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1 Introduction

Consistency relations are statements which relate the squeezed limit of an (N+1)-point cor-
relation function to an N-point function of cosmological perturbations; i.e., they take the
following schematic form in momentum space:

lim
k→0

〈πkOk1
Ok2

. . .OkN
〉c

′

Pπ(k)
∼ 〈Ok1

Ok2
. . .OkN

〉c
′

, (1.1)

where πk represents a squeezed wavemode (long wavelength) of what turns out to be a
Goldstone boson or pion, Pπ(k) is the power spectrum of the pion (k represents the magnitude
of the vector k), and O represents observables at high momenta k1, . . . ,kN. The symbol
〈. . .〉c

′

denotes the connected correlation function with the overall delta function removed.
Consistency relations can be understood as analogues of ‘soft-pion’ theorems in particle
physics, which arise generally when a symmetry is spontaneously broken/nonlinearly realized.
In the case of cosmology, the symmetries in question are diffeomorphisms (i.e. coordinate
transformations), and consistency relations arise from a particular set of residual symmetries
of a given gauge where the transformation does not fall off at infinity. The first example
of a consistency relation was pointed out by Maldacena [3] in the context of a computation
of the three-point correlation function from inflation. The utility of this as a test of single
field/clock inflation was emphasized by Creminelli & Zaldarriaga [4]. Recent work pointed
out new symmetries and therefore further consistency relations [5, 6], indeed an infinite tower
of them [7], and explicated their non-perturbative nature [8–13].

These consistency relations are extremely robust: they remain valid when the high
momentum modes (O in eq. (1.1)) are deep in the nonlinear regime, and even when the
observables are astrophysically complex (such as galaxy density). This point might appear
academic when applied to (small) perturbations in the early universe, such as are revealed in
the cosmic microwave background. When applied to large scale structure (LSS) in the late
universe, however, the robustness of the consistency relations becomes very interesting. It
thus came as welcome news when Kehagias & Riotto [1] and Peloso & Pietroni [2] (KRPP)
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pointed out that non-trivial consistency relations exist even if all wavemodes (including the
squeezed one) are within the Hubble radius, within the Newtonian regime which is the realm
of LSS (see also [14–21]).

The KRPP consistency relation can be stated in the following form:

lim
k→0

〈vjk(η)Ok1(η1) . . . OkN
(ηN ) 〉c

′

Pv(k, η)
= ikj

N
∑

a=1

D(ηa)

D′(η)

k · ka

k2
〈Ok1(η1) . . . .OkN

(ηN ) 〉c
′

, (1.2)

where vjk is the j-th component of the peculiar velocity in momentum space, Pv is the

velocity power spectrum defined by 〈vik(η) v
j
k′

∗(η)〉 = (2π)3δD(k− k′)(kikj/k2)Pv(k, η),
1 the

observables can be thought of as mass or galaxy overdensity at different momenta and times,
and D and D′ represent the linear growth factor and its conformal time derivative. The
fluctuation variables will in general depend on time, although we will often suppress the time
dependence to simplify the notation: vjk (and its power spectrum) is at conformal time η,
Ok1 is at time η1, and so on. The times need not be equal. The symbol k2 denotes k · k.

We wish to show that the KRPP consistency relation takes a particularly simple form
in Lagrangian space:

lim
p→0

〈vvvp(η)Op1(η1) . . . OpN
(ηN ) 〉c

′

Pv(p, η)
= 0 . (1.3)

Unless otherwise stated, we use p to denote momentum in Lagrangian space and k to denote
momentum in Eulerian space. In other words:

Ok =

∫

d3xO(x)eik·x , Op =

∫

d3qO(x(q))eip·q , (1.4)

where x and q are the Eulerian space and Lagrangian space coordinates respectively.2 In
both cases, we rely on context to distinguish between O in Fourier space and O in configu-
ration space.

Since the velocity vvv (whose j-th component is vj) is nothing other than the time deriva-
tive of the displacement ∆∆∆ in Lagrangian space, we can also rewrite the Lagrangian space
consistency relation as:

lim
p→0

〈∆∆∆p(η)Op1(η1) . . . OpN
(ηN ) 〉c

′

P∆(p, η)
= 0 , (1.5)

where the power spectrum of displacement is defined by 〈∆i
p∆

j
p′

∗〉 = (2π)3δD(p − p′)

(pipj/p2)P∆(p). It is important to emphasize that the Eulerian space consistency relation
(eq. (1.2)) already yields a vanishing right hand side if η1 = η2 . . . = ηN . The Lagrangian
space consistency relation (eq. (1.3) or 1.5), on the other hand, has a vanishing right hand
side regardless of what the times η1, . . . , ηN happen to be. The consistency relation can also
be viewed as a statement about how the squeezed correlation function (normalized by the
soft power spectrum) scales with the soft momentum: the Eulerian space consistency relation
states that such a squeezed correlation function goes like k0 (k is the soft momentum); the

1This form of the velocity power spectrum assumes no vorticity. This is acceptable since Pv(k) is used only
for small k, or large scales, where the growing mode initial condition ensures gradient flow.

