM
to hypervisor transitions compared to x86. We also show
that for some more complicated hypervisor operations, such
as switching between VMs, Type 1 and Type 2 hypervisors
perform equally fast on ARM.

Despite the performance benefit in VM transitions that
ARM can provide, we show that current hypervisor designs,
including both KVM and Xen on ARM, result in real appli-
cation performance that cannot be easily correlated with the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161455989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HW

Kernel

App App App

HW

Hypervisor

HW

Host OS / Hypervisor

App
VM VM VM VM VM

Native Type 1 Type 2

Figure 1: Hypervisor Design

low-level virtualization operation performance. In fact, for
many workloads, we show that KVM ARM, a Type 2 hy-
pervisor, can meet or exceed the performance of Xen ARM,
a Type 1 hypervisor, despite the faster transitions between
the VM and hypervisor using Type 1 hypervisor designs on
ARM. We show how other factors related to hypervisor soft-
ware design and implementation play a larger role in overall
performance. These factors include the hypervisor’s virtual
I/O model, the ability to perform zero copy I/O efficiently,
and interrupt processing overhead. Although ARM hard-
ware virtualization support incurs a higher overhead on VM
to hypervisor transitions for Type 2 hypervisors than x86, we
show that both types of ARM hypervisors can achieve sim-
ilar, and in some cases lower, performance overhead than
their x86 counterparts on real application workloads.

To enable modern hypervisor designs to leverage the po-
tentially faster VM transition costs when using ARM hard-
ware, we discuss changes to the ARMv8 architecture that
can benefit Type 2 hypervisors. These improvements en-
able Type 2 hypervisor designs such as KVM to achieve
faster VM-to-hypervisor transitions, including for hypervi-
sor events involving I/O, resulting in reduced virtualization
overhead on real application workloads. ARM has incorpo-
rated these changes into the latest ARMv8.1 architecture.

2. BACKGROUND
Hypervisor Overview. There are two main approaches

to hypervisor designs as depicted in Figure 1: Type 1 and
Type 2. Type 1 hypervisors, like Xen, comprise a separate
hypervisor software component, which runs directly on the
hardware and provides a virtual machine abstraction to VMs
running on top of the hypervisor. Type 2 hypervisors, like
KVM, run an existing operating system on the hardware and
run both VMs and applications on top of the OS. Type 2 hy-
pervisors typically modify the existing operating system to
facilitate running of VMs, either by integrating the Virtual
Machine Monitor (VMM) into the existing OS source code
base, or by installing the VMM as a driver into the OS. KVM
integrates directly with Linux [2] where other solutions such
as VMware Workstation [3] use a loadable driver in the ex-
isting OS kernel to monitor virtual machines. The OS inte-
grated with a Type 2 hypervisor is commonly referred to as
the host OS, as opposed to the guest OS which runs in a VM.

One clear advantage of Type 2 hypervisors over Type 1
hypervisors is the reuse of existing OS code, specifically de-
vice drivers for a wide range of available hardware. This is
especially true for server systems with PCI where any com-
mercially available PCI adapter can be used. Traditionally, a
Type 1 hypervisor suffers from having to re-implement de-
vice drivers for all supported hardware. However, Xen, be-

ing a Type 1 hypervisor, avoids this by only implementing
a minimal amount of hardware support directly in the hy-
pervisor and running a special privileged VM, Dom0, which
runs an existing OS such as Linux, leveraging all the existing
device drivers for that OS. Xen then arbitrates I/O between
normal VMs and Dom0 such that Dom0 can perform I/O
using existing device drivers on behalf of other VMs.

Transitions from a VM to the hypervisor occur whenever
the hypervisor exercises system control, such as process-
ing interrupts or I/O. The hypervisor transitions back to the
VM once it has completed its work managing the hardware,
letting workloads in VMs continue executing. The cost of
such transitions is pure overhead and can add significant
latency in communication between the hypervisor and the
VM. A primary goal in designing both hypervisor software
and hardware support for virtualization is to reduce the fre-
quency and cost of transitions as much as possible.

VMs can run guest OSes with standard device drivers for
I/O, but because they do not have direct access to hardware,
the hypervisor would need to emulate real I/O devices in
software resulting in frequent transitions between the VM
and the hypervisor making each interaction with the emu-
lated device an order of magnitude slower than communicat-
ing with real hardware. Alternatively, direct passthrough of
I/O from a VM to the real I/O devices can be done using de-
vice assignment, but this requires more expensive hardware
support and complicates VM migration. Instead, the most
common approach is paravirtual I/O in which custom device
drivers are used in VMs for virtual devices supported by the
hypervisor, and the interface between the VM device driver
and the virtual device is specifically designed to optimize
interactions between the VM and the hypervisor and facili-
tate fast I/O. KVM uses an implementation of the Virtio [4]
protocol for disk and networking support, and Xen uses its
own implementation referred to simply as Xen PV. In KVM,
the virtual device backend is implemented in the host OS,
and in Xen the virtual device backend is implemented in the
Dom0 kernel. A key potential performance advantage for
KVM is that the virtual device implementation in the KVM
host kernel has full access to all of the machine’s hardware
resources, including VM memory, while the Xen virtual de-
vice implementation lives in a separate VM, Dom0, which
only has access to memory and hardware resources specif-
ically allocated to it by the Xen hypervisor. On the other
hand, Xen provides a stronger isolation between the virtual
device implementation and the VM.

ARM Virtualization Extensions. To enable hypervisors
to efficiently run VMs with unmodified guest OSes, ARM
introduced hardware virtualization extensions for ARMv7 [5]
and ARMv8 [1] that overcome the limitation that the ARM
architecture was not classically virtualizable [6]. All server
and networking class ARM hardware is expected to imple-
ment these extensions. We provide a brief overview of the
ARM hardware virtualization extensions and of how ARM
hypervisors leverage these extensions, focusing on the unique
ARM CPU virtualization support, and finally contrast this to
how x86 works.

The ARM virtualization extensions are centered around
a new CPU privilege level (also known as exception level),
EL2, added to the existing user and kernel levels, EL0 and



Xen

Dom0

Kernel

VM

Userspace Userspace

Kernel

EL0

EL1

EL2

Backend
Device

Frontend
Driver

Virtio I/O vGIC

Figure 2: Xen ARM Architecture

Host OS

Kernel

KVM

KVM

VM

Userspace Userspace

Kernel

EL0

EL1

EL2

vGIC

Virtio
Device

Virtio
Driver

Virtio I/O

Figure 3: KVM ARM Architecture

EL1, respectively. Software running in EL2 can configure
the hardware to support VMs. To allow VMs to interact with
an interface identical to that of the physical machine while
isolating them from the rest of the system and preventing
them from gaining full access to the hardware, a hypervisor
enables the virtualization features in EL2 before switching
to a VM. The VM will then execute normally in EL0 and
EL1 until some condition is reached that requires interven-
tion of the hypervisor. At this point, the hardware traps into
EL2 giving control to the hypervisor, which can then inter-
act directly with the hardware and eventually return to the
VM again. When all virtualization features are disabled in
EL2, software running in EL1 and EL0 works just like on a
system without the virtualization extensions where software
running in EL1 has full access to the hardware.

ARM hardware virtualization support enables traps to EL2
on certain operations, enables virtualized physical memory
support, and provides virtual interrupt and timer support.
ARM provides CPU virtualization by allowing software in
EL2 to configure the CPU to trap to EL2 on sensitive instruc-
tions that cannot be safely executed by a VM. ARM provides
memory virtualization by allowing software in EL2 to point
to a set of page tables, Stage-2 page tables, used to translate
the VM’s view of physical addresses to machine addresses.
When Stage-2 translation is enabled, ARM defines the ad-
dress spaces as Virtual Addresses (VA), Intermediate Phys-
ical Addresses (IPA), and Physical Addresses (PA). Stage-2
translation, configured in EL2, translates from IPAs to PAs.
ARM provides interrupt virtualization through a set of vir-
tualization extensions to the ARM Generic Interrupt Con-
troller (GIC) architecture, which allows a hypervisor to pro-
gram the GIC to inject virtual interrupts to VMs, which VMs
can acknowledge and complete without trapping to the hy-
pervisor. However, enabling and disabling virtual interrupts
must be done in EL2. Furthermore, all physical interrupts
are taken to EL2 when running in a VM, and therefore must
be handled by the hypervisor. Finally, ARM provides vir-
tualization of timers by implementing a virtual timer, which
can be configured by the VM without trapping to the hy-
pervisor. However, when the virtual timer fires, it raises a
physical interrupt, which must be handled by the hypervisor
and translated into a virtual interrupt.

