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Abstract
Web applications are getting ubiquitous every day be-
cause they offer many useful services to consumers and
businesses. Many of these web applications are quite
storage-intensive. Cloud computing offers attractive and
economical choices for meeting their storage needs. Un-
fortunately, it remains challenging for developers to best
leverage them to minimize cost. This paper presents
GRANDET, a storage system that greatly reduces stor-
age cost for web applications deployed in the cloud.
GRANDET provides both a key-value interface and a
file system interface, supporting a broad spectrum of
web applications. Under the hood, it supports multi-
ple heterogeneous stores, and unifies them by placing
each data object at the store deemed most economical.
We implemented GRANDET on Amazon Web Services
and evaluated GRANDET on a diverse set of four popu-
lar open-source web applications. Our results show that
GRANDET reduces their cost by an average of 42.4%,
and it is fast, scalable, and easy to use. The source code
of GRANDET is at http://columbia.github.io/grandet.

1 Introduction
Web applications are getting more ubiquitous every day
because they offer many useful services to consumers
and businesses. Examples include Instagram and Flickr
for hosting, processing, and sharing images; YouTube
and Vimeo for videos; Pandora and Spotify for music;
and Dropbox and Google Drive for files.

Many of these web applications can become quite
storage-intensive. At the initial deployment of these ap-
plications, a single server might be enough to host the
data objects from their limited number of users. How-
ever, as they become more successful, hosting images,
videos, files, and other data objects from millions of
users, their storage needs increase dramatically. For in-
stance, Facebook has over 500 million users with 260 bil-
lion images, totaling 20 PB [8]. Dropbox has more than
50 million users, who save 500 million files daily [16].

Cloud computing provides an attractive, economical
choice for meeting the storage (and computational) needs
of web applications. Besides the usual benefits of elastic
scaling and no hardware (over-)provisioning, each cloud
platform typically supports a range of storage options
with different performance, durability, and price char-
acteristics. For instance, Amazon Web Services (AWS)
supports non-persistent virtual disks (instance store),
persistent virtual disks (elastic block store, or EBS), and
key-value object store (simple storage service, or S3).
Each of these options typically has more sub-options,
such as EBS on SSD or magnetic disks, and S3 with re-
duced redundancy or infrequent access. This rich set of
options gives developers the flexibility to pick the best
options that meet their applications’ needs. Unsurpris-
ingly, most web startups today choose to deploy their
apps in the cloud, so that they can focus their scarce man-
power and funding on features of their applications [33].

Unfortunately, despite all these storage options, it re-
mains quite challenging for developers to best leverage
them to minimize cost. For simplicity in programming,
it is common practice for a developer to pick a store
she thinks is the best and places all objects of the same
data collection (e.g., all images) within the store. How-
ever, at its core, minimizing cost requires developers to
make fine-grained decisions on which store is the best for
which object. The reason is that the pricing models of
different stores are quite complex and subtle, depending
on such factors as the size of the object, the number and
types of the access requests, and the amount and destina-
tions of the network transfers. Two objects in the same
data collection may differ hugely regarding these factors,
and therefore should be placed at different stores. Con-
sider two AWS stores, EBS on SSD which charges a high
price for storage and nothing for requests, and S3 which
charges a moderate price for both storage and requests.
A large but cold (i.e., few read and write requests) object
should be stored in S3, whereas a small but hot object
should be stored in EBS. It is both non-intuitive and im-
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practical to require developers, especially those at star-
tups with scarce manpower and funding, to make such
fine-grained placement decisions on a per-object basis.

In addition, many of the factors affecting price are
highly dynamic, frequently requiring objects to be mi-
grated from one store to another to minimize cost. For
instance, the hotness of an object varies over time, so
that the best store for the object now may be the worst
fit in the future. Even the pricing models change over
time due to technology improvements [5] and competi-
tions [6]. It is impractical to require developers to predict
these changes accurately or migrate objects manually.

Lastly, different stores provide heterogeneous inter-
faces, and a web application written against one storage
interface (e.g., the file system interface) may not be able
to use another more economical storage option easily or
at all. Many popular web applications, such as Media-
Wiki (the most popular wiki app) and WordPress (the
most popular blogging app), still store data objects such
as images in file systems. To run these applications in the
cloud without significant modifications, developers have
to store the data objects, however large they are, in a file
system on top of EBS, an option potentially much more
expensive than storing the objects in S3. While newer
web applications tend to adopt S3, they may still ma-
nipulate the data objects using existing utilities that re-
quire the file system interface. Examples include a photo
gallery using ImageMagick to process images or gener-
ate thumbnails, a video sharing application using ffmpeg
to convert video formats, and a file sharing application
using bzip2 to compress files. Thus, developers have to
explicitly move the objects between S3 and the file sys-
tem. These movements, if frequent, are both complex to
program and expensive to execute, because S3 charges
for both requests and network transfers.

Because of these reasons, it is difficult for developers
to place objects optimally for minimizing cost. The cost
of misplacement can be quite high. At a micro level, each
PUT request on S3 costs as much money as storing 5 MB
of data for a day; so it is extremely costly to store fre-
quently accessed data objects on S3. The storage cost on
EBS is up to 8× as much as on S3; so putting an infre-
quently accessed large object in a file system on EBS is
expensive, too. At a macro level, our experiments show
that misplacement costs up to 572% more.

We present GRANDET, a storage system that greatly
reduces storage cost for web applications deployed in
the cloud. GRANDET provides both a file system in-
terface and an S3-like key-value interface, supporting a
broad spectrum of web applications. Under the hood,
GRANDET supports multiple heterogeneous stores, and
unifies them by placing each data object at the store
deemed most economical. Specifically, for each sup-
ported store, GRANDET maintains a profile capturing the

store’s pricing model, availability, durability, and consis-
tency guarantees, and performance such as latency. It
updates the performance part of this profile by period-
ically running its profiler, and the other parts based on
crawling or user-supplied configurations. Given a data
object, GRANDET runs its predictor to predict the fu-
ture workload on the object, and its decider to determine
on a fine-grained, per-object basis the most economical
store that meets the default or developer-specified quality
of service (QoS) requirements—even the default is bet-
ter than the typical web practice. It preserves the avail-
ability, durability, and consistency that the cloud stores
provide. When the workloads or pricing models change,
GRANDET migrates objects automatically as needed to
reduce cost. We explicitly designed GRANDET to be ex-
tensible so that developers can add new stores easily.

