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Abstract

Macroautophagy is a conserved mechanism for the bulk degradation of proteins and organelles. Pathological studies have
implicated defective macroautophagy in neurodegeneration, but physiological functions of macroautophagy in adult
neurons remain unclear. Here we show that Atg7, an essential macroautophagy component, regulates dopaminergic axon
terminal morphology. Mature Atg7-deficient midbrain dopamine (DA) neurons harbored selectively enlarged axonal
terminals. This contrasted with the phenotype of DA neurons deficient in Pten – a key negative regulator of the mTOR
kinase signaling pathway and neuron size – that displayed enlarged soma but unaltered axon terminals. Surprisingly,
concomitant deficiency of both Atg7 and Pten led to a dramatic enhancement of axon terminal enlargement relative to
Atg7 deletion alone. Similar genetic interactions between Atg7 and Pten were observed in the context of DA turnover and
DA-dependent locomotor behaviors. These data suggest a model for morphological regulation of mature dopaminergic
axon terminals whereby the impact of mTOR pathway is suppressed by macroautophagy.
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Introduction

Macroautophagy is an intracellular protein degradation mech-

anism that engulfs cytoplasmic constituents and entire organelles

within double-membrane vesicles and delivers these to lysosomes

[1,2]. Genetic deletion of the essential macroautophagy compo-

nents Atg5 or Atg7, during mouse central nervous system (CNS)

development, leads to neuronal loss and inclusion formation [3,4].

Furthermore, Atg7 deficiency confined to cerebellar Purkinje cells

leads to dystrophic axons and subsequent cell death within several

weeks [5,6]. In addition to pathological roles, protein degradation

pathways may also play important physiological functions in

neurons. Several studies have underscored the role of cytoplasmic

protein degradation through the ubiquitin-proteosome system

(UPS) in the regulation of neuronal morphology and function [7].

However, the role of macroautophagy in this context is unclear.

A key regulator of neuronal morphology and size is PTEN

(phosphatase and tensin homolog) [8,9], an intracellular lipid

phosphatase that opposes phosphatidylinositide 3-kinase (PI3K)

activity. Deletion of Pten in mouse hippocampus neurons

disinhibits the mTOR (mammalian target of rapamycin) signaling

pathway, leading to morphological enlargement as well as altered

synaptic plasticity and plasticity-related behaviors [10–13].

mTOR is a major activator of protein translation as well as a

key inhibitor of macroautophagy, but the relative contribution of

these different downstream mechanisms on neuronal size remain

unclear. Thus, we hypothesized that altered macroautophagy may

play a role in the regulation of neuronal morphology and function

in the mammalian CNS, either downstream of or in conjunction

with the PTEN/PI3K/mTOR pathway.

Cell size regulation in the mammalian CNS appears to be

highly dependent on developmental stage, cell type, and subcel-

lular region. The deletion of Pten at embryonic stages leads to a

profound enlargement of neurons and glia [10,11], whereas the

deletion at later developmental stages – such as postnatally or in

young adult animals – appears to have a lesser impact [12,13].

Postnatal deletion of Pten in certain neuronal subtypes fails to alter

the size of neurite processes [13–15], suggesting selective

subcellular and developmental regulatory mechanisms. For

instance, deletion of Pten in post-mitotic midbrain dopamine

(DA) neurons leads to soma hypertrophy, but axonal terminal

morphology appears unaltered [14,15].

Here we investigated the role of Atg7 and macroautophagy in

the regulation of mature midbrain DA neuron morphology, and

contrasted this with the impact of the PI3K/mTOR pathway.

Atg7 deficiency in mature DA neurons led to enlargement of axon

terminals, whereas DA neuron soma size was only modestly

altered. This phenotype was distinct from that of Pten-deficient
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mature midbrain DA neurons, which showed robust soma

hypertrophy but no significant alteration at axon terminals.

Mature midbrain DA neurons deficient in both Pten and Atg7

showed a dramatic enhancement of the axon terminal enlarge-

ment phenotype seen with Atg7 deficiency alone. A similar

synergistic genetic interaction was similarly observed between Pten

and Atg7 in the context of DA metabolism (turnover) in the

striatum, and with respect to DA-associated locomotor behaviors.

Taken together, these data support a model whereby macro-

autophagy activity normally limits the impact of the PTEN/

PI3K/mTOR pathway, such that mature dopaminergic axon

terminals are unaffected by Pten loss. However in the absence of

macroautophagy activity, the impact of the PI3K/mTOR

pathway is unmasked and leads to a profound further enlarge-

ment.