ARM hardware virtualization support is conceptually sim-
ilar to x861; for example, they both provide a means to trap
on sensitive instructions, and they both provide a nested set

1Since Intel’s and AMD’s hardware virtualization support are very
similar, we limit our comparison to ARM and Intel.

of page tables to virtualize physical memory. In practice,
however, there are key differences in how they support Type
1 and Type 2 hypervisors. Where the ARM virtualization ex-
tensions are centered around a separate CPU mode, the Intel
support provides a mode switch, root vs. non-root mode,
completely orthogonal from the CPU privilege rings. While
ARM’s EL2 is a strictly different CPU mode with its own
set of features, x86 root mode supports the same full range
of user and kernel mode functionality as its non-root mode.
Both ARM and Intel trap into their respective EL2 and root
modes, but transitions between root and non-root mode on
Intel are implemented with a VM Control Structure (VMCS)
residing in normal memory, to and from which hardware
state is automatically saved and restored when switching to
and from root mode, for example when the hardware traps
from a VM to the hypervisor. ARM, being a RISC-style
architecture, instead has a simpler hardware mechanism to
transition between EL1 and EL2 but leaves it up to software
to decide what state needs to be saved and restored. This
provides more flexibility in the amount of work that needs
to be done when transitioning between EL1 and EL2 com-
pared to switching between root and non-root mode on x86,
but poses different requirements on hypervisor software im-
plementation.

ARM Hypervisor Implementations. As shown in Fig-
ures 2 and 3, Xen and KVM take different approaches to us-
ing ARM hardware virtualization support. Xen as a Type 1
hypervisor design maps easily to the ARM architecture, run-
ning the entire hypervisor in EL2 and running VM userspace
and VM kernel in EL0 and EL1, respectively. However, ex-
isting OSes are designed to run in EL1, so a Type 2 hypervi-
sor that leverages an existing OS such as Linux to interface
with hardware does not map as easily to the ARM architec-
ture. EL2 is strictly more privileged and a separate CPU
mode with different registers than EL1, so running Linux in
EL2 would require substantial changes to Linux that would
not be acceptable in practice. KVM instead runs across both
EL2 and EL1 using split-mode virtualization [7], sharing
EL1 between the host OS and VMs and running a minimal
set of hypervisor functionality in EL2 to be able to lever-
age the ARM hardware features. KVM enables the virtual-
ization features in EL2 when switching from the host to a
VM, and disables them when switching back, allowing host
full access to the hardware from EL1 and properly isolating
VMs also running in EL1. As a result, transitioning between
the VM and the hypervisor involves transitioning to EL2 to
run the part of KVM running in EL2, then transitioning to



EL1 to run the rest of KVM and the host kernel. However,
because both the host and the VM run in EL1, the hyper-
visor must context switch all register state when switching
between host and VM execution context, similar to a regular
process context switch.

This difference in approach on ARM between Xen and
KVM does not exist on x86 because the root mode used by
the hypervisor does not limit or change how CPU privilege
levels are used. Running Linux in root mode does not require
any changes to Linux, so KVM maps just as easily to the x86
architecture as Xen by running the hypervisor in root mode.

KVM only runs the minimal set of hypervisor functional-
ity in EL2 to be able to switch between VMs and the host
and emulates all virtual device in the host OS running in
EL1 and EL0. When a KVM VM performs I/O it involves
trapping to EL2, switching to host EL1, and handling the
I/O request in the host. Because Xen only emulates the GIC
in EL2 and offloads all other I/O handling to Dom0, when a
Xen VM performs I/O, it involves trapping to the hypervisor,
signaling Dom0, scheduling Dom0, and handling the I/O re-
quest in Dom0. Previous work claims that since the cost of
a trap to transition between EL1 and EL2 is low, the double
trap overhead of KVM running across EL1 and EL2 is mod-
est [7], however, no comparisons have been done against a
Type 1 hypervisor such as Xen, and no measurements have
been done with real ARM server hardware comparing the
operations performed by KVM and Xen to perform I/O.

3. EXPERIMENTAL DESIGN
To evaluate the performance of ARM virtualization, we

used both microbenchmarks and real application workloads
running on the most popular hypervisors on ARM server
hardware. To provide a baseline for comparison, we also
conducted the same experiments with corresponding x86 hy-
pervisors and server hardware. We leveraged the Utah Cloud-
Lab [8, 9] infrastructure for both ARM and x86 hardware.

ARM measurements were done using HP Moonshot m400
servers, each equipped with a 64-bit ARMv8-A 2.4 GHz Ap-
plied Micro Atlas SoC with 8 physical CPU cores. Each
m400 node in the cloud infrastructure is equipped with 64GB
of RAM, a 120GB SATA3 SSD for storage, and a Dual-port
Mellanox ConnectX-3 10GbE NIC. x86 measurements were
done using Dell PowerEdge r320 servers, each equipped with
a 64-bit Xeon 2.1 GHz ES-2450 with 8 physical CPU cores.
Hyperthreading was disabled on the r320 nodes to provide
a similar hardware configuration to the ARM servers. Each
r320 node in the cloud infrastructure is equipped with 16GB
of RAM, a 4x500GB 7200RPM SATA RAID5 HD for stor-
age, and a Dual-port Mellanox MX354A 10GbE NIC. All
servers are connected via 10GbE, and the interconnecting
network switch [10] easily handles multiple sets of nodes
communicating with full 10Gb bandwidth such that experi-
ments involving networking between two nodes can be con-
sidered isolated and unaffected by other traffic in the system.
Using 10Gb Ethernet was important, as many benchmarks
was unaffected by virtualization when run over 1Gb Ether-
net, because the network itself became the bottleneck.

To provide comparable measurements, we kept the soft-
ware environments across all hardware platforms and all hy-
pervisors the same as much as possible. We used the most

recent stable versions available at the time of our experi-
ments of the most popular hypervisors on ARM and their
counterparts on x86: KVM in Linux 4.0-rc4 with QEMU
2.2.0, and Xen 4.5.0. KVM was configured with its standard
VHOST networking feature, allowing data handling to occur
in the kernel instead of userspace, and with cache=none
for its block storage devices. Xen was configured with its
in-kernel block and network backend drivers to provide best
performance and reflect the most commonly used I/O con-
figuration for Xen deployments. All hosts and VMs used
Ubuntu 14.04 [11] with the same Linux 4.0-rc4 kernel and
software configuration for all machines. A few patches were
applied to support the various hardware configurations, such
as adding support for the APM X-Gene PCI bus for the HP
m400 servers. All VMs used paravirtualized I/O, typical of
cloud infrastructure deployments such as Amazon EC2, in-
stead of device passthrough, due to the absence of an IOMMU
in our test environment.

We ran benchmarks both natively on the hosts and in VMs.
Each physical or virtual machine instance used for running
benchmarks was configured as a 4-way SMP with 12GB of
RAM to provide a common basis for comparison. This in-
volved three configurations: (1) running natively on Linux
capped at 4 cores and 12GB RAM, (2) running in a VM us-
ing KVM with 8 cores and 16GB RAM with the VM capped
at 4 virtual CPUs (VCPUs) and 12GB RAM, and (3) run-
ning in a VM using Xen with Dom0, the privileged domain
used by Xen with direct hardware access, capped at 4 cores
and 4GB RAM and the VM capped at 4 VCPUs and 12GB
RAM. Because KVM configures the total hardware avail-
able while Xen configures the hardware dedicated to Dom0,
the configuration parameters are different but the effect is
the same, which is to leave the hypervisor with 4 cores and
4GB RAM to use outside of what is used by the VM. We use
and measure multi-core configurations to reflect real-world
server deployments. The memory limit was used to ensure a
fair comparison across all hardware configurations given the
RAM available on the x86 servers and the need to also pro-
vide RAM for use by the hypervisor when running VMs. For
benchmarks that involve clients interfacing with the server,
the clients were run natively on Linux and configured to use
the fully hardware available.

To improve precision of our measurements and for our ex-
perimental setup to mimic recommended configuration best
practices [12], we pinned each VCPU to a specific physical
CPU (PCPU) and generally ensured that no other work was
scheduled on that PCPU. In KVM, all of the host’s device in-
terrupts and processes were assigned to run on a specific set
of PCPUs and each VCPU was pinned to a dedicated PCPU
from a separate set of PCPUs. In Xen we configured Dom0
to run on a set of PCPUs and DomU to run a separate set of
PCPUs. We further pinned each VCPU of both Dom0 and
DomU to its own PCPU.

4. MICROBENCHMARK RESULTS
We designed and ran a number of microbenchmarks to

quantify important low-level interactions between the hyper-
visor and the ARM hardware support for virtualization. A
primary performance cost in running in a VM is how much
time must be spent outside the VM, which is time not spent



running the workload in the VM and therefore is virtualiza-
tion overhead compared to native execution. Therefore, our
microbenchmarks are designed to measure time spent han-
dling a trap from the VM to the hypervisor, including time
spent on transitioning between the VM and the hypervisor,
time spent processing interrupts, time spent switching be-
tween VMs, and latency added to I/O.