We implemented GRANDET in AWS and evaluated
GRANDET on a diverse set of four popular open-source
web applications, namely CumulusClips, Piwigo, Elgg,
and FileSender. Our results show that:
1. GRANDET greatly reduces the cost spent on storage

for web applications. On average, GRANDET can re-
duce the storage cost by 42.4%.

2. GRANDET has small overhead. It can be deployed
with little impact on application performance.

3. GRANDET scales well when the workload increases.
4. Web applications can use GRANDET to save cost

with no modification at all, and several lines of
changes would reduce the cost even further.

The remainder of this paper is organized as follows.
The next section introduces the background of cloud
storage services. §3 extends our motivation with a study
and an example. §4 describes GRANDET’s architecture.
§5 shows the data placement strategy. §6 presents the file
system interface. §7 describes the implementation. §8
shows evaluation results. §9 discusses some design im-
plications, §10 presents related work, and §11 concludes.

2 Background: cloud storage services
The variety of cloud storage options can be mainly di-
vided into two categories: file storage and blob storage.
File storage generally provides a disk or file system in-
terface. Applications can mount it and manipulate data
using file system operations such as open(), read(),
and write(). Examples of file storage are Amazon elas-
tic block store (EBS), Microsoft Azure file storage, and
Google compute engine persistent disks. On the other
hand, blob storage generally provides a minimal key-
value interface, such as PUT, GET, and DELETE. A blob
is normally treated as a whole, and operations such as
partially updating a blob are not supported. Examples
of blob storage are Amazon simple storage service (S3),
Microsoft Azure blob storage, and Google cloud storage.

Even more options are available for each category
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Storage service Type Durability Availability Latency
Instance store file ephemeral 99.95% lowest
EBS (SSD) file 99.8-98.9% 99.999% lowest
EBS (magnetic) file 99.8-98.9% 99.999% low
S3 (standard) blob 1− 10−11 99.99% medium
S3 (reduced) blob 99.99% 99.99% medium
S3 (infrequent) blob 1− 10−11 99.9% medium
Glacier blob 1− 10−11 n/a high

Table 1: Overview of AWS storage services (January 2016).

Storage Request (/million) Transfer (/GB)
Storage service (/GB) PUT GET In Out
EBS (SSD) 0.1 0 0 0 0.09
EBS (magnetic) 0.05 0.05 0.05 0 0.09
S3 (standard) 0.03 5 0.4 0 0.09
S3 (reduced) 0.024 5 0.4 0 0.09
S3 (infrequent) 0.0125† 10 1 0 0.09
Glacier 0.007 50 50 0 0.09

Table 2: Approximate monthly price for AWS storage services
(January 2016). Prices are shown in dollars. †S3 infrequent ac-
cess charges a minimum of 128KB storage for smaller objects.

of cloud storage. For instance, Amazon Web Services
(AWS) supports four types of stores (see Table 1). In-
stance store provides free, non-persistent virtual disks to
an AWS elastic compute cloud (EC2) instance. These
virtual disks are non-persistent because they are stored
in the physical disks of the host machine that happens to
run the EC2 instance. Elastic block store (EBS) provides
persistent virtual disks, based on either SSD or magnetic.
Simple storage service (S3) is a key-value store for ob-
jects, with standard, reduced-redundancy, or infrequent-
access options. Glacier is a backup store with an ex-
tremely low cost and long read latency (3–5 hours).

Not only do these storage options have different ser-
vice levels, they also have complex and diverse pricing
models. A typical pricing model depends on (1) the total
storage size, (2) the number of each type of request, and
(3) the amount and destination of network data transfer.
Table 2 shows a snippet of the pricing scheme for AWS
storage services. Although they have the same data trans-
fer cost, the discrepancies in storage pricing are up to an
order of magnitude, and those in request pricing can be as
large as three orders of magnitude. No option is cheaper
across all dimensions. For example, EBS on SSD does
not charge for I/O requests, but its storage price is more
than three times as high as S3. By contrast, S3, despite
charging less for storage, has high per-request cost.

To further illustrate the pricing discrepancies, let us
study how much money it costs to put one data object on
each of these storage services. Figure 1 shows the cost
with (a) variable object size, and (b) variable number of
requests. We exclude data transfer cost in the figures for
better clarity, because it is the same for all these services.
In each figure, the optimal choice is the minimum of all
lines (shaded), and the threshold points are marked. We
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Figure 1: Monthly cost with (a) variable object size, and (b)
variable number of requests. Each line corresponds to a storage
service. Assuming (a) has fixed 100 GET requests, and (b) has
fixed 1MB object size. Each request counts as one EBS I/O.

Web application Category Web application Category
FileSender file sharing selfoss RSS reader
Piwigo photo sharing Tiny Tiny RSS RSS reader
OpenPhoto photo sharing Elgg social network
CumulusClips video sharing MediaWiki wiki
OpenCart shopping LionWiki wiki
PrestaShop shopping Wikka wiki
Zen Cart shopping Drupal CMS
Wordpress blog October CMS
NibbleBlog blog Anchor CMS
Chyrp blog

Table 3: List of studied web applications.

can see that the optimal choice depends on both object
size and the number of requests, let alone each choice
also has different durability, availability, and latency.

Thus, the heterogeneity of service levels and pricing
schemes lead to extremely difficult decisions that web
applications should make when using cloud storage ser-
vices. Misplacing data at non-optimal storage locations
may not only cause service degradation but also cost a
lot of money, negating the benefits that the cloud brings.

3 Extended motivation and example
We motivated the design of GRANDET by studying 19
popular open-source web applications of various kinds,
including file sharing, photo and video sharing, shop-
ping, blogging, news-reading, social networking, wiki,
and content management systems (see Table 3 for the
list). We observed two insights from our study.