Results

Generation of Atg7 deficient mice specifically within
mature midbrain DA neurons

Mice deficient in Atg7 specifically within mature midbrain DA

neurons (DatCre/+Atg7flox/flox [Atg7 cKO]) were generated [16] by

interbreeding mice that express Cre recombinase (CRE) under the

dopamine transporter promoter (DatCre/+, Figure 1B) [17] with

mice that harbor Atg7 allele flanked by loxP sites (Atg7flox/flox,

Figure 1A) [18]. Mutant animals appeared grossly normal and

survival was not significantly altered (data not shown). To confirm

alteration in macroautophagy activity, we initially quantified the

lipidated conversion of LC3 (LC3-II), a marker for autophago-

some formation that is dependent on Atg7, in crude extracts from

2-month-old midbrain tissues including substantia nigra

(Figure 1C). LC3 conversion was significantly reduced in Atg7

cKO mouse midbrains (Figure S1A). Reduction in LC3-II was

only partial, likely due to ATG7 activity in non-dopaminergic

midbrain cells. Atg7 cKO mice displayed a normal number [16]

and gross appearance of tyrosine hydroxylase (TH)-positive DA

neurons in the substantia nigra at 1-month of age (Figure 1D). As

shown in our prior paper, the number of TH-positive DA neurons,

however, declined progressively from 2 month of age, and

approximately 50% of TH-positive cells were lost by 1 year of

age [16]. Furthermore, ubiquitin (Ub)- and p62-positive inclusions

were apparent in Atg7 cKO DA neuron cell bodies and dendrites

from 1-month of age (Figure 1D) [16].

Midbrain DA neurons lacking Atg7 display enlarged axon
terminals

Grossly enlarged TH-positive dopaminergic axon terminal

structures were observed at their striatal target in Atg7 cKO mice

(Figure 1C, E). The axon terminal enlargement was apparent from

2 weeks of age, thus preceding other phenotypes observed in Atg7

cKO mice, and did not progress with age (Figure 1E). With aging,

striatal fiber density of dopaminergic axon terminals declined

slowly in Atg7 cKO mice (Figure 1F), which correlated with the

slowly progressive loss of midbrain DA neuron as we have

previously reported [16]. The enlarged axon terminals within the

striatum were stained positively with an antibody to dopaminergic

presynaptic component vesicular monoamine transporter 2

(VMAT2) (Figure 2A). In contrast to the soma inclusions

(Figure 1D), the enlarged axon terminals were not stained with

antibodies to Ub and p62 (Figure 2B, C).

Biochemical analysis of striatal synaptosomal preparations from

2-month-old Atg7 cKO mice and their littermates revealed

predominantly unchanged levels of pre- and post-synaptic proteins

including Synapsin I, Synaptophysin, Synaptotagmin, Synaptic

vesicle protein 2A (SV2A), a-Synuclein, Synaptosomal-associated

protein 25 kDa (SNAP25), Syntaxin 1A, Growth associated

protein 43 (GAP43), Postsynaptic density protein 95 (PSD95),

and Gephrin (Figure 3C). Levels of early endosomal compartment

markers present at presynaptic terminals, including early endo-

some antigen-1 (EEA1) and Rab5, were reduced, whereas late

endosomal/lysosomal markers including Rab7 and Cathepsin B

appeared unchanged (Figure 3B). An additional presynaptic

marker protein, Synaptobrevin II, appeared increased in accu-

mulation in Atg7 cKO synaptosomal preparations (Figure 3C).

Thus, macroautophagy deficiency in midbrain DA neurons leads

to axonal terminal enlargement associated with modest alterna-

tions in the accumulation of presynaptic regulatory proteins.

Consistent with these findings, immunoelectron microscopy for

DA neuron marker, TH, showed significant enlargement of Atg7

deficient dopaminergic axon terminals but otherwise normal

appearing morphology, including presynaptic terminals, synaptic

vesicles, and mitochondria (Figure 2D). Furthermore, no inclu-

sions or membrane swirls were apparent, in contrast to those

described within dystrophic neuronal terminals in Atg7 deficient

Purkinje neurons [5]. Thus, the morphology phenotype does not

appear to be a consequence of the accumulation of unfolded

protein in the context of aberrant degradation, nor represent

dystrophic changes as described in other neuronal populations

deficient in Atg7 [5].

We sought to further address whether the axon terminal

morphological change in the context of Atg7 deficiency is a

consequence of altered development or altered maintenance of

mature axon terminals. Thus, adult 2-month-old Atg7flox/flox mice,

which remain intact for Atg7 expression, were stereotaxically

injected with adeno-associated virus-2 (AAV2) that harbors Cre/

green fluorescence protein (GFP) or GFP control into the ventral

midbrain unilaterally (Figure 4A), effectively transducing a large

fraction of TH-positive DA neurons (Figure 4B). Analysis of these

mice 8 weeks after viral transduction revealed the dramatic

enlargement of dopaminergic axon terminals within the striatum

only of the AAV2-Cre/GFP virus transduced Atg7flox/flox mice

(Figure 4C), consistent with the phenotype in Atg7 cKO mice.

Thus, these studies confirm a role for Atg7 in the morphological

plasticity of mature dopaminergic axon terminals.

Author Summary

Macroautophagy is a major recycling pathway in cells, and
its dysfunction is associated with neurological disorders
including Alzheimer’s disease, Parkinson’s disease, and
frontotemporal dementia. Here we show that Atg7, an
essential component of macroautophagy, regulates ma-
ture dopaminergic axon terminal morphology in coordi-
nation with the well-described role of the PI3K pathway.
Deficiency of Pten, a negative regulator of the PI3K/mTOR
pathway, leads primarily to enlarged dopaminergic cell
soma but normal-appearing axonal terminals, whereas
Atg7 deficiency primarily induces enlarged axonal termi-
nals. Atg7 and Pten double deficiency leads to further axon
terminal enlargement, suggesting that Atg7 deficiency
unmasks the impact of PI3K/mTOR pathway on mature
dopaminergic axon terminals. In addition, we show that
Atg7 and Pten coordinately regulate striatal dopamine
turnover and dopamine-dependent motor behaviors.
Taken together, these data support a novel role for
Atg7-dependent macroautophagy in the regulation of
dopaminergic axon terminal morphology, in coordination
with the PI3K/mTOR pathway.