We designed a custom Linux kernel driver, which ran in
the VM under both KVM and Xen, on both ARM and x86,
and executed the microbenchmarks in the same way across
all platforms. Measurements were obtained using cycle coun-
ters and ARM hardware timer counters to ensure consistency
across multiple CPUs, and instruction barriers were used be-
fore and after taking timestamps to avoid out-of-order exe-
cution or pipelining from skewing our measurements.

Because these measurements are at the level of a few hun-
dred to a few thousand cycles, it was particularly important
to minimize measurement variability, especially in the con-
text of measuring performance on multi-core systems. Varia-
tions caused by interrupts and scheduling can skew measure-
ments by thousands of cycles. To address this, we pinned
and isolated VCPUs as described in Section 3, and we also
ran these measurements from within VMs pinned to specific
VCPUs, assigning all virtual interrupts to other VCPUs.

Using this framework, we ran seven microbenchmarks that
measure various low-level aspects of hypervisor performance,
as listed in Table 1. Table 2 presents the results from running
these microbenchmarks on both ARM and x86 server hard-
ware. Measurements are shown in cycles instead of time
to provide a useful comparison across server hardware with
different CPU frequencies, but we focus our analysis on the
ARM measurements.

The Hypercall microbenchmark shows that transitioning
from a VM to the hypervisor on ARM can be significantly
faster than x86, as shown by the Xen ARM measurement,
which takes less than a third of the cycles that Xen or KVM
on x86 take. As explained in Section 2, the ARM archi-
tecture provides a separate CPU mode with its own register
bank to run an isolated Type 1 hypervisor like Xen. Tran-
sitioning from a VM to a Type 1 hypervisor requires little
more than context switching the general purpose registers as
running the two separate execution contexts, VM and the hy-
pervisor, is supported by the separate ARM hardware state
for EL2. While ARM implements additional register state
to support the different execution context of the hypervisor,
x86 transitions from a VM to the hypervisor by switching
from non-root to root mode which requires context switch-
ing the entire CPU register state to the VMCS in memory,
which is much more expensive even with hardware support.

However, the Hypercall microbenchmark also shows that
transitioning from a VM to the hypervisor is more than an
order of magnitude more expensive for Type 2 hypervisors
like KVM than for Type 1 hypervisors like Xen. This is be-
cause although all VM traps are handled in EL2, a Type 2
hypervisor is integrated with a host kernel and both run in
EL1. This results in four additional sources of overhead.
First, transitioning from the VM to the hypervisor involves
not only trapping to EL2, but also returning to the host OS
in EL1, as shown in Figure 3, incurring a double trap cost.
Second, because the host OS and the VM both run in EL1

Name Description
Hypercall Transition from VM to hypervisor and return to

VM without doing any work in the hypervisor.
Measures bidirectional base transition cost of
hypervisor operations.

Interrupt Controller
Trap

Trap from VM to emulated interrupt controller
then return to VM. Measures a frequent oper-
ation for many device drivers and baseline for
accessing I/O devices emulated in the hypervi-
sor.

Virtual IPI Issue a virtual IPI from a VCPU to another
VCPU running on a different PCPU, both PC-
PUs executing VM code. Measures time be-
tween sending the virtual IPI until the receiv-
ing VCPU handles it, a frequent operation in
multi-core OSes that affects many workloads.

Virtual IRQ Com-
pletion

VM acknowledging and completing a virtual
interrupt. Measures a frequent operation that
happens for every injected virtual interrupt.

VM Switch Switching from one VM to another on the same
physical core. Measures a central cost when
oversubscribing physical CPUs.

I/O Latency Out Measures latency between a driver in the VM
signaling the virtual I/O device in the hyper-
visor and the virtual I/O device receiving the
signal. For KVM, this involves trapping to the
host kernel. For Xen, this involves trapping to
Xen then raising a virtual interrupt to Dom0.

I/O Latency In Measures latency between the virtual I/O de-
vice in the hypervisor signaling the VM and
the VM receiving the corresponding virtual in-
terrupt. For KVM, this involves signaling the
VCPU thread and injecting a virtual interrupt
for the Virtio device. For Xen, this involves
trapping to Xen then raising a virtual interrupt
to DomU.

Table 1: Microbenchmarks
ARM x86

Microbenchmark KVM Xen KVM Xen
Hypercall 6,500 376 1,300 1,228
Interrupt Controller Trap 7,370 1,356 2,384 1,734
Virtual IPI 11,557 5,978 5,230 5,562
Virtual IRQ Completion 71 71 1,556 1,464
VM Switch 10,387 8,799 4,812 10,534
I/O Latency Out 6,024 16,491 560 11,262
I/O Latency In 13,872 15,650 18,923 10,050

Table 2: Microbenchmark Measurements (cycle counts)

and ARM hardware does not provide any features to distin-
guish between the host OS running in EL1 and the VM run-
ning in EL1, software running in EL2 must context switch
all the EL1 system register state between the VM guest OS
and the Type 2 hypervisor host OS, incurring added cost of
saving and restoring EL1 register state. Third, because the
host OS runs in EL1 and needs full access to the hardware,
the hypervisor must disable traps to EL2 and Stage-2 trans-
lation from EL2 while switching from the VM to the hy-
pervisor, and enable them when switching back to the VM
again. Fourth, because the Type 2 hypervisor runs in EL1
but needs to access VM control register state such as the
VGIC state, which can only be accessed from EL2, there is
additional overhead to read and write the VM control regis-
ter state in EL2. The Type 2 hypervisor can either jump back
and forth between EL1 and EL2 to access the control regis-
ter state when needed, or it can copy the full register state
to memory while it is still in EL2, return to the host OS in
EL1 and read and write the memory copy of the VM control



Register State Save Restore
GP Regs 152 184
FP Regs 282 310
EL1 System Regs 230 511
VGIC Regs 3,250 181
Timer Regs 104 106
EL2 Config Regs 92 107
EL2 Virtual Memory Regs 92 107

Table 3: KVM ARM Hypercall Analysis

state, and then finally copy the state from memory back to
the EL2 control registers when the hypervisor is running in
EL2 again. Both methods incur much overhead, but jump-
ing back and forward between EL1 and EL2 makes the soft-
ware implementation complicated and difficult to maintain.
Therefore, the KVM ARM implementation currently takes
the second approach of reading and writing all VM control
registers in EL2 during each transition between the VM and
the hypervisor.

While the cost of the trap between CPU modes itself is
not very high as shown in previous work [7], our measure-
ments show that there is a substantial cost associated with
saving and restoring register state to switch between EL2
and the host in EL1. Table 3 provides a breakdown of the
cost of context switching the relevant register state when
performing the Hypercall microbenchmark measurement on
KVM ARM. Context switching consists of saving register
state to memory and restoring the new context’s state from
memory to registers. The cost of saving and restoring this
state accounts for almost all of the Hypercall time, indicat-
ing that context switching state is the primary cost due to
KVM ARM’s design, not the cost of extra traps. Unlike
Xen ARM which only incurs the relatively small cost of sav-
ing and restoring the general-purpose (GP) registers, KVM
ARM saves and restores much more register state at much
higher cost. Note that for ARM, the overall cost of saving
register state, when transitioning from a VM to the hypervi-
sor, is much more expensive than restoring it, when return-
ing back to the VM from the hypervisor, due to the cost of
reading the VGIC register state.

Unlike on ARM, both x86 hypervisors spend a similar
amount of time transitioning from the VM to the hypervisor.
Since both KVM and Xen leverage the same x86 hardware
mechanism for transitioning between VM and hypervisor,
they have similar performance. Both x86 hypervisors run in
root mode and run their VMs in non-root mode, and switch-
ing between the two modes involves switching a substantial
portion of the CPU register state to the VMCS in memory.
Switching this state to memory is fast on x86, because it is
performed by hardware in the context of a trap or as a result
of executing a single instruction. In contrast, ARM provides
a separate CPU mode for the hypervisor with separate regis-
ters, and ARM only needs to switch state to memory when
running a different execution context in EL1. ARM can be
much faster, as in the case of Xen ARM which does its hy-
pervisor work in EL2 and does not need to context switch
much register state, or it can be much slower, as in the case
of KVM ARM which context switches more register state
without the benefit of hardware support like x86.

The large difference in the cost of transitioning between
the VM and hypervisor between Type 1 and Type 2 hyper-

visors results in Xen ARM being significantly faster at han-
dling interrupt related traps, because Xen ARM emulates the
ARM GIC interrupt controller directly in the hypervisor run-
ning in EL2 as shown in Figure 2. In contrast, KVM ARM
emulates the GIC in the part of the hypervisor running in
EL1. Therefore, operations such as accessing registers in
the emulated GIC, sending virtual IPIs, and receiving virtual
interrupts are much faster on Xen ARM than KVM ARM.
This is shown in Table 2 in the measurements for the In-
terrupt Controller trap and Virtual IPI microbenchmarks, in
which Xen ARM is faster than KVM ARM by roughly the
same difference as for the Hypercall microbenchmark.