2The definitions given apply even in the presence of multiple streaming. See discussion in section 2.1.
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Lagrangian space consistency relation states that there is no p0 term, and at best there is a
pǫ contribution with ǫ > 0.

The simplest way to derive eq. (1.5) is to work out the implications of the KRPP sym-
metry entirely within Lagrangian space. This is done in section 2. We perform a perturbative
check of this Lagrangian space consistency relation using Lagrangian perturbation theory in
section 3.1. Because the Eulerian space and the Lagrangian space relations look so different,
as a further check, we show how one can be obtained from the other in section 3.2. Since
observations are performed in Eulerian, not Lagrangian, space, the fact that the consistency
relation takes a particularly simple form in Lagrangian space is mainly of theoretical interest.
The simplicity of the Lagrangian space consistency relation should not be interpreted as the
lack of physical content, however — in the Lagrangian as well as in the Eulerian picture,
the consistency relation can be viewed as a test of the single-field initial condition and of
the equivalence principle. Rather, the simplicity suggests that an analytical understanding
of nonlinear clustering might be most promising in Lagrangian space. This is discussed in
section 4.

2 The Lagrangian space consistency relation: derivation

After a brief review of notation, we derive our main result — the Lagrangian space consistency
relation — using the background wave argument phrased entirely in Lagrangian space.

2.1 Notation

We use q to denote the Lagrangian space coordinate of a particle, which coincides with its
initial position, and x to denote the Eulerian space coordinate which is its position at a
later time. To be definite, in cases where multiple components are present, the Lagrangian
space coordinate q refers to that of the dark matter particle, which has only gravitational
interactions.3 Both coordinates are defined in comoving space where the expansion of the
universe is scaled out. The (dark matter) displacement ∆∆∆ is the difference:

x (q, η) = q+∆∆∆(q, η) . (2.1)

The (dark matter) velocity is given by the conformal time derivative of ∆∆∆ at a fixed La-
grangian coordinate:

vvv (q, η) =
∂∆∆∆

∂η

∣

∣

∣

q
. (2.2)

The (dark matter) overdensity δ can be obtained by mass conservation, assuming the initial
overdensity is negligible:

1 + δ(x, η) = |J(q, η)|−1 (2.3)

with J (q, η) being the Jacobian relating the volume elements in Eulerian and La-
grangian space:

J(q, η) ≡ det

[

∂xi(q, η)

∂qj

]

. (2.4)

3Our derivation of the Lagrangian space consistency relation would go through even if we chose the La-
grangian coordinate to track other constituents of the universe.
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The Jacobian J as a function of q is well-defined even in the presence of multiple-streaming
— where a single x corresponds to multiple q’s — but eq. (2.3) requires modification in
that case:

1 + δ (x, η) =
∑

x=q+∆∆∆(q,η)

|J (q, η) |−1 , (2.5)

where the sum is over all q’s that reach the same x.

Suppose we have some LSS observableO. This could represent many different quantities,
such as mass overdensity or galaxy number overdensity.4 What we typically observe is O as
a function of x (and possibly time, which we suppress). Given this function O(x), one can
define unambiguously a corresponding function of q: O(x(q)). In other words, suppose we are
interested in the value of O at a Lagrangian location q: we can define it by working out the
x that q maps to, and then evaluating O(x). This procedure is well defined even if multiple
q’s map to the same x, which is expected to happen for dark matter in the nonlinear regime.

Some quantities defined in Lagrangian space, on the other hand, might not have an
unambiguous meaning in Eulerian space. For instance, the velocity vvv given in eq. (2.2) is
defined for a dark matter particle labeled by the Lagrangian coordinate q. At an Eulerian
position x where multiple Lagrangian streams cross, additional inputs are required to define
a velocity; a reasonable definition is:

average vvv =
1

N

∑

x=q+∆∆∆

vvv(q) , (2.6)

where the sum is over all q’s that map to the same x, and N is the number of such q’s. This
gives a mass weighted velocity.

It is interesting to contrast the Fourier transform in Lagrangian versus Eulerian space,
as described by eq. (1.4). In particular, the Eulerian space Fourier transform can be rewritten
as (suppressing time dependence):

Ok =

∫

d3xO(x)eik·x =

∫

d3q J(q)O(x(q))eik·(q+∆∆∆) , (2.7)

where J comes without absolute value; this expression remains valid in the presence of
multiple streaming. Note how an Eulerian space Fourier transform of O(x) can be interpreted
as a Lagrangian space Fourier transform of J(q)O(x(q))eik·∆∆∆.