Our first insight is that data files have diverse sizes and
access patterns. For example, the original photo or video
files are large, while the thumbnails are small. In addi-
tion, some files are frequently read, such as a celebrity’s
photo, while other files stay cold after they are stored,
and the access pattern of files may change over time.
For example, Figure 2 shows the distribution of file size
for the Piwigo photo sharing application from a scaled-
down workload based on real-world statistics (see §8
for workload details). About 30% of all files are origi-
nal images (7–12MB), 13% are large thumbnails (600–
800KB), 30% are small thumbnails (90–160KB), and the
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Figure 2: CDF of file size for Piwigo.

rest are temporary files. The reason that there are fewer
large thumbnails is that Piwigo generates them lazily,
and many photos are not accessed yet. This diversity
gives us perfect opportunity for optimization, because
file size and access pattern are the two most important
factors affecting storage cost, as we have shown in §2.

Our second insight is that, despite their complexity, all
the 19 applications manipulate data files only in simple
ways. Each file corresponds to a logical data object, such
as a photo or a video. These files are written sequentially
and free of sub-file updates. Therefore, both file storage
and blob storage are capable of storing these data objects.

Because of these two insights, we design GRANDET
as a transparent gateway for a variety of heterogeneous
storage services. Data objects are always stored at the
optimal service based on the characteristics of the data
and workload as well as the pricing and network con-
dition. They are also automatically migrated among
the storage services when the workload, pricing, or net-
work condition changes. Next, we present a motivat-
ing example about how the CumulusClips video sharing
application [14] stores and uses data, to illustrate how
GRANDET can help it reduce storage cost.

When a user uploads a video file, CumulusClips stores
it to the file system. It then calls an external program,
ffmpeg, to convert the uploaded file into multiple for-
mats, such as a high-definition version for broadband
connections and a low-definition version for mobile de-
vices. It also generates a static thumbnail of the video.
All the derived files are stored in the file system, too.
Later, viewers of the website see a list of thumbnails.
When the viewer clicks into a thumbnail, depending on
her platform, one of the converted video is played.

GRANDET helps CumulusClips by transparently han-
dling the storage for all files. Although GRANDET in-
ternally stores data as key-value objects, it is mounted
to CumulusClips’s uploads directory as a file system,
and no modification to CumulusClips’s source code is re-
quired. Whenever CumulusClips wants to write a file to
the directory, GRANDET puts the file to its optimal stor-
age service based on its prediction of the file’s workload.

Web App

Grandet

Web App

Grandet

Shard 1

Grandet

Shard 2

... Grandet

Shard n

 (a) single-instance 
 web application (b) web application with sharded storage

...

... ... ...

Figure 3: GRANDET deployment scenarios.

For example, it would put a small thumbnail file on EBS
if it predicts that the file would be frequently read, but put
a large high-definition video file on S3. GRANDET also
migrates data over time to reflect latest conditions. For
example, if an unknown video on S3 suddenly becomes a
sensation (the “slashdot effect”), then GRANDET would
move it to EBS for cheaper request cost.

4 Architecture
We now give an overview of GRANDET’s deployment
scenarios and present the architecture of GRANDET.

4.1 Overview

GRANDET unifies multiple heterogeneous cloud storages
into a single service. Its primary goal is to reduce storage
cost for web applications. Thus, instead of running stan-
dalone GRANDET servers that would incur additional
cost, GRANDET leverages piggyback deployment.

Figure 3 shows two typical deployment scenarios. For
single-instance web applications, the GRANDET service
simply co-locates on the same machine with the appli-
cation (Figure 3(a)). Large-scale web applications (e.g.,
MediaWiki [43]) typically shard their files into multiple
storage servers, each storing a disjoint subset of the files,
and mount them via a distributed file system (e.g., NFS).
In this case, each shard independently runs a GRANDET
service on it (Figure 3(b)). Because the files stored
on each shard are disjoint, GRANDET does not need to
worry about consistency among shards.

GRANDET does not introduce new availability, dura-
bility, or consistency concerns due to two reasons. First,
each object is stored on exactly one cloud storage; so the
availability, durability, and consistency of GRANDET’s
storage is as good as the underlying cloud storage. The
application developer can specify the minimum avail-
ability, durability, and consistency requirement on a per-
object basis (see §4.3). Second, since the GRANDET ser-
vice itself resides on the same server as the web applica-
tion or the storage shard, they share the same availability.

4.2 GRANDET components

Figure 4 shows the components inside the GRANDET ser-
vice. The GRANDET frontend exports a key-value SDK
for various languages as well as a general file system
interface to the web application or storage shards. The
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Figure 4: GRANDET components.

frontend and the backend communicate through Unix do-
main socket IPC.

The GRANDET backend stores data as key-value ob-
jects. It consists of five components. The Controller

handles all requests from the frontend, and coordinates
all the other backend components. A set of Actors exe-
cutes storage actions on a variety of storage backends.
The Profiler periodically probes the current pricing
model and network conditions for each storage backend,
and stores them as profiles. The Predictor keeps track
of the frequency of all PUT, GET, and DELETE requests,
and predicts future request patterns. The Decider de-
cides upon the best storage option based on the applica-
tion’s requirements, the predicted request pattern, and the
storage profiles. Decisions are kept on the decision store
in Redis [30], further persisted on EBS or S3. Note that
the durability of the decision store is not critical, because
it can be fully rebuilt by scanning objects on all storage.

4.3 GRANDET workflow

All communications start with the application1 sending a
request to the Contoller by using either the key-value
SDK or the file system interface, where the latter inter-
nally represents files as key-value objects (see §6). Re-
gardless of frontend, the request is one of the following:

PUT. The application requests to store a data object to
GRANDET’s storage (Figure 5). The application should
assign a unique key to the data object based on its own
needs. For example, a photo sharing application may as-
sign the image file that Alice uploads to her Wedding al-
bum the key alice:wedding:photo1. The value of the
data object can be an arbitrary length of binary content.

Along with the PUT request the application can spec-
ify its requirements on the storage service for this partic-
ular data object. The requirements include the minimum
availability, durability, and consistency required, as well
as the maximum latency allowed. Only the services that

1If deployed with sharded storage, it is actually the shard that sends
the request. However, there is no difference from GRANDET’s view.