However, Table 2 shows that for the remaining microbench-
marks, Xen ARM does not enjoy a large performance ad-
vantage over KVM ARM and in fact does worse for some of
the microbenchmarks. The reasons for this differ from one
microbenchmark to another: For the Virtual IRQ Comple-
tion microbenchmark, both KVM ARM and Xen ARM are
very fast because the ARM hardware includes support for
completing interrupts directly in the VM without trapping to
the hypervisor. The microbenchmark runs much faster on
ARM than x86 because the latter has to trap to the hypervi-
sor. More recently, vAPIC support has been added to x86
with similar functionality to avoid the need to trap to the
hypervisor so that newer x86 hardware with vAPIC support
should perform more comparably to ARM [13].

For the VM Switch microbenchmark, Xen ARM is only
slightly faster than KVM ARM because both hypervisor im-
plementations have to context switch the state between the
VM being switched out and the one being switched in. Un-
like the Hypercall microbenchmark where only KVM ARM
needed to context switch EL1 state and per VM EL2 state, in
this case both KVM and Xen ARM need to do this, and Xen
ARM therefore does not directly benefit from its faster VM-
to-hypervisor transition. Xen ARM is still slightly faster
than KVM, however, because to switch between VMs, Xen
ARM simply traps to EL2 and performs a single context
switch of the EL1 state, while KVM ARM must switch the
EL1 state from the VM to the host OS and then again from
the host OS to the new VM. Finally, KVM ARM also has
to disable and enable traps and Stage-2 translation on each
transition, which Xen ARM does not have to do.

For the I/O Latency microbenchmarks, a surprising result
is that Xen ARM is slower than KVM ARM in both direc-
tions. These microbenchmarks measure the time from when
a network I/O event is initiated by a sender until the receiver
is notified, not including additional time spent transferring
data. I/O latency is an especially important metric for real-
time sensitive operations and many networking applications.
The key insight to understanding the results is to see that
Xen ARM does not benefit from its faster VM-to-hypervisor
transition mechanism in this case because Xen ARM must
switch between two separate VMs, Dom0 and a DomU, to
process network I/O. Type 1 hypervisors only implement a
limited set of functionality in the hypervisor directly, namely
scheduling, memory management, the interrupt controller,
and timers for Xen ARM. All other functionality, for exam-
ple network and storage drivers are implemented in the spe-
cial privileged VM, Dom0. Therefore, a VM performing I/O
has to communicate with Dom0 and not just the Xen hyper-



visor, which means not just trapping to EL2, but also going
to EL1 to run Dom0.

I/O Latency Out is much worse on Xen ARM than KVM
ARM. When KVM ARM sends a network packet, it traps
to the hypervisor, which involves context switching the EL1
state, and then the host OS instance directly sends the data
on the physical network. Xen ARM, on the other hand,
must trap from the VM to the hypervisor, which then sig-
nals a different VM, Dom0, and Dom0 then sends the data
on the physical network. This signaling between VMs on
Xen is slow for two main reasons. First, because the VM
and Dom0 run on different physical CPUs, Xen must send a
physical IPI from the CPU running the VM to the CPU run-
ning Dom0. Second, Xen actually switches from Dom0 to
a special VM, called the idle domain, when Dom0 is idling
and waiting for I/O. Thus, when Xen signals Dom0 to per-
form I/O on behalf of a VM, it must perform a VM switch
from the idle domain to Dom0. We verified that changing
the configuration of Xen to pinning both the VM and Dom0
to the same physical CPU or not specifying any pinning at all
resulted in similar or worse results than reported in Table 2,
so the qualitative results are not specific to our configuration.

It is interesting to note that KVM x86 is much faster than
everything else on I/O Latency Out. KVM on both ARM and
x86 involve the same control path of transitioning from the
VM to the hypervisor. While the path is conceptually simi-
lar to half of the path for the Hypercall microbenchmark, the
result for the I/O Latency Out microbenchmark is not 50%
of the Hypercall cost on neither platform. The reason is that
for KVM x86, transitioning from the VM to the hypervisor
accounts for around only 40% of the Hypercall cost, and go-
ing transitioning from the hypervisor to the VM accounts for
most of the rest (a few cycles are spent handling the noop hy-
percall in the hypervisor). On ARM, it is much more expen-
sive to transition from the VM to the hypervisor than from
the hypervisor to the VM, because reading back the VGIC
state is expensive, as shown in Table 3.

I/O Latency In behaves more similarly between Xen ARM
and KVM ARM, because both hypervisors perform similar
low-level operations. Xen traps from Dom0 running in EL1
to the hypervisor running in EL2 and signals the receiving
VM, the reverse of the procedure described above, thereby
sending a physical IPI and switching from the idle domain
to the receiving VM in EL1. For KVM ARM, the Linux
host OS receives the network packet and wakes up the idle
VM’s VCPU thread and signals the CPU running the VCPU
thread, thereby sending a physical IPI, and the VCPU thread
then traps to EL2, switches the EL1 state from the host OS
to the VM, and switches to the VM in EL1. The end result
is that the cost is similar across both hypervisors, with KVM
being slightly faster. While KVM ARM is slower on I/O
Latency In than I/O Latency Out because it performs more
work on the incoming path, Xen has similar performance on
both Latency I/O In and Latency I/O Out because it performs
similar low-level operations for both microbenchmarks.

5. APPLICATION BENCHMARK RESULTS
We next ran a number of real application benchmark work-

loads to quantify how well the ARM virtualization exten-
sions support different hypervisor software designs in the

kernbench Kernel compilation by compiling the Linux 3.17.0 kernel
using the allnoconfig for ARM using GCC 4.8.2.

hackbench hackbench [14] using unix domain sockets and 100
process groups running with 500 loops.

SPECjvm2008 SPECjvm2008 [15] 2008 benchmark running several
real life applications and benchmarks specifically chosen
to benchmark the performance of the Java Runtime Envi-
ronment. We used 15.02 release of the Linaro AArch64
port of OpenJDK to run the the benchmark.

netperf netperf v2.6.0 starting netserver on the server and run-
ning with its default parameters on the client in three
modes: TCP_STREAM, TCP_MAERTS, and TCP_RR,
measuring throughput and latency, respectively.

apache Apache v2.4.7 Web server running ApacheBench
v2.3 on the remote/local client, which measures number
of handled requests per seconds serving the index file of
the GCC 4.4 manual using 100 concurrent requests.

memcached memcached v1.4.14 using the memtier benchmark
v1.2.3 with its default parameters.

mysql MySQL v14.14 (distrib 5.5.41) running the SysBench
v.0.4.12 OLTP benchmark using the default configuration
with 200 parallel transactions.

Table 4: Application Benchmarks

context of more realistic workloads. Table 4 lists the applica-
tion workloads we used, which include a mix of widely-used
CPU and I/O intensive benchmark workloads. For work-
loads involving a client and a server, we ran the client on a
dedicated machine and the server on the configuration be-
ing measured, ensuring that the client was never saturated
during any of our experiments. We ran these workloads na-
tively and on both KVM and Xen on both ARM and x86, the
latter to provide a baseline comparison. Table 5 shows the
raw results for executing the workloads on both ARM and
x86 servers, providing the first quantitative measurements
of ARM versus x86 server hardware performance.

Given the differences in hardware platforms, our focus
was not on measuring absolute performance, but rather the
relative performance differences between virtualized and na-
tive execution on each platform. Figure 4 shows the perfor-
mance overhead of KVM and Xen on ARM and x86 com-
pared to native execution on the respective platform. All
numbers are normalized to 1 for native performance, so that
lower numbers represent better performance. Unfortunately,
the Apache benchmark could not run on Xen x86 because it
caused a kernel panic in Dom0. We tried several versions of
Xen and Linux, but faced the same problem. We reported
this to the Xen developer community, and learned that this
may be a Mellanox network driver bug exposed by Xen’s
I/O model. We also reported the issue to the Mellanox driver
maintainers, but did not arrive at a solution.