2.2 Derivation from the displacement symmetry

We now deduce our main result, making use of a master formula derived in an earlier pa-
per [21]. At the heart of the consistency relation is the existence of a nonlinearly real-
ized symmetry, under which some field — the Goldstone boson or pion π — transforms as
π → π+∆lin.π+∆nl.π. Here, ∆lin.π is the part of the transformation that is linear in π, and
∆nl.π is the part of the transformation that is independent of π (i.e., nonlinear in π, though
‘sub-linear’ or ‘inhomogeneous’ would be a better description). The fact that ∆nl.π 6= 0 is
the sign of a nonlinearly realized, or spontaneously broken, symmetry. At the same time,

4 Unless otherwise stated, whenever we discuss mass or galaxy density, we mean the mass or galaxy count
per unit Eulerian space volume. Such a quantity can of course be expressed as a function of either Eulerian
space coordinate x or Lagrangian space coordinate q.
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there are other fields or observables O that could have their own linear and/or nonlinear
transformations. The master formula (in momentum space) reads [21]:

∫

d3p

(2π)3
〈πpOp1

· · · OpN
〉c

Pπ(p)
∆nl.π

∗

p = ∆lin.〈Op1
· · · OpN

〉c , (2.8)

where 〈. . .〉c refers to the connected correlation function without removing the overall delta
function (as opposed to 〈. . .〉c

′

which has the delta function removed). Note how it is the
nonlinear transformation of π and the linear transformation of O that show up on the left and
the right respectively. Note also that the O’s need not even be the same observable. Nor do
π and the O’s need be at the same time: they can be at arbitrary, potentially different, times.
The derivation of this master formula made no assumption about whether the quantities (or
the Fourier transform thereof) are defined in Eulerian or Lagrangian space. We are thus free
to use it in either. This master relation can be used to derive the large scale structure analog
of Ward identities or soft-pion theorems in particle physics.

As a warm-up, let us first apply this formula to a simple system that involves the dark
matter only. The dynamics is described by: (1) x = q+∆∆∆ as in eq. (2.1); (2) the dark mater
overdensity δ determined by the Jacobian as in eq. (2.5); (3) the displacement ∆∆∆ which
evolves according to:

∂2∆∆∆

∂η2

∣

∣

∣

q
+

a′

a

∂∆∆∆

∂η

∣

∣

∣

q
= −∇∇∇xΦ , (2.9)

where a is the scale factor, a′ is its derivative with respect to conformal time η, Φ is the
gravitational potential and ∇∇∇x is the partial derivative with respect to x; lastly (4) the
Poisson equation:

∇2
xΦ = 4πGa2ρ̄δ , (2.10)

where G is the Newton constant and ρ̄ is the mean mass density.
This system has the following symmetry:

q → q , ∆∆∆ →∆∆∆+ n(η) , Φ → Φ−

(

n′′ +
a′

a
n′

)

· x , (2.11)

where n(η) is a function of time alone. We will refer to this as the displacement symmetry.
Note how ∆∆∆ shifts by a nonlinear (or sub-linear) amount and can be thought of as our
Goldstone boson. The same is true for Φ. The interesting point is that the mass overdensity
δ does not transform at all under this symmetry. Nor are q or η transformed. Applying the
master formula, choosing the observable O = δ, we thus find:

lim
p→0

〈∆∆∆pδp1
. . . δpN

〉c
′

P∆(p)
= 0 . (2.12)

Here, we have used the fact that the nonlinear transformation of ∆∆∆ in Fourier space is
∆nl.∆∆∆p = n(η)(2π)3δD(p), where δD(p) is the Dirac delta function. We have also removed
the overall momentum-conserving delta function. The power spectrum of displacement P∆

is as defined in section 1.
Two comments are in order before we proceed to generalize this derivation to more

realistic, astrophysically complex observables. First, while the Lagrangian coordinate q does
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not transform under the symmetry of interest, the Eulerian coordinate x = q + ∆∆∆ does,
because the displacement ∆∆∆ shifts. This implies that an observable like δ, when expressed
as a function of x, transforms as: δ → δ + ∆lin.δ with ∆lin.δ = ∆∆∆ · ∇∇∇δ. Plugging this into
the master formula eq. (2.8), we see that there is a non-vanishing right hand side, unlike
the situation in Lagrangian space where δ expressed as a function of q does not shift at all.
The is the fundamental reason why the KRPP consistency relation takes a more complicated
form in Eulerian space (eq. (1.2)) than in Lagrangian space (eq. (2.12)).

Second, the reader might wonder about the validity of our application of the master
formula: on the one hand, the master relation is phrased in terms of a scalar pion; on the
other, our application effectively uses the vector displacement ∆∆∆ as the pion. The short
answer is that the master formula is applicable to any field π that shifts nonlinearly under
the symmetry of interest; one can use it for each component of ∆∆∆ for instance. The long
answer is: since ∆∆∆ is used in the consistency relation only as a soft (long wavelength) mode,
one is justified in treating it as a gradient mode (assuming growing mode initial condition)
with ∆∆∆ = ∇∇∇qπ with π playing the role of the displacement potential. The master formula
can then be applied with the displacement potential as the pion. The resulting consistency
relation can be shown to be equivalent to the one we have derived.5

Let us turn to the derivation of a stronger form of the Lagrangian space consistency
relation. So far, we have focused on a simple system of dark matter particles that interact
only gravitationally, as embodied in eqs. (2.9) and (2.10). Let us consider the addition of
galaxies into the mix. They have their own number overdensity δg, displacement ∆∆∆g and
velocity vg = ∆∆∆′

g. Their number density is not necessarily conserved by evolution, since
galaxies can form and merge:

δ′g + (1 + δg)∇∇∇x · vg = Rg , (2.13)

where ′ refers to conformal time derivative at a fixed Lagrangian coordinate and Rg is a
source term that incorporates the formation and merger rates. The equation of motion for
the galaxies is:

∆∆∆′′

g +
a′

a
∆∆∆′

g = −∇∇∇xΦ+ Fg , (2.14)

where Fg encodes additional forces that might act on galaxies, such as gas pressure, dynamical
friction et cetera. The gravitational potential Φ is determined of course by the Poisson
equation (2.10) as before.