Axon Morphology Regulated by Macroautophagy
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In addition to the axon terminal enlargement, at time points as

early as 1-month of age, morphometric analysis of TH-positive cell

soma in Atg7 cKO mice (or Atg7 cWT mice) revealed a significant

albeit minor increase in soma size (15% increase, Figure 5A, B).

This phenotype appeared similar in older animals (and thus not

age-dependent; Figure 5A), and thus was not correlated with the

neurodegenerative phenotype seen with aging.

As axon terminal enlargement appeared non-progressive and

was not associated with intracellular inclusions or other apparent

pathological changes, this was unlikely to be secondary to the late-

onset progressive degeneration seen in midbrain DA neurons of

Atg7 cKO mice [19,20]. We note that in vitro studies using primary

midbrain cultures prepared from Atg7 cKO or littermate cWT

embryos further support this interpretation. TH-positive DA

Figure 1. Enlarged axon terminals in TH-positive DA neurons of Atg7 cKO mice. (A) Schema of mouse mating to obtain Atg7-deficient
mice. Atg7 cKO mice and the littermate DatCre/+ (Atg7 cWT) animals were used for the analyses. Animals lacking Cre (Atg7flox/*) were not used in this
study. Asterisk indicates ‘+’ or ‘flox’. (B) CRE immunohistochemistry in 4-week-old DatCre/+ midbrain. Nuclear CRE-positive staining (red) was seen in
TH-positive (green) DA neurons, but not other cell types in the substantia nigra, not elsewhere in the CNS of cKO mice, and not in control Dat+/+ brain
[59]. Bar, 20 mm. (C) TH-positive DA neurons in the midbrain substantia nigra project their axons into the striatum region. A, anterior; P, posterior. (D)
Grossly normal appearance of Atg7 cKO midbrain DA neurons at the age of 1-month-old. Numerous Ub- and p62-positive [16] inclusions in Atg7 cKO
soma and dendrites. Bar, 10 mm. (E) Enlarged TH-positive axon terminals (green) in the striatum of Atg7 cKO mice (arrows) at ages of 2-weeks and 6-
months. Bars, 20 mm. (right) Quantification of the density of enlarged axon terminals. TH-positive axonal terminal enlargement in Atg7 cKO mouse
striatum was apparent from 2-week of age, and did not progress with age (6-month). White, Atg7 cWT; Black, Atg7 cKO. n = 6 per group. **, p,0.01.
(F) The fiber density of dopaminergic axon terminals in the striatum of Atg7 cKO mice at different ages. Dopaminergic axon terminals were visualized
by anti-TH antibody staining (red). Bars, 500 mm. (right) Quantification of the density of TH-positive axonal shafts. The values were normalized by the
fiber density of 1-month-old cWT animals. White, Atg7 cWT; Black, Atg7 cKO. n = 5,6 per group. **, p,0.01.
doi:10.1371/journal.pgen.1003845.g001

Axon Morphology Regulated by Macroautophagy
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neurons in Atg7 cKO cultures at day 5 in vitro (5th DIV) displayed

increased total neurite length (Figure S1B). Importantly, TH-

positive DA neuron number and appearance was otherwise not

altered in the Atg7 cKO primary cultures (Figure S1B), and thus

this early phenotype is not likely to reflect degeneration.

mTOR pathway modification in Atg7 deficient
dopaminergic axon terminals

The mTOR kinase signaling pathway is a key regulator of

mammalian cell size [8,9,21–23]. As mTOR is also a major

negative regulator of macroautophagy [24], we hypothesized that

Atg7 may function in a common pathway with mTOR, or parallel

to mTOR, in the context of dopaminergic axon terminal size

regulation. To this end, we evaluated mTOR pathway activation

within dopaminergic axon terminal projections in the striatum of

Atg7 cKO or cWT mice. Crude striatal synaptosomal protein

fractions were prepared and analyzed by Western blotting. As

expected, Atg7 cKO synaptosomes displayed evidence of reduced

macroautophagy, as the lipidation of LC3 (as well as of the related

autophagosome marker protein GABARAPL1) was reduced

(Figure 3A). However, the pattern of mTOR pathway component

modification was not consistent with canonical activation of the

Figure 2. Characterization of enlarged TH-positive axon terminals of Atg7 cKO mice. (A) Enlarged axon terminals in the striatum of 2-
month-old Atg7 cKO mice were positive for the axon terminal proteins of midbrain DA neurons. Enlarged axon terminals (arrows in green) in Atg7 cKO
mice were stained with VMAT2 (arrows in red). Bars, 10 mm. (B, C) Enlarged axon terminals in 2-month-old Atg7 cKO mice are Ub- and p62-negative.
Enlarged axon terminals (arrows in green) in the striatum of Atg7 cKO mice were not stained with the markers for protein inclusions such as Ub (red in
‘B’) and p62 (red in ‘C’), suggesting that they are distinct from the inclusions seen in the cell somas of Atg7 cKO mice (Figure 1D). Bars, 10 mm. (D)
Ultrastructural analysis of dopaminergic axon terminals in the striatum of 3-month-old Atg7 cWT or Atg7 cKO mice by immunoelectron microscopy
with an antibody to TH. Red circles indicate the gold particle-conjugated anti-TH antibody. Bars, 200 nm. (right) Quantification of the size distribution
of axon terminals in striatal sections. Each dot (N) represents approximately 1.6% of the total axon terminal number. n = 611 terminals for cWT and
592 terminals for cKO sections.
doi:10.1371/journal.pgen.1003845.g002