Figure 4 shows that the application performance on KVM
and Xen on ARM and x86 does not appear well correlated
with their respective performance on the microbenchmarks
shown in Table 2. Xen ARM has by far the lowest VM to hy-
pervisor transition costs and the best performance for most
of the microbenchmarks, yet its performance lags behind
KVM ARM on many of the application benchmarks. KVM
ARM substantially outperforms Xen ARM on the various
netperf benchmarks, TCP_STREAM, TCP_MAERTS, and
TCP_RR, as well as Apache and Memcached, and performs
only slightly worse on the rest of the application benchmarks.
Xen ARM also does generally worse than KVM x86. Clearly,



Native KVM Xen

Kernbench (s) ARM 49.11 50.49 49.83
x86 28.91 27.12 27.56

Hackbench (s) ARM 15.65 17.38 16.55
x86 6.04 6.66 6.57

SPECjvm (ops/min) ARM 62.43 61.69 61.91
x86 140.76 140.64 141.80

TCP_RR (trans/s) ARM 23,911 11,591 10,253
x86 21,089 11,490 7,661

TCP_STREAM (Mb/s) ARM 5,924 5,603 1,662
x86 9,174 9,287 2,353

TCP_MAERTS (Mb/s) ARM 6,051 6,059 3,778
x86 9,148 8,817 5,948

Apache (trans/s) ARM 6,526 4,846 3,539
x86 10,585 9,170 N/A

Memcached (ops/s) ARM 110,865 87,811 84,118
x86 263,302 170,359 226,403

MySQL (s) ARM 13.72 15.76 15.02
x86 7.21 9.08 8.75

Table 5: Application Benchmark Raw Performance

2.06	  3.56	   2.33	  3.90	   2.75	  

0.00	  

0.20	  

0.40	  

0.60	  

0.80	  

1.00	  

1.20	  

1.40	  

1.60	  

1.80	  

2.00	  

Kern
ben

ch	  

Hack
ben

ch	  

SPEC
jvm2

008	  

TCP_
STRE

AM	  

TCP_
MAE

RTS	  
TCP_

RR	  
Apa

che	  

Mem
cach

ed	   MyS
ql	  

KVM	  ARM	   Xen	  ARM	  

KVM	  x86	   Xen	  x86	  

Figure 4: Application Benchmark Performance

the differences in microbenchmark performance do not re-
sult in the same differences in real application performance.

Xen ARM achieves its biggest performance gain versus
KVM ARM on Hackbench. Hackbench involves running
lots of threads that are sleeping and waking up, requiring
frequent IPIs for rescheduling. Xen ARM performs virtual
IPIs much faster than KVM ARM, roughly a factor of two.
Despite this microbenchmark performance advantage on a
workload that performs frequent virtual IPIs, the resulting
difference in Hackbench performance overhead is small, only
5% of native performance. Overall, across CPU-intensive
workloads such as Kernbench, Hackbench and SPECjvm,
the performance differences among the different hypervisors
across different architectures is small.

Figure 4 shows that the largest differences in performance
are for the I/O-intensive workloads. We first take a closer
look at the netperf results. Netperf TCP_RR is an I/O la-
tency benchmark, which sends a 1 byte packet from a client
to the Netperf server running in the VM, and the Netperf
server sends the packet back to the client, and the process
is repeated for 10 seconds. For the netperf TCP_RR bench-
mark, both hypervisors show high overhead compared to na-

Native KVM Xen
Trans/s 23,911 11,591 10,253
Time/trans (µs) 41.8 86.3 97.5
Overhead (µs) - 44.5 55.7
send to recv (µs) 29.7 29.8 33.9
recv to send (µs) 14.5 53.0 64.6
recv to VM recv (µs) - 21.1 25.9
VM recv to VM send (µs) - 16.9 17.4
VM send to send (µs) - 15.0 21.4

Table 6: Netperf TCP_RR Analysis on ARM

tive performance, but Xen is noticeably worse than KVM.
To understand why, we analyzed the behavior of TCP_RR
in further detail by using tcpdump to capture timestamps on
incoming and outgoing packets at the data link layer [16, 17,
18]. We modified Linux’s timestamping function to use the
ARM architected counter, and took further steps to ensure
that the counter values were synchronized across all PCPUs,
VMs, and the hypervisor. This allowed us to analyze the la-
tency between operations happening in the VM and the host.
Table 6 shows the detailed measurements.

Table 6 shows that the time per transaction increases sig-
nificantly from 41.8 µs when running natively to 86.3 µs and
97.5 µs for KVM and Xen, respectively. The resulting over-
head per transaction is 44.5 µs and 55.7 µs for KVM and
Xen, respectively. To understand the source of this overhead
we decompose the time per transaction into separate steps.
send to revc is the time between sending a packet from the
physical server machine until a new response is received by
the client, which is the time spent on the physical wire plus
the client processing time. recv to send is the time spent
at the physical server machine to receive a packet and send
back and response, including potentially passing through the
hypervisor and the VM in the virtualized configurations.

send to recv remains the same for KVM and native, be-
cause KVM does not interfere with normal Linux operation
for sending or receiving network data. However, send to recv
is slower on Xen, because the Xen hypervisor adds latency
in handling incoming network packets. When a physical net-
work packet arrives, the hardware raises an IRQ, which is
handled in the Xen hypervisor, which translates the incom-
ing physical IRQ to a virtual IRQ for Dom0, which runs the
physical network device driver. However, since Dom0 is of-
ten idling when the network packet arrives, Xen must first
switch from the idle domain to Dom0 before Dom0 can re-
ceive the incoming network packet, similar to the behavior
of the I/O Latency benchmarks described in Section 4.

Since almost all the overhead is on the server for both
KVM and Xen, we further decompose the recv to send time
at the server into three components; the time from when the
physical device driver receives the packet until it is delivered
in the VM, recv to VM recv, the time from when the VM re-
ceives the packet until it sends a response, VM recv to VM
send, and the time from when the VM delivers the response
to the physical device driver, VM send to send. Table 6 shows
that both KVM and Xen spend a similar amount of time re-
ceiving the packet inside the VM until being able to send a
reply, and that this VM recv to VM send time is only slightly
more time than the recv to send time spent when netperf is
running natively to process a packet. This suggests that the
dominant overhead for both KVM and Xen is due to the time



required by the hypervisor to process packets, the Linux host
for KVM and Dom0 for Xen.

Table 6 also shows that Xen spends noticeably more time
than KVM in delivering packets between the physical de-
vice driver and the VM. KVM only delays the packet on
recv to VM recv and VM send to send by a total of 36.1 µs,
where Xen delays the packet by 47.3 µs, an extra 11.2 µs.
There are two main reasons why Xen performs worse. First,
Xen’s I/O latency is higher than KVM’s as measured and ex-
plained by the I/O Latency In and Out microbenchmarks in
Section 4. Second, Xen does not support zero-copy I/O, but
instead must map a shared page between Dom0 and the VM
using the Xen grant mechanism, and must copy data between
the memory buffer used for DMA in Dom0 and the granted
memory buffer from the VM. Each data copy incurs more
than 3 µs of additional latency because of the complexities
of establishing and utilizing the shared page via the grant
mechanism across VMs, even though only a single byte of
data needs to be copied.

Although Xen ARM can transition between the VM and
hypervisor more quickly than KVM, Xen cannot utilize this
advantage for the TCP_RR workload, because Xen must
engage Dom0 to perform I/O on behalf of the VM, which
results in several VM switches between idle domains and
Dom0 or DomU, and because Xen must perform expensive
page mapping operations to copy data between the VM and
Dom0. This is a direct consequence of Xen’s software archi-
tecture and I/O model based on domains and a strict I/O iso-
lation policy. Xen ends up spending so much time communi-
cating between the VM and Dom0 that it completely dwarfs
its low Hypercall cost for the TCP_RR workload and ends
up having more overhead than KVM ARM, due to Xen’s
software architecture and I/O model in particular.

The hypervisor software architecture is also a dominant
factor in other aspects of the netperf results. For the netperf
TCP_STREAM benchmark, KVM has almost no overhead
for x86 and ARM while Xen has more than 250% overhead.
The reason for this large difference in performance is again
due to Xen’s lack of zero-copy I/O support, in this case par-
ticularly on the network receive path. The netperf TCP_-
STREAM benchmark sends large quantities of data from a
client to the netperf server in the VM. Xen’s Dom0, run-
ning Linux with the physical network device driver, cannot
configure the network device to DMA the data directly into
guest buffers, because Dom0 does not have access to the
VM’s memory. When Xen receives data, it must configure
the network device to DMA the data into a Dom0 kernel
memory buffer, signal the VM for incoming data, let Xen
configure a shared memory buffer, and finally copy the in-
coming data from the Dom0 kernel buffer into the virtual
device’s shared buffer. KVM, on the other hand, has full
access to the VM’s memory and maintains shared memory
buffers in the Virtio rings [4], such that the network device
can DMA the data directly into a guest-visible buffer, result-
ing in significantly less overhead.

Furthermore, previous work [19] and discussions with the
Xen maintainers confirm that supporting zero copy on x86 is
problematic for Xen given its I/O model because doing so re-
quires signaling all physical CPUs to locally invalidate TLBs
when removing grant table entries for shared pages, which

proved more expensive than simply copying the data [20].
As a result, previous efforts to support zero copy on Xen
x86 were abandoned. Xen ARM lacks the same zero copy
support because the Dom0 network backend driver uses the
same code as on x86. Whether zero copy support for Xen
can be implemented efficiently on ARM, which has hard-
ware support for broadcasted TLB invalidate requests across
multiple PCPUs, remains to be investigated.