The displacement symmetry of eq. (2.11) can be extended to include also:

∆∆∆g →∆∆∆g + n(η) , (2.15)

which also implies vg → vg+n′. The galaxy overdensity δg, like its dark matter counterpart,
does not transform under this symmetry. Eqs. (2.11) and (2.15) represent the displacement
symmetry of the combined dark-matter-galaxies system, as long as Rg and Fg depend only
on (dark matter/galaxy) densities and gradients of (dark matter/galaxy) velocities — recall
that neither shifts under our symmetry. What happens if Rg and/or Fg depends on veloc-
ities as opposed to gradients of velocities? In that case, shifting velocities by a spatially

5There are actually two different nonlinear realized symmetries associated with the displacement potential.
One is shifting it by a constant or a function of time (but not space). The other is shifting it by a linear gradient,
i.e., π → π + n · q where n is the same as that in eq. (2.11). There are as a result two consistency relations
which can be succinctly combined into one, eq. (2.12). See our earlier paper [21] for further discussions.
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constant amount would affect the galaxy formation and dynamics — this is a violation of the
equivalence principle which states that local physical processes (such as galaxy formation,
mergers and motion) should not be dependent on the absolute state of motion. Note that
a dependence on the dark-matter-galaxy velocity difference v − vg, on the other hand, is
consistent with the equivalence principle, and the velocity difference is indeed unchanged
under our symmetry. Thus, as long as the equivalence principle is respected, whether Rg

and Fg depend on densities, gradients of velocities or velocity differences, the displacement
symmetry holds. Furthermore, the same statement is expected to be valid in a system with
many different species, such as baryons, galaxies or even dark matter of different kinds. The
argument that leads to eq. (2.12) can be rerun to give the more general Lagrangian space
consistency relation:

lim
p→0

〈∆∆∆p(η)Op1(η1) . . . OpN
(ηN ) 〉c

′

P∆(p, η)
= 0 , (2.16)

where O is any observable that has no linear shift under the displacement symmetry —
this includes for instance the densities, displacements and velocities of the galaxies and of
dark matter.6 Note that the O’s need not be the same observables. We have restored the
explicit time-dependence of each fluctuation variable to emphasize the fact that the times
need not be equal. Note also that we have chosen the dark matter displacement to be the
pion. We could have chosen the galaxy displacement instead. Assuming that gravity is the
dominant interaction on large scales and adiabatic initial conditions, the two displacements
are expected to coincide in any case in the soft limit.7 Furthermore, we could have chosen
the velocity instead of the displacement as the soft-pion, in which case eq. (1.3) follows.

3 The Lagrangian space consistency relation: checks

The above derivation of the Lagrangian space consistency relation is a bit terse, and the form
the relation takes is surprisingly simple. It is thus worth performing some non-trivial checks
of the relation. We will first do this using second order Lagrangian perturbation theory
(section 3.1). Then, in section 3.2, we demonstrate how the Eulerian space consistency
relation can be derived from its counterpart in Lagrangian space.

3.1 Perturbative check

Let us perform an explicit check of eq. (2.16) using second-order Lagrangian space perturba-
tion theory. For simplicity, we will focus on the case where the only species present is dark
matter and the observable O = δ. We will confine the discussion to the squeezed three-point
function; extension to a general (N+1)-point function is straightforward. Expanding eq. (2.3)
to second order, we have

δ(x(q, η), η) = −∇q ·∆∆∆+
1

2
(∇q ·∆∆∆)2 +

1

2
∇qi∆∆∆j∇qj∆∆∆i . (3.1)

6The reader might wonder: given that the Lagrangian coordinate q does not get transformed at all under
the displacement symmetry, is there any observable that has a linear shift? The answer is yes. For instance,
the combination O = vδ transforms to (v + n

′)δ giving a shift that is linear in the fluctuation variable δ.
7The consistency relations will be violated in the presence of a primoridal velocity bias between different

species, and selection effects may introduce such a bias; see [21] for a more detailed discussion. See also
e.g. [22] for an explicit calculation of the velocity and density of biased tracers in the soft limit.
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Expanding out δp = δ
(1)
p + δ

(2)
p + · · · , ∆∆∆p = ∆∆∆

(1)
p +∆∆∆

(2)
p + · · · , and plugging into eqs. (2.9)

and (2.10), we have [23]:

∆j
p
(1)(η) =

−i pj

p2
δ
(1)
p (η) ,

∆j
p
(2)(η) =

1

2

D2(η)

D(η)2
i pj

p2

∫

d3pAd
3pB

(2π)3
δD(pA + pB − p)

×

(

1−
(pA · pB)

2

p2Ap
2
B

)

δ
(1)
pA

(η)δ
(1)
pB

(η) ,

δ
(2)
p (η) =

1

2

∫

d3pAd
3pB

(2π)3
δD(pA + pB − p)

×

(

1−
D2(η)