Frontend

Controller

Request

type : PUT
key  : alice:wedding:photo1
value: <image object>
requirements: {
  min_availability = 99.99%
  min_durability   = 99.99%
  min_consistency  = eventual
  max_latency      = 300ms
}
hints: {user=alice, album=wedding}

Response

status: OK

FS or SDK

Backend

Figure 5: An example of PUT request and response.

meet these requirements are considered as candidates for
storing this data object (see Table 1 for an overview of
storage services). Requirements are optional. If the ap-
plication does not specify requirements, then GRANDET
assumes all non-ephemeral (i.e., not the EC2 instance
store) and moderate-latency (i.e., not Glacier) services
can be chosen. It is worth mentioning that even this de-
fault assumption provides better guarantees than a typi-
cal application’s setup, since both EBS and S3 are at least
20× more reliable than typical commodity disks [3].

The application can also give hints to GRANDET for
a better placement decision. Hints are also optional, and
we have implemented two default hints. §5 discusses the
placement strategy and default hints in detail.

Upon receiving the request, the Controller first asks
the Decider for the placement decision, which in turn
looks at the current profile for each storage service and
asks the Predictor for the predicted future request pat-
tern. Based on this, the Decider finds the most cost-
effective storage choice that satisfies all the applica-
tion’s requirements, memorizes the choice at the deci-
sion store, and returns the choice to the Controller

Then the Controller tells the corresponding Actor to
store the data object to the actual storage and notifies the
Predictor to bookkeep this action. Finally it tells the
application that the PUT has completed.

GET. The application requests to retrieve a data ob-
ject from GRANDET’s storage. The Controller asks
the Decider to recall the previous placement decision
from the decision store, and then asks the corresponding
Actor to retrieve the data object from the actual storage.
The Controller also asks the decider to check if the op-
timal placement decision would change because the cur-
rent workload, pricing scheme, and network conditions
may have changed. If not, it notifies the Predictor to
bookkeep this action, and returns the data object to the
application. Otherwise, it also migrates the data object
to the new storage service and deletes the old copy.

DELETE. The application requests to delete a data ob-
ject from GRANDET’s storage. The Controller asks
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// PHP SDK interface
function put($key, $value, $requirements=[], $hints=[])
function get($key)
function del($key)

// Example: PUT an image with requirements and hints.
require_once ’grandet.phar’;
grandet\put(’alice:wedding:photo1’, $uploaded_image,

[’min_availability_required’ => 99.99,
’min_durability_required’ => 99.99,
’min_consistency_required’ => ’eventual’,
’max_latency_required’ => 300],

[’user’ => ’alice’, ’album’ => ’wedding’]);

// Example: PUT with no requirements and default hints.
grandet\put(’alice:wedding:photo2’, $another_image);

// Example: GET an image.
$image = grandet\get(’alice:wedding:photo1’);

Figure 6: GRANDET’s PHP SDK and usage examples.

the Decider to recall the previous placement decision
from the decision store, and then asks the corresponding
Actor to delete the data object from the actual storage.
It also notifies the Predictor to bookkeep this action.

4.4 Frontend interface

GRANDET has two types of frontend interface. The
key-value SDK provides bindings for these requests for
various programming languages such as C++, PHP, and
Python. For instance, Figure 6 shows GRANDET’s PHP
interface and examples of putting and getting an image.
The interface is similar to current cloud blob storage ser-
vices such as S3. Therefore, web applications that are
already aware of S3-like blob storages can just switch to
GRANDET’s SDK and seamlessly get all the cost-savings
that GRANDET brings.

For applications that only work with file systems,
GRANDET also provides a file system interface using
FUSE, which applications can mount to their data direc-
tory directly. §6 describes it in detail.

5 Deciding data object placement
The cornerstone of GRANDET is the decision engine for
placing each data object onto the optimal storage service.
It makes a decision each time the application PUTs or
GETs a data object. The decision engine closely follows
the pricing model of all storage options. As mentioned in
§2, a typical pricing model consists of three factors: stor-
age (data size and lifetime), number of requests, and data
transfer. The data size is known, and transfer prices are
usually the same for all services within the same cloud
region. Therefore, the key to making placement decision
is predicting the future access pattern of the data object.

5.1 Prediction of access pattern

For each request of a certain object, the predictor uses
the request’s metadata to classify the object into the class
of objects similar to this object. The metadata include

the object size, the object name, the requirements of the
request, and other hints (§5.3) provided by the developer.

For each class, the predictor keeps track of the num-
ber of GET and PUT requests issued on the objects in this
class recently, and it also records the number of recently
accessed objects and the average lifetime of the objects
in this class. Each record is kept for r seconds.

Suppose that for the class the current object belongs
to, there are g GET requests and p PUT requests recently,
and there are n objects accessed in this class, then the
predictor would predict that in the following t seconds,
there would be gt

nr GET requests and pt
nr PUT requests for

this object. It would also predict the object’s lifetime to
be the average object lifetime in its class.

5.2 Decision making

GRANDET’s decider works with the predictor to decide
where to place the object. It uses the object size and the
predicted access pattern to make the decision. For each
backend, GRANDET’s decider uses its pricing model to
calculate the storage cost of the object in its predicted
lifetime, and chooses the backend with the lowest cost.

The optimal placement decision for an object may
change over time because of changed workload, pricing
scheme, or network condition. A migration happens on
a PUT or GET request when the extra cost for migration is
less than the cost savings at the new storage service.

The extra cost for a GET-triggered migration is the total
cost of an additional PUT request, a DELELTE request, and
data transfer cost, while a PUT-triggered migration does
not need the extra PUT request. For migration within the
same Amazon cloud region, such as from S3 to EBS, data
transfer is free, and DELETE requests are also free.

5.3 Hints

The application can give additional hints to GRANDET
for better prediction. A hint is an arbitrary set of key-
value pairs. For example, a photo sharing application
can provide the hint {user=alice, album=wedding}
when storing an image file. The predictor will predict
the workload of this file by considering files with simi-
lar hints, such as images uploaded by the same user in
the same album. Hints are optional, and we have im-
plemented two types of default hints if the application
does not provide any hint. For the file system interface
(see §6), the default hint is the directory hierarchy. For
example, if the photo sharing application stores a file at
alice/wedding/photo1.jpg, the default hints would
be {hint1=alice, hint2=wedding}. For the SDK
interface (see §4.4), the default hints are the object’s key
split by colons. We evaluate the effect of hints in §8.4.