For the netperf TCP_MAERTS benchmark, Xen also has
substantially higher overhead than KVM. The benchmark
measures the network transmit path from the VM, the con-
verse of the TCP_STREAM benchmark which measured the
network receive path to the VM. It turns out that the Xen per-
formance problem is due to a regression in Linux introduced
in Linux v4.0-rc1 in an attempt to fight bufferbloat, and has
not yet been fixed beyond manually tuning the Linux TCP
configuration in the guest OS [21]. We confirmed that using
an earlier version of Linux or tuning the TCP configuration
in the guest using sysfs significantly reduced the overhead of
Xen on the TCP_MAERTS benchmark.

Other than the netperf workloads, the application work-
loads with the highest overhead were Apache and Mem-
cached. We found that the performance bottleneck for KVM
and Xen on ARM was due to network interrupt processing
and delivery of virtual interrupts. Delivery of virtual in-
terrupts is more expensive than handling physical IRQs on
bare-metal, because it requires switching from the VM to
the hypervisor and injecting a virtual interrupt to the VM and
switching back to the VM. Additionally, Xen and KVM both
handle all virtual interrupts using a single VCPU, which,
combined with the additional virtual interrupt delivery cost,
fully utilizes the underlying PCPU. We verified this by dis-
tributing virtual interrupts across multiple VCPUs and the
KVM performance overhead dropped from 35% to 14% on
Apache and from 26% to 8% on Memcached, while the Xen
performance overhead dropped from 84% to 16% on Apache
and from 32% to 9% on Memcached. Furthermore, we ran
the workload natively with all physical interrupts assigned to
a single physical CPU, and observed the same native perfor-
mance, experimentally verifying that delivering virtual inter-
rupts is more expensive than handling physical interrupts.

In summary, while the VM-to-hypervisor transition cost
for a Type 1 hypervisor like Xen is much lower on ARM
than for a Type 2 hypervisor like KVM, this difference is not
easily observed for the application workloads. The reason is
that Type 1 hypervisors typically only support CPU, mem-
ory, and interrupt virtualization directly in the hypervisors.
CPU and memory virtualization has been highly optimized
directly in hardware and, ignoring one-time page fault costs
at startup, is performed largely without the hypervisor’s in-
volvement. That leaves only interrupt virtualization, which
is indeed much faster for Type 1 hypervisor on ARM, con-
firmed by the Interrupt Controller Trap and Virtual IPI mi-
crobenchmarks shown in Section 4. While this contributes to
Xen’s slightly better Hackbench performance, the resulting
application performance benefit overall is modest.

However, when VMs perform I/O operations such as send-
ing or receiving network data, Type 1 hypervisors like Xen
typically offload such handling to separate VMs to avoid
having to re-implement all device drivers for the supported



hardware and to avoid running a full driver and emulation
stack directly in the Type 1 hypervisor, which would signif-
icantly increase the Trusted Computing Base and increase
the attack surface of the hypervisor. Switching to a different
VM to perform I/O on behalf of the VM has very similar
costs on ARM compared to a Type 2 hypervisor approach
of switching to the host on KVM. Additionally, KVM on
ARM benefits from the hypervisor having privileged access
to all physical resources, including the VM’s memory, and
from being directly integrated with the host OS, allowing for
optimized physical interrupt handling, scheduling, and pro-
cessing paths in some situations.

Despite the inability of both KVM and Xen to leverage
the potential fast path of trapping from a VM running in
EL1 to the hypervisor in EL2 without the need to run ad-
ditional hypervisor functionality in EL1, our measurements
show that both KVM and Xen on ARM can provide virtu-
alization overhead similar to, and in some cases better than,
their respective x86 counterparts.

6. ARCHITECTURE IMPROVEMENTS
To make it possible for modern hypervisors to achieve low

VM-to-hypervisor transition costs on real application work-
loads, some changes needed to made to the ARM hardware
virtualization support. Building on our experiences with the
performance and software complexity of Type 2 hypervisors
on ARM, a set of improvements have been made to bring
the fast VM-to-hypervisor transition costs possible in lim-
ited circumstances with Type 1 hypervisors, to a broader
range of application workloads when using Type 2 hyper-
visors. These improvements are the Virtualization Host Ex-
tensions (VHE), which are now part of a new revision of the
ARM 64-bit architecture, ARMv8.1 [22]. VHE allows run-
ning an OS designed to run in EL1 to run in EL2 without
substantial modification to the OS source code. We show
how this allows KVM ARM and its Linux host kernel to run
entirely in EL2 without substantial modifications to Linux.

VHE is provided through the addition of a new control
bit, the E2H bit, which is set at system boot when installing
a Type 2 hypervisor that uses VHE. If the bit is not set,
ARMv8.1 behaves the same as ARMv8 in terms of hard-
ware virtualization support, preserving backwards compati-
bility with existing hypervisors. When the bit is set, VHE
enables three main features.

First, VHE expands EL2, adding additional physical reg-
ister state to the CPU, such that any register and functionality
available in EL1 is also available in EL2. For example, EL1
has two registers, TTBR0_EL1 and TTBR1_EL1, the first
used to lookup the page tables for virtual addresses (VAs) in
the lower VA range, and the second in the upper VA range.
This provides a convenient and efficient method for splitting
the VA space between userspace and the kernel. However,
without VHE, EL2 only has one page table base register,
TTBR0_EL2, making it problematic to support the split VA
space of EL1 when running in EL2. With VHE, EL2 gets
a second page table base register, TTBR1_EL2, making it
possible to support split VA space in EL2 in the same way
as provided in EL1. This enables a Type 2 hypervisor inte-
grated with a host OS to support a split VA space in EL2,
which is necessary to run the host OS in EL2 so it can man-

Type 1: E2H Bit Clear Type 2: E2H Bit Set

Xen Hypervisor Host Kernel and KVM

Apps

syscalls
& traps

EL 0 (User)

EL 1 (Kernel)

EL 2 (Hypervisor)

VM VM

Figure 5: Virtualization Host Extensions (VHE)

age the VA space between userspace and the kernel.
Second, VHE provides a mechanism to access the extra

EL2 register state transparently. Simply providing extra EL2
registers is not sufficient to run unmodified OSes in EL2, be-
cause existing OSes are written to access EL1 registers. For
example, the Linux is written to use TTBR1_EL1, which
does not affect the translation system running in EL2. Sim-
ply providing the additional register TTBR1_EL2 would still
require modifying Linux to use the TTBR1_EL2 instead of
the TTBR1_EL1 when running in EL2 vs. EL1, respec-
tively. To avoid forcing OS vendors to add this extra level
of complexity to the software, VHE allows unmodified soft-
ware to execute in EL2 and transparently access EL2 regis-
ters using the EL1 register access function instruction encod-
ings. For example, current OS software reads the TTBR1_-
EL1 register with the instruction mrs x1, ttbr1_el1.
With VHE, the software still executes the same instruction,
but the hardware actually accesses the TTBR1_EL2 regis-
ter. As long as the E2H bit is set, accesses to EL1 regis-
ters performed in EL2, actually access EL2 registers, thereby
transparently rewriting register accesses to EL2, as described
above. A new set of special instructions are added to access
the EL1 registers in EL2, which the hypervisor can use to
switch between VMs, which will run in EL1. For example,
if the hypervisor wishes to access the guest’s TTBR1_EL1,
it will use the instruction mrs x1, ttb1_el21.

Third, VHE expands the memory translation capabilities
of EL2. In ARMv8, EL2 and EL1 use different page table
formats so that software written to run in EL1 must be mod-
ified to run in EL2. In ARMv8.1, the EL2 page table format
is now compatible with the EL1 format when the E2H bit is
set. As a result, an OS that was previously run in EL1 can
now run in EL2 without being modified because it can use
the same EL1 page table format.

Figure 5 shows how Type 1 and Type 2 hypervisors map
to the architecture with VHE. Type 1 hypervisors do not set
the E2H bit introduced with VHE, and EL2 behaves exactly
as in ARMv8 and described in Section 2. Type 2 hypervisors
set the E2H bit when the system boots, and the host OS ker-
nel runs exclusively in EL2, and never in EL1. The Type 2
hypervisor kernel can run unmodified in EL2, because VHE
provides an equivalent EL2 register for every EL1 register
and transparently rewrites EL1 register accesses from EL2
to EL2 register accesses, and because the page table formats
between EL1 and EL2 are now compatible. Transitions from
host userspace to host kernel happen directly from EL0 to
EL2, for example to handle a system call, as indicated by
the arrows in Figure 5. Transitions from the VM to the hy-
pervisor now happen without having to context switch EL1
state, because EL1 is not used by the hypervisor.

ARMv8.1 differs from the x86 approach in two key ways.



