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TAPERING GEOMETRIES

D.A. Burton, D.C. Christie, R.W. Tucker, Lancaster University and The Cockcroft Institute, UK

Abstract

We develop a scheme for obtaining the impedance of
a gradually tapered, axisymmetric geometry containing a
bunch of arbitrary profile travelling at the speed of light
paralel to the axis of the taper. Coordinate-free expres-
sionsfor Maxwell’s equations are 2+2-split in a coordinate
system adapted to the particle beam and the taper and, us-
ing an asymptotic expansion for a gradual taper, a coupled
hierarchy of Poisson equationsis obtained. Applications of
the scheme are presented.

INTRODUCTION

The design of accelerator components such as collima-
tors relies on understanding the consguences of passing an
ultrarelativistic charged beam through a waveguide with a
gradual taper. Thisiscurrently studied using acombination
of experiment and computer simulation. However, various
analytical methods have also been developed to estimate
impedances (see, for example, [1]). Most recently, Stu-
pakov [2] devel oped aprocessfor evaluating theimpedance
up to the second order of iteration for low frequency beams
travelling at v = ¢ in perfectly conducting waveguides of
arbitrary cross-section. We shall use a similar method,
restricted to axially symmetric confining geometries [3].
However, our approach, using auxiliary potentials, enables
us to relax Stupakov’s low-frequency condition and pro-
duceahierarchy of equationsthat can be solved to arbitrary
order.

MAXWELL EQUATIONSAND
BOUNDARY CONDITIONS

The spacetime metric g is given in cylindrical polar co-
ordinates by

g=—-dt@dt+dz@dz+dr@dr+r*dd®do (1)

and the transverse, cross-sectional domain D at fixed ¢ and
z has the induced metric

gL =dr@dr+r*df @ do 2

In spacetime, the Hodge map and exterior derivative are
denoted x and d, and in the transverse domain, they are
denoted by # , andd, . Thetransverse co-derivatived | is
defined as

61 =#"di#un ©)

1We work in the MKS system, with units in which the speed of light
c=1.
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where nw = (—1)Pw for any p-formw and #, 1 = rdr A
de.

The source, moving in the positive z-direction at the speed
of light, has charge density p and 4-velocity field

V=0, +0, 4)

The vacuum Maxwell equations for the spacetime 2-form
F aregiven by

dxF=—L4v (5)
€0

dF =0,

whereV = g(V, —) and g isthe permittivity of free space.
In terms of new co-ordinates

U=z —t,

(=2 (6)
the metric and volume4-formx1 = dt Adz A# 1 1 become

g=d(@du+du®d{—du®@du+gr (7)
xl=dCAdun#.1 (©)

and the velocity 1-form V and its Hodge dual are

V=du «V=dun#,1 9)

Taking the exterior derivative of the second Maxwell equa-
tion impliesthat the charge density isindependent of ¢ and
can thus be written p(r, 6, «). One may uniquely express
F' in terms of 0-forms ®(r, 6, ¢, «) and ¥(r,0,(,u), and
1-forms ay (r,0,¢,u) and B (r,0,¢,u) which are inde-
pendent of d¢ and du:

F=&d¢(ANdu+dura; +d{ABL+TP#11 (10)
Furthermore, one may write [4]
ay =di A+ #1dia, BL=diB+#.dib (11)

for O-forms A(r,0,¢,u), a(r,0,(,u), B(r,0,(,u) and
b(r,0, ¢, u) provided A and B vanish on the boundary 9D.
This condition is compatible with the perfectly conducting
boundary conditionsthat will be imposed on F' below.
Without loss of generality, it proves expedient to re-write
the form of F in terms of six new fields W, X, H 2, H®,
H® and H¥ that will facilitate our subsequent analysis;

A=0,W+0oW—-HP, B=HP-0W

® = 9,H® + 0, H" + O HP — 20, W — OZ W
a=0,X, b=0:X-H*

U =0cH? +0,H? + H' =20, X — 0. X (12
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Thus, the Maxwell equations then reduce to the following
relations:
s diHE =0
duHY = #.1dy (0.HP),
6 A W =207 W — 9ZW
+ O H® + 0, HE + O HB = P(r,0,u)
00dLX =205 X — 0} X + OcH? + 0uHY +H" =0
(13

d HY =#,d H®

whered, P(r,0,u) = %) Thesecond equationin (13)
implies the harmonic eguations

S dyHP =6, d HY =6, d,HE =0 (14)
The waveguide wall is the spacelike hypersurface
f=r—R()=0 (15)

for some smooth function R(¢). We assume a perfectly
conducting boundary condition for F:

AfAF=0 a f=0 (16)

Equation (16) can be satisfied by setting

W=0,X =0, HP=oW, H®=—R(Q)-0X
17)
on the boundary f = 0.

GRADUALLY TAPERING WAVEGUIDE

Consider first aregular cylindrical waveguide with con-
stant radius R(¢) = Ro. AsO¢p = 0, the source and con-
fining geometry are both symmetric with respect to trans-
lations in the O, direction. The simplest solution to the
Maxwell system (13) with the boundary conditions (17) is
then

Xo=H)=HE =HS =HE =0W, =0  (18)
6J_dJ_WO = P(T797U) (19)
with Wy = 0 on the boundary.
A waveguideis defined to be gradually tapering if
fi=r—R()=0 (20)

where e isasmall, dimensionless parameter. Thefieldswill
then vary slowly with ¢. Introducea‘slow’ longitudinal co-
ordinate

s=¢€C (21)

and rewrite all the potentialsin terms of s, using the nota-
tion

x(r,0,¢,u) = X(r,0, 5,u) (22)
where y € {W,X,HE Hb, H® H¥}. Express the po-
tentials in the form of asymptotic seriesin e:

oo
X = Z €" Xn
n=0
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Note 9:x = ex’ (where, from now on, a prime denotes
differentiation with respect to s). The Maxwell equations
(13) with boundary conditions (17) decoupleto yield a hi-
erarchical set of 2-dimensional Laplace and Poisson equa-
tionsfor every order n, and the boundary conditionson 2
and H® depend on (n — 1)-order potentials. This leadsto
a straightforward procedure for calculating the potentials
order-by-order. For n = 0, the only non-zero potential is
W, whichisasolutionto §, d, Wy = P(r,0,u) and van-
ishesat r = R(s).