6 File system interface
Providing POSIX-like file system semantics is arguably
the best way to support the widest range of legacy web

6



Cache Grandet
Controller

async-upload queue

/a.jpg:
  uuid=0a46dde1...
  size=11,793,094
  mtime=1427400000
  ...
/thumb/a-th.jpg:
  uuid=a84e468c...
  size=145,751
  ...
...

File structures

File 0a46dde1...

(11,793,094 bytes)

... ...
close()

open()

GET

PUT    

Redis RAM drive

Frontend Backend

Figure 7: Implementation of GRANDET’s file system interface.
Solid arrows show the data flow. Dashed arrow shows the logi-
cal relationship between the file structure and its content.

applications seamlessly, because it does not require mod-
ifications of their source code. Hence, GRANDET also
implements a file system interface using FUSE. It can be
directly mounted to the web application’s data directory.

The design of GRANDET’s file system interface fol-
lows our insight that most files are accessed sequentially
and wholly by web applications, such as photo and video
files. So, it is best to store each file as one object, as op-
posed to dividing files into blocks. Besides, web applica-
tions often need to rename files, such as moving a tempo-
rary file to its final directory. So, it is essential to support
fast rename operations, although S3 does not support re-
naming objects other than a copy followed by a delete.
Last but not least, some web applications generate many
intermediate files when doing backend processing, and
remove them when it finishes. So, it is desirable to skip
putting these intermediate files to the backend storage.

Figure 7 shows the implementation of GRANDET’s file
system interface. At the backend, it stores each file as a
UUID-keyed object and puts the actual file name in its
metadata. At the frontend, it maintains a cache of file
contents on a RAM drive, and keeps the file structure
hierarchy and metadata (e.g., UUID, file size) in Redis.
Therefore, renaming a file only touches its metadata.

We next describe the file operations. On creat(), we
create a file in the cache and pass the file descriptor to
the application. On open(), we GET the file data from
the backend storage if it does not exist in the cache, then
open the cached file and return the file descriptor. For file
manipulations such as read, write, and truncate, we pass
them through to the corresponding file system operations
of the cache. We also update our file structure for the new
file size and modification time. On close(), if the file
content has been modified, we append it into an async-
upload queue so that the file will be PUT to the backend
storage, and we block on fsync() until the PUT finishes.

Our implementation PUTs file contents to the backend
storage asynchronously. It has two benefits. First, it skips
short-lived intermediate files if they are deleted before
the actual PUT happens. Second, it allows an application
to specify hints as extended attributes (“xattr”) efficiently

Component LOC Component LOC Component LOC
S3 Actor 120 EBS Actor 236 Decider 230
Predictor 356 Controller 1401 Profiler 235
C++ SDK 159 PHP SDK 168 Python SDK 69
FS interface 1979 Console 349 Misc 1191
Total : 6493

Table 4: Lines of code of GRANDET’s components.

after a file has been closed. This is useful when the cre-
ation of the file is beyond the application’s control, such
as files generated externally. For example, the Cumulus-
Clips video sharing application executes ffmpeg to con-
vert a video file to another format. It can set extended
attributes to the converted file thereafter.

Since GRANDET’s backend makes decision on the op-
timal storage location based on each file’s predicted us-
age pattern, the replacement algorithm on the cache is not
critical. A simple LRU algorithm works well in practice.

7 Implementation and system extensibility
We designed GRANDET as a extensible framework
where each component, such as the storage services,
the prediction algorithm, or the frontend SDK, can
be easily replaced or extended. We implemented the
GRANDET backend in C++14, the file system interface
with FUSE [20], and key-value SDK in various lan-
guages. We modified LIBAWS [7] to communicate with
Amazon Web Services. Table 4 shows the numbers of
lines of GRANDET’s components. Metadata such as
placement decisions are stored in Redis [30]. All com-
ponents can be easily extended by plugging in a new
subclass, or customized by changing a configuration file.
This section describes some implementation details.

7.1 Adding a storage service

GRANDET’s Actor executes actions, such as PUT, GET,
and DELETE, on the storage service. We implemented
Actors for EBS (SSD and magnetic) and S3 (standard,
reduced redundancy, and infrequent access). Supporting
a new storage service just requires adding a new subclass
of Actor and implementing its interface methods.

Figure 8 shows the interface of the Actor class. The
put(), get(), and del() are cloud storage operations.
The profile() method, when called by GRANDET’s
Profiler, updates the cloud service’s Profile, which
includes pricing model and service conditions such as la-
tency, availability, durability, and consistency.

The Profiler is a cron job that runs periodically.
When triggered, it calls every Actor’s profile()

method to update its profile. We implemented crawlers
in our EBS and S3 Actors to fetch and parse the pric-
ing information from the Amazon Web Services website.
Profiles are stored as JSON files so that users can also
manually configure the pricing model or service levels.
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class Actor {
public:
virtual void ˜Actor()=default;

// cloud storage operations
virtual void put(const string& key, shared ptr<Value> val)=0;
virtual shared ptr<Value> get(const string& key)=0;
virtual void del(const string& key)=0;

// updates pricing model, latency, availability, durability, etc.
virtual void profile(shared ptr<Profile> profile)=0;
};

Figure 8: GRANDET’s Actor class.

7.2 Adding a prediction algorithm

We implemented the prediction algorithm as described
in §5, and we believe that recent advancement of ma-
chine learning techniques may empower even better al-
gorithms. Plugging a new prediction algorithm into the
GRANDET framework is also as simple as subclassing
the Predictor class with the following functions.

The Predictor has three listener functions, namely
notify put(), notify get(), and notify del(),
which are called whenever there is a PUT, GET or DELETE
request. The Predictor thus keeps track of the current
workload. When making a decision, the decider calls the
Predictor’s predict put(), predict get(), and
predict lifetime() functions to get the predicted fu-
ture request frequency and expected lifetime.

7.3 Protocol and SDK

GRANDET’s frontend and backend communicate through
Unix domain socket IPC and all messages are serial-
ized in Protocol Buffers [28]. GRANDET defines two
types of protocol messages: Request and Response. A
Request message is one of three types: PUT, GET, and
DELETE. It also includes the key and value of the data
object, the application’s requirements such as minimum
durability and maximum latency, and optionally hints for
workload prediction and other metadata. The Response
message contains a status code, and optionally the data
object’s value if it is response for a GET request.