D(η)2
+

(pA · pB)
2

p2Ap
2
B

[

1 +
D2(η)

D(η)2

])

δ
(1)
pA

(η)δ
(1)
pB

(η) ,

(3.2)

where D is the linear growth factor determining the time-dependence of the first order dis-
placement (and density), and D2 is the second order growth factor determining that of the
second order displacement. They satisfy the equations:

D′′ +
a′

a
D′ − 4πGa2ρ̄D = 0 ,

D′′

2 +
a′

a
D′

2 − 4πGa2ρ̄D2 = −4πGa2ρ̄D2 . (3.3)

For instance, in a flat universe with Ωm = 1, D2 = −3D2/7. Using these expressions, we can
work out the lowest order contributions to the relevant squeezed bispectrum:

〈∆j
p(η)δp1(η1)δp2(η2)〉 = 〈∆j

p
(2)(η)δ

(1)
p1 (η1)δ

(1)
p2 (η2)〉+ 〈∆j

p
(1)(η)δ

(2)
p1 (η1)δ

(1)
p2 (η2)〉

+ 〈∆j
p
(1)(η)δ

(1)
p1 (η1)δ

(2)
p2 (η2)〉

= O(pj) +O(pjP∆(p)) ,

(3.4)

where we spell out the dependence on the soft momentum p: the O(pj) piece comes from the
first term on the right in the first line, and the O(pjP∆(p)) piece comes from the other two
terms. We have used the fact that 1 − [(pA · pB)

2/p2Ap
2
B] = O(p2) for pA + pB = p. The

O(pjP∆(p)) piece is obviously compatible with the Lagrangian space consistency relation; i.e.,
it gives 〈∆j

pδp1δp2〉
c′/P∆(p) = 0 in the p → 0 limit. The O(pj) piece does the same, provided

the power spectrum P∆(p) is not too blue. Parameterizing the power spectrum P∆(p) ∝ pn−2

in the low momentum limit, the consistency relation holds as long as n < 3. Exactly the
same condition is needed for the Eulerian space consistency relation (see e.g. [21]).8

8The Eulerian space consistency relation is often given in a form where δ is used as the soft mode. One
might be tempted to do the same for the Lagrangian space consistency relation. However, one can check using
perturbation theory that such a consistency relation would have required n < 1, a condition considerably
stronger than expected. This is related to the fact that δ

(2)
p does not vanish in the p → 0 limit, unlike ∆j

p
(2).
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3.2 Recovering the Eulerian space consistency relation from Lagrangian space

The consistency relation takes such a different form in Lagrangian versus Eulerian space that
it is worth considering how one can be derived from the other. Let us compute the following:

E ≡ EL + ER

EL ≡ lim
k→0

〈vjk(η) δk1(η1) δk2(η2) 〉
c′

Pv(k, η)
,

ER ≡ − ikj
2

∑

a=1

D(ηa)

D′(η)

k · ka

k2
〈δk1(η1) δk2(η2) 〉

c′ .

(3.5)

The Eulerian space consistency condition is the statement that E = 0. We will content
ourselves with deriving this — a special case of the more general Eulerian space consistency
relation (1.2) — from the Lagrangian space consistency relation.

To relate E to quantities in Lagrangian space, we will slightly abuse our notation. So
far, we have been using k for the Eulerian space momentum and p for the Lagrangian space
momentum. For instance, δk1 is defined as

δk1 =

∫

d3x δ(x) eik1·x . (3.6)

Let us rewrite this as

δk1=p1 =

∫

d3q J(q) δ(x(q)) eip1·(q+∆∆∆(q))

=

∫

d3q J(q) δ(x(q)) eip1·q + ipm1

∫

d3q J(q) δ(x(q))∆m(q) eip1·q

−
1

2
pm1 pn1

∫

d3q J(q) δ(x(q))∆m(q)∆n(q) eip1·q + . . . ,

(3.7)

where J(q) is defined by eq. (2.4) (with no absolute value). Defining

δ̃(q) ≡ J(q)δ(x(q)) , (3.8)

we see that the first term on the right of eq. (3.7) is δ̃p1 , i.e. the Fourier transform of
δ̃ in Lagrangian space. The other terms on the right can likewise be thought of as the
Fourier transform of some quantity in Lagrangian space. This is why we introduce p1 as the
momentum label for these Fourier components. On the other hand, upon summation, they
give the quantity on the left δk1=p1 which is the Fourier transform of density in Eulerian space

— this is why we use k1 as its momentum label; it just happens to take on the numerical
value p1 which conveniently gives us the appropriate momentum label for quantities on the
right. It is worth emphasizing that our definitions are general, in that they are valid even in
the presence of multiple-streaming (see section 2.1).

The expansion in terms of ∆ in eq. (3.7) is purely formal. In the nonlinear regime,
there is no sense in which ∆ is small. The expansion provides a convenient way to relate the
Fourier transform in Eulerian space to the Fourier transform in Lagrangian space. We will
argue E = 0 holds to arbitrary order in a power series expansion.