Axon Morphology Regulated by Macroautophagy
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PI3K/mTOR pathway. Phosphorylation of eukaryotic translation

initiation factor 4E binding protein 1 (4EBP1), a downstream

target and effector of mTOR signaling [25], was significantly

increased at Ser 65 and Thr 70 in Atg7 cKO mice (Figure 3D), but

phosphorylation of other typical downstream targets of mTOR –

ribosomal protein S6 kinase (S6K) (Thr 389) and S6 (Ser 235/236)

– appeared unchanged (Figure 3D). Furthermore, canonical PI3K

pathway-associated modifications of mTOR kinase – in terms of

the accumulation of phospho-mTOR (Ser 2448 and Ser 2481;

Figure 3D, 6C) – or of the upstream PI3K pathway component

AKT kinase (Ser 473), were not evident in Atg7 cKO striatum

(Figure 3D). Taken together, these findings argue against a simple

model whereby Atg7 deficiency may modify axonal process

morphology through the modification of PI3K/mTOR down-

stream pathway (Figure S3A). A caveat to the interpretation of

mTOR pathway modification using striatal synaptosome extracts

Figure 3. Biochemical analyses of the protein extracts from the striatal synaptosomes of Atg7 cKO mice. (A) Evidence for reduced
macroautophagy activity in axon terminals of Atg7 cKO mice. Conversions of LC3-I and GABARAPL1-I into modified lipidated forms associated with
autophagosome formation – termed LC3-II and GABARAPL1-II, respectively – were significantly decreased in striatal synaptosomal preparations from
Atg7 cKO mice (relative to cWT mice); the incomplete reduction likely reflects the presence of non-dopaminergic axon terminals. White, Atg7 cWT;
Black, Atg7 cKO. n = 5 per group. **, p,0.01. (B) Moderately reduced accumulation of early endosome markers in striatal synaptosomal preparations
from Atg7 cKO mice. Both EEA1 and Rab5 are significantly decreased in striatal synaptosomal preparations from Atg7 cKO mice (relative to cWT mice),
whereas late endosomal and lysosomal markers, Rab7 and Cathepsin B, unchanged. pro, procathepsin B; act, active mature Cathepsin B. Internal
control Actin is same as Figure 3A. White, Atg7 cWT; Black, Atg7 cKO. n = 5 per group. *, p,0.05. (C) Selectively increased accumulation of
Synaptobrevin II in striatal synaptosomal preparations from Atg7 cKO mice. Other synaptic markers were not significantly altered. Internal control
Actin is same as Figure 3A. White, Atg7 cWT; Black, Atg7 cKO. n = 5 per group. *, p,0.05. (D) Non-canonical alterations of PI3K/mTOR pathway
signaling in synaptosomal preparations from Atg7 cKO mice. Phosphorylation of AKT at Ser 473 (S473) was decreased in Atg7 cKO mice, whereas
phosphorylation at Thr 308 (T308) unchanged. Phosphorylations of mTOR at Ser 2448 (S2448) or Ser 2481 (S2481) were unchanged in Atg7 cKO mice.
Phosphorylations of 4EBP1 at Ser 65 (S65) and Thr 70 (T70) were increased in the striatal synaptosomes of Atg7 cKO mice, whereas phosphorylations
of S6 (T389) and S6K (S235/236) were unchanged. Internal control Actin is same as Figure 3A. n = 5 per group. **, p,0.01.
doi:10.1371/journal.pgen.1003845.g003

Axon Morphology Regulated by Macroautophagy
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is that non- dopaminergic axon terminals are also present;

however, Atg7 deletion was restricted to midbrain DA neurons.

Pten deficient midbrain DA neurons display enlarged cell
soma but unaltered axon terminals

We next sought to more directly compare the roles of PI3K/

mTOR pathway modification and macroautophagy in the context

of dopaminergic axon terminal size. To this end, we generated

mice deficient in Pten specifically within midbrain DA neurons

(DatCre/+Ptenflox/flox [Pten cKO]). As expected, Pten cKO midbrain

sections displayed canonical activation of PI3K/mTOR pathway,

quantified in terms of accumulation of phospho-AKT at Ser 473,

phospho-mTOR at Ser 2448 and phospho-S6 at Ser 235/236

(Figure 6A, B) [14,15]. In contrast with Atg7 cKO mice, Pten cKO

mice displayed no significant alteration in axon terminal size in the

striatum (Figure 7C) [14]. Nonetheless, Pten cKO mice displayed

robustly increased soma size of DA neurons (30% increase,

Figure 7D), consistent with two prior studies of Pten deficiency

[14,15], and which was much more profound than the modest

soma alteration in the context of Atg7 deficiency (Figure 7D).