Therefore, the SDK for a programming language is
simply a wrapper over Protocol Buffer and socket pro-
gramming. We have implemented the SDK for C++,
PHP, and Python, with 70–170 lines of code each. We
believe that supporting a new language would similarly
require little programming effort.

7.4 Optimization

To further improve performance, we also implemented
two optimizations to GRANDET’s basic design.

Shortcut for file access. When PUTting a file object that
is already on disk, the request payload only includes the
file name instead of the file content, and the GRANDET

backend reads the file directly from disk. Therefore, it
avoids sending the entire file from frontend to backend.

S3 authenticated URL. An application often GETs a data
object from GRANDET only to send it verbatim to the
user without any processing. For example, when a user
clicks “download original image” on the Piwigo photo
sharing application, Piwigo simply retrieves the data ob-
ject for that original image and send it back to the user.
Thus, if the data object is stored on S3, GRANDET incurs
unnecessary overhead by acting as a proxy for the data
transfer. To optimize for this scenario, the application
can specify a special requirement in its GET request in the
form of {url=true, expire=600s}; so the GRANDET
backend sends the application a pre-authenticated URL
for the S3 object with the specified expiration time (600s
here). The application can thus redirect the user to down-
load the image from the authenticated URL directly.

8 Evaluation
We evaluated GRANDET on four popular open source
web applications: CumulusClips (video sharing) [14],
Piwigo (photo sharing) [27], Elgg (social network) [17],
and FileSender (file sharing) [19]. We modeled the us-
age data for each application according to the most pop-
ular website of its type, namely YouTube, Flickr, Face-
book, and Dropbox. To make cost evaluations man-
ageable, we scaled down the usage to 100 users in one
month, while preserving real-world workload character-
istics. Appendix A details how we modeled usage data.
We ran all experiments on EC2 m3.large instances with
EBS and S3 in the US east region, using Ubuntu 14.04.

Our experiments aim to answer four questions:
§8.1 Does GRANDET reduce cost?
§8.2 Is GRANDET fast?
§8.3 Is GRANDET scalable?
§8.4 Is GRANDET easy to use?

8.1 Cost savings

8.1.1 End-to-end cost savings

The overarching goal of GRANDET is to reduce cost used
by web applications. Figure 9 shows a comparison of to-
tal storage cost of evaluated web applications with dif-
ferent storage backends.2 For each application, the first
five bars are the cost of placing all objects into a single
storage service. The last bar is the result of GRANDET’s
dynamic placement. All numbers are normalized by the
theoretical optimal placements, meaning that each object
is placed at the best storage if the entire workload was
known beforehand (i.e., perfect prediction).

The results show that GRANDET always costs less than
any single-storage option. It saves a geometric mean of

2Storage costs in this paper were reported by GRANDET based on
the precise storage space used and number of requests recorded. We did
not use Amazon’s billing statement because it was too coarse-grained.
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Figure 9: Comparing the cost of different backends and
GRANDET. All costs are normalized to the optimal cost.

42.4% over the best single-storage setting. For example,
GRANDET reduces Piwigo’s cost by 56.2%. The reason
is that Piwigo converts images into several resolutions,
and images from different users and albums have distinct
access patterns that are hard to be programmed statically
but easy to be predicted dynamically by GRANDET.

Furthermore, for all but one applications, GRANDET’s
cost is within 10% of the optimal cost. For Cumulus-
Clips, although it costs 45.7% more than optimal, it is
still 48.0% better than using any single storage backend.

It is worth noting that the cost saving ratio is indepen-
dent of the number of users, because the cost is propor-
tional to the workload, which in turn is proportional to
the number of users. Therefore, GRANDET is effective in
reducing cost for a broad spectrum of web applications.

8.1.2 Operational cost

To evaluate the operational cost that the GRANDET ser-
vice itself incurs, we monitored its memory and CPU
usage while running the Piwigo application. GRANDET
only uses little memory; so we focus on CPU usage.

Assume that someone sets up a Piwigo instance to
serve 100K users. Per our usage model (Appendix A),
users would upload 120K photos and view 2.4M photos
in one month. Meanwhile, 120K thumbnails would be
generated and they would be viewed 64.8M times. Thus,
there would be a total of 2.52M large requests (95% read)
and 64.92M small requests (99% read) per month, or
0.972 large requests and 25.1 small requests per second.

We evaluated GRANDET to see how many requests per
second (RPS) it can handle per percent of CPU usage. In
the worst case, GRANDET can handle 1.54 RPS per per-
cent of CPU usage with large requests (1MB, 95% read),
and 29.5 RPS per percent of CPU usage with small re-
quests (4KB, 99% read). Plugging it into the aforemen-
tioned scenario, GRANDET would consume 1.48% CPU
to serve all requests. Since an EC2 m3.large instance
costs $38 per month and it has two cores, GRANDET only
costs $0.28 per month to serve 100K users in this case,
negligible versus the storage cost it saves.
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Figure 10: The performance of GRANDET backend. Each stor-
age is evaluated with 4KB and 1MB requests. The error bar
shows the standard deviation.

8.2 Performance

8.2.1 Microbenchmark

To evaluate the performance of basic operations of
GRANDET, we evaluated each storage separately with
two sizes of requests. Figure 10 shows the number of
requests GRANDET can handle per second. We used one
client in this experiment. Because the performance of
GET requests are affected by the file system cache, we
also measured the performance in the direct mode by
specifying O DIRECT in file system operations.

The performance of the EBS backends without cache
matches the results of FIO [21], which measures the per-
formance of the file system itself. Hence, GRANDET’s
performance is limited by the hardware and underlying
OS, and GRANDET itself incurs little overhead.

One interesting property of EBS disks is that they have
different burst and sustained performance. For example,
EBS SSD disks can reach burst throughput of 150MB/s,
close to Amazon’s specification [4]. But after a few sec-
onds, the throughput drops to≈60MB/s and keeps stable.