For every subsequent order of n:

1. Calculate the harmonic potential 72 by solving the
2-dimensional Laplace equation

SLdiHE =0 (24)
subject to the boundary condition?
Hy =W,y ar=R(s) (25)
2. Calculate Hb from 3
diHY = 0u# 1 diHE (26)

3. Calculate the harmonic potential 2 by solving the
2-dimensional Laplace equation

s1diHe =0 (27)
subject to H® = —R’(s)%agf(n_l ar = R(s)
4. Caculate H¥ from
diHE = #.d HE (28)

5. Cdculate the potentid W, by solving the 2-
dimensional Poisson equation

6J_dJ_Wn = WZ72 + 28uW/

n—1

— O HE — O, HE —HE | (29)
where W ,, vanishesat r = R(s).

6. Cdculate the potentid X, by solving the 2-
dimensional Poisson equation

(SJ_dJ_Xn = X;{_2+28uX;1_1—ﬂﬁ—@uﬂﬁ—ﬂi’_l
. . (30)
with 9, X, =0atr = R(s)

2Throughout this section, we are dealing with the transverse Laplacian
6. d . When considering the boundary conditions, s can thus be treated
as a parameter.

3As HE is harmonic, the converse of Poincaré's Lemma guarantees
that a solution exists to (26). 12, is thus defined up to arbitrary functions
of s and u. These are subsequently constrained to zero by the boundary
condition on X,,. By an analogous argument, a unique value for H# can
be obtained from H® using (28).
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EXAMPLE

The method can be used to replicate and extend the
longitudinal impedance* calculation in [2] for a harmonic
Fourier component of atransverse delta-function beam off-
set from the central axis. In our notation, the source term
and impedanceformulaare

Pu(r,0,u) = )\we“""lé(r —19)d(0) (3D
r
Z)(w,r,0,u) = —Zoi—o e~ wudpd¢ (32
€o 1 > 7iwuv
= —ZO——/ dds 33
Aw €

where )\, isthe linear charge density, Z is the impedance
of free space and ® is given by (12). First, W is obtained
by solving 6 d, W = ——pw(r 0, u) subject to Dirichlet
boundary conditionat » = R(s). The solutionis

: 2,2
Wy = _ip(u) In T TO2 + R(s)2 — 2rrgcosf
W R(s)

—1In (r? 4+ r§ — 2rro cos o) } (34)

A

where p(u) := 24—~ Furthermore,

Wh = 2 p(u) ) {1 2} rm(r,e,s>} (35)

m=1

where T,,,(r,6,s) = (é&)m cosmf. Evauating the
potentials according to the procedure in the previous sec-

tion gives HY = Wy, HY = HY = 0 and

(36)

m=1
R - — 2T, (1,0,
= BOR e [14 35 2l
(37
_— R(s) &= 1 ror \"
X1 =p(u) R(s) — 1+m (R(S)Q)
X <r2 - mTHR(sf) sinmd (38)
HE = p(u)R'(s)? |1+ Z 2T1 —:ni 2 ] (39)
HE = ()2 (5)” fj Tminbis) (@0)

1+m

m=1

As can be seen from the equation for ® in (12), H3,
Hy, W4 and X are not required in order to evauate the

4Transverse impedance can be obtained from the Panofsky-Wenzel re-
lation [5].
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impedance to second order. The longitudinal electric field
at this approximationis

1+22T rﬂs)l
27, (r, 0, s)
H_Z 14+m ])

+ R (s <1+4Z THS)H (41)

The longitudinal impedance follows from (33). If the
waveguide aproaches constant radii R, ass — —oo and
Ry ass — oo, then R'(s) = 0 a s = +o0 and the second
line of (41) will not contribute to theintegral. Thus, to this
approximation,

Z = Z04 " {21n——zwe/ R/

h TmR’(s)2d8> }
(42)

After changing variable from s to ¢ and truncating the se-
riesat m = 1, the second-order impedance (42) isidentical
to the tapered cylinder result in [2]. Evaluating W, and
X, and repeating the procedure of the previous section for
n = 3,4,... yields higher order correction terms. The
third order correction turns out to be zero for an asymptot-
ically cylindrical pipe. Thefourth order correctionis

Zogo . o . . 5
2, = 4;/\2 iwe’ [m (A1R(s)* + A2R"(s)*R(s)?)ds
(43)

R(S):RQ

+ n@zz:l (Tm’R(s)—Rl B

4iwe
14+m

where

5 > T K1
A= = M(z 2 1
1 24—&-7;:1 3 m~ 4+ 6m +

— w?(4m — S)KQmR(S)2>

3w,
Ap = = — R

51" 13 )2 + Z Tkim (1 — wQﬁng(s)Q)

m=1
2 . _ 3m2 +8m+6
m(m+ 1)(m—+2)">™ " m(m+ 1)2(m+ 3)
while the fifth order contribution is zero.

Rim =
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