Thus, although both Pten deficiency and Atg7 deficiency modify

cell morphology, the phenotypes are distinct, and thus the effect of

Atg7 deficiency cannot simply reflect altered PI3K/mTOR

pathway activation alone.

Synergistic enlargement of axon terminal size in Atg7
and Pten double deficient DA neurons

To further consider the genetic relationship of Atg7 and Pten in

the context of axon morphology, we generated double mutant

mice lacking both Atg7 and Pten specifically in midbrain DA

neurons (Atg7/Pten double cKO), and compared these to single

cKO mice (either Atg7 cKO or Pten cKO alone) as well as to

control cWT mice (Figure 7A). PI3K/mTOR pathway activation

was apparent in the Atg7/Pten double cKO mice, as expected, with

accumulation of phospho-AKT at Ser 473, phospho-mTOR at

Ser 2448, and phsopho-S6 at Ser 235/236 in midbrain DA

neurons (Figure 6D) comparable to that observed in the Pten single

cKO mice (Figure 6B). Surprisingly, dopaminergic axon terminals

were dramatically larger in the double cKO mice than those in

Atg7 cKO mice or control animals (Figure 7C, giant axon

terminals). These giant axon terminals in Atg7/Pten double cKO

mice were positive to VMAT2, but negative to Ub and p62 (data

not shown). Atg7/Pten double cKO mice also showed mildly

potentiated soma enlargement (79% increase, Figure 7D) relative

Figure 4. Atg7 regulates morphological plasticity of mature dopaminergic axon terminals. (A) Scheme of AAV2-Cre/GFP viral
transduction of adult Atg7flox/flox substantia nigra. Eight-week-old Atg7flox/+ and Atg7flox/flox mice were stereotactically injected with AAV2-Cre/GFP viral
solution, and sacrificed 4- or 8-weeks later. (B) AAV2-Cre/GFP viral transduction of substantia nigra led to prominent GFP fluorescence (green) in a
majority of TH-positive DA neurons (red) at 4- or 8-weeks after the injection; no GFP fluorescence was seen in untransduced animals (data not
shown). (C) Transduction of Cre/GFP virus into adult Atg7flox/flox substantia nigra reproduced the enlarged axon terminal phenotype seen in Atg7 cKO
mice. At 8-weeks after injection, enlarged TH-positive axon terminals (arrows) were seen in the striatum of Atg7flox/flox mice injected with AAV2-Cre/
GFP viral solution. No enlarged axon terminals were seen in the striatum of Atg7flox/+ mice with AAV2-Cre/GFP virus or Atg7flox/flox mice with control
AAV2-GFP virus lacking Cre. Bars, 20 mm. (right) Quantification of the density of enlarged axon terminals in mice injected with AAV2-Cre/GFP virus.
TH-positive axon terminal enlargement in Atg7flox/flox mouse striatum was seen at 8-weeks after the AAV2-Cre/GFP virus injection. White, Atg7flox/+;
Black, Atg7flox/flox. n = 3 per group. **, p,0.01.
doi:10.1371/journal.pgen.1003845.g004

Axon Morphology Regulated by Macroautophagy
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to either single cKO mice. Thus, PI3K/mTOR pathway

activation alone is not sufficient to modify dopaminergic axon

terminal size, but its impact is unmasked in the context of Atg7

deficiency (Figure 8E). A further consequence of Pten deficiency in

the context of Atg7 loss is that subsequent progressive midbrain

DA neuron degeneration, as seen in 2-month-old Atg7 cKO mice

and thereafter, is suppressed (Figure 7B). As such ‘rescue’ of

neurodegeneration in Atg7/Pten double cKO mice failed to prevent

the enlarged axon terminal phenotype (but instead actually

enhanced the enlargement; Figure 7C), this further validates the

notion that axon terminal enlargement in Atg7 cKO mice is not a

consequence of neurodegeneration.

Synergistic impact of Atg7 and Pten deficiency on DA
metabolism and DA-associated locomotion

The studies above detail a synergistic role for Atg7 and Pten in

the regulation of DA neuron morphology. We sought to expand

the synergistic effects to functional changes in Atg7 cKO mice.

Striatal DA accumulation and its metabolites, 3,4-dihydroxyphe-

nylacetic acid (DOPAC) and homovanillic acid (HVA), were

quantified in 3-month-old single and double mutant mice (Figure

S2A–C). DA turnover (DOPAC/DA and HVA/DA) in the

striatum, which is a reflection of dopaminergic axon terminal

activity, was increased in Atg7 cKO mice (relative to control cWT

mice; Figure 8A, B). This phenotype was further enhanced in

Figure 6. Characterization of PI3K/mTOR pathways in TH-positive DA neurons of Atg7 and/or Pten cKO mice. PI3K/mTOR pathway
signaling, in terms of accumulation of phospho-AKT (S473), phospho-TOR (S2448), and phospho-S6 (S235/236) as indicated (in red) were unchanged
in the TH-positive (green) midbrain DA neurons of Atg7 cKO mice (C), whereas these markers were increased in TH-positive DA neurons of Pten cKO
and Atg7/Pten double cKO mice (arrows in B and D). (A) Control cWT mice, (B) Pten cKO mice, (C) Atg7 cKO mice, and (D) Atg7/Pten double cKO mice.
Scale bars, 10 mm.
doi:10.1371/journal.pgen.1003845.g006