For the soft mode, we have

vjk=p = vjp + . . . , (3.9)
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This is where our abuse of notation is the most egregious: on the left is the velocity Fourier
transformed in Eulerian space; on the right is the velocity Fourier transformed in Lagrangian
space. They agree only to lowest order in perturbations. For the soft-mode, ignoring the
higher order corrections is permissible: the higher order corrections will give higher powers
of the soft momentum p compared to what is kept in the consistency relation, provided that
the soft power spectrum Pv(p) or P∆(p) is not too blue (see section 3.1). Similarly, it can be
shown that in the soft limit, there is no need to distinguish between Pv in Lagrangian versus
Eulerian space.9

Let us substitute eq. (3.7) for the hard modes, and eq. (3.9) for the soft mode, into the
expression for E in eq. (3.5). Consider first what contributes to EL:

〈vjk=pδk1=p1δk2=p2〉

= 〈vjpδ̃p1 δ̃p2〉+

[

ipm1

∫

d3pA

(2π)3
〈vjp∆

m
pA

(η1)δ̃p1−pA
δ̃p2〉+ 1 ↔ 2

]

−

[

pm1 pn2

∫

d3pA

(2π)3
d3pB

(2π)3
〈vjpδ̃p1−pA

∆m
pA

(η1)δ̃p2−pB
∆n

pB
(η2)〉 (3.10)

+

[

1

2
pm1 pn1

∫

d3pA

(2π)3
d3pB

(2π)3
〈vjpδ̃p1−pA−pB

∆m
pA

(η1)∆
n
pB

(η1)δ̃p2〉+ (1 ↔ 2)

]]

+O(∆3) + . . .

where we have largely suppressed the time-dependence to minimize clutter (η for the soft
mode, and η1 and η2 respectively for the hard modes), except for variables with internal
momenta. We emphasize that the expansion in ∆ is purely formal, and comes entirely from
expanding eip1·∆∆∆ or eip2·∆∆∆. The first term on the right can be set to zero by virtue of the
Lagrangian space consistency condition (keeping in mind that this term is divided by Pv(p)
as part of the quantity EL). We will be assuming the Lagrangian space consistency relation
in its general form (eq. (1.3)):

lim
p→0

〈vvvp(η)Op1(η1) . . . OpN
(ηN ) 〉c

′

Pv(p, η)
= 0 , (3.11)

where the observables at hard momenta need not be the same observable. Finally, note
that while we are interested in the connected part of the correlator on the left hand side of
eq. (3.10), the correlators on the right hand side are the full correlators, minus the contri-
butions where some proper subset of the original hard and soft momenta sum to zero. In
particular, the correlators on the right hand side of eq. (3.10) contain both connected and
disconnected pieces.

The second term on the right of eq. (3.10), formally O(∆), equals

ipm1

∫

d3pA

(2π)3

[

〈vjp∆
m
pA

(η1)〉〈δ̃p1−pA
δ̃p2〉

+ 〈vjpδ̃p1−pA
〉〈∆m

pA
(η1)δ̃p2〉+ 〈vjpδ̃p2〉〈∆

m
pA

(η1)δ̃p1−pA
〉

+ 〈vjp∆
m
pA

(η1)δ̃p1−pA
δ̃p2〉

c

]

+ (1 ↔ 2) ,

(3.12)

9It is also worth emphasizing that the notion of a well-defined velocity in Eulerian space is valid only when
multiple-streaming is ignored. This is acceptable for the soft-mode. We do not assume single-streaming for
the hard modes.
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where the connected trispectrum term 〈vjp . . .〉c (anticipating division by Pv(p)) can be set to
zero using the Lagrangian space consistency relation, the terms involving 〈vjpδ̃p1−pA

〉, 〈vjpδ̃p2〉
and the like have one more power of the soft momentum p (and are thus subdominant)
compared to terms involving 〈vjp∆m

pA
〉 which give:

(2π)3δD(p1 + p2 + p)Pv(p, η) ip
j D(η1)

D′(η)

p1 · p

p2
〈δ̃p1+p(η1)δ̃p2(η2)〉

c′ + (1 ↔ 2) . (3.13)

The third term on the right of eq. (3.10), formally O(∆2), can be treated in a similar
way: some can be ignored by assuming the Lagrangian space consistency relation, some are
subdominant in the soft-limit (i.e., they vanish upon division by Pv(p) and sending p → 0),
and the dominant terms are those that involve 〈vjp∆〉 which give:

− (2π)3δD(p1 + p2 + p)Pv(p, η)

×

∫

d3pA

(2π)3

[

pjpm2
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1+p(η1)δ̃p2−pA

(η2)∆
m
pA

(η2)〉
c′

+ pjpm1
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1+p−pA

(η1)δ̃p2(η2)∆
m
pA

(η1)〉
c′ + (1 ↔ 2)

]

.

(3.14)

Thus, combining eqs. (3.13) and (3.14), EL of eq. (3.5) can be rewritten as:

EL ≡ lim
p→0

〈vjk=p(η) δk1=p1(η1) δk2=p2(η2) 〉
c′

Pv(p, η)

= ipj
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1(η1)δ̃p2(η2)〉

c′

−

∫

d3pA

(2π)3

[

pjpm2
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1(η1)δ̃p2−pA

(η2)∆
m
pA

(η2)〉
c′

+ pjpm1
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1−pA

(η1)δ̃p2(η2)∆
m
pA

(η1)〉
c′
]

+ (1 ↔ 2) + . . . .