The cached GET requests of EBS backends are obvi-
ously served from the cache. The major limiting fac-
tor here is the CPU speed. We can see that GRANDET
can work with hardware that is much better than the ones
available in the cloud currently.

The results are low for S3, because S3 has a high la-
tency for any request. Our profiler usually records the la-
tency to be 20–30ms, and this latency limits the number
of requests S3 can handle per second. Because requests
sent to S3 are much more expensive than other storages,
S3 should not handle many requests, and it is also not
designed to handle frequent requests.

8.2.2 End-to-end performance

We evaluated GRANDET’s end-to-end performance on
the same four web applications. Because we use FUSE
to implement the file system interface, we also evalu-
ated the overhead incurred by FUSE itself. For compari-
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Figure 11: GRANDET’s end-to-end performance. Completion
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son, we also ran the evaluation on the state-of-the-art S3-
based file system s3fs [31]. Figure 11 shows the time
used to complete the workload of each application and
storage setting. We normalized all results to the baseline
where all files were stored directly on EBS SSD. For the
first bar in each cluster, a folder on the EBS SSD volume
was mounted with the loopback FUSE file system to the
application’s data folder. The second bar used GRANDET
with only the EBS backend, so as to show GRANDET’s
overhead atop FUSE. The third bar used s3fs. To com-
pare with it, the fourth bar used GRANDET with only the
S3 backend. Finally, the last bar used GRANDET in the
default configuration with all backends.

GRANDET’s overhead comes from several parts. The
first part is incurred by FUSE, which averages to 5.5%
(the 1st bar). The second part is incurred by GRANDET
itself. Because using GRANDET with only the EBS back-
end has an average overhead of 8.5% (the 2nd bar), the
overhead incurred by GRANDET itself is less than 3%.
The third part is incurred by the S3 backend, due to its
higher latency than EBS. Mounting S3 as a file system
with s3fs shows a prohibitive average overhead of 330%
(the 3rd bar), whereas GRANDET’s average overhead us-
ing only the S3 backend is 18.3% (the 4th bar). Overall,
GRANDET incurs a geometric mean of 13.5% overhead
(the last bar), which can be offset by the cost it saves.

8.3 Scalability

8.3.1 Microbenchmark

To check that whether GRANDET can scale up, we eval-
uated GRANDET with variable number of concurrent
threads and variable request sizes on variable storages.
The results are similar, and for brevity we show a typical
one: S3 with request size of 4KB. Figure 12(a) shows the
performance of the server when the number of concur-
rent clients increases. The number of requests the server
can handle per second increases almost linearly. This im-
plies that the number of requests one client can achieve
is limited by the latency of the S3 service, and the server
scales well with the number of clients.
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Figure 12: (a) Scalability of GRANDET when using single S3
storages. Evaluated with requests of 4KB in size. The error
bar shows the standard deviation. (b) End-to-end scalability.
Evaluated on the FileSender application with real workload.

8.3.2 End-to-end scalability

We evaluated the end-to-end scalability of GRANDET by
measuring the number of end-to-end requests the system
can handle when the number of clients increase. The
requests go all the way through Nginx, PHP, FUSE and
the GRANDET backend. We chose the most scalable
application—FileSender—among all the applications we
studied, so that if there were any scalability issues with
our system, it would be revealed by the experiment. The
FileSender application is the most scalable application
because of its simplicity: it does not perform any opera-
tions on the files, but just lets other users download them.

Figure 12(b) shows the requests per second with vari-
able number of concurrent clients. The results show that
GRANDET scales as well as FileSender. Regardless of
whether using GRANDET, FileSender does not scale past
32 concurrent clients. This is due to limited resource in
the EC2 m3.large instance, not GRANDET’s limitation.

8.4 Usability

GRANDET can run a web application unmodified and au-
tomatically save cost. We have also tested and confirmed
that three of today’s most popular web applications—
MediaWiki, Wordpress, and Joomla—work seamlessly
with GRANDET without any source code modification.

To further reduce cost, application developers can add
hints to data objects. In all our evaluations, we did not
add hints to CumulusClips and Elgg, added three hints to
Piwigo, and added one hint to FileSender. We found that
compared with using the default predictor, hints helped
reduce cost by 9.3% for Piwigo and 9.4% for FileSender.

9 Discussion
We now discuss some design implications of GRANDET.

Persistence over server crash. If the GRANDET server
crashes, all data objects that have been PUT onto EBS
or S3 will persist. Metadata (e.g., placement decisions)
rely on the persistence of Redis, which can be configured
as snapshot-based (RDB) or journal-based (AOF). In the
worst case, they can be rebuilt by scanning all storage.
For the file system interface, the local cache may not per-

10



sist, which would affect data objects in the async-upload
queue that have not yet been PUT to the backend storage.
GRANDET provides the same semantics as a file system
by blocking on fsync() until the PUT is complete.

S3 consistency. S3 provides read-after-write consistency
for new objects and eventual consistency for overwrites.
There are two ways to work around it. First, the applica-
tion can specify in each object’s requirement to avoid S3.
Second, GRANDET can use versioning in S3 placement
decisions so that each PUT operates on a new object.

Data replication across cloud regions. Because EBS
volumes can only be accessed within a cloud region,
GRANDET’s server must reside in the same cloud region
as all EBS volumes. However, since GRANDET exposes
a general key-value object store interface, it can be easily
extended to multiple cloud regions by overlaying exist-
ing geo-replication solutions atop GRANDET.

Migration granularity. GRANDET migrates data lazily
on a per-object basis; so data objects that are not accessed
would not be migrated, even if better storage choices
were available. One way to solve it is to have a thread pe-
riodically scan through all objects to find migration pos-
sibilities. In practice, the changes of workload on data
objects are gradual, so that a cold object would already
be migrated before its access drops to absolute zero.

EBS elasticity. Adjusting EBS volume size takes min-
utes to finish. GRANDET can leverage existing orthog-
onal strategies (e.g., [29]), or rely on application devel-
opers for allocating EBS volumes. Amazon’s recently-
announced elastic file system (EFS) is fully elastic and
does not have this issue. Once it is released, GRANDET
can support it by simply adding an Actor class for it.