Figure 5. Enlarged soma size in TH-positive DA neurons of Atg7 cKO mice. (A) Enlarged cell soma of TH-positive DA neurons in Atg7 cKO
mice. The soma area (brown in pictures) of nigral TH-positive DA neurons in Atg7 cKO mice (black in graph) was approximately 15% larger than that
in Atg7 cWT mice (white in graph), as quantified using Image-J software (Image J, Bethesda, MD) and presented relative to the area of the Atg7 cWT
group. Bars, 10 mm. (Atg7 cWT mice = 1.0); n = 194 to 377 TH-positive DA neurons per group. **, p,0.01. (B) The distribution of cell soma size of TH-
positive DA neurons in Atg7 cWT and Atg7 cKO mice. The soma size of TH-positive DA neurons in Atg7 cKO mice (black circle) was on average
approximately 15% larger than that in Atg7 cWT mice (white circle).
doi:10.1371/journal.pgen.1003845.g005

Axon Morphology Regulated by Macroautophagy
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Atg7/Pten double cKO mice, whereas Pten cKO alone appeared

normal (Figure 8A, B), mirroring the morphological findings. The

absolute level of DA accumulation, in contrast to DA turnover,

was significantly reduced in Atg7 cKO mice (Figure S2A), which

may reflect cell loss at this age. However, this reduction in DA

levels was not ‘rescued’ by PTEN loss (Figure S2A).

Given the altered DA accumulation in Atg7 cKO mice, as well

as prior studies demonstrating physiological changes in these

animals [26], we sought to identify possible behavioral correlates.

To this end, basal locomotor activity was quantified in an open

field chamber that was novel to the animals over a 30-min period.

Ambulatory distance travelled was increased in Atg7 cKO mice

(relative to control cWT mice; Figure 8C, D). This phenotype was

further enhanced in Atg7/Pten double cKO mice (Figure 8C, D),

whereas Pten single cKO mice behavior did not appear signifi-

cantly altered (Figure 8C, D) [14]. Other activity parameters,

including jump counts and vertical activity, appeared similarly

altered in the Atg7 cKO mice and Atg7/Pten double cKO mice

(Figure S2E, F). In contrast, velocity of ambulation was not altered

(Figure S2D). Thus, Atg7 single cKO and Atg7/Pten double cKO

mice displayed alterations in motor behavior that correlated with

their cellular changes and alterations in DA turnover.

Discussion

The PTEN/PI3K/mTOR signaling pathway plays a central

role in the regulation of neuronal morphology and size in

developing vertebrate and invertebrate species [8,9,21,22]. How-

ever, a number of studies have provided evidence that in the

context of the mature mammalian CNS, as well as within certain

subcellular compartments of neurons such as at axonal processes,

the impact of the PTEN//PI3K/mTOR pathway on size can be

highly regulated. For instance, although deletion of PTEN in post-

mitotic DA neurons leads to enlarged soma (Figure 7D) [14,15],

dopaminergic axon terminals are not altered (Figure 7C) [14,15].

In contrast to these observations, PTEN deletion at earlier

developmental stages or in other neuronal types, such as in the

progenitors of dentate gyrus granule neurons [10,11], leads to

Figure 7. Atg7 and Pten double deficiency synergistically increases axon terminal size in midbrain DA neurons. (A) Schema of mouse
mating to obtain Atg7 and Pten double deficient mice. DatCre/+ background animals were used for the analyses. Animals lacking Cre
(Ptenflox/*Atg7flox/*) were not used in this study. Asterisk indicates ‘+’ or ‘flox’. (B) Neurodegeneration in Atg7 cKO mice was rescued by secondary
deletion of Pten. Secondary Pten deletion (Atg7/Pten double cKO) suppressed the loss of TH-positive DA neurons in the substantia nigra of 2-month-
old Atg7 cKO mice. Representative TH-stained midbrain sections are presented. Bar, 250 mm. (right) Quantification of TH-positive DA neuron number
in the substantia nigra of Atg7/Pten double cKO mice. n = 4 per genotype. **, p,0.01. (C) The enlarged axon terminal phenotype of Atg7 cKO mice
was greatly enhanced in Atg7/Pten double cKO mice, whereas Pten deficiency alone (Pten cKO) did not significantly change the axon terminal size.
(left) Giant (arrowheads, .9.8 mm2) and moderately enlarged (arrows, 4.4,9.8 mm2) axon terminals were seen in the striatum of Atg7/Pten double
cKO mice, whereas only moderately enlarged axon terminals (arrows) were seen in Atg7 cKO mice and no enlarged axon terminals were seen in Pten
cKO mice. Bars, 20 mm. (right) Quantification of enlarged axon terminal distribution. Black bar, giant terminals (.9.8 mm2); white bar, moderately
enlarged terminals (4.4,9.8 mm2). n = 6 per genotype. **, p,0.01. (D) The soma of TH-positive DA neurons in Atg7/Pten double cKO mice were
dramatically enlarged (79% increase versus control cWT) relative to Atg7 cKO mice (15% increase versus control cWT) and Pten cKO mice (32%
increase versus control cWT). (left) Representative sections stained with anti-TH antibody. Bars, 10 mm. (right) Quantification of the average cell size,
presented as a fraction of DA neuron soma size in control cWT mice. n = 290,417 TH-positive DA neurons per genotype. **, p,0.01.
doi:10.1371/journal.pgen.1003845.g007
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prominent enlargement of axon terminals as well as soma. Thus,

mechanisms that regulate the impact of the PI3K/mTOR

pathway on neuronal morphology are of particular interest. Here

we show that deletion of the essential macroautophagy component

Atg7 unmasks the impact of Pten deletion on dopaminergic axon

terminal size. These data implicate macroautophagy as a negative

regulator of PTEN/PI3K/mTOR pathway regulation of neuronal

morphology (Figure 8E).