(3.15)

Next, let us rewrite ER using the same strategy:

ER ≡− ipj
2

∑

a=1

D(ηa)

D′(η)

p · pa

p2
〈δk1=p1(η1) δk2=p2(η2) 〉

c′

=− ipj
D(η1)

D′(η)

p · p1

p2
〈δ̃p1(η1) δ̃p2(η2) 〉

c′

+

∫

d3pA

(2π)3

[

pjpm2
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1(η1)δ̃p2−pA

(η2)∆
m
pA

(η2)〉
c′

+ pjpm1
D(η1)

D′(η)

p1 · p

p2
〈δ̃p1−pA

(η1)δ̃p2(η2)∆
m
pA

(η1)〉
c′
]

+ (1 ↔ 2) + . . . .

(3.16)

Thus, we see that E ≡ EL + ER = 0, at least to the two lowest non-trivial orders in ∆.
The cancelation works like this: expanding eip1·∆∆∆ and eip2·∆∆∆ as a formal power series in ∆, a
given order for EL is canceled by one lower order for ER. It can be shown that this pattern
continues to arbitrarily high orders. The proof is given in the appendix. This completes
our derivation of the Eulerian space consistency relation, embodied in the statement E = 0
(eq. (3.5)), from the Lagrangian space consistency relation (eq. (3.11)).
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4 Discussion

We have shown that the consistency relation takes a particularly simple form in Lagrangian
space: the squeezed correlation function, suitably normalized, vanishes (eqs. (1.5)):

lim
p→0

〈∆∆∆p(η)Op1(η1) . . . OpN
(ηN ) 〉c

′

P∆(p, η)
= 0 , (4.1)

where ∆ is the displacement, and O can be many different observables such as mass or
galaxy density; the quantities can be at different times, and p,p1,p2, . . . label the momenta
with p being the soft one.10 The derivation given in section 2.2 is fully non-perturbative
and is valid even in the presence of multiple-streaming. It makes use of a master formula
that was derived in an earlier paper [21], which relates an (N+1)-point function to the linear
transformation of an N-point function, for a general nonlinearly-realized symmetry (eq. (2.8)).
The key realization is that the nonlinearly-realized symmetry of interest — the displacement
symmetry — does not require transforming the Lagrangian coordinate q (eq. (2.11)):

q → q , ∆∆∆ →∆∆∆+ n(η) , Φ → Φ−

(

n′′ +
a′

a
n′

)

· x , (4.2)

where ∆∆∆ is the displacement, n is some function of time, Φ is the gravitational potential,
a is the scale factor and x is the Eulerian coordinate.11 Thus, many observables O such
as the mass density or the galaxy density,12 when expressed as functions of the Lagrangian
coordinate q, do not receive linear transformations, and so the right hand side of the master
formula vanishes.13 This contrasts with what happens when these observables are thought of
as functions of the Eulerian coordinate x; they receive linear transformations because under
the same symmetry

x → x+ n(η) . (4.3)

It is worth mentioning that the observables O can even be quantities in redshift space.
For instance, the redshift space mass density δs(s), where s is the redshift space coordi-
nate, can always be written as a function of q, just like what we have done for the real
(Eulerian) space mass density. This works even in the presence of (real or redshift-space)
multiple-streaming.

It is worth reviewing the assumptions behind the master formula: it assumes (1) single-
field/clock initial condition — that which follows from single-field inflation — and (2) the
adiabatic mode condition (first emphasized in [24]) — that the (displacement) mode gener-
ated by the symmetry of interest is the long wavelength limit of an actual physical mode. In
particular, the latter condition requires that n(η) have the same time dependence as the linear
growth factor D(η).14 This is the reason why the growth factor shows up on the right hand

10See also eq. (1.3) with velocity vvv as the soft mode.
11If there are multiple species present such as dark matter and galaxies, the same transformation applies to

the displacement of all species. See eq. (2.15).
12See footnote 4.
13Note that even quantities such as ∆ or Φ have no linear shift (a shift that is linear in fluctuation variables).

More complicated observables could have a linear shift; see footnote 6.
14In the presence of multiple species, such as dark matter and galaxies, the fact that the displacements for

all species have to be transformed by the same n(η) ∝ D(η) is a manifestation of the equivalence principle:
all species fall at the same rate on large scales.
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side of the Eulerian space consistency relation (eq. (1.2)). It is interesting that because the
Lagrangian space consistency relation has a vanishing right hand side, the time-dependence
of n(η) has no direct bearing on the form it takes.

An important point: the fact that the consistency relation can be written in such a
simple, even trivial, form in Lagrangian space should not be taken to imply the lack of physical
meaning. Indeed, the consistency relation can be violated if the initial conditions were not
of the single-field/clock type. Rather, the simplicity suggests that an analytic understanding
of nonlinear clustering is perhaps more promising in Lagrangian space. This view has a long
history, starting from Zeldovich [25]. What is interesting is that the consistency relation,
by virtue of its being a symmetry statement, is non-perturbative, and thus goes beyond
perturbative treatments such as the Zeldovich approximation.