10 Related work

S3 lifecycle. Amazon has rudimentary support for mov-
ing S3 objects to the infrequent-access option or Glacier.
However, such transitions are one-way and limited to S3,
and developers must set rules manually. GRANDET sup-
ports automatic transitions across all storage options.

Cloud economics. Some recent work studies the eco-
nomics of cloud computing. Much of the work is fo-
cused on reducing the cost of computing, not storage.
For example, Tak et al. [35] discusses the cost factors
for several cloud-based application deployment options,
and Conductor [42] optimizes cloud service choices for
MapReduces computations. Other work touches upon
storage. CloudCmp [25] provides a microbenchmark
suite for measuring the cost and performance of differ-
ent cloud service providers. Developers can then inspect
the benchmark results and pick a provider for their ap-
plication. GRANDET may leverage this microbenchmark
suite in its profiler implementation.

Cloud-backed file systems. Several systems provide
a file system interface over a blob storage such as S3.
Open source projects, such as s3fs [31] and s3ql [32],
can mount an Amazon S3 bucket as a local file system.
The BlueSky network file system [40] employs a log-
structured design on the cloud storage. SCFS [11] en-
ables sharing for cloud-backed file systems. These sys-
tems assume general file system workloads, and the main
challenges they tackle are performance issues, such as
how to implement random writes atop a blob storage
that does not support partial updates. Unlike GRANDET,
none of these systems exploits the characteristics of files
used by web applications or reduces monetary cost.

Cloud-of-clouds. Several pieces of work propose the
idea of storing data across multiple clouds. Some do so to
replicate the same data multiple times for fault tolerance.
For example, RACS [1] applies the RAID technology to
cloud systems. DepSky [10] uses multiple services for
dependability and security. MetaStorage [9] uses mul-
tiple services to manage consistency-latency trade-offs.
NCCloud [23] applies network coding to cloud storages
for fault tolerance. These systems aim to increase dura-
bility and availability, not to decrease monetary cost. In
fact, by storing more copies of data, they increase mone-
tary cost, which GRANDET can help reduce.

Other pieces of work, including FCFS [29], iCostale
[2], Scalia [26], and SPANStore [44], store data across
clouds for reducing cost, a goal similar to GRANDET’s.
FCFS only has simulations showing potential savings
of storing objects across different cloud services, which
serve as an excellent motivation for GRANDET. ICostale
and Scalia also do simulations only, and they consider
only blob storages which cannot support many popular
web applications. To the best of our knowledge, none of
FCFS, iCostale, or Scalia provide a system that develop-
ers can use. SPANStore also considers only blob stor-
ages; so it also requires modifications to many web ap-
plications. In addition, its coarse-grained placement de-
cisions only consider geographical locations. In contrast
to these systems, GRANDET makes fine-grained predic-
tions and decisions based on each data object’s own char-
acteristics and access pattern, and it works seamlessly
with today’s web applications without modifications.

11 Conclusion
We presented GRANDET, a storage system that greatly
reduces storage cost for web applications deployed in the
cloud. It unifies multiple heterogeneous stores by placing
each data object at the most economical store, and pro-
vides both a file system interface and a key-value SDK.
Evaluation on a diverse set of four popular open-source
web applications shows that it reduces cost by an aver-
age of 42.4%, and it is fast, scalable, and easy to use. Its
source code is at http://columbia.github.io/grandet.
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A Workload modeling
A.1 CumulusClips

We modeled the usage data of CumulusClips according
to the popular video sharing website, YouTube [45].

YouTube has one billion users, and 300 hours of
videos are uploaded per minute [34]. The average video
length is four minutes [13, 37]. So on average each
YouTube user uploads 0.19 videos per month, and hence
100 users would upload 19 videos. Each user views 76
videos per month on average [13], which translates to
7600 views for 100 users. Also, [12] mentions that the
average video size of YouTube video is 8MB; so we use it
as our average video size in our evaluation. Most thumb-
nails on the YouTube website have around 400×300 pix-
els; so we also use it as our thumbnail size. On the
YouTube website, there are 20 recommended videos on
the right side of each video; so we consider that for each
video viewed, 20 thumbnails are also viewed.

A.2 Piwigo

We modeled the usage data of Piwigo according to the
popular photo sharing website, Flickr [22].

Flickr has 87 million users and they upload 3.5 million
new images per day [38]. So 100 users would upload 120
images per month. Lerman et al. [24] mentioned that the
average view per photo on Flickr is 20 times. Each al-
bum on the Flickr website shows 27 thumbnails above
it, meaning that when a user views one photo, she also
downloads 27 thumbnails of other photos. On the Flickr
website, large thumbnails have around 1600×1000 pix-
els and small thumbnails have around 640×400 pix-
els. A typical photo taken by a modern digital camera
has 5120×3840 pixels. We use these parameters in our
workload.

A.3 Elgg

We modeled the usage data of Elgg according to the pop-
ular social network website, Facebook [18].

For photos stored on Facebook, we observe that when
a user clicks a photo, the dimension of the photo shown is
960×960 pixels. We use it as the photo size in our work-
load. This observation also matches [8], which men-
tioned that the average photo size on Facebook is 60KB.
Facebook had 500 million users when [8] was published,
and [8] mentioned that on average 120 million photos
are uploaded every day. These numbers translate to 7.2
photo uploads per user per month; so 100 users would
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upload 720 photos per month. We observe that photos
in a typical Facebook user’s timeline are thumbnails of
300×300 pixels; so we also use this in our workload.
Each day, 10 billion photos are viewed on Facebook, in-
cluding both thumbnails and original photos [8]. So each
user views 20 photos per day on average. For 100 users,
they view almost 60,000 photos per month. [8] also men-
tioned the ratio of views between thumbnails and original
photos is 95% to 5%. We consider the nature of social
networks in generating workloads: each user has a cer-
tain number of friends, and when friends post photos, she
may see the photo. We already know that each user views

a certain number of photos per month; so we distribute
these views on her friends’ photos.

A.4 FileSender

We modeled the usage data of FileSender according to
the popular file sharing website, Dropbox [15].

Dropbox has 50 million users and they upload 500
million files each day [16]. So 100 users would upload
30,000 files per month. We use the average size of files
from file sharing servers, 153KB [39]. The popularity
of the shared files follows a Zipf distribution with
α = 0.4 [41].
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