First, ARMv8.1 introduces more additional hardware state
so that a VM running in EL1 does not need to save a sub-
stantial amount of state before switching to running the hy-
pervisor in EL2 because the EL2 state is separate and backed
by additional hardware registers. This minimizes the cost
of VM to hypervisor transitions because trapping from EL1
to EL2 does not require saving and restoring state beyond
general purpose registers to and from memory. In contrast,
recall that the x86 approach adds CPU virtualization sup-
port by adding root and non-root mode as orthogonal con-
cepts from the CPU privilege modes, but does not introduce
additional hardware register state like ARM. As a result,
switching between root and non-root modes requires trans-
ferring state between hardware registers and memory. The
cost of this is ameliorated by implementing the state transfer
in hardware, but while this avoids the need to do additional
instruction fetch and decode, accessing memory is still ex-
pected to be more expensive than having extra hardware reg-
ister state. Second, ARMv8.1 preserves the RISC-style ap-
proach of allowing software more fine-grained control over
which state needs to be switched for which purposes instead
of fixing this in hardware, potentially making it possible to
build hypervisors with lower overhead, compared to x86.

A Type 2 hypervisor originally designed for ARMv8 must
be modified to benefit from VHE. A patch set has been de-
veloped to add VHE support to KVM ARM. This involves
rewriting parts of the code to allow run-time adaptations of
the hypervisor, such that the same kernel binary can run
on both legacy ARMv8 hardware and benefit from VHE-
enabled ARMv8.1 hardware. The code to support VHE has
been developed using ARM software models as ARMv8.1
hardware is not yet available. We were therefore not able to
evaluate the performance of KVM ARM using VHE, but our
findings in Sections 4 and 5 show that this addition to the
hardware design could have a noticeable positive effect on
KVM ARM performance, potentially improving Hypercall
and I/O Latency Out performance by more than an order of
magnitude, improving more realistic I/O workloads by 10%
to 20%, and yielding superior performance to a Type 1 hy-
pervisor such as Xen which must still rely on Dom0 running
in EL1 for I/O operations.

7. RELATED WORK
Virtualization is a well-researched area going back to the

1970s [6]. It saw a resurgence in the late 1990s and early
2000s with the emergence of x86 hypervisors and later x86
hardware virtualization support [23, 24, 2]. Much work has
been done on analyzing and improving the performance of
x86 virtualization [23, 19, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 38]. While some
techniques such as nested page tables have made their way
from x86 to ARM, much of this work has limited applica-
bility to ARM for two reasons. First, earlier work focused
on techniques to overcome the absence of x86 hardware vir-
tualization support. For example, studies of paravirtualized
VM performance [19] are not directly applicable to systems
optimized with hardware virtualization support.

Second, later work based on x86 hardware virtualization
support leverages hardware features that are in many cases
substantially different from ARM. For example, ELI [31] re-

duces the overhead of device passthrough I/O coming from
interrupt processing by applying an x86-specific technique
to directly deliver physical interrupts to VMs. This tech-
nique does not work on ARM, as ARM does not use Inter-
rupt Descriptor Tables (IDTs), but instead reads the inter-
rupt number from a single hardware register and performs
lookup of interrupt service routines from a strictly software-
managed table. In contrast, our work focuses on ARM-
specific hardware virtualization support and its performance
on modern hypervisors running multiprocessor VMs.

Full-system virtualization of the ARM architecture is a
relatively unexplored research area. Early approaches were
software only, could not run unmodified guest OSes, and of-
ten suffered from poor performance [43, 44, 45, 46, 47, 48,
49]. More recent approaches leverage ARM hardware virtu-
alization support. The earliest study of ARM hardware vir-
tualization support was based on a software simulator and a
simple hypervisor without SMP support, but due to the lack
of hardware or a cycle-accurate simulator, no real perfor-
mance evaluation was possible [50].

KVM ARM introduced a Type 2 hypervisor design for
ARM using split-mode virtualization and found that the ap-
proach only incurred minimal performance cost due to the
cost of trapping between CPU modes being low on ARM [7].
We expand on this previous work by showing that while the
trap cost is low, KVM ARM has to save and restore more
state to memory for every transition to the hypervisor com-
pared to Type 1 hypervisors on ARM. Furthermore, dur-
ing the original KVM ARM measurements we did not have
access to proper ARM server hardware and infrastructure
to conduct our measurements, and previous measurements
were therefore performed using ARMv7 development hard-
ware without network I/O across machines. In this work, we
show that overhead can be much higher for configurations
involving network I/O and identify for the first time the root
causes of this overhead for both KVM and Xen.

Subsequent preliminary studies have been done on ARMv7
development hardware [51, 52, 53]. In contrast, our work
provides the first measurement study of KVM and Xen on
real ARMv8 server hardware and identifies for the first time
the real performance implications of ARM hardware virtu-
alization support on modern hypervisors.

8. CONCLUSIONS AND FUTURE WORK
We present the first in-depth study of ARM virtualization

performance on server hardware, including multi-core mea-
surements of two popular ARM hypervisors, KVM and Xen.
We introduce a suite of microbenchmarks to measure com-
mon hypervisor operations on multi-core systems. Using
these microbenchmarks, we show that ARM enables Type 1
hypervisors such as Xen to transition between a VM and the
hypervisor much faster than on x86, but that this low transi-
tion cost does not extend to Type 2 hypervisors such as KVM
because they cannot run entirely in the EL2 CPU mode ARM
designed for running hypervisors. However, while this fast
transition cost is useful for supporting virtual interrupts, it
turns out not to help with VM-to-hypervisor transitions for
handling I/O because a Type 1 hypervisor like Xen has to
communicate with a special Dom0 VM to perform I/O, re-
quiring more complex interactions than simply transitioning



to and from the EL2 CPU mode.
We show that current hypervisor designs cannot leverage

ARM’s potentially fast VM-to-hypervisor transition cost in
practice for real application workloads. While Xen ARM
achieves slightly better performance for an IPI-intensive work-
load like Hackbench, KVM ARM actually exceeds the per-
formance of Xen ARM for most real application workloads
involving I/O. This surprising result is due to differences in
hypervisor software design and implementation that play a
larger role than how the hardware supports low-level hyper-
visor operations. For example, KVM ARM can easily pro-
vide zero copy I/O, because KVM allows the host OS full ac-
cess to all of the VM’s memory, where Xen enforces a strict
I/O isolation policy resulting in poor performance despite
Xen’s much faster VM-to-hypervisor transition mechanism.
Our results also show that ARM virtualization can achieve
similar, and in some cases lower, virtualization overhead
than its x86 counterparts on real applications. Finally, we
show how improvements to the ARM architecture may allow
Type 2 hypervisors to bring ARM’s fast VM-to-hypervisor
transition cost to real application workloads involving I/O.

While we focused on the common scenario of virtualiza-
tion with paravirtualized I/O, device passthrough is an im-
portant technology for I/O virtualization, potentially signif-
icantly reducing both latency and throughput overhead. Ex-
ploring ARM virtualization with device passthrough is an
area of future work.

9. ACKNOWLEDGMENTS
Marc Zyngier provided helpful insight throughout our work

and implemented large parts of KVM/ARM. Eric Auger helped
us add VHOST support to KVM/ARM. Peter Maydell pro-
vided help on QEMU internals and configuration. Ian Camp-
bell and Stefano Stabellini answered numerous questions on
Xen internals and helped us develop our measurement frame-
works for Xen ARM. Georgios Koloventzos investigated the
effects of pinning VCPUs on Xen and investigated file sys-
tem configuration options.

10. REFERENCES
[1] ARM Ltd., “ARM Architecture Reference Manual ARMv8-A

DDI0487A.a,” Sept. 2013.

[2] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: The
Linux Virtual Machine Monitor,” in Proceedings of the Ottawa Linux
Symposium (OLS), vol. 1, pp. 225–230, June 2007.

[3] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang,
“Bringing Virtualization to the x86 Architecture with the Original
Vmware Workstation,” ACM Transactions on Computer Systems,
vol. 30, pp. 12:1–12:51, Nov. 2012.

[4] R. Russell, “virtio: Towards a De-Facto Standard for Virtual I/O
Devices,” SIGOPS Operating Systems Review, vol. 42, pp. 95–103,
July 2008.

[5] ARM Ltd., “ARM Architecture Reference Manual ARMv7-A
DDI0406C.b,” July 2012.

[6] G. J. Popek and R. P. Goldberg, “Formal Requirements for
Virtualizable Third Generation Architectures,” Communications of
the ACM, vol. 17, pp. 412–421, July 1974.

[7] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation
of the Linux ARM Hypervisor,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 333–348, 2014.

[8] CloudLab, “http://www.cloudlab.us,” Mar. 2015.

[9] Global Environment for Network Innovations,
“http://www.geni.net/,” Mar. 2015.