Although the precise mechanism by which Pten deletion or

PI3K pathway activation leads ultimately to cellular hypertrophy

remains unclear, multiple studies in Drosophila [27] and mice

[23,28,29] have implicated activation of the ribosomal protein S6

by a family of related kinases that include S6K1 and S6K2,

leading to increased protein translation [30]. As neither S6

phosphorylation nor activation of S6K appeared modified in the

context of Atg7 deficiency (Figure 3D), the axonal process

enlargement seen with macroautophagy deficiency is likely to be

through a distinct mechanism. Our genetic studies strongly

validate this notion, as PI3K/mTOR pathway activation (by

means of PTEN deficiency) and Atg7 deficiency act cooperatively

and synergistically in modifying axon terminal morphology. We

favor an interpretation whereby at the axonal terminus, macro-

autophagy-mediated protein degradation is typically able to

overcome the increased protein production in the context of

Figure 8. Atg7 and Pten double deficiency synergistically increases DA turnover and DA-associated behaviors. (A, B) DA turnover,
quantified as the ratio of the DA metabolites DOPAC or HVA to DA (DOPAC/DA [A] or HVA/DA [B]) was synergistically increased in Atg7/Pten double
cKO mice. The concentrations of DA, DOPAC, and HVA are shown in Figures S2A–C. n = 10,12 per genotype. **, p,0.01. (C, D) Basal locomotor
activity was synergistically increased in Atg7/Pten double cKO mice. Traces (‘D’) display total distance traveled over a 30-min period in an open field
environment. Walking velocity was unchanged (Figure S2D). n = 10,12 per genotype. *, p,0.05; **, p,0.01. (E) In midbrain DA neurons at baseline,
Atg7-mediated macroautophagy inhibits the enlargement of dopaminergic axon terminals, in part by masking the impact of the PTEN/PI3K/mTOR
pathway. Also see Figure S3.
doi:10.1371/journal.pgen.1003845.g008
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mTOR pathway activation, and thus macroautophagy typically

suppresses the impact of Pten deletion on dopaminergic axon

terminal size. However, in the context of defective macroauto-

phagy with Atg7 deficiency, the impact of Pten deletion is

unmasked (Figure 8E). In addition to suppressing PTEN/PI3K/

mTOR pathway-mediated regulation, macroautophagy likely

plays additional roles in determining dopaminergic axon terminal

size and function, as the impact of Atg7 deficiency was observed

regardless of Pten deficiency (Figure 7C).

Our data argue against an alternative model whereby mTOR

pathway activation dictates dopaminergic axon terminal morphol-

ogy through the downstream inhibition of macroautophagy (rather

than through downstream effects on the translation machinery)

(Figure S3A), as has been suggested based on the recent in vitro

analyses of acutely prepared striatal slice preparations treated with

the mTOR inhibitor rapamycin [26]. The impact of the PTEN/

PI3K/mTOR pathway on mature dopaminergic axon terminal

morphology in our present study was apparent in the complete

absence of macroautophagy (when comparing Atg7 single mutant

mice with Atg7/Pten double mutant mice), and thus the mechanism

of action cannot be explained simply by alterations in macro-

autophagy activity. It remains possible that alterations in

macroautophagy activity play some role downstream of mTOR

pathway activation in the context of more acute physiological

changes at axon terminals [26]. Nonetheless, our findings support

a distinct model whereby macroautophagy plays a key role in

suppressing the impact of mTOR pathway activation in the

context of mature dopaminergic axon terminals (Figure 8E).

Previous studies have reported that midbrain DA neuron-

specific Atg7 loss [19], as well as loss of Atg7 in other neuronal

classes, leads to enlarged but dystrophic axons [5,6]. These

findings have generally been interpreted as secondary effects of the

accumulation of pathological inclusions (‘engorgement’). However,

in our analyses of Atg7 deficient midbrain DA neurons,

dopaminergic axon terminal enlargement preceded degeneration,

appeared non-progressive (Figure 1E), and was not associated with

protein aggregates (Figure 2B, C). Furthermore, this phenotype

was enhanced – rather than suppressed – in the context of

additional Pten deficiency (Atg7/Pten double deficient animals)

(Figure 7C), although such additional Pten deficiency effectively

suppressed the late-onset degeneration phenotype of the Atg7

deficient midbrain DA neurons (Figure 7B) [16].