Ultimately, observations are performed in Eulerian space, not Lagrangian space. At
the nonlinear level, the relation between the two descriptions is complex. Our derivation
of the consistency relation in Eulerian space from its counterpart in Lagrangian space is a
case in point (section 3.2). It requires a formal series expansion in the displacement ∆. In
relating the two descriptions, the expansion in ∆ is done in an uneven manner: only phase
factors such as eip1·∆∆∆ are expanded even though other variables, such as the density δ, also
depend on the displacement. This is not unexpected in relations that are purported to be
non-perturbative — partial resummation of perturbations is often a useful technique. Can
our example point to a useful, new resummation scheme?

A natural question is whether there are relativistic generalizations of statements like
eq. (4.1) — consistency relations with a vanishing right hand side. The Lagrangian coordinate
(attached to dark matter particles) is essentially the freely-falling coordinate.15 Indeed [27]
showed that using the freely-falling coordinate, the dilation consistency relation [3] can be
rewritten in a similarly simple form (see also [28]). Their derivation is perturbative. It should
be possible to extend their proof using the non-perturbative arguments presented here. More
generally, it would be interesting to see if further general relativistic consistency relations,
such as those found by [7], can also be recast in this fashion.
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A Recovering the Eulerian space consistency relation from Lagrangian

space — To arbitrary orders in displacement

In section 3.2, we argue that the Eulerian space consistency relation follows from its La-
grangian space counter-part, at least to the two lowest non-trivial orders in a formal expan-
sion in displacement. In this appendix, we show that this works to arbitrary orders.

We begin by expanding eq. (3.7) to all orders in ∆:

δk1=p1 =

∫

d3q J(q) δ(x(q)) eip1·(q+∆∆∆(q))

=
∞
∑

n=0

in

n!
pi11 · · · pin1

∫

pj1
,··· ,pjn

δ̃p1−pj1
−···−pjn

∆i1
pj1

· · ·∆in
pjn

(A.1)

15See [26] for a recent discussion of freely falling coordinates in cosmological settings.
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where as before, δ̃(q) = J(q)δ(x(q)). Collecting together the terms of order ∆n in the
three-point correlator 〈vjp(η)δp1(η1)δp2(η2)〉 in EL, we have

n
∑

m=0

im

m!

in−m

(n−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2

×

∫

pj1
,··· ,pjn

〈vjp(η)δ̃p1−pj1
−···−pjm

(η1)∆
i1
pj1

(η1) · · ·∆
im
pjm

(η1)

· δ̃p2−pjm+1
−···−pjn

(η2)∆
im+1
pjm+1

(η2) · · ·∆
in
pjn

(η2)〉

(A.2)

where the correlator in the integral is the full correlator containing both connected and
disconnected pieces, but where no proper subset of the original momenta p,p1,p2 sums to
zero, since it is the connected correlator that appears in EL. The correlator can be split into
a sum over products of connected blocks. Anticipating division by Pv(p), we see that the
Lagrangian space consistency relation implies that all contributions where the soft velocity
vj(p) is part of a connected correlator with two or more other fields will vanish. The remaining
terms contain a factor of either

〈vj(p)δ̃p1−···〉 , 〈v
j(p)δ̃p2−···〉 , 〈v

j(p)∆pj
(η1)〉 , 〈v

j(p)∆pj
(η2)〉 . (A.3)

The first two types of terms will be suppressed by an additional power of the soft momentum,
and are subdominant in the squeezed limit. The final set of terms are

n
∑

m=0

im

m!

in−m

(n−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2

∫

pj1
,··· ,pjn

[

m〈vjp(η)∆
i1
pj1

(η1)〉〈δ̃p1−pj1
−···−pjm

(η1)

·∆i1
pj1

(η1) · · ·∆
im
pjm

(η1)δ̃p2−pjm+1
−···−pjn

(η2)∆
im+1
pjm+1

(η2) · · ·∆
in
pjn

(η2)〉

]

+ (1 ↔ 2) (A.4)

and they give (relabeling m as m+ 1)

[

ipj
p · p1

p2

D(η1)

D′(η)

n−1
∑

m=0

in−1

m!(n−1−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2

∫

pj1
,··· ,pjn

〈δ̃p1+p−pj1
−···−pjm

(η1)

·∆i1
pj1

(η1) · · ·∆
im
pjm

(η1)δ̃p2−pjm+1
−···−pjn

(η2)∆
im+1
pjm+1

(η2) · · ·∆
in
pjn

(η2)〉

]

+ (1 ↔ 2) (A.5)

Comparing this to the order ∆n−1 terms in the expansion of ER,

[

− ipj
p · p1

p2

D(η1)

D′(η)

n−1
∑

m=0

in−1

m!(n−1−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2

∫

pj1
,··· ,pjn

〈δ̃p1−pj1
−···−pjm

(η1)

·∆i1
pj1

(η1) · · ·∆
im
pjm

(η1)δ̃p2−pjm+1
−···−pjn

(η2)∆
im+1
pjm+1

(η2) · · ·∆
in
pjn

(η2)〉

]

+ (1 ↔ 2) (A.6)

the terms cancel in the p → 0 limit to give EL + ER = 0 order by order in the formal
expansion in ∆, Q.E.D.
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