[10] Hewlett-Packard,
“http://www8.hp.com/us/en/products/moonshot-
systems/product-detail.html?oid=7398915,” Mar.
2015.

[11] Linaro Ubunty Trusty Images, “https://releases.linaro.
org/14.07/ubuntu/trusty-images/server,” July 2014.

[12] Xen Project, “http://wiki.xenproject.org/wiki/
Tuning_Xen_for_Performance,” Nov. 2015.

[13] Intel Corporation, “Intel 64 and IA-32 Architectures Software
Developer’s Manual, 325384-056US,” Sept. 2015.

[14] Red Hat, “http://people.redhat.com/mingo/cfs-
scheduler/tools/hackbench.c,” Jan. 2008.

[15] Standard Performance Evaluation Corporation,
“https://www.spec.org/jvm2008,” Mar. 2015.

[16] “http://www.tcpdump.org/tcpdump_man.html,” July
2014.

[17] V. J. Steven McCanne, “The bsd packet filter: A new architecture for
user-level packet capgure,” USENIX ’03, 1993.

[18] Linux Foundation, “http://www.linuxfoundation.org/
collaborate/workgroups/networking/kernel_flow,”
Nov. 2009.

[19] J. R. Santos, Y. Turner, G. J. Janakiraman, and I. Pratt, “Bridging the
gap between software and hardware techniques for I/O
virtualization,” in Proceedings of the 2008 USENIX Annual
Technical Conference, pp. 29–42, 2008.

[20] Ian Campbell, “Personal communication,” Apr. 2015.

[21] Linux ARM Kernel Mailing List, “"tcp: refine TSO autosizing"
causes performance regression on Xen,” Apr. 2015.
http://lists.infradead.org/pipermail/linux-
arm-kernel/2015-April/336497.html.

[22] D. Brash, “The ARMv8-A architecture and its ongoing
development,” Dec. 2014. http://community.arm.com/
groups/processors/blog/2014/12/02/the-armv8-
a-architecture-and-its-ongoing-development.

[23] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine
Monitor,” in Proceedings of the 2001 USENIX Annual Technical
Conference, pp. 1–14, 2001.

[24] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pp. 164–177, Oct. 2003.

[25] K. Adams and O. Agesen, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” in Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 2–13, Oct. 2006.

[26] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon, “Software
Techniques for Avoiding Hardware Virtualization Exits,” in
Proceedings of the 2012 USENIX Annual Technical Conference,
pp. 373–385, June 2012.

[27] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 26–35, Mar.
2008.

[28] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High Performance
VMM-Bypass I/O in Virtual Machines,” in Proceedings of the 2006
USENIX Annual Technical Conference, 2006.

[29] P. Willmann, S. Rixner, and A. L. Cox, “Protection Strategies for
Direct Access to Virtualized I/O Devices,” in Proceedings of the
2008 USENIX Annual Technical Conference, pp. 15–28, 2008.

[30] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster, “vIOMMU:
Efficient IOMMU Emulation,” in Proceedings of the 2011 USENIX
Annual Technical Conference, 2011.

[31] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,
A. Schuster, and D. Tsafrir, “ELI: Bare-Metal Performance for I/O
Virtualization,” in Proceedings of the 17th International Conference

http://www.cloudlab.us
http://www.geni.net/
http://www8.hp.com/us/en/products/moonshot-systems/product-detail.html?oid=7398915
http://www8.hp.com/us/en/products/moonshot-systems/product-detail.html?oid=7398915
https://releases.linaro.org/14.07/ubuntu/trusty-images/server
https://releases.linaro.org/14.07/ubuntu/trusty-images/server
http://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance
http://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://www.spec.org/jvm2008
http://www.tcpdump.org/tcpdump_man.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/kernel_flow
http://www.linuxfoundation.org/collaborate/workgroups/networking/kernel_flow
http://lists.infradead.org/pipermail/linux-arm-kernel/2015-April/336497.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2015-April/336497.html
http://community.arm.com/groups/processors/blog/2014/12/02/the-armv8-a-architecture-and-its-ongoing-development
http://community.arm.com/groups/processors/blog/2014/12/02/the-armv8-a-architecture-and-its-ongoing-development
http://community.arm.com/groups/processors/blog/2014/12/02/the-armv8-a-architecture-and-its-ongoing-development


on Architectural Support for Programming Languages and
Operating Systems, pp. 411–422, 2012.

[32] J. Heo and R. Taheri, “Virtualizing Latency-Sensitive Applications:
Where Does the Overhead Come From?,” VMware Technical
Journal, Vol. 2, No. 2, Dec. 2013.

[33] J. Buell, D. Hecht, J. Heo, K. Saladi, and H. R. Taheri, “Methodology
for Performance Analysis of VMware vSphere under Tier-1
Applications,” VMware Technical Journal, Vol. 2, No. 1, June 2013.

[34] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A component-based
performance comparison of four hypervisors,” in Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium
on, May 2013.

[35] A. Binu and G. S. Kumar, “Virtualization techniques: A methodical
review of xen and kvm,” in Advances in Computing and
Communications, vol. 190 of Communications in Computer and
Information Science, pp. 399–410, 2011.

[36] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the xen
virtual machine environment,” in Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution
Environments, VEE ’05, pp. 13–23, 2005.

[37] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in xen,” in Proceedings of the 2006 USENIX Annual
Technical Conference, 2006.

[38] L. Cherkasova and R. Gardner, “Measuring cpu overhead for i/o
processing in the xen virtual machine monitor.,” in Proceedings of
the 2005 USENIX Annual Technical Conference, pp. 387–390, 2005.

[39] K. Gamage and X. Kompella, “Opportunistic flooding to improve tcp
transmit performance in virtualized clouds.,” in Proceedings of the
Second ACM Symposium on Cloud Computing, 2011.

[40] S. Larsen, P. Sarangam, and R. Huggahalli, “Architectural
Breakdown of End-to-End Latency in a TCP/IP Network,” in
International Symposium on Computer Architecture and High
Performance Computing, pp. 195–202, IEEE, 2007.

[41] Y. Mei, L. Liu, X. Pu, and S. Sivathanu, “Performance Measurements
and Analysis of Network I/O Applications in Virtualized Cloud,” in
IEEE 3rd International Conference on Cloud Computing, pp. 59–66,
July 2010.

[42] G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center,” in Proceedings of the
29th Conference on Information Communications, pp. 1163–1171,
2010.

[43] General Dynamics, “OKL4 Microvisor,” Feb. 2013. http:
//www.ok-labs.com/products/okl4-microvisor.

[44] Green Hills Software, “INTEGRITY Secure Virtualization,” Jan.
2014. http://www.ghs.com/products/rtos/
integrity_virtualization.html.

[45] Red Bend Software, “vLogix Mobile,” Feb. 2013. http:
//www.redbend.com/en/mobile-virtualization.

[46] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim, “Xen
on ARM: System Virtualization using Xen Hypervisor for
ARM-based Secure Mobile Phones,” in Proceedings of the 5th
Consumer Communications and Newtork Conference, Jan. 2008.

[47] C. Dall and J. Nieh, “KVM for ARM,” in Proceedings of the Ottawa
Linux Symposium, pp. 45–56, July 2010.

[48] J.-H. Ding, C.-J. Lin, P.-H. Chang, C.-H. Tsang, W.-C. Hsu, and
Y.-C. Chung, “ARMvisor: System Virtualization for ARM,” in
Proceedings of the Ottawa Linux Symposium (OLS), pp. 93–107, July
2012.

[49] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell,
H. Tuch, and B. Zoppis, “The VMware Mobile Virtualization
Platform: is that a hypervisor in your pocket?,” SIGOPS Operating
Systems Review, vol. 44, pp. 124–135, Dec. 2010.

[50] P. Varanasi and G. Heiser, “Hardware-Supported Virtualization on
ARM,” in Proceedings of the Second Asia-Pacific Workshop on
Systems, pp. 11:1–11:5, July 2011.

[51] X. Gong, Q. Du, X. Li, J. Zhang, and Y. Lu, “Performance Overhead
of Xen on Linux 3.13 on ARM Cortex-A7,” in Proceedings of the
2014 Ninth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, pp. 453–456, Nov. 2014.

[52] A. Motakis, A. Spyridakis, and D. Raho, “Introduction on
performance analysis and profiling methodologies for kvm on arm
virtualization,” VLSI Circuits and Systems VI, Mar. 2013.

[53] D. Corcoran and L. Rasmusson, “Performance overhead of KVM on
Linux 3.9 on ARM Cortex-A15,” ACM SIGBED Review, June 2014.

http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.redbend.com/en/mobile-virtualization
http://www.redbend.com/en/mobile-virtualization

	Introduction
	Background
	Experimental Design
	Microbenchmark Results
	Application Benchmark Results
	Architecture Improvements
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