Prior studies in invertebrate species have suggested a role for

macroautophagy in axon terminal morphology. For instance, at

the Drosophila neuromuscular junction (NMJ), macroautophagy has

been reported to promote synapse development through selective

degradation of the Highwire ubiquitin ligase [31]. Mutations in C.

elegans unc-51 –a macroautophagy regulator– lead to develop-

mental axonal defects [32]. There is also precedent of a role for

macroautophagy in cell size homeostasis: induction of macro-

autophagy by Atg1 leads to the reduced Drosophila fat body cell size

in TOR signaling-dependent manner [33]. In mammalian models,

loss of macroautophagy-associated proteins other than Atg7 has

similarly been implicated in axonal morphology, although the

mechanism has remained unclear. Mammalian Ulk1/2, ortholo-

gues of Unc51, have been reported to regulate axonal outgrowth

[34–36]. Taken together, we speculate that regulation of axon

terminal size by macroautophagy may play an important role in

structural plasticity at mature adult axon terminals. Extrinsic cues

such as glial derived neurotrophic factor (GDNF) impact

dopaminergic axon terminal structures and modify signaling

through the PI3K pathway [37,38]; it will be of interest to pursue

the role of macroautophagy in such changes, which have been

implicated clinically in pathological movements associated with

experimental therapeutics for Parkinson’s disease [39–42].

Future studies will seek to identify specific molecular compo-

nents that may mediate dopaminergic axon terminal enlargement

in the context of defective macroautophagy. Our initial screen of

known axon terminal proteins revealed the increased accumula-

tion of Synaptobrevin II in the context of Atg7 deficient

dopaminergic axon terminal preparations (Figure 3C). In addition

to proteins, macroautophagy also plays a role in cell membrane

regulation [43], and this may also impact axon terminal

morphology. Finally, it is interesting to note that axon terminal

morphology, DA neurons, and the PI3K pathway [44–47] have all

been implicated in the etiology of autism spectrum disorders

(ASD), which are characterized by cognitive difficulties and can be

associated with hyperactivity [48,49]. Furthermore, recent studies

have suggested a role for alterations in the protein degradation

machinery in ASD [50–52]. We thus speculate a role for

macroautophagy regulation of axon terminal morphology in the

context of brain disorders.

Materials and Methods

Animal
DatCre/+ mice, Atg7flox/flox mice, and Ptenflox/flox mice were

generated previously [17,18,53]. All animals were maintained in

the animal facility of Columbia University Medical Center. All of

the experimental protocols were approved by the Institutional

Animal Care and Use Committees. All mice we used were DatCre/+

background, as Dat heterozygous KO mice show some defects in

their behavior and physiology [54].

Histology
Mice were perfused in 4% paraformaldehyde and 50 mm

coronal sections were made by a vibratome. The antibodies used

here were listed in Text S1.

Electron microscopy
Electron microscopic analysis was according to the previous

paper [55] and Immunogold incubation protocol for general

application (Electron Microscopy Sciences, Hatfield, PA).

Cell size determination
After the TH staining of midbrain sections by DAB, pictures

were taken at 4006 magnification. The size of TH-neuron was

measured manually by Image-J (NIH) [56]. More than 200 TH-

neurons from 4 mice were analyzed per group.

Western blotting
Preparation of the striatal synaptosomal fractions was according

to the previous paper [57]. The antibodies used here were listed in

Text S1.

High performance liquid chromatography (HPLC)
The striatal tissues were used for HPLC analysis. Concentra-

tions of DA and its metabolites were measured according to the

previous paper [58].

Statistical analysis
All of the comparisons were made with Mann-Whitney U-test

(for 2 samples) or non-repeated measures ANOVA (for multiple

samples). The values are expressed as the means 6 SEM. A p

value less than 0.05 is considered significant.
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Supporting Information

Figure S1 Characterization of enlarged axon terminals of Atg7

cKO mice. (A) Decreased macroautophagy activity in midbrain

extracts from Atg7 cKO mice. The conversion of LC3-I to LC3-II

was reduced in 2-month-old Atg7 cKO mice. n = 5 per genotype. *,

p,0.05. (B) Increased neurite length of Atg7 cKO midbrain TH-

positive primary neurons. Total neurite length was significantly

increased in Atg7 cKO primary neurons (bottom right), whereas

the total number of TH-positive neurons per well unchanged.

Primary midbrain neuron cultures were prepared from 3 embryos

per genotype. **, p,0.01.

(TIF)

Figure S2 Characterization of Atg7/Pten double cKO mice. (A–

C) Concentrations of DA, DOPAC, and HVA in the striatum

tissues of Atg7/Pten double cKO mice. (A) DA. (B) DOPAC. (C)

HVA. n = 10,12 mice per genotype. **, p,0.01. (D–F)

Quantifications of the parameters in open field test. (D) Walking

velocity. (E) Jump counts. (F) Vertical behavior counts. n = 10,12

per genotype. *, p,0.05.

(TIF)

Figure S3 Models for the role of macroautophagy in midbrain

DA neuron. Two distinct models for the role of macroautophagy

in regulating DA axon terminal morphology and function. (A) In

the linear model proposed by the prior study [26], the primary

action of mTOR on DA axon morphology is directly through the

inhibition of macroautophagy. (B) In our sculptural model,

macroautophagy plays a key role in suppressing the action of

mTOR signaling at DA axon terminal morphology.

(TIF)

Text S1 Supporting materials and methods.

(DOC